-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinheritable_cifar100_wEWC.py
208 lines (135 loc) · 7.42 KB
/
inheritable_cifar100_wEWC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import argparse
import time
import datetime
import sys
sys.path.append('../')
import copy
import numpy as np
import os
import shutil
import random
import warnings
import xlwt
import dill as pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, ConcatDataset
from torch.autograd import Variable
from utils.train import train, test, train_ewc, test_ewc, train_ewc_vgg, test_ewc_vgg
from utils.model_zoo_cifar100 import vgg_compression_ONE
# from utils.imagenetDataloader import getDataloader_imagenet_inheritable
from utils.network_wider_cifar100 import Netwider
from utils.cifar100_dataloader import get_permute_cifar100, get_inheritable_cifar100
torch.cuda.set_device(0)
parser = argparse.ArgumentParser(description='i_inheritable_random_trainnum200_wEWC')
parser.add_argument('--batch_size', type=int, default=32, metavar='N', help='input batch size for training (default: 64)')
parser.add_argument('--epochs', type=int, default=100, metavar='N', help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.005, metavar='LR', help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--num_works', type=int, default=21, help='number of tasks')
parser.add_argument('--num_works_tt', type=int, default=10, help='number of comp_tasks')
parser.add_argument('--lr_drop', type=float, default=0.4)
parser.add_argument('--epochs_drop', type=int, default=110)
parser.add_argument('--print_freq', type=int, default=50)
parser.add_argument('--num_imgs_per_cat_train', type=int, default=20)
parser.add_argument('--path', type=str, default='./', help='path of base classes')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
lr_ =args.lr
CIFAR100_TRAIN_MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
CIFAR100_TRAIN_STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)
record_time = str((datetime.datetime.now() + datetime.timedelta(hours=8)).strftime('%Y-%m-%d_%H:%M:%S'))
RESULT_PATH_VAL = ''
def save_checkpoint(states, is_best, output_dir, filename='checkpoint.pth'):
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
print('making dir: %s'%output_dir)
torch.save(states, os.path.join(output_dir, filename))
if is_best and 'state_dict' in states:
torch.save(states['state_dict'], os.path.join(output_dir, 'model_best.pth'))
def main():
print("Data loading...")
# trainloader_inheritable, testloader_inheritable = getDataloader_imagenet_inheritable(args.num_works_tt, args.batch_size, subtask_classes_num=5, num_imgs_per_cate=200)
# cifar100
inherit_path = args.path
trainloader_inheritable, testloader_inheritable = get_inheritable_cifar100(args.num_works_tt, args.batch_size, subtask_classes_num=5, num_imgs_per_cate=args.num_imgs_per_cat_train, path=inherit_path)
book = xlwt.Workbook(encoding='utf-8',style_compression=0)
print("Model constructing...")
model = Netwider(13)
model.printf()
for task in range(args.num_works):
print("LL_Task {} begins !".format(task))
start = time.time()
if task != 0:
model_ = copy.deepcopy(model)
del model
model = model_
model.wider(task-1)
model.printf()
if args.cuda:
model = model.cuda()
args.lr = lr_
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=5e-4)
criterion = nn.CrossEntropyLoss()
best_acc = 0.0
best_epoch = 0
snapshot = './imagenet_exp/outputs/i_inheritable_cifar100_wEWC/record_{0}/Task_{1}'.format(record_time, task)
snapshot_model = './imagenet_exp/val_outputs/Val_lifelong_scratch_cifar/2021-08-24 01:28:41/task_{0}'.format(task)
# load collective-model
if not os.path.isdir(snapshot):
print("Building snapshot file: {0}".format(snapshot))
os.makedirs(snapshot)
checkpoint_path = os.path.join(snapshot_model, 'checkpoint.pth')
if os.path.isfile(checkpoint_path):
print("loading success")
checkpoint = torch.load(checkpoint_path)
best_epoch = checkpoint['epoch']
best_acc = checkpoint['best_acc']
optimizer.load_state_dict(checkpoint['optimizer'])
model.load_state_dict(checkpoint['state_dict'])
train_name = 'LL_Train_'+str(task)
test_name = 'LL_Test_'+str(task)
print("LL_Task {0} finished ! ".format(task))
if task == 20:
layers = model.get_layers_19_20()
model_vgg = vgg_compression_ONE(layers, 2048, num_class = 5)
model_v = copy.deepcopy(model_vgg)
del model_vgg
model_vgg = model_v
# model_vgg.printf()
model_vgg = model_vgg.cuda()
for task_tt in range(args.num_works_tt):
print("TT_Task {} begins !".format(task_tt))
train_tt_name = 'TT_Train_200_' + str(task_tt)
test_tt_name = 'TT_Test_200_' + str(task_tt)
sheet_task = book.add_sheet('TT_Task_200_{0}'.format(task_tt), cell_overwrite_ok=True)
cnt_epoch = 0
for epoch in range(args.epochs):
optimizer = optim.SGD(model_vgg.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=5e-4)
criterion = nn.CrossEntropyLoss()
train_loss, train_acc = train_ewc(trainloader_inheritable[task_tt](epoch), model_vgg, criterion, optimizer, epoch, args, \
snapshot=snapshot, name=train_tt_name)
test_loss, test_acc = test_ewc(testloader_inheritable[task_tt](epoch), model_vgg, criterion, optimizer, epoch, args, \
snapshot=snapshot, name=test_tt_name)
sheet_task.write(cnt_epoch, 0, 'Epoch_{0}'.format(cnt_epoch))
sheet_task.write(cnt_epoch, 1, train_loss)
sheet_task.write(cnt_epoch, 2, train_acc.item())
sheet_task.write(cnt_epoch, 3, test_loss)
sheet_task.write(cnt_epoch, 4, test_acc.item())
cnt_epoch = cnt_epoch + 1
del model_vgg
model_vgg = model_v
# model_vgg.printf()
model_vgg = model_vgg.cuda()
print("TT_Task {0} finished !".format(task_tt))
book.save(r'./imagenet_exp/outputs/i_inheritable_random_trainnum200_wEWC/i_inheritable_cifar100_wEWC.xls')
if __name__ == "__main__":
main()