diff --git a/docs/_static/pypi.js b/docs/_static/pypi.js new file mode 100644 index 0000000..5f433bc --- /dev/null +++ b/docs/_static/pypi.js @@ -0,0 +1,16 @@ +/******************************************************************************* + * Set a custom icon for pypi as it's not available in the fa built-in brands + */ +FontAwesome.library.add( + (faListOldStyle = { + prefix: "fa-custom", + iconName: "pypi", + icon: [ + 17.313, // viewBox width + 19.807, // viewBox height + [], // ligature + "e001", // unicode codepoint - private use area + "m10.383 0.2-3.239 1.1769 3.1883 1.1614 3.239-1.1798zm-3.4152 1.2411-3.2362 1.1769 3.1855 1.1614 3.2369-1.1769zm6.7177 0.00281-3.2947 1.2009v3.8254l3.2947-1.1988zm-3.4145 1.2439-3.2926 1.1981v3.8254l0.17548-0.064132 3.1171-1.1347zm-6.6564 0.018325v3.8247l3.244 1.1805v-3.8254zm10.191 0.20931v2.3137l3.1777-1.1558zm3.2947 1.2425-3.2947 1.1988v3.8254l3.2947-1.1988zm-8.7058 0.45739c0.00929-1.931e-4 0.018327-2.977e-4 0.027485 0 0.25633 0.00851 0.4263 0.20713 0.42638 0.49826 1.953e-4 0.38532-0.29327 0.80469-0.65542 0.93662-0.36226 0.13215-0.65608-0.073306-0.65613-0.4588-6.28e-5 -0.38556 0.2938-0.80504 0.65613-0.93662 0.068422-0.024919 0.13655-0.038114 0.20156-0.039466zm5.2913 0.78369-3.2947 1.1988v3.8247l3.2947-1.1981zm-10.132 1.239-3.2362 1.1769 3.1883 1.1614 3.2362-1.1769zm6.7177 0.00213-3.2926 1.2016v3.8247l3.2926-1.2009zm-3.4124 1.2439-3.2947 1.1988v3.8254l3.2947-1.1988zm-6.6585 0.016195v3.8275l3.244 1.1805v-3.8254zm16.9 0.21143-3.2947 1.1988v3.8247l3.2947-1.1981zm-3.4145 1.2411-3.2926 1.2016v3.8247l3.2926-1.2009zm-3.4145 1.2411-3.2926 1.2016v3.8247l3.2926-1.2009zm-3.4124 1.2432-3.2947 1.1988v3.8254l3.2947-1.1988zm-6.6585 0.019027v3.8247l3.244 1.1805v-3.8254zm13.485 1.4497-3.2947 1.1988v3.8247l3.2947-1.1981zm-3.4145 1.2411-3.2926 1.2016v3.8247l3.2926-1.2009zm2.4018 0.38127c0.0093-1.83e-4 0.01833-3.16e-4 0.02749 0 0.25633 0.0085 0.4263 0.20713 0.42638 0.49826 1.97e-4 0.38532-0.29327 0.80469-0.65542 0.93662-0.36188 0.1316-0.65525-0.07375-0.65542-0.4588-1.95e-4 -0.38532 0.29328-0.80469 0.65542-0.93662 0.06842-0.02494 0.13655-0.03819 0.20156-0.03947zm-5.8142 0.86403-3.244 1.1805v1.4201l3.244 1.1805z", // svg path (https://simpleicons.org/icons/pypi.svg) + ], + }), +); \ No newline at end of file diff --git a/docs/conf.py b/docs/conf.py index 79c0510..45a80e9 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -121,7 +121,7 @@ autodoc_typehints_format = "short" python_use_unqualified_type_names = True nbsphinx_allow_errors = True -nbsphinx_execute = os.getenv("NBSPHINX_EXECUTE", "auto") +nbsphinx_execute = "auto" add_module_names = False copybutton_prompt_text = r">>> |\.\.\. |\$ |In \[\d*\]: | {2,5}\.\.\.: | {5,8}: " copybutton_prompt_is_regexp = True @@ -136,11 +136,12 @@ # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] +html_js_files = ["pypi.js"] intersphinx_mapping = { "python": ("https://docs.python.org/3", None), "pandas": ("https://pandas.pydata.org/docs/", None), "numpy": ("https://numpy.org/doc/stable/", None), "pot": ("https://pythonot.github.io/", None), - "fiftyone": ("https://docs.voxel51.com/objects.inv", None), + "fiftyone": ("https://docs.voxel51.com/", None), } diff --git a/docs/notebooks/1_demo_dataset.ipynb b/docs/notebooks/1_demo_dataset.ipynb index 6f2e12c..63417c9 100644 --- a/docs/notebooks/1_demo_dataset.ipynb +++ b/docs/notebooks/1_demo_dataset.ipynb @@ -52,7 +52,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a5ed75ac35d24b35b41ab42747e6cbce", + "model_id": "3542af2d452c45d9a2de907af0446c5c", "version_major": 2, "version_minor": 0 }, @@ -102,7 +102,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "968f65fbc2b74d2e84dd47a0c62a25c8", + "model_id": "839b049fb7f1415da488222917572091", "version_major": 2, "version_minor": 0 }, @@ -140,7 +140,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "48ab3dd220d047c79d8d5bb9f63261e9", + "model_id": "7e2618f90e4841b4bb23eed22a262b27", "version_major": 2, "version_minor": 0 }, @@ -175,7 +175,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "59ddabd539a3481791df1ff2ecc48502", + "model_id": "ea3aef7e74fd4993a10850c12aa9ef62", "version_major": 2, "version_minor": 0 }, @@ -210,7 +210,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c3213c5d75b48a49bf3b4c07a32a379", + "model_id": "9c276f07f9a94174b46eb4a8e4ef66e8", "version_major": 2, "version_minor": 0 }, @@ -243,7 +243,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f7382a2d9164109a385e59e8a7068af", + "model_id": "fbf95a22080b42069f45fa21cb13bec1", "version_major": 2, "version_minor": 0 }, @@ -304,7 +304,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d20151c04beb4e799d3be60f27e0e5a9", + "model_id": "1830c6af94d14cc9b2a0f995de05de0e", "version_major": 2, "version_minor": 0 }, @@ -318,7 +318,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f1e53f1e68594515b29198602a7445c6", + "model_id": "2765d25940f94154ab972f0a4163552f", "version_major": 2, "version_minor": 0 }, @@ -848,7 +848,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b22b46d136ae4bc0abb6db70bda3f0e8", + "model_id": "894942382e4348e19192c4e35fff114f", "version_major": 2, "version_minor": 0 }, @@ -917,7 +917,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03794cc9ddce45559881102c43cd574d", + "model_id": "46848b28dac8460abe51743163af9939", "version_major": 2, "version_minor": 0 }, @@ -1232,7 +1232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6bd693cf1a914b5fa59f4a8834532ecb", + "model_id": "a9f2687fd4be4fb5b68c5c24c5dcca30", "version_major": 2, "version_minor": 0 }, @@ -1331,7 +1331,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b08b5389a7ab4620be82cb544dc88d39", + "model_id": "0324997a024e48a282a0acc8c897a940", "version_major": 2, "version_minor": 0 }, @@ -1395,7 +1395,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d746392b423a4b84b9637040a9dd2e1a", + "model_id": "7818182c65624d0f8d94471d24684f68", "version_major": 2, "version_minor": 0 }, @@ -1433,7 +1433,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2b753d04c5541b88824566f7a40b680", + "model_id": "6b694a522a394ca9b67905fac307a804", "version_major": 2, "version_minor": 0 }, @@ -1466,7 +1466,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4826e2090a654e8db1257c69cdc30082", + "model_id": "0b06b68be3734a76b0db0808865c20f6", "version_major": 2, "version_minor": 0 }, @@ -1506,7 +1506,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a345266527024e30b8a2b4b2df0abe55", + "model_id": "87fabb6909cd4796a02287f7620b30bd", "version_major": 2, "version_minor": 0 }, @@ -1543,7 +1543,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bdc23846afd048bd9cd92598bbde2cde", + "model_id": "9cee0d099ede47c38f043758df377b04", "version_major": 2, "version_minor": 0 }, @@ -1746,7 +1746,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "431dd3fdd35e439ba3ef146dfaef41d0", + "model_id": "3705bba3da4b4d8888ddf8632a4ef809", "version_major": 2, "version_minor": 0 }, @@ -1760,7 +1760,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9034a0486e444213880dd115b124b29a", + "model_id": "5c42c424c9dd4c08bd87e0f7e307e3fe", "version_major": 2, "version_minor": 0 }, @@ -1811,7 +1811,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c4b523749ced4c1ca8cebd222af169ce", + "model_id": "276b9e6a229d40f1bf0e2dfbe6aa5394", "version_major": 2, "version_minor": 0 }, @@ -1848,7 +1848,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f557dd26fe5d47869e0587d1ba8a8e93", + "model_id": "df16b3e64151406f8c3c36f3c8b766ff", "version_major": 2, "version_minor": 0 }, @@ -1862,7 +1862,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4c576779c6f346489771886ae5ad2338", + "model_id": "56b97a3e4d4745c9941c7551b6d5922d", "version_major": 2, "version_minor": 0 }, @@ -2062,7 +2062,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "85c245b590d945dfab1304c80dcd150e", + "model_id": "c1120547b03e442abc27bc1dd3d922d4", "version_major": 2, "version_minor": 0 }, @@ -2124,7 +2124,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7f2fa2e9df5341a88e41a8b2ee6bbcac", + "model_id": "891e741c61ef4eee9c8edaf8db76710b", "version_major": 2, "version_minor": 0 }, @@ -2166,7 +2166,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f1115ceb5aa941c6bbf645ae66d4e4f3", + "model_id": "8ff53f529b73486a9ef4acaf1c15d27f", "version_major": 2, "version_minor": 0 }, @@ -2200,7 +2200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "44c57e7f38b94e22ae5e8f27e8515a00", + "model_id": "8e1170f526454fa09c7b74e7eb8774df", "version_major": 2, "version_minor": 0 }, @@ -2262,7 +2262,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e027583495b04efb92fa591d37054c95", + "model_id": "8434e5f7d00a4bd8a08920774d7cb8d9", "version_major": 2, "version_minor": 0 }, @@ -2315,40 +2315,42 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "000a5e54b1f8484e853f08284f4e546b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "009f7a851044439da752f8e57b304336": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "003973ba6429441696690892068b30b5": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_0f141228b6734487b226c5525b127ab0", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "012b4fbf313249f0a09551359a62229b": { + "011f9537a8584b1f818c73bd4f1dedf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "017e290a4cf14e09bc26ff3104b7af76": { + "0192e057585f45b2bc91c03e163d744f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "01d1d33815be4b048ac730311c5cfde4": { + "01f868101b094c23b48e203b66298705": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_c417fee3d8f34750a905b314223cd36e", + "layout": "IPY_MODEL_c0010570c6a04f1b978cf99e5d075b34", "outputs": [ { "data": { @@ -2361,17 +2363,23 @@ ] } }, - "027574edd34c481e8534de087f78f615": { + "0207c44a5d5142f5bdc2c9757b174ff4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "026b7cd5221b4ea3baf71572d7437064": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4540d399ec7f46fcb7a177b9a00f9434", + "layout": "IPY_MODEL_d89a9273a3264bdc8aaeac981e15bd3b", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1vehicle
2person
3tool
6abandoned objects
10car
11two-wheeler
12train
20standing person
21sitting person
22laying person
28packet
29bag
30suitcase
31head
32light truck
33heavy truck
34garbage truck
36dump truck
37truck with trailer
38truck without trailer
40tank truck
41dog
42motorcycle
43heavy equipment
44animals
46personal protection equipment
47utility vehicle
48minibus
49taxi
50body parts
51vehicle parts
52taxi light
53safety helmet
54safety vest
55domestic animals
100sedan
101van
102bus
103truck
104special
111bicycle
112scooter
113wheelchair
210biker
211cyclist
212scooter rider
213tricyclist
214wheelchair user
1040police
1041ambulance
1042firefighter
1100motorbike
1121standing scooter
4domestical animal
\n
", - "text/plain": " category string\ncategory_id \n1 vehicle\n2 person\n3 tool\n6 abandoned objects\n10 car\n11 two-wheeler\n12 train\n20 standing person\n21 sitting person\n22 laying person\n28 packet\n29 bag\n30 suitcase\n31 head\n32 light truck\n33 heavy truck\n34 garbage truck\n36 dump truck\n37 truck with trailer\n38 truck without trailer\n40 tank truck\n41 dog\n42 motorcycle\n43 heavy equipment\n44 animals\n46 personal protection equipment\n47 utility vehicle\n48 minibus\n49 taxi\n50 body parts\n51 vehicle parts\n52 taxi light\n53 safety helmet\n54 safety vest\n55 domestic animals\n100 sedan\n101 van\n102 bus\n103 truck\n104 special\n111 bicycle\n112 scooter\n113 wheelchair\n210 biker\n211 cyclist\n212 scooter rider\n213 tricyclist\n214 wheelchair user\n1040 police\n1041 ambulance\n1042 firefighter\n1100 motorbike\n1121 standing scooter\n4 domestical animal" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

34818 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[34818 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2379,53 +2387,85 @@ ] } }, - "02e2428cf39b49ec98839dedd7a9fa70": { + "0324997a024e48a282a0acc8c897a940": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "VBoxModel", "state": { - "layout": "IPY_MODEL_f10b710cf65e4d5dbdf713d4b0f32c92", - "style": "IPY_MODEL_735ede7a517e4568bf64f74ccb196544", - "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "children": [ + "IPY_MODEL_5bfb24a8b50e45cf952978da02f50a3e", + "IPY_MODEL_4f24b4c99bbd4bb986f611bdc3cb0cc5" + ], + "layout": "IPY_MODEL_9d15ec8503094cc2b2668aaeacb22cb8" } }, - "045f69ca6a5c4daca8d9dab65a019d26": { + "03612feab58e4d9aabc7ddeebd96c2d3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "03a9542f0e794f079aad4ea10017013f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_f00954000e754a3e84f45957d4308d35", - "style": "IPY_MODEL_8acdba519fba415ca03e6f98ba8e74da", - "value": "

Dataset object containing 5,000 images and 5,143 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "description_width": "", + "font_size": null, + "text_color": null } }, - "047b32fb1e614c00abbe28673f63a501": { + "0950d27d57f14519bb7d47741f951050": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "0a41d889cee04896b371be88fb621959": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "04c91354041145a9a9bca452c374ed60": { + "0b06b68be3734a76b0db0808865c20f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_8a0098265e3d4d468308cb112570d1eb", + "IPY_MODEL_35c08fe2ab8f4a2ab98fc4dbc7902325" + ], + "layout": "IPY_MODEL_887db8657dbf4b9182d34277082dfbeb" + } + }, + "0c28b3bd2999413286338ace0fc5d4f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_67ddc7fc7ec44f938acb55582824d3cb", - "style": "IPY_MODEL_3edb6f03127e41a7bf1ee7a1104e7f19", - "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "layout": "IPY_MODEL_53b65b08631e4456a44b729be6620421", + "style": "IPY_MODEL_5bfc0fd678c2438e992a5d4eca371e60", + "value": "

Dataset object containing 5,000 images and 9,946 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "063d51c9c39d45c58f6b85fa8b17f63a": { + "0c5d2aa95978492b96a43dd491bb1ce0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "0d15ad48494c4511b4e2a3593479f44d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_b3ad25f52517499fa3b2aaa22bf9cce3", - "IPY_MODEL_7d93632d7a9442b19669af4012c72ed2", - "IPY_MODEL_7c866e276a914c4089c25490d33cb94e" + "IPY_MODEL_aea9b77bd8d14a21aba81dc81fe0e8cd", + "IPY_MODEL_d8da17be643c4a63813fb457a14bd259", + "IPY_MODEL_f61c9d7c59b849afb523a7044b316296" ], - "layout": "IPY_MODEL_a067adea60de4cbab6648d9900b8fb71", + "layout": "IPY_MODEL_a3ccb2ad017443f2b271f9140538e20a", "selected_index": 0, "titles": [ "Images", @@ -2434,65 +2474,109 @@ ] } }, - "076cb45525fa49a5a362cab29f375942": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "0de44c2755cc44d698d99fb3254ea773": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_1f1c81c1ce2c4d14be5ee3773dc94b12", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "description_width": "", + "font_size": null, + "text_color": null } }, - "07f29f6774364a5985f926be014bb2fa": { + "0e3375a643124cf9bbe53c4c807fde5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "08ad16cf9e114914a8ad1185eedf13ed": { - "model_module": "@jupyter-widgets/base", + "0ed3d4a3ff4949cb924eb8df126f35ec": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_2688ffd92c114b6db55756eb9490056b", + "style": "IPY_MODEL_cb80ecd92080438fa9609089ad11c3ca", + "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } }, - "08dfb99ab78644a691b9052a7d2794bd": { + "0f141228b6734487b226c5525b127ab0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "08e2700f97ca48cf8fcbdebbaef52632": { + "1015c44d1eff42be909b27d029faedab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_14b9ce2ddbb348d9ae3fd5dab884ad14", + "style": "IPY_MODEL_36ea5bee58d347cb943a1e3773c9b1a9", + "value": "

Dataset object containing 5,000 images and 41,900 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } + }, + "10389948eb0448bfb97290f8ee6e4654": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "096be585560a408c9d51d1f1422f2473": { + "11713b7e91d44480ae51c2e032c722f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "0a55d68ac86d4c9c8286dbee7b1b0bfd": { + "11d328b63a934f189ade88c99e48d93c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_6b87f1dc969a461997795cc9c83e9312", + "style": "IPY_MODEL_899cfc3a72f241b29a91abc01b84aee7", + "value": "

