forked from WestlyPark/StyleRenderer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_face.py
551 lines (550 loc) · 19.4 KB
/
utils_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import numpy as np
import argparse
import cv2
import sys
import os
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
def draw_landmarks(img, lmks = [], disp = False, color = (0,255,0), circle_size = 3, max_size = 720):
try:
img = np.array(img)
sz = img.shape
except:
return
if len(sz) == 2:
img = img.reshape((sz[0],sz[1],1))
sz = img.shape
if sz[2] == 1:
img_ = np.tile(img.copy(), (1,1,3))
elif sz[2] >= 3:
img_ = img[:,:,:3].copy()
if img_.max() > 2:
img_[img_ < 0] = 0
img_[img_ > 255]= 255
img_ = img_.astype('uint8')
else:
img_[img_ < 0] = 0
img_[img_ > 1] = 1
img_ = (img_ * 255).astype('uint8')
lmks = np.array(lmks)
if len(lmks.shape) != 2:
lmks = lmks.reshape(-1, 2)
elif lmks.shape[0] == 2 and lmks.shape[1] != 2:
lmks = lmks.T
if len(lmks) > 0 and lmks[:,:2].max() < 1:
lmks[:,0] *= sz[1]
lmks[:,1] *= sz[0]
rt = 1
if max_size > 0 and (sz[0] > max_size or sz[1] > max_size):
rt = max_size / float(max(sz[:2]))
img_ = cv2.resize(img_, (int(rt*sz[1]), int(rt*sz[0])))
for lmk in lmks:
cv2.circle(img_, (int(lmk[0]*rt),int(lmk[1]*rt)),circle_size,color,-1)
if disp:
try:
cv2.imshow('Landmarks', img_)
cv2.waitKey()
except:
import matplotlib.pyplot as plt
plt.imshow(img_[:,:,::-1])
plt.show()
return img_
class LandmarksReader:
def __init__(self, file_name = os.path.join(BASE_DIR, 'tmp.txt')):
with open(file_name, 'r') as f:
lines = f.read().splitlines()
data = [[float(f) for f in line.split(' ') \
if f[-1] >= '0' and f[-1] <= '9'] for line in lines if len(line) > 0]
names = [[img for img in line.split(' ') \
if len(img) > 4 and img[-4:].lower() in ['.png','.jpg','.bmp']] \
for line in lines if len(line) > 0]
self.data = np.array([data[i] for i in range(len(names)) if len(names[i]) > 0])
self.names = [name[0] for name in names if len(name) > 0]
order = np.argsort(self.names)
self.names = [self.names[i] for i in order]
self.data = self.data[order,:]
def detect(self, img_name):
if len(self.data) == 0:
return None
for i in range(len(self.names)):
name = self.names[i]
if len(img_name) >= len(name) and img_name[-len(name):] == name:
return self.data[i,:].reshape(-1,2)
return None
class LandmarksDetectorExec:
def __init__(self, model_name = 'track_images')):
self.exec_name = model_name
def detect(self, img):
if isinstance(img, str):
img_names = [os.path.basename(img)]
argv = os.path.abspath(img)
elif hasattr(img, '__len__') and len(img) > 0 and isinstance(img[0],str):
img_names = [os.path.basename(img[i]) for i in range(len(img))]
argv = os.path.abspath(os.path.dirname(img[0]))
else:
argv = os.path.join(BASE_DIR, 'tmp.png')
cv2.imwrite(argv, img)
img_names = ['tmp.png']
os.system('cd %s; ./%s %s/tmp.txt %s' % (os.path.dirname(self.exec_name), \
os.path.basename(self.exec_name), BASE_DIR, argv))
model= LandmarksReader(os.path.join(BASE_DIR, 'tmp.txt'))
lmks = [model.detect(img_name) for img_name in img_names]
os.system('rm %s/tmp\.*' % BASE_DIR)
return lmks[0] if len(lmks) == 1 else np.array(lmks)
class LandmarksDetectorDlib:
def __init__(self, model_name = os.path.join(BASE_DIR, 'thirdparty', \
'face_normals','data','shape_predictor_68_face_landmarks.dat')):
import dlib
self.detector = dlib.get_frontal_face_detector()
self.predictor= dlib.shape_predictor(model_name)
self.max_size = 640
self.rt = 1
def preprocess(self, img):
if img.max() < 2:
img = (img * 255).astype('uint8')
elif img.dtype == np.float32 or img.dtype == np.float64:
