-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmcts_agent.py
1005 lines (881 loc) · 49 KB
/
mcts_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
@file: MCTSAgent.py
Created on 10.10.18
@project: crazy_ara_refactor
@author: queensgambit
The MCTSAgent runs playouts/simulations in the search tree and updates the node statistics.
The final move is chosen according to the visit count of each direct child node.
One playout is defined as expanding one new node in the tree.
In the case of chess this means evaluating a new board position.
If the evaluation for one move takes too long on your hardware you can decrease the value for:
nb_playouts_empty_pockets and nb_playouts_filled_pockets.
For more details and the mathematical equations please take a look at src/domain/agent/README.md as well as the
official DeepMind-papers.
"""
import collections
import cProfile
import io
import logging
import math
import pstats
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from multiprocessing import Pipe
from time import time
import numpy as np
from DeepCrazyhouse.src.domain.agent.neural_net_api import NeuralNetAPI
from DeepCrazyhouse.src.domain.abstract_cls.abs_agent import AbsAgent
from DeepCrazyhouse.src.domain.agent.player.util.net_pred_service import NetPredService
from DeepCrazyhouse.src.domain.agent.player.util.node import Node
from DeepCrazyhouse.src.domain.variants.constants import BOARD_HEIGHT, BOARD_WIDTH, NB_CHANNELS_FULL, NB_LABELS
from DeepCrazyhouse.src.domain.variants.game_state import GameState
from DeepCrazyhouse.src.domain.variants.output_representation import get_probs_of_move_list, value_to_centipawn
from DeepCrazyhouse.src.domain.util import get_check_move_mask
DTYPE = np.float
def profile(fnc):
"""
A decorator that uses cProfile to profile a function
:param fnc: Function handle to decorate.
:return:
"""
def inner(*args, **kwargs):
profiler = cProfile.Profile()
profiler.enable()
retval = fnc(*args, **kwargs)
profiler.disable()
string_buffer = io.StringIO()
profile_stats = pstats.Stats(profiler, stream=string_buffer).sort_stats("cumulative")
profile_stats.print_stats()
print(string_buffer.getvalue())
return retval
return inner
class MCTSAgent(AbsAgent): # Too many instance attributes (31/7)
"""This class runs simulations in the tree and updates the node statistics smartly"""
def __init__(
self,
nets: [NeuralNetAPI],
threads=16,
batch_size=8,
playouts_empty_pockets=256,
playouts_filled_pockets=512,
cpuct=1,
dirichlet_epsilon=0.25,
dirichlet_alpha=0.2,
max_search_depth=15,
temperature=0.0,
temperature_moves=4,
q_value_weight=0.0,
virtual_loss=3,
verbose=True,
min_movetime=100,
enhance_checks=False,
enhance_captures=False,
use_future_q_values=False,
use_pruning=True,
use_time_management=True,
use_transposition_table=True,
opening_guard_moves=0,
u_init_divisor=1,
): # Too many arguments (21/5) - Too many local variables (29/15)
"""
Constructor of the MCTSAgent.
:param nets: NeuralNetAPI handle which is used to communicate with the neural network
:param threads: Number of threads to evaluate the nodes in parallel
:param batch_size: Fixed batch_size which is used in the network prediction service.
The batch_size coordinates the prediction flow for the network-prediction service.
Using a mxnet executor object which uses a fixed batch_size is faster than accepting
arbitrary batch_sizes.
:param playouts_empty_pockets: Number of playouts/simulations which will be done if the Crazyhouse-Pockets of
both players are empty.
:param playouts_filled_pockets: Number of playouts/simulations which will be done if at least one player has a
piece in their pocket. The number of legal-moves is higher when drop
moves are available.
:param cpuct: CPUCT-value which weights the balance between the policy/action and value term.
The play style depends strongly on this value.
:param dirichlet_epsilon: Weigh value for the dirichlet noise. If 0. -> no noise. If 1. -> complete noise.
The dirichlet noise ensures that unlikely nodes can be explored
:param dirichlet_alpha: Alpha parameter of the dirichlet noise which is applied to the prior policy for the
current root node: https://en.wikipedia.org/wiki/Dirichlet_process
:param max_search_depth: Maximum search depth to reach in the current search tree. If the depth has been reached
the evaluation stops.
:param temperature: The temperature parameters is an exponential scaling factor which is applied to the
posterior policy. Afterwards the chosen move to play is sampled from this policy.
Range: [0.,1.]:
If 0. -> Deterministic policy. The move is chosen with the highest probability
If 1. -> Pure random sampling policy. The move is sampled from the posterior without any
scaling being applied.
:param temperature_moves: Number of full moves in which the temperature parameter will be applied.
Otherwise the temperature will be set to 0 for deterministic play.
