-
-
Notifications
You must be signed in to change notification settings - Fork 404
/
Copy pathmain.py
367 lines (310 loc) · 12.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# -*- encoding: utf-8 -*-
# @Author: SWHL
# @Contact: [email protected]
import copy
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import cv2
import numpy as np
from .cal_rec_boxes import CalRecBoxes
from .ch_ppocr_cls import TextClassifier
from .ch_ppocr_det import TextDetector
from .ch_ppocr_rec import TextRecognizer
from .utils import (
LoadImage,
UpdateParameters,
VisRes,
add_round_letterbox,
get_logger,
increase_min_side,
init_args,
read_yaml,
reduce_max_side,
update_model_path,
)
root_dir = Path(__file__).resolve().parent
DEFAULT_CFG_PATH = root_dir / "config.yaml"
logger = get_logger("RapidOCR")
class RapidOCR:
def __init__(self, config_path: Optional[str] = None, **kwargs):
if config_path is not None and Path(config_path).exists():
config = read_yaml(config_path)
else:
config = read_yaml(DEFAULT_CFG_PATH)
config = update_model_path(config)
if kwargs:
updater = UpdateParameters()
config = updater(config, **kwargs)
global_config = config["Global"]
self.print_verbose = global_config["print_verbose"]
self.text_score = global_config["text_score"]
self.min_height = global_config["min_height"]
self.width_height_ratio = global_config["width_height_ratio"]
self.use_det = global_config["use_det"]
self.text_det = TextDetector(config["Det"])
self.use_cls = global_config["use_cls"]
self.text_cls = TextClassifier(config["Cls"])
self.use_rec = global_config["use_rec"]
self.text_rec = TextRecognizer(config["Rec"])
self.load_img = LoadImage()
self.max_side_len = global_config["max_side_len"]
self.min_side_len = global_config["min_side_len"]
self.cal_rec_boxes = CalRecBoxes()
def __call__(
self,
img_content: Union[str, np.ndarray, bytes, Path],
use_det: Optional[bool] = None,
use_cls: Optional[bool] = None,
use_rec: Optional[bool] = None,
**kwargs,
) -> Tuple[Optional[List[List[Union[Any, str]]]], Optional[List[float]]]:
use_det = self.use_det if use_det is None else use_det
use_cls = self.use_cls if use_cls is None else use_cls
use_rec = self.use_rec if use_rec is None else use_rec
return_word_box = False
if kwargs:
box_thresh = kwargs.get("box_thresh", 0.5)
unclip_ratio = kwargs.get("unclip_ratio", 1.6)
text_score = kwargs.get("text_score", 0.5)
return_word_box = kwargs.get("return_word_box", False)
self.text_det.postprocess_op.box_thresh = box_thresh
self.text_det.postprocess_op.unclip_ratio = unclip_ratio
self.text_score = text_score
img = self.load_img(img_content)
raw_h, raw_w = img.shape[:2]
op_record = {}
img, ratio_h, ratio_w = self.preprocess(img)
op_record["preprocess"] = {"ratio_h": ratio_h, "ratio_w": ratio_w}
dt_boxes, cls_res, rec_res = None, None, None
det_elapse, cls_elapse, rec_elapse = 0.0, 0.0, 0.0
if use_det:
img, op_record = self.maybe_add_letterbox(img, op_record)
dt_boxes, det_elapse = self.auto_text_det(img)
if dt_boxes is None:
return None, None
img = self.get_crop_img_list(img, dt_boxes)
if use_cls:
img, cls_res, cls_elapse = self.text_cls(img)
if use_rec:
rec_res, rec_elapse = self.text_rec(img, return_word_box)
if dt_boxes is not None and rec_res is not None and return_word_box:
rec_res = self.cal_rec_boxes(img, dt_boxes, rec_res)
for rec_res_i in rec_res:
if rec_res_i[2]:
rec_res_i[2] = (
self._get_origin_points(rec_res_i[2], op_record, raw_h, raw_w)
.astype(np.int32)
.tolist()
)
if dt_boxes is not None:
dt_boxes = self._get_origin_points(dt_boxes, op_record, raw_h, raw_w)
ocr_res = self.get_final_res(
dt_boxes, cls_res, rec_res, det_elapse, cls_elapse, rec_elapse
)
return ocr_res
def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, float, float]:
h, w = img.shape[:2]
max_value = max(h, w)
ratio_h = ratio_w = 1.0
if max_value > self.max_side_len:
img, ratio_h, ratio_w = reduce_max_side(img, self.max_side_len)
h, w = img.shape[:2]
min_value = min(h, w)
if min_value < self.min_side_len:
img, ratio_h, ratio_w = increase_min_side(img, self.min_side_len)
return img, ratio_h, ratio_w
def maybe_add_letterbox(
self, img: np.ndarray, op_record: Dict[str, Any]
) -> Tuple[np.ndarray, Dict[str, Any]]:
h, w = img.shape[:2]
if self.width_height_ratio == -1:
use_limit_ratio = False
else:
use_limit_ratio = w / h > self.width_height_ratio
if h <= self.min_height or use_limit_ratio:
padding_h = self._get_padding_h(h, w)
block_img = add_round_letterbox(img, (padding_h, padding_h, 0, 0))
op_record["padding_1"] = {"top": padding_h, "left": 0}
return block_img, op_record
op_record["padding_1"] = {"top": 0, "left": 0}
return img, op_record
def _get_padding_h(self, h: int, w: int) -> int:
new_h = max(int(w / self.width_height_ratio), self.min_height) * 2