img[img < 0] = 0
img[img > 255]= 255
img = img.astype('uint8')
if len(img.shape) > 2 and img.shape[2] == 3:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
gray = img.reshape(img.shape[0], img.shape[1])
if gray.shape[1] > self.max_size or gray.shape[0] > self.max_size:
self.rt = float(self.max_size) / max(gray.shape)
w = int(self.rt * gray.shape[1])
h = int(self.rt * gray.shape[0])
gray = cv2.resize(gray, (w, h), interpolation = cv2.INTER_AREA)
return gray
def detect(self, img):
self.rt = 1
img = self.preprocess(img)
rects = self.detector(img, 1)
lmks = []
for (i, rect) in enumerate(rects):
shape = self.predictor(img, rect)
lmks += [np.array([[shape.part(i).x, shape.part(i).y] \
for i in range(shape.num_parts)])]
if len(lmks) > 0:
return lmks[0] / self.rt
else:
return None
class LandmarksDetectorPytorch:
def __init__(self, model = 'PLFD', checkpoint = os.path.join(BASE_DIR, 'thirdparty', \
'pytorch_face_landmark','checkpoint','pfld_model_best.pth.tar'), \
detector = 'MTCNN'):
import torch
sys.path.append(os.path.join(BASE_DIR,'thirdparty','pytorch_face_landmark'))
if model == 'MobileNet':
from models.basenet import MobileNet_GDConv
self.model = MobileNet_GDConv(136)
self.model = torch.nn.DataParallel(self.model)
self.model.load_state_dict(torch.load(checkpoint)['state_dict'])
self.model.eval()
self.size = 224
elif model == 'MobileFaceNet':
from models.mobilefacenet import MobileFaceNet
self.model = MobileFaceNet([112, 112], 136)
self.model.load_state_dict(torch.load(checkpoint)['state_dict'])
self.model.eval()
self.size = 112
elif model == 'PLFD':
from models.pfld_compressed import PFLDInference
self.model = PFLDInference()
self.model.load_state_dict(torch.load(checkpoint)['state_dict'])
self.model.eval()
self.size = 112
if detector == 'MTCNN':
from MTCNN import detect_faces
self.detect_fun = lambda x: detect_faces(x[:,:,::-1])
elif detector == 'FaceBoxes':
from FaceBoxes import FaceBoxes
self.detector = FaceBoxes()
self.detect_fun = lambda x: self.detector.face_boxex(x)
elif detector == 'Retinaface':
from Retinaface import Retinaface
self.detector = Retinaface.Retinaface()
self.detect_fun = lambda x: self.detector(x)
else:
import dlib
self.detector = dlib.get_frontal_face_detector()
self.detect_fun = lambda x: self.detector(cv2.cvtColor(x,cv2.COLOR_BGR2GRAY))
def preprocess(self, img):
import torch
if img.max() < 2:
img = (img * 255).astype(np.uint8)
elif img.dtype == np.float32 or img.dtype == np.float64:
img[img < 0] = 0
img[img > 255]= 255
img = img.astype(np.uint8)
rects = self.detect_fun(img)
if isinstance(rects, tuple):
rects = rects[0] # MTCNN
if len(rects) == 0: return []
x1,y1,x2,y2 = rects[0,:4]
else:
if len(rects) == 0: return []
rect = rects[0]
try:
x1,y1,x2,y2 = rect[:4]
except:
x1 = rect.left()
y1 = rect.top()
x2 = rect.right()
y2 = rect.bottom()
w = x2 - x1 + 1
h = y2 - y1 + 1
size = int(min([w, h])*1.2)
cx = x1 + w//2
cy = y1 + h//2
x1 = cx - size//2
x2 = x1 + size
y1 = cy - size//2
y2 = y1 + size
dx = max(0, -x1)
dy = max(0, -y1)
x1 = max(0, x1)
y1 = max(0, y1)
edx = max(0, x2 - img.shape[1])
edy = max(0, y2 - img.shape[0])
x2 = min(img.shape[1], x2)
y2 = min(img.shape[0], y2)
self.bbox = [int(x1), int(x2), int(y1), int(y2)]
cropped = img[self.bbox[2]:self.bbox[3], self.bbox[0]:self.bbox[1]]
if dx > 0 or dy > 0 or edx > 0 or edy > 0:
cropped = cv2.copyMakeBorder(cropped,int(dy),int(edy),int(dx),int(edx), \
cv2.BORDER_CONSTANT, 0)
cropped_face = cv2.resize(cropped, (self.size, self.size))
input_ = np.expand_dims(cropped_face.astype(np.float32).transpose([2,0,1]), 0) / 255.
