-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsynthesize_blocks.py
87 lines (65 loc) · 2.14 KB
/
synthesize_blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from __future__ import print_function
import os
import h5py
import numpy as np
from programs.sample_blocks import sample_batch
def synthesize_data():
"""
synthesize the (block, program) pairs
:return: train_shape, train_prog, val_shape, val_prog
"""
# == training data ==
data = []
label = []
n_samples = [5000,
30000, 5000, 5000, 5000, 10000,
5000, 5000, 5000, 5000, 30000,
15000, 30000, 8000, 5000, 30000,
15000, 6000, 6000, 6000, 10000,
30000, 10000, 6000, 6000, 6000,
30000, 40000, 30000, 10000]
for i in range(len(n_samples)):
d, s = sample_batch(num=n_samples[i], primitive_type=i)
data.append(d)
label.append(s)
n_samples = [30000, 30000, 40000, 30000, 30000,
30000, 20000, 10000, 40000, 35000,
40000, 35000, 35000, 35000, 50000]
for i in range(len(n_samples)):
d, s = sample_batch(num=n_samples[i], primitive_type=100+i+1)
data.append(d)
label.append(s)
train_data = np.vstack(data)
train_label = np.vstack(label)
# == validation data ==
data = []
label = []
for i in range(30):
d, s = sample_batch(num=640, primitive_type=i)
data.append(d)
label.append(s)
for i in range(15):
d, s = sample_batch(num=640, primitive_type=100+i+1)
data.append(d)
label.append(s)
val_data = np.vstack(data)
val_label = np.vstack(label)
return train_data, train_label, val_data, val_label
if __name__ == '__main__':
print('==> synthesizing (part, block_program) pairs')
train_x, train_y, val_x, val_y = synthesize_data()
print('Done')
if not os.path.isdir('./data'):
os.makedirs('./data')
train_file = './data/train_blocks.h5'
val_file = './data/val_blocks.h5'
print('==> saving data')
f_train = h5py.File(train_file, 'w')
f_train['data'] = train_x
f_train['label'] = train_y
f_train.close()
f_val = h5py.File(val_file, 'w')
f_val['data'] = val_x
f_val['label'] = val_y
f_val.close()
print('Done')