-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
305 lines (250 loc) · 14.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import pandas as pd
import numpy as np
import os
from sklearn.model_selection import GroupKFold
from sklearn.metrics import roc_auc_score, roc_curve, log_loss
import torch
from torchvision import models, transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader
import time
import apex
import glob
from shutil import copyfile
from datetime import datetime
from colorama import init, Fore, Back, Style
from collections import OrderedDict
import matplotlib.pyplot as plt
import sys
sys.path.append("/home/anjum/PycharmProjects/kaggle")
# sys.path.append("/home/anjum/rsna_code") # GCP
from rsna_intracranial_hemorrhage_detection.datasets import ICHDataset, BalancedRandomSampler
from rsna_intracranial_hemorrhage_detection.utils import *
from rsna_intracranial_hemorrhage_detection.networks import model_builder
torch.multiprocessing.set_sharing_strategy('file_system')
init(autoreset=True)
INPUT_DIR = "/mnt/storage_dimm2/kaggle_data/rsna-intracranial-hemorrhage-detection/"
OUTPUT_DIR = "/mnt/storage/kaggle_output/rsna-intracranial-hemorrhage-detection/"
# INPUT_DIR = "/home/anjum/rsna_data/" # GCP
# OUTPUT_DIR = "/home/anjum/rsna_output/" # GCP
N_WORKERS = 4
FOLDS = 5
def competition_metric(target, predictions):
target = target.numpy()
predictions = torch.sigmoid(predictions).numpy()
return log_loss(target.flatten(), predictions.flatten(), sample_weight=[2, 1, 1, 1, 1, 1] * target.shape[0])
# See https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/discussion/109995#636452
def weighted_multi_label_logloss(criterion, prediction, target, weights):
assert target.size() == prediction.size()
assert weights.shape[0] == target.size(1)
loss = 0
for i in range(target.size(1)):
loss += weights[i] * criterion(prediction[:, i], target[:, i])
return loss
def train_model(args, device="cpu"):
start = time.time()
metadata = pd.read_parquet(os.path.join(INPUT_DIR, 'train_metadata.parquet.gzip'))
# metadata = metadata.sample(1024*10, random_state=48) # For testing
train_transforms = transforms.Compose([transforms.ToPILImage(),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(degrees=15),
transforms.RandomResizedCrop(size=(args.img_size, args.img_size),
scale=(0.85, 1.0), ratio=(0.8, 1.2)),
transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225])
])
test_loaders = build_tta_loaders(args.img_size, dataset=args.stage, batch_size=args.batch, num_workers=N_WORKERS,
image_folder=args.img_folder)
# out-of-fold predictions on train data and averaged predictions on test data
n_images = metadata.shape[0]
categories = ["any", "epidural", "intraparenchymal", "intraventricular", "subarachnoid", "subdural"]
oof_df = pd.DataFrame({c: np.zeros(n_images) for c in categories}, index=metadata['SOPInstanceUID'])
prediction = np.zeros((len(test_loaders[0].dataset), len(categories)))
# list of scores on folds
scores, fold_data = [], OrderedDict()
# kfold = GroupKFold(n_splits=FOLDS)
# for fold_n, (train_index, valid_index) in enumerate(kfold.split(metadata, groups=metadata["PatientID"])):
# train_image_ids = metadata.iloc[train_index]['SOPInstanceUID'].values
# valid_image_ids = metadata.iloc[valid_index]['SOPInstanceUID'].values
# Using the same fold definition as the rest of the team
for fold_n in range(5):
train_image_ids = pd.read_csv(os.path.join(INPUT_DIR, args.cv_scheme, f"train_{fold_n}.csv"))["sop_instance_uid"]
valid_image_ids = pd.read_csv(os.path.join(INPUT_DIR, args.cv_scheme, f"valid_{fold_n}.csv"))["sop_instance_uid"]
train_dataset = ICHDataset("train", phase=0, image_filter=train_image_ids, transforms=train_transforms,
image_folder=args.img_folder)
train_loader = DataLoader(train_dataset, batch_size=args.batch, num_workers=N_WORKERS, shuffle=True,
drop_last=True)
valid_loaders = build_tta_loaders(args.img_size, dataset="train", batch_size=args.batch,
phase=0, image_filter=valid_image_ids, num_workers=N_WORKERS,
image_folder=args.img_folder)
