-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpc_util.py
538 lines (462 loc) · 17.9 KB
/
pc_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
""" Utility functions for processing point clouds.
Author: Charles R. Qi and Or Litany
"""
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
# Point cloud IO
import numpy as np
try:
from plyfile import PlyData, PlyElement
except:
print("Please install the module 'plyfile' for PLY i/o, e.g.")
print("pip install plyfile")
sys.exit(-1)
# Mesh IO
#import trimesh
import matplotlib.pyplot as pyplot
# ----------------------------------------
# Point Cloud Sampling
# ----------------------------------------
def random_sampling(pc, num_sample, replace=None, return_choices=False):
""" Input is NxC, output is num_samplexC
"""
if replace is None: replace = (pc.shape[0]<num_sample)
choices = np.random.choice(pc.shape[0], num_sample, replace=replace)
if return_choices:
return pc[choices], choices
else:
return pc[choices]
# ----------------------------------------
# Point Cloud/Volume Conversions
# ----------------------------------------
def point_cloud_to_volume_batch(point_clouds, vsize=12, radius=1.0, flatten=True):
""" Input is BxNx3 batch of point cloud
Output is Bx(vsize^3)
"""
vol_list = []
for b in range(point_clouds.shape[0]):
vol = point_cloud_to_volume(np.squeeze(point_clouds[b,:,:]), vsize, radius)
if flatten:
vol_list.append(vol.flatten())
else:
vol_list.append(np.expand_dims(np.expand_dims(vol, -1), 0))
if flatten:
return np.vstack(vol_list)
else:
return np.concatenate(vol_list, 0)
def point_cloud_to_volume(points, vsize, radius=1.0):
""" input is Nx3 points.
output is vsize*vsize*vsize
assumes points are in range [-radius, radius]
"""
vol = np.zeros((vsize,vsize,vsize))
voxel = 2*radius/float(vsize)
locations = (points + radius)/voxel
locations = locations.astype(int)
vol[locations[:,0],locations[:,1],locations[:,2]] = 1.0
return vol
def volume_to_point_cloud(vol):
""" vol is occupancy grid (value = 0 or 1) of size vsize*vsize*vsize
return Nx3 numpy array.
"""
vsize = vol.shape[0]
assert(vol.shape[1] == vsize and vol.shape[1] == vsize)
points = []
for a in range(vsize):
for b in range(vsize):
for c in range(vsize):
if vol[a,b,c] == 1:
points.append(np.array([a,b,c]))
if len(points) == 0:
return np.zeros((0,3))
points = np.vstack(points)
return points
def point_cloud_to_volume_v2_batch(point_clouds, vsize=12, radius=1.0, num_sample=128):
""" Input is BxNx3 a batch of point cloud
Output is BxVxVxVxnum_samplex3
Added on Feb 19
"""
vol_list = []
for b in range(point_clouds.shape[0]):
vol = point_cloud_to_volume_v2(point_clouds[b,:,:], vsize, radius, num_sample)
vol_list.append(np.expand_dims(vol, 0))
return np.concatenate(vol_list, 0)
def point_cloud_to_volume_v2(points, vsize, radius=1.0, num_sample=128):
""" input is Nx3 points
output is vsize*vsize*vsize*num_sample*3
assumes points are in range [-radius, radius]
samples num_sample points in each voxel, if there are less than
num_sample points, replicate the points
Added on Feb 19
"""
vol = np.zeros((vsize,vsize,vsize,num_sample,3))
voxel = 2*radius/float(vsize)
locations = (points + radius)/voxel
locations = locations.astype(int)
loc2pc = {}
for n in range(points.shape[0]):
loc = tuple(locations[n,:])
if loc not in loc2pc:
loc2pc[loc] = []
loc2pc[loc].append(points[n,:])
for i in range(vsize):
for j in range(vsize):
for k in range(vsize):
if (i,j,k) not in loc2pc:
vol[i,j,k,:,:] = np.zeros((num_sample,3))
else:
pc = loc2pc[(i,j,k)] # a list of (3,) arrays
pc = np.vstack(pc) # kx3
# Sample/pad to num_sample points
if pc.shape[0]>num_sample:
pc = random_sampling(pc, num_sample, False)
elif pc.shape[0]<num_sample:
pc = np.lib.pad(pc, ((0,num_sample-pc.shape[0]),(0,0)), 'edge')
# Normalize
pc_center = (np.array([i,j,k])+0.5)*voxel - radius
pc = (pc - pc_center) / voxel # shift and scale
vol[i,j,k,:,:] = pc
return vol
def point_cloud_to_image_batch(point_clouds, imgsize, radius=1.0, num_sample=128):
""" Input is BxNx3 a batch of point cloud
