-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathDeepDPM.py
448 lines (425 loc) · 13.1 KB
/
DeepDPM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
#
# Created on March 2022
#
# Copyright (c) 2022 Meitar Ronen
#
import argparse
from argparse import ArgumentParser
import os
from pytorch_lightning.loggers.neptune import NeptuneLogger
from pytorch_lightning.loggers.base import DummyLogger
import pytorch_lightning as pl
from sklearn.metrics import normalized_mutual_info_score as NMI
from sklearn.metrics import adjusted_rand_score as ARI
import numpy as np
from src.datasets import CustomDataset
from src.datasets import GMM_dataset
from src.clustering_models.clusternet_modules.clusternetasmodel import ClusterNetModel
from src.utils import check_args, cluster_acc
def parse_minimal_args(parser):
# Dataset parameters
parser.add_argument("--dir", default="./pretrained_embeddings/umap_embedded_datasets/", help="dataset directory")
parser.add_argument("--dataset", default="custom")
# Training parameters
parser.add_argument(
"--lr", type=float, default=0.002, help="learning rate (default: 1e-4)"
)
parser.add_argument(
"--batch-size", type=int, default=128, help="input batch size for training"
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="random seed",
)
parser.add_argument(
"--n-jobs", type=int, default=1, help="number of jobs to run in parallel"
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="device for computation (default: cpu)",
)
parser.add_argument(
"--offline",
action="store_true",
help="Run training without Neptune Logger"
)
parser.add_argument(
"--tag", type=str, default="MNIST_UMAPED",
)
parser.add_argument(
"--max_epochs", type=int, default=500,
)
parser.add_argument(
"--limit_train_batches", type=float, default=1., help="used for debugging"
)
parser.add_argument(
"--limit_val_batches", type=float, default=1., help="used for debugging"
)
parser.add_argument(
"--save_checkpoints", type=bool, default=False
)
parser.add_argument(
"--exp_name", type=str, default="default_exp"
)
parser.add_argument(
"--use_labels_for_eval",
action = "store_true",
help="whether to use labels for evaluation"
)
return parser
def run_on_embeddings_hyperparams(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument(
"--init_k", default=1, type=int, help="number of initial clusters"
)
parser.add_argument(
"--clusternet_hidden",
type=int,
default=50,
help="The dimensions of the hidden dim of the clusternet. Defaults to 50.",
)
parser.add_argument(
"--clusternet_hidden_layer_list",
type=int,
nargs="+",
default=[50],
help="The hidden layers in the clusternet. Defaults to [50, 50].",
)
parser.add_argument(
"--transform_input_data",
type=str,
default="normalize",
choices=["normalize", "min_max", "standard", "standard_normalize", "None", None],
help="Use normalization for embedded data",
)
parser.add_argument(
"--cluster_loss_weight",
type=float,
default=1,
)
parser.add_argument(
"--init_cluster_net_weights",
action="store_true",
default=False,
)
parser.add_argument(
"--when_to_compute_mu",
type=str,
choices=["once", "every_epoch", "every_5_epochs"],
default="every_epoch",
)
parser.add_argument(
"--how_to_compute_mu",
type=str,
choices=["kmeans", "soft_assign"],
default="soft_assign",
)
parser.add_argument(
"--how_to_init_mu",
type=str,
choices=["kmeans", "soft_assign", "kmeans_1d"],
default="kmeans",
)
parser.add_argument(
"--how_to_init_mu_sub",
type=str,
choices=["kmeans", "soft_assign", "kmeans_1d"],
default="kmeans_1d",
)
parser.add_argument(
"--log_emb_every",
type=int,
default=20,
)
parser.add_argument(
"--log_emb",
type=str,
default="never",
