-
Notifications
You must be signed in to change notification settings - Fork 25
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
How to load checkpoints from local model path? #32
Comments
Some weights of ChameleonForConditionalGeneration were not initialized from the model checkpoint at /root/autodl-tmp/Lumina-mGPT/lumina_mgpt/ckpts/models--Alpha-VLLM--Lumina-mGPT-7B-768-Omni and are newly initialized: ['model.vqmodel.encoder.conv_in.bias', 'model.vqmodel.encoder.conv_in.weight', 'model.vqmodel.encoder.conv_out.bias', 'model.vqmodel.encoder.conv_out.weight', 'model.vqmodel.encoder.down.0.block.0.conv1.bias', 'model.vqmodel.encoder.down.0.block.0.conv1.weight', 'model.vqmodel.encoder.down.0.block.0.conv2.bias', 'model.vqmodel.encoder.down.0.block.0.conv2.weight', 'model.vqmodel.encoder.down.0.block.0.norm1.bias', 'model.vqmodel.encoder.down.0.block.0.norm1.weight', 'model.vqmodel.encoder.down.0.block.0.norm2.bias', 'model.vqmodel.encoder.down.0.block.0.norm2.weight', 'model.vqmodel.encoder.down.0.block.1.conv1.bias', 'model.vqmodel.encoder.down.0.block.1.conv1.weight', 'model.vqmodel.encoder.down.0.block.1.conv2.bias', 'model.vqmodel.encoder.down.0.block.1.conv2.weight', 'model.vqmodel.encoder.down.0.block.1.norm1.bias', 'model.vqmodel.encoder.down.0.block.1.norm1.weight', 'model.vqmodel.encoder.down.0.block.1.norm2.bias', 'model.vqmodel.encoder.down.0.block.1.norm2.weight', 'model.vqmodel.encoder.down.0.downsample.conv.bias', 'model.vqmodel.encoder.down.0.downsample.conv.weight', 'model.vqmodel.encoder.down.1.block.0.conv1.bias', 'model.vqmodel.encoder.down.1.block.0.conv1.weight', 'model.vqmodel.encoder.down.1.block.0.conv2.bias', 'model.vqmodel.encoder.down.1.block.0.conv2.weight', 'model.vqmodel.encoder.down.1.block.0.norm1.bias', 'model.vqmodel.encoder.down.1.block.0.norm1.weight', 'model.vqmodel.encoder.down.1.block.0.norm2.bias', 'model.vqmodel.encoder.down.1.block.0.norm2.weight', 'model.vqmodel.encoder.down.1.block.1.conv1.bias', 'model.vqmodel.encoder.down.1.block.1.conv1.weight', 'model.vqmodel.encoder.down.1.block.1.conv2.bias', 'model.vqmodel.encoder.down.1.block.1.conv2.weight', 'model.vqmodel.encoder.down.1.block.1.norm1.bias', 'model.vqmodel.encoder.down.1.block.1.norm1.weight', 'model.vqmodel.encoder.down.1.block.1.norm2.bias', 'model.vqmodel.encoder.down.1.block.1.norm2.weight', 'model.vqmodel.encoder.down.1.downsample.conv.bias', 'model.vqmodel.encoder.down.1.downsample.conv.weight', 'model.vqmodel.encoder.down.2.block.0.conv1.bias', 'model.vqmodel.encoder.down.2.block.0.conv1.weight', 'model.vqmodel.encoder.down.2.block.0.conv2.bias', 'model.vqmodel.encoder.down.2.block.0.conv2.weight', 'model.vqmodel.encoder.down.2.block.0.nin_shortcut.bias', 'model.vqmodel.encoder.down.2.block.0.nin_shortcut.weight', 'model.vqmodel.encoder.down.2.block.0.norm1.bias', 'model.vqmodel.encoder.down.2.block.0.norm1.weight', 'model.vqmodel.encoder.down.2.block.0.norm2.bias', 'model.vqmodel.encoder.down.2.block.0.norm2.weight', 'model.vqmodel.encoder.down.2.block.1.conv1.bias', 'model.vqmodel.encoder.down.2.block.1.conv1.weight', 'model.vqmodel.encoder.down.2.block.1.conv2.bias', 'model.vqmodel.encoder.down.2.block.1.conv2.weight', 'model.vqmodel.encoder.down.2.block.1.norm1.bias', 'model.vqmodel.encoder.down.2.block.1.norm1.weight', 'model.vqmodel.encoder.down.2.block.1.norm2.bias', 'model.vqmodel.encoder.down.2.block.1.norm2.weight', 'model.vqmodel.encoder.down.2.downsample.conv.bias', 'model.vqmodel.encoder.down.2.downsample.conv.weight', 'model.vqmodel.encoder.down.3.block.0.conv1.bias', 