return [torch.from_numpy(input_).float()]
def detect(self, img):
img = self.preprocess(img)
if len(img) == 0: return None
lmks = []
for i in img:
lmk = self.model(i)[0].cpu().data.numpy()
lmk = lmk.reshape(-1, 2)
lmk[:,0] = lmk[:,0] * (self.bbox[1]-self.bbox[0]) + self.bbox[0]
lmk[:,1] = lmk[:,1] * (self.bbox[3]-self.bbox[2]) + self.bbox[2]
lmks += [lmk]
return lmks[0]
class SkinSegmentationGrabcut:
def __init__(self, lmks_num = 68, refine = None):
if os.path.exists(os.path.join(BASE_DIR,'models','lmk%d.obj'%lmks_num)):
import re
with open(os.path.join(BASE_DIR,'models','lmk%d.obj'%lmks_num), 'r') as f:
tri = re.findall('f'+' +([0-9]*)'*3, f.read())
tri = np.array([[int(f) for f in fi] for fi in tri], 'uint32')-1
self.tri = tri
else:
self.tri = None
if not refine is None:
if not hasattr(refine, '__len__'):
refine = [refine]
if hasattr(refine, '__len__'):
self.ksize = [ \
refine[0] if len(refine) > 0 else 0,\
refine[1] if len(refine) > 1 else ( \
refine[0] if len(refine) > 0 else 0)]
else:
self.ksize = None
def segment(self, img, lmks):
mask = np.zeros_like(img[:,:,0]).astype('uint8')
if self.tri is not None:
for f in self.tri:
lmk = lmks[f,:].astype('int32')
cv2.fillPoly(mask, np.expand_dims(lmk,0), 1)
else:
hull = cv2.convexHull(lmks.astype(np.int32))
cv2.fillPoly(mask, np.expand_dims(hull.reshape(-1,2),0), 1)
if not self.ksize is None:
if img.max() < 2:
img = img * 255
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
img[img < 0] = 0; img[img > 255] = 255
img = img.astype(np.uint8)
if img.shape[-1] == 1:
img = np.tile(img, (1,1,3))
maskf = cv2.erode(mask, \
cv2.getStructuringElement(cv2.MORPH_RECT, ( \
int(self.ksize[0]*img.shape[1]), \
int(self.ksize[0]*img.shape[0]))), \
iterations = 1, borderType = cv2.BORDER_CONSTANT)
maskb = cv2.dilate(mask, \
cv2.getStructuringElement(cv2.MORPH_RECT, ( \
int(self.ksize[1]*img.shape[1]), \
int(self.ksize[1]*img.shape[0]))), \
iterations = 1, borderType = cv2.BORDER_CONSTANT)
maski = cv2.GC_BGD *(1-maskb) + \
cv2.GC_FGD * maskf + \
cv2.GC_PR_BGD *(maskb - mask) + \
cv2.GC_PR_BGD *(mask - maskf)
maski = cv2.grabCut(img, maski, (0, 0, img.shape[1], img.shape[0]), \
np.zeros((1,65), 'float'), \
np.zeros((1,65), 'float'), \
iterCount = 5, mode = cv2.GC_INIT_WITH_MASK)[0]
mask = (maski == cv2.GC_FGD) + (maski == cv2.GC_PR_FGD)
return mask > 0
class SkinSegmentationPytorch:
def __init__(self, model = 'FCNResNet101', checkpoint = os.path.join(BASE_DIR, 'thirdparty', \
'SemanticSegmentation','pretrained', 'model_segmentation_skin_30.pth'), \
threshold = .5):
import torch
from torchvision import transforms
sys.path.append(os.path.join(BASE_DIR,'thirdparty','SemanticSegmentation'))
state_dict = torch.load(checkpoint)
if model == 'FCNResNet101':
from semantic_segmentation.models.fcn import FCNResNet101
category_prefix = '_categories.'