:param: q_value_weight: Float indicating how the number of visits and the q-values should be mixed.
Expected to be in range [0.,1.]
:param virtual_loss: An artificial loss term which is applied to each node which is currently being visited.
This term make it look like that the current visit of this node led to +X losses where X
is the virtual loss. This prevents that every thread will evaluate the same node.
:param verbose: Defines weather to print out info messages for the current calculated line
:param min_movetime: Minimum time in milliseconds to search for the best move
:param enhance_checks: Decide whether to increase the probability for checking moves below 10% by 10%.
This lowers the chance of missing forced mates and possible direct mate threats.
Currently it is only applied to the root node and its direct child node due to runtime
costs.
:param enhance_captures: Decide whether to increase the probability for capture moves below 10% by 5%.
This lowers the chance of missing captures.
Currently it is only applied to the root node and its direct child node due to runtime
costs.
:param use_time_management: If set to true the mcts will spent less time on "obvious" moves an allocate a time
buffer for more critical moves.
:param use_transposition_table: Stores a transposition table for all nodes to modify the tree structure for
transpositions. Enables reaching higher depth with same number of nodes.
:param opening_guard_moves: Number of moves for which the exploration is limited
(only recommended for . Moves which have a prior probability < 5%)
are clipped and not evaluated.
If 0 no clipping will be done in the
opening.
:param use_future_q_values: If set True, the q-values of the most visited child nodes will be updated by taking
the minimum of both the current and future q-values.
:param u_init_divisor: Division factor for calculating the u-value in select_node(). Default value is 1.0 to
avoid division by 0. Values smaller 1.0 increases the chance of exploring each node at
least once. This value must be greater 0.
"""
super().__init__(temperature, temperature_moves, verbose)
self.root_node = None # the root node contains all references to its child nodes
self.max_depth = 10 # stores the links for all nodes
self.node_lookup = {} # stores a lookup for all possible board states after the opposite player played its move
self.nets = nets # get the network reference
self.virtual_loss = virtual_loss
if cpuct < 0.01 or cpuct > 10:
raise Exception(
"You might have confused centi-cpuct with cpuct."
"The requested cpuct is beyond reasonable range: cpuct should be around > 0.01 and < 10."
)
self.cpuct = cpuct
self.max_search_depth = max_search_depth
self.threads = threads
# check for possible issues when giving an illegal batch_size and number of threads combination
if batch_size > threads:
raise Exception(
"info string The given batch_size %d is higher than the number of threads %d. "
"The maximum legal batch_size is the same as the number of threads (here: %d) "
% (batch_size, threads, threads)
)
if threads % batch_size != 0:
raise Exception(
"You requested an illegal combination of threads %d and batch_size %d."
" The batch_size must be a divisor of the number of threads" % (threads, batch_size)
)
self.batch_size = batch_size
self.my_pipe_endings = [] # create pip endings for itself and the prediction service
pip_endings_external = []
for i in range(threads):
ending1, ending2 = Pipe()
self.my_pipe_endings.append(ending1)
pip_endings_external.append(ending2)
self.nb_playouts_empty_pockets = playouts_empty_pockets
self.nb_playouts_filled_pockets = playouts_filled_pockets
self.dirichlet_alpha = dirichlet_alpha
self.dirichlet_epsilon = dirichlet_epsilon
self.movetime_ms = min_movetime
self.q_value_weight = q_value_weight
self.enhance_checks = enhance_checks
self.enhance_captures = enhance_captures
# temporary variables
# time counter - n° of nodes stored to measure the nps - priority policy for the root node
self.t_start_eval = self.total_nodes_pre_search = self.root_node_prior_policy = None
# allocate shared memory for communicating with the network prediction service
self.batch_state_planes = np.zeros((self.threads, NB_CHANNELS_FULL, BOARD_HEIGHT, BOARD_WIDTH), DTYPE)
self.batch_value_results = np.zeros(self.threads, DTYPE)
self.batch_policy_results = np.zeros((self.threads, NB_LABELS), DTYPE)
# initialize the NetworkPredictionService and give the pointers to the shared memory
self.net_pred_services = []
nb_pipes = self.threads // len(nets)
for i, net in enumerate(nets): # create multiple gpu-access points
net_pred_service = NetPredService(
pip_endings_external[i * nb_pipes : (i + 1) * nb_pipes],
net,
batch_size,
self.batch_state_planes,
self.batch_value_results,
self.batch_policy_results,
)
self.net_pred_services.append(net_pred_service)
self.transposition_table = collections.Counter()
self.send_batches = False
self.use_pruning = use_pruning
self.time_buffer_ms = 0
self.use_time_management = use_time_management
if self.use_pruning: # pruning is incompatible with transposition usage
self.use_transposition_table = False
else:
self.use_transposition_table = use_transposition_table
self.opening_guard_moves = opening_guard_moves
self.use_future_q_values = use_future_q_values
if u_init_divisor <= 0 or u_init_divisor > 1:
raise Exception("The value for the u-value initial divisor must be in (0,1]")
self.u_init_divisor = u_init_divisor
def evaluate_board_state(self, state: GameState): # Probably is better to be refactored
"""
Analyzes the current board state. This is the main method which get called by the uci interface or analysis
request.
