-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaccalign.cpp
2647 lines (2258 loc) · 91.2 KB
/
accalign.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "header.h"
#include "accalign.h"
#include "ksw2.h"
using namespace tbb::flow;
using namespace std;
const uint8_t ct_conv_type = 1;
const uint8_t ga_conv_type = 2;
bool is_non_directional = false; //only perform CT/CT and CT/GA mappings
unsigned kmer_len = 32;
int kmer_step = 1;
uint64_t mask;
unsigned pairdis = 1000;
string g_out, g_batch_file, g_embed_file;
char rcsymbol[6] = "TGCAN";
uint8_t code[256];
bool enable_extension = true, enable_wfa_extension = false, extend_all = false;
int g_ncpus = 1;
float delTime = 0, mapqTime = 0, keyvTime = 0, posvTime = 0, sortTime = 0;
int8_t mat[25];
void make_code(void) {
for (size_t i = 0; i < 256; i++)
code[i] = 4;
code['A'] = code['a'] = 0;
code['C'] = code['c'] = 1;
code['G'] = code['g'] = 2;
code['T'] = code['t'] = 3;
// we set N's also to 0. Shouldn't matter as index construction logic
// doesn't consider kmers with Ns anyway
code['N'] = code['n'] = 0;
}
static void parse(char seq[], char fwd[], char rev[], char rev_str[], uint8_t conversion_type) {
unsigned len = strlen(seq);
for (size_t i = 0; i < len; i++) {
uint8_t c = *(code + seq[i]);
rev_str[len - 1 - i] = rcsymbol[c];
// check if we should convert sequence to ct
if (conversion_type == ct_conv_type && c == 1) {
c = 3; // convert c to t
// else check if we need to convert to ga
} else if (conversion_type == ga_conv_type && c == 2) {
c = 0;
}
fwd[i] = c;
rev[len - 1 - i] = c == 4 ? c : 3 - c;
}
*(fwd + len) = '\0';
*(rev + len) = '\0';
*(rev_str + len) = '\0';
}
gzFile &operator>>(gzFile &in, Read &r) {
char temp[MAX_LEN];
if (gzgets(in, r.name, MAX_LEN) == NULL)
return in;
if (gzgets(in, r.seq, MAX_LEN) == NULL)
return in;
if (gzgets(in, temp, MAX_LEN) == NULL)
return in;
if (gzgets(in, r.qua, MAX_LEN) == NULL)
return in;
unsigned i = 0;
while (i < strlen(r.name)) {
if (isspace(r.name[i])) { // isspace(): \t, \n, \v, \f, \r
memset(r.name + i, '\0', strlen(r.name) - i);
break;
}
i++;
}
r.qua[strlen(r.qua) - 1] = '\0';
r.seq[strlen(r.seq) - 1] = '\0';
r.tid = r.pos = 0;
r.as = numeric_limits<int32_t>::min();
r.strand = '*';
return in;
}
void print_usage() {
cerr << "bsfalign [options] <ref.fa> [read1.fastq] [read2.fastq]\n";
cerr << "\t Maximum read length supported is 512\n";
cerr << "options:\n";
cerr << "\t-t INT Number of cpu threads to use [all]\n";
cerr << "\t-l INT Length of seed [32]\n";
cerr << "\t-o Name of the output file \n";
cerr << "\t-x Alignment-free mode\n";
cerr << "\t-w Use WFA for extension. KSW used by default. \n";
cerr << "\t-p Maximum distance allowed between the paired-end reads [1000]\n";
cerr << "\t-d Disable embedding, extend all candidates from seeding (this mode is super slow, only for benchmark).\n";
}
void AccAlign::print_stats() {
//#if DBGPRINT
cerr << "Breakdown:\n" <<
"Input IO time:\t" << input_io_time / 1000000 << "\n" <<
"Parse time:\t" << parse_time / 1000000 << "\n" <<
"Seeding time: \t" << seeding_time / 1000000 << "\n" <<
"\t lookup keyv time:\t" << keyvTime / 1000000 << "\n" <<
"\t lookup posv time:\t" << posvTime / 1000000 << "\n" <<
"\t sort hits time:\t" << sortTime / 1000000 << "\n" <<
"\t Hit count time:\t" << hit_count_time / 1000000 << "\n" <<
"\t Swap high cov time:\t" << swap_time / 1000000 << "\n" <<
"\t Vpair build (only for pe):\t" << vpair_build_time / 1000000 << "\n" <<