Dataset object containing 2 images and 1 object\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } + }, + "138b3dfb7b344e32b7c97d0d52aad09a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_25f0fc1cdb4d4ced8da828dad1538444", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "13a7f428c4b34e439869a71eef1664dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1439575ff6fb43709efa478aee4c5744": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_96a55a100d624cbaa1c00842f2c787a8", + "layout": "IPY_MODEL_6fef19ee787a402db9fbcc046ee65a2f", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
2person
111bicycle
100sedan
110motorcycle
102bus
12train
10car
41domestical animal
410dog
61bag
60suitcase
\n
", - "text/plain": " category string\ncategory_id \n2 person\n111 bicycle\n100 sedan\n110 motorcycle\n102 bus\n12 train\n10 car\n41 domestical animal\n410 dog\n61 bag\n60 suitcase" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
535917352582person1valid0.00256.0080.54376.8122650.73800
589077113354zebra24valid260.99158.88141.52194.119978.94125
592005113354zebra24valid3.24151.28265.34175.8216206.37480
57690058393bench15valid44.78242.27547.16224.9882291.54995
322417147729cell phone77valid254.48117.5449.9275.001306.79705
..............................
578099428280bench15valid0.75184.42181.43132.9013841.81490
1117514428280keyboard76valid121.04165.6540.276.02217.08440
330925349837refrigerator82valid14.97104.0262.11166.128470.60700
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
\n

18390 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n535917 352582 person 1 valid 0.00 256.00 \n589077 113354 zebra 24 valid 260.99 158.88 \n592005 113354 zebra 24 valid 3.24 151.28 \n576900 58393 bench 15 valid 44.78 242.27 \n322417 147729 cell phone 77 valid 254.48 117.54 \n... ... ... ... ... ... ... \n578099 428280 bench 15 valid 0.75 184.42 \n1117514 428280 keyboard 76 valid 121.04 165.65 \n330925 349837 refrigerator 82 valid 14.97 104.02 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n\n box_width box_height area \nid \n535917 80.54 376.81 22650.73800 \n589077 141.52 194.11 9978.94125 \n592005 265.34 175.82 16206.37480 \n576900 547.16 224.98 82291.54995 \n322417 49.92 75.00 1306.79705 \n... ... ... ... \n578099 181.43 132.90 13841.81490 \n1117514 40.27 6.02 217.08440 \n330925 62.11 166.12 8470.60700 \n332788 98.25 252.00 23037.46875 \n333685 125.17 318.78 37187.97840 \n\n[18390 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2500,23 +2584,23 @@ ] } }, - "0c708588cba74f558e1ffa788728f142": { + "14b9ce2ddbb348d9ae3fd5dab884ad14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "0dd1ab8bff564398a639b3c2bc691991": { + "154a1b375375452988f208e85549c375": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_fd4ae0e039444acfb4dc5c74c68ba84b", + "layout": "IPY_MODEL_f2c0045fe58b43f59f4729a0edddcbdd", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightareaobject_id
id
3190496493sedan100Paris0.00632.00210.00159.0033390.0000055689.0
3190506493motorbike1100Paris203.00611.0086.0086.007396.0000030178.0
3190516493motorbike1100Paris272.00589.0077.0083.006391.0000048923.0
3190526493motorbike1100Paris341.00559.0069.0091.006279.000008678.0
3190536493standing person20Paris517.00527.0038.0082.003116.00000560.0
.................................
1760513363188bag29valid221.41199.7691.3663.64865.42470NaN
2366778363188person2valid80.77158.4623.1445.34600.52020NaN
900100703076363188person2valid0.00129.00305.00115.004293.00000NaN
2064804311180person2valid0.92103.12446.49536.47125482.38805NaN
1532635105455sedan100valid333.56517.2117.4314.58182.21680NaN
\n

19822 rows × 10 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min \\\nid \n319049 6493 sedan 100 Paris 0.00 \n319050 6493 motorbike 1100 Paris 203.00 \n319051 6493 motorbike 1100 Paris 272.00 \n319052 6493 motorbike 1100 Paris 341.00 \n319053 6493 standing person 20 Paris 517.00 \n... ... ... ... ... ... \n1760513 363188 bag 29 valid 221.41 \n2366778 363188 person 2 valid 80.77 \n900100703076 363188 person 2 valid 0.00 \n2064804 311180 person 2 valid 0.92 \n1532635 105455 sedan 100 valid 333.56 \n\n box_y_min box_width box_height area object_id \nid \n319049 632.00 210.00 159.00 33390.00000 55689.0 \n319050 611.00 86.00 86.00 7396.00000 30178.0 \n319051 589.00 77.00 83.00 6391.00000 48923.0 \n319052 559.00 69.00 91.00 6279.00000 8678.0 \n319053 527.00 38.00 82.00 3116.00000 560.0 \n... ... ... ... ... ... \n1760513 199.76 91.36 63.64 865.42470 NaN \n2366778 158.46 23.14 45.34 600.52020 NaN \n900100703076 129.00 305.00 115.00 4293.00000 NaN \n2064804 103.12 446.49 536.47 125482.38805 NaN \n1532635 517.21 17.43 14.58 182.21680 NaN \n\n[19822 rows x 10 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1animal
2vehicle
3object
\n
", + "text/plain": " category string\ncategory_id \n1 animal\n2 vehicle\n3 object" }, "metadata": {}, "output_type": "display_data" @@ -2524,70 +2608,90 @@ ] } }, - "0e03bf5374ec43afb5f3fd9e974d0898": { + "160d21b7b91544a69bd0ec984366f70e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "164a53399de6479db15055e945ecbdd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "0e212d1045d44311b3a2fa8d30176599": { + "16504d84d20a4054ac3cecaf37bde11d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "0e6f07c8f9234a22a13aeb66a37ae957": { + "1830c6af94d14cc9b2a0f995de05de0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_4bc50cc941d54fe4ba2cc6b011100d54", - "IPY_MODEL_e6ebee4fb350450bb503c6456b6bc95e", - "IPY_MODEL_deece2bc27d64e809b0f0ffe181fe420" + "IPY_MODEL_ea8cea5708c2485c9e3df8088c556f5c", + "IPY_MODEL_48d1ff71f56c4763a7ac4d3736fbddf1" ], - "layout": "IPY_MODEL_2e808708e80347828ec3f9afe38ab7ed", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] + "layout": "IPY_MODEL_afb1b69762974288866c8d07a7ccc0cb" } }, - "0f046094f30d46c8af05aa99c92e13d1": { - "model_module": "@jupyter-widgets/controls", + "196967d5069f4d189f12628fb951211b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_8f45928fe53e497f97878cfe7f645f61", - "style": "IPY_MODEL_f687b523e612474c9c9c9b671423f44d", - "value": "

Dataset object containing 4,722 images and 34,818 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } + "model_name": "LayoutModel", + "state": {} + }, + "1a085fad85ae473fbbcfce695d050dc2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "0f17208476314df2b2fa23c772f6b494": { + "1ab75e49bbbc4821a82133fbe61f062e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "0f83b1c906904cb39135ed23ae9983fa": { + "1b66cc1c194b4bb1b4de420e94dd4e1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "0fa247a61d2a4c5ca4d561745684b411": { + "1ca7cc3b062b49f99c27a62e8fda36e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", + "state": { + "children": [ + "IPY_MODEL_aab9806ceeab454f9401385c09ef3e1a", + "IPY_MODEL_9bd2a2ec87cd4d1cbe44151178f04c26", + "IPY_MODEL_dabce91a4a4b454dabeb9c3a486c0d43" + ], + "layout": "IPY_MODEL_4c5b28016ec346c8978de6c783d973ae", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] + } + }, + "1cf069555e2548a9919cb3015944892c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_463be15ce5f2423f85904578b484bfb1", + "layout": "IPY_MODEL_e82f91fa62f44f708868b2c85acde7b1", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582object3valid112.43195.32214.78438.1948685.67910
535917352582object3valid0.00256.0080.54376.8122650.73800
46790558393object3valid342.52163.33192.2477.475408.64720
171099058393object3valid418.99182.6561.1245.001792.80770
1238519147729object3valid0.0087.01310.67287.9955847.52705
..............................
1192747105455vehicle2valid333.56517.2117.4314.58182.21680
108177428280object3valid3.58189.14176.88125.329942.25095
108343428280object3valid244.05152.2968.5134.491457.96785
109094428280object3valid187.71114.8044.0766.412069.93800
2190513428280object3valid203.58179.65105.27139.557696.12525
\n

20607 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 object 3 valid 112.43 195.32 \n535917 352582 object 3 valid 0.00 256.00 \n467905 58393 object 3 valid 342.52 163.33 \n1710990 58393 object 3 valid 418.99 182.65 \n1238519 147729 object 3 valid 0.00 87.01 \n... ... ... ... ... ... ... \n1192747 105455 vehicle 2 valid 333.56 517.21 \n108177 428280 object 3 valid 3.58 189.14 \n108343 428280 object 3 valid 244.05 152.29 \n109094 428280 object 3 valid 187.71 114.80 \n2190513 428280 object 3 valid 203.58 179.65 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n1192747 17.43 14.58 182.21680 \n108177 176.88 125.32 9942.25095 \n108343 68.51 34.49 1457.96785 \n109094 44.07 66.41 2069.93800 \n2190513 105.27 139.55 7696.12525 \n\n[20607 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2595,35 +2699,23 @@ ] } }, - "109cf86ee75244a3867eede424c06f8c": { + "1d053d8ce8b24c67aa71cdd82d42465e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "11b4a3703f834869bba421f47fd069a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_c80b1625d5c248d4b69aea8814bffd4d", - "IPY_MODEL_9aa80116a3f949efb8b955b1c1859744" - ], - "layout": "IPY_MODEL_dc26d390ce884090834f8acf5f829cdf" - } - }, - "124de2c7cc8e4c51984f12359b9c672d": { + "1d6d3b6ca031443a9d4de538dee1f120": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4fcd449afaed43ef8a17d179816c5007", + "layout": "IPY_MODEL_61f223b762454f7abf68e92c3f05f8ec", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
00person1valid384.43172.2115.1235.74435.14495
10person1valid412.80157.6153.05138.012913.11040
20chair62valid290.69218.0061.8398.481833.78400
30chair62valid317.40219.2421.5811.59210.14820
40chair62valid358.98218.0556.00102.832245.34355
..............................
367764999banana52valid439.3394.35160.05171.8616690.94945
367774999banana52valid467.23280.45172.77177.6322016.99120
367784999banana52valid467.750.0070.4125.881191.12265
367794999banana52valid561.816.8778.1134.131736.78505
367804999banana52valid582.44141.9157.5686.751752.08170
\n

36781 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 0 person 1 valid 384.43 172.21 \n1 0 person 1 valid 412.80 157.61 \n2 0 chair 62 valid 290.69 218.00 \n3 0 chair 62 valid 317.40 219.24 \n4 0 chair 62 valid 358.98 218.05 \n... ... ... ... ... ... ... \n36776 4999 banana 52 valid 439.33 94.35 \n36777 4999 banana 52 valid 467.23 280.45 \n36778 4999 banana 52 valid 467.75 0.00 \n36779 4999 banana 52 valid 561.81 6.87 \n36780 4999 banana 52 valid 582.44 141.91 \n\n box_width box_height area \nid \n0 15.12 35.74 435.14495 \n1 53.05 138.01 2913.11040 \n2 61.83 98.48 1833.78400 \n3 21.58 11.59 210.14820 \n4 56.00 102.83 2245.34355 \n... ... ... ... \n36776 160.05 171.86 16690.94945 \n36777 172.77 177.63 22016.99120 \n36778 70.41 25.88 1191.12265 \n36779 78.11 34.13 1736.78505 \n36780 57.56 86.75 1752.08170 \n\n[36781 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2631,71 +2723,51 @@ ] } }, - "1252043de56a40638fa0ad798643d66d": { + "1e377c71b8164868a36e6a22cd9f1980": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_bd34f01e287a47d79a85c4dfb923c687", + "style": "IPY_MODEL_9ab1868fedf14174836eee31d5aefa66", + "value": "

Dataset object containing 2 images and 0 object\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "132b83b33bf3466e8573a83e33a509c3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "1e78149cc3e44af495d17c80b0e0015b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_945a36e7a2b34d4f933d295211f919ec", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

4722 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[4722 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } }, - "13fb585955bb4ac18e1d173f5be42a61": { + "1ea85e14ffbd4a48aa549195fc5171ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1416f9b474a24937b723b5f3b963bc3d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "14920287853b4463808e03ee1387d1a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_7aa3e04fe4094863b5518df7992fe347", - "style": "IPY_MODEL_3a2b17664ac140d78520a4c5300ae5f5", - "value": "

Dataset object containing 5,000 images and 5,143 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } - }, - "14c9eff2b13d470abb1cd5c212d6c618": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_ccafb9f9f93b452f9b3e814de8580e87", - "IPY_MODEL_0e6f07c8f9234a22a13aeb66a37ae957" - ], - "layout": "IPY_MODEL_3051e8bb7d604f078dc79e2a61112cef" - } - }, - "154d29f071ef4168bb329113f398f898": { + "1ffadd66d4824428bf4bd02321a8baf0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3d766ee091c34dcea2fd04524e345a2b", + "layout": "IPY_MODEL_6bed46054c494a0cafee9c2d8966c99e", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
113354640480Images/valid/000000113354.jpg.jpgvalid
\n
", - "text/plain": " width height relative_path type split\nid \n113354 640 480 Images/valid/000000113354.jpg .jpg valid" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589740113354zebra24valid366.49174.59115.67142.715784.68620
46790558393person1valid342.52163.33192.2477.475408.64720
171099058393person1valid418.99182.6561.1245.001792.80770
..............................
1101888428280laptop73valid118.71138.3444.7935.831405.98065
2190513428280chair62valid203.58179.65105.27139.557696.12525
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

18391 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589740 113354 zebra 24 valid 366.49 174.59 \n467905 58393 person 1 valid 342.52 163.33 \n1710990 58393 person 1 valid 418.99 182.65 \n... ... ... ... ... ... ... \n1101888 428280 laptop 73 valid 118.71 138.34 \n2190513 428280 chair 62 valid 203.58 179.65 \n331107 349837 refrigerator 82 valid 66.00 94.87 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n602093 85.89 40.67 2605.72090 \n589740 115.67 142.71 5784.68620 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n... ... ... ... \n1101888 44.79 35.83 1405.98065 \n2190513 105.27 139.55 7696.12525 \n331107 71.25 194.26 12029.44125 \n333394 113.49 298.65 30406.51295 \n333731 39.61 328.64 12492.52165 \n\n[18391 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2703,12 +2775,12 @@ ] } }, - "159bb66846164353a2cb754c5533539c": { + "201c0ac6623f46f2a1940f2ff1fbfa65": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_c572ffaa12b845f485859ee7a5558489", + "layout": "IPY_MODEL_a0530d16806447fb887a285e3298f421", "outputs": [ { "data": { @@ -2721,51 +2793,29 @@ ] } }, - "15b687c65c5748a69ead0b5e940730bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_ba4c9be84f0049739a9704cc7ba1fc97", - "style": "IPY_MODEL_6737bc5a08654f319515e5b2ca970d9c", - "value": "

Dataset object containing 5,000 images and 5,143 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } - }, - "1616e1562d044a25a4bd62eaa2f2879a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1680a5d5e44c4cf5af0bacc3a29d62c7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "168ef23aeb3a4211b806b250b7f8a65a": { + "20e1a2357cb34893b0a962c96485a5e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "17c92255a8d94ff583db6d932cbb04da": { + "211946f8bec547cc8dc5f8c2b8e9af77": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1806823b51b6461b819a313d85ae308e": { + "215230f60dc54b66975684b3962c0042": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_b4c56bc21a884ca1a28d53108f8b0d72", + "layout": "IPY_MODEL_5de7aa7b0bf149cab034f198eeac4ba7", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2773,17 +2823,29 @@ ] } }, - "18979c5911324f4387b6ebc581d763a8": { + "2315e499822d468c8925f1d42b700cf9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "24c3935dccad491d92f92a9a01fa5f37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "25e0d0eb9c2c40488365ce8a27295bfc": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_ee5240ec7e3b462999c0e290894a742a", + "layout": "IPY_MODEL_164a53399de6479db15055e945ecbdd1", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
3053425640Images/valid/000000352582.jpg.jpgvalid
967640480Images/valid/000000113354.jpg.jpgvalid
524640486Images/valid/000000058393.jpg.jpgvalid
1260500375Images/valid/000000147729.jpg.jpgvalid
2695640383Images/valid/000000310072.jpg.jpgvalid
..................
2702480640Images/valid/000000311180.jpg.jpgvalid
2626640359Images/valid/000000302030.jpg.jpgvalid
905427640Images/valid/000000105455.jpg.jpgvalid
3705500333Images/valid/000000428280.jpg.jpgvalid
3028500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n3053 425 640 Images/valid/000000352582.jpg .jpg valid\n967 640 480 Images/valid/000000113354.jpg .jpg valid\n524 640 486 Images/valid/000000058393.jpg .jpg valid\n1260 500 375 Images/valid/000000147729.jpg .jpg valid\n2695 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n2702 480 640 Images/valid/000000311180.jpg .jpg valid\n2626 640 359 Images/valid/000000302030.jpg .jpg valid\n905 427 640 Images/valid/000000105455.jpg .jpg valid\n3705 500 333 Images/valid/000000428280.jpg .jpg valid\n3028 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person15valid112.43195.32214.78438.1948685.67910
535917352582person15valid0.00256.0080.54376.8122650.73800
46790558393person15valid342.52163.33192.2477.475408.64720
171099058393person15valid418.99182.6561.1245.001792.80770
1238519147729person15valid0.0087.01310.67287.9955847.52705
..............................
1192747105455car7valid333.56517.2117.4314.58182.21680
108177428280chair9valid3.58189.14176.88125.329942.25095
108343428280chair9valid244.05152.2968.5134.491457.96785
109094428280chair9valid187.71114.8044.0766.412069.93800
2190513428280chair9valid203.58179.65105.27139.557696.12525
\n

