-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_unified_ner.py
453 lines (309 loc) · 15.3 KB
/
train_unified_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from transformers import BertTokenizer,T5Tokenizer, T5ForConditionalGeneration,MT5ForConditionalGeneration, Text2TextGenerationPipeline,get_scheduler
import torch, argparse, json, gc, os, random
import numpy as np
from tqdm import tqdm
from torch.optim import AdamW
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import matplotlib
font = {'size' : 15}
matplotlib.rc('font', **font)
def read_seqlabel_data(file_json):
"""
Args:
json file of lines: [[text,[begin, end, token, category],[],...],...]
Return:
"""
categories = []
data = []
with open(file_json) as f:
for line in f:
line = json.loads(line)
for begin, end, token, category in line[1:]:
if category not in categories:
categories.append(category)
data.append(line)
return categories, data
def get_f1_score_label(predictions, gold, label="organization"):
"""
打分函数
"""
# pre_lines = [json.loads(line.strip()) for line in open(pre_file) if line.strip()]
# gold_lines = [json.loads(line.strip()) for line in open(gold_file) if line.strip()]
TP = 0
FP = 0
FN = 0
for pred, gold in zip(predictions, gold):
pred = [item[1] for item in pred if item[0] == label]
gold = [item[1] for item in gold if item[0] == label]
for i in pred:
if i in gold:
TP += 1
else:
FP += 1
for i in gold:
if i not in pred:
FN += 1
if TP != 0:
p = TP / (TP + FP)
r = TP / (TP + FN)
f = 2 * p * r / (p + r)
print(p, r, f)
return p,r,f
else:
print(0, 0, 0)
return 0,0,0
def get_f1_score(predictions, gold,labels):
score = {}
sum = 0
for idx,label in enumerate(labels):
p,r,f = get_f1_score_label(predictions, gold, label=label)
score[label] = {'precision':p,'recall':r,'f1':f}
sum += f
avg = sum / len(labels)
return score, avg
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='search for best template according to dev set')
parser.add_argument('--max_source_length', default=256, type=int, help="max source sequence length")
parser.add_argument('--max_target_length', default=200, type=int, help="max target sequence length")
parser.add_argument('--batch_size', default=8, type=int, help="batch size")
parser.add_argument('--epoch', default=100, type=int, help="training epoches")
parser.add_argument('--eval_steps', default=1000, type=int, help="eval per steps")
parser.add_argument('--warm_up_step', default=1000, type=int, help="warm up steps")
parser.add_argument('--lr', default=1e-5, type=float, help="learning rate")
parser.add_argument('--model', default='./models/my_t5_base/', type=str, help="pretrained model")
parser.add_argument('--tokenizer', default='./models/my_t5_base/', type=str, help="tokenizer")
parser.add_argument('--method', default='1+2', type=str, help="training data construction method")
# parser.add_argument('--model', default='uer/t5-v1_1-small-chinese-cluecorpussmall', type=str, help="pretrained model")
# parser.add_argument('--tokenizer', default='uer/t5-v1_1-small-chinese-cluecorpussmall', type=str, help="tokenizer")
parser.add_argument('--train_dir', default='../cws-dev/dataset/cluener/ml_train.json', type=str, help="training set")
parser.add_argument('--dev_dir', default='../cws-dev/dataset/cluener/ml_test_all.json', type=str, help="development set")
parser.add_argument('--save_dir', default='./my_trained_models/', type=str, help="save trained model dir")
args = parser.parse_args()
print(args)
if os.path.exists(args.save_dir):
pass
else:
os.mkdir(args.save_dir)
train_categories, train_data = read_seqlabel_data(args.train_dir)
dev_categories, dev_data = read_seqlabel_data(args.dev_dir)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