choices=["every_n_epochs", "only_sampled", "never"]
)
parser.add_argument(
"--train_cluster_net",
type=int,
default=300,
help="Number of epochs to pretrain the cluster net",
)
parser.add_argument(
"--cluster_lr",
type=float,
default=0.0005,
)
parser.add_argument(
"--subcluster_lr",
type=float,
default=0.005,
)
parser.add_argument(
"--lr_scheduler", type=str, default="StepLR", choices=["StepLR", "None", "ReduceOnP"]
)
parser.add_argument(
"--start_sub_clustering",
type=int,
default=45,
)
parser.add_argument(
"--subcluster_loss_weight",
type=float,
default=1.0,
)
parser.add_argument(
"--start_splitting",
type=int,
default=55,
)
parser.add_argument(
"--alpha",
type=float,
default=10.0,
)
parser.add_argument(
"--softmax_norm",
type=float,
default=1,
)
parser.add_argument(
"--subcluster_softmax_norm",
type=float,
default=1,
)
parser.add_argument(
"--split_prob",
type=float,
default=None,
help="Split with this probability even if split rule is not met. If set to None then the probability that will be used is min(1,H).",
)
parser.add_argument(
"--merge_prob",
type=float,
default=None,
help="merge with this probability even if merge rule is not met. If set to None then the probability that will be used is min(1,H).",
)
parser.add_argument(
"--init_new_weights",
type=str,
default="same",
choices=["same", "random", "subclusters"],
help="How to create new weights after split. Same duplicates the old cluster's weights to the two new ones, random generate random weights and subclusters copies the weights from the subclustering net",
)
parser.add_argument(
"--start_merging",
type=int,
default=55,
help="The epoch in which to start consider merge proposals",
)
parser.add_argument(
"--merge_init_weights_sub",
type=str,
default="highest_ll",
help="How to initialize the weights of the subclusters of the merged clusters. Defaults to same",
)
parser.add_argument(
"--split_init_weights_sub",
type=str,
default="random",
choices=["same_w_noise", "same", "random"],
help="How to initialize the weights of the subclusters of the merged clusters. Defaults to same",
)
parser.add_argument(
"--split_every_n_epochs",
type=int,
default=10,
help="Example: if set to 10, split proposals will be made every 10 epochs",
)
parser.add_argument(
"--split_merge_every_n_epochs",
type=int,
default=30,
help="Example: if set to 10, split proposals will be made every 10 epochs",
)
parser.add_argument(
"--merge_every_n_epochs",
type=int,
default=10,
help="Example: if set to 10, merge proposals will be made every 10 epochs",
)
parser.add_argument(
"--raise_merge_proposals",
type=str,
default="brute_force_NN",
help="how to raise merge proposals",
)
parser.add_argument(
"--cov_const",
type=float,
default=0.005,
help="gmms covs (in the Hastings ratio) will be torch.eye * cov_const",
)
parser.add_argument(
"--freeze_mus_submus_after_splitmerge",
type=int,
default=5,
help="Numbers of epochs to freeze the mus and sub mus following a split or a merge step",
)
parser.add_argument(
"--freeze_mus_after_init",
type=int,
default=5,
help="Numbers of epochs to freeze the mus and sub mus following a new initialization",
)
parser.add_argument(
"--use_priors",
type=int,
default=1,
help="Whether to use priors when computing model's parameters",
)
parser.add_argument("--prior", type=str, default="NIW", choices=["NIW", "NIG"])
parser.add_argument(
"--pi_prior", type=str, default="uniform", choices=["uniform", None]
)
parser.add_argument(
"--prior_dir_counts",
type=float,
default=0.1,
)
parser.add_argument(
"--prior_kappa",
type=float,
default=0.0001,
)
parser.add_argument(
"--NIW_prior_nu",
type=float,
default=None,