20950 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 15 valid 112.43 195.32 \n535917 352582 person 15 valid 0.00 256.00 \n467905 58393 person 15 valid 342.52 163.33 \n1710990 58393 person 15 valid 418.99 182.65 \n1238519 147729 person 15 valid 0.00 87.01 \n... ... ... ... ... ... ... \n1192747 105455 car 7 valid 333.56 517.21 \n108177 428280 chair 9 valid 3.58 189.14 \n108343 428280 chair 9 valid 244.05 152.29 \n109094 428280 chair 9 valid 187.71 114.80 \n2190513 428280 chair 9 valid 203.58 179.65 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n1192747 17.43 14.58 182.21680 \n108177 176.88 125.32 9942.25095 \n108343 68.51 34.49 1457.96785 \n109094 44.07 66.41 2069.93800 \n2190513 105.27 139.55 7696.12525 \n\n[20950 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2791,78 +2853,59 @@ ] } }, - "1970b27f18fa40c0b73ca251136c2263": { + "25f0fc1cdb4d4ced8da828dad1538444": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "2688ffd92c114b6db55756eb9490056b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "270e2dd454114fa191b7a78f5cd0f442": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "2765d25940f94154ab972f0a4163552f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_f94af64c1feb49ffabd1d93d796846ba", - "IPY_MODEL_063d51c9c39d45c58f6b85fa8b17f63a" + "IPY_MODEL_c7a7060a8aa7446299af9cc8d1cab19e", + "IPY_MODEL_6e2136aa5aa042c580f2cd537e09932c" ], - "layout": "IPY_MODEL_c8707bef186a4880894260f278718efd" + "layout": "IPY_MODEL_6682ee61f7a54c9980d7fe0d8edf23c9" } }, - "1a50fd3cde1b41f78d149c09b1dc5a17": { + "276b9e6a229d40f1bf0e2dfbe6aa5394": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_83e203111fcb4b0a979bcc78b3a43c5a", - "IPY_MODEL_54516878809f42f981d26be89bde7825", - "IPY_MODEL_e055ea2e96554b52921c4fe1ec020a1d" + "IPY_MODEL_d5e3a1dbf17e4f24bbac1e79e3ccea3a", + "IPY_MODEL_7651b2578bad44ea89843819afce536b" ], - "layout": "IPY_MODEL_8922eb8987db403a882288f07fc9b433", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] - } - }, - "1a5cd5a91c06452787450d9c3bea1c77": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_0e03bf5374ec43afb5f3fd9e974d0898", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589740113354zebra24valid366.49174.59115.67142.715784.68620
46790558393person1valid342.52163.33192.2477.475408.64720
171099058393person1valid418.99182.6561.1245.001792.80770
..............................
1101888428280laptop73valid118.71138.3444.7935.831405.98065
2190513428280chair62valid203.58179.65105.27139.557696.12525
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

18391 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589740 113354 zebra 24 valid 366.49 174.59 \n467905 58393 person 1 valid 342.52 163.33 \n1710990 58393 person 1 valid 418.99 182.65 \n... ... ... ... ... ... ... \n1101888 428280 laptop 73 valid 118.71 138.34 \n2190513 428280 chair 62 valid 203.58 179.65 \n331107 349837 refrigerator 82 valid 66.00 94.87 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n602093 85.89 40.67 2605.72090 \n589740 115.67 142.71 5784.68620 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n... ... ... ... \n1101888 44.79 35.83 1405.98065 \n2190513 105.27 139.55 7696.12525 \n331107 71.25 194.26 12029.44125 \n333394 113.49 298.65 30406.51295 \n333731 39.61 328.64 12492.52165 \n\n[18391 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_4d6380718f7241499844d16e3f92fe3a" } }, - "1aaf92bec1cd442b9330a198f7d56ee1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1cb92b66c8184d67ac0465a03d8c34b3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1d70177086d9490e8acbb8e6a1b7c456": { + "283b8c8563c44ee186d9bbdc7fabceae": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_70fdba3e32804c24b70a1b285a985f71", + "layout": "IPY_MODEL_b7a7836c0928481eb773f233fab0a635", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
229airplane5valid282.23139.3851.2243.78567.94110
329airplane5valid150.178.6374.0977.191454.47215
461airplane5valid9.43105.72621.76183.1540544.34585
561airplane5valid51.40249.06250.4428.092415.22505
6139airplane5valid0.00142.01566.13143.9430298.91215
..............................
367784838zebra24valid70.112.16433.62434.69122687.61775
367794966zebra24valid107.31141.6479.67159.545946.64725
367804966zebra24valid342.29164.82224.42222.7823360.62700
367814966zebra24valid418.15164.9182.4663.513431.98040
367824966zebra24valid190.56143.9161.39172.455648.15435
\n

36781 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n2 29 airplane 5 valid 282.23 139.38 \n3 29 airplane 5 valid 150.17 8.63 \n4 61 airplane 5 valid 9.43 105.72 \n5 61 airplane 5 valid 51.40 249.06 \n6 139 airplane 5 valid 0.00 142.01 \n... ... ... ... ... ... ... \n36778 4838 zebra 24 valid 70.11 2.16 \n36779 4966 zebra 24 valid 107.31 141.64 \n36780 4966 zebra 24 valid 342.29 164.82 \n36781 4966 zebra 24 valid 418.15 164.91 \n36782 4966 zebra 24 valid 190.56 143.91 \n\n box_width box_height area \nid \n2 51.22 43.78 567.94110 \n3 74.09 77.19 1454.47215 \n4 621.76 183.15 40544.34585 \n5 250.44 28.09 2415.22505 \n6 566.13 143.94 30298.91215 \n... ... ... ... \n36778 433.62 434.69 122687.61775 \n36779 79.67 159.54 5946.64725 \n36780 224.42 222.78 23360.62700 \n36781 82.46 63.51 3431.98040 \n36782 61.39 172.45 5648.15435 \n\n[36781 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2870,17 +2913,17 @@ ] } }, - "1ef59c8060c844fe982a644c188e4f31": { + "2960d6dcc47d49a381e77ae2aa56613d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_43e6dc6680604f52951eeee42e046a9e", - "IPY_MODEL_502ed02a10684ca3824cfb4c98159fd2", - "IPY_MODEL_027574edd34c481e8534de087f78f615" + "IPY_MODEL_4fc4c1800ef645c293daa0d77c993f92", + "IPY_MODEL_ccbe6d78c4684bbe927f1efdbdc0f52d", + "IPY_MODEL_61f1d9cd68e047468f7e6476f0e8a038" ], - "layout": "IPY_MODEL_c809aeda1ca94d378c54d210891e5745", + "layout": "IPY_MODEL_c497c29f8fa5485fb878086fd794cf28", "selected_index": 0, "titles": [ "Images", @@ -2889,81 +2932,102 @@ ] } }, - "1f1c81c1ce2c4d14be5ee3773dc94b12": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1fc92f635def49f58903c29563dec9c3": { + "29c931608dbf4121b1cbb276ae817e39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2055ad3d77a84aa69d7093f46273f036": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "20c7d2be1b8a40a28b0ad3abdf22127b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "2a3ca1e55ef24e72b351e4d45e0d7d53": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_bedb4bd1670c4e22b1ec4fdb51fab79e", - "style": "IPY_MODEL_e5203aea1a034e4f8f07478a1518f32c", - "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "layout": "IPY_MODEL_ea17d1aba9cb4d4cac2d795b5295c04c", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
0640426Images/valid/000000000139.jpg.jpgvalid
1586640Images/valid/000000000285.jpg.jpgvalid
2640483Images/valid/000000000632.jpg.jpgvalid
3375500Images/valid/000000000724.jpg.jpgvalid
4428640Images/valid/000000000776.jpg.jpgvalid
..................
4995640354Images/valid/000000581317.jpg.jpgvalid
4996612612Images/valid/000000581357.jpg.jpgvalid
4997640427Images/valid/000000581482.jpg.jpgvalid
4998478640Images/valid/000000581615.jpg.jpgvalid
4999640478Images/valid/000000581781.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n0 640 426 Images/valid/000000000139.jpg .jpg valid\n1 586 640 Images/valid/000000000285.jpg .jpg valid\n2 640 483 Images/valid/000000000632.jpg .jpg valid\n3 375 500 Images/valid/000000000724.jpg .jpg valid\n4 428 640 Images/valid/000000000776.jpg .jpg valid\n... ... ... ... ... ...\n4995 640 354 Images/valid/000000581317.jpg .jpg valid\n4996 612 612 Images/valid/000000581357.jpg .jpg valid\n4997 640 427 Images/valid/000000581482.jpg .jpg valid\n4998 478 640 Images/valid/000000581615.jpg .jpg valid\n4999 640 478 Images/valid/000000581781.jpg .jpg valid\n\n[5000 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "23897ec8a10d41658c76b17eb00cf4d4": { + "2a9067f1f71a45dea576b74070e26373": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "23ed09427de242f3b230bd3767bf66b0": { + "2cf5d9a88c3247949c850946da75ea68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2572b7a106bd469ea145786b8d9bf1d4": { + "2d24a8f5bd594fc3a8d31f3474631e19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_20c7d2be1b8a40a28b0ad3abdf22127b", - "IPY_MODEL_d6c7a6732abe4d088111573889108ec2" + "IPY_MODEL_41d1fb5f8ec24526abd47402a099866c", + "IPY_MODEL_b25e07525da2464e96bc0df015a82213", + "IPY_MODEL_ac087e9ac3c140c79ea14a6e6aaffbb7" ], - "layout": "IPY_MODEL_b162419c877c48d5a1025451a2672beb" + "layout": "IPY_MODEL_437c53d37a254225b1c2780895aa6178", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] + } + }, + "2d7db77130b54cafb143a1b7c507fa71": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_7bf208ab93ca491faa2b1a31d26647b8", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "26ef8be6383a42208015aed17d6569c8": { + "2eca2d773c854eefba61ef50e9161d37": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "27386ac3f6d946fba2d17329720bf368": { + "2ecdad4b4e9541b3a2ba68727f5906b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2778d61fc01a436e916253188585e30e": { + "2eda4e5db5ac43819b8bbcb8291987d2": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_6970548c33f84974964ded501928192b", + "layout": "IPY_MODEL_85f426e2ee5c45d5bec8cd768186b99c", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
00chair62valid244.82230.45104.7287.695184.22260
10potted plant64valid183.36136.5660.7892.392464.93305
20potted plant64valid347.35212.3782.51143.007034.62185
30bed65valid3.27266.85401.23208.2564019.87940
40book84valid416.0043.00153.00303.0020933.00000
..............................
367764997skateboard41valid128.77152.7250.0017.21364.30040
367774998person1valid0.002.53469.53215.2653359.63985
367784998hot dog58valid39.91140.73308.31232.6046341.95470
367794998hot dog58valid147.27282.15246.36206.4514878.08055
367804999toilet70valid139.32386.03191.56235.1034120.51835
\n

36781 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 0 chair 62 valid 244.82 230.45 \n1 0 potted plant 64 valid 183.36 136.56 \n2 0 potted plant 64 valid 347.35 212.37 \n3 0 bed 65 valid 3.27 266.85 \n4 0 book 84 valid 416.00 43.00 \n... ... ... ... ... ... ... \n36776 4997 skateboard 41 valid 128.77 152.72 \n36777 4998 person 1 valid 0.00 2.53 \n36778 4998 hot dog 58 valid 39.91 140.73 \n36779 4998 hot dog 58 valid 147.27 282.15 \n36780 4999 toilet 70 valid 139.32 386.03 \n\n box_width box_height area \nid \n0 104.72 87.69 5184.22260 \n1 60.78 92.39 2464.93305 \n2 82.51 143.00 7034.62185 \n3 401.23 208.25 64019.87940 \n4 153.00 303.00 20933.00000 \n... ... ... ... \n36776 50.00 17.21 364.30040 \n36777 469.53 215.26 53359.63985 \n36778 308.31 232.60 46341.95470 \n36779 246.36 206.45 14878.08055 \n36780 191.56 235.10 34120.51835 \n\n[36781 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2971,17 +3035,17 @@ ] } }, - "27fb01ccb6a046238a4f7b5203c95ac6": { + "2fce65d13d27434db3c945733110feba": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_b24720adc0f24e8d8b8e4dbe2c94c131", + "layout": "IPY_MODEL_91e96815232c44b5835ed421e1516dca", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
519208640406Images/valid/000000519208.jpg.jpgvalid
38048299500Images/valid/000000038048.jpg.jpgvalid
..................
286708640481Images/valid/000000286708.jpg.jpgvalid
507893427640Images/valid/000000507893.jpg.jpgvalid
524280640640Images/valid/000000524280.jpg.jpgvalid
344059640427Images/valid/000000344059.jpg.jpgvalid
311295640427Images/valid/000000311295.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n519208 640 406 Images/valid/000000519208.jpg .jpg valid\n38048 299 500 Images/valid/000000038048.jpg .jpg valid\n... ... ... ... ... ...\n286708 640 481 Images/valid/000000286708.jpg .jpg valid\n507893 427 640 Images/valid/000000507893.jpg .jpg valid\n524280 640 640 Images/valid/000000524280.jpg .jpg valid\n344059 640 427 Images/valid/000000344059.jpg .jpg valid\n311295 640 427 Images/valid/000000311295.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
113354640480Images/valid/000000113354.jpg.jpgvalid
\n
", + "text/plain": " width height relative_path type split\nid \n113354 640 480 Images/valid/000000113354.jpg .jpg valid" }, "metadata": {}, "output_type": "display_data" @@ -2989,95 +3053,95 @@ ] } }, - "285fb49c96394563a1a30947308ef787": { - "model_module": "@jupyter-widgets/controls", + "301211805d4c40f580e4d61f9e359404": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "TabModel", - "state": { - "children": [ - "IPY_MODEL_d4a3c75f41264f90a6ad3589e582f618", - "IPY_MODEL_976a13b001fc4c14b8d5f1ce936a2950", - "IPY_MODEL_a0f0c5093c8f41ef9ec406b059d3a1ca" - ], - "layout": "IPY_MODEL_ca5cf90d157543809b2d73cc8535dc2a", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] - } + "model_name": "LayoutModel", + "state": {} }, - "2984d46b4b6f45668aafca06ab5bd639": { + "31c5d5f134534aa2b95fe24095c20404": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_fd96899755ae416ba93e40a6f52d069d", - "style": "IPY_MODEL_867bb3c5528c4a8cb46413d99d287c03", - "value": "

Dataset object containing 1 image and 3 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "description_width": "", + "font_size": null, + "text_color": null } }, - "2a66014449e14c65adac74c2f5889e69": { + "31e84d0a79824ce9a92d05234d3306bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2a791bf4d78f4c49aa450bb808d1d4b5": { - "model_module": "@jupyter-widgets/base", + "3209edc462354a22a7d772253934a13c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } }, - "2afb03082ce5455da5102614d6fe5ddb": { + "33dd6b044ff448fb8de7b1e2d0f8cf58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2dc2f8f05d8e42628b68a3fea7a100d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TabModel", + "33e8c53a668c4f61bfde88a0a536ea24": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "children": [ - "IPY_MODEL_a9ff964c470040dcb0296533c1fc1549", - "IPY_MODEL_7fa275d5df164db3aa3f9a553ad8502b", - "IPY_MODEL_e74072710cb94a5980b1e917c349935b" - ], - "layout": "IPY_MODEL_012b4fbf313249f0a09551359a62229b", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" + "layout": "IPY_MODEL_5fec21e49c344cbc9c63d4c1d51cd4bb", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
519208640406Images/valid/000000519208.jpg.jpgvalid
38048299500Images/valid/000000038048.jpg.jpgvalid
..................
286708640481Images/valid/000000286708.jpg.jpgvalid
507893427640Images/valid/000000507893.jpg.jpgvalid
524280640640Images/valid/000000524280.jpg.jpgvalid
344059640427Images/valid/000000344059.jpg.jpgvalid
311295640427Images/valid/000000311295.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n519208 640 406 Images/valid/000000519208.jpg .jpg valid\n38048 299 500 Images/valid/000000038048.jpg .jpg valid\n... ... ... ... ... ...\n286708 640 481 Images/valid/000000286708.jpg .jpg valid\n507893 427 640 Images/valid/000000507893.jpg .jpg valid\n524280 640 640 Images/valid/000000524280.jpg .jpg valid\n344059 640 427 Images/valid/000000344059.jpg .jpg valid\n311295 640 427 Images/valid/000000311295.jpg .jpg valid\n\n[5000 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "2e25bf2637de4af08efb9739a7ebb958": { + "3542af2d452c45d9a2de907af0446c5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_14920287853b4463808e03ee1387d1a7", - "IPY_MODEL_2dc2f8f05d8e42628b68a3fea7a100d4" + "IPY_MODEL_98e9c540954743faacdc7b8ddea8124a", + "IPY_MODEL_c6f7a9fda097487d8e8c50b0cacdf846" ], - "layout": "IPY_MODEL_168ef23aeb3a4211b806b250b7f8a65a" + "layout": "IPY_MODEL_e10607eb5ef04569a4c9a797967b2da8" + } + }, + "357957009e864da7ae317388a2ca3d36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_f5df0a434c4f4e739d799df0d6930bf8", + "style": "IPY_MODEL_3e34ae6be7b2489d9142f8e1b0946796", + "value": "

