-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDDS_for_BITX_tranceivers_v_0_1_3_DEV.ino
629 lines (544 loc) · 25.1 KB
/
DDS_for_BITX_tranceivers_v_0_1_3_DEV.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
//***************************************************************************************************
//
// File name: DDS_for_BITX_tranceivers_v_0.1.3_DEV.ino
// K. Hough (M0KOH), 19/01/2016
//
// This program provides generation of VFO and BFO signals for BITX transceivers, or for a simple general purpose
// wide range signal generator. The latter is recommended for accurate determination of the frequency response (and hence
// of BFO setting) for the BITX IF filter.
//
// This version of the program provides for BITX20 and BITX40. It should also be modifyable to suit other variants such as BITX17
// BITX20 mode provides for Upper Sideband operation with the VFO operating at low frequency
// BITX40 mode provides for Lower Sideband operation with the VFO operating at high frequency
//
// PLEASE READ THE NOTES INCLUDED BELOW
// THESE INCLUDE GUIDANCE ON TO HOW TO CALIBRATE THE Aduino/Si5351.
//
// Beginers in C/C++ coding note that:
// All lines beginning with '//' are taken to be comments/instructions for the users benefit only and will be ignored during compilation.
// Lines beginning with '#define' are instructions to the compiler as follows:
//
// #define statements which include ONLY a name or condition, can be used with the '#ifdef' statement to detect whether or not
// that name has been defined, and then to execute code accordingly.
//
// or
//
// #define statements which include a name followed by some text, will cause the complier to replace every occurence of the name with the
// associated text. This provides a very convenient shorthand way of globaly changing values asigned to variables.
//
// Some of the variable values are terminated by 'ULL'. This defines a variable as type 'unsigned long long' and is
// applied because some of the library routines require it. C/C++ is quite pedantic wrt typing of variables.
//
// Program Background
// ~~~~~~~~~~~~~~~~~~
// This program/sketch has been based on the Arduino sketch file given at the following link:
//<http://ak2b.blogspot.co.uk/2015/04/multi-featured-vfo.html>
//
// The Si5351 can generate three individually programmed output signals at up to 3 Volts pk to pk. This program uses only one of these (ie CLK0) in signal
// generator mode, or two of them (ie CLK0 and CLK2) in BITX mode.
//
// The modified Arduino Si5351 library referred to at the site given above is REQUIRED and should be installed into
// the Arduino sketchbook/libraries directory. Download the .zip file from here: <https://github.com/etherkit/Si5351Arduino>,
// then install via the Arduino IDE using Sketch>Import Library>Add Library
// It is ESSENCIAL that this modified library is used. If you already have the standard Si5351 library
// installed, you will need to remove it otherwise the compiler will get confused.
//
// If you are using an early version of the Arduino IDE, it is recommended that you upgrade to at least
// version 1.6.3. This will make installing libraries in .zip format much easier
//
// Modifications/updates to original code
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// -- Some tidying up and re-arranging of code has been done.
// -- F_MIN, F_MAX, and other frequency settings now refer to ACTUAL frequency values
// -- In signal generator mode, upper and lower frequency limits have can be set to 8kHz and 100MHz, but this can be changed to suit personal preferences
// -- In BITX mode frequency settings have been set to correspond with operating band limits
// -- Provision has been made to use either a 16 col x 2 row LCD or a 20 col x 4 row LCD (Liquid Crystal Display)
// -- Function 'display_frequency()' has been competely re-written and now remains correct/stable for all
// frequencies. This uses an additional function 'reverseString(char s[])'
// -- Function 'set_frequency(short dir)' has been modified
//
// -- Included for two extra buttons on I/O lines 4 and 12 to provide for stepping up/down of frequency increments (added 05/10/2015)
// This (experimentally) includes ruitine for providing two operations via one button, based on period of button press.(added 07/10/2015)
//
// Note that Arduino I/O line no 13 is not used because it is connected with an on board/built-in LED
//
// The original method for changing frequency increment setting via the rotary encoder push switch has been temporarilly retained in this version
// to allow for comparision of the two methods of changing increment setting.
//
//*******************************************************************************************************
// User settings/procedures
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// CALIBRATION OF THE SI5351
// The Si5351 is crystal controlled so frequency stability will be good. Frequency accuracy will also be fairly good, but to obtain best frequencies accuracy, a calibration
// correction should be appplied as follows:
// a) Set the program to operate as a signal generator by uncommenting the line '#define Signal_Generator' (at approx line no 144)
// Make sure that the the other lines such as '#define BITX20' are commented out.
