-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tuning.py
162 lines (133 loc) · 4.27 KB
/
fine_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import numpy as np
import wandb
from datasets import load_dataset, load_metric
from environs import Env
from transformers import (
AutoTokenizer,
BertForSequenceClassification,
Trainer,
TrainingArguments,
)
from transformers.models.my_fnet import MyFNetForSequenceClassification
GLUE_TASKS = [
"cola",
"mnli",
"mnli-mm",
"mrpc",
"qnli",
"qqp",
"rte",
"sst2",
"stsb",
"wnli",
]
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mnli-mm": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
def run_training(pretrained_model_path, task, batch_size):
env = Env()
env.read_env()
write_hub_token = env("write_hub_token")
actual_task = "mnli" if task == "mnli-mm" else task
tokenizer = AutoTokenizer.from_pretrained(
"bert-base-uncased", use_fast=True, use_auth_token=write_hub_token
)
sentence1_key, sentence2_key = task_to_keys[actual_task]
def tokenize_function(examples):
if sentence2_key is None:
return tokenizer(examples[sentence1_key], truncation=True)
return tokenizer(
examples[sentence1_key], examples[sentence2_key], truncation=True
)
dataset = load_dataset("glue", actual_task)
encoded_dataset = dataset.map(tokenize_function, batched=True)
if pretrained_model_path == "Joqsan/custom-fnet":
ModelForSequenceClassification = MyFNetForSequenceClassification
elif pretrained_model_path == "bert-base-uncased":
ModelForSequenceClassification = BertForSequenceClassification
else:
ValueError("Non-valid checkpoint path")
num_labels = 3 if task.startswith("mnli") else 1 if task == "stsb" else 2
model = ModelForSequenceClassification.from_pretrained(
pretrained_model_path, num_labels=num_labels, use_auth_token=write_hub_token
)
model_name = pretrained_model_path.split("/")[-1]
metric_name = (
"pearson"
if task == "stsb"
else "matthews_correlation"
if task == "cola"
else "accuracy"
)
metric = load_metric("glue", actual_task)
def compute_metrics(eval_pred):
predictions, labels = eval_pred
if task != "stsb":
predictions = np.argmax(predictions, axis=1)
else:
predictions = predictions[:, 0]
return metric.compute(predictions=predictions, references=labels)
args = TrainingArguments(
f"{model_name}-finetuned-{task}",
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
learning_rate=2e-5,
num_train_epochs=5,
weight_decay=0.01,
push_to_hub=True,
hub_strategy="end",
hub_token=write_hub_token,
load_best_model_at_end=True,
metric_for_best_model=metric_name,
evaluation_strategy="epoch",
save_strategy="epoch",
report_to="wandb",
)
validation_key = (
"validation_mismatched"
if task == "mnli-mm"
else "validation_matched"
if task == "mnli"
else "validation"
)
run = wandb.init(
project=env("WANDB_PROJECT"),
name=f"{model_name}-{actual_task}",
reinit=True,
)
trainer = Trainer(
model,
args,
train_dataset=encoded_dataset["train"],
eval_dataset=encoded_dataset[validation_key],
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
trainer.train()
run.finish()
def get_parser():
parser = argparse.ArgumentParser(
description="Program to run fine-tuning on GLUE tasks"
)
parser.add_argument(
"pretrained_model_path", choices=["bert-base-uncased", "Joqsan/custom-fnet"]
)
parser.add_argument("task", choices=GLUE_TASKS)
parser.add_argument("--batch_size", type=int, default=16)
return parser
def main():
parser = get_parser()
args = parser.parse_args()
run_training(args.pretrained_model_path, args.task, args.batch_size)
if __name__ == "__main__":
main()