Dataset object containing 5,000 images and 20,950 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "2e38665363164a55b26ecb0fd0749d95": { + "35c08fe2ab8f4a2ab98fc4dbc7902325": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_bb4462384b104b4e9366bf2bc44e2481", - "IPY_MODEL_c88eb912639647eeb382b2315fb3144a", - "IPY_MODEL_f4b6c2ed9df4470da8287ed4be6c26b5" + "IPY_MODEL_ecf576b29a014db481e9829081b09c68", + "IPY_MODEL_283b8c8563c44ee186d9bbdc7fabceae", + "IPY_MODEL_ec10a02b68d543e2a7202f4f193def5c" ], - "layout": "IPY_MODEL_2afb03082ce5455da5102614d6fe5ddb", + "layout": "IPY_MODEL_b75cc350015f4ed68787675876e5fc41", "selected_index": 0, "titles": [ "Images", @@ -3086,7 +3150,7 @@ ] } }, - "2e6825f75c644e88a01793a485919326": { + "36ea5bee58d347cb943a1e3773c9b1a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3096,54 +3160,39 @@ "text_color": null } }, - "2e808708e80347828ec3f9afe38ab7ed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "2f2794c6b07c45c1a6ddafee759a526f": { + "3705bba3da4b4d8888ddf8632a4ef809": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_daeaa77f2e9347cc9f7d1387f782ed57", - "IPY_MODEL_1a5cd5a91c06452787450d9c3bea1c77", - "IPY_MODEL_8c32105a7b0846368814d96ae9039ddb" + "IPY_MODEL_aaf31450ec344590a7e1bc8e6c8260ce", + "IPY_MODEL_bf859b3043c14f999f630d7d9657d4b1" ], - "layout": "IPY_MODEL_92d5116bf412467a838dd76d8df73614", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] + "layout": "IPY_MODEL_f8bb9c3a15c947268a2a91f733da3611" } }, - "301bb5947ad745acb8a094b89f6cc57d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3051e8bb7d604f078dc79e2a61112cef": { - "model_module": "@jupyter-widgets/base", + "386e20fbf47c415bb2b40866aca1044d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_81cbd34f476d414db06011869f6c9433", + "style": "IPY_MODEL_893459f11983415abc20160387905a2a", + "value": "

Dataset object containing 4,722 images and 34,818 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } }, - "316625e8ff664a0f812a42015acd1a6b": { + "3998d3b3576e4118b902136127fa1523": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_41565d002d4f4565b81b985a0fe50a32", + "layout": "IPY_MODEL_1ab75e49bbbc4821a82133fbe61f062e", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3151,94 +3200,45 @@ ] } }, - "3488cb51a933422dbe5951753f695c6f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "34eb9b2674ae420189320d71c7421a95": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TabModel", - "state": { - "children": [ - "IPY_MODEL_4a270344a06e4faa9d86e8f36f8b8956", - "IPY_MODEL_b980e912c86342cc8d197540ea3b61d2", - "IPY_MODEL_e2d11117fd6242049b20c972dc998ee5" - ], - "layout": "IPY_MODEL_3954c39fdbf94cc38865860f03ec62d8", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] - } - }, - "35f84b4b3b814c9f8c65f601f9de52c7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3636ee4edac34014ba95ff95469cea5b": { + "3ab115aa46224d2a85191285da2cb442": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3824bfa0da4b46e0bb4523494f50280f": { + "3b12a2ff1760404eb9d0f402e98dcd25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3835d004868d4b47a29e5d65c48087a5": { + "3e34ae6be7b2489d9142f8e1b0946796": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_87a48cdb0ca64a55a39ae698e23cd06f", - "style": "IPY_MODEL_64418921d8914a6e887078465095cf30", - "value": "

Dataset object containing 5,000 images and 16,147 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "description_width": "", + "font_size": null, + "text_color": null } }, - "393643a9a08e4705afc5d024a8e91484": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3954c39fdbf94cc38865860f03ec62d8": { + "3ea45c5b477b49308bb0e428284e33f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "398811d645e74eb2b6878e128266be86": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "3f8d9a7fce6b45e5b6a4816b261a57aa": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "children": [ - "IPY_MODEL_3835d004868d4b47a29e5d65c48087a5", - "IPY_MODEL_58f94001d4c44146a6733268d5185464" - ], - "layout": "IPY_MODEL_702944a9ef084dcc9988bdcc77bfcf7e" - } - }, - "3a04df0b705943e68db3868587365f3e": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_5d4f001c0387412cb6e01ebdf0d15469", + "layout": "IPY_MODEL_c17e5469e14e45389ae5670a74d3fd6b", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1vehicle
2person
3tool
6abandoned objects
10car
11two-wheeler
12train
20standing person
21sitting person
22laying person
28packet
29bag
30suitcase
31head
32light truck
33heavy truck
34garbage truck
36dump truck
37truck with trailer
38truck without trailer
40tank truck
41dog
42motorcycle
43heavy equipment
44animals
46personal protection equipment
47utility vehicle
48minibus
49taxi
50body parts
51vehicle parts
52taxi light
53safety helmet
54safety vest
55domestic animals
100sedan
101van
102bus
103truck
104special
111bicycle
112scooter
113wheelchair
210biker
211cyclist
212scooter rider
213tricyclist
214wheelchair user
1040police
1041ambulance
1042firefighter
1100motorbike
1121standing scooter
4domestical animal
\n
", - "text/plain": " category string\ncategory_id \n1 vehicle\n2 person\n3 tool\n6 abandoned objects\n10 car\n11 two-wheeler\n12 train\n20 standing person\n21 sitting person\n22 laying person\n28 packet\n29 bag\n30 suitcase\n31 head\n32 light truck\n33 heavy truck\n34 garbage truck\n36 dump truck\n37 truck with trailer\n38 truck without trailer\n40 tank truck\n41 dog\n42 motorcycle\n43 heavy equipment\n44 animals\n46 personal protection equipment\n47 utility vehicle\n48 minibus\n49 taxi\n50 body parts\n51 vehicle parts\n52 taxi light\n53 safety helmet\n54 safety vest\n55 domestic animals\n100 sedan\n101 van\n102 bus\n103 truck\n104 special\n111 bicycle\n112 scooter\n113 wheelchair\n210 biker\n211 cyclist\n212 scooter rider\n213 tricyclist\n214 wheelchair user\n1040 police\n1041 ambulance\n1042 firefighter\n1100 motorbike\n1121 standing scooter\n4 domestical animal" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
519208640406Images/valid/000000519208.jpg.jpgvalid
38048299500Images/valid/000000038048.jpg.jpgvalid
..................
185409640424Images/valid/000000185409.jpg.jpgvalid
577976640428Images/valid/000000577976.jpg.jpgvalid
363188640425Images/valid/000000363188.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
\n

2500 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n519208 640 406 Images/valid/000000519208.jpg .jpg valid\n38048 299 500 Images/valid/000000038048.jpg .jpg valid\n... ... ... ... ... ...\n185409 640 424 Images/valid/000000185409.jpg .jpg valid\n577976 640 428 Images/valid/000000577976.jpg .jpg valid\n363188 640 425 Images/valid/000000363188.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n\n[2500 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3246,27 +3246,17 @@ ] } }, - "3a2b17664ac140d78520a4c5300ae5f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3a5cf62bea6d48008548721eb87a96dd": { + "41d1fb5f8ec24526abd47402a099866c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_83e29b501c044da3b5be5a08ea147d34", + "layout": "IPY_MODEL_5e66223c872e4da2ac883f200de13e76", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid" }, "metadata": {}, "output_type": "display_data" @@ -3274,35 +3264,17 @@ ] } }, - "3b42f9bab9dd407e8bde63abe3e9128e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3ba04c02df0443dc8bf6107f9f7e4a6c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3bed826eda09408fb0bf2e04c4e47e36": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3bef596caff049db9aaeb69ed2efedab": { + "42ec456df0704ce7b9e76650e63624c6": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_804aa7ff9b67495599d73b6e14784430", + "layout": "IPY_MODEL_f1b510f4d8bb4bba8ad06e2e2a53619f", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
357584310072vehicle1valid223.850.00258.8369.0814718.47935
358258310072vehicle1valid0.001.94135.9966.276989.84750
363154310072vehicle1valid170.890.0071.0636.961729.26630
1337431310072vehicle1valid631.997.358.0115.4691.97330
1368385310072vehicle1valid0.000.00131.8771.467558.39585
..............................
10068189806vehicle1valid263.63193.10180.04103.5910866.03335
46540189806vehicle1valid130.91165.2094.54104.735204.68295
344755363188vehicle1valid590.03198.9249.97106.424084.58345
1420625363188vehicle1valid221.41199.7691.3663.64865.42470
1192747105455vehicle1valid333.56517.2117.4314.58182.21680
\n

5143 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n357584 310072 vehicle 1 valid 223.85 0.00 \n358258 310072 vehicle 1 valid 0.00 1.94 \n363154 310072 vehicle 1 valid 170.89 0.00 \n1337431 310072 vehicle 1 valid 631.99 7.35 \n1368385 310072 vehicle 1 valid 0.00 0.00 \n... ... ... ... ... ... ... \n10068 189806 vehicle 1 valid 263.63 193.10 \n46540 189806 vehicle 1 valid 130.91 165.20 \n344755 363188 vehicle 1 valid 590.03 198.92 \n1420625 363188 vehicle 1 valid 221.41 199.76 \n1192747 105455 vehicle 1 valid 333.56 517.21 \n\n box_width box_height area \nid \n357584 258.83 69.08 14718.47935 \n358258 135.99 66.27 6989.84750 \n363154 71.06 36.96 1729.26630 \n1337431 8.01 15.46 91.97330 \n1368385 131.87 71.46 7558.39585 \n... ... ... ... \n10068 180.04 103.59 10866.03335 \n46540 94.54 104.73 5204.68295 \n344755 49.97 106.42 4084.58345 \n1420625 91.36 63.64 865.42470 \n1192747 17.43 14.58 182.21680 \n\n[5143 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
00chair62valid244.82230.45104.7287.695184.22260
10potted plant64valid183.36136.5660.7892.392464.93305
20potted plant64valid347.35212.3782.51143.007034.62185
30bed65valid3.27266.85401.23208.2564019.87940
40book84valid416.0043.00153.00303.0020933.00000
..............................
367764997skateboard41valid128.77152.7250.0017.21364.30040
367774998person1valid0.002.53469.53215.2653359.63985
367784998hot dog58valid39.91140.73308.31232.6046341.95470
367794998hot dog58valid147.27282.15246.36206.4514878.08055
367804999toilet70valid139.32386.03191.56235.1034120.51835
\n

36781 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 0 chair 62 valid 244.82 230.45 \n1 0 potted plant 64 valid 183.36 136.56 \n2 0 potted plant 64 valid 347.35 212.37 \n3 0 bed 65 valid 3.27 266.85 \n4 0 book 84 valid 416.00 43.00 \n... ... ... ... ... ... ... \n36776 4997 skateboard 41 valid 128.77 152.72 \n36777 4998 person 1 valid 0.00 2.53 \n36778 4998 hot dog 58 valid 39.91 140.73 \n36779 4998 hot dog 58 valid 147.27 282.15 \n36780 4999 toilet 70 valid 139.32 386.03 \n\n box_width box_height area \nid \n0 104.72 87.69 5184.22260 \n1 60.78 92.39 2464.93305 \n2 82.51 143.00 7034.62185 \n3 401.23 208.25 64019.87940 \n4 153.00 303.00 20933.00000 \n... ... ... ... \n36776 50.00 17.21 364.30040 \n36777 469.53 215.26 53359.63985 \n36778 308.31 232.60 46341.95470 \n36779 246.36 206.45 14878.08055 \n36780 191.56 235.10 34120.51835 \n\n[36781 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3310,43 +3282,23 @@ ] } }, - "3d766ee091c34dcea2fd04524e345a2b": { + "42f49954f3374d9db6e010ab6ad3e6cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3edb6f03127e41a7bf1ee7a1104e7f19": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3f0c3be359c24aa1b99018d38ebfd8f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3f1ac25d4b364b9ebea791c29d10fa9f": { + "4348de50280a44f8a13045980f827e59": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_dda17401931441fbb6a1eba601641cf4", + "layout": "IPY_MODEL_ccd0c39ae0d646ff9987e51710d01995", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1aeroplane
2bicycle
3bird
4boat
5bottle
6bus
7car
8cat
9chair
10cow
11diningtable
12dog
13horse
14motorbike
15person
16pottedplant
17sheep
18sofa
19train
20tvmonitor
21something else
\n
", + "text/plain": " category string\ncategory_id \n1 aeroplane\n2 bicycle\n3 bird\n4 boat\n5 bottle\n6 bus\n7 car\n8 cat\n9 chair\n10 cow\n11 diningtable\n12 dog\n13 horse\n14 motorbike\n15 person\n16 pottedplant\n17 sheep\n18 sofa\n19 train\n20 tvmonitor\n21 something else" }, "metadata": {}, "output_type": "display_data" @@ -3354,29 +3306,23 @@ ] } }, - "41565d002d4f4565b81b985a0fe50a32": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4158d35d56e14215b55f2422f226c30e": { + "437c53d37a254225b1c2780895aa6178": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "43e6dc6680604f52951eeee42e046a9e": { + "444834df6a7744f28333fc00e08f015e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_047b32fb1e614c00abbe28673f63a501", + "layout": "IPY_MODEL_5637e06d76514666b1d7fcf8d7cca48f", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
649319201080Images/NORM0020_frame0282.jpg.jpgParis
589019201080Images/NORM0018_frame0928.jpg.jpgParis
224719201080Images/NORM0015_frame183.jpg.jpgParis
218919201080Images/NORM0015_frame123.jpg.jpgParis
574519201080Images/NORM0018_frame0763.jpg.jpgParis
..................
98287415640Images/valid/000000098287.jpg.jpgvalid
507893427640Images/valid/000000507893.jpg.jpgvalid
524280640640Images/valid/000000524280.jpg.jpgvalid
344059640427Images/valid/000000344059.jpg.jpgvalid
311295640427Images/valid/000000311295.jpg.jpgvalid
\n

5076 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n6493 1920 1080 Images/NORM0020_frame0282.jpg .jpg Paris\n5890 1920 1080 Images/NORM0018_frame0928.jpg .jpg Paris\n2247 1920 1080 Images/NORM0015_frame183.jpg .jpg Paris\n2189 1920 1080 Images/NORM0015_frame123.jpg .jpg Paris\n5745 1920 1080 Images/NORM0018_frame0763.jpg .jpg Paris\n... ... ... ... ... ...\n98287 415 640 Images/valid/000000098287.jpg .jpg valid\n507893 427 640 Images/valid/000000507893.jpg .jpg valid\n524280 640 640 Images/valid/000000524280.jpg .jpg valid\n344059 640 427 Images/valid/000000344059.jpg .jpg valid\n311295 640 427 Images/valid/000000311295.jpg .jpg valid\n\n[5076 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3384,35 +3330,70 @@ ] } }, - "43ef1fcd80f94bb99be75f2dec29a56b": { - "model_module": "@jupyter-widgets/base", + "4451e043cc5a4137b2ee99911d110707": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "TabModel", + "state": { + "children": [ + "IPY_MODEL_1e78149cc3e44af495d17c80b0e0015b", + "IPY_MODEL_026b7cd5221b4ea3baf71572d7437064", + "IPY_MODEL_a799764dd9924208b78132c873ae60c0" + ], + "layout": "IPY_MODEL_98dc851e52e94d1682bf1c559530db18", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] + } + }, + "44adcddaa7994223b957a8385b296bc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_0e3375a643124cf9bbe53c4c807fde5f", + "style": "IPY_MODEL_d6fe810a673b4df3b2dee940a9ca2897", + "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } }, - "447412cd9b0947179642eaea08e1877d": { + "46848b28dac8460abe51743163af9939": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_e1666ba9e67d45b38ea7819535b4f572", - "IPY_MODEL_cdb2244ab6324797b2d8130dd7866839" + "IPY_MODEL_0c28b3bd2999413286338ace0fc5d4f7", + "IPY_MODEL_d2a60949036846628bae224850cb21e5" ], - "layout": "IPY_MODEL_e48adcf89c284bb28ad16c35c5e4ee35" + "layout": "IPY_MODEL_0a41d889cee04896b371be88fb621959" } }, - "44d3c3fb8de24a27b5fd44fb2ec9d271": { + "46e2e51db1ef4897ba11de653a89fd50": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "47f377ac62584f86894264ba0e7c570d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "48d1ff71f56c4763a7ac4d3736fbddf1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_6aeeaf8046744074b0cafe49d4ef7fbe", - "IPY_MODEL_9e5d5573a9094a1cb9d624e4d3fb5a75", - "IPY_MODEL_0a55d68ac86d4c9c8286dbee7b1b0bfd" + "IPY_MODEL_f288611e5cda425387ea6350e30e1af2", + "IPY_MODEL_ccc69999bf004cdcbde3354d74c78850", + "IPY_MODEL_3998d3b3576e4118b902136127fa1523" ], - "layout": "IPY_MODEL_fbda8167b66041dbbe24a73e25266251", + "layout": "IPY_MODEL_b60cb52cd3e4493283ae46259ea964f1", "selected_index": 0, "titles": [ "Images", @@ -3421,63 +3402,39 @@ ] } }, - "4540d399ec7f46fcb7a177b9a00f9434": { + "494d15aa83c24127ac87b30c627df20b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "4576ccff891c4058b055cee50877ea63": { + "4af4df92ffd74f19a264c6298fec7326": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "45971d712c1c4124958d079879aedb19": { + "4b5120a0e8274f3babc93743e1e22543": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "45ec8003721e4cf1b4a58d20528ef42e": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_dbcd7f1499f840b3acd3d02b57937b0d", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
46790558393person1valid342.52163.33192.2477.475408.64720
57690058393bench15valid44.78242.27547.16224.9882291.54995
..............................
109094428280chair62valid187.71114.8044.0766.412069.93800
578099428280bench15valid0.75184.42181.43132.9013841.81490
1101888428280laptop73valid118.71138.3444.7935.831405.98065
1117514428280keyboard76valid121.04165.6540.276.02217.08440
2190513428280chair62valid203.58179.65105.27139.557696.12525
\n