// b) Comment out the entire line containiing '#define Calibration_correction' (at approx line no 161)
// c) Compile/upload the resulting program to Arduino. This will result in the si5351 generating (uncalibrated) RF. At startup the LCD will show
// a frequency reading of exectly 10MHz, but this can be changed to suit available test conditions.
// d) Use an ACCURATELY calibrated frequency counter or receiver to determine the ACTUAL frequency generated by the Arduino/Si5351/LCD
// e) Calculate the difference between the frequency displayed by the LCD and the ACTUAL measured frequency as parts per billion (ie parts per 10^9)
// f) Uncomment the line containing '#define Calibration_correction', insert this correction value, then re-compile and re-check calibration.
//
// SPECIFY REQUIRED MODE OF OPERATION
// This program can be set to operate as a simple DDS signal generator (for test purpose?), or to control the VFO and BFO of a BITX20 or BITX40 SSB transceiver
// Select mode of operation by commenting/uncommenting the appropriate '#define' statements below (at approx line no 140).
//
// Other settings that might need to be set to suit individual cases relate to:
// -- frequency range and startup frequency
// -- and in the case of BITX20 operation, also BFO frequency. This must be defined ACCURATELY! See below
//
// By default the program will assume that a 16 column x 2 row LCD device is used with the Arduino/Si5351.
// If a 20 col x 4 row LCD is to be used, uncomment the line containing the statement '#define display_20x4' (at approx line no 139)
//
// User defined settings are identifed under sections identified by "User defined setting......" (at approx line no 194)
// Users should not attempt to modify any other parts of the program
//
// DETERMINATION OF IF FREQUENCY RESPONSE
// For correct operation in BITX20 mode, the BFO must be set to correspond with the -20dB or lower on the low frequency side of the IF filter frequency.
// BITX40 mode (ie LSB) operation will require that the BFO is set at the -20dB frquency on the HIGH side of the IF filter response.
// This is to ensure addequate rejection of the BFO/carrier during transmission. The best way to do this is to produce a graphical plot of
// dB response versus frequency, from which the -20dB frequency can be determined and the BFO frequency set accordingly. The signal generator mode
// of this program provides a convenient means to do this. Use frequency increments of 100Hz.
//
//***************************************************************************************************
// MY PRACTICAL CONSTRUCTION -- K. Hough
// The original AK2B project showed the use an Arduino Uno. My preference is for Arduino Nano which is physically smaller than
// the Uno and like the Adafruit Si5351 device, fits into SIL(single in line) header sockets which were mounted onto a piece
// of Veroboard (ie stripboard) that was cut to be slightly larger than the LCD display device that was used (a 20 col x 4 row device).
// I then fastened the LCD device to sit over, but not in contact with the copper side of the Veroboard. This made a compact
// assembly that could be easily fitted into a front panel.
//
// The original and present designs do not use all of the digital and analogue I/O lines of the Arduino. My construction has
// included wiring and connecions to provide for future convenient access to three of the spare analogue inputs (A0, A1, and A2) and to two of the spare
// digital I/O lines (D12, and D4 -- not D13 because of on board LED attached to this line).
// This program uses D12 and D4 to provide an alternative and more practical means of changing frequency increments. The analogue lines
// might be used in future for S meter, etc --software to provide an S meter has been developed separately.
//
//##################################################################################################################################
//
// The usual Arduino 'setup()' and 'loop()' functions can be found towards the end of this source code, after all of the additional program functions
//
//######################
//# PROGRAM BEGINS HERE
//######################
//define the program name and version
#define program_name "DDS_for_BITX"
#define program_version "0.1.2_DEV"
#include <stdint.h>
#include <Rotary.h>
#include <si5351.h>
#include <Wire.h>
#include <LiquidCrystal.h>
//###################### USER SETTING -- Set LCD display format ###########################
// This program will default to use a 16 col x 2 row LCD display if the define statement
// below is commented out by inserting //
#define display_20x4
//###################### USER SETTING -- Set mode of operation ###########################
// Uncomment only ONE of these three #define statements
#define Signal_Generator
//#define BITX20
//#define BITX40
// For BITX operation refer also to "ADDITIONAL USER SETTNGS" below
//############### USER SETTING -- Set frequency calibration correction #####################
// Apply correction factor to si5351 Xtal frequency -- this is in parts per billion -- refer si5351.ccp
// Use an ACCURATELY calibrated radio or frequency counter to determine the ACTUAL frequency genetared by the Arduino/si5351 in signal_generator mode
// Then calulate the difference between the frequency displayed on the arduino LCD and the radio as parts per billion
// NOTE: this is an american billion. ie 10^9
// If frequency on Arduino/LCD is lower than 10MHz then correction should be positive, and vice versa
#define f_calibration_correction 14200
// Note that this correction value applied to MY si5351. Your si5351 will no doubt require a different value.