Output is BxIxIxnum_samplex3
Added on Feb 19
"""
img_list = []
for b in range(point_clouds.shape[0]):
img = point_cloud_to_image(point_clouds[b,:,:], imgsize, radius, num_sample)
img_list.append(np.expand_dims(img, 0))
return np.concatenate(img_list, 0)
def point_cloud_to_image(points, imgsize, radius=1.0, num_sample=128):
""" input is Nx3 points
output is imgsize*imgsize*num_sample*3
assumes points are in range [-radius, radius]
samples num_sample points in each pixel, if there are less than
num_sample points, replicate the points
Added on Feb 19
"""
img = np.zeros((imgsize, imgsize, num_sample, 3))
pixel = 2*radius/float(imgsize)
locations = (points[:,0:2] + radius)/pixel # Nx2
locations = locations.astype(int)
loc2pc = {}
for n in range(points.shape[0]):
loc = tuple(locations[n,:])
if loc not in loc2pc:
loc2pc[loc] = []
loc2pc[loc].append(points[n,:])
for i in range(imgsize):
for j in range(imgsize):
if (i,j) not in loc2pc:
img[i,j,:,:] = np.zeros((num_sample,3))
else:
pc = loc2pc[(i,j)]
pc = np.vstack(pc)
if pc.shape[0]>num_sample:
pc = random_sampling(pc, num_sample, False)
elif pc.shape[0]<num_sample:
pc = np.lib.pad(pc, ((0,num_sample-pc.shape[0]),(0,0)), 'edge')
pc_center = (np.array([i,j])+0.5)*pixel - radius
pc[:,0:2] = (pc[:,0:2] - pc_center)/pixel
img[i,j,:,:] = pc
return img
# ----------------------------------------
# Point cloud IO
# ----------------------------------------
def read_ply(filename):
""" read XYZ point cloud from filename PLY file """
plydata = PlyData.read(filename)
pc = plydata['vertex'].data
pc_array = np.array([[x, y, z] for x,y,z in pc])
return pc_array
def write_ply(points, filename, text=True):
""" input: Nx3, write points to filename as PLY format. """
points = [(points[i,0], points[i,1], points[i,2]) for i in range(points.shape[0])]
vertex = np.array(points, dtype=[('x', 'f4'), ('y', 'f4'),('z', 'f4')])
el = PlyElement.describe(vertex, 'vertex', comments=['vertices'])
PlyData([el], text=text).write(filename)
def write_ply_color(points, labels, filename, num_classes=None, colormap=pyplot.cm.jet):
""" Color (N,3) points with labels (N) within range 0 ~ num_classes-1 as OBJ file """
labels = labels.astype(int)
N = points.shape[0]
if num_classes is None:
num_classes = np.max(labels)+1
else:
assert(num_classes>np.max(labels))
vertex = []
#colors = [pyplot.cm.jet(i/float(num_classes)) for i in range(num_classes)]
colors = [colormap(i/float(num_classes)) for i in range(num_classes)]
for i in range(N):
c = colors[labels[i]]
c = [int(x*255) for x in c]
vertex.append( (points[i,0],points[i,1],points[i,2],c[0],c[1],c[2]) )
vertex = np.array(vertex, dtype=[('x', 'f4'), ('y', 'f4'),('z', 'f4'),('red', 'u1'), ('green', 'u1'),('blue', 'u1')])
el = PlyElement.describe(vertex, 'vertex', comments=['vertices'])
PlyData([el], text=True).write(filename)
def write_ply_rgb(points, colors, out_filename, num_classes=None):
""" Color (N,3) points with RGB colors (N,3) within range [0,255] as OBJ file """
colors = colors.astype(int)
N = points.shape[0]
fout = open(out_filename, 'w')
for i in range(N):
c = colors[i,:]
fout.write('v %f %f %f %d %d %d\n' % (points[i,0],points[i,1],points[i,2],c[0],c[1],c[2]))
fout.close()
# ----------------------------------------
# Simple Point cloud and Volume Renderers
# ----------------------------------------
def pyplot_draw_point_cloud(points, output_filename):
""" points is a Nx3 numpy array """
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(points[:,0], points[:,1], points[:,2])
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
#savefig(output_filename)
def pyplot_draw_volume(vol, output_filename):
""" vol is of size vsize*vsize*vsize
output an image to output_filename
"""
points = volume_to_point_cloud(vol)
pyplot_draw_point_cloud(points, output_filename)
# ----------------------------------------
# Simple Point manipulations
# ----------------------------------------
def rotate_point_cloud(points, rotation_matrix=None):
""" Input: (n,3), Output: (n,3) """