help="Need to be at least codes_dim + 1",
)
parser.add_argument(
"--prior_mu_0",
type=str,
default="data_mean",
)
parser.add_argument(
"--prior_sigma_choice",
type=str,
default="isotropic",
choices=["iso_005", "iso_001", "iso_0001", "data_std"],
)
parser.add_argument(
"--prior_sigma_scale",
type=float,
default=".005",
)
parser.add_argument(
"--prior_sigma_scale_step",
type=float,
default=1.,
help="add to change sigma scale between alternations"
)
parser.add_argument(
"--compute_params_every",
type=int,
help="How frequently to compute the clustering params (mus, sub, pis)",
default=1,
)
parser.add_argument(
"--start_computing_params",
type=int,
help="When to start to compute the clustering params (mus, sub, pis)",
default=25,
)
parser.add_argument(
"--cluster_loss",
type=str,
help="What kind og loss to use",
default="KL_GMM_2",
choices=["diag_NIG", "isotropic", "KL_GMM_2"],
)
parser.add_argument(
"--subcluster_loss",
type=str,
help="What kind og loss to use",
default="isotropic",
choices=["diag_NIG", "isotropic", "KL_GMM_2"],
)
parser.add_argument(
"--ignore_subclusters",
type=bool,
default=False,
)
parser.add_argument(
"--log_metrics_at_train",
type=bool,
default=True,
)
parser.add_argument(
"--gpus",
default=None
)
parser.add_argument(
"--evaluate_every_n_epochs",
type=int,
default=5,
help="How often to evaluate the net"
)
return parser
def train_cluster_net():
parser = argparse.ArgumentParser(description="Only_for_embbedding")
parser = parse_minimal_args(parser)
parser = run_on_embeddings_hyperparams(parser)
args = parser.parse_args()
args.train_cluster_net = args.max_epochs
if args.dataset == "synthetic":
dataset_obj = GMM_dataset(args)
else:
dataset_obj = CustomDataset(args)
train_loader, val_loader = dataset_obj.get_loaders()
tags = ['umap_embbeded_dataset']
if args.offline:
logger = DummyLogger()
else:
logger = NeptuneLogger(
api_key='your_API_token',
project_name='your_project_name',
experiment_name=args.exp_name,
params=vars(args),
tags=tags
)
check_args(args, dataset_obj.data_dim)
if isinstance(logger, NeptuneLogger):
if logger.api_key == 'your_API_token':
print("No Neptune API token defined!")
print("Please define Neptune API token or run with the --offline argument.")
print("Running without logging...")
logger = DummyLogger()
# Main body
if args.seed:
pl.utilities.seed.seed_everything(args.seed)
model = ClusterNetModel(hparams=args, input_dim=dataset_obj.data_dim, init_k=args.init_k)
if args.save_checkpoints:
from pytorch_lightning.callbacks import ModelCheckpoint
checkpoint_callback = ModelCheckpoint(dirpath = f"./saved_models/{args.dataset}/{args.exp_name}")
if not os.path.exists(f'./saved_models/{args.dataset}'):
os.makedirs(f'./saved_models/{args.dataset}')
os.makedirs(f'./saved_models/{args.dataset}/{args.exp_name}')
else:
checkpoint_callback = False
trainer = pl.Trainer(logger=logger, max_epochs=args.max_epochs, gpus=args.gpus, num_sanity_val_steps=0, checkpoint_callback=checkpoint_callback, limit_train_batches=args.limit_train_batches, limit_val_batches=args.limit_val_batches)
trainer.fit(model, train_loader, val_loader)
print("Finished training!")
# evaluate last model
dataset = dataset_obj.get_train_data()
data = dataset.data
net_pred = model(data).argmax(axis=1).cpu().numpy()
if args.use_labels_for_eval:
# evaluate model using labels
labels = dataset.targets.numpy()
acc = np.round(cluster_acc(labels, net_pred), 5)
nmi = np.round(NMI(net_pred, labels), 5)
ari = np.round(ARI(net_pred, labels), 5)
print(f"NMI: {nmi}, ARI: {ari}, acc: {acc}, final K: {len(np.unique(net_pred))}")
return net_pred
if __name__ == "__main__":
train_cluster_net()