// After correction, the si5351 was found to hold accuracy over the frequency range from 1MHz to 100MHz
//##########################################################################################
#define ENCODER_A 3 // Digital port to connect with Rotary encoder pin A
#define ENCODER_B 2 // Digital port to connect with Rotary encoder pin B
#define ENCODER_BTN 11 //Digital port to connect with encoder switch
//extra buttons for increasing/decreasing frequency increments (added 05/10/2015)
#define INCR_UP 12 //increase frequency increment
#define INCR_DWN 4 //decrease frequency increment
//could not use I/O line no 13 because this line includes built-in LED
//for now, increment can be changed via either the extra switches or the switch associated with the encoder
#define LCD_RS 5 //connections to LCD display
#define LCD_E 6
#define LCD_D4 7
#define LCD_D5 8
#define LCD_D6 9
#define LCD_D7 10
//set pin assignments above to LCDcrystal object
LiquidCrystal lcd(LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7);
Si5351 si5351;
Rotary r = Rotary(ENCODER_A, ENCODER_B);
//################################### ADDITIONAL USER SETTING ####################################
//It might seem to be untity to put these sttings here, but they must be placed after all of the statements above
#ifdef Signal_Generator
volatile uint32_t Start_frequency = 10000000ULL;
volatile uint32_t F_MIN = 8000ULL;
volatile uint32_t F_MAX = 100000000ULL;
#endif
#ifdef BITX20
// These settings work for my BITX20 rig. You should check for your own rig
volatile uint32_t Start_frequency = 14200000ULL;
volatile uint32_t F_MIN = 14000000ULL;
volatile uint32_t F_MAX = 14350000ULL;
volatile uint32_t BFO_freq = 10999400ULL; //depends critically on IF filter frequency response -- see notes above
#endif
#ifdef BITX40
// These settings should be OK for BITX40. You should check for your own rig
volatile uint32_t Start_frequency = 7100000ULL;
volatile uint32_t F_MIN = 7000000ULL;
volatile uint32_t F_MAX = 7200000ULL;
volatile uint32_t BFO_freq = 10999400ULL; //depends critically on IF filter frequency response -- see notes above
#endif
//#######################################################################################
//# NO MORE USER SETTINGS BELOW THIS POINT
//#######################################################################################
volatile uint32_t radix = 100;
volatile uint32_t Signal_frequency = Start_frequency;
boolean changed_f = 0;
//**********************************************************************************************
//* Interrupt service routine for
//* encoder frequency change
//******************************
ISR(PCINT2_vect) {
unsigned char result = r.process();
if (result == DIR_CW)
set_frequency(1);
else if (result == DIR_CCW)
set_frequency(-1);
}
//**********************************************************************************************
//* Change the frequency
//**********************
// dir = 1 Increment
// dir = -1 Decrement
//*********************
void set_frequency(short dir)
{
if (dir == 1) {
if ((Signal_frequency + radix) < F_MAX) Signal_frequency += radix;
else Signal_frequency = F_MAX;
}
if (dir == -1) {
if ((Signal_frequency - radix) >= F_MIN & Signal_frequency > radix) Signal_frequency -= radix;
}
changed_f = 1;
}
//**********************************************************************************************
//* Read the button with debouncing and reset radix
//*************************************************
void get_button()
{
if (!digitalRead(ENCODER_BTN))
{
delay(20);
if (!digitalRead(ENCODER_BTN))
{
while (!digitalRead(ENCODER_BTN));
switch (radix)
{
case 1:
radix = 10;
break;
case 10:
radix = 100;
break;
case 100:
radix = 1000;
break;
case 1000:
radix = 10000;
break;
case 10000:
radix = 100000;
break;
case 100000:
radix = 1000000;
break;
case 1000000:
radix = 1;
break;
}
display_radix();
}
}
}
//**********************************************************************************************
//* New read buttons function with debouncing and reset radix
//***************************************************************
void read_buttons()
{
// This includes a test ruitine to demonstrate provision of two actions for each button
