-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
140 lines (120 loc) · 5.84 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve
from sklearn.metrics import precision_score, recall_score
def main():
st.title("Binary Classification Web App")
st.sidebar.title("Binary Classification Web App")
st.markdown("Are your mushrooms edible or poisonous?")
st.sidebar.markdown("Are your mushrooms edible or poisonous?")
# Streamlit decorator that caches the output and use it to rerun
@st.cache(persist=True)
def load_data():
data = pd.read_csv(
r"C:\Users\Utkarsh.DESKTOP-6FKGAET\Utkarsh\Projects\Classification-Algorithms-Visualiser\Mushrooms.csv")
label = LabelEncoder()
for col in data.columns:
data[col] = label.fit_transform(data[col])
return data
@st.cache(persist=True)
def split(df):
y = df.type
x = df.drop(columns=['type'])
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.3, random_state=0)
return x_train, x_test, y_train, y_test
def plot_metrics(metrics_list):
if 'Confusion Matrix' in metrics_list:
st.subheader("Confusion Matrix")
plot_confusion_matrix(model, x_test, y_test,
display_labels=class_names)
st.pyplot()
if 'ROC Curve' in metrics_list:
st.subheader("ROC Curve")
plot_roc_curve(model, x_test, y_test)
st.pyplot()
if 'Precision-Recall Curve' in metrics_list:
st.subheader('Precision-Recall Curve')
plot_precision_recall_curve(model, x_test, y_test)
st.pyplot()
df = load_data()
x_train, x_test, y_train, y_test = split(df)
class_names = ['edible', 'poisonous']
st.sidebar.subheader("Choose Classifier")
classifier = st.sidebar.selectbox(
"Classifier", ("Support Vector Machine (SVM)", "Logistic Regression", "Random Forest"))
if classifier == 'Support Vector Machine (SVM)':
st.sidebar.subheader("Model Hyperparameteres")
C = st.sidebar.number_input(
"C (Regularization parameter)", 0.01, 10.0, step=0.01, key='C')
kernel = st.sidebar.radio("Kernel", ("rbf", "linear"), key='kernel')
gamma = st.sidebar.radio(
"Gamma (Kernel Coefficient)", ("scale", "auto"), key='gamma')
metrics = st.sidebar.multiselect(
"Metrics to plot", ('Confusion Matrix', 'ROC Curve', 'Precision-Recall Curve'))
if st.sidebar.button("Classify", key='classify'):
st.subheader("Support Vector Machine (SVM) Results")
model = SVC(C=C, kernel=kernel, gamma=gamma)
model.fit(x_train, y_train)
accuracy = model.score(x_test, y_test)
y_pred = model.predict(x_test)
st.write("Accuracy: ", accuracy.round(2))
st.write("Precision: ", precision_score(
y_test, y_pred, labels=class_names).round(2))
st.write("Recall: ", recall_score(
y_test, y_pred, labels=class_names).round(2))
plot_metrics(metrics)
if classifier == 'Logistic Regression':
st.sidebar.subheader("Model Hyperparameteres")
C = st.sidebar.number_input(
"C (Regularization parameter)", 0.01, 10.0, step=0.01, key='C')
max_iter = st.sidebar.slider(
"Maximum number of iterations", 100, 500, key='max_iter')
metrics = st.sidebar.multiselect(
"Metrics to plot", ('Confusion Matrix', 'ROC Curve', 'Precision-Recall Curve'))
if st.sidebar.button("Classify", key='classify'):
st.subheader("Logistic Regression Results")
model = LogisticRegression(C=C, max_iter=max_iter)
model.fit(x_train, y_train)
accuracy = model.score(x_test, y_test)
y_pred = model.predict(x_test)
st.write("Accuracy: ", accuracy.round(2))
st.write("Precision: ", precision_score(
y_test, y_pred, labels=class_names).round(2))
st.write("Recall: ", recall_score(
y_test, y_pred, labels=class_names).round(2))
plot_metrics(metrics)
if classifier == 'Random Forest':
st.sidebar.subheader("Model Hyperparameteres")
n_estimators = st.sidebar.number_input(
"Number of trees in forest", 100, 5000, step=10, key='n_estimators')
max_depth = st.sidebar.number_input(
"Maximum depth of the tree", 1, 20, step=1, key='max_depth')
bootstrap = st.sidebar.radio(
"Bootstrap samples when building the trees", ('True', 'False'), key='bootstrap')
metrics = st.sidebar.multiselect(
"Metrics to plot", ('Confusion Matrix', 'ROC Curve', 'Precision-Recall Curve'))
if st.sidebar.button("Classify", key='classify'):
st.subheader("Random Forest Results")
model = RandomForestClassifier(
n_estimators=n_estimators, max_depth=max_depth, bootstrap=bootstrap)
model.fit(x_train, y_train)
accuracy = model.score(x_test, y_test)
y_pred = model.predict(x_test)
st.write("Accuracy: ", accuracy.round(2))
st.write("Precision: ", precision_score(
y_test, y_pred, labels=class_names).round(2))
st.write("Recall: ", recall_score(
y_test, y_pred, labels=class_names).round(2))
plot_metrics(metrics)
if st.sidebar.checkbox("Show raw data", False):
st.subheader("Mushroom Dataset (Classification)")
st.write(df)
if __name__ == '__main__':
main()