# Rotate in-place around Z axis.
if rotation_matrix is None:
rotation_angle = np.random.uniform() * 2 * np.pi
sinval, cosval = np.sin(rotation_angle), np.cos(rotation_angle)
rotation_matrix = np.array([[cosval, sinval, 0],
[-sinval, cosval, 0],
[0, 0, 1]])
ctr = points.mean(axis=0)
rotated_data = np.dot(points-ctr, rotation_matrix) + ctr
return rotated_data, rotation_matrix
def rotate_pc_along_y(pc, rot_angle):
''' Input ps is NxC points with first 3 channels as XYZ
z is facing forward, x is left ward, y is downward
'''
cosval = np.cos(rot_angle)
sinval = np.sin(rot_angle)
rotmat = np.array([[cosval, -sinval],[sinval, cosval]])
pc[:,[0,2]] = np.dot(pc[:,[0,2]], np.transpose(rotmat))
return pc
def roty(t):
"""Rotation about the y-axis."""
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s],
[0, 1, 0],
[-s, 0, c]])
def roty_batch(t):
"""Rotation about the y-axis.
t: (x1,x2,...xn)
return: (x1,x2,...,xn,3,3)
"""
input_shape = t.shape
output = np.zeros(tuple(list(input_shape)+[3,3]))
c = np.cos(t)
s = np.sin(t)
output[...,0,0] = c
output[...,0,2] = s
output[...,1,1] = 1
output[...,2,0] = -s
output[...,2,2] = c
return output
def rotz(t):
"""Rotation about the z-axis."""
c = np.cos(t)
s = np.sin(t)
return np.array([[c, -s, 0],
[s, c, 0],
[0, 0, 1]])
# ----------------------------------------
# BBox
# ----------------------------------------
def bbox_corner_dist_measure(crnr1, crnr2):
""" compute distance between box corners to replace iou
Args:
crnr1, crnr2: Nx3 points of box corners in camera axis (y points down)
output is a scalar between 0 and 1
"""
dist = sys.maxsize
for y in range(4):
rows = ([(x+y)%4 for x in range(4)] + [4+(x+y)%4 for x in range(4)])
d_ = np.linalg.norm(crnr2[rows, :] - crnr1, axis=1).sum() / 8.0
if d_ < dist:
dist = d_
u = sum([np.linalg.norm(x[0,:] - x[6,:]) for x in [crnr1, crnr2]])/2.0
measure = max(1.0 - dist/u, 0)
print(measure)
return measure
def point_cloud_to_bbox(points):
""" Extract the axis aligned box from a pcl or batch of pcls
Args:
points: Nx3 points or BxNx3
output is 6 dim: xyz pos of center and 3 lengths
"""
which_dim = len(points.shape) - 2 # first dim if a single cloud and second if batch
mn, mx = points.min(which_dim), points.max(which_dim)
lengths = mx - mn
cntr = 0.5*(mn + mx)
return np.concatenate([cntr, lengths], axis=which_dim)
def write_bbox(scene_bbox, out_filename):
"""Export scene bbox to meshes
Args:
scene_bbox: (N x 6 numpy array): xyz pos of center and 3 lengths
out_filename: (string) filename
Note:
To visualize the boxes in MeshLab.
1. Select the objects (the boxes)
2. Filters -> Polygon and Quad Mesh -> Turn into Quad-Dominant Mesh
3. Select Wireframe view.
"""
def convert_box_to_trimesh_fmt(box):
ctr = box[:3]
lengths = box[3:]
trns = np.eye(4)
trns[0:3, 3] = ctr
trns[3,3] = 1.0
box_trimesh_fmt = trimesh.creation.box(lengths, trns)
return box_trimesh_fmt
scene = trimesh.scene.Scene()
for box in scene_bbox:
scene.add_geometry(convert_box_to_trimesh_fmt(box))
mesh_list = trimesh.util.concatenate(scene.dump())
# save to ply file
trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='ply')
return
def write_oriented_bbox(scene_bbox, out_filename):
"""Export oriented (around Z axis) scene bbox to meshes
Args:
scene_bbox: (N x 7 numpy array): xyz pos of center and 3 lengths (dx,dy,dz)
and heading angle around Z axis.
