-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults_analysis.py
330 lines (288 loc) · 13.6 KB
/
results_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import datetime
import os
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
import wandb
from torch import optim, nn, utils, Tensor
import pytorch_lightning as pl
from collections import Counter,deque
import numpy as np
from torch.utils.data import TensorDataset, DataLoader
from pytorch_lightning.loggers import WandbLogger
import glob
import pandas as pd
from os import listdir
from os.path import isfile, join
import matplotlib.pyplot as plt
import re
#Model classes
class SequenceModule(nn.Module):
def __init__(self, in_dim, out_dim, total_dim, hidden_dim, num_layers, warmup_length):
super().__init__()
self.num_layers = 2
self.hidden_dim = hidden_dim
self.in_dim = in_dim
self.out_dim = out_dim
self.warmup_length = warmup_length
self.lstm_warmup = nn.LSTM(total_dim,
hidden_size=hidden_dim,
num_layers=num_layers,
batch_first=True,
# dropout=0.2
)
self.lstm = nn.LSTM(in_dim,
hidden_size=hidden_dim,
num_layers=num_layers,
batch_first=True,
# dropout=0.2
)
self.proj = nn.Linear(hidden_dim, out_dim)
def forward(self, x):
# batch, length, dim
_, (h0, c0) = self.lstm_warmup(x[:, :self.warmup_length])
output = self.lstm(x[:, self.warmup_length:, :self.in_dim], (h0, c0))[0]
return self.proj(output)
class TrainInvariantCoolEta(pl.LightningModule):
def __init__(self,
in_dim,
out_dim,
total_dim,
num_domains,
f_hidden_dim,
g_hidden_dim,
f_num_layers,
g_num_layers,
warmup_length
):
super().__init__()
self.warmup_length = warmup_length
self.invariant = SequenceModule(in_dim=in_dim,
out_dim=f_hidden_dim,
total_dim=total_dim,
hidden_dim=f_hidden_dim,
num_layers=f_num_layers,
warmup_length=warmup_length)
self.test_variant = SequenceModule(in_dim=f_hidden_dim,
out_dim=out_dim,
total_dim=f_hidden_dim,
hidden_dim=g_hidden_dim,
num_layers=g_num_layers,
warmup_length=warmup_length)
self.train_variants = nn.ModuleList([SequenceModule(in_dim=f_hidden_dim,
out_dim=out_dim,
total_dim=f_hidden_dim,
hidden_dim=g_hidden_dim,
num_layers=g_num_layers,
warmup_length=warmup_length) for i in range(num_domains)])
self.num_domains = num_domains
self.in_dim = in_dim
self.loss = nn.MSELoss(reduction="none")
def forward(self, x):
out_warmup_temp, (hi0, ci0) = self.invariant.lstm_warmup(x[:, :self.warmup_length])
_, (hv0, cv0) = self.test_variant.lstm_warmup(out_warmup_temp)
out_pred_temp = self.invariant.lstm(x[:, self.warmup_length:, :self.in_dim], (hi0, ci0))[0]
return self.test_variant.proj(
self.test_variant.lstm(out_pred_temp, (hv0, cv0))[0])
def training_step(self, batch, batch_idx):
# training_step defines the train loop.
# it is independent of forward
loss = 0
batch = batch[0]
value, mask = get_actual(batch, warmup_length=self.warmup_length, in_dim=in_dim)
if mask.sum() != 0:
loss += (mask * self.loss(self(batch), value)).sum() / mask.sum()
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
loss = 0
batch = batch[0]
value, mask = get_actual(batch, warmup_length=self.warmup_length, in_dim=in_dim)
if mask.sum() != 0:
loss += (mask * self.loss(self(batch), value)).sum() / mask.sum()
loss = loss
self.log("val_loss", loss)
# def on_fit_end(self):
def configure_optimizers(self):
# check if all there
optimizer = optim.Adam(self.parameters(), lr=1e-3)
return optimizer
def get_latest_file():
list_of_files = glob.glob(os.path.dirname(__file__) + '/DA Thesis/**/*.ckpt',
recursive=True) # * means all if need specific format then *.csv
latest_file = max(list_of_files, key=os.path.getctime)
return latest_file
def get_actual(data, warmup_length=0, in_dim=5):
predict = data[:, warmup_length:, in_dim:]
return predict[..., 1::2], predict[..., ::2]
def numpy_it(t):