18670 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n467905 58393 person 1 valid 342.52 163.33 \n576900 58393 bench 15 valid 44.78 242.27 \n... ... ... ... ... ... ... \n109094 428280 chair 62 valid 187.71 114.80 \n578099 428280 bench 15 valid 0.75 184.42 \n1101888 428280 laptop 73 valid 118.71 138.34 \n1117514 428280 keyboard 76 valid 121.04 165.65 \n2190513 428280 chair 62 valid 203.58 179.65 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n467905 192.24 77.47 5408.64720 \n576900 547.16 224.98 82291.54995 \n... ... ... ... \n109094 44.07 66.41 2069.93800 \n578099 181.43 132.90 13841.81490 \n1101888 44.79 35.83 1405.98065 \n1117514 40.27 6.02 217.08440 \n2190513 105.27 139.55 7696.12525 \n\n[18670 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_5a2c3538561d4536a1a05f56c6f27729", + "style": "IPY_MODEL_f29e02fa480a4e51b63c85f5a07560dc", + "value": "

Dataset object containing 5,000 images and 41,900 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "463be15ce5f2423f85904578b484bfb1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4690c73043464e7ba090c642268abcce": { + "4c156340353a448aa26c07d00f3534ee": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_46edbcf57d4a4e9b874f7aff37ab1482", + "layout": "IPY_MODEL_db244fd778374cd9a420b62f45288859", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1vehicle
3animal
2bag
\n
", - "text/plain": " category string\ncategory_id \n1 vehicle\n3 animal\n2 bag" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person15valid112.43195.32214.78438.1948685.67910
535917352582person15valid0.00256.0080.54376.8122650.73800
46790558393person15valid342.52163.33192.2477.475408.64720
171099058393person15valid418.99182.6561.1245.001792.80770
1238519147729person15valid0.0087.01310.67287.9955847.52705
..............................
906701608203105455car7valid333.56517.2117.4314.58182.21680
906700523633428280chair9valid3.58189.14176.88125.329942.25095
906700523799428280chair9valid244.05152.2968.5134.491457.96785
906700524550428280chair9valid187.71114.8044.0766.412069.93800
906702605969428280chair9valid203.58179.65105.27139.557696.12525
\n

41900 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 15 valid 112.43 195.32 \n535917 352582 person 15 valid 0.00 256.00 \n467905 58393 person 15 valid 342.52 163.33 \n1710990 58393 person 15 valid 418.99 182.65 \n1238519 147729 person 15 valid 0.00 87.01 \n... ... ... ... ... ... ... \n906701608203 105455 car 7 valid 333.56 517.21 \n906700523633 428280 chair 9 valid 3.58 189.14 \n906700523799 428280 chair 9 valid 244.05 152.29 \n906700524550 428280 chair 9 valid 187.71 114.80 \n906702605969 428280 chair 9 valid 203.58 179.65 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n906701608203 17.43 14.58 182.21680 \n906700523633 176.88 125.32 9942.25095 \n906700523799 68.51 34.49 1457.96785 \n906700524550 44.07 66.41 2069.93800 \n906702605969 105.27 139.55 7696.12525 \n\n[41900 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3485,81 +3442,35 @@ ] } }, - "46bdf0a0e4274de496ea0d49c9131198": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_9d2fbc38a7c741a2a614b451744d80cb", - "style": "IPY_MODEL_2e6825f75c644e88a01793a485919326", - "value": "

Dataset object containing 5,000 images and 5,143 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } - }, - "46edbcf57d4a4e9b874f7aff37ab1482": { + "4c5b28016ec346c8978de6c783d973ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "484a683f058b4f2a83759a3a75551b9f": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_b8e095a727784910a052e99351504d70", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightareaconfidence
id
0352582suitcase60valid212.5320.0212.5320.068000.00.5
1113354bag61valid0.00.0320.0240.076800.00.5
\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 352582 suitcase 60 valid 212.5 320.0 \n1 113354 bag 61 valid 0.0 0.0 \n\n box_width box_height area confidence \nid \n0 212.5 320.0 68000.0 0.5 \n1 320.0 240.0 76800.0 0.5 " - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "4887dda2b4d747b99b53512b1b0d8269": { + "4d6380718f7241499844d16e3f92fe3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "4939eadc268842cfba551558ca478ef8": { + "4e9e02be8d9f47a883d4b2e4c7dd3f5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "4a270344a06e4faa9d86e8f36f8b8956": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_df472973aa4c44fea3741d7fe7a7f497", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "4a40453dda51443aa1c46c0544921913": { + "4f24b4c99bbd4bb986f611bdc3cb0cc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_316625e8ff664a0f812a42015acd1a6b", - "IPY_MODEL_ed07319a399f4efeaae1d78094d4cfae", - "IPY_MODEL_159bb66846164353a2cb754c5533539c" + "IPY_MODEL_9f7b0de8a9b044f0a71fb2f1470c8821", + "IPY_MODEL_a76843a616534c5a84fda9a53ae68fc7", + "IPY_MODEL_154a1b375375452988f208e85549c375" ], - "layout": "IPY_MODEL_dfc2ca586a0848a58b017be7170c7d7a", + "layout": "IPY_MODEL_6260ada7134c4ecf9439b463e1f5f7ce", "selected_index": 0, "titles": [ "Images", @@ -3568,23 +3479,23 @@ ] } }, - "4b4f61a08ab14e84a569e86bf313fff6": { + "4f56193640fa4ba2aad64ba1d62e31f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "4bc50cc941d54fe4ba2cc6b011100d54": { + "4f94b08d95494bd1937c5e54d3b73942": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_2a66014449e14c65adac74c2f5889e69", + "layout": "IPY_MODEL_211946f8bec547cc8dc5f8c2b8e9af77", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3592,41 +3503,27 @@ ] } }, - "4d401b4c71724b63b1789803f9ea6065": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4ee5ed5311bd4f009788a22e991dceb3": { + "4fa27b89ba544bd1ac84c2e3179e827f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HTMLStyleModel", "state": { - "children": [ - "IPY_MODEL_6d3e5311d9634394ac2797808999ed71", - "IPY_MODEL_bc91ae56ebad45d3a817b074743e94ab" - ], - "layout": "IPY_MODEL_43ef1fcd80f94bb99be75f2dec29a56b" + "description_width": "", + "font_size": null, + "text_color": null } }, - "4fcd449afaed43ef8a17d179816c5007": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "502ed02a10684ca3824cfb4c98159fd2": { + "4fc4c1800ef645c293daa0d77c993f92": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_91db72919c7f449e93e2aea90950134e", + "layout": "IPY_MODEL_e345619f1ff841aeb526c74d4a9afa99", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightareaobject_id
id
3190496493sedan100Paris0.00632.00210.00159.0033390.0000055689.0
3190506493motorbike1100Paris203.00611.0086.0086.007396.0000030178.0
3190516493motorbike1100Paris272.00589.0077.0083.006391.0000048923.0
3190526493motorbike1100Paris341.00559.0069.0091.006279.000008678.0
3190536493standing person20Paris517.00527.0038.0082.003116.00000560.0
.................................
1760513363188bag29valid221.41199.7691.3663.64865.42470NaN
2366778363188person2valid80.77158.4623.1445.34600.52020NaN
900100703076363188person2valid0.00129.00305.00115.004293.00000NaN
2064804311180person2valid0.92103.12446.49536.47125482.38805NaN
1532635105455sedan100valid333.56517.2117.4314.58182.21680NaN
\n

19822 rows × 10 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min \\\nid \n319049 6493 sedan 100 Paris 0.00 \n319050 6493 motorbike 1100 Paris 203.00 \n319051 6493 motorbike 1100 Paris 272.00 \n319052 6493 motorbike 1100 Paris 341.00 \n319053 6493 standing person 20 Paris 517.00 \n... ... ... ... ... ... \n1760513 363188 bag 29 valid 221.41 \n2366778 363188 person 2 valid 80.77 \n900100703076 363188 person 2 valid 0.00 \n2064804 311180 person 2 valid 0.92 \n1532635 105455 sedan 100 valid 333.56 \n\n box_y_min box_width box_height area object_id \nid \n319049 632.00 210.00 159.00 33390.00000 55689.0 \n319050 611.00 86.00 86.00 7396.00000 30178.0 \n319051 589.00 77.00 83.00 6391.00000 48923.0 \n319052 559.00 69.00 91.00 6279.00000 8678.0 \n319053 527.00 38.00 82.00 3116.00000 560.0 \n... ... ... ... ... ... \n1760513 199.76 91.36 63.64 865.42470 NaN \n2366778 158.46 23.14 45.34 600.52020 NaN \n900100703076 129.00 305.00 115.00 4293.00000 NaN \n2064804 103.12 446.49 536.47 125482.38805 NaN \n1532635 517.21 17.43 14.58 182.21680 NaN \n\n[19822 rows x 10 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3634,43 +3531,29 @@ ] } }, - "5325a2c6f5e347cdbdb4246f9b7c00f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "532b8e439d5c4ed186408450a1986139": { - "model_module": "@jupyter-widgets/controls", + "4fe4608ef6e34b44a3d0cd32ccd2b5b1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } + "model_name": "LayoutModel", + "state": {} }, - "53767ed0b7284f4ea7dc2cdf4ce80ec3": { + "519250c97654434ca2363551c820cc58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "53a00408a1f04292b07cf3406f47fb46": { + "51b02e3991f24fd6b09d0dbe65efc24f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3636ee4edac34014ba95ff95469cea5b", + "layout": "IPY_MODEL_9c627853f4364595b494460cc3f26a45", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
4604503053person1valid112.43195.32214.78438.1948685.67910
5359173053person1valid0.00256.0080.54376.8122650.73800
6020933053frisbee34valid171.63424.0385.8940.672605.72090
589077967zebra24valid260.99158.88141.52194.119978.94125
589740967zebra24valid366.49174.59115.67142.715784.68620
..............................
3311073028refrigerator82valid66.0094.8771.25194.2612029.44125
3327883028refrigerator82valid138.0062.6398.25252.0023037.46875
3333943028refrigerator82valid234.4429.87113.49298.6530406.51295
3336853028refrigerator82valid335.0410.48125.17318.7837187.97840
3337313028refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 3053 person 1 valid 112.43 195.32 \n535917 3053 person 1 valid 0.00 256.00 \n602093 3053 frisbee 34 valid 171.63 424.03 \n589077 967 zebra 24 valid 260.99 158.88 \n589740 967 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 3028 refrigerator 82 valid 66.00 94.87 \n332788 3028 refrigerator 82 valid 138.00 62.63 \n333394 3028 refrigerator 82 valid 234.44 29.87 \n333685 3028 refrigerator 82 valid 335.04 10.48 \n333731 3028 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
357584310072Vehicle2valid223.850.00258.8369.0814718.47935
358258310072Vehicle2valid0.001.94135.9966.276989.84750
363154310072Vehicle2valid170.890.0071.0636.961729.26630
1337431310072Vehicle2valid631.997.358.0115.4691.97330
135610638048Vehicle2valid78.67202.2412.398.7280.88790
..............................
1192747105455Vehicle2valid333.56517.2117.4314.58182.21680
108177428280Object3valid3.58189.14176.88125.329942.25095
108343428280Object3valid244.05152.2968.5134.491457.96785
109094428280Object3valid187.71114.8044.0766.412069.93800
2190513428280Object3valid203.58179.65105.27139.557696.12525
\n

9946 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n357584 310072 Vehicle 2 valid 223.85 0.00 \n358258 310072 Vehicle 2 valid 0.00 1.94 \n363154 310072 Vehicle 2 valid 170.89 0.00 \n1337431 310072 Vehicle 2 valid 631.99 7.35 \n1356106 38048 Vehicle 2 valid 78.67 202.24 \n... ... ... ... ... ... ... \n1192747 105455 Vehicle 2 valid 333.56 517.21 \n108177 428280 Object 3 valid 3.58 189.14 \n108343 428280 Object 3 valid 244.05 152.29 \n109094 428280 Object 3 valid 187.71 114.80 \n2190513 428280 Object 3 valid 203.58 179.65 \n\n box_width box_height area \nid \n357584 258.83 69.08 14718.47935 \n358258 135.99 66.27 6989.84750 \n363154 71.06 36.96 1729.26630 \n1337431 8.01 15.46 91.97330 \n1356106 12.39 8.72 80.88790 \n... ... ... ... \n1192747 17.43 14.58 182.21680 \n108177 176.88 125.32 9942.25095 \n108343 68.51 34.49 1457.96785 \n109094 44.07 66.41 2069.93800 \n2190513 105.27 139.55 7696.12525 \n\n[9946 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3678,17 +3561,17 @@ ] } }, - "54516878809f42f981d26be89bde7825": { + "5224138b18e0495f9b681b7636e508a6": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_921b40e58c44473b8d5a67a34da00af5", + "layout": "IPY_MODEL_f7fb857318714b95b6a4cadc2be3f42c", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

34818 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[34818 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
3053425640Images/valid/000000352582.jpg.jpgvalid
967640480Images/valid/000000113354.jpg.jpgvalid
524640486Images/valid/000000058393.jpg.jpgvalid
1260500375Images/valid/000000147729.jpg.jpgvalid
2695640383Images/valid/000000310072.jpg.jpgvalid
..................
2702480640Images/valid/000000311180.jpg.jpgvalid
2626640359Images/valid/000000302030.jpg.jpgvalid
905427640Images/valid/000000105455.jpg.jpgvalid
3705500333Images/valid/000000428280.jpg.jpgvalid
3028500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n3053 425 640 Images/valid/000000352582.jpg .jpg valid\n967 640 480 Images/valid/000000113354.jpg .jpg valid\n524 640 486 Images/valid/000000058393.jpg .jpg valid\n1260 500 375 Images/valid/000000147729.jpg .jpg valid\n2695 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n2702 480 640 Images/valid/000000311180.jpg .jpg valid\n2626 640 359 Images/valid/000000302030.jpg .jpg valid\n905 427 640 Images/valid/000000105455.jpg .jpg valid\n3705 500 333 Images/valid/000000428280.jpg .jpg valid\n3028 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3696,17 +3579,23 @@ ] } }, - "553c5382871c477299213d6002d4f9aa": { + "53b65b08631e4456a44b729be6620421": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "550e373b38a54c63974397f70115ae35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_643130daf5e040059783bf86462bc418", - "IPY_MODEL_95bd19b5f5754ce5bdfc87db5795802c", - "IPY_MODEL_c6e20f31e53c4079a45532555e89d324" + "IPY_MODEL_ecc7c3f906844b789a62761ee82aeaa9", + "IPY_MODEL_5e25cb3d316940da91e387f91394de24", + "IPY_MODEL_96b0b9ebdf5d49278fcc636d5fc1bdb3" ], - "layout": "IPY_MODEL_4939eadc268842cfba551558ca478ef8", + "layout": "IPY_MODEL_e2d3753a75aa4fb1924f269175afeeab", "selected_index": 0, "titles": [ "Images", @@ -3715,12 +3604,12 @@ ] } }, - "56186a46f31b4463b97bfe5fc93e454b": { + "552731e964f94279afc56c9dcd2b189c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_9708ae09d6604e1ebdbca8d38412ac07", + "layout": "IPY_MODEL_16504d84d20a4054ac3cecaf37bde11d", "outputs": [ { "data": { @@ -3733,155 +3622,105 @@ ] } }, - "562914ef9a784277a4e422b9e7b527fe": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5656d447bdef47bc91c96668e7dc2340": { + "56261b59834f402d86eb8a3bcdae35d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_f135817d2e6744df8c945f080d445594", - "style": "IPY_MODEL_8244e9e4890143389d55a26624f309a1", - "value": "

Dataset object containing 4,722 images and 34,818 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "layout": "IPY_MODEL_9892b77e263a4a86a7d43102ddf3268f", + "style": "IPY_MODEL_13a7f428c4b34e439869a71eef1664dd", + "value": "

Dataset object containing 5,000 images and 20,607 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "56c48fbbd0504372bcbda6bb1fadf27b": { + "5637e06d76514666b1d7fcf8d7cca48f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5785926c454d47ac882ec6924f2d8120": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "56b97a3e4d4745c9941c7551b6d5922d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", "state": { - "layout": "IPY_MODEL_132b83b33bf3466e8573a83e33a509c3", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "children": [ + "IPY_MODEL_6e3740ae905e42c08c6c1bca288da9ab", + "IPY_MODEL_8c824c73911a4b55afcd739b89c329be" + ], + "layout": "IPY_MODEL_ea276594fe214985ae130d548ca3874a" + } + }, + "596a11fbefff42649404d420ef29f5b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null } }, - "57f1eb88d2634517a5c81043bd698835": { + "5a2c3538561d4536a1a05f56c6f27729": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "584b7077356449debe4c2b23f086ed9d": { + "5bd0b17b9d4e4008939ba492c6a5377a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5886930366ee4599934de4e17cf93815": { + "5bfb24a8b50e45cf952978da02f50a3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "HTMLModel", "state": { - "children": [ - "IPY_MODEL_1806823b51b6461b819a313d85ae308e", - "IPY_MODEL_8bbc7a41f9f841f2a8f6a01a98301a2d", - "IPY_MODEL_ef65891409c4419cb88edce2789aa500" - ], - "layout": "IPY_MODEL_fe9750a4cfca439798219a9dcb1c53bd", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] + "layout": "IPY_MODEL_6e7c50674eb54e0eb6542ae4a1c674e9", + "style": "IPY_MODEL_0de44c2755cc44d698d99fb3254ea773", + "value": "