"Embedding time(total/actual):\t" << embedding->embed_time / 1000000 << "\n" <<
"Extending time (+ build output string if ENABLE_GPU):\t" << sw_time / 1000000 << "\n" <<
"Mark best region time:\t" << mapqTime / 1000000 << "\n" <<
"SAM output time :\t" << sam_time / 1000000 << "\n" <<
std::endl << endl;
cerr << "Total pairs sorted: " << vpair_sort_count << endl;
//#endif
}
bool AccAlign::fastq(const char *F1, const char *F2, bool enable_gpu, Reference &r2) {
bool is_paired = false;
gzFile in1 = gzopen(F1, "rt");
if (in1 == Z_NULL)
return false;
gzFile in2 = Z_NULL;
if (strlen(F2) > 0) {
is_paired = true;
in2 = gzopen(F2, "rt");
if (in2 == Z_NULL)
return false;
}
cerr << "Reading fastq file " << F1 << ", " << F2 << "\n";
// start CPU and GPU master threads, they consume reads from inputQ
// dataQ is to re-use
tbb::concurrent_bounded_queue<ReadCnt> inputQ;
tbb::concurrent_bounded_queue<ReadCnt> outputQ;
tbb::concurrent_bounded_queue<ReadPair> dataQ;
thread cpu_thread = thread(&AccAlign::cpu_root_fn, this, &inputQ, &outputQ, std::ref(r2));
thread out_thread = thread(&AccAlign::output_root_fn, this, &outputQ, &dataQ, std::ref(r2));
auto start = std::chrono::system_clock::now();
int total_nreads = 0, nreads_per_vec = 0, vec_index = 0, vec_size = 50;
int batch_size = BATCH_SIZE;
if (is_paired) batch_size /= 2;
Read *reads[vec_size];
Read *reads2[vec_size];
reads[vec_index] = new Read[batch_size];
if (is_paired) {
reads2[vec_index] = new Read[batch_size];
}
bool neof1 = (!gzeof(in1) && gzgetc(in1) != EOF);
bool neof2 = (!is_paired || (!gzeof(in2) && gzgetc(in2) != EOF));
while (vec_index < vec_size && neof1 && neof2) {
Read &r = *(reads[vec_index] + nreads_per_vec);
in1 >> r;
if (!strlen(r.seq)) {
break;
}
if (is_paired) {
Read &r2 = *(reads2[vec_index] + nreads_per_vec);
in2 >> r2;
if (!strlen(r2.seq)) {
break;
}
}
neof1 = (!gzeof(in1) && gzgetc(in1) != EOF);
neof2 = (!is_paired || (!gzeof(in2) && gzgetc(in2) != EOF));
++nreads_per_vec;
if (nreads_per_vec == batch_size) {
if (is_paired)
inputQ.push(make_tuple(reads[vec_index], reads2[vec_index], batch_size));
else
inputQ.push(make_tuple(reads[vec_index], (Read *) NULL, batch_size));
vec_index++;
if (vec_index < vec_size) {
reads[vec_index] = new Read[batch_size];
if (is_paired)
reads2[vec_index] = new Read[batch_size];
}
total_nreads += nreads_per_vec;
nreads_per_vec = 0;
}
}
ReadPair cur_vec = make_tuple((Read *) NULL, (Read *) NULL);
// the nb of reads is less than vec_size *BATCH_SIZE, and there are some reads not pushed to inputQ
if (nreads_per_vec && vec_index < vec_size) {
// the remaining reads
if (is_paired)
inputQ.push(make_tuple(reads[vec_index], reads2[vec_index], nreads_per_vec));
else
inputQ.push(make_tuple(reads[vec_index], (Read *) NULL, nreads_per_vec));
total_nreads += nreads_per_vec;
} else {
// still have reads not loaded
dataQ.pop(cur_vec);
while (neof1 && neof2) {
Read &r = *(std::get<0>(cur_vec) + nreads_per_vec);
in1 >> r;
if (!strlen(r.seq)) {
break;
}
if (is_paired) {
Read &r2 = *(std::get<1>(cur_vec) + nreads_per_vec);
in2 >> r2;
if (!strlen(r2.seq)) {
break;
}
}
neof1 = (!gzeof(in1) && gzgetc(in1) != EOF);
neof2 = (!is_paired || (!gzeof(in2) && gzgetc(in2) != EOF));
++nreads_per_vec;
if (nreads_per_vec == batch_size) {
inputQ.push(make_tuple(std::get<0>(cur_vec), std::get<1>(cur_vec), batch_size));
dataQ.pop(cur_vec);
total_nreads += nreads_per_vec;
nreads_per_vec = 0;
}
}
// the remaining reads