# Create fresh network. optimiser etc.
torch.manual_seed(48 + fold_n)
model = model_builder(args.architecture)
model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5,
# patience=5, min_lr=0.00001, verbose=True)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
checkpoint_file = os.path.join(args.output_dir, f"phase0_fold_{fold_n + 1}.pt")
early_stopping = EarlyStopping(patience=3, verbose=True, file_path=checkpoint_file, parallel=args.parallel)
train_loss, valid_loss, valid_metric = [], [], []
weights = np.array([2, 1, 1, 1, 1, 1])
weights_norm = weights / weights.sum()
criterion = torch.nn.BCEWithLogitsLoss()
# Resume training
if args.checkpoint_path is not None:
try:
checkpoint_file = max(glob.glob(args.checkpoint_path + f'/*fold_{fold_n + 1}*.pt'),
key=os.path.getctime)
print("Resumed from", checkpoint_file)
checkpoint = torch.load(checkpoint_file, map_location='cpu')
model.load_state_dict(checkpoint['model'])
train_loss, valid_loss = checkpoint["train_loss"], checkpoint["valid_loss"]
valid_metric = checkpoint['valid_metric']
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['lr_scheduler'])
epoch_start = checkpoint["epoch"] + 1
early_stopping.load_state_dict(checkpoint["stopping_params"])
except ValueError:
print(f"Fold {fold_n + 1} checkpoint not found. Starting from scratch")
epoch_start = 0
else:
epoch_start = 0
if torch.cuda.is_available():
model, optimizer = apex.amp.initialize(model, optimizer, opt_level="O1")
if args.parallel:
model = torch.nn.DataParallel(model)
print(f'Fold {fold_n + 1} started at {time.ctime()}')
for epoch in range(epoch_start, args.epochs):
model.train()
running_loss = 0
for i, (image, target) in enumerate(train_loader):
# # https://www.tensorflow.org/versions/r1.14/api_docs/python/tf/losses/sigmoid_cross_entropy
# if args.label_smoothing > 0:
# target = target * (1 - args.label_smoothing) + 0.5 * args.label_smoothing
# # target[:, 1:] = target[:, 1:] * (1 - args.label_smoothing) + 0.5 * args.label_smoothing
image, target = image.to(device), target.to(device)
optimizer.zero_grad()
y_hat = model(image)
loss = weighted_multi_label_logloss(criterion, y_hat, target, weights_norm)
if torch.cuda.is_available():
with apex.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 0 or i+1 == len(train_loader):
print(f"Fold {fold_n+1} [{epoch:2d}, {i+1:5d}/{len(train_loader):5d}] Loss: {loss.item():.4f}")
valid_predictions, valid_target = test_time_augmentation(model, valid_loaders, device, "Valid")
score = roc_auc_score(valid_target.numpy(), valid_predictions.numpy())
validation_loss = weighted_multi_label_logloss(criterion, valid_predictions,
valid_target, weights_norm).item()
# validation_metric = competition_metric(valid_target, valid_predictions)
validation_metric = validation_loss
running_loss = running_loss / len(train_loader)
print(Fore.GREEN + f'Train Loss: {running_loss:.5f}, '
f'Validation Loss: {validation_loss:.5f}, '
f'Validation Metric: {validation_metric:.5f}, '
f'ROC AUC: {score:.5f}')
train_loss.append(running_loss)
valid_loss.append(validation_loss)
valid_metric.append(validation_metric)
# scheduler.step(validation_metric)
scheduler.step()
early_stopping(validation_metric, model, epoch=epoch, args=args, optimizer=optimizer.state_dict(),
train_loss=train_loss, valid_loss=valid_loss, valid_metric=valid_metric,
lr_scheduler=scheduler.state_dict())
if early_stopping.early_stop:
print("Early stopping")
break
print(Fore.GREEN + f"Best score: {-early_stopping.best_score:.5f}")
fold_data[f"train_loss_{fold_n + 1}"] = pd.Series(train_loss)
fold_data[f"valid_loss_{fold_n + 1}"] = pd.Series(valid_loss)
fold_data[f"valid_metric_{fold_n + 1}"] = pd.Series(valid_metric)
# Predict on test and OOF sets using the best checkpoint on a fresh model
# For some reason loading weights to an existing model was doing weird things with the submission ¯\_(ツ)_/¯
print("Loading checkpoint and creating submission & OOFs")
model = model_builder(args.architecture)