:param state: Actual game state to evaluate for the MCTS
:return:
"""
# Too many local variables (28/15) - Too many branches (25/12) - Too many statements (75/50)
self.t_start_eval = time() # store the time at which the search started
if not self.net_pred_services[0].running: # check if the net prediction service has already been started
for net_pred_service in self.net_pred_services: # start the prediction daemon thread
net_pred_service.start()
legal_moves = state.get_legal_moves() # list of all possible legal move in the current board position
if not legal_moves: # consistency check
raise Exception("The given board state has no legal move available")
key = state.get_transposition_key() + (
state.get_fullmove_number(),
) # check first if the the current tree can be reused
if not self.use_pruning and key in self.node_lookup:
chess_board = state.get_pythonchess_board()
self.root_node = self.node_lookup[key] # if key in self.node_lookup:
if self.enhance_captures:
self._enhance_captures(chess_board, legal_moves, self.root_node.policy_prob)
# enhance checks for all direct child nodes
for child_node in self.root_node.child_nodes:
if child_node:
self._enhance_captures(child_node.board, child_node.legal_moves, child_node.policy_prob)
if self.enhance_checks:
self._enhance_checks(chess_board, legal_moves, self.root_node.policy_prob)
# enhance checks for all direct child nodes
for child_node in self.root_node.child_nodes:
if child_node:
self._enhance_checks(child_node.board, child_node.legal_moves, child_node.policy_prob)
logging.debug(
"Reuse the search tree. Number of nodes in search tree: %d",
self.root_node.nb_total_expanded_child_nodes,
)
self.total_nodes_pre_search = deepcopy(self.root_node.n_sum)
else:
logging.debug("Starting a brand new search tree...")
self.root_node = None
self.total_nodes_pre_search = 0
if len(legal_moves) == 1: # check for fast way out
max_depth_reached = 1 # if there's only a single legal move you only must go 1 depth
if self.root_node is None:
# conduct all necessary steps for fastest way out
self._expand_root_node_single_move(state, legal_moves)
# increase the move time buffer
# subtract half a second as a constant for possible delay
self.time_buffer_ms += max(self.movetime_ms - 500, 0)
else:
if self.root_node is None:
self._expand_root_node_multiple_moves(state, legal_moves) # run a single expansion on the root node
# opening guard
if state.get_fullmove_number() <= self.opening_guard_moves: # 100: #7: #10:
self.root_node.q_value[self.root_node.policy_prob < 5e-2] = -9999
# elif len(legal_moves) > 50:
# self.root_node.q_value[self.root_node.policy_prob < 1e-3] = -9999
# conduct the mcts-search based on the given settings
max_depth_reached = self._run_mcts_search(state)
t_elapsed = time() - self.t_start_eval
print("info string move overhead is %dms" % (t_elapsed * 1000 - self.movetime_ms))
# receive the policy vector based on the MCTS search
p_vec_small = self.root_node.get_mcts_policy(self.q_value_weight) # , xth_n_max=xth_n_max, is_root=True)
if self.use_future_q_values:
# use q-future value to update the q-values of direct child nodes
q_future, indices = self.get_last_q_values(min_nb_visits=5, max_depth=5) #25)
# self.root_node.q_value = 0.5 * self.root_node.q_value + 0.5 * q_future
# TODO: make this matrix vector form
if max_depth_reached >= 5:
for idx in indices:
self.root_node.q_value[idx] = min(self.root_node.q_value[idx], q_future[idx])
p_vec_small = self.root_node.get_mcts_policy(self.q_value_weight)
# if self.use_pruning is False:
self.node_lookup[key] = self.root_node # store the current root in the lookup table
best_child_idx = p_vec_small.argmax() # select the q-value according to the mcts best child value
value = self.root_node.q_value[best_child_idx]
# value = orig_q[best_child_idx]
lst_best_moves, _ = self.get_calculated_line()
str_moves = self._mv_list_to_str(lst_best_moves)
node_searched = int(self.root_node.n_sum - self.total_nodes_pre_search) # show the best calculated line
time_e = time() - self.t_start_eval # In uci the depth is given using half-moves notation also called plies
if len(legal_moves) != len(p_vec_small):
raise Exception(
"Legal move list %s with length %s is incompatible to policy vector %s"
" with shape %s for board state %s and nodes legal move list: %s"
% (legal_moves, len(legal_moves), p_vec_small, p_vec_small.shape, state, self.root_node.legal_moves)
)
# define the remaining return variables
centipawns = value_to_centipawn(value)
depth = max_depth_reached
nodes = node_searched
time_elapsed_s = time_e * 1000
# avoid division by 0
if time_e > 0.0:
nps = node_searched / time_e
else:
# return a high constant in otherwise
nps = 999999999
pv = str_moves
if self.verbose:
score = "score cp %d depth %d nodes %d time %d nps %d pv %s" % (
centipawns,
depth,
nodes,
time_elapsed_s,
nps,
pv,
)
logging.info("info string %s", score)
return value, legal_moves, p_vec_small, centipawns, depth, nodes, time_elapsed_s, nps, pv
@staticmethod
def _enhance_checks(chess_board, legal_moves, policy_prob):
"""
Increases the probability by 10% for checking moves lower than 10% in policy_prob
:param chess_board: Board state
:param legal_moves: List of legal moves in the position
:param policy_prob: Numpy probability vector for each move. Note this variable will be modified.