if (nreads_per_vec) {
total_nreads += nreads_per_vec;
inputQ.push(make_tuple(std::get<0>(cur_vec), std::get<1>(cur_vec), nreads_per_vec));
}
}
gzclose(in1);
if (is_paired) {
gzclose(in2);
}
auto end = std::chrono::system_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
input_io_time += elapsed.count();
cerr << "done reading " << total_nreads << " reads from fastq file " << F1 << ", " << F2 << " in " <<
input_io_time / 1000000.0 << " secs\n";
ReadCnt sentinel = make_tuple((Read *) NULL, (Read *) NULL, 0);
inputQ.push(sentinel);
int size = vec_index < vec_size ? vec_index : vec_size;
start = std::chrono::system_clock::now();
if (total_nreads % batch_size == 0) {
//because the last popped cur_vec has not been pushed back
size -= 1;
delete[] std::get<0>(cur_vec);
if (is_paired)
delete[] std::get<1>(cur_vec);
}
for (int i = 0; i < size; i++) {
dataQ.pop(cur_vec);
delete[] std::get<0>(cur_vec);
if (is_paired)
delete[] std::get<1>(cur_vec);
}
end = std::chrono::system_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
delTime += elapsed.count();
cpu_thread.join();
outputQ.push(sentinel);
out_thread.join();
cerr << "Processed " << total_nreads << " in total \n";
return true;
}
void AccAlign::output_root_fn(tbb::concurrent_bounded_queue<ReadCnt> *outputQ,
tbb::concurrent_bounded_queue<ReadPair> *dataQ,
Reference &r2) {
cerr << "Extension and output function starting.." << endl;
unsigned nreads = 0;
tbb::concurrent_bounded_queue<ReadCnt> *targetQ = outputQ;
do {
ReadCnt gpu_reads;
targetQ->pop(gpu_reads);
nreads = std::get<2>(gpu_reads);
if (!nreads) {
targetQ->push(gpu_reads); //put sentinel back
break;
}
align_wrapper(0, 0, nreads, std::get<0>(gpu_reads), std::get<1>(gpu_reads), dataQ, r2);
} while (1);
cerr << "Extension and output function quitting...\n";
}
class Parallel_mapper {
Read *all_reads1;
Read *all_reads2;
AccAlign *acc_obj_ct;
AccAlign *acc_obj_ga;
public:
Parallel_mapper(Read *_all_reads1, Read *_all_reads2, AccAlign *_acc_obj_ct, AccAlign *_acc_obj_ga) :
all_reads1(_all_reads1), all_reads2(_all_reads2), acc_obj_ct(_acc_obj_ct), acc_obj_ga(_acc_obj_ga) {}
void operator()(const tbb::blocked_range<size_t> &r) const {
if (!all_reads2) {
for (size_t i = r.begin(); i != r.end(); ++i) {
Read &read1 = *(all_reads1 + i);
Read read2 = read1.makeCopy();
acc_obj_ct->map_read(read1);
acc_obj_ga->map_read(read2);
read1.mapq = acc_obj_ct->get_mapq(read1.best, read1.secBest);
read2.mapq = acc_obj_ga->get_mapq(read2.best, read2.secBest);
if (read2.mapq > read1.mapq){ // change reads
read2.mapped_to_ga = true;
all_reads1[i] = read2;
} else if (read2.mapq == read1.mapq) {
acc_obj_ct->align_read(read1);
acc_obj_ga->align_read(read2);
if (read2.as > read1.as) {
read2.mapped_to_ga = true;
all_reads1[i] = read2;
}
} else {
// continue
}
}
} else {
for (size_t i = r.begin(); i != r.end(); ++i) {
Read read1_copy = all_reads1[i].makeCopy();
Read read2_copy = all_reads2[i].makeCopy();
acc_obj_ct->map_paired_read(*(all_reads1 + i), *(all_reads2 + i));
acc_obj_ga->map_paired_read(read1_copy, read2_copy);
all_reads1[i].mapq = acc_obj_ct->get_mapq(all_reads1[i].best, all_reads1[i].secBest);
all_reads2[i].mapq = acc_obj_ct->get_mapq(all_reads2[i].best, all_reads2[i].secBest);
read1_copy.mapq = acc_obj_ga->get_mapq(read1_copy.best, read1_copy.secBest);
read2_copy.mapq = acc_obj_ga->get_mapq(read2_copy.best, read2_copy.secBest);
int mapq_pe_ct = all_reads1[i].mapq > all_reads2[i].mapq ? all_reads1[i].mapq : all_reads2[i].mapq;