model = model.to(device)
checkpoint = torch.load(checkpoint_file, map_location='cpu')
model.load_state_dict(checkpoint['model'])
if args.parallel:
model = torch.nn.DataParallel(model)
# scores.append(score)
valid_predictions, valid_target = test_time_augmentation(model, valid_loaders, device, "Valid")
oof_df.loc[valid_image_ids, categories] = torch.sigmoid(valid_predictions).numpy()
plot_multiclass_roc_curve(valid_target, torch.sigmoid(valid_predictions).numpy(),
os.path.join(args.output_dir, f"roc_fold_{fold_n + 1}.png"),
-early_stopping.best_score)
test_predictions, _ = test_time_augmentation(model, test_loaders, device, "Test ")
prediction += test_predictions.detach().numpy()
# Save results
test_df = pd.DataFrame(torch.sigmoid(torch.tensor(prediction / (fold_n + 1))).numpy(), columns=categories)
test_df["ImageID"] = test_loaders[0].dataset.image_ids
test_df.to_csv(os.path.join(args.output_dir, "test_predictions.csv"), index=False)
oof = wide_to_long(oof_df.reset_index(), id_var="SOPInstanceUID")
sub = reindex_submission(wide_to_long(test_df), args.stage)
oof.to_csv(os.path.join(args.output_dir, f"{args.output_dir[-15:]}_oof_predictions.csv.gz"),
index=False, compression="gzip")
sub.to_csv(os.path.join(args.output_dir, f"{args.output_dir[-15:]}_submission.csv.gz"),
index=False, compression="gzip")
# break # HACK: Single fold
metric_values = [v.iloc[-1] for k, v in fold_data.items() if 'valid_metric' in k]
for i, (ll, roc) in enumerate(zip(metric_values, scores)):
print(Fore.GREEN + f'Fold {i+1} LogLoss: {ll:.4f}, ROC AUC: {roc:.4f}')
print(Fore.CYAN + f'CV mean ROC AUC score: {np.mean(scores):.4f}, std: {np.std(scores):.4f}')
print(Fore.CYAN + f'CV mean Log Loss: {np.mean(metric_values):.4f}, std: {np.std(metric_values):.4f}')
# Make a plot
fold_data = pd.DataFrame(fold_data)
fig, ax = plt.subplots()
plt.title(f"CV Mean score: {np.mean(metric_values):.4f} +/- {np.std(metric_values):.4f}")
valid_curves = fold_data.loc[:, fold_data.columns.str.startswith('valid_loss')]
train_curves = fold_data.loc[:, fold_data.columns.str.startswith('train_loss')]
valid_curves.plot(ax=ax, colormap='Blues_r')
train_curves.plot(ax=ax, colormap='Reds_r')
# ax.set_ylim([np.min(train_curves.values), np.max(valid_curves.values)])
ax.tick_params(labelleft=True, labelright=True, left=True, right=True)
plt.savefig(os.path.join(args.output_dir, f"phase0.png"))
print("Done in", (time.time() - start) // 60, "minutes")
if __name__ == '__main__':
import argparse
import yaml
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--config', action='store', dest='config', help='Configuration scheme')
args = parser.parse_args()
# Lookup the config from the YAML file
with open("config.yml", 'r') as ymlfile:
cfg = yaml.load(ymlfile, Loader=yaml.FullLoader)
if args.config is None:
settings = cfg['default_run']
# settings = cfg['default_run_1080']
else:
print("Using", args.config, "configuration")
settings = cfg[args.config]
args.epochs = settings["epochs"]
args.batch = settings["batch"]
args.lr = settings["lr"]
args.img_size = settings["img_size"]
args.checkpoint = settings["checkpoint"]
args.parallel = settings["parallel"]
args.img_folder = settings["img_folder"]
args.architecture = settings["architecture"]
args.stage = settings["stage"]
args.cv_scheme = settings["cv_scheme"]
if args.checkpoint is None:
args.checkpoint = datetime.now().strftime("%Y%m%d-%H%M%S")
args.output_dir = os.path.join(OUTPUT_DIR, "phase0", args.checkpoint)
args.checkpoint_path = None
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
else:
args.checkpoint_path = os.path.join(OUTPUT_DIR, "phase0", args.checkpoint)
args.output_dir = os.path.join(OUTPUT_DIR, "phase0", datetime.now().strftime("%Y%m%d-%H%M%S"))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
print("Saving output to", args.output_dir)
copyfile("config.yml", os.path.join(args.output_dir, "config.yml"))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_model(args, device)