-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_ullava_core.py
194 lines (161 loc) · 7.38 KB
/
train_ullava_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
Copyright 2023 OPPO
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import torch
import argparse
import transformers
from typing import Optional
from tasks import setup_task
from utils.tools import datetime_print
from utils.config_builder import Config
from dataclasses import dataclass, field
from models import UllavaCoreForCausalLM, UllavaCoreConfig
from transformers import Trainer, LlamaTokenizer, CLIPVisionConfig, CLIPVisionModel, AutoConfig
from models.tools import smart_special_token_and_embedding_resize, multi_modal_resize_token_embedding
from models import DEFAULT_BOS_TOKEN, DEFAULT_EOS_TOKEN, DEFAULT_UNK_TOKEN, DEFAULT_PAD_TOKEN, \
DEFAULT_IMG_PATCH_TOKEN, DEFAULT_IMG_START_TOKEN, DEFAULT_IMG_END_TOKEN, DEFAULT_VID_PATCH_TOKEN,\
DEFAULT_VID_START_TOKEN, DEFAULT_VID_END_TOKEN
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
remove_unused_columns: bool = field(default=False)
model_max_length: int = field(
default=512,
metadata={
"help":
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
disable_tqdm: bool = field(default=False)
report_to: str = field(default='none')
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def train(config):
model_args, dataset_args, eval_dataset_args, training_args, task_args, processor_args = config.assign_config()
train_parser = transformers.HfArgumentParser(TrainingArguments)
training_args = train_parser.parse_dict(training_args)[0]
datetime_print('Loading Tokenizer')
tokenizer = LlamaTokenizer.from_pretrained(
model_args.llm_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
base_config = AutoConfig.from_pretrained(model_args.llm_path)
if base_config.model_type == 'llama':
# for llama/llama2/vucuna
vision_config = CLIPVisionConfig.from_pretrained(model_args.vision_encoder)
model_config = UllavaCoreConfig(vision_config=vision_config.to_dict(),
vision_hidden_layer=model_args.vision_hidden_layer,
projector_from_scratch=model_args.projector_from_scratch,
mm_token_ids=None,
**base_config.to_dict())
elif base_config.model_type == 'ullava_core':
base_config.projector_from_scratch = model_args.projector_from_scratch
model_config = UllavaCoreConfig(**base_config.to_dict())
else:
print('Unknown model type')
raise NotImplementedError
dtype = 'fp16' if training_args.fp16 else 'bf16' if training_args.bf16 else 'fp32'
torch_dtype = torch.float16 if dtype == 'fp16' else torch.bfloat16 if dtype == 'bf16' else torch.float32
datetime_print('Initializing uLLaVA Core')
model = UllavaCoreForCausalLM.from_pretrained(
model_args.llm_path,
config=model_config,
torch_dtype=torch_dtype,
cache_dir=training_args.cache_dir
)
# `use_cache=True` is incompatible with gradient checkpointing
model.config.use_cache = False
model_vocab_size = model.get_output_embeddings().weight.size(0)
if tokenizer.pad_token is None:
smart_special_token_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
# add special tokens, can be disable
tokenizer.add_special_tokens({
"eos_token": DEFAULT_EOS_TOKEN,
"bos_token": DEFAULT_BOS_TOKEN,
"unk_token": DEFAULT_UNK_TOKEN,
})
if base_config.model_type == 'llama':
# LLaMA model, addvisual tokens, load vision model
datetime_print('LLaMA model, Loading CLIP Vision Encoder')
model.vision_encoder = CLIPVisionModel.from_pretrained(
model_args.vision_encoder,
torch_dtype=torch_dtype,
cache_dir=training_args.cache_dir,
)
mm_tokens = {
'IMG_PATCH': DEFAULT_IMG_PATCH_TOKEN, 'VID_PATCH': DEFAULT_VID_PATCH_TOKEN,
'IMG_START': DEFAULT_IMG_START_TOKEN, 'IMG_END': DEFAULT_IMG_END_TOKEN,
'VID_START': DEFAULT_VID_START_TOKEN, 'VID_END': DEFAULT_VID_END_TOKEN
}
multi_modal_resize_token_embedding(
mm_tokens=mm_tokens,
tokenizer=tokenizer,
model=model
)
model.init_mm_tokens(tokenizer, mm_tokens)
num_new_tokens = len(tokenizer) - model_vocab_size
datetime_print('Number of newly added tokens: {0}'.format(num_new_tokens))
if model_args.projector_from_scratch:
datetime_print('Pre-training stage')
# According to LLaVA, freeze all except projector and input embeddings during pre-training
model.requires_grad_(False)
model.vision_encoder.requires_grad_(False)
for p in model.vision_projector.parameters():
p.requires_grad = True
for p in model.get_input_embeddings().parameters():
p.requires_grad = True
for p in model.get_output_embeddings().parameters():
p.requires_grad = False
else:
datetime_print('Fine-tuning Stage')
model.vision_encoder.requires_grad_(False)
task = setup_task(task_args)
processor_dict = task.build_processors(processor_args)
data_collator = task.build_collator(tokenizer.pad_token_id)
train_dataset = task.build_datasets(dataset_args, tokenizer, processor_dict, conv_type=model_args.conv_type)
trainer = Trainer(model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator)
trainer.train()
trainer.save_state()
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Training")
parser.add_argument(
"--cfg_path",
default='./configs/train/ullava_core_stage1.yaml',
help="path to configuration file.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
cfg = Config(parser.parse_args().cfg_path)
cfg.pretty_print()
train(cfg)