mapping = {'name':'姓名','company':'公司','game':'游戏','organization':'组织','movie':'电影','address':'地址','position':'职位','government':'政府','scene':'景点','book':'书籍'}
def dataset_construct(data, categories, method='1'):
dataloader = []
num_categories = len(categories)
for example in data:
ori_text = example[0]
## with exact tags
if '1' in method:
prefix_tags = []
target_seq = "("
source_seq = ''
for item in example[1:]:
label = mapping[item[3]]
token = item[2]
target_seq = target_seq+f"({label}:{token}),"
if label not in prefix_tags:
prefix_tags.append(label)
target_seq = target_seq[:-1]+')'
for tag in prefix_tags:
source_seq = source_seq+f"<实体>{tag}"
source_seq = source_seq+f"<文本>{ori_text}"
dataloader.append({'input_seq':source_seq,'output_seq':target_seq})
## 2. with random tags
if '2' in method:
target_seq = "("
source_seq = ''
num_tags = random.randint(1, num_categories)
prefix_tags = list(np.random.choice(categories,num_tags,replace=False))
exist_tags = []
for item in example[1:]:
label = mapping[item[3]]
token = item[2]
if label in prefix_tags:
target_seq = target_seq+f"({label}:{token}),"
exist_tags.append(label)
else:
pass
target_tags = list(set(prefix_tags) - set(exist_tags))
for label in target_tags:
target_seq = target_seq+f"({label}:null),"
target_seq = target_seq[:-1]+')'
for tag in prefix_tags:
source_seq = source_seq+f"<实体>{tag}"
source_seq = source_seq+f"<文本>{ori_text}"
dataloader.append({'input_seq':source_seq,'output_seq':target_seq})
return dataloader
## 3. with some tags in an exmaple but are not extracted
## 4. mix of 2 and 3
categories = list(mapping.values())
print(categories)
train_dataloader_ori = dataset_construct(train_data,categories,method='1')
train_dataloader_aug = dataset_construct(train_data,categories,method='2')
dev_dataloader = dataset_construct(dev_data,categories,method='1')
print(len(train_dataloader), len(dev_dataloader))
## construct train batches
batches = []
for idx in range(0,len(train_dataloader),args.batch_size):
batch = []
try:
for index in range(idx, idx+args.batch_size):
batch.append(train_dataloader[index])
except Exception:
pass
batches.append(batch)
eval_batches = []
for idx in range(0,len(dev_dataloader),args.batch_size):
batch = []
try:
for index in range(idx, idx+args.batch_size):
batch.append(dev_dataloader[index])
except Exception:
pass
eval_batches.append(batch)
## eval labels for evaluation
dev_labels = []
for line in dev_data:
label = []
for item in line[1:]:
label.append([mapping[item[3]],item[2]])
# label.append((mapping[item[3]],item[2]))
dev_labels.append(label)
tokenizer = BertTokenizer.from_pretrained(args.tokenizer)
model = MT5ForConditionalGeneration.from_pretrained(args.model).to(device)
optimizer = AdamW(model.parameters(), lr=args.lr)
# the following 2 hyperparameters are task-specific
max_source_length = args.max_source_length
max_target_length = args.max_target_length
num_training_steps = args.epoch * len(batches)
print(f'### total number of training steps is {num_training_steps}')
lr_scheduler = get_scheduler(
name="linear", optimizer=optimizer, num_warmup_steps=args.warm_up_step, num_training_steps=num_training_steps
)
losses = [] ## training loss
eval_losses = [] ## eval loss
steps = 0 ## num of training step
avgs = [] ## avg f-score
x_axis = [] ## x-axis for plotting eval performance
for epoch in range(args.epoch):
for batch in tqdm(batches):
model.train()
steps += 1
## set grad to zeros
optimizer.zero_grad()
input_sequences = []
output_sequences = []
for example in batch:
input_sequences.append(example['input_seq'])
output_sequences.append(example['output_seq'])
# encode the inputs
encoding = tokenizer( input_sequences, padding="longest", max_length=max_source_length,
truncation=True, return_tensors="pt",)