return t.detach().cpu().numpy()
#Undo data processing transformations
def rescale(result):
return (10**(numpy_it(result)*all_logged_std+all_logged_mean)-0.1)\
**2+val_cols_neg_min
#Mask missing and normalize
def mask_norm(tensor, mask):
non_inf=tensor!=-np.inf
inf=tensor==-np.inf
return (np.nansum(tensor* mask.sum(axis=1, keepdims=True)*non_inf,axis=0)
/(mask.sum(axis=(0,1)))-inf.sum(axis=0).squeeze()).squeeze()
#Calculating Metrics
def error_metrics(model, batch):
#batch, length, feat
real, mask= get_actual(batch, warmup_length=ex_warmup_length)
pred=model(batch)
mask=numpy_it(mask)
real_values, pred_values=rescale(real), rescale(pred)
mean_real = (real_values * mask).sum(axis=1, keepdims=True) / mask.sum(axis=1, keepdims=True)
mean_pred = (pred_values * mask).sum(axis=1, keepdims=True) / mask.sum(axis=1, keepdims=True)
std_real=np.sqrt(((real_values - mean_real) ** 2 * mask).sum(axis=1,keepdims=True)
/ mask.sum(axis=1, keepdims=True))
std_pred = np.sqrt(((pred_values - mean_real) ** 2 * mask).sum(axis=1, keepdims=True)
/ mask.sum(axis=1, keepdims=True))
# numerator = ((real_values - pred_values) ** 2 * mask).sum()
# denominator = ((real_values - mean_real) ** 2 * mask).sum()
numerator_sep = ((real_values - pred_values) ** 2*mask).sum(axis=1, keepdims=True)
denominator_sep = ((real_values - mean_real) ** 2*mask).sum(axis=1, keepdims=True)
# nse = 1 - (numerator / denominator)
nse_sep_vals=mask_norm(1 - (numerator_sep / denominator_sep), mask)
nse_sep={feature+" nse": nse_sep_vals[i] for i,feature in enumerate(features)}
# mse = numerator/ mask.sum()
mse_sep_vals=mask_norm(numerator_sep,mask)
mse_sep={feature+" mse": mse_sep_vals[i] for i,feature in enumerate(features)}
# numerator = (((pred_values - mean_pred) * (real_values - mean_real)) * mask).sum()
# denominator = np.sqrt((((pred_values - mean_pred) ** 2).sum() * ((real_values - mean_real) ** 2).sum()))
numerator_sep = (((pred_values - mean_pred) * (real_values - mean_real)) * mask).sum(axis=1, keepdims=True)
denominator_sep = np.sqrt(((pred_values - mean_pred) ** 2*mask).sum(axis=1, keepdims=True) *
((real_values - mean_real) ** 2*mask).sum(axis=1, keepdims=True))
#pcc dependent on the whole predict
# pcc = numerator / denominator
pcc_sep_sep = (numerator_sep / denominator_sep)
pcc_sep_vals=mask_norm(pcc_sep_sep, mask)
pcc_sep={feature+" pcc": pcc_sep_vals[i] for i,feature in enumerate(features)}
kge_sep_sep=(1-np.sqrt((pcc_sep_sep-1)**2+(mean_pred/mean_real-1)**2+(std_pred/std_real-1)**2))
kge_sep_vals=mask_norm(kge_sep_sep, mask)
kge_sep={feature+" kge": kge_sep_vals[i] for i,feature in enumerate(features)}
# kge=(kge_vals * mask.sum(axis=(0,1))/mask.sum()).sum()
return nse_sep|mse_sep|pcc_sep|kge_sep
def numpy_it(t):
return t.detach().cpu().numpy()
def plot(graphs, mask=None, batch_num=0, feature=0, label=[]):
for i,graph in enumerate(graphs):
if type(graph).__module__ != np.__name__:
graph=numpy_it(graph)
plt.plot(graph[batch_num, :, feature], label=label[i])
if mask is not None:
plt.vlines(numpy_it(mask[batch_num, :, feature]).nonzero(),
ymin=plt.ylim()[0],
ymax=plt.ylim()[1],
colors='r', linewidth=0.5)
# plt.title("f32,2 g8,2 No Pretrain TSS")
plt.title(f"f32,2 g8,2 {label[1]} TSS")
plt.legend()
plt.xlabel("Timestep")
plt.ylabel("TSS")
# plt.savefig("f32,2 g8,2 No Pretrain TSS.png")
# plt.savefig("f32,2 g8,2 Default TSS.png")
plt.show()
def mse(a,b):
return ((a-b)**2).mean()
if __name__=="__main__":
model_folder=os.path.join("Download","models")
folder=os.path.join(model_folder, "cool eta logvariant")
to_use_path = "Data/to use/log"
d = torch.load("/home/cbcheung/Work/Thesis/Code/Real/Data/cleaned/log/global_stats")
all_logged_mean, all_logged_std, val_cols_neg_min= d['all_logged_mean'].values[1:],\
d['all_logged_std'].values[1:],\