// Action selected depends on period of button press
if (!digitalRead(INCR_UP))
{
delay(20);
if (!digitalRead(INCR_UP))
{
unsigned long t = millis();
while (!digitalRead(INCR_UP));
if((millis() - t) < 2000){
if(radix < 1000000) radix = radix * 10;
}
else
{
lcd.setCursor(0, 0);
lcd.print("#");
}
display_radix();
}
}
if (!digitalRead(INCR_DWN))
{
delay(20);
if (!digitalRead(INCR_DWN))
{
unsigned long t = millis();
while (!digitalRead(INCR_DWN));
if((millis() - t) < 2000){
if(radix > 1) radix = radix / 10;
}
else
{
lcd.setCursor(0, 0);
lcd.print(" ");
}
display_radix();
}
}
}
//**********************************************************************************************
//* Display frequency
//*******************
// This is a complete re-write of the original function
// It is necessary to produce a string version of the 'freq' variable. The resulting string length will
// depend on frequency, but for simplicity a fixed length string is needed, so the process is not simple, and essentially comprises:
// 1. using sprinf to generate a string version of 'freq' as buffer1
// 2. reverse string in buffer1 and add zero characters to the end of this string to produce a defined string length
// 3. build new string as buffer2 inserting '.' characters into string to separate Hz, kHz, and MHz
// 4. reverse the completed string ready to send to LCD display
// Somewhat complicated, but this ensures that all frequencies from a few kHz to over 100MHz will be displayed correctly
//*************************
void display_frequency()
{
char buffer1 [15];
char buffer2 [15];
int l = 0, m = 0, n = 0;
//copy 'Signal_frequency' into a string equivalent as buffer1
sprintf(buffer1, "%lu", Signal_frequency);
//reverse character sequence of buffer1
reverseString(buffer1);
//add zero chatarters to produce string of defined length
while (strlen(buffer1) < 7) strcat(buffer1, "0");
//now need to build string as buffer2 to include '.' markers to separate MHz, kHz, and Hz
l = strlen(buffer1);
m = 0;
for (n = 0; n <= l; n++) {
buffer2[n + m] = buffer1[n];
if (n == 2 || n == 5) {
m++;
buffer2[n + m] = '.';
}
}
//add string terminater to buffer2 array (normal C practice needed for array to be recognised as a string variable)
buffer2[n + m] = '\0';
//reverse buffer2 string to "normal" appearance
reverseString(buffer2);
//build another string as buffer1 adding required number of spaces to front of string to produce fixed length
//then add buffer2 to this new buffer1
//this is to ensure that final display will be shown at correct position on LCD
l = 12 - strlen(buffer2);
strcpy(buffer1, "");
for (n = 0; n < l - 1; n++) {
strcat(buffer1, " ");
}
strcat(buffer1, buffer2);
//print formatted frequency value to display
#ifdef display_20x4
lcd.setCursor(3, 1);
lcd.print(buffer1);
lcd.setCursor(14, 1);
lcd.print(" Hz");
#else
lcd.setCursor(1, 0);
lcd.print(buffer1);
lcd.setCursor(12, 0);
lcd.print(" Hz");
#endif
}
//**********************************************************************************************
//* Displays the frequency change step (radix)
//********************************************
void display_radix()
{
#ifdef display_20x4
lcd.setCursor(3,2); lcd.print("incr:");
lcd.setCursor(9, 2);
#else
lcd.setCursor(2,1);lcd.print("incr:");
lcd.setCursor(7, 1);
#endif
switch (radix)
{
case 1:
lcd.print(" +/-1");
break;
case 10:
lcd.print(" +/-10");
break;
case 100:
lcd.print(" +/-100");
break;
case 1000:
lcd.print(" +/-1k");
break;
case 10000:
lcd.print(" +/-10k");
break;
case 100000:
//lcd.setCursor(10, 1);
lcd.print("+/-100k");
break;
case 1000000:
lcd.print(" +/-1M"); //1MHz increments
break;
}
lcd.print("Hz");
}
//**********************************************************************************************
//* Reverse a string
//******************
// Taken from article by Mihalis Soukalos, Linux User magazine
// C pointer code is not the easiest to understand, but it is fast -- K. Hough
//
// This function is used by the display_frequency() function
//*********************************************************
void reverseString(char s[]) {
int len = strlen(s);
char *p = &s[len - 1];
char temp;
int i;
for (i = 0; i < len / 2; i++) {
temp = s[i];
s[i] = *p;
*p = temp;
p--;
}
}
