forked from Antimalweb/URLNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
301 lines (266 loc) · 13.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import re
import time
import datetime
import os
import pdb
import pickle
import argparse
import numpy as np
from tqdm import tqdm
from bisect import bisect_left
import tensorflow as tf
from tensorflow.contrib import learn
from tflearn.data_utils import to_categorical, pad_sequences
from TextCNN import *
from utils import *
parser = argparse.ArgumentParser(description="Train URLNet model")
# data args
default_max_len_words = 200
parser.add_argument('--data.max_len_words', type=int, default=default_max_len_words, metavar="MLW",
help="maximum length of url in words (default: {})".format(default_max_len_words))
default_max_len_chars = 200
parser.add_argument('--data.max_len_chars', type=int, default=default_max_len_chars, metavar="MLC",
help="maximum length of url in characters (default: {})".format(default_max_len_chars))
default_max_len_subwords = 20
parser.add_argument('--data.max_len_subwords', type=int, default=default_max_len_subwords, metavar="MLSW",
help="maxium length of word in subwords/ characters (default: {})".format(default_max_len_subwords))
default_min_word_freq = 1
parser.add_argument('--data.min_word_freq', type=int, default=default_min_word_freq, metavar="MWF",
help="minimum frequency of word in training population to build vocabulary (default: {})".format(default_min_word_freq))
default_dev_pct = 0.001
parser.add_argument('--data.dev_pct', type=float, default=default_dev_pct, metavar="DEVPCT",
help="percentage of training set used for dev (default: {})".format(default_dev_pct))
parser.add_argument('--data.data_dir', type=str, default='train_10000.txt', metavar="DATADIR",
help="location of data file")
default_delimit_mode = 1
parser.add_argument("--data.delimit_mode", type=int, default=default_delimit_mode, metavar="DLMODE",
help="0: delimit by special chars, 1: delimit by special chars + each char as a word (default: {})".format(default_delimit_mode))
# model args
default_emb_dim = 32
parser.add_argument('--model.emb_dim', type=int, default=default_emb_dim, metavar="EMBDIM",
help="embedding dimension size (default: {})".format(default_emb_dim))
default_filter_sizes = "3,4,5,6"
parser.add_argument('--model.filter_sizes', type=str, default=default_filter_sizes, metavar="FILTERSIZES",
help="filter sizes of the convolution layer (default: {})".format(default_filter_sizes))
default_emb_mode = 1
parser.add_argument('--model.emb_mode', type=int, default=default_emb_mode, metavar="EMBMODE",
help="1: charCNN, 2: wordCNN, 3: char + wordCNN, 4: char-level wordCNN, 5: char + char-level wordCNN (default: {})".format(default_emb_mode))
# train args
default_nb_epochs = 5
parser.add_argument('--train.nb_epochs', type=int, default=default_nb_epochs, metavar="NEPOCHS",
help="number of training epochs (default: {})".format(default_nb_epochs))
default_batch_size = 128
parser.add_argument('--train.batch_size', type=int, default=default_batch_size, metavar="BATCHSIZE",
help="Size of each training batch (default: {})".format(default_batch_size))
parser.add_argument('--train.l2_reg_lambda', type=float, default=0.0, metavar="L2LREGLAMBDA",
help="l2 lambda for regularization (default: 0.0)")
default_lr = 0.001
parser.add_argument('--train.lr', type=float, default=default_lr, metavar="LR",
help="learning rate for optimizer (default: {})".format(default_lr))
# log args
parser.add_argument('--log.output_dir', type=str, default="runs/10000/", metavar="OUTPUTDIR",
help="directory of the output model")
parser.add_argument('--log.print_every', type=int, default=50, metavar="PRINTEVERY",
help="print training result every this number of steps (default: 50)")
parser.add_argument('--log.eval_every', type=int, default=500, metavar="EVALEVERY",
help="evaluate the model every this number of steps (default: 500)")
parser.add_argument('--log.checkpoint_every', type=int, default=500, metavar="CHECKPOINTEVERY",
help="save a model every this number of steps (default: 500)")
FLAGS = vars(parser.parse_args())
