-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMain.py
350 lines (338 loc) · 15.8 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
import math
import json
from time import time
from datetime import timedelta
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, random_split
from transformers import get_cosine_schedule_with_warmup
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs, InitProcessGroupKwargs
from torch.profiler import profile, record_function, ProfilerActivity, tensorboard_trace_handler
from torch.utils.tensorboard import SummaryWriter
import clip
from LMDBDataset_jpeg import LMDBDataset as LMDBdst_jpeg
from LMDBDataset_jpeg import DataPrefetcher as DataPrefetcher_jpeg
from PreProcess import PreProcess
import models.vision_transformer as vits
from models.gr1 import GR1
from AccelerateFix import AsyncStep
def masked_loss(pred, target, mask, skip_frame=0, loss_func=F.mse_loss):
if skip_frame == 0:
new_pred = pred
else:
new_pred = pred[:, :-skip_frame]
new_target = target[:, skip_frame:]
new_mask = mask[:, skip_frame:]
data_shape, mask_shape = new_pred.shape, new_mask.shape
loss = loss_func(new_pred, new_target, reduction='none')
for _ in range(len(data_shape) - len(mask_shape)):
new_mask = new_mask.unsqueeze(-1)
loss = (loss*new_mask).sum() / new_mask.sum() / math.prod(data_shape[len(mask_shape):])
return loss
def train(acc, train_prefetcher, test_prefetcher, preprocessor, model, env, eva, eval_dir, optimizer, scheduler, device, cfg, step, writer):
'''
prof = profile(
schedule = torch.profiler.schedule(
wait=20,
warmup=3,
active=4,
repeat=1,
),
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
on_trace_ready=tensorboard_trace_handler(cfg['save_path']+'prof'),
record_shapes=True,
profile_memory=True,
with_stack=True,
with_flops=True,
with_modules=True,
)
prof.start()
'''
train_dataset_len = len(train_prefetcher.loader.dataset)
test_dataset_len = len(test_prefetcher.loader.dataset)
eval_steps = train_dataset_len // test_dataset_len
avg_reward = 0.0
for epoch in range(cfg['num_epochs']):
if epoch % cfg['save_epochs'] == 0:
# in the 1st epoch, policy.ema has not been initialized. You may also load the wrong ckpt and modify the right one
if epoch != 0:
acc.wait_for_everyone()
unwrapped_model = acc.unwrap_model(model)
modules_to_exclude = ['model_mae', 'model_clip']
if hasattr(unwrapped_model, '_orig_mod'):
state_dict = {k: v for k, v in unwrapped_model._orig_mod.state_dict().items() if not any(module_name in k for module_name in modules_to_exclude)}
else:
state_dict = {k: v for k, v in unwrapped_model.state_dict().items() if not any(module_name in k for module_name in modules_to_exclude)}
acc.save({'state_dict': state_dict}, cfg['save_path']+'GR1_{}.pth'.format(epoch+cfg['load_epoch']))
if cfg['evaluate_during_training']:
model.eval()
avg_reward = torch.tensor(evaluate_policy(
eva,
env,
cfg['save_path']+'success_rate.txt',
cfg['save_path']+'result.txt',
cfg['ep_len'],
cfg['num_sequences'],
acc.num_processes,
acc.process_index,
eval_dir,
debug=cfg['record_evaluation_video'],
)).float().mean().to(device)
avg_reward = acc.gather_for_metrics(avg_reward).mean()
log_loss = {
'rgb_static': 0,
'rgb_gripper': 0,
'action_arm': 0,
'action_gripper': 0,
}
eval_log_loss = {
'rgb_static': 0,
'rgb_gripper': 0,
'action_arm': 0,
'action_gripper': 0,
}
for key in log_loss:
log_loss[key] = torch.tensor(0).float().to(device)
for key in eval_log_loss:
eval_log_loss[key] = torch.tensor(0).float().to(device)
cum_load_time = 0
clock = time()
batch_idx = 0
batch, load_time = train_prefetcher.next()
while batch is not None:
with acc.accumulate(model):
model.train()
optimizer.zero_grad()
rgb_static, rgb_gripper = preprocessor.rgb_process(batch['rgb_static'], batch['rgb_gripper'], train=True)
obs_mask = batch['mask'][..., 0]
pred = model(
rgb=rgb_static,
hand_rgb=rgb_gripper,
state={'arm': batch['arm_state'], 'gripper': batch['gripper_state']},
language=batch['inst_token'],
attention_mask=obs_mask,
)
loss = {}
loss['rgb_static'] = masked_loss(pred['obs_preds'], pred['obs_targets'], obs_mask, cfg['skip_frame'], F.mse_loss)
loss['rgb_gripper'] = masked_loss(pred['obs_hand_preds'], pred['obs_hand_targets'], obs_mask, cfg['skip_frame'], F.mse_loss)