categories = [k for k in state_dict.keys() if k.startswith(category_prefix)]
categories = [k[len(category_prefix):] for k in categories]
self.model = FCNResNet101(categories)
elif model == 'BiSeNetV2':
category_prefix = '_categories.'
categories = [k for k in state_dict.keys() if k.startswith(category_prefix)]
categories = [k[len(category_prefix):] for k in categories]
from semantic_segmentation.models.bisenetv2 import BiSeNetV2
self.model = BiSeNetV2(categories)
self.model.load_state_dict(state_dict)
self.model.eval()
self.transform = transforms.Normalize( \
mean = (.485, .456, .406), \
std = (.229, .224, .225))
self.th = (threshold if threshold < 1 else 1) if threshold > 0 else 0
def segment(self, img, *kwargs):
import torch
if img.max() > 2.:
img = img.astype(np.float32) / 255.
sz = img.shape
img = img[:(sz[0]//32)*32,:(sz[1]//32)*32]
img = img.reshape(img.shape[0],img.shape[1],-1)
if img.shape[-1] == 1:
img = np.tile(img,[1,1,3])
else:
img = img[:,:,::-1]
img = np.transpose(img,[2,0,1]).copy()
input_ = self.transform(torch.from_numpy(img).float())
with torch.no_grad():
out = torch.sigmoid(self.model(input_.unsqueeze(0))['out'])
mask = out[0,0].cpu().data.numpy()
if sz[0] > mask.shape[0] or sz[1] > mask.shape[1]:
mask = np.pad(mask, ((0,sz[0]-mask.shape[0]),(0,sz[1]-mask.shape[1])), \
'constant', constant_values = (0,0))
return mask > self.th
class RecognitionFeature:
def __init__(self, model_type = 'vggface2'):
sys.path.append(os.path.join(BASE_DIR,'thirdparty','facenet-pytorch','models'))
from inception_resnet_v1 import InceptionResnetV1
from mtcnn import MTCNN
self.model = InceptionResnetV1(pretrained = model_type)
self.model = self.model.eval()
self.detector = MTCNN(image_size = 160, margin = 0, min_face_size = 20, \
thresholds = [0.6, 0.7, 0.7], factor = 0.709, post_process = True)
self.size = 160
self.color_range = [-1, 1]
def detect(self, img):
x_aligned, prob = self.detector(img, return_prob = True)
if x_aligned is None: return None
embeddings = self.model(x_aligned.unsqueeze(0))
embeddings = embeddings[0].detach().cpu().numpy()
return embeddings
def solve_ortho(src, dst, max_iter = 0, eps = 1e-9):
n = src.shape[0]
src_mean = src.mean(0).reshape(1,-1)
dst_mean = dst.mean(0).reshape(1,-1)
src_ = src - np.tile(src_mean, (n, 1))
dst_ = dst - np.tile(dst_mean, (n, 1))
u, w, vt = np.linalg.svd(src_)
w_inv = [1./w[i] if w[i] > eps else w[i] for i in range(len(w))]
R = vt.T.dot(np.diag(w_inv)).dot(u[:,0:vt.shape[0]].T).dot(dst_)
u, w, vt = np.linalg.svd(R)
vt_ = np.eye(3).astype(u.dtype)
vt_[:2,:2] = vt
if np.linalg.det(vt_)*np.linalg.det(u) < 0:
vt_[2,2] = -1
R_ = u.dot(vt_)
w = ((R * R_[:,:2]).sum() / (R_[:,:2]*R_[:,:2]).sum())
T = np.concatenate([w * R_, np.concatenate([ \
dst_mean - src_mean.dot(w*R_[:,:2]), [[0]]],1)], 0).T
T[2,3] = 1./ np.maximum(w, eps)
if max_iter > 0:
from scipy.optimize import leastsq
def fun(x, src, dst):
R = cv2.Rodrigues(x[:3])[0]
src_ = x[3] * src.dot(R[:,:2]) + x[4:6].reshape(1,-1)
return (src_ - dst).reshape(-1)
def jac(x, src, dst):
R, dR = cv2.Rodrigues(x[:3])[0]
J = np.zeros([len(src)*2, len(x)], x.dtype)
J[:,0] = x[3] * src.dot(dR[0,:].reshape(3,3)[:,:2])
J[:,1] = x[3] * src.dot(dR[1,:].reshape(3,3)[:,:2])
J[:,2] = x[3] * src.dot(dR[2,:].reshape(3,3)[:,:2])
J[:,3] = src.dot(R[:,:2])
J[:,4:6]= np.tile(np.eye(2),(len(src),1))
return J
x0 = cv2.Rodrigues(R_)[0].reshape(-1)
x0 = np.concatenate([x0,[w],T[:2,3]])
res = leastsq(fun, x0, args = (src, dst), \
Dfun = jac, ftol = eps, maxfev = int(max_iter))
x = res[0]
T[:3,:3]= x[3] * cv2.Rodrigues(x[:3])[0].T
T[:2,3] = x[4:6]
return T
def solve_affine(src, dst, max_iter = 0, eps = 1e-9):
J = np.zeros([len(src)*2, 4], src.dtype)
J[:,0] = src[:,:2].reshape(-1)
J[:,1] = np.concatenate((-src[:,1:2],src[:,:1]),1).reshape(-1)
J[:,2:4]= np.tile(np.eye(2),(len(src),1))
u, w, vt = np.linalg.svd(J)
w_inv = [1./w[i] if w[i] > eps else w[i] for i in range(len(w))]
x0 = dst.reshape(-1).dot(u[:,:4]).dot(np.diag(w_inv)).dot(vt)
T = np.array([ \
[x0[0],-x0[1],x0[2]],\
[x0[1], x0[0],x0[3]]], x0.dtype)
if max_iter > 0:
from scipy.optimize import leastsq
def fun(x, src, dst):
R = np.array([[x[0],x[1]],[-x[1],x[0]]], x.dtype)
src_ = src.dot(R) + x[2:4].reshape(1,-1)
return (src_ - dst).reshape(-1)
def jac(x, src, dst):
return J
res = leastsq(fun, x0, args = (src, dst), \
Dfun = jac, ftol = eps, maxfev = int(max_iter))
x = res[0]
T[0,0] = T[1,1] = x0[0]
T[1,0] = x0[1]; T[0,1] = -x0[1]
T[:2,:] = x0[2:4]
return T
def euler_mat_inv(R, _type = 'yxz', eps = 1e-9):
tp = [ord(t)-ord('x') for t in _type.lower()]
permute = 2 * ((tp[0] - tp[1]) % 3) - 3
if tp[0] == tp[2] and tp[0] != tp[1]: # zxz type
i = tp[0]; j = tp[1]; k = 3-tp[0]-tp[1]
D = max(min(R[i,i],1),-1)
r = np.array([ \
np.arctan2(R[i,j], permute * R[i,k]), \
np.arccos(D), \
np.arctan2(R[j,i],-permute * R[k,i])], R.dtype)
if 1 - D <= eps:
r[2] = np.arctan2(-permute*R[j,k],R[j,j]) - r[0]
elif 1 + D <= eps:
r[2] = np.arctan2(permute*R[j,k], R[j,j]) + r[0]
return r
elif len(set(tp).difference([0,1,2])) == 0: # zyx type
i = tp[0]; j = tp[1]; k = tp[2]
D = max(min(R[k,i],1),-1)
r = np.array([ \
np.arctan2(permute * R[k,j], R[k,k]), \
np.arcsin(-permute * D), \
np.arctan2(permute * R[j,i], R[i,i])])
if 1 - D <= eps:
r[2] = np.arctan2(-permute* R[j,k], R[j,j]) - r[0]
elif 1 + D <= eps:
r[2] = np.arctan2(permute * R[j,k], R[j,j]) + r[0]
return r
else:
return np.zeros(3, R.dtype)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = 'Preprocess for Faces')
parser.add_argument('path', type = str, help = 'path to image/images folder')
parser.add_argument('--lmk', default = 'Exec', \
help = 'Landmarks Detection Method')
parser.add_argument('--bfm', default = '/data/BaselFaceModel.mat', \
help = 'Morphable Face Model')
parser.add_argument('--mask', default = '', \
help = 'Skin Segmentation Model')
parser.add_argument('--disp', action = 'store_true', \