for key, val in FLAGS.items():
print("{}={}".format(key, val))
urls, labels = read_data(FLAGS["data.data_dir"])
high_freq_words = None
if FLAGS["data.min_word_freq"] > 0:
x1, word_reverse_dict = get_word_vocab(urls, FLAGS["data.max_len_words"], FLAGS["data.min_word_freq"])
high_freq_words = sorted(list(word_reverse_dict.values()))
print("Number of words with freq >={}: {}".format(FLAGS["data.min_word_freq"], len(high_freq_words)))
x, word_reverse_dict = get_word_vocab(urls, FLAGS["data.max_len_words"])
word_x = get_words(x, word_reverse_dict, FLAGS["data.delimit_mode"], urls)
ngramed_id_x, ngrams_dict, worded_id_x, words_dict = ngram_id_x(word_x, FLAGS["data.max_len_subwords"], high_freq_words)
chars_dict = ngrams_dict
chared_id_x = char_id_x(urls, chars_dict, FLAGS["data.max_len_chars"])
pos_x = []
neg_x = []
for i in range(len(labels)):
label = labels[i]
if label == 1:
pos_x.append(i)
else:
neg_x.append(i)
print("Overall Mal/Ben split: {}/{}".format(len(pos_x), len(neg_x)))
pos_x = np.array(pos_x)
neg_x = np.array(neg_x)
x_train, y_train, x_test, y_test = prep_train_test(pos_x, neg_x, FLAGS["data.dev_pct"])
x_train_char = get_ngramed_id_x(x_train, ngramed_id_x)
x_test_char = get_ngramed_id_x(x_test, ngramed_id_x)
x_train_word = get_ngramed_id_x(x_train, worded_id_x)
x_test_word = get_ngramed_id_x(x_test, worded_id_x)
x_train_char_seq = get_ngramed_id_x(x_train, chared_id_x)
x_test_char_seq = get_ngramed_id_x(x_test, chared_id_x)
###################################### Training #########################################################
def train_dev_step(x, y, emb_mode, is_train=True):
if is_train:
p = 0.5
else:
p = 1.0
if emb_mode == 1:
feed_dict = {
cnn.input_x_char_seq: x[0],
cnn.input_y: y,
cnn.dropout_keep_prob: p}
elif emb_mode == 2:
feed_dict = {
cnn.input_x_word: x[0],
cnn.input_y: y,
cnn.dropout_keep_prob: p}
elif emb_mode == 3:
feed_dict = {
cnn.input_x_char_seq: x[0],
cnn.input_x_word: x[1],
cnn.input_y: y,
cnn.dropout_keep_prob: p}
elif emb_mode == 4:
feed_dict = {
cnn.input_x_word: x[0],
cnn.input_x_char: x[1],
cnn.input_x_char_pad_idx: x[2],
cnn.input_y: y,
cnn.dropout_keep_prob: p}
elif emb_mode == 5:
feed_dict = {
cnn.input_x_char_seq: x[0],
cnn.input_x_word: x[1],
cnn.input_x_char: x[2],
cnn.input_x_char_pad_idx: x[3],
cnn.input_y: y,
cnn.dropout_keep_prob: p}
if is_train:
_, step, loss, acc = sess.run([train_op, global_step, cnn.loss, cnn.accuracy], feed_dict)
else:
step, loss, acc = sess.run([global_step, cnn.loss, cnn.accuracy], feed_dict)
return step, loss, acc
def make_batches(x_train_char_seq, x_train_word, x_train_char, y_train, batch_size, nb_epochs, shuffle=False):
if FLAGS["model.emb_mode"] == 1:
batch_data = list(zip(x_train_char_seq, y_train))
elif FLAGS["model.emb_mode"] == 2:
batch_data = list(zip(x_train_word, y_train))
elif FLAGS["model.emb_mode"] == 3:
batch_data = list(zip(x_train_char_seq, x_train_word, y_train))
elif FLAGS["model.emb_mode"] == 4:
batch_data = list(zip(x_train_char, x_train_word, y_train))
elif FLAGS["model.emb_mode"] == 5:
batch_data = list(zip(x_train_char, x_train_word, x_train_char_seq, y_train))
batches = batch_iter(batch_data, batch_size, nb_epochs, shuffle)
if nb_epochs > 1:
nb_batches_per_epoch = int(len(batch_data)/batch_size)
if len(batch_data)%batch_size != 0:
nb_batches_per_epoch += 1
nb_batches = int(nb_batches_per_epoch * nb_epochs)
return batches, nb_batches_per_epoch, nb_batches
else:
return batches
def prep_batches(batch):
if FLAGS["model.emb_mode"] == 1:
x_char_seq, y_batch = zip(*batch)
elif FLAGS["model.emb_mode"] == 2:
x_word, y_batch = zip(*batch)
elif FLAGS["model.emb_mode"] == 3:
x_char_seq, x_word, y_batch = zip(*batch)
elif FLAGS["model.emb_mode"] == 4:
x_char, x_word, y_batch = zip(*batch)
elif FLAGS["model.emb_mode"] == 5:
x_char, x_word, x_char_seq, y_batch = zip(*batch)
x_batch = []
if FLAGS["model.emb_mode"] in [1, 3, 5]:
x_char_seq = pad_seq_in_word(x_char_seq, FLAGS["data.max_len_chars"])
x_batch.append(x_char_seq)
if FLAGS["model.emb_mode"] in [2, 3, 4, 5]:
x_word = pad_seq_in_word(x_word, FLAGS["data.max_len_words"])
x_batch.append(x_word)