:return:
"""
check_mask, nb_checks = get_check_move_mask(chess_board, legal_moves)
if nb_checks > 0:
# increase chances of checking
policy_prob[np.logical_and(check_mask, policy_prob < 0.1)] += 0.1
# normalize back to 1.0
if policy_prob is not None:
policy_prob /= policy_prob.sum()
@staticmethod
def _enhance_captures(chess_board, legal_moves, policy_prob):
"""
Increases the probability by 5% for capturing moves lower than 10% in policy_prob
:param chess_board: Board state
:param legal_moves: List of legal moves in the position
:param policy_prob: Numpy probability vector for each move. Note this variable will be modified.
:return:
"""
for capture_move in chess_board.generate_legal_captures():
index = legal_moves.index(capture_move)
if policy_prob[index] < 0.04:
policy_prob[index] += 0.04
if policy_prob is not None:
policy_prob /= policy_prob.sum()
def _expand_root_node_multiple_moves(self, state, legal_moves):
"""
Checks if the current root node can be found in the look-up table.
Otherwise run a single inference of the neural network for this board state
:param state: Current game state
:param legal_moves: Available moves
:return:
"""
is_leaf = False # initialize is_leaf by default to false
[value, policy_vec] = self.nets[0].predict_single(state.get_state_planes()) # start a brand new tree
# extract a sparse policy vector with normalized probabilities
p_vec_small = get_probs_of_move_list(policy_vec, legal_moves, state.is_white_to_move())
chess_board = state.get_pythonchess_board()
if self.enhance_captures:
self._enhance_captures(chess_board, legal_moves, p_vec_small)
if self.enhance_checks:
self._enhance_checks(chess_board, legal_moves, p_vec_small)
# create a new root node
self.root_node = Node(chess_board, value, p_vec_small, legal_moves, is_leaf, clip_low_visit=False)
def _expand_root_node_single_move(self, state, legal_moves):
"""
Expands the current root in the case if there's only a single move available.
The neural network search can be omitted in this case.
:param state: Request games state
:param legal_moves: Available moves
:return:
"""
# request the value prediction for the current position
[value, _] = self.nets[0].predict_single(state.get_state_planes())
p_vec_small = np.array([1], np.float32) # we can create the move probability vector without the NN this time
# create a new root node
self.root_node = Node(state.get_pythonchess_board(), value, p_vec_small, legal_moves, clip_low_visit=False)
if self.root_node.child_nodes[0] is None: # check a child node if it doesn't exists already
state_child = deepcopy(state)
state_child.apply_move(legal_moves[0])
is_leaf = False # initialize is_leaf by default to false
# we don't need to check for is_lost() because the game is already over
if state.is_loss(): # check if the current player has won the game
value = -1
is_leaf = True
legal_moves_child = []
p_vec_small_child = None
elif state.board.uci_variant == "giveaway" and state.is_win():
# giveaway chess is a variant in which you win on your own turn
value = +1
is_leaf = True
legal_moves_child = []
p_vec_small_child = None
# check if you can claim a draw - its assumed that the draw is always claimed
elif (
self.can_claim_threefold_repetition(state.get_transposition_key(), [0])
or state.get_pythonchess_board().can_claim_fifty_moves()
):
value = 0
is_leaf = True
legal_moves_child = []
p_vec_small_child = None
else:
legal_moves_child = state_child.get_legal_moves()
# start a brand new prediction for the child
[value, policy_vec] = self.nets[0].predict_single(state_child.get_state_planes())
# extract a sparse policy vector with normalized probabilities
p_vec_small_child = get_probs_of_move_list(
policy_vec, legal_moves_child, state_child.is_white_to_move()
)
# create a new child node
child_node = Node(state.get_pythonchess_board(), value, p_vec_small_child, legal_moves_child, is_leaf)
self.root_node.child_nodes[0] = child_node # connect the child to the root
# assign the value of the root node as the q-value for the child
# here we must invert the invert the value because it's the value prediction of the next state
self.root_node.q_value[0] = -value
def _run_mcts_search(self, state):
"""
Runs a new or continues the mcts on the current search tree.