int mapq_pe_ga = read1_copy.mapq > read2_copy.mapq ? read1_copy.mapq : read2_copy.mapq;
if (mapq_pe_ga > mapq_pe_ct) {
read1_copy.mapped_to_ga = true;
read2_copy.mapped_to_ga = true;
all_reads1[i] = read1_copy;
all_reads2[i] = read2_copy;
} else if (mapq_pe_ga == mapq_pe_ct) {
acc_obj_ct->align_read(all_reads1[i]);
acc_obj_ct->align_read(all_reads2[i]);
acc_obj_ga->align_read(read1_copy);
acc_obj_ga->align_read(read2_copy);
if ((read1_copy.as > all_reads1[i].as && read1_copy.as > all_reads2[i].as) ||
(read2_copy.as > all_reads1[i].as && read2_copy.as > all_reads2[i].as)) {
read1_copy.mapped_to_ga = true;
read2_copy.mapped_to_ga = true;
all_reads1[i] = read1_copy;
all_reads2[i] = read2_copy;
}
}
}
}
}
};
void AccAlign::cpu_root_fn(tbb::concurrent_bounded_queue<ReadCnt> *inputQ,
tbb::concurrent_bounded_queue<ReadCnt> *outputQ,
Reference &r2) {
cerr << "CPU Root function starting.." << endl;
AccAlign f2(r2);
tbb::concurrent_bounded_queue<ReadCnt> *targetQ = inputQ;
int nreads = 0, total = 0;
do {
ReadCnt cpu_readcnt;
targetQ->pop(cpu_readcnt);
nreads = std::get<2>(cpu_readcnt);
total += nreads;
if (nreads == 0) {
inputQ->push(cpu_readcnt); // push sentinel back
break;
}
tbb::task_scheduler_init init(g_ncpus);
tbb::parallel_for(tbb::blocked_range<size_t>(0, nreads),
Parallel_mapper(std::get<0>(cpu_readcnt), std::get<1>(cpu_readcnt), this, &f2)
);
outputQ->push(cpu_readcnt);
} while (1);
cerr << "Processed " << total << " reads in cpu \n";
cerr << "CPU Root function quitting.." << endl;
}
void AccAlign::mark_for_extension(Read &read, char S, Region &cregion) {
read.strand = S;
int rlen = strlen(read.seq);
cregion.re = cregion.rs + rlen < ref.size() ? cregion.rs + rlen :
ref.size();
char *strand = S == '+' ? read.fwd : read.rev;
if (cregion.embed_dist && !enable_extension)
rectify_start_pos(strand, cregion, rlen);
read.best_region = cregion;
}
void AccAlign::pigeonhole_query_topcov(char *Q,
size_t rlen,
vector<Region> &candidate_regions,
char S,
int err_threshold,
unsigned kmer_step,
unsigned max_occ,
unsigned &best,
unsigned ori_slide) {
int max_cov = 0;
unsigned nkmers = (rlen - ori_slide - kmer_len) / kmer_step + 1;
size_t ntotal_hits = 0;
size_t b[nkmers], e[nkmers];
unsigned kmer_idx = 0;
unsigned ori_slide_bk = ori_slide;
unsigned nseed_freq = 0;
bool high_freq = false;
// Take non-overlapping seeds and find all hits
auto start = std::chrono::system_clock::now();
for (size_t i = ori_slide; i + kmer_len <= rlen; i += kmer_step) {
uint64_t k = 0;
for (size_t j = i; j < i + kmer_len; j++)
k = (k << 2) + *(Q + j);
size_t hash = (k & mask) % MOD;
b[kmer_idx] = keyv[hash];
e[kmer_idx] = keyv[hash + 1];
if (e[kmer_idx] - b[kmer_idx] >= max_occ)
nseed_freq++;
// if (e[kmer_idx] - b[kmer_idx] < max_occ) {
// ntotal_hits += (e[kmer_idx] - b[kmer_idx]);
// }
kmer_idx++;
}
assert(kmer_idx == nkmers);
auto end = std::chrono::system_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
keyvTime += elapsed.count();
if (nseed_freq > nkmers / 2)
high_freq = true;
for (size_t i = 0; i < nkmers; i++) {
if ((!high_freq && e[i] - b[i] < max_occ) || high_freq)
ntotal_hits += (e[i] - b[i]);
}
// if we have no hits, we are done
if (!ntotal_hits)
return;
uint32_t top_pos[nkmers];
int rel_off[nkmers];
uint32_t MAX_POS = numeric_limits<uint32_t>::max();
start = std::chrono::system_clock::now();
// initialize top values with first values for each kmer.
for (unsigned i = 0; i < nkmers; i++) {
if (b[i] < e[i] && ((!high_freq && e[i] - b[i] < max_occ) || high_freq)) {
// if (b[i] < e[i] && e[i] - b[i] < max_occ) {
top_pos[i] = posv[b[i]];
rel_off[i] = i * kmer_step;
uint32_t shift_pos = rel_off[i] + ori_slide_bk;
//TODO: for each chrome, happen to < the start pos
if (top_pos[i] < shift_pos)
top_pos[i] = 0; // there is insertion before this kmer
else
top_pos[i] -= shift_pos;
} else {
top_pos[i] = MAX_POS;
}
}
end = std::chrono::system_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
posvTime += elapsed.count();
size_t nprocessed = 0;
uint32_t last_pos = MAX_POS, last_qs = ori_slide_bk; //last query start pos
int last_cov = 0;
start = std::chrono::system_clock::now();
vector<Region> unique_regions;
unique_regions.reserve(ntotal_hits);
size_t idx = 0;
Region r;
r.matched_intervals.reserve(nkmers);
// Region unique_regions[ntotal_hits];
// size_t idx = 0;
// Region *r = unique_regions + idx;
while (nprocessed < ntotal_hits) {
//find min
uint32_t *min_item = min_element(top_pos, top_pos + nkmers);
uint32_t min_pos = *min_item;
int min_kmer = min_item - top_pos;
if ((!high_freq && e[min_kmer] - b[min_kmer] < max_occ) || high_freq) {
// if (e[min_kmer] - b[min_kmer] < max_occ) {
// kick off prefetch for next round
__builtin_prefetch(posv + b[min_kmer] + 1);
// if previous min element was same as current one, increment coverage.
// otherwise, check if last min element's coverage was high enough to make it a candidate region
if (min_pos == last_pos) {
r.matched_intervals.push_back(last_qs);
last_cov++;
} else {
if (nprocessed != 0) {
r.cov = last_cov;
r.rs = last_pos;
r.matched_intervals.push_back(last_qs);
r.qs = r.matched_intervals[0]; //the first match seed, so left extension could be accurate
r.qe = r.qs + kmer_len;
if (last_cov > max_cov)
max_cov = last_cov;
assert(r.rs != MAX_POS && r.rs < MAX_POS);
unique_regions.push_back(move(r));
++idx;
// r = unique_regions + idx;
}
last_cov = 1;
}
last_qs = min_kmer * kmer_step + ori_slide_bk;
last_pos = min_pos;
}
// add next element
b[min_kmer]++;
uint32_t next_pos = b[min_kmer] < e[min_kmer] ? posv[b[min_kmer]] : MAX_POS;
if (next_pos != MAX_POS) {
uint32_t shift_pos = rel_off[min_kmer] + ori_slide_bk;
//TODO: for each chrome, happen to < the start pos
if (next_pos < shift_pos)
*min_item = 0; // there is insertion before this kmer
else
*min_item = next_pos - shift_pos;
} else
*min_item = MAX_POS;
++nprocessed;
}
// we will have the last few positions not processed. check here.
if (last_pos != MAX_POS) {
r.cov = last_cov;
r.rs = last_pos;
r.matched_intervals.push_back(last_qs);
r.qs = r.matched_intervals[0]; //the first match seed, so left extension could be accurate
r.qe = r.qs + kmer_len;
if (last_cov > max_cov)
max_cov = last_cov;
assert(r.rs != MAX_POS && r.rs < MAX_POS);
unique_regions.push_back(move(r));
++idx;
}
err_threshold = max(err_threshold, max_cov - 1);
assert(idx <= ntotal_hits);
for (size_t i = 0; i < idx; i++) {
Region &r = unique_regions[i];
if (r.cov >= err_threshold) {
if (r.cov == max_cov)
best = candidate_regions.size();
candidate_regions.push_back(move(r));
}
}
end = std::chrono::system_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
hit_count_time += elapsed.count();
}
void AccAlign::pigeonhole_query_sort(char *Q,
size_t rlen,
vector<Region> &candidate_regions,
char S,
unsigned err_threshold,
unsigned kmer_step,
unsigned max_occ,
unsigned &best,
unsigned ori_slide) {
unsigned max_cov = 0;
unsigned nkmers = (rlen - ori_slide - kmer_len) / kmer_step + 1;
size_t ntotal_hits = 0;
size_t b[nkmers], e[nkmers];
unsigned kmer_idx = 0;
unsigned nseed_freq = 0;
bool high_freq = false;
// Take non-overlapping seeds and find all hits
auto start = std::chrono::system_clock::now();
for (size_t i = ori_slide; i + kmer_len <= rlen; i += kmer_step) {
uint64_t k = 0;
for (size_t j = i; j < i + kmer_len; j++)
k = (k << 2) + *(Q + j);
size_t hash = (k & mask) % MOD;
b[kmer_idx] = keyv[hash];
e[kmer_idx] = keyv[hash + 1];
if (e[kmer_idx] - b[kmer_idx] >= max_occ)
nseed_freq++;
// if (e[kmer_idx] - b[kmer_idx] < max_occ) {
// ntotal_hits += (e[kmer_idx] - b[kmer_idx]);
// }
kmer_idx++;
}
assert(kmer_idx == nkmers);
auto end = std::chrono::system_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
keyvTime += elapsed.count();
if (nseed_freq > nkmers / 2)
high_freq = true;
for (size_t i = 0; i < nkmers; i++) {
if ((!high_freq && e[i] - b[i] < max_occ) || high_freq)
ntotal_hits += (e[i] - b[i]);
}
// if we have no hits, we are done
if (!ntotal_hits)
return;
start = std::chrono::system_clock::now();
// initialize top values with first values for each kmer.
uint32_t MAX_POS = numeric_limits<uint32_t>::max();
vector<Region> regions;
regions.reserve(ntotal_hits);
for (unsigned i = 0; i < nkmers; i++) {
if (b[i] < e[i] && ((!high_freq && e[i] - b[i] < max_occ) || high_freq)) {
// if (b[i] < e[i] && e[i] - b[i] < max_occ) {
for (uint32_t j = b[i]; j < e[i]; j++) {
Region r;
r.rs = posv[j];
r.qs = i * kmer_step + ori_slide;
r.rs -= min(r.rs, r.qs);
regions.push_back(r);
// rs can't be samller than 0, if insertion before this kmer, set rs to 0 instead of -1
}
}
}
assert(regions.size() == ntotal_hits);
end = std::chrono::system_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
posvTime += elapsed.count();
start = std::chrono::system_clock::now();
sort(regions.begin(), regions.end(), Region());
size_t nprocessed = 0, last_cov = 0;
uint32_t last_pos = MAX_POS;
while (nprocessed < ntotal_hits) {
if (regions[nprocessed].rs == last_pos) {
last_cov++;
} else {
if (last_cov >= err_threshold) {
Region r;
r.cov = last_cov;
r.rs = last_pos;
for (unsigned i = nprocessed - last_cov; i < nprocessed; i++)
r.matched_intervals.push_back(regions[i].qs);
r.qs = r.matched_intervals[0]; //the first match seed, so left extension could be accurate
r.qe = r.qs + kmer_len;
assert(r.rs < MAX_POS);
if (last_cov >= max_cov) {
max_cov = last_cov;
best = candidate_regions.size();
}
candidate_regions.push_back(r);
}
last_cov = 1;
}
last_pos = regions[nprocessed].rs;
++nprocessed;
}
// we will have the last few positions not processed. check here.
