-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_program_generator.py
212 lines (165 loc) · 6.59 KB
/
train_program_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from __future__ import print_function
import sys
import os
import time
import numpy as np
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from dataset import Synthesis3D
from model import BlockOuterNet
from criterion import LSTMClassCriterion, LSTMRegressCriterion
from misc import clip_gradient, decode_to_shape_new
from options import options_train_generator
def train(epoch, train_loader, model, crit_cls, crit_reg, optimizer, opt):
"""
One epoch training
"""
model.train()
crit_cls.train()
crit_reg.train()
cls_w = opt.cls_weight
reg_w = opt.reg_weight
# the prob: > 1
# the input of step t is always sampled from the output of step t-1
sample_prob = opt.inner_sample_prob
for idx, data in enumerate(train_loader):
start = time.time()
shapes, labels, masks, params, param_masks = data[0], data[1], data[2], data[3], data[4]
shapes = torch.unsqueeze(shapes, 1)
if opt.is_cuda:
shapes = shapes.cuda()
labels = labels.cuda()
masks = masks.cuda()
params = params.cuda()
param_masks = param_masks.cuda()
optimizer.zero_grad()
out = model(shapes, labels, sample_prob)
# reshape
bsz, n_block, n_step = labels.size()
labels = labels.contiguous().view(bsz, n_block * n_step)
masks = masks.contiguous().view(bsz, n_block * n_step)
out_pgm = out[0].view(bsz, n_block * n_step, opt.program_size + 1)
bsz, n_block, n_step, n_param = params.size()
params = params.contiguous().view(bsz, n_block * n_step, n_param)
param_masks = param_masks.contiguous().view(bsz, n_block * n_step, n_param)
out_param = out[1].view(bsz, n_block * n_step, n_param)
loss_cls, acc = crit_cls(out_pgm, labels, masks)
loss_reg = crit_reg(out_param, params, param_masks)
loss = cls_w * loss_cls + reg_w * loss_reg
loss.backward()
clip_gradient(optimizer, opt.grad_clip)
optimizer.step()
if opt.is_cuda:
torch.cuda.synchronize()
end = time.time()
if idx % opt.info_interval == 0:
print("Train: epoch {} batch {}/{}, loss_cls = {:.3f}, loss_reg = {:.3f}, acc = {:.3f}, time = {:.3f}"
.format(epoch, idx, len(train_loader), loss_cls.data[0], loss_reg.data[0], acc.data[0], end - start))
sys.stdout.flush()
def validate(epoch, val_loader, model, crit_cls, crit_reg, opt, gen_shape=False):
"""
One validation
"""
model.eval()
crit_cls.eval()
crit_reg.eval()
generated_shapes = []
for idx, data in enumerate(val_loader):
start = time.time()
shapes, labels, masks, params, param_masks = data[0], data[1], data[2], data[3], data[4]
shapes = torch.unsqueeze(shapes, 1)
if opt.is_cuda:
shapes = shapes.cuda()
labels = labels.cuda()
masks = masks.cuda()
params = params.cuda()
param_masks = param_masks.cuda()
out = model.decode(shapes)
# reshape
bsz, n_block, n_step = labels.size()
labels = labels.contiguous().view(bsz, n_block * n_step)
masks = masks.contiguous().view(bsz, n_block * n_step)
out_pgm = out[0].view(bsz, n_block * n_step, opt.program_size + 1)
bsz, n_block, n_step, n_param = params.size()
params = params.contiguous().view(bsz, n_block * n_step, n_param)
param_masks = param_masks.contiguous().view(bsz, n_block * n_step, n_param)
out_param = out[1].view(bsz, n_block * n_step, n_param)
loss_cls, acc = crit_cls(out_pgm, labels, masks)
loss_reg = crit_reg(out_param, params, param_masks)
if opt.is_cuda:
torch.cuda.synchronize()
end = time.time()
if gen_shape:
generated_shapes.append(decode_to_shape_new(out[0], out[1]))
if idx % opt.info_interval == 0:
print("Test: epoch {} batch {}/{}, loss_cls = {:.3f}, loss_reg = {:.3f}, acc = {:.3f}, time = {:.3f}"
.format(epoch, idx, len(val_loader), loss_cls.data[0], loss_reg.data[0], acc.data[0], end - start))
sys.stdout.flush()
if gen_shape:
generated_shapes = np.concatenate(generated_shapes, axis=0)
return generated_shapes
def run():
opt = options_train_generator.parse()
print('===== arguments: program generator =====')
for key, val in vars(opt).items():
print("{:20} {}".format(key, val))
print('===== arguments: program generator =====')
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
# build dataloader
train_set = Synthesis3D(opt.train_file, n_block=opt.outer_seq_length)
train_loader = DataLoader(
dataset=train_set,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers,
)
val_set = Synthesis3D(opt.val_file, n_block=opt.outer_seq_length)
val_loader = DataLoader(
dataset=val_set,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers,
)
# build model
model = BlockOuterNet(opt)
crit_cls = LSTMClassCriterion()
crit_reg = LSTMRegressCriterion()
if opt.is_cuda:
model = model.cuda()
crit_cls = crit_cls.cuda()
crit_reg = crit_reg.cuda()
cudnn.benchmark = True
optimizer = optim.Adam(model.parameters(),
lr=opt.learning_rate,
betas=(opt.beta1, opt.beta2),
weight_decay=opt.weight_decay)
for epoch in range(1, opt.epochs+1):
print("###################")
print("training")
train(epoch, train_loader, model, crit_cls, crit_reg, optimizer, opt)
print("###################")
print("testing")
validate(epoch, val_loader, model, crit_cls, crit_reg, opt)
if epoch % opt.save_interval == 0:
print('Saving...')
state = {
'opt': opt,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch
}
save_file = os.path.join(opt.save_folder, 'ckpt_epoch_{epoch}.t7'.format(epoch=epoch))
torch.save(state, save_file)
state = {
'opt': opt,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': opt.epochs
}
save_file = os.path.join(opt.save_folder, 'program_generator.t7')
torch.save(state, save_file)
if __name__ == '__main__':
run()