:param state: Input state given by the user
:return: max_depth_reached (int) - The longest search path length after the whole search
"""
self.node_lookup = {} # clear the look up table
self.root_node_prior_policy = deepcopy(self.root_node.policy_prob) # safe the prior policy of the root node
# apply dirichlet noise to the prior probabilities in order to ensure
# that every move can possibly be visited
self.root_node.apply_dirichlet_noise_to_prior_policy(epsilon=self.dirichlet_epsilon, alpha=self.dirichlet_alpha)
# store what depth has been reached at maximum in the current search tree
max_depth_reached = 1 # default is 1, in case only 1 move is available
futures = []
if state.are_pocket_empty(): # set the number of playouts accordingly
nb_playouts = self.nb_playouts_empty_pockets
else:
nb_playouts = self.nb_playouts_filled_pockets
t_elapsed_ms = cur_playouts = 0
old_time = time()
cpuct_init = self.cpuct
if self.use_time_management:
time_checked = time_checked_early = False
else:
time_checked = time_checked_early = True
while (
max_depth_reached < self.max_search_depth and cur_playouts < nb_playouts and t_elapsed_ms < self.movetime_ms
): # and np.abs(self.root_node.q_value.mean()) < 0.99:
# start searching
with ThreadPoolExecutor(max_workers=self.threads) as executor:
for i in range(self.threads):
# calculate the thread id based on the current playout
futures.append(
executor.submit(
self._run_single_playout, parent_node=self.root_node, pipe_id=i, depth=1, chosen_nodes=[]
)
)
cur_playouts += self.threads
time_show_info = time() - old_time
for i, future in enumerate(futures):
cur_value, cur_depth, chosen_nodes = future.result()
if cur_depth > max_depth_reached:
max_depth_reached = cur_depth
# Print the explored line of the last line for every x seconds if verbose is true
if self.verbose and time_show_info > 0.5 and i == len(futures) - 1:
mv_list = self._create_mv_list(chosen_nodes)
str_moves = self._mv_list_to_str(mv_list)
print(
"info score cp %d depth %d nodes %d pv %s"
% (value_to_centipawn(cur_value), cur_depth, self.root_node.n_sum, str_moves)
)
logging.debug("Update info")
old_time = time()
t_elapsed = time() - self.t_start_eval # update the current search time
t_elapsed_ms = t_elapsed * 1000
if time_show_info > 1:
node_searched = int(self.root_node.n_sum - self.total_nodes_pre_search)
print("info nps %d time %d" % (int((node_searched / t_elapsed)), t_elapsed_ms))
if not time_checked_early and t_elapsed_ms > self.movetime_ms / 2:
if (
self.root_node.policy_prob.max() > 0.9
and self.root_node.policy_prob.argmax() == self.root_node.q_value.argmax()
):
self.time_buffer_ms += (self.movetime_ms - t_elapsed_ms) * 0.9
print("info early break up")
break
else:
time_checked_early = True
if (
self.time_buffer_ms > 2500
and not time_checked
and t_elapsed_ms > self.movetime_ms * 0.9
and self.root_node.q_value[self.root_node.child_number_visits.argmax()]
< self.root_node.initial_value + 0.01
):
print("info increase time")
time_checked = True
time_bonus = self.time_buffer_ms / 4
self.time_buffer_ms -= time_bonus # increase the movetime
self.movetime_ms += time_bonus * 0.75
self.root_node.initial_value = self.root_node.q_value[self.root_node.child_number_visits.argmax()]
if self.time_buffer_ms < 0:
self.movetime_ms += self.time_buffer_ms
self.time_buffer_ms = 0
self.cpuct = cpuct_init
return max_depth_reached
def perform_action(self, state_in: GameState):
"""
Return a value, best move with according to the mcts search.
This method is used when using the mcts agent as a player.
:param state_in: Requested games state
:return: value - Board value prediction
selected_move - Python chess move object according to mcts
confidence - Confidence for selecting this move
selected_child_idx - Child index which correspond to the selected child
"""
# create a deepcopy of the state in order not to change the given input parameter
return super().perform_action(deepcopy(state_in))
def _run_single_playout(self, parent_node: Node, pipe_id=0, depth=1, chosen_nodes=None):
"""
This function works recursively until a leaf or terminal node is reached.
It ends by back-propagating the value of the new expanded node or by propagating the value of a terminal state.
:param state: Current game-state for the evaluation. This state differs between the treads
:param parent_node: Current parent-node of the selected node. In the first expansion this is the root node.
:param depth: Current depth for the evaluation. Depth is increased by 1 for every recursive call
:param chosen_nodes: List of moves which have been taken in the current path.
For each selected child node this list is expanded by one move recursively.
:param chosen_nodes: List of all nodes that this thread has explored with respect to the root node
:return: -value: The inverse value prediction of the current board state. The flipping by -1 each turn is needed
because the point of view changes each half-move
depth: Current depth reach by this evaluation
mv_list: List of moves which have been selected
"""
# Probably is better to be refactored
# Too many arguments (6/5) - Too many local variables (27/15) - Too many branches (28/12) -
# Too many statements (86/50)
if chosen_nodes is None: # select a legal move on the chess board
chosen_nodes = []
node, move, child_idx = self._select_node(parent_node)
if move is None:
raise Exception("Illegal tree setup. A 'None' move was selected which shouldn't be possible")
# update the visit counts to this node
# temporarily reduce the attraction of this node by applying a virtual loss /
# the effect of virtual loss will be undone if the playout is over
parent_node.apply_virtual_loss_to_child(child_idx, self.virtual_loss)
# append the selected move to the move list
chosen_nodes.append(child_idx) # append the chosen child idx to the chosen_nodes list
if node is None:
state = GameState(deepcopy(parent_node.board)) # get the board from the parent node
state.apply_move(move) # apply the selected move on the board
# get the transposition-key which is used as an identifier for the board positions in the look-up table
transposition_key = state.get_transposition_key()
# check if the addressed fen exist in the look-up table
# note: It's important to use also the halfmove-counter here, otherwise the system can create an infinite
# feed-back-loop
key = transposition_key + (state.get_fullmove_number(),)
if self.use_transposition_table and key in self.node_lookup:
node = self.node_lookup[key] # get the node from the look-up list
# get the prior value from the leaf node which has already been expanded
value = node.initial_value
# clip the visit nodes for all nodes in the search tree except the director opp. move
clip_low_visit = self.use_pruning
new_node = Node(
node.board,
value,
node.policy_prob,
node.legal_moves,
node.is_leaf,
key,
clip_low_visit,
) # create a new node
with parent_node.lock:
parent_node.child_nodes[child_idx] = new_node # add the new node to its parent
else:
# expand and evaluate the new board state (the node wasn't found in the look-up table)
# its value will be back-propagated through the tree and flipped after every layer
my_pipe = self.my_pipe_endings[pipe_id] # receive a free available pipe
if self.send_batches:
my_pipe.send(state.get_state_planes())
# this pipe waits for the predictions of the network inference service
[value, policy_vec] = my_pipe.recv()
else:
state_planes = state.get_state_planes()
self.batch_state_planes[pipe_id] = state_planes
my_pipe.send(pipe_id)
result_channel = my_pipe.recv()
value = np.array(self.batch_value_results[result_channel])
policy_vec = np.array(self.batch_policy_results[result_channel])
is_leaf = is_won = False # initialize is_leaf by default to false and check if the game is won
# check if the current player has won the game
# (we don't need to check for is_lost() because the game is already over
# if the current player checkmated his opponent)
if state.is_check():
if state.is_loss():
is_won = True
# needed for e.g. atomic because the king explodes and is not in check mate anymore
if state.is_variant_loss():
is_won = True
if is_won:
value = -1
is_leaf = True
legal_moves = []
p_vec_small = None
# establish a mate in one connection in order to stop exploring different alternatives
parent_node.set_check_mate_node_idx(child_idx)
# get the value from the leaf node (the current function is called recursively)
# check if you can claim a draw - its assumed that the draw is always claimed
elif (
self.can_claim_threefold_repetition(transposition_key, chosen_nodes)
or state.get_pythonchess_board().can_claim_fifty_moves() is True
):
value = 0
is_leaf = True
legal_moves = []
p_vec_small = None
else:
legal_moves = state.get_legal_moves() # get the current legal move of its board state
if not legal_moves:
# stalemate occurred which is very rare for crazyhouse
if state.uci_variant == "giveaway":
value = 1
else:
value = 0
is_leaf = True
legal_moves = []
p_vec_small = None
# raise Exception("No legal move is available for state: %s" % state)
else:
try: # extract a sparse policy vector with normalized probabilities
p_vec_small = get_probs_of_move_list(
policy_vec, legal_moves, is_white_to_move=state.is_white_to_move(), normalize=True
)
except KeyError:
raise Exception("Key Error for state: %s" % state)
# clip the visit nodes for all nodes in the search tree except the director opp. move
clip_low_visit = self.use_pruning and depth != 1 # and depth > 4