'model.vqmodel.encoder.down.3.block.0.conv1.weight', 'model.vqmodel.encoder.down.3.block.0.conv2.bias', 'model.vqmodel.encoder.down.3.block.0.conv2.weight', 'model.vqmodel.encoder.down.3.block.0.norm1.bias', 'model.vqmodel.encoder.down.3.block.0.norm1.weight', 'model.vqmodel.encoder.down.3.block.0.norm2.bias', 'model.vqmodel.encoder.down.3.block.0.norm2.weight', 'model.vqmodel.encoder.down.3.block.1.conv1.bias', 'model.vqmodel.encoder.down.3.block.1.conv1.weight', 'model.vqmodel.encoder.down.3.block.1.conv2.bias', 'model.vqmodel.encoder.down.3.block.1.conv2.weight', 'model.vqmodel.encoder.down.3.block.1.norm1.bias', 'model.vqmodel.encoder.down.3.block.1.norm1.weight', 'model.vqmodel.encoder.down.3.block.1.norm2.bias', 'model.vqmodel.encoder.down.3.block.1.norm2.weight', 'model.vqmodel.encoder.down.3.downsample.conv.bias', 'model.vqmodel.encoder.down.3.downsample.conv.weight', 'model.vqmodel.encoder.down.4.block.0.conv1.bias', 'model.vqmodel.encoder.down.4.block.0.conv1.weight', 'model.vqmodel.encoder.down.4.block.0.conv2.bias', 'model.vqmodel.encoder.down.4.block.0.conv2.weight', 'model.vqmodel.encoder.down.4.block.0.nin_shortcut.bias', 'model.vqmodel.encoder.down.4.block.0.nin_shortcut.weight', 'model.vqmodel.encoder.down.4.block.0.norm1.bias', 'model.vqmodel.encoder.down.4.block.0.norm1.weight', 'model.vqmodel.encoder.down.4.block.0.norm2.bias', 'model.vqmodel.encoder.down.4.block.0.norm2.weight', 'model.vqmodel.encoder.down.4.block.1.conv1.bias', 'model.vqmodel.encoder.down.4.block.1.conv1.weight', 'model.vqmodel.encoder.down.4.block.1.conv2.bias', 'model.vqmodel.encoder.down.4.block.1.conv2.weight', 'model.vqmodel.encoder.down.4.block.1.norm1.bias', 'model.vqmodel.encoder.down.4.block.1.norm1.weight', 'model.vqmodel.encoder.down.4.block.1.norm2.bias', 'model.vqmodel.encoder.down.4.block.1.norm2.weight', 'model.vqmodel.encoder.mid.attn_1.k.bias', 'model.vqmodel.encoder.mid.attn_1.k.weight', 'model.vqmodel.encoder.mid.attn_1.norm.bias', 'model.vqmodel.encoder.mid.attn_1.norm.weight', 'model.vqmodel.encoder.mid.attn_1.proj_out.bias', 'model.vqmodel.encoder.mid.attn_1.proj_out.weight', 'model.vqmodel.encoder.mid.attn_1.q.bias', 'model.vqmodel.encoder.mid.attn_1.q.weight', 'model.vqmodel.encoder.mid.attn_1.v.bias', 'model.vqmodel.encoder.mid.attn_1.v.weight', 'model.vqmodel.encoder.mid.block_1.conv1.bias', 'model.vqmodel.encoder.mid.block_1.conv1.weight', 'model.vqmodel.encoder.mid.block_1.conv2.bias', 'model.vqmodel.encoder.mid.block_1.conv2.weight', 'model.vqmodel.encoder.mid.block_1.norm1.bias', 'model.vqmodel.encoder.mid.block_1.norm1.weight', 'model.vqmodel.encoder.mid.block_1.norm2.bias', 'model.vqmodel.encoder.mid.block_1.norm2.weight', 'model.vqmodel.encoder.mid.block_2.conv1.bias', 'model.vqmodel.encoder.mid.block_2.conv1.weight', 'model.vqmodel.encoder.mid.block_2.conv2.bias', 'model.vqmodel.encoder.mid.block_2.conv2.weight', 'model.vqmodel.encoder.mid.block_2.norm1.bias', 'model.vqmodel.encoder.mid.block_2.norm1.weight', 'model.vqmodel.encoder.mid.block_2.norm2.bias', 'model.vqmodel.encoder.mid.block_2.norm2.weight', 'model.vqmodel.encoder.norm_out.bias', 'model.vqmodel.encoder.norm_out.weight', 'model.vqmodel.post_quant_conv.bias', 'model.vqmodel.post_quant_conv.weight', 'model.vqmodel.quant_conv.bias', 'model.vqmodel.quant_conv.weight', 'model.vqmodel.quantize.embedding.weight'] |
Have you solved the problem? |
i have the same issue |
This is the path where I currently store the model weight location. I have been unable to read vqgan.
The text was updated successfully, but these errors were encountered: