-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
329 lines (286 loc) · 12.8 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import argparse
import os
import resource
from contextlib import nullcontext
from functools import partial
from typing import Optional, Tuple
import torch
import torch.distributed as dist
import torch.nn as nn
from attn import SUPPORT_XFORMERS, replace_xformers
from data_utils import load_json, prepare_dataloader, save_json
from datasets import load_dataset
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaForCausalLM
from transformers.models.llama.tokenization_llama import LlamaTokenizer
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
MODEL_CONFIGS = {
"7b": LlamaConfig(max_position_embeddings=4096),
"13b": LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
num_hidden_layers=40,
num_attention_heads=40,
max_position_embeddings=4096,
),
"70b": LlamaConfig(
hidden_size=8192,
intermediate_size=28672,
num_hidden_layers=80,
num_attention_heads=64,
max_position_embeddings=4096,
num_key_value_heads=8,
),
}
def get_model_numel(model: nn.Module) -> int:
return sum(p.numel() for p in model.parameters())
def format_numel_str(numel: int) -> str:
B = 1024**3
M = 1024**2
K = 1024
if numel >= B:
return f"{numel / B:.2f} B"
elif numel >= M:
return f"{numel / M:.2f} M"
elif numel >= K:
return f"{numel / K:.2f} K"
else:
return f"{numel}"
def tokenize_batch_for_pretrain(batch, tokenizer: Optional[LlamaTokenizer] = None, max_length: int = 2048):
texts = [sample["text"] for sample in batch]
data = tokenizer(texts, return_tensors="pt", padding="max_length", truncation=True, max_length=max_length)
data = {k: v.cuda() for k, v in data.items()}
data["labels"] = data["input_ids"].clone()
return data
def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor:
dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
tensor.div_(dist.get_world_size())
return tensor
def save(
booster: Booster,
model: nn.Module,
optimizer: Optimizer,
lr_scheduler: _LRScheduler,
epoch: int,
step: int,
batch_size: int,
coordinator: DistCoordinator,
save_dir: str,
):
save_dir = os.path.join(save_dir, f"epoch{epoch}-step{step}")
os.makedirs(os.path.join(save_dir, "model"), exist_ok=True)
booster.save_model(model, os.path.join(save_dir, "model"), shard=True)
booster.save_optimizer(optimizer, os.path.join(save_dir, "optimizer"), shard=True)
booster.save_lr_scheduler(lr_scheduler, os.path.join(save_dir, "lr_scheduler"))
running_states = {
"epoch": epoch,
"step": step,
"sample_start_index": step * batch_size,
}
if coordinator.is_master():
save_json(running_states, os.path.join(save_dir, "running_states.json"))
def load(
booster: Booster, model: nn.Module, optimizer: Optimizer, lr_scheduler: _LRScheduler, load_dir: str
) -> Tuple[int, int, int]:
booster.load_model(model, os.path.join(load_dir, "model"))
booster.load_optimizer(optimizer, os.path.join(load_dir, "optimizer"))
booster.load_lr_scheduler(lr_scheduler, os.path.join(load_dir, "lr_scheduler"))
running_states = load_json(os.path.join(load_dir, "running_states.json"))
return running_states["epoch"], running_states["step"], running_states["sample_start_index"]
def _criterion(outputs, inputs):
return outputs.loss
def main():
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", type=str, default="7b", help="Model configuration")
parser.add_argument(
"-p",
"--plugin",
choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "hybrid_parallel"],
default="gemini",
help="Choose which plugin to use",
)
parser.add_argument(
"-d", "--dataset", type=str, default="togethercomputer/RedPajama-Data-1T-Sample", help="Data set path"
)
parser.add_argument("-e", "--num_epochs", type=int, default=1, help="Number of epochs")
parser.add_argument("-b", "--batch_size", type=int, default=2, help="Local batch size")
parser.add_argument("--lr", type=float, default=3e-4, help="Learning rate")
parser.add_argument("-w", "--weigth_decay", type=float, default=0.1, help="Weight decay")
parser.add_argument("-s", "--warmup_steps", type=int, default=2000, help="Warmup steps")
parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing")
parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length")
parser.add_argument("-x", "--mixed_precision", default="fp16", choices=["fp16", "bf16"], help="Mixed precision")
parser.add_argument("-i", "--save_interval", type=int, default=1000, help="Save interval")
parser.add_argument("-o", "--save_dir", type=str, default="checkpoint", help="Checkpoint directory")
parser.add_argument("-f", "--load", type=str, default=None, help="Load checkpoint")
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping")
parser.add_argument("-t", "--tensorboard_dir", type=str, default="tb_logs", help="Tensorboard directory")
parser.add_argument("-a", "--flash_attention", action="store_true", help="Use Flash Attention")
args = parser.parse_args()
# ==============================
# Initialize Distributed Training
# ==============================
colossalai.launch_from_torch({})
coordinator = DistCoordinator()
# ==============================
# Initialize Booster
# ==============================
if args.plugin == "gemini":
plugin = GeminiPlugin(precision=args.mixed_precision, initial_scale=2**16, max_norm=args.grad_clip)
elif args.plugin == "gemini_auto":
plugin = GeminiPlugin(
precision=args.mixed_precision, placement_policy="auto", initial_scale=2**16, max_norm=args.grad_clip
)
elif args.plugin == "zero2":
plugin = LowLevelZeroPlugin(
stage=2, precision=args.mixed_precision, initial_scale=2**16, max_norm=args.grad_clip
)
elif args.plugin == "zero2_cpu":
plugin = LowLevelZeroPlugin(
stage=2, precision=args.mixed_precision, initial_scale=2**16, cpu_offload=True, max_norm=args.grad_clip
)
elif args.plugin == "hybrid_parallel":
# modify the param accordingly, default configuration is for llama2-7b
plugin = HybridParallelPlugin(
tp_size=4,
pp_size=2,
num_microbatches=None,
microbatch_size=1,
enable_jit_fused=False,
zero_stage=0,
precision="fp32",
initial_scale=1,
)
else:
raise ValueError(f"Unknown plugin {args.plugin}")
booster = Booster(plugin=plugin)
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
print_flag = (not use_pipeline and coordinator.is_master()) or (use_pipeline and is_pp_last_stage)
# ==============================
# Initialize Tensorboard
# ==============================
if print_flag:
os.makedirs(args.tensorboard_dir, exist_ok=True)
writer = SummaryWriter(args.tensorboard_dir)
# ==============================
# Initialize Tokenizer, Dataset and Dataloader
# ==============================
tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
# follows fast chat: https://github.com/lm-sys/FastChat/blob/main/fastchat/train/train.py#L257
tokenizer.pad_token = tokenizer.unk_token
dataset = load_dataset(args.dataset)
train_ds = dataset["train"]
dataloader = prepare_dataloader(
train_ds,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
collate_fn=partial(tokenize_batch_for_pretrain, tokenizer=tokenizer, max_length=args.max_length),
)
# ==============================
# Initialize Model, Optimizer and LR Scheduler
# ==============================
config = MODEL_CONFIGS[args.config]
# use lazy init when using GeminiPlugin
init_ctx = (
LazyInitContext(default_device=get_current_device()) if isinstance(plugin, GeminiPlugin) else nullcontext()
)
with init_ctx:
model = LlamaForCausalLM(config)
if args.grad_checkpoint:
model.gradient_checkpointing_enable()
if args.flash_attention:
assert SUPPORT_XFORMERS, "Use flash attention while xfomers is not installed"
replace_xformers(model)
model_numel = get_model_numel(model)
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
optimizer = HybridAdam(model.parameters(), lr=args.lr, betas=(0.9, 0.95), weight_decay=args.weigth_decay)
lr_scheduler = CosineAnnealingWarmupLR(
optimizer, total_steps=args.num_epochs * len(dataloader), warmup_steps=args.warmup_steps, eta_min=0.1 * args.lr
)
default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16
torch.set_default_dtype(default_dtype)
model, optimizer, _, dataloader, lr_scheduler = booster.boost(
model, optimizer, dataloader=dataloader, lr_scheduler=lr_scheduler
)
torch.set_default_dtype(torch.float)
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
coordinator.print_on_master(
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB"
)
# load checkpoint if specified
start_epoch = 0
start_step = 0
sampler_start_idx = 0
if args.load is not None:
coordinator.print_on_master("Loading checkpoint")
start_epoch, start_step, sampler_start_idx = load(booster, model, optimizer, lr_scheduler, args.load)
coordinator.print_on_master(f"Loaded checkpoint {args.load} at epoch {start_epoch} step {start_step}")
num_steps_per_epoch = len(dataloader)
# if resume training, set the sampler start index to the correct value
dataloader.sampler.set_start_index(sampler_start_idx)
for epoch in range(start_epoch, args.num_epochs):
dataloader.sampler.set_epoch(epoch)
step_nums = num_steps_per_epoch - start_step
dataloader_iter = iter(dataloader)
with tqdm(
range(step_nums),
desc=f"Epoch {epoch}",
disable=not print_flag,
total=num_steps_per_epoch,
initial=start_step,
) as pbar:
for step in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
dataloader_iter, model, _criterion, optimizer, return_loss=True, return_outputs=True
)
loss = outputs["loss"]
else:
batch = next(dataloader_iter)
outputs = model(**batch)
loss = outputs[0]
booster.backward(loss, optimizer)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if not use_pipeline:
all_reduce_mean(loss)
if print_flag:
pbar.set_postfix({"loss": loss.item()})
writer.add_scalar("loss", loss.item(), epoch * num_steps_per_epoch + step)
if args.save_interval > 0 and (step + 1) % args.save_interval == 0:
coordinator.print_on_master(f"Saving checkpoint")
save(
booster,
model,
optimizer,
lr_scheduler,
epoch,
step + 1,
args.batch_size,
coordinator,
args.save_dir,
)
coordinator.print_on_master(f"Saved checkpoint at epoch {epoch} step {step + 1}")
# the continue epochs are not resumed, so we need to reset the sampler start index and start step
dataloader.sampler.set_start_index(0)
start_step = 0
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
if __name__ == "__main__":
main()