new_node = Node(
state.get_pythonchess_board(),
value,
p_vec_small,
legal_moves,
is_leaf,
transposition_key,
clip_low_visit,
) # create a new node
if depth == 1:
# disable uncertain moves from being visited by giving them a very bad score
if not is_leaf and self.use_pruning:
if self.root_node_prior_policy[child_idx] < 1e-3 and value * -1 < self.root_node.initial_value:
with parent_node.lock:
value = 99
# for performance reasons only apply check enhancement on depth 1 for now
chess_board = state.get_pythonchess_board()
if self.enhance_checks:
self._enhance_checks(chess_board, legal_moves, p_vec_small)
if self.enhance_captures:
self._enhance_captures(chess_board, legal_moves, p_vec_small)
if not self.use_pruning:
self.node_lookup[key] = new_node # include a reference to the new node in the look-up table
with parent_node.lock:
parent_node.child_nodes[child_idx] = new_node # add the new node to its parent
elif node.is_leaf: # check if we have reached a leaf node
value = node.initial_value
else:
# get the value from the leaf node (the current function is called recursively)
value, depth, chosen_nodes = self._run_single_playout(node, pipe_id, depth + 1, chosen_nodes)
# revert the virtual loss and apply the predicted value by the network to the node
parent_node.revert_virtual_loss_and_update(child_idx, self.virtual_loss, -value)
# invert the value prediction for the parent of the above node layer because the player's changes every turn
return -value, depth, chosen_nodes
def check_for_duplicate(self, transposition_key, chosen_nodes):
"""
:param transposition_key: Transposition key which defines the board state by all it's pieces and pocket state.
The move counter is disregarded.
:param chosen_nodes: List of moves which have been taken in the current path.
:return:
"""
node = self.root_node.child_nodes[chosen_nodes[0]]
# iterate over all accessed nodes during the current search of the thread and check for same transposition key
for node_idx in chosen_nodes[1:-1]:
if node.transposition_key == transposition_key:
return True
node = node.child_nodes[node_idx]
if node is None:
break
return False
def can_claim_threefold_repetition(self, transposition_key, chosen_nodes):
"""
Checks if a three fold repetition event can be claimed in the current search path.
This method makes use of the class transposition table and checks for board occurrences in the local search path
of the current thread as well.
:param transposition_key: Transposition key which defines the board state by all it's pieces and pocket state.
The move counter is disregarded.
:param chosen_nodes: List of integer indices which correspond to the child node indices chosen from the
root node downwards.
:return: True, if threefold repetition can be claimed, else False
"""
search_occurrence_counter = 0 # set the number of occurrences by default to 0
node = self.root_node.child_nodes[chosen_nodes[0]]
# iterate over all accessed nodes during the current search of the thread and check for same transposition key
for node_idx in chosen_nodes[1:-1]:
if node.transposition_key == transposition_key:
search_occurrence_counter += 1
node = node.child_nodes[node_idx]
if node is None:
break
# use all occurrences in the class transposition table as well as the locally found equalities
return (self.transposition_table[transposition_key] + search_occurrence_counter) >= 2
def _select_node(self, parent_node: Node):
"""
Selects the best child node from a given parent node based on the q and u value
:param parent_node:
:return: node - Reference to the node object which has been selected
If this node hasn't been expanded yet, None will be returned
move - The move which leads to the selected child node from the given parent node on forward
node_idx - Integer idx value indicating the index for the selected child of the parent node
"""
if parent_node.check_mate_node:
child_idx = parent_node.check_mate_node
else:
# find the move according to the q- and u-values for each move
# pb_c_base = 19652
# pb_c_init = self.cpuct
cpuct = math.log((parent_node.n_sum + 19652 + 1) / 19652) + self.cpuct
# pb_u_base = 19652 / 10
# pb_u_init = 1
# pb_u_low = self.u_init_divisor
# u_init = np.exp((-parent_node.n_sum + 1965 + 1) / 1965) / np.exp(1) * (1 - self.u_init_divisor) + self.u_init_divisor
# calculate the current u values
# it's not worth to save the u values as a node attribute because u is updated every time n_sum changes
u_value = (
cpuct
* parent_node.policy_prob
* (np.sqrt(parent_node.n_sum) / (self.u_init_divisor + parent_node.child_number_visits))
)
# if parent_node.n_sum % 10 == 0:
# prob = parent_node.q_value + u_value
# child_idx = prob.argmax()
# prob[child_idx] = 0
# child_idx = prob.argmax()
# # child_idx = np.random.randint(parent_node.nb_direct_child_nodes)
# else:
child_idx = (parent_node.q_value + u_value).argmax()
return parent_node.child_nodes[child_idx], parent_node.legal_moves[child_idx], child_idx
def _select_node_based_on_mcts_policy(self, parent_node: Node):
"""
Selects the next node based on the mcts policy which is used to predict the final best move.
