diff --git a/docs/doc_whl.md b/docs/doc_whl.md
index 2237891..f3c6f73 100644
--- a/docs/doc_whl.md
+++ b/docs/doc_whl.md
@@ -1,98 +1 @@
-## Text Detect Metric
-
-
-
-
-
-
-
-
-
-
-- This library is used to calculate the three metric `Precision`, `Recall` and `H-mean` to evaluate the effect of text detection algorithms. It is used in conjunction with [Modelscope-Text Detection Test Set](https://www.modelscope.cn/datasets/liekkas/text_det_test_dataset/summary).
-- Indicator calculation code reference: [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR/blob/b13f99607653c220ba94df2a8650edac086b0f37/ppocr/metrics/eval_det_iou.py) and [DB](https://github.com/MhLiao/DB/blob/3c32b808d4412680310d3d28eeb6a2d5bf1566c5/concern/icdar2015_eval/detection/iou.py#L8)
-
-
-### Evaluate on the custom dataset.
-- Here we use the evaluation code of `ch_ppocr_v3_det` on the text detection test set [liekkas/text_det_test_dataset](https://www.modelscope.cn/datasets/liekkas/text_det_test_dataset/summary), and you can use the same analogy.
-
-
-### Usage
-1. Install packages.
- ```bash
- pip install modelscope==1.5.2
- pip install text_det_metric
- ```
-2. Run `get_pred_txt.py` to get `pred.txt`
-
- Click to expand
-
- ```python
- from pathlib import Path
-
- import cv2
- import yaml
- from modelscope.msdatasets import MsDataset
- from tqdm import tqdm
-
- from det_demos.ch_ppocr_v3_det import TextDetector
-
- root_dir = Path(__file__).resolve().parent
-
-
- def read_yaml(yaml_path):
- with open(yaml_path, "rb") as f:
- data = yaml.load(f, Loader=yaml.Loader)
- return data
-
-
- test_data = MsDataset.load(
- "text_det_test_dataset",
- namespace="liekkas",
- subset_name="default",
- split="test",
- )
-
- config_path = root_dir / 'det_demos' / 'ch_ppocr_v3_det' / 'config.yaml'
- config = read_yaml(str(config_path))
-
- # Configure the onnx model path.
- config['model_path'] = str(root_dir / 'det_demos' / config['model_path'])
-
- text_detector = TextDetector(config)
-
- content = []
- for one_data in tqdm(test_data):
- img_path = one_data.get("image:FILE")
-
- img = cv2.imread(str(img_path))
- dt_boxes, elapse = text_detector(img)
- content.append(f"{img_path}\t{dt_boxes.tolist()}\t{elapse}")
-
- with open("pred.txt", "w", encoding="utf-8") as f:
- for v in content:
- f.write(f"{v}\n")
- ```
-
-3. Run `compute_metric.py` to get the metrics on the dataset
- ```python
- from text_det_metric import DetectionIoUEvaluator
-
- metric = DetectionIoUEvaluator()
-
- # pred_path
- pred_path = "pred.txt"
- metric = metric(pred_path)
- print(metric)
- ```
-4. Output
- ```python
- {
- 'precision': 0.6958333333333333,
- 'recall': 0.8608247422680413,
- 'hmean': 0.7695852534562212,
- 'avg_elapse': 2.0107483345529307
- }
- ```
-
### See details for [TextDetMetric](https://github.com/SWHL/TextDetMetric).