input_ids, attention_mask = encoding.input_ids.to(device), encoding.attention_mask.to(device)
# encode the targets
target_encoding = tokenizer(
output_sequences, padding="longest", max_length=max_target_length, truncation=True,
return_tensors='pt'
)
labels = target_encoding.input_ids.to(device)
# replace padding token id's of the labels by -100
labels = labels.clone().detach()
labels[labels == tokenizer.pad_token_id] = -100
# forward pass
loss = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).loss
loss.backward()
loss = loss.detach().cpu().clone()
losses.append(loss/args.batch_size)
with open(f"{args.save_dir}training_loss.txt",'a') as fout:
fout.write(f'{loss.item()}\n')
plt.plot(losses)
plt.xlabel('Step')
plt.savefig(f'{args.save_dir}train_loss.pdf', bbox_inches='tight')
plt.clf()
# update parameters
optimizer.step()
lr_scheduler.step()
del loss, labels, input_ids, attention_mask
gc.collect()
torch.cuda.empty_cache()
if steps%args.eval_steps == 0:
print(' ### starting evaluation ###')
x_axis.append(steps)
eval_loss = 0.0
predictions = []
model.eval()
for batch in tqdm(eval_batches):
input_sequences = []
output_sequences = []
for example in batch:
input_sequences.append(example['input_seq'])
output_sequences.append(example['output_seq'])
# encode the inputs
encoding = tokenizer(
input_sequences,
padding="longest",
max_length=max_source_length,
truncation=True,
return_tensors="pt",
)
input_ids, attention_mask = encoding.input_ids.to(device), encoding.attention_mask.to(device)
# encode the targets
target_encoding = tokenizer(
output_sequences, padding="longest", max_length=max_target_length, truncation=True,
return_tensors='pt'
)
labels = target_encoding.input_ids.to(device)
# replace padding token id's of the labels by -100
labels = labels.clone().detach()
labels[labels == tokenizer.pad_token_id] = -100
# compute loss
loss = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).loss
eval_loss += loss.detach().cpu().clone()
# inference
outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask,do_sample=False,eos_token_id=tokenizer.sep_token_id,
decoder_start_token_id=tokenizer.cls_token_id)
for pred in tokenizer.batch_decode(outputs, skip_special_tokens=True):
pred = ''.join(pred.split(' '))
predictions.append(pred)
del loss, labels, input_ids, attention_mask
gc.collect()
torch.cuda.empty_cache()
# plotting eval loss
eval_losses.append(eval_loss/len(dev_dataloader))
fig, ax = plt.subplots(figsize=(10,6))
x = x_axis
y = eval_losses
ax.set_ylabel('Eval loss')
ax.set_xlabel('steps')
ax.plot(x,y)
plt.savefig(f'{args.save_dir}eval_loss.pdf',bbox_inches='tight')
plt.clf()
with open(f"{args.save_dir}eval_loss.txt",'a') as fout:
fout.write(f"{steps}:{eval_loss/len(dev_dataloader)}\n")
# compute and plotting eval f-score
postprocess_preds = []
for pred in predictions:
pred = pred.split(',')
pred = [item.replace(')','').replace('(','').split(':') for item in pred]
# pred = [item.replace(']','').replace('[','').split(':') for item in pred]
pred = [item for item in pred if len(item)>1]
postprocess_preds.append(pred)
with open(f"{args.save_dir}{steps}_preds.txt", 'w', encoding='utf8') as fout:
for line in postprocess_preds:
fout.write(f"{line}\n")
score,avg = get_f1_score(postprocess_preds,dev_labels,categories)
print(f"{steps}:{avg}")
avgs.append(avg)
fig, ax = plt.subplots(figsize=(10,6))
x = x_axis
y = avgs
ax.set_ylabel('Eval F-score')
ax.set_xlabel('steps')
ax.plot(x,y)
plt.savefig(f'{args.save_dir}eval_f_score.pdf',bbox_inches='tight')
plt.clf()
with open(f"{args.save_dir}eval_fscore.txt",'a') as fout:
fout.write(f"{steps}:{avg}\n")
# saving model checkpoints
print('### staring saving model ###')
model.save_pretrained(f'{args.save_dir}{steps}')