:param parent_node: Node from which to select the next child.
:return:
"""
child_idx = parent_node.get_mcts_policy(self.q_value_weight).argmax()
nb_visits = parent_node.child_number_visits[child_idx]
return parent_node.child_nodes[child_idx], parent_node.legal_moves[child_idx], nb_visits, child_idx
def show_next_pred_line(self):
""" It returns the predicted best moves for both players"""
best_moves = []
node = self.root_node # start at the root node
while node:
# go deep through the tree by always selecting the best move for both players
node, move, _ = self._select_node(node)
best_moves.append(move)
return best_moves
def get_2nd_max(self) -> int:
"""
Returns the number of visits of the 2nd most visited direct child node
:return: Integer value of number of visits
"""
n_child = self.root_node.child_number_visits.argmax()
n_max = self.root_node.child_number_visits[n_child]
self.root_node.child_number_visits[n_child] = 0
second_max = self.root_node.child_number_visits.max()
self.root_node.child_number_visits[n_child] = n_max
return second_max
def get_xth_max(self, xth_node):
"""
Returns the number of visits of the X most visited direct child node
;:param xth_node: Index number for the number of visits. 1 ist the most visited child
:return: Integer value of number of visits
"""
if len(self.root_node.child_number_visits) < xth_node:
return self.root_node.child_number_visits.min()
return np.sort(self.root_node.child_number_visits)[-xth_node]
def get_last_q_values(self, min_nb_visits=5, max_depth=25):
"""
Returns the values of the last node in the calculated lines according to the mcts search for the most
visited nodes
:param max_depth : maximum depth to reach for evaluating the q-values.
This avoids that very deep q-values are assigned to the original q-value which might have very
low actual correspondence
:param min_nb_visits: Integer defining how deep the tree will be traversed to return the final q-value
:return: q_future - q-values for the most visited nodes when going deeper in the tree
indices - indices of the evaluated child nodes
"""
q_future = np.zeros(self.root_node.nb_direct_child_nodes)
indices = []
for idx in range(self.root_node.nb_direct_child_nodes):
depth = 1
if self.root_node.child_number_visits[idx] >= self.root_node.child_number_visits.max() * 0.33:
node = self.root_node.child_nodes[idx]
final_node = self.root_node
move = self.root_node.legal_moves[idx]
child_idx = idx
while node and not node.is_leaf and node.n_sum >= min_nb_visits and depth <= max_depth:
final_node = node
print(move.uci() + " ", end="")
print(str(node.initial_value) + " ", end="")
node, move, _, child_idx = self._select_node_based_on_mcts_policy(node)
depth += 1
if final_node:
q_future[idx] = final_node.q_value[child_idx]
indices.append(idx)
# invert the value prediction for an odd depth number
if depth % 2 == 0:
q_future[idx] *= -1
print(q_future[idx])
return q_future, indices
def get_calculated_line(self):
"""
Prints out the best search line estimated for both players on the given board state.
:return:
"""
if self.root_node is None:
logging.warning("You must run an evaluation first in order to get the calculated line")
lst_best_moves = []
lst_nb_visits = []
node = self.root_node # start at the root node
while node and not node.is_leaf:
# go deep through the tree by always selecting the best move for both players
node, move, nb_visits, _ = self._select_node_based_on_mcts_policy(node)
lst_best_moves.append(move)
lst_nb_visits.append(nb_visits)
return lst_best_moves, lst_nb_visits
@staticmethod
def _mv_list_to_str(lst_moves):
"""
Converts a given list of chess moves to a single string separated by spaces.
:param lst_moves: List chess.Moves objects
:return: String representing each move in the list
"""
str_moves = lst_moves[0].uci()
for move in lst_moves[1:]:
str_moves += " " + move.uci()
return str_moves
def _create_mv_list(self, lst_chosen_nodes: [int]):
"""
Creates a movement list given the child node indices from the root node onwards.
:param lst_chosen_nodes: List of chosen nodes
:return: mv_list - List of python chess moves
"""
mv_list = []
node = self.root_node
for child_idx in lst_chosen_nodes:
mv_list.append(node.legal_moves[child_idx])
node = node.child_nodes[child_idx]
return mv_list
def update_movetime(self, time_ms_per_move):
"""
Update move time allocation.
:param time_ms_per_move: Sets self.movetime_ms to this value
:return:
"""
self.movetime_ms = time_ms_per_move
def set_max_search_depth(self, max_search_depth: int):
"""
Assigns a new maximum search depth for the next search
:param max_search_depth: Specifier of the search depth
:return:
"""
self.max_search_depth = max_search_depth
def update_transposition_table(self, transposition_key):
"""