help = 'Show Landmarks')
parser.add_argument('--output', default = '', \
help = 'Output folder for processed images')
args = parser.parse_args()
from dataset import ImgDataset
data = ImgDataset(args.path)
if 'exe' in args.lmk.lower():
detector = LandmarksDetectorExec()
base_lmk = [0]*68
elif 'dlib' in args.lmk.lower():
detector = LandmarksDetectorDlib()
base_lmk = [0]*68
elif 'torch' in args.lmk.lower():
detector = LandmarksDetectorPytorch()
base_lmk = [0]*68
elif os.path.exists(args.lmk) and args.lmk[-4:].lower() == '.txt':
detector = LandmarksReader(args.lmk)
base_lmk = [0]*(args.lmk.shape[1]//2)
if 'torch' in args.mask.lower():
mask = SkinSegmentationPytorch()
else:
mask = SkinSegmentationGrabcut(refine = [.01, .5])
if args.output != '':
try:
if not os.path.isdir(args.output):
os.mkdir(args.output)
import scipy.io as sio
import torch
model = sio.loadmat(args.bfm)
v =(model['v'] - model['v'].mean(1).reshape(-1,1)).T * 1e-5
c = model['tex'].T
f = model['tri'][0,0].astype(np.int64)
if 'landmarks%d' % len(base_lmk) in model.keys():
base_lmk = v[model['landmarks%d' % len(base_lmk)] \
.reshape(-1).astype(np.uint64)-f.min(),:]
mesh = None
else:
f = f - f.min()
v = torch.from_numpy(np.expand_dims(v.astype(np.float32), 0))
c = torch.from_numpy(np.expand_dims(c.astype(np.float32), 0))
f = torch.from_numpy(f)
base_lmk = []
mesh = (v, c, f)
except ModuleNotFoundError as e:
mesh = None; args.output = ''
base_lmk = []
base_img = None
for img_name in data.imgs:
if not isinstance(detector, LandmarksReader):
img = cv2.imread(img_name[0])
if img is None: continue
else:
img = img_name[0]
lmk = detector.detect(img)
if len(lmk) <= 0: continue
if args.output != '':
if mesh is not None:
from op import rasterize
base_img = rasterize(mesh[0], mesh[1], mesh[2], \
img.shape[0], img.shape[1]).numpy()[0,:,:,::-1]
base_lmk = detector.detect(base_img)
mesh = None
elif base_img is None:
base_img = img
if len(base_lmk) > 0 and len(base_lmk[0]) == 3:
base_lmk[:,0] = (1 + base_lmk[:,0]) * img.shape[1]/2
base_lmk[:,1] = (1 - base_lmk[:,1]) * img.shape[0]/2
base_lmk[:,2] = -base_lmk[:,2] * \
(img.shape[1] + img.shape[0]) / 4
if len(base_lmk) == len(lmk):
if len(base_lmk[0]) == 3:
T = solve_ortho(base_lmk, lmk)
f = np.cbrt(np.linalg.det(T[:3,:3]))
rot = euler_mat_inv(T[:3,:3]/f, 'yxz')
c, s = f*np.cos(rot[2]), f*np.sin(rot[2])
tx,ty= T[:2,3]
T = np.array([[c,-s,tx],[s,c,ty],[0,0,1]],T.dtype)
else:
T = solve_affine(base_lmk[:,:2], lmk)
if T.shape[0] == 2:
T = np.concatenate((T,[[0,0,1]]), 0)
Tinv = np.linalg.inv(T)[:2,:]
img_ = cv2.warpAffine(img, Tinv, \
(base_img.shape[1],base_img.shape[0]), \
flags = cv2.INTER_LINEAR, \
borderMode = cv2.BORDER_REFLECT)
cv2.imwrite(os.path.join(args.output, \
os.path.basename(img_name[0])), img_)
if args.disp:
alpha = .3
msk = mask.segment(img, lmk)
img =(1-alpha)*img + msk.reshape(msk.shape[0],msk.shape[1],1)*255*alpha
draw_landmarks(img, lmk, True)