if (last_cov >= err_threshold && last_pos != MAX_POS) {
Region r;
r.cov = last_cov;
r.rs = last_pos;
for (unsigned i = nprocessed - last_cov; i < nprocessed; i++)
r.matched_intervals.push_back(regions[i].qs);
r.qs = r.matched_intervals[0]; //the first match seed, so left extension could be accurate
r.qe = r.qs + kmer_len;
assert(r.rs < MAX_POS);
if (last_cov >= max_cov) {
max_cov = last_cov;
best = candidate_regions.size();
}
candidate_regions.push_back(r);
}
end = std::chrono::system_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
posvTime += elapsed.count();
}
void AccAlign::pghole_wrapper(Read &R,
vector<Region> &fcandidate_regions,
vector<Region> &rcandidate_regions,
unsigned &fbest,
unsigned &rbest) {
size_t rlen = strlen(R.seq);
unsigned kmer_step = kmer_len, nfregions = 0, nrregions = 0;
bool high_freq = false;
unsigned ori_slide = 0;
unsigned slide = kmer_len < rlen - kmer_len ? kmer_len : rlen - kmer_len;
// MAX_OCC, cov >= 2
// while (kmer_step > 0 && !nfregions && !nrregions) {
while (ori_slide < slide && !nfregions && !nrregions) {
unsigned nkmers = (rlen - ori_slide - kmer_len) / kmer_step + 1;
if (nkmers < 4) {
//nkmer 3, 2, 1, top 2 cov of cov >=2, is 3, 2, is as same as cov>=2
// as cov2 is faster than top2, use cov2
pigeonhole_query(R.fwd, rlen, fcandidate_regions, '+', fbest, ori_slide, 2, kmer_step, MAX_OCC, high_freq);
pigeonhole_query(R.rev, rlen, rcandidate_regions, '-', rbest, ori_slide, 2, kmer_step, MAX_OCC, high_freq);
} else {
pigeonhole_query_topcov(R.fwd, rlen, fcandidate_regions, '+', 2, kmer_step, MAX_OCC, fbest, ori_slide);
pigeonhole_query_topcov(R.rev, rlen, rcandidate_regions, '-', 2, kmer_step, MAX_OCC, rbest, ori_slide);
}
nfregions = fcandidate_regions.size();
nrregions = rcandidate_regions.size();
if (!nfregions && !nrregions) {
pigeonhole_query(R.fwd, rlen, fcandidate_regions, '+', fbest, ori_slide, 1, kmer_step, MAX_OCC, high_freq);
pigeonhole_query(R.rev, rlen, rcandidate_regions, '-', rbest, ori_slide, 1, kmer_step, MAX_OCC, high_freq);
nfregions = fcandidate_regions.size();
nrregions = rcandidate_regions.size();
}
R.kmer_step = kmer_step;
ori_slide++;
// kmer_step = kmer_step / 2;
}
}
void AccAlign::pigeonhole_query(char *Q,
size_t rlen,
vector<Region> &candidate_regions,
char S,
unsigned &best,
unsigned ori_slide,
int err_threshold,
unsigned kmer_step,
unsigned max_occ,
bool &high_freq) {
int max_cov = 0;
unsigned nkmers = (rlen - ori_slide - kmer_len) / kmer_step + 1;
size_t ntotal_hits = 0;
size_t b[nkmers], e[nkmers];
unsigned kmer_idx = 0;
unsigned nseed_freq = 0;
// Take non-overlapping seeds and find all hits
auto start = std::chrono::system_clock::now();
for (size_t i = ori_slide; i + kmer_len <= rlen; i += kmer_step) {
uint64_t k = 0;
for (size_t j = i; j < i + kmer_len; j++)
k = (k << 2) + *(Q + j);
size_t hash = (k & mask) % MOD;
b[kmer_idx] = keyv[hash];
e[kmer_idx] = keyv[hash + 1];
if (e[kmer_idx] - b[kmer_idx] >= max_occ)
nseed_freq++;
kmer_idx++;
}
assert(kmer_idx == nkmers);
auto end = std::chrono::system_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
keyvTime += elapsed.count();
if (nseed_freq > nkmers / 2)
high_freq = true;
for (size_t i = 0; i < nkmers; i++) {
if ((!high_freq && e[i] - b[i] < max_occ) || high_freq)
ntotal_hits += (e[i] - b[i]);
}
// if we have no hits, we are done
if (!ntotal_hits)
return;
uint32_t top_pos[nkmers], MAX_POS = numeric_limits<uint32_t>::max();
int rel_off[nkmers];
start = std::chrono::system_clock::now();
// initialize top values with first values for each kmer.
for (unsigned i = 0; i < nkmers; i++) {
if (b[i] < e[i] && ((!high_freq && e[i] - b[i] < max_occ) || high_freq)) {
top_pos[i] = posv[b[i]];
rel_off[i] = i * kmer_step;
uint32_t shift_pos = rel_off[i] + ori_slide;
top_pos[i] -= min(top_pos[i], shift_pos); //pos can't <0, e.g. insertion before this kmer, set 0 instead of -1
} else {
top_pos[i] = MAX_POS;
}
}
end = std::chrono::system_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
posvTime += elapsed.count();
size_t nprocessed = 0;
uint32_t last_pos = MAX_POS, last_qs = ori_slide; //last query start pos
int last_cov = 0;
start = std::chrono::system_clock::now();
Region r;
r.matched_intervals.reserve(nkmers);
while (nprocessed < ntotal_hits) {
//find min
uint32_t *min_item = min_element(top_pos, top_pos + nkmers);
uint32_t min_pos = *min_item;
int min_kmer = min_item - top_pos;
if ((!high_freq && e[min_kmer] - b[min_kmer] < max_occ) || high_freq) {
// kick off prefetch for next round
__builtin_prefetch(posv + b[min_kmer] + 1);
// if previous min element was same as current one, increment coverage.