Y forward, X right, Z upward. heading angle of positive X is 0,
heading angle of positive Y is 90 degrees.
out_filename: (string) filename
"""
def heading2rotmat(heading_angle):
pass
rotmat = np.zeros((3,3))
rotmat[2,2] = 1
cosval = np.cos(heading_angle)
sinval = np.sin(heading_angle)
rotmat[0:2,0:2] = np.array([[cosval, -sinval],[sinval, cosval]])
return rotmat
def convert_oriented_box_to_trimesh_fmt(box):
ctr = box[:3]
lengths = box[3:6]
trns = np.eye(4)
trns[0:3, 3] = ctr
trns[3,3] = 1.0
trns[0:3,0:3] = heading2rotmat(box[6])
box_trimesh_fmt = trimesh.creation.box(lengths, trns)
return box_trimesh_fmt
scene = trimesh.scene.Scene()
for box in scene_bbox:
scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))
mesh_list = trimesh.util.concatenate(scene.dump())
# save to ply file
trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='ply')
return
def write_oriented_bbox_camera_coord(scene_bbox, out_filename):
"""Export oriented (around Y axis) scene bbox to meshes
Args:
scene_bbox: (N x 7 numpy array): xyz pos of center and 3 lengths (dx,dy,dz)
and heading angle around Y axis.
Z forward, X rightward, Y downward. heading angle of positive X is 0,
heading angle of negative Z is 90 degrees.
out_filename: (string) filename
"""
def heading2rotmat(heading_angle):
pass
rotmat = np.zeros((3,3))
rotmat[1,1] = 1
cosval = np.cos(heading_angle)
sinval = np.sin(heading_angle)
rotmat[0,:] = np.array([cosval, 0, sinval])
rotmat[2,:] = np.array([-sinval, 0, cosval])
return rotmat
def convert_oriented_box_to_trimesh_fmt(box):
ctr = box[:3]
lengths = box[3:6]
trns = np.eye(4)
trns[0:3, 3] = ctr
trns[3,3] = 1.0
trns[0:3,0:3] = heading2rotmat(box[6])
box_trimesh_fmt = trimesh.creation.box(lengths, trns)
return box_trimesh_fmt
scene = trimesh.scene.Scene()
for box in scene_bbox:
scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))
mesh_list = trimesh.util.concatenate(scene.dump())
# save to ply file
trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='ply')
return
def write_lines_as_cylinders(pcl, filename, rad=0.005, res=64):
"""Create lines represented as cylinders connecting pairs of 3D points
Args:
pcl: (N x 2 x 3 numpy array): N pairs of xyz pos
filename: (string) filename for the output mesh (ply) file
rad: radius for the cylinder
res: number of sections used to create the cylinder
"""
scene = trimesh.scene.Scene()
for src,tgt in pcl:
# compute line
vec = tgt - src
M = trimesh.geometry.align_vectors([0,0,1],vec, False)
vec = tgt - src # compute again since align_vectors modifies vec in-place!
M[:3,3] = 0.5*src + 0.5*tgt
height = np.sqrt(np.dot(vec, vec))
scene.add_geometry(trimesh.creation.cylinder(radius=rad, height=height, sections=res, transform=M))
mesh_list = trimesh.util.concatenate(scene.dump())
trimesh.io.export.export_mesh(mesh_list, '%s.ply'%(filename), file_type='ply')
# ----------------------------------------
# Testing
# ----------------------------------------
if __name__ == '__main__':
print('running some tests')
############
## Test "write_lines_as_cylinders"
############
pcl = np.random.rand(32, 2, 3)
write_lines_as_cylinders(pcl, 'point_connectors')
input()
scene_bbox = np.zeros((1,7))
scene_bbox[0,3:6] = np.array([1,2,3]) # dx,dy,dz
scene_bbox[0,6] = np.pi/4 # 45 degrees
write_oriented_bbox(scene_bbox, 'single_obb_45degree.ply')
############
## Test point_cloud_to_bbox
############
pcl = np.random.rand(32, 16, 3)
pcl_bbox = point_cloud_to_bbox(pcl)
assert pcl_bbox.shape == (32, 6)
pcl = np.random.rand(16, 3)
pcl_bbox = point_cloud_to_bbox(pcl)
assert pcl_bbox.shape == (6,)
############
## Test corner distance
############
crnr1 = np.array([[2.59038660e+00, 8.96107932e-01, 4.73305349e+00],
[4.12281644e-01, 8.96107932e-01, 4.48046631e+00],
[2.97129656e-01, 8.96107932e-01, 5.47344275e+00],
[2.47523462e+00, 8.96107932e-01, 5.72602993e+00],
[2.59038660e+00, 4.41155793e-03, 4.73305349e+00],
[4.12281644e-01, 4.41155793e-03, 4.48046631e+00],
[2.97129656e-01, 4.41155793e-03, 5.47344275e+00],
[2.47523462e+00, 4.41155793e-03, 5.72602993e+00]])
crnr2 = crnr1
print(bbox_corner_dist_measure(crnr1, crnr2))
print('tests PASSED')