Dataset object containing 5,000 images and 20,607 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "58f94001d4c44146a6733268d5185464": { + "5bfc0fd678c2438e992a5d4eca371e60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "HTMLStyleModel", "state": { - "children": [ - "IPY_MODEL_1d70177086d9490e8acbb8e6a1b7c456", - "IPY_MODEL_c00c162a663347309527f2fd54726282", - "IPY_MODEL_cb34e0259b7b42dca74f2e85e1c4cd83" - ], - "layout": "IPY_MODEL_8889cd6c0f9049e9be19071ff8afaba5", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] + "description_width": "", + "font_size": null, + "text_color": null } }, - "5a017b0de8d848dfb02a489f6bdc0623": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5c61c9fce03241ebbe04b4901e823fb6": { + "5c42c424c9dd4c08bd87e0f7e307e3fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_99863d1d296942bfbdd46bf539f89dd4", - "IPY_MODEL_553c5382871c477299213d6002d4f9aa" + "IPY_MODEL_44adcddaa7994223b957a8385b296bc9", + "IPY_MODEL_cda0463595624e2b80fb4a544b051fe8" ], - "layout": "IPY_MODEL_4b4f61a08ab14e84a569e86bf313fff6" + "layout": "IPY_MODEL_deed7abbfb4942c1bc39b66fb3b7efe4" } }, - "5d4f001c0387412cb6e01ebdf0d15469": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "621338b9b40b4f12b0ec1611a641de2d": { + "5de7aa7b0bf149cab034f198eeac4ba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "62bc8c027154456fb5c527d518cd47f6": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_97bff9602f63475ea1f3ce1f071c56de", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1Vehicle
3Animal
2Bag
\n
", - "text/plain": " category string\ncategory_id \n1 Vehicle\n3 Animal\n2 Bag" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "643130daf5e040059783bf86462bc418": { + "5e25cb3d316940da91e387f91394de24": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3824bfa0da4b46e0bb4523494f50280f", + "layout": "IPY_MODEL_fcc69010130c4e48b06ad36220cd6afe", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
447789640427Images/valid/000000447789.jpg.jpgvalid
514540429640Images/valid/000000514540.jpg.jpgvalid
476491336500Images/valid/000000476491.jpg.jpgvalid
41488640369Images/valid/000000041488.jpg.jpgvalid
121153640480Images/valid/000000121153.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

4706 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n447789 640 427 Images/valid/000000447789.jpg .jpg valid\n514540 429 640 Images/valid/000000514540.jpg .jpg valid\n476491 336 500 Images/valid/000000476491.jpg .jpg valid\n41488 640 369 Images/valid/000000041488.jpg .jpg valid\n121153 640 480 Images/valid/000000121153.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[4706 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

34818 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[34818 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3889,55 +3728,45 @@ ] } }, - "64418921d8914a6e887078465095cf30": { - "model_module": "@jupyter-widgets/controls", + "5e66223c872e4da2ac883f200de13e76": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } + "model_name": "LayoutModel", + "state": {} }, - "649d1e92ccb14b228ac02eae8896d0e3": { + "5fb86192340c4526a85900dff25de564": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "653a77ebba1c491d989943e25eabb70f": { - "model_module": "@jupyter-widgets/controls", + "5fec21e49c344cbc9c63d4c1d51cd4bb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_e227b9c8d8194bdf809f1902470c9900", - "style": "IPY_MODEL_a906e40c8dfe421791496e5865113d98", - "value": "

Dataset object containing 5,000 images and 18,390 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } + "model_name": "LayoutModel", + "state": {} }, - "658364e0b52b422eac66d0535c4b7960": { + "612ca0d15721443686599d046a2aae92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HTMLStyleModel", "state": { - "children": [ - "IPY_MODEL_02e2428cf39b49ec98839dedd7a9fa70", - "IPY_MODEL_2e38665363164a55b26ecb0fd0749d95" - ], - "layout": "IPY_MODEL_08dfb99ab78644a691b9052a7d2794bd" + "description_width": "", + "font_size": null, + "text_color": null } }, - "658725de461042c19f6367fdfe0fd4df": { + "61e34fb2b60a401785348f10aff29d49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_f736863a3caf4884a3920ece493808a4", - "IPY_MODEL_e237f37431f04ccdaefe08f7b83935b6", - "IPY_MODEL_62bc8c027154456fb5c527d518cd47f6" + "IPY_MODEL_3f8d9a7fce6b45e5b6a4816b261a57aa", + "IPY_MODEL_9beaa6e96d8c404f80fdd3c9ddcfb569", + "IPY_MODEL_201c0ac6623f46f2a1940f2ff1fbfa65" ], - "layout": "IPY_MODEL_b8a7a55a22e448aabe6ce60dec5abc5f", + "layout": "IPY_MODEL_c6a12a1635ad495cb5d87a4f8c586bfb", "selected_index": 0, "titles": [ "Images", @@ -3946,51 +3775,59 @@ ] } }, - "65ded6abaf904351b029a28e9981d390": { + "61f1d9cd68e047468f7e6476f0e8a038": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_7e414c835aa845c8959bb9cad0ac41f7", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1something else
2bicycle
3bird
4boat
5bottle
6bus
7car
8cat
9chair
10cow
11diningtable
12dog
13horse
14motorbike
15person
16pottedplant
17sheep
18sofa
19train
20tvmonitor
21aeroplane
\n
", + "text/plain": " category string\ncategory_id \n1 something else\n2 bicycle\n3 bird\n4 boat\n5 bottle\n6 bus\n7 car\n8 cat\n9 chair\n10 cow\n11 diningtable\n12 dog\n13 horse\n14 motorbike\n15 person\n16 pottedplant\n17 sheep\n18 sofa\n19 train\n20 tvmonitor\n21 aeroplane" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "61f223b762454f7abf68e92c3f05f8ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6737bc5a08654f319515e5b2ca970d9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67ddc7fc7ec44f938acb55582824d3cb": { + "6260ada7134c4ecf9439b463e1f5f7ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6970548c33f84974964ded501928192b": { + "62a01d8f832140b98d3ff6af30de8e5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "69e62664e91d46899829f613e0a8dcb7": { + "63b646f5fe4b44e5a9eb540679b38179": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6aeeaf8046744074b0cafe49d4ef7fbe": { + "63d68d45e3cc4478ac890817f2e48433": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_26ef8be6383a42208015aed17d6569c8", + "layout": "IPY_MODEL_2ecdad4b4e9541b3a2ba68727f5906b1", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1aeroplane
2bicycle
3bird
4boat
5bottle
6bus
7car
8cat
9chair
10cow
11diningtable
12dog
13horse
14motorbike
15person
16pottedplant
17sheep
18sofa
19train
20tvmonitor
2121
\n
", + "text/plain": " category string\ncategory_id \n1 aeroplane\n2 bicycle\n3 bird\n4 boat\n5 bottle\n6 bus\n7 car\n8 cat\n9 chair\n10 cow\n11 diningtable\n12 dog\n13 horse\n14 motorbike\n15 person\n16 pottedplant\n17 sheep\n18 sofa\n19 train\n20 tvmonitor\n21 21" }, "metadata": {}, "output_type": "display_data" @@ -3998,39 +3835,33 @@ ] } }, - "6b9a21be70e4477289078e28ba381d45": { + "64846a560b0a4f4ebdd1e0f811fa78f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HTMLModel", "state": { - "children": [ - "IPY_MODEL_04c91354041145a9a9bca452c374ed60", - "IPY_MODEL_285fb49c96394563a1a30947308ef787" - ], - "layout": "IPY_MODEL_f13edfa87c774800b7e35122ce7a5a3d" + "layout": "IPY_MODEL_f32c7f63262042e18b56852b902d40c0", + "style": "IPY_MODEL_4fa27b89ba544bd1ac84c2e3179e827f", + "value": "

Dataset object containing 2,500 images and 18,670 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "6d3e5311d9634394ac2797808999ed71": { - "model_module": "@jupyter-widgets/controls", + "648ed8ee168c4e6a839ca4bbebcab214": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_1cb92b66c8184d67ac0465a03d8c34b3", - "style": "IPY_MODEL_1252043de56a40638fa0ad798643d66d", - "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } + "model_name": "LayoutModel", + "state": {} }, - "6e0419c231fa4d2f85d0bf5ba7a88cbf": { + "65527049e5a7455e9598477f43a0cfd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_e632e552abae4b039b2c3233f81dfdc9", - "IPY_MODEL_c93d2cfc133b401282f6f045f1bb0223", - "IPY_MODEL_b64aba9ae4c0484594269ccb84a79bdd" + "IPY_MODEL_5224138b18e0495f9b681b7636e508a6", + "IPY_MODEL_67c85ec5354c4e9e8ffd53ea9acc0b11", + "IPY_MODEL_79f9cc5c06fb4eba9ba0de8566cdf87a" ], - "layout": "IPY_MODEL_56c48fbbd0504372bcbda6bb1fadf27b", + "layout": "IPY_MODEL_729e431035174cacae488a83a622db8a", "selected_index": 0, "titles": [ "Images", @@ -4039,29 +3870,23 @@ ] } }, - "6f265d1d74fb43609d0e826b82e49209": { - "model_module": "@jupyter-widgets/controls", + "6682ee61f7a54c9980d7fe0d8edf23c9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_2984d46b4b6f45668aafca06ab5bd639", - "IPY_MODEL_b217ba852a2d4c8eb6ab3838bed537d6" - ], - "layout": "IPY_MODEL_be1a9f5f95b741a7a45238443bceafb3" - } + "model_name": "LayoutModel", + "state": {} }, - "6fd00400082e4cd887a8653fded7f9ef": { + "67c85ec5354c4e9e8ffd53ea9acc0b11": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_a74d5337152d43b7997d568b0e8858da", + "layout": "IPY_MODEL_270e2dd454114fa191b7a78f5cd0f442", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
2person
111bicycle
100sedan
110motorcycle
102bus
12train
10car
41domestical animal
410dog
61bag
60suitcase
\n
", - "text/plain": " category string\ncategory_id \n2 person\n111 bicycle\n100 sedan\n110 motorcycle\n102 bus\n12 train\n10 car\n41 domestical animal\n410 dog\n61 bag\n60 suitcase" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
4604503053person1valid112.43195.32214.78438.1948685.67910
5359173053person1valid0.00256.0080.54376.8122650.73800
6020933053frisbee34valid171.63424.0385.8940.672605.72090
589077967zebra24valid260.99158.88141.52194.119978.94125
589740967zebra24valid366.49174.59115.67142.715784.68620
..............................
3311073028refrigerator82valid66.0094.8771.25194.2612029.44125
3327883028refrigerator82valid138.0062.6398.25252.0023037.46875
3333943028refrigerator82valid234.4429.87113.49298.6530406.51295
3336853028refrigerator82valid335.0410.48125.17318.7837187.97840
3337313028refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 3053 person 1 valid 112.43 195.32 \n535917 3053 person 1 valid 0.00 256.00 \n602093 3053 frisbee 34 valid 171.63 424.03 \n589077 967 zebra 24 valid 260.99 158.88 \n589740 967 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 3028 refrigerator 82 valid 66.00 94.87 \n332788 3028 refrigerator 82 valid 138.00 62.63 \n333394 3028 refrigerator 82 valid 234.44 29.87 \n333685 3028 refrigerator 82 valid 335.04 10.48 \n333731 3028 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4069,117 +3894,154 @@ ] } }, - "702944a9ef084dcc9988bdcc77bfcf7e": { - "model_module": "@jupyter-widgets/base", + "68d2c10291ca463ab2cf05746ca09093": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } }, - "70926fd032a64534883038ebe234265d": { + "6b694a522a394ca9b67905fac307a804": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_46bdf0a0e4274de496ea0d49c9131198", - "IPY_MODEL_5886930366ee4599934de4e17cf93815" + "IPY_MODEL_0ed3d4a3ff4949cb924eb8df126f35ec", + "IPY_MODEL_c0624f6057fb4ff99ed6509a042305ab" ], - "layout": "IPY_MODEL_1616e1562d044a25a4bd62eaa2f2879a" + "layout": "IPY_MODEL_dd35663bc1bb459985d75e20a0f2885d" } }, - "70fdba3e32804c24b70a1b285a985f71": { + "6b87f1dc969a461997795cc9c83e9312": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "6bed46054c494a0cafee9c2d8966c99e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "731539e5661148739eb8978c60efc5f8": { + "6d671c481a0946cd93a7b18099a60178": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "TabModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_adb47fe414d54c978a5f98dd7a48f48e", + "IPY_MODEL_c1569471bd79471f9f571bd1e87ccf78", + "IPY_MODEL_770a97b7e9c346799bd1275a523fc26d" + ], + "layout": "IPY_MODEL_c7aea4c13f6f4566a773c0c3cc2be09c", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "735ede7a517e4568bf64f74ccb196544": { + "6e2136aa5aa042c580f2cd537e09932c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "TabModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_2fce65d13d27434db3c945733110feba", + "IPY_MODEL_b2c77bc7409b41af9dbe153b7d7df4da", + "IPY_MODEL_4f94b08d95494bd1937c5e54d3b73942" + ], + "layout": "IPY_MODEL_519250c97654434ca2363551c820cc58", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] + } + }, + "6e3740ae905e42c08c6c1bca288da9ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_e7ea818c8348466b9b548a435e1af377", + "style": "IPY_MODEL_596a11fbefff42649404d420ef29f5b4", + "value": "

Dataset object containing 5,000 images and 18,390 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "740572852b404ab6b16bf51549e42d4a": { + "6e7c50674eb54e0eb6542ae4a1c674e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "74323b14a37d444ba817ba62f83ca5a8": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_08e2700f97ca48cf8fcbdebbaef52632", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
519208640406Images/valid/000000519208.jpg.jpgvalid
38048299500Images/valid/000000038048.jpg.jpgvalid
..................
185409640424Images/valid/000000185409.jpg.jpgvalid
577976640428Images/valid/000000577976.jpg.jpgvalid
363188640425Images/valid/000000363188.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
\n

2500 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n519208 640 406 Images/valid/000000519208.jpg .jpg valid\n38048 299 500 Images/valid/000000038048.jpg .jpg valid\n... ... ... ... ... ...\n185409 640 424 Images/valid/000000185409.jpg .jpg valid\n577976 640 428 Images/valid/000000577976.jpg .jpg valid\n363188 640 425 Images/valid/000000363188.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n\n[2500 rows x 5 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } + "6ec0501159b94ca7aaeac2588c2e0a9e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "7aa3e04fe4094863b5518df7992fe347": { + "6fef19ee787a402db9fbcc046ee65a2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7b439da9083b497faeabde84b2b6936f": { + "706174f71ed04da59539226646743f27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "TabModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_444834df6a7744f28333fc00e08f015e", + "IPY_MODEL_1cf069555e2548a9919cb3015944892c", + "IPY_MODEL_f628d827f3494e61a5e13c72567f8983" + ], + "layout": "IPY_MODEL_03612feab58e4d9aabc7ddeebd96c2d3", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "7c2e5007141746398e1584d8537559f5": { - "model_module": "@jupyter-widgets/controls", + "70a610378d7c4d968d72b37013edc46b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } + "model_name": "LayoutModel", + "state": {} + }, + "729e431035174cacae488a83a622db8a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "7c4075c4396641a8a621885ace1f814b": { + "739b133f251f4d3bacfeda8ad058349a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7c866e276a914c4089c25490d33cb94e": { + "73a2a103d75245dfb95b7c238620db6e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_c259d5ca11ee4e528183f9b259bba383", + "layout": "IPY_MODEL_2eca2d773c854eefba61ef50e9161d37", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589740113354zebra24valid366.49174.59115.67142.715784.68620
46790558393person1valid342.52163.33192.2477.475408.64720
171099058393person1valid418.99182.6561.1245.001792.80770
..............................
1101888428280laptop73valid118.71138.3444.7935.831405.98065
2190513428280chair62valid203.58179.65105.27139.557696.12525
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

18391 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589740 113354 zebra 24 valid 366.49 174.59 \n467905 58393 person 1 valid 342.52 163.33 \n1710990 58393 person 1 valid 418.99 182.65 \n... ... ... ... ... ... ... \n1101888 428280 laptop 73 valid 118.71 138.34 \n2190513 428280 chair 62 valid 203.58 179.65 \n331107 349837 refrigerator 82 valid 66.00 94.87 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n602093 85.89 40.67 2605.72090 \n589740 115.67 142.71 5784.68620 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n... ... ... ... \n1101888 44.79 35.83 1405.98065 \n2190513 105.27 139.55 7696.12525 \n331107 71.25 194.26 12029.44125 \n333394 113.49 298.65 30406.51295 \n333731 39.61 328.64 12492.52165 \n\n[18391 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4187,33 +4049,17 @@ ] } }, - "7ce4a1cd59fc43ef918afdbab535f086": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7d72cbcc122343e686927d09922b941d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7d93632d7a9442b19669af4012c72ed2": { + "7624ce323ee04e1c9158288ba8c702ef": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_87c6f34844c14f9193debd3e77035b7d", + "layout": "IPY_MODEL_46e2e51db1ef4897ba11de653a89fd50", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589740113354zebra24valid366.49174.59115.67142.715784.68620
46790558393person1valid342.52163.33192.2477.475408.64720
171099058393person1valid418.99182.6561.1245.001792.80770
..............................
1101888428280laptop73valid118.71138.3444.7935.831405.98065
2190513428280chair62valid203.58179.65105.27139.557696.12525
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