loss['action_arm'] = masked_loss(pred['arm_action_preds'], batch['actions'][..., :6], batch['mask'], 0, F.smooth_l1_loss)
loss['action_gripper'] = masked_loss(pred['gripper_action_preds'], batch['actions'][..., -1:], batch['mask'], 0, F.binary_cross_entropy_with_logits)
total_loss = loss['rgb_static'] + loss['rgb_gripper'] + cfg['arm_loss_ratio']*loss['action_arm'] + loss['action_gripper']
acc.backward(total_loss)
optimizer.step(optimizer)
for key in log_loss:
log_loss[key] += loss[key].detach() / cfg['print_steps']
cum_load_time += load_time / cfg['print_steps']
if batch_idx % eval_steps == 0:
with torch.no_grad():
model.eval()
batch, _ = test_prefetcher.next_without_none()
rgb_static, rgb_gripper = preprocessor.rgb_process(batch['rgb_static'], batch['rgb_gripper'], train=False)
obs_mask = batch['mask'][..., 0]
pred = model(
rgb=rgb_static,
hand_rgb=rgb_gripper,
state={'arm': batch['arm_state'], 'gripper': batch['gripper_state']},
language=batch['inst_token'],
attention_mask=obs_mask,
)
loss = {}
loss['rgb_static'] = masked_loss(pred['obs_preds'], pred['obs_targets'], obs_mask, cfg['skip_frame'], F.mse_loss)
loss['rgb_gripper'] = masked_loss(pred['obs_hand_preds'], pred['obs_hand_targets'], obs_mask, cfg['skip_frame'], F.mse_loss)
loss['action_arm'] = masked_loss(pred['arm_action_preds'], batch['actions'][..., :6], batch['mask'], 0, F.smooth_l1_loss)
loss['action_gripper'] = masked_loss(pred['gripper_action_preds'], batch['actions'][..., -1:], batch['mask'], 0, F.binary_cross_entropy_with_logits)
for key in eval_log_loss:
eval_log_loss[key] += loss[key].detach() / cfg['print_steps'] * eval_steps
if batch_idx % cfg['print_steps'] == 0 and batch_idx != 0:
for key in log_loss:
log_loss[key] = acc.gather_for_metrics(log_loss[key]).mean()
for key in eval_log_loss:
eval_log_loss[key] = acc.gather_for_metrics(eval_log_loss[key]).mean()
load_pecnt = torch.tensor(cum_load_time / (time()-clock)).to(device)
load_pecnt = acc.gather_for_metrics(load_pecnt).mean()
fps = (cfg['bs_per_gpu']*cfg['print_steps']*cfg['seq_len']) / (time()-clock)
fps = acc.gather_for_metrics(torch.tensor(fps).to(device)).sum()
text = 'Train Epoch: {} [{}/{} ({:.0f}%)] Reward: {:.5f} FPS:{:.5f} Load Pertentage:{:.5f} LR:{}'.format(
epoch,
batch_idx * cfg['bs_per_gpu'] * acc.num_processes,
train_dataset_len,
100. * batch_idx * cfg['bs_per_gpu'] * acc.num_processes / train_dataset_len,
avg_reward,
fps,
load_pecnt,
scheduler.get_last_lr()[0],
)
for key in log_loss:
text = text + ' {}_loss: {:.5f}'.format(key, log_loss[key])
for key in eval_log_loss:
text = text + ' eval_{}_loss: {:.5f}'.format(key, eval_log_loss[key])
acc.print(text)
if acc.is_main_process:
for key in log_loss:
writer.add_scalar(key+'_loss', log_loss[key], step)
for key in eval_log_loss:
writer.add_scalar('eval_'+key+'_loss', eval_log_loss[key], step)
writer.add_scalar("reward", avg_reward, step)
writer.add_scalar("learning rate", scheduler.get_last_lr()[0], step)
writer.add_scalar("FPS", fps, step)
writer.add_scalar("loading time in total time", load_pecnt, step)
with open(cfg['save_path']+'step.json', 'w') as json_file:
json.dump(step, json_file)
for key in log_loss:
log_loss[key] = torch.tensor(0).float().to(device)
for key in eval_log_loss:
eval_log_loss[key] = torch.tensor(0).float().to(device)
cum_load_time = 0
clock = time()
scheduler.step()
batch_idx += 1
step += 1
batch, load_time = train_prefetcher.next()
'''
prof.step()
if batch_idx == 28:
prof.stop()
'''
if __name__ == '__main__':
# Preparation
cfg = json.load(open('configs.json'))
# The timeout here is 3600s to wait for other processes to finish the simulation
init_pg_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=3600))
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
acc = Accelerator(
gradient_accumulation_steps=cfg['gradient_accumulation_steps'],
kwargs_handlers=[init_pg_kwargs, ddp_kwargs]
)
device = acc.device
preprocessor = PreProcess(
cfg['rgb_static_pad'],
cfg['rgb_gripper_pad'],
cfg['rgb_shape'],
cfg['rgb_mean'],
cfg['rgb_std'],
device,
)
train_dataset = LMDBdst_jpeg(
cfg['LMDB_path'],
cfg['seq_len'],
cfg['chunk_size'],
cfg['action_mode'],
cfg['act_dim'],
start_ratio = 0,
