-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
200 lines (167 loc) · 6.87 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# -*- coding: utf-8 -*-
"""
Scipy version > 0.18 is needed, due to 'mode' option from scipy.misc.imread function
"""
import os
import glob
import h5py
import random
import matplotlib.pyplot as plt
from PIL import Image # for loading images as YCbCr format
import scipy.misc
import scipy.ndimage
import numpy as np
import tensorflow as tf
import cv2
FLAGS = tf.app.flags.FLAGS
def read_data(path):
with h5py.File(path, 'r') as hf:
data = np.array(hf.get('data'))
return data
def preprocess(path, scale=3):
image = imread(path, is_grayscale=True)
image = (image-127.5 )/ 127.5
input_ = scipy.ndimage.interpolation.zoom(input_, (scale/1.), prefilter=False)
return input_
def prepare_data(sess, dataset):
if FLAGS.is_train:
filenames = os.listdir(dataset)
data_dir = os.path.join(os.getcwd(), dataset)
data = glob.glob(os.path.join(data_dir, "*.bmp"))
data.extend(glob.glob(os.path.join(data_dir, "*.tif")))
data.sort(key=lambda x:int(x[len(data_dir)+1:-4]))
else:
data_dir = os.path.join(os.sep, (os.path.join(os.getcwd(), dataset)))
data = glob.glob(os.path.join(data_dir, "*.bmp"))
data.extend(glob.glob(os.path.join(data_dir, "*.tif")))
data.sort(key=lambda x:int(x[len(data_dir)+1:-4]))
return data
def make_data(sess, data, data_dir):
if FLAGS.is_train:
savepath = os.path.join('.', os.path.join('checkpoint',data_dir,'train.h5'))
if not os.path.exists(os.path.join('.',os.path.join('checkpoint',data_dir))):
os.makedirs(os.path.join('.',os.path.join('checkpoint',data_dir)))
with h5py.File(savepath, 'w') as hf:
hf.create_dataset('data', data=data)
def imread(path, is_grayscale=True):
if is_grayscale:
return scipy.misc.imread(path, flatten=True, mode='YCbCr').astype(np.float)
else:
return scipy.misc.imread(path, mode='YCbCr').astype(np.float)
def modcrop(image, scale=3):
if len(image.shape) == 3:
h, w, _ = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w, :]
else:
h, w = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w]
return image
def input_setup_NDVI(sess,config,data_dir,index=0):
if config.is_train:
data = prepare_data(sess, dataset=data_dir)
sub_input_sequence = []
padding = 0
if config.is_train:
for i in xrange(len(data)):
input_=(imread(data[i])-127.5)/127.5
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
for x in range(0, h-config.image_size_NDVI+1, config.stride_NDVI):
for y in range(0, w-config.image_size_NDVI+1, config.stride_NDVI):
sub_input = input_[x:x+config.image_size_NDVI, y:y+config.image_size_NDVI] # [33 x 33]
# Make channel value
if data_dir == "Train":
sub_input=cv2.resize(sub_input, (config.image_size_NDVI/4,config.image_size_NDVI/4),interpolation=cv2.INTER_CUBIC)
sub_input = sub_input.reshape([config.image_size_NDVI/4, config.image_size_NDVI/4, 1])
print('error')
else:
sub_input = sub_input.reshape([config.image_size_NDVI, config.image_size_NDVI, 1])
sub_input_sequence.append(sub_input)
# Make list to numpy array. With this transform
arrdata = np.asarray(sub_input_sequence) # [?, 33, 33, 1]
#print(arrdata.shape)
make_data(sess, arrdata, data_dir)
def input_setup_HRVI(sess,config,data_dir,index=0):
if config.is_train:
data = prepare_data(sess, dataset=data_dir)
sub_input_sequence = []
padding = 0
if config.is_train:
for i in xrange(len(data)):
input_=(imread(data[i])-127.5)/127.5
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
for x in range(0, h-config.image_size_HRVI+1, config.stride_HRVI):
for y in range(0, w-config.image_size_HRVI+1, config.stride_HRVI):
sub_input = input_[x:x+config.image_size_HRVI, y:y+config.image_size_HRVI] # [33 x 33]
# Make channel value
if data_dir == "Train":
sub_input=cv2.resize(sub_input, (config.image_size_HRVI/4,config.image_size_HRVI/4),interpolation=cv2.INTER_CUBIC)
sub_input = sub_input.reshape([config.image_size_HRVI/4, config.image_size_HRVI/4, 1])
print('error')
else:
sub_input = sub_input.reshape([config.image_size_HRVI, config.image_size_HRVI, 1])
sub_input_sequence.append(sub_input)
# Make list to numpy array. With this transform
arrdata = np.asarray(sub_input_sequence) # [?, 33, 33, 1]
#print(arrdata.shape)
make_data(sess, arrdata, data_dir)
if not config.is_train:
print(nx,ny)
print(h_real,w_real)
return nx, ny,h_real,w_real
def imsave(image, path):
return scipy.misc.imsave(path, image.astype(np.uint8))
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h*size[0], w*size[1], 1))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = image
return (img*127.5+127.5)
def sobel_gradient(input):
filter_x=tf.reshape(tf.constant([[-1.,0.,1.],[-2.,0.,2.],[-1.,0.,1.]]),[3,3,1,1])
filter_y=tf.reshape(tf.constant([[-1.,-2.,-1.],[0.,0.,0.],[1.,2.,1.]]),[3,3,1,1])
d_x=tf.nn.conv2d(input,filter_x,strides=[1,1,1,1], padding='SAME')
d_y=tf.nn.conv2d(input,filter_y,strides=[1,1,1,1], padding='SAME')
return d_x, d_y
def weights_spectral_norm(weights, u=None, iteration=1, update_collection=None, reuse=False, name='weights_SN'):
with tf.variable_scope(name) as scope:
if reuse:
scope.reuse_variables()
w_shape = weights.get_shape().as_list()
w_mat = tf.reshape(weights, [-1, w_shape[-1]])
if u is None:
u = tf.get_variable('u', shape=[1, w_shape[-1]], initializer=tf.truncated_normal_initializer(), trainable=False)
def power_iteration(u, ite):
v_ = tf.matmul(u, tf.transpose(w_mat))
v_hat = l2_norm(v_)
u_ = tf.matmul(v_hat, w_mat)
u_hat = l2_norm(u_)
return u_hat, v_hat, ite+1
u_hat, v_hat,_ = power_iteration(u,iteration)
sigma = tf.matmul(tf.matmul(v_hat, w_mat), tf.transpose(u_hat))
w_mat = w_mat/sigma
if update_collection is None:
with tf.control_dependencies([u.assign(u_hat)]):
w_norm = tf.reshape(w_mat, w_shape)
else:
if not(update_collection == 'NO_OPS'):
print(update_collection)
tf.add_to_collection(update_collection, u.assign(u_hat))
w_norm = tf.reshape(w_mat, w_shape)
return w_norm
def lrelu(x, leak=0.2):
return tf.maximum(x, leak * x)
def l2_norm(input_x, epsilon=1e-12):
input_x_norm = input_x/(tf.reduce_sum(input_x**2)**0.5 + epsilon)
return input_x_norm