18391 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589740 113354 zebra 24 valid 366.49 174.59 \n467905 58393 person 1 valid 342.52 163.33 \n1710990 58393 person 1 valid 418.99 182.65 \n... ... ... ... ... ... ... \n1101888 428280 laptop 73 valid 118.71 138.34 \n2190513 428280 chair 62 valid 203.58 179.65 \n331107 349837 refrigerator 82 valid 66.00 94.87 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n602093 85.89 40.67 2605.72090 \n589740 115.67 142.71 5784.68620 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n... ... ... ... \n1101888 44.79 35.83 1405.98065 \n2190513 105.27 139.55 7696.12525 \n331107 71.25 194.26 12029.44125 \n333394 113.49 298.65 30406.51295 \n333731 39.61 328.64 12492.52165 \n\n[18391 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
46790558393person1valid342.52163.33192.2477.475408.64720
57690058393bench15valid44.78242.27547.16224.9882291.54995
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n467905 58393 person 1 valid 342.52 163.33 \n576900 58393 bench 15 valid 44.78 242.27 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n467905 192.24 77.47 5408.64720 \n576900 547.16 224.98 82291.54995 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4221,33 +4067,36 @@ ] } }, - "7e25e47802d8474ca963faa66df162e6": { + "7651b2578bad44ea89843819afce536b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "TabModel", "state": { - "layout": "IPY_MODEL_dac711e998d6487e8db47bb49ba810c0", - "style": "IPY_MODEL_7d72cbcc122343e686927d09922b941d", - "value": "

Dataset object containing 5,076 images and 19,822 objects\nName :\n\tsmartcity_capta+coco\nImages root :\n\tnotebook_data

" + "children": [ + "IPY_MODEL_fa468d8ea1954346ba62e1f3ba16da9d", + "IPY_MODEL_42ec456df0704ce7b9e76650e63624c6", + "IPY_MODEL_01f868101b094c23b48e203b66298705" + ], + "layout": "IPY_MODEL_c74870f966e84cdf8b0134024009119e", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "7ea38cc2303346d29dcafdaf0c4587db": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7fa275d5df164db3aa3f9a553ad8502b": { + "770a97b7e9c346799bd1275a523fc26d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_0f83b1c906904cb39135ed23ae9983fa", + "layout": "IPY_MODEL_1a085fad85ae473fbbcfce695d050dc2", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
357584310072vehicle1valid223.850.00258.8369.0814718.47935
358258310072vehicle1valid0.001.94135.9966.276989.84750
363154310072vehicle1valid170.890.0071.0636.961729.26630
1337431310072vehicle1valid631.997.358.0115.4691.97330
1368385310072vehicle1valid0.000.00131.8771.467558.39585
..............................
10068189806vehicle1valid263.63193.10180.04103.5910866.03335
46540189806vehicle1valid130.91165.2094.54104.735204.68295
344755363188vehicle1valid590.03198.9249.97106.424084.58345
1420625363188vehicle1valid221.41199.7691.3663.64865.42470
1192747105455vehicle1valid333.56517.2117.4314.58182.21680
\n

5143 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n357584 310072 vehicle 1 valid 223.85 0.00 \n358258 310072 vehicle 1 valid 0.00 1.94 \n363154 310072 vehicle 1 valid 170.89 0.00 \n1337431 310072 vehicle 1 valid 631.99 7.35 \n1368385 310072 vehicle 1 valid 0.00 0.00 \n... ... ... ... ... ... ... \n10068 189806 vehicle 1 valid 263.63 193.10 \n46540 189806 vehicle 1 valid 130.91 165.20 \n344755 363188 vehicle 1 valid 590.03 198.92 \n1420625 363188 vehicle 1 valid 221.41 199.76 \n1192747 105455 vehicle 1 valid 333.56 517.21 \n\n box_width box_height area \nid \n357584 258.83 69.08 14718.47935 \n358258 135.99 66.27 6989.84750 \n363154 71.06 36.96 1729.26630 \n1337431 8.01 15.46 91.97330 \n1368385 131.87 71.46 7558.39585 \n... ... ... ... \n10068 180.04 103.59 10866.03335 \n46540 94.54 104.73 5204.68295 \n344755 49.97 106.42 4084.58345 \n1420625 91.36 63.64 865.42470 \n1192747 17.43 14.58 182.21680 \n\n[5143 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4255,51 +4104,114 @@ ] } }, - "804aa7ff9b67495599d73b6e14784430": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "807fd5002c664dbc8cb7871f5c0b6c60": { - "model_module": "@jupyter-widgets/base", + "7818182c65624d0f8d94471d24684f68": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_56261b59834f402d86eb8a3bcdae35d9", + "IPY_MODEL_706174f71ed04da59539226646743f27" + ], + "layout": "IPY_MODEL_011f9537a8584b1f818c73bd4f1dedf8" + } + }, + "7855f691fd2d417fb13802123060f0f9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_0c5d2aa95978492b96a43dd491bb1ce0", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } }, - "81a7d188e1e245a5ad69ac999b78a84d": { + "78b68e6794c840619e4f1949ebeace98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_f13f64836c2041b2b68511545a916b59", - "IPY_MODEL_cfcd6ea1fc124ddb9c7419fdb1e18c9e" + "IPY_MODEL_7be19293f8264133af3b1216e3f0a010", + "IPY_MODEL_73a2a103d75245dfb95b7c238620db6e", + "IPY_MODEL_d6baaeeb0c864af38c19897ffc3f5189" ], - "layout": "IPY_MODEL_b2814f143f0d47e2844ca6f2b94aa4d6" + "layout": "IPY_MODEL_11713b7e91d44480ae51c2e032c722f2", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "8244e9e4890143389d55a26624f309a1": { - "model_module": "@jupyter-widgets/controls", + "7921b054744a46839a97eb1cff3c0d4d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", + "state": {} + }, + "7967dc587bfc4f6a929cd6958633f189": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "79f9cc5c06fb4eba9ba0de8566cdf87a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_0192e057585f45b2bc91c03e163d744f", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "83e203111fcb4b0a979bcc78b3a43c5a": { + "7b0b2bd0a9fa41339eb0b6c7dc605df2": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_8c8805e6a0f441319dc8e8c3906f2349", + "layout": "IPY_MODEL_97a68d30572c439c91a4a9a633b181ea", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

4722 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[4722 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7be19293f8264133af3b1216e3f0a010": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_f85df88b19a548c1a10678b27bff5d50", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4307,23 +4219,68 @@ ] } }, - "83e29b501c044da3b5be5a08ea147d34": { + "7bec16f4b1874da8953d4f5e66dca55e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", + "state": { + "children": [ + "IPY_MODEL_de540a7ac8634e82ac874e14cb8ee255", + "IPY_MODEL_4c156340353a448aa26c07d00f3534ee", + "IPY_MODEL_4348de50280a44f8a13045980f827e59" + ], + "layout": "IPY_MODEL_739b133f251f4d3bacfeda8ad058349a", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] + } + }, + "7bf208ab93ca491faa2b1a31d26647b8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "7c3f6d4e80634978b877f69ba9e8e026": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "7cc4ccb8773d4964a782cb362bbc0ccd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "85d2ea2bad2f4a7db8cad0a38b39482b": { + "7e2618f90e4841b4bb23eed22a262b27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "VBoxModel", "state": { - "layout": "IPY_MODEL_b8efc68be03649a0b3adffb9ecf00404", - "style": "IPY_MODEL_532b8e439d5c4ed186408450a1986139", - "value": "

Dataset object containing 2,500 images and 18,670 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "children": [ + "IPY_MODEL_386e20fbf47c415bb2b40866aca1044d", + "IPY_MODEL_4451e043cc5a4137b2ee99911d110707" + ], + "layout": "IPY_MODEL_fde5fa1711764a049b5bfa5f32acc020" } }, - "867bb3c5528c4a8cb46413d99d287c03": { + "7e414c835aa845c8959bb9cad0ac41f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "7ec48b24760846c183e6c0f90a972c7c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "805b154232864da38d1c482e12647dc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4333,29 +4290,23 @@ "text_color": null } }, - "870237b6891d4247bffa5f8263e685d4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "87a48cdb0ca64a55a39ae698e23cd06f": { + "81cbd34f476d414db06011869f6c9433": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "87b279cadf97461ca3f14ca371df9b8e": { + "82d1726ef6294fae9d9035a2eb7a40d7": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_7ce4a1cd59fc43ef918afdbab535f086", + "layout": "IPY_MODEL_62a01d8f832140b98d3ff6af30de8e5b", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
0640486Images/valid/000000058393.jpg.jpgvalid
1425640Images/valid/000000352582.jpg.jpgvalid
2640480Images/valid/000000113354.jpg.jpgvalid
3500375Images/valid/000000147729.jpg.jpgvalid
4640383Images/valid/000000310072.jpg.jpgvalid
..................
4995480640Images/valid/000000311180.jpg.jpgvalid
4996640359Images/valid/000000302030.jpg.jpgvalid
4997427640Images/valid/000000105455.jpg.jpgvalid
4998500333Images/valid/000000428280.jpg.jpgvalid
4999500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n0 640 486 Images/valid/000000058393.jpg .jpg valid\n1 425 640 Images/valid/000000352582.jpg .jpg valid\n2 640 480 Images/valid/000000113354.jpg .jpg valid\n3 500 375 Images/valid/000000147729.jpg .jpg valid\n4 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n4995 480 640 Images/valid/000000311180.jpg .jpg valid\n4996 640 359 Images/valid/000000302030.jpg .jpg valid\n4997 427 640 Images/valid/000000105455.jpg .jpg valid\n4998 500 333 Images/valid/000000428280.jpg .jpg valid\n4999 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1aeroplane
2bicycle
3bird
4boat
5bottle
6bus
7car
8cat
9chair
10cow
11diningtable
12dog
13horse
14motorbike
15person
16pottedplant
17sheep
18sofa
19train
20tvmonitor
\n
", + "text/plain": " category string\ncategory_id \n1 aeroplane\n2 bicycle\n3 bird\n4 boat\n5 bottle\n6 bus\n7 car\n8 cat\n9 chair\n10 cow\n11 diningtable\n12 dog\n13 horse\n14 motorbike\n15 person\n16 pottedplant\n17 sheep\n18 sofa\n19 train\n20 tvmonitor" }, "metadata": {}, "output_type": "display_data" @@ -4363,29 +4314,137 @@ ] } }, - "87c6f34844c14f9193debd3e77035b7d": { + "83026b8c3977479cb2153844b6328384": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "881fd8c193694b139321ae4143205526": { + "839b049fb7f1415da488222917572091": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_64846a560b0a4f4ebdd1e0f811fa78f0", + "IPY_MODEL_61e34fb2b60a401785348f10aff29d49" + ], + "layout": "IPY_MODEL_3ab115aa46224d2a85191285da2cb442" + } + }, + "839cd65655db4ceda9d80564d684e040": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8434e5f7d00a4bd8a08920774d7cb8d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_d38bd83f704041fa94c4b2e8a381b218", + "IPY_MODEL_f8fae047eba64b2ba615717c3e6424da" + ], + "layout": "IPY_MODEL_20e1a2357cb34893b0a962c96485a5e7" + } + }, + "85980c920f294c12bb127a444d35c92b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "85f426e2ee5c45d5bec8cd768186b99c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "87fabb6909cd4796a02287f7620b30bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_df046193ac084c8c98cdfa41744e9f6a", + "IPY_MODEL_1ca7cc3b062b49f99c27a62e8fda36e5" + ], + "layout": "IPY_MODEL_8e4b95ada6b24c6da5ba4de9b630b66d" + } + }, + "887db8657dbf4b9182d34277082dfbeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8866070e785345b5a49551110ed6f1c4": { + "891e741c61ef4eee9c8edaf8db76710b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_1015c44d1eff42be909b27d029faedab", + "IPY_MODEL_2960d6dcc47d49a381e77ae2aa56613d" + ], + "layout": "IPY_MODEL_7cc4ccb8773d4964a782cb362bbc0ccd" + } + }, + "893459f11983415abc20160387905a2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "894942382e4348e19192c4e35fff114f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_357957009e864da7ae317388a2ca3d36", + "IPY_MODEL_8be7cb103e1a48c4a91413508ca6d2ec" + ], + "layout": "IPY_MODEL_42f49954f3374d9db6e010ab6ad3e6cd" + } + }, + "899cfc3a72f241b29a91abc01b84aee7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8a0098265e3d4d468308cb112570d1eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_dba7cb9df18749acb55c70e3e98d0170", + "style": "IPY_MODEL_805b154232864da38d1c482e12647dc1", + "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } + }, + "8b2d0ddb5a004197b4a18f8aae9de750": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_fc7764aa992e48b38aecdce96132b7a1", + "layout": "IPY_MODEL_1d053d8ce8b24c67aa71cdd82d42465e", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1animal
2vehicle
3object
\n
", + "text/plain": " category string\ncategory_id \n1 animal\n2 vehicle\n3 object" }, "metadata": {}, "output_type": "display_data" @@ -4393,41 +4452,145 @@ ] } }, - "8889cd6c0f9049e9be19071ff8afaba5": { + "8b7d15b97de0461e877c1b7f01376573": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "888c450cc9534c22910a09e17a2c0e55": { + "8be7cb103e1a48c4a91413508ca6d2ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", + "state": { + "children": [ + "IPY_MODEL_138b3dfb7b344e32b7c97d0d52aad09a", + "IPY_MODEL_25e0d0eb9c2c40488365ce8a27295bfc", + "IPY_MODEL_82d1726ef6294fae9d9035a2eb7a40d7" + ], + "layout": "IPY_MODEL_97bc41e03f3746e697586d5eec134a1d", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] + } + }, + "8c0b90b9d1204688990ab6844197f69e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8922eb8987db403a882288f07fc9b433": { + "8c824c73911a4b55afcd739b89c329be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", + "state": { + "children": [ + "IPY_MODEL_fcae50c271324f3e885edb43b9eef38b", + "IPY_MODEL_1439575ff6fb43709efa478aee4c5744", + "IPY_MODEL_552731e964f94279afc56c9dcd2b189c" + ], + "layout": "IPY_MODEL_8fead985dfa34cb79a9ef802d118e5bc", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] + } + }, + "8e1170f526454fa09c7b74e7eb8774df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_11d328b63a934f189ade88c99e48d93c", + "IPY_MODEL_2d24a8f5bd594fc3a8d31f3474631e19" + ], + "layout": "IPY_MODEL_1ea85e14ffbd4a48aa549195fc5171ae" + } + }, + "8e4b95ada6b24c6da5ba4de9b630b66d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8fead985dfa34cb79a9ef802d118e5bc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8ff53f529b73486a9ef4acaf1c15d27f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_1e377c71b8164868a36e6a22cd9f1980", + "IPY_MODEL_0d15ad48494c4511b4e2a3593479f44d" + ], + "layout": "IPY_MODEL_2a9067f1f71a45dea576b74070e26373" + } + }, + "91e96815232c44b5835ed421e1516dca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8973924984f448c58cbcd96c50034a4e": { + "945a36e7a2b34d4f933d295211f919ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8aa03c053dd8485397c26faee0ac7bd5": { + "95264771ec314fe8ae75a4fc201f81db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_4f56193640fa4ba2aad64ba1d62e31f1", + "style": "IPY_MODEL_f8f81c3b192844218d8f0deddc1a2ade", + "value": "

Dataset object containing 5,000 images and 20,607 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } + }, + "9651979ed60141c0986497af84dfbab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_a766c156b2cf489b8755aecda8252890", + "style": "IPY_MODEL_cdeae99bee7c45338863518450b71d07", + "value": "

Dataset object containing 5,000 images and 18,391 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } + }, + "9658048ab1c54ee9a7f5c5394a33dc7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "96b0b9ebdf5d49278fcc636d5fc1bdb3": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_53767ed0b7284f4ea7dc2cdf4ce80ec3", + "layout": "IPY_MODEL_f3b91b3242c840a7891a3d9c2f89fb51", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
46790558393person1valid342.52163.33192.2477.475408.64720
57690058393bench15valid44.78242.27547.16224.9882291.54995
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n467905 58393 person 1 valid 342.52 163.33 \n576900 58393 bench 15 valid 44.78 242.27 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n467905 192.24 77.47 5408.64720 \n576900 547.16 224.98 82291.54995 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4435,7 +4598,41 @@ ] } }, - "8acdba519fba415ca03e6f98ba8e74da": { + "97a68d30572c439c91a4a9a633b181ea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "97bc41e03f3746e697586d5eec134a1d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "9892b77e263a4a86a7d43102ddf3268f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "98dc851e52e94d1682bf1c559530db18": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "98e9c540954743faacdc7b8ddea8124a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_0950d27d57f14519bb7d47741f951050", + "style": "IPY_MODEL_612ca0d15721443686599d046a2aae92", + "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } + }, + "9ab1868fedf14174836eee31d5aefa66": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4445,17 +4642,23 @@ "text_color": null } }, - "8b16b8c0e8934287a02f8dede6779d8e": { + "9b15214c36064511b4f73ebeb3398915": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "9bd2a2ec87cd4d1cbe44151178f04c26": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_f83cc91c00ed4d3ebcfa0cc56ad1aa2c", + "layout": "IPY_MODEL_b3d6201c37db428ca755b1d1ad26a7a4", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
0640426Images/valid/000000000139.jpg.jpgvalid
1586640Images/valid/000000000285.jpg.jpgvalid
2640483Images/valid/000000000632.jpg.jpgvalid
3375500Images/valid/000000000724.jpg.jpgvalid
4428640Images/valid/000000000776.jpg.jpgvalid
..................
4995640354Images/valid/000000581317.jpg.jpgvalid
4996612612Images/valid/000000581357.jpg.jpgvalid
4997640427Images/valid/000000581482.jpg.jpgvalid
4998478640Images/valid/000000581615.jpg.jpgvalid
4999640478Images/valid/000000581781.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n0 640 426 Images/valid/000000000139.jpg .jpg valid\n1 586 640 Images/valid/000000000285.jpg .jpg valid\n2 640 483 Images/valid/000000000632.jpg .jpg valid\n3 375 500 Images/valid/000000000724.jpg .jpg valid\n4 428 640 Images/valid/000000000776.jpg .jpg valid\n... ... ... ... ... ...\n4995 640 354 Images/valid/000000581317.jpg .jpg valid\n4996 612 612 Images/valid/000000581357.jpg .jpg valid\n4997 640 427 Images/valid/000000581482.jpg .jpg valid\n4998 478 640 Images/valid/000000581615.jpg .jpg valid\n4999 640 478 Images/valid/000000581781.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
04999refrigerator82valid66.0094.8771.25194.2612029.44125
11person1valid112.43195.32214.78438.1948685.67910
21person1valid0.00256.0080.54376.8122650.73800
31frisbee34valid171.63424.0385.8940.672605.72090
42zebra24valid260.99158.88141.52194.119978.94125
..............................
367764999refrigerator82valid14.97104.0262.11166.128470.60700
367774999refrigerator82valid138.0062.6398.25252.0023037.46875
367784999refrigerator82valid234.4429.87113.49298.6530406.51295
367794999refrigerator82valid335.0410.48125.17318.7837187.97840
367804999refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 4999 refrigerator 82 valid 66.00 94.87 \n1 1 person 1 valid 112.43 195.32 \n2 1 person 1 valid 0.00 256.00 \n3 1 frisbee 34 valid 171.63 424.03 \n4 2 zebra 24 valid 260.99 158.88 \n... ... ... ... ... ... ... \n36776 4999 refrigerator 82 valid 14.97 104.02 \n36777 4999 refrigerator 82 valid 138.00 62.63 \n36778 4999 refrigerator 82 valid 234.44 29.87 \n36779 4999 refrigerator 82 valid 335.04 10.48 \n36780 4999 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n0 71.25 194.26 12029.44125 \n1 214.78 438.19 48685.67910 \n2 80.54 376.81 22650.73800 \n3 85.89 40.67 2605.72090 \n4 141.52 194.11 9978.94125 \n... ... ... ... \n36776 62.11 166.12 8470.60700 \n36777 98.25 252.00 23037.46875 \n36778 113.49 298.65 30406.51295 \n36779 125.17 318.78 37187.97840 \n36780 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4463,23 +4666,17 @@ ] } }, - "8b6c8cf1908b4457ad894110df2ccdb8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8bbc7a41f9f841f2a8f6a01a98301a2d": { + "9beaa6e96d8c404f80fdd3c9ddcfb569": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_0f17208476314df2b2fa23c772f6b494", + "layout": "IPY_MODEL_3b12a2ff1760404eb9d0f402e98dcd25", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
357584310072vehicle1valid223.850.00258.8369.0814718.47935
358258310072vehicle1valid0.001.94135.9966.276989.84750
363154310072vehicle1valid170.890.0071.0636.961729.26630
1337431310072vehicle1valid631.997.358.0115.4691.97330
1368385310072vehicle1valid0.000.00131.8771.467558.39585
..............................
10068189806vehicle1valid263.63193.10180.04103.5910866.03335
46540189806vehicle1valid130.91165.2094.54104.735204.68295
344755363188vehicle1valid590.03198.9249.97106.424084.58345
1420625363188vehicle1valid221.41199.7691.3663.64865.42470
1192747105455vehicle1valid333.56517.2117.4314.58182.21680
\n