// otherwise, check if last min element's coverage was high enough to make it a candidate region
if (min_pos == last_pos) {
r.matched_intervals.push_back(last_qs);
last_cov++;
} else {
if (last_cov >= err_threshold) {
r.cov = last_cov;
r.rs = last_pos;
r.matched_intervals.push_back(last_qs);
r.qs = r.matched_intervals[0]; //let it be the first match seed, so the left extension could be accurate
r.qe = r.qs + kmer_len;
if (last_cov >= max_cov) {
max_cov = last_cov;
best = candidate_regions.size();
}
assert(r.rs < MAX_POS);
candidate_regions.push_back(move(r));
}
last_cov = 1;
}
last_qs = min_kmer * kmer_step + ori_slide;
last_pos = min_pos;
}
// add next element
b[min_kmer]++;
uint32_t next_pos = b[min_kmer] < e[min_kmer] ? posv[b[min_kmer]] : MAX_POS;
if (next_pos != MAX_POS) {
uint32_t shift_pos = rel_off[min_kmer] + ori_slide;
*min_item = next_pos - min(next_pos, shift_pos);
//pos can't <0, e.g. insertion before this kmer, set 0 instead of -1
} else
*min_item = MAX_POS;
++nprocessed;
}
// we will have the last few positions not processed. check here.
if (last_pos != MAX_POS) {
if (last_cov >= err_threshold) {
r.cov = last_cov;
r.rs = last_pos;
r.matched_intervals.push_back(last_qs);
r.qs = r.matched_intervals[0]; //let it be the first match seed, so the left extension could be accurate
r.qe = r.qs + kmer_len;
if (last_cov >= max_cov) {
max_cov = last_cov;
best = candidate_regions.size();
}
assert(r.rs < MAX_POS);
candidate_regions.push_back(move(r));
}
}
end = std::chrono::system_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
hit_count_time += elapsed.count();
}
void AccAlign::pghole_wrapper_mates(Read &R,
vector<Region> &fcandidate_regions,
vector<Region> &rcandidate_regions,
unsigned &fbest,
unsigned &rbest,
unsigned ori_slide,
unsigned kmer_step, unsigned max_occ, bool &high_freq) {
unsigned rlen = strlen(R.seq);
// MAX_OCC, cov >= 2
pigeonhole_query(R.fwd, rlen, fcandidate_regions, '+', fbest, ori_slide, 2, kmer_step, max_occ, high_freq);
pigeonhole_query(R.rev, rlen, rcandidate_regions, '-', rbest, ori_slide, 2, kmer_step, max_occ, high_freq);
R.kmer_step = kmer_step;
unsigned nfregions = fcandidate_regions.size();
unsigned nrregions = rcandidate_regions.size();
if (!nfregions && !nrregions) {
pigeonhole_query(R.fwd, rlen, fcandidate_regions, '+', fbest, ori_slide, 1, kmer_step, max_occ, high_freq);
pigeonhole_query(R.rev, rlen, rcandidate_regions, '-', rbest, ori_slide, 1, kmer_step, max_occ, high_freq);
}
}
//check by f1r1
void AccAlign::pghole_wrapper_pair(Read &mate1, Read &mate2,
vector<Region> ®ion_f1, vector<Region> ®ion_r1,
vector<Region> ®ion_f2, vector<Region> ®ion_r2,
unsigned &best_f1, unsigned &best_r1, unsigned &best_f2, unsigned &best_r2,
unsigned &next_f1, unsigned &next_r1, unsigned &next_f2, unsigned &next_r2,
bool *&flag_f1, bool *&flag_r1, bool *&flag_f2, bool *&flag_r2,
bool &has_f1r2, bool &has_r1f2) {
int min_rlen = strlen(mate1.seq) < strlen(mate2.seq) ? strlen(mate1.seq) : strlen(mate2.seq);
unsigned slide = kmer_len < min_rlen - kmer_len ? kmer_len : min_rlen - kmer_len;
unsigned kmer_step1 = kmer_len, kmer_step2 = kmer_len;
unsigned slide1 = 0, slide2 = 0;
bool high_freq_1 = false, high_freq_2 = false; //read is from high repetitive region
int mac_occ_1 = MAX_OCC, mac_occ_2 = MAX_OCC;
while (slide1 < slide && slide2 < slide) {
// while (kmer_step1 > 0 && kmer_step2 > 0) {
if (has_f1r2 || has_r1f2)
break;