end_ratio = 0.9,
)
test_dataset = LMDBdst_jpeg(
cfg['LMDB_path'],
cfg['seq_len'],
cfg['chunk_size'],
cfg['action_mode'],
cfg['act_dim'],
start_ratio = 0.9,
end_ratio = 1,
)
train_loader = DataLoader(
train_dataset,
batch_size=cfg['bs_per_gpu'], # to be flattened in prefetcher
num_workers=cfg['workers_per_gpu'],
pin_memory=True, # Accelerate data reading
shuffle=True,
prefetch_factor=cfg['prefetch_factor'],
persistent_workers=True,
)
test_loader = DataLoader(
test_dataset,
batch_size=cfg['bs_per_gpu'], # to be flattened in prefetcher
num_workers=cfg['workers_per_gpu'],
pin_memory=True, # Accelerate data reading
shuffle=True,
prefetch_factor=cfg['prefetch_factor'],
persistent_workers=True,
)
model_clip, _ = clip.load(cfg['clip_backbone'], device=device)
model_mae = vits.__dict__['vit_base'](patch_size=16, num_classes=0).to(device)
checkpoint = torch.load(cfg['mae_ckpt'])
model_mae.load_state_dict(checkpoint['model'], strict=False)
model = GR1(
model_clip,
model_mae,
rgb_shape=cfg['rgb_shape'],
patch_size=cfg['patch_size'],
state_dim=cfg['state_dim'],
act_dim=cfg['act_dim'],
hidden_size=cfg['embed_dim'],
sequence_length=cfg['seq_len'],
chunk_size=cfg['chunk_size'],
training_target=['act_pred', 'fwd_pred', 'fwd_pred_hand'],
img_feat_dim=cfg['img_feat_dim'],
patch_feat_dim=cfg['patch_feat_dim'],
lang_feat_dim=cfg['lang_feat_dim'],
resampler_params={
'depth': cfg['resampler_depth'],
'dim_head': cfg['resampler_dim_head'],
'heads': cfg['resampler_heads'],
'num_latents': cfg['resampler_num_latents'],
'num_media_embeds': cfg['resampler_num_media_embeds'],
},
without_norm_pixel_loss=cfg['without_norm_pixel_loss'],
use_hand_rgb=True,
n_layer=cfg['n_layer'],
n_head=cfg['n_head'],
n_inner=4*cfg['embed_dim'],
activation_function=cfg['activation_function'],
n_positions=cfg['n_positions'],
resid_pdrop=cfg['dropout'],
attn_pdrop=cfg['dropout'],
).to(device) # for fused optimizer
if cfg['load_bytedance_ckpt']:
missing_keys, unexpected_keys = model.load_state_dict(torch.load(cfg['bytedance_ckpt_path'])['state_dict'], strict=False)
acc.print('load ', cfg['bytedance_ckpt_path'], '\nmissing ', missing_keys, '\nunexpected ', unexpected_keys)
elif os.path.isfile(cfg['save_path']+'GR1_{}.pth'.format(cfg['load_epoch'])):
state_dict = torch.load(cfg['save_path']+'GR1_{}.pth'.format(cfg['load_epoch']))['state_dict']
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
acc.print('load ', cfg['save_path']+'GR1_{}.pth'.format(cfg['load_epoch']), '\nmissing ', missing_keys, '\nunexpected ', unexpected_keys)
if cfg['compile_model']:
model = torch.compile(model)
if os.path.isfile(cfg['save_path']+'step.json'):
with open(cfg['save_path']+'step.json', 'r') as json_file:
step = json.load(open(cfg['save_path']+'step.json'))
else:
step = 0
optimizer = torch.optim.AdamW(model.parameters(), lr=cfg['lr_max'], weight_decay=cfg['weight_decay'], fused=True)
total_prints_per_epoch = len(train_dataset) // (cfg['print_steps'] * cfg['bs_per_gpu'] * acc.num_processes)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=cfg['num_warmup_epochs']*total_prints_per_epoch,
num_training_steps=cfg['num_epochs']*total_prints_per_epoch,
)
model, optimizer, train_loader, test_loader = acc.prepare(
model,
optimizer,
train_loader,
test_loader,
device_placement=[True, True, False, False],
)
optimizer.step = AsyncStep
train_prefetcher = DataPrefetcher_jpeg(train_loader, device)
test_prefetcher = DataPrefetcher_jpeg(test_loader, device)
observation_space = {
'rgb_obs': ['rgb_static', 'rgb_gripper'],
'depth_obs': [],
'state_obs': ['robot_obs'],
'actions': ['rel_actions'],
'language': ['language']}
eval_dir = cfg['save_path']+f'eval{torch.cuda.current_device()}/'
os.makedirs(eval_dir, exist_ok=True)
if cfg['evaluate_during_training']:
from evaluate_calvin import make_env, evaluate_policy
from evaluation.calvin_evaluation import GR1CalvinEvaluation
env = make_env('./fake_dataset', observation_space, device)
eva = GR1CalvinEvaluation(model, cfg, preprocessor, device)
else:
env = None
eva = None
writer = SummaryWriter(cfg['save_path'] + 'logs')
# Train
train(acc, train_prefetcher, test_prefetcher, preprocessor, model, env, eva, eval_dir, optimizer, scheduler, device, cfg, step, writer)