d['val_cols_neg_min'].values[1:]
# key="c20d41ecf28a9b0efa2c5acb361828d1319bc62e"
f_hidden_dim = 32
g_hidden_dim = 8
f_num_layers = 2
g_num_layers = 2
max_epoch = 500
# window length / drop columnsnot used
in_dim = 5
out_dim = 9
total_dim = 23 # in_dim (time and flow missing/not) + out_dim*2 (missing/not)
results=None
features=d['all_logged_mean'].index[1:]
all_errors_dict={"name": [], "id": [], "f_hidden_dim": [],
"f_num_layers": [], "g_hidden_dim": [],
"g_num_layers": [], "res_decrease": [], "freeze": [],
}|\
{feature+" nse":[] for feature in features} | \
{feature + " mse": [] for feature in features} |\
{feature+" pcc":[] for feature in features}|\
{feature + " kge": [] for feature in features}
all_errors= pd.DataFrame(all_errors_dict)
result = torch.load(os.path.join(to_use_path, f"res_decrease {0.05}", "Lost"))
train_loader = result["train_dataloader"]
val_loader = result["val_dataloader"]
ex_predict_length = result["info"]["ex_predict_length"]
ex_warmup_length = result["info"]["ex_warmup_length"]
window_distance = result["info"]["window_distance"]
ex_window_length = ex_warmup_length + ex_predict_length
np.random.seed(0)
torch.use_deterministic_algorithms(True)
torch.manual_seed(0)
model1 = TrainInvariantCoolEta.load_from_checkpoint(
"f32,2 g8,2 005.ckpt",
in_dim=in_dim,
out_dim=out_dim,
total_dim=total_dim,
num_domains=7,
f_hidden_dim=f_hidden_dim,
g_hidden_dim=g_hidden_dim,
f_num_layers=f_num_layers,
g_num_layers=g_num_layers,
warmup_length=ex_warmup_length)
model2 = TrainInvariantCoolEta.load_from_checkpoint(
"f32,2 g8,2 005 no pretrain.ckpt",
in_dim=in_dim,
out_dim=out_dim,
total_dim=total_dim,
num_domains=1,
f_hidden_dim=f_hidden_dim,
g_hidden_dim=g_hidden_dim,
f_num_layers=f_num_layers,
g_num_layers=g_num_layers,
warmup_length=ex_warmup_length)
model3 = TrainInvariantCoolEta.load_from_checkpoint(
"f32,2 g8,2 005 no pretrain both.ckpt",
in_dim=in_dim,
out_dim=out_dim,
total_dim=total_dim,
num_domains=1,
f_hidden_dim=f_hidden_dim,
g_hidden_dim=g_hidden_dim,
f_num_layers=f_num_layers,
g_num_layers=g_num_layers,
warmup_length=ex_warmup_length)
# all_tensors = val_loader.dataset.tensors[0]
for batch in val_loader:
batch=batch[0]
real, mask = get_actual(batch, warmup_length=ex_warmup_length)
pred1 = model1(batch)
pred2 = model2(batch)
pred3 = model3(batch)
real_values, pred_values1, pred_values2, pred_values3= rescale(real), rescale(pred1), rescale(pred2),rescale(pred3),
print(mse(real_values[0, :, 0], pred_values1[0, :, 0])/np.mean(real_values[0, :, 0]))
print(mse(real_values[0, :, 0], pred_values2[0, :, 0])/np.mean(real_values[0, :, 0]))
print(mse(real_values[0, :, 0], pred_values3[0, :, 0])/np.mean(real_values[0, :, 0]))
print("__________")
# plot([real,pred1,pred2,pred3], label=["True", "Default", "No Pretrain Target Only", "No Pretrain Source+Target"])
plot([real_values,pred_values1], label=["True", "Default",])
plot([real_values,pred_values2], label=["True", "No Pretrain Target Only"])
plot([real_values,pred_values3], label=["True", "No Pretrain Source+Target"])
#Create csv
# seed=2
# df=pd.read_csv(f"Download/run data/metrics{seed}.csv").drop("Unnamed: 0", axis=1)
# parts = df['name'].map(lambda x:x.split(' '))
# df["freeze"]=parts.map(lambda x:x[5].replace('freeze','').replace('.ckpt','')=="True")
# # df['id'] = parts.map(lambda x:x[0])
# # f_parts = parts.map(lambda x:x[1].replace("f", ''))
# # df['f_hidden_dim'], df['f_num_layers'] = [f_parts.map(lambda x: int(x.split(",")[i])) for i in range(2)]
# g_parts = parts.map(lambda x: x[2].replace("g", ''))
# df['g_hidden_dim'], df['g_num_layers'] = [g_parts.map(lambda x: int(x.split(",")[i])) for i in range(2)]
# # df['res_decrease'] = parts.map(lambda x:x[4])
# df.to_csv(f"Download/run data/metrics{seed}.csv")