-
Notifications
You must be signed in to change notification settings - Fork 916
/
Copy pathdigits-detection-cnn.py
75 lines (59 loc) · 2.52 KB
/
digits-detection-cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D, Flatten, Conv2D
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam
from keras.utils import np_utils
from keras.datasets import mnist
# categorical_crossentropy
def load_mnist_data(number):
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train[0:number]
y_train = y_train[0:number]
x_train = x_train.reshape(number, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
x_train = x_train / 255
x_test = x_test / 255
return (x_train, y_train), (x_test, y_test)
if __name__ == '__main__':
(x_train, y_train), (x_test, y_test) = load_mnist_data(10000)
# do DNN
model = Sequential()
model.add(Dense(input_dim=28 * 28, units=500, activation='relu'))
model.add(Dense(units=500, activation='relu'))
model.add(Dense(units=500, activation='relu'))
model.add(Dense(units=10, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=100, epochs=20)
result_train = model.evaluate(x_train, y_train)
print('\nTrain Acc:\n', result_train[1])
result_test = model.evaluate(x_test, y_test)
print('\nTest Acc:\n', result_test[1])
# do CNN
x_train = x_train.reshape(x_train.shape[0], 1, 28, 28)
x_test = x_test.reshape(x_test.shape[0], 1, 28, 28)
model2 = Sequential()
model2.add(Conv2D(25, (3, 3), input_shape=(
1, 28, 28), data_format='channels_first'))
model2.add(MaxPooling2D((2, 2)))
model2.add(Conv2D(50, (3, 3)))
model2.add(MaxPooling2D((2, 2)))
model2.add(Flatten())
model2.add(Dense(units=100, activation='relu'))
model2.add(Dense(units=10, activation='softmax'))
model2.summary()
model2.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
model2.fit(x_train, y_train, batch_size=100, epochs=20)
result_train = model2.evaluate(x_train, y_train)
print('\nTrain CNN Acc:\n', result_train[1])
result_test = model2.evaluate(x_test, y_test)
print('\nTest CNN Acc:\n', result_test[1])