padding_h = int(abs(new_h - h) / 2)
return padding_h
def auto_text_det(
self, img: np.ndarray
) -> Tuple[Optional[List[np.ndarray]], float]:
dt_boxes, det_elapse = self.text_det(img)
if dt_boxes is None or len(dt_boxes) < 1:
return None, 0.0
dt_boxes = self.sorted_boxes(dt_boxes)
return dt_boxes, det_elapse
def get_crop_img_list(
self, img: np.ndarray, dt_boxes: List[np.ndarray]
) -> List[np.ndarray]:
def get_rotate_crop_image(img: np.ndarray, points: np.ndarray) -> np.ndarray:
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3]),
)
)
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2]),
)
)
pts_std = np.array(
[
[0, 0],
[img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height],
]
).astype(np.float32)
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M,
(img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC,
)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
img_crop_list = []
for box in dt_boxes:
tmp_box = copy.deepcopy(box)
img_crop = get_rotate_crop_image(img, tmp_box)
img_crop_list.append(img_crop)
return img_crop_list
@staticmethod
def sorted_boxes(dt_boxes: np.ndarray) -> List[np.ndarray]:
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
for j in range(i, -1, -1):
if (
abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10
and _boxes[j + 1][0][0] < _boxes[j][0][0]
):
tmp = _boxes[j]
_boxes[j] = _boxes[j + 1]
_boxes[j + 1] = tmp
else:
break
return _boxes
def _get_origin_points(
self,
dt_boxes: List[np.ndarray],
op_record: Dict[str, Any],
raw_h: int,
raw_w: int,
) -> np.ndarray:
dt_boxes_array = np.array(dt_boxes).astype(np.float32)
for op in reversed(list(op_record.keys())):
v = op_record[op]
if "padding" in op:
top, left = v.get("top"), v.get("left")
dt_boxes_array[:, :, 0] -= left
dt_boxes_array[:, :, 1] -= top
elif "preprocess" in op:
ratio_h = v.get("ratio_h")
ratio_w = v.get("ratio_w")
dt_boxes_array[:, :, 0] *= ratio_w
dt_boxes_array[:, :, 1] *= ratio_h
dt_boxes_array = np.where(dt_boxes_array < 0, 0, dt_boxes_array)
dt_boxes_array[..., 0] = np.where(
dt_boxes_array[..., 0] > raw_w, raw_w, dt_boxes_array[..., 0]
)
dt_boxes_array[..., 1] = np.where(
dt_boxes_array[..., 1] > raw_h, raw_h, dt_boxes_array[..., 1]
)
return dt_boxes_array
def get_final_res(
self,
dt_boxes: Optional[List[np.ndarray]],
cls_res: Optional[List[List[Union[str, float]]]],
rec_res: Optional[List[Tuple[str, float, List[Union[str, float]]]]],
det_elapse: float,
cls_elapse: float,
rec_elapse: float,
) -> Tuple[Optional[List[List[Union[Any, str]]]], Optional[List[float]]]:
if dt_boxes is None and rec_res is None and cls_res is not None:
return cls_res, [cls_elapse]
if dt_boxes is None and rec_res is None:
return None, None
if dt_boxes is None and rec_res is not None:
return [[res[0], res[1]] for res in rec_res], [rec_elapse]
if dt_boxes is not None and rec_res is None:
return [box.tolist() for box in dt_boxes], [det_elapse]
dt_boxes, rec_res = self.filter_result(dt_boxes, rec_res)
if not dt_boxes or not rec_res or len(dt_boxes) <= 0:
return None, None
ocr_res = [[box.tolist(), *res] for box, res in zip(dt_boxes, rec_res)], [
det_elapse,
cls_elapse,
rec_elapse,
]
return ocr_res
def filter_result(
self,
dt_boxes: Optional[List[np.ndarray]],
rec_res: Optional[List[Tuple[str, float]]],
) -> Tuple[Optional[List[np.ndarray]], Optional[List[Tuple[str, float]]]]:
if dt_boxes is None or rec_res is None:
return None, None
filter_boxes, filter_rec_res = [], []
for box, rec_reuslt in zip(dt_boxes, rec_res):
text, score = rec_reuslt[0], rec_reuslt[1]
if float(score) >= self.text_score:
filter_boxes.append(box)
filter_rec_res.append(rec_reuslt)
return filter_boxes, filter_rec_res
def main():
args = init_args()
ocr_engine = RapidOCR(**vars(args))
use_det = not args.no_det
use_cls = not args.no_cls
use_rec = not args.no_rec
result, elapse_list = ocr_engine(
args.img_path,
use_det=use_det,
use_cls=use_cls,
use_rec=use_rec,
**vars(args)
)
logger.info(result)
if args.print_cost:
logger.info(elapse_list)
if args.vis_res:
vis = VisRes()
Path(args.vis_save_path).mkdir(parents=True, exist_ok=True)
save_path = Path(args.vis_save_path) / f"{Path(args.img_path).stem}_vis.png"
if use_det and not use_cls and not use_rec:
boxes, *_ = list(zip(*result))
vis_img = vis(args.img_path, boxes)
cv2.imwrite(str(save_path), vis_img)
logger.info("The vis result has saved in %s", save_path)
elif use_det and use_rec:
font_path = Path(args.vis_font_path)
if not font_path.exists():
raise FileExistsError(f"{font_path} does not exist!")
boxes, txts, scores = list(zip(*result))
vis_img = vis(args.img_path, boxes, txts, scores, font_path=font_path)
cv2.imwrite(str(save_path), vis_img)
logger.info("The vis result has saved in %s", save_path)
if __name__ == "__main__":
main()