//**********************************************************************************************
void setup()
{
boolean sig_gen_flag;
// can't use nested #ifdef statements, so need to set a flag
#ifdef Signal_Generator
sig_gen_flag = true;
#else
sig_gen_flag = false;
#endif
#ifdef display_20x4
lcd.begin(20, 4); lcd.clear();
#else
lcd.begin(16, 2); lcd.clear();
#endif
if (sig_gen_flag == true){
lcd.setCursor(0, 0); lcd.print("Sig Gen Mode");
delay(2000);
lcd.clear();
}
// Initialize LCD and show identifying title page
#ifdef display_20x4
int l = (20 - strlen(program_name))/2;
lcd.setCursor(l, 0);
lcd.print(program_name);
lcd.setCursor(7, 1); lcd.print("v"); lcd.print(program_version);
lcd.setCursor(0, 2); lcd.print("For Arduino + Si5351");
lcd.setCursor(15, 3); lcd.print("M0KOH");
//delay to show title page
delay(3000);
#else
int l = (16 - strlen(program_name))/2;
lcd.setCursor(l, 0); lcd.print(program_name);
lcd.setCursor(0, 1); lcd.print("v"); lcd.print(program_version);
lcd.setCursor(11, 1); lcd.print("M0KOH");
//delay to show title page
delay(2000);
#endif
//clear line ready for usage
#ifdef display_20x4
if(sig_gen_flag == true){lcd.setCursor(0,0); lcd.print(" Signal Generator ");}
lcd.setCursor(0, 2); lcd.print(" ");
#else
lcd.setCursor(0, 1); lcd.print(" ");
#endif
Wire.begin();
//apply frequency correction factor to si5351 -- this is in parts per billion -- refer si5351.ccp
//see notes above for details
si5351.set_correction(f_calibration_correction);
//initialize the Si5351
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0); //If you're using a 27Mhz crystal, put in 27000000 instead of 0
//0 is the default crystal frequency of 25Mhz.
si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
#ifdef Signal_Generator
//ensure that CLK2 is not running
si5351.set_clock_pwr(SI5351_CLK2, 0);
si5351.set_freq((Start_frequency * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0);
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_6MA);
#endif
#ifdef BITX20
//enable CLK0 and set VFO
si5351.set_clock_pwr(SI5351_CLK0, 1);
si5351.set_freq(((Start_frequency - BFO_freq) * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0);
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_6MA);
//enable CLK2 and set BFO
si5351.set_clock_pwr(SI5351_CLK2, 1);
si5351.set_freq( BFO_freq * SI5351_FREQ_MULT, 0, SI5351_CLK2);
si5351.drive_strength(SI5351_CLK2, SI5351_DRIVE_6MA);
#endif
#ifdef BITX40
//enable CLK0 and set VFO
si5351.set_clock_pwr(SI5351_CLK0, 1);
si5351.set_freq(((Start_frequency + BFO_freq) * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0);
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_6MA);
//enable CLK2 and set BFO
si5351.set_clock_pwr(SI5351_CLK2, 1);
si5351.set_freq( BFO_freq * SI5351_FREQ_MULT, 0, SI5351_CLK2);
si5351.drive_strength(SI5351_CLK2, SI5351_DRIVE_6MA);
#endif
//enable internal pull-up resistors on the following I/O lines
pinMode(ENCODER_BTN, INPUT_PULLUP);
pinMode(INCR_UP, INPUT_PULLUP);
pinMode(INCR_DWN, INPUT_PULLUP);
//enable interrupt for the encoder
PCICR |= (1 << PCIE2);
PCMSK2 |= (1 << PCINT18) | (1 << PCINT19);
sei();
//update frequency displayed on LCD
display_frequency();
//update radix/frequency increment setting on LCD
display_radix();
//this line causes function 'loop()' to update correctly without having to first operate the encoder
changed_f = true;
}
//**********************************************************************************************
void loop()
{
//if selected frequency has changed, update CLK0 and LCD display
if (changed_f) {
display_frequency();
#ifdef Signal_Generator
si5351.set_freq((Signal_frequency * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0);
#endif
#ifdef BITX20
si5351.set_freq(((Signal_frequency - BFO_freq) * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0);
#endif
#ifdef BITX40
si5351.set_freq(((Signal_frequency + BFO_freq) * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0);
#endif
changed_f = 0;
}
//check for button press and update the radix/frequency increments as 1Hz, 10Hz, 100Hz, 1kHz, 10kHz, 100kHz, or 1MHz
get_button();
//new read buttons function
read_buttons();
}
//**********************************************************************************************