if FLAGS["model.emb_mode"] in [4, 5]:
x_char, x_char_pad_idx = pad_seq(x_char, FLAGS["data.max_len_words"], FLAGS["data.max_len_subwords"], FLAGS["model.emb_dim"])
x_batch.extend([x_char, x_char_pad_idx])
return x_batch, y_batch
with tf.Graph().as_default():
session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
session_conf.gpu_options.allow_growth=True
sess = tf.Session(config=session_conf)
with sess.as_default():
cnn = TextCNN(
char_ngram_vocab_size = len(ngrams_dict)+1,
word_ngram_vocab_size = len(words_dict)+1,
char_vocab_size = len(chars_dict)+1,
embedding_size=FLAGS["model.emb_dim"],
word_seq_len=FLAGS["data.max_len_words"],
char_seq_len=FLAGS["data.max_len_chars"],
l2_reg_lambda=FLAGS["train.l2_reg_lambda"],
mode=FLAGS["model.emb_mode"],
filter_sizes=list(map(int, FLAGS["model.filter_sizes"].split(","))))
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(FLAGS["train.lr"])
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step = global_step)
print("Writing to {}\n".format(FLAGS["log.output_dir"]))
if not os.path.exists(FLAGS["log.output_dir"]):
os.makedirs(FLAGS["log.output_dir"])
# Save dictionary files
ngrams_dict_dir = FLAGS["log.output_dir"] + "subwords_dict.p"
pickle.dump(ngrams_dict, open(ngrams_dict_dir,"wb"))
words_dict_dir = FLAGS["log.output_dir"] + "words_dict.p"
pickle.dump(words_dict, open(words_dict_dir, "wb"))
chars_dict_dir = FLAGS["log.output_dir"] + "chars_dict.p"
pickle.dump(chars_dict, open(chars_dict_dir, "wb"))
# Save training and validation logs
train_log_dir = FLAGS["log.output_dir"] + "train_logs.csv"
with open(train_log_dir, "w") as f:
f.write("step,time,loss,acc\n")
val_log_dir = FLAGS["log.output_dir"] + "val_logs.csv"
with open(val_log_dir, "w") as f:
f.write("step,time,loss,acc\n")
# Save model checkpoints
checkpoint_dir = FLAGS["log.output_dir"] + "checkpoints/"
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
checkpoint_prefix = checkpoint_dir + "model"
saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)
sess.run(tf.global_variables_initializer())
train_batches, nb_batches_per_epoch, nb_batches = make_batches(x_train_char_seq, x_train_word, x_train_char, y_train, FLAGS["train.batch_size"], FLAGS['train.nb_epochs'], True)
min_dev_loss = float('Inf')
dev_loss = float('Inf')
dev_acc = 0.0
print("Number of baches in total: {}".format(nb_batches))
print("Number of batches per epoch: {}".format(nb_batches_per_epoch))
it = tqdm(range(nb_batches), desc="emb_mode {} delimit_mode {} train_size {}".format(FLAGS["model.emb_mode"], FLAGS["data.delimit_mode"], x_train.shape[0]), ncols=0)
for idx in it:
batch = next(train_batches)
x_batch, y_batch = prep_batches(batch)
step, loss, acc = train_dev_step(x_batch, y_batch, emb_mode=FLAGS["model.emb_mode"], is_train=True)
if step % FLAGS["log.print_every"] == 0:
with open(train_log_dir, "a") as f:
f.write("{:d},{:s},{:e},{:e}\n".format(step, datetime.datetime.now().isoformat(), loss, acc))
it.set_postfix(
trn_loss='{:.3e}'.format(loss),
trn_acc='{:.3e}'.format(acc),
dev_loss='{:.3e}'.format(dev_loss),
dev_acc='{:.3e}'.format(dev_acc),
min_dev_loss='{:.3e}'.format(min_dev_loss))
if step % FLAGS["log.eval_every"] == 0 or idx == (nb_batches-1):
total_loss = 0
nb_corrects = 0
nb_instances = 0
test_batches = make_batches(x_test_char_seq, x_test_word, x_test_char, y_test, FLAGS['train.batch_size'], 1, False)
for test_batch in test_batches:
x_test_batch, y_test_batch = prep_batches(test_batch)
step, batch_dev_loss, batch_dev_acc = train_dev_step(x_test_batch, y_test_batch, emb_mode=FLAGS["model.emb_mode"], is_train=False)
nb_instances += x_test_batch[0].shape[0]
total_loss += batch_dev_loss * x_test_batch[0].shape[0]
nb_corrects += batch_dev_acc * x_test_batch[0].shape[0]
dev_loss = total_loss / nb_instances
dev_acc = nb_corrects / nb_instances
with open(val_log_dir, "a") as f:
f.write("{:d},{:s},{:e},{:e}\n".format(step, datetime.datetime.now().isoformat(), dev_loss, dev_acc))
if step % FLAGS["log.checkpoint_every"] == 0 or idx == (nb_batches-1):
if dev_loss < min_dev_loss:
path = saver.save(sess, checkpoint_prefix, global_step = step)
min_dev_loss = dev_loss