5143 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n357584 310072 vehicle 1 valid 223.85 0.00 \n358258 310072 vehicle 1 valid 0.00 1.94 \n363154 310072 vehicle 1 valid 170.89 0.00 \n1337431 310072 vehicle 1 valid 631.99 7.35 \n1368385 310072 vehicle 1 valid 0.00 0.00 \n... ... ... ... ... ... ... \n10068 189806 vehicle 1 valid 263.63 193.10 \n46540 189806 vehicle 1 valid 130.91 165.20 \n344755 363188 vehicle 1 valid 590.03 198.92 \n1420625 363188 vehicle 1 valid 221.41 199.76 \n1192747 105455 vehicle 1 valid 333.56 517.21 \n\n box_width box_height area \nid \n357584 258.83 69.08 14718.47935 \n358258 135.99 66.27 6989.84750 \n363154 71.06 36.96 1729.26630 \n1337431 8.01 15.46 91.97330 \n1368385 131.87 71.46 7558.39585 \n... ... ... ... \n10068 180.04 103.59 10866.03335 \n46540 94.54 104.73 5204.68295 \n344755 49.97 106.42 4084.58345 \n1420625 91.36 63.64 865.42470 \n1192747 17.43 14.58 182.21680 \n\n[5143 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
46790558393person1valid342.52163.33192.2477.475408.64720
57690058393bench15valid44.78242.27547.16224.9882291.54995
..............................
109094428280chair62valid187.71114.8044.0766.412069.93800
578099428280bench15valid0.75184.42181.43132.9013841.81490
1101888428280laptop73valid118.71138.3444.7935.831405.98065
1117514428280keyboard76valid121.04165.6540.276.02217.08440
2190513428280chair62valid203.58179.65105.27139.557696.12525
\n

18670 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n467905 58393 person 1 valid 342.52 163.33 \n576900 58393 bench 15 valid 44.78 242.27 \n... ... ... ... ... ... ... \n109094 428280 chair 62 valid 187.71 114.80 \n578099 428280 bench 15 valid 0.75 184.42 \n1101888 428280 laptop 73 valid 118.71 138.34 \n1117514 428280 keyboard 76 valid 121.04 165.65 \n2190513 428280 chair 62 valid 203.58 179.65 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n467905 192.24 77.47 5408.64720 \n576900 547.16 224.98 82291.54995 \n... ... ... ... \n109094 44.07 66.41 2069.93800 \n578099 181.43 132.90 13841.81490 \n1101888 44.79 35.83 1405.98065 \n1117514 40.27 6.02 217.08440 \n2190513 105.27 139.55 7696.12525 \n\n[18670 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4487,23 +4684,65 @@ ] } }, - "8bc6ea76bfde4b87a33bd825ccecc77b": { + "9c276f07f9a94174b46eb4a8e4ef66e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_9651979ed60141c0986497af84dfbab6", + "IPY_MODEL_ecd7d7225e2840839e4dd5c06d2928ac" + ], + "layout": "IPY_MODEL_8c0b90b9d1204688990ab6844197f69e" + } + }, + "9c627853f4364595b494460cc3f26a45": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "9cee0d099ede47c38f043758df377b04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_a1a934c35f1744738ff877238831cf4a", + "IPY_MODEL_65527049e5a7455e9598477f43a0cfd2" + ], + "layout": "IPY_MODEL_648ed8ee168c4e6a839ca4bbebcab214" + } + }, + "9d15ec8503094cc2b2668aaeacb22cb8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "9d1b24a324584fc58c0802d2c2705993": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "9e5e24ac2e3c472fa147368ac95fe73b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8c32105a7b0846368814d96ae9039ddb": { + "9f7b0de8a9b044f0a71fb2f1470c8821": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_2a791bf4d78f4c49aa450bb808d1d4b5", + "layout": "IPY_MODEL_d9c58b82617642ef812454748838b5f1", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4511,84 +4750,219 @@ ] } }, - "8c86a55837f24dc4a0d97d718a9d24a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "9fe2579380ec4ab2afa63f5f450a27b6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "children": [ - "IPY_MODEL_c2972b90c94b4f49ad06b3ebfa80f78e", - "IPY_MODEL_2f2794c6b07c45c1a6ddafee759a526f" - ], - "layout": "IPY_MODEL_1680a5d5e44c4cf5af0bacc3a29d62c7" + "layout": "IPY_MODEL_301211805d4c40f580e4d61f9e359404", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "8c8805e6a0f441319dc8e8c3906f2349": { + "a0530d16806447fb887a285e3298f421": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8da4dc5f90684d39a3623070462c412d": { + "a1a934c35f1744738ff877238831cf4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_7ec48b24760846c183e6c0f90a972c7c", + "style": "IPY_MODEL_31c5d5f134534aa2b95fe24095c20404", + "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } + }, + "a280778b18634b7dbfefbd13f3430577": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a31aecdc64ab40a5ba5b7779bcf4a93b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8dcdde34750d48e6bb1a27ce1967692e": { + "a3ccb2ad017443f2b271f9140538e20a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8f45928fe53e497f97878cfe7f645f61": { + "a766c156b2cf489b8755aecda8252890": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "906e0da2a30a4c56b6ee41b001a230db": { + "a76843a616534c5a84fda9a53ae68fc7": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_f2276d30d3b548dbbec09aca7a954f7b", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582object3valid112.43195.32214.78438.1948685.67910
535917352582object3valid0.00256.0080.54376.8122650.73800
46790558393object3valid342.52163.33192.2477.475408.64720
171099058393object3valid418.99182.6561.1245.001792.80770
1238519147729object3valid0.0087.01310.67287.9955847.52705
..............................
1192747105455vehicle2valid333.56517.2117.4314.58182.21680
108177428280object3valid3.58189.14176.88125.329942.25095
108343428280object3valid244.05152.2968.5134.491457.96785
109094428280object3valid187.71114.8044.0766.412069.93800
2190513428280object3valid203.58179.65105.27139.557696.12525
\n

20607 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 object 3 valid 112.43 195.32 \n535917 352582 object 3 valid 0.00 256.00 \n467905 58393 object 3 valid 342.52 163.33 \n1710990 58393 object 3 valid 418.99 182.65 \n1238519 147729 object 3 valid 0.00 87.01 \n... ... ... ... ... ... ... \n1192747 105455 vehicle 2 valid 333.56 517.21 \n108177 428280 object 3 valid 3.58 189.14 \n108343 428280 object 3 valid 244.05 152.29 \n109094 428280 object 3 valid 187.71 114.80 \n2190513 428280 object 3 valid 203.58 179.65 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n1192747 17.43 14.58 182.21680 \n108177 176.88 125.32 9942.25095 \n108343 68.51 34.49 1457.96785 \n109094 44.07 66.41 2069.93800 \n2190513 105.27 139.55 7696.12525 \n\n[20607 rows x 9 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a799764dd9924208b78132c873ae60c0": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_5bd0b17b9d4e4008939ba492c6a5377a", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a92f13c01f914b8496025488730f1f55": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_d9b40f57cb824239b65cd0e1c09fc5c6", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1Animal
2Vehicle
3Object
\n
", + "text/plain": " category string\ncategory_id \n1 Animal\n2 Vehicle\n3 Object" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a9f2687fd4be4fb5b68c5c24c5dcca30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_74323b14a37d444ba817ba62f83ca5a8", - "IPY_MODEL_45ec8003721e4cf1b4a58d20528ef42e", - "IPY_MODEL_56186a46f31b4463b97bfe5fc93e454b" + "IPY_MODEL_95264771ec314fe8ae75a4fc201f81db", + "IPY_MODEL_bb79da4e6a5746d8b82f1ea4709f1076" ], - "layout": "IPY_MODEL_017e290a4cf14e09bc26ff3104b7af76", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" + "layout": "IPY_MODEL_2cf5d9a88c3247949c850946da75ea68" + } + }, + "aab9806ceeab454f9401385c09ef3e1a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_eb29c47be0b14b9dbbeebf180e3c7c02", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
0640486Images/valid/000000058393.jpg.jpgvalid
1425640Images/valid/000000352582.jpg.jpgvalid
2640480Images/valid/000000113354.jpg.jpgvalid
3500375Images/valid/000000147729.jpg.jpgvalid
4640383Images/valid/000000310072.jpg.jpgvalid
..................
4995480640Images/valid/000000311180.jpg.jpgvalid
4996640359Images/valid/000000302030.jpg.jpgvalid
4997427640Images/valid/000000105455.jpg.jpgvalid
4998500333Images/valid/000000428280.jpg.jpgvalid
4999500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n0 640 486 Images/valid/000000058393.jpg .jpg valid\n1 425 640 Images/valid/000000352582.jpg .jpg valid\n2 640 480 Images/valid/000000113354.jpg .jpg valid\n3 500 375 Images/valid/000000147729.jpg .jpg valid\n4 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n4995 480 640 Images/valid/000000311180.jpg .jpg valid\n4996 640 359 Images/valid/000000302030.jpg .jpg valid\n4997 427 640 Images/valid/000000105455.jpg .jpg valid\n4998 500 333 Images/valid/000000428280.jpg .jpg valid\n4999 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "91db72919c7f449e93e2aea90950134e": { - "model_module": "@jupyter-widgets/base", + "aae989eac45f42fcb39884378a59e020": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_10389948eb0448bfb97290f8ee6e4654", + "style": "IPY_MODEL_9658048ab1c54ee9a7f5c5394a33dc7b", + "value": "

Dataset object containing 4,706 images and 18,391 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } }, - "921b40e58c44473b8d5a67a34da00af5": { - "model_module": "@jupyter-widgets/base", + "aaf31450ec344590a7e1bc8e6c8260ce": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_bb6a36c9e5c746dda3420c6d73a19013", + "style": "IPY_MODEL_cc19a92483ae462d8c39de44985974e6", + "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } + }, + "ac087e9ac3c140c79ea14a6e6aaffbb7": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_4fe4608ef6e34b44a3d0cd32ccd2b5b1", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1aeroplane
2bicycle
3bird
4boat
5bottle
6bus
7car
8cat
9chair
10cow
11diningtable
12dog
13horse
14motorbike
15person
16pottedplant
17sheep
18sofa
19train
20tvmonitor
\n
", + "text/plain": " category string\ncategory_id \n1 aeroplane\n2 bicycle\n3 bird\n4 boat\n5 bottle\n6 bus\n7 car\n8 cat\n9 chair\n10 cow\n11 diningtable\n12 dog\n13 horse\n14 motorbike\n15 person\n16 pottedplant\n17 sheep\n18 sofa\n19 train\n20 tvmonitor" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "adb47fe414d54c978a5f98dd7a48f48e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_e7dc427815dc4f14ba367e6f6e37a129", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
447789640427Images/valid/000000447789.jpg.jpgvalid
514540429640Images/valid/000000514540.jpg.jpgvalid
476491336500Images/valid/000000476491.jpg.jpgvalid
41488640369Images/valid/000000041488.jpg.jpgvalid
121153640480Images/valid/000000121153.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

4706 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n447789 640 427 Images/valid/000000447789.jpg .jpg valid\n514540 429 640 Images/valid/000000514540.jpg .jpg valid\n476491 336 500 Images/valid/000000476491.jpg .jpg valid\n41488 640 369 Images/valid/000000041488.jpg .jpg valid\n121153 640 480 Images/valid/000000121153.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[4706 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } }, - "922e430cc62c4c54ad988163641fc111": { + "aea9b77bd8d14a21aba81dc81fe0e8cd": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_27386ac3f6d946fba2d17329720bf368", + "layout": "IPY_MODEL_d9593d212484414b8ba57837f931a0f8", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
04999refrigerator82valid66.0094.8771.25194.2612029.44125
11person1valid112.43195.32214.78438.1948685.67910
21person1valid0.00256.0080.54376.8122650.73800
31frisbee34valid171.63424.0385.8940.672605.72090
42zebra24valid260.99158.88141.52194.119978.94125
..............................
367764999refrigerator82valid14.97104.0262.11166.128470.60700
367774999refrigerator82valid138.0062.6398.25252.0023037.46875
367784999refrigerator82valid234.4429.87113.49298.6530406.51295
367794999refrigerator82valid335.0410.48125.17318.7837187.97840
367804999refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 4999 refrigerator 82 valid 66.00 94.87 \n1 1 person 1 valid 112.43 195.32 \n2 1 person 1 valid 0.00 256.00 \n3 1 frisbee 34 valid 171.63 424.03 \n4 2 zebra 24 valid 260.99 158.88 \n... ... ... ... ... ... ... \n36776 4999 refrigerator 82 valid 14.97 104.02 \n36777 4999 refrigerator 82 valid 138.00 62.63 \n36778 4999 refrigerator 82 valid 234.44 29.87 \n36779 4999 refrigerator 82 valid 335.04 10.48 \n36780 4999 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n0 71.25 194.26 12029.44125 \n1 214.78 438.19 48685.67910 \n2 80.54 376.81 22650.73800 \n3 85.89 40.67 2605.72090 \n4 141.52 194.11 9978.94125 \n... ... ... ... \n36776 62.11 166.12 8470.60700 \n36777 98.25 252.00 23037.46875 \n36778 113.49 298.65 30406.51295 \n36779 125.17 318.78 37187.97840 \n36780 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid" }, "metadata": {}, "output_type": "display_data" @@ -4596,41 +4970,29 @@ ] } }, - "92d5116bf412467a838dd76d8df73614": { + "afb1b69762974288866c8d07a7ccc0cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "92f76b574def4824babeb0351b7c45f7": { + "b189ddb82297439bb62349d10e0b8c8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "93a2159dc1a9485ab2af1800f9c8e309": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_7e25e47802d8474ca963faa66df162e6", - "IPY_MODEL_1ef59c8060c844fe982a644c188e4f31" - ], - "layout": "IPY_MODEL_9e58315f930e4a6a9cd5ba303d306d9b" - } - }, - "93a3eb772998444fa5ec05bc76d9bcac": { + "b25e07525da2464e96bc0df015a82213": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_57f1eb88d2634517a5c81043bd698835", + "layout": "IPY_MODEL_fcff304526f24f9b8d49b5adc8dfe9a7", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightareaconfidence
id
0352582tvmonitor20valid212.5320.0212.5320.068000.00.5
\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 352582 tvmonitor 20 valid 212.5 320.0 \n\n box_width box_height area confidence \nid \n0 212.5 320.0 68000.0 0.5 " }, "metadata": {}, "output_type": "display_data" @@ -4638,17 +5000,17 @@ ] } }, - "95bd19b5f5754ce5bdfc87db5795802c": { + "b2c77bc7409b41af9dbe153b7d7df4da": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_807fd5002c664dbc8cb7871f5c0b6c60", + "layout": "IPY_MODEL_f1a4502ebbd14377b5b5f6c34f45482f", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589740113354zebra24valid366.49174.59115.67142.715784.68620
46790558393person1valid342.52163.33192.2477.475408.64720
171099058393person1valid418.99182.6561.1245.001792.80770
..............................
1101888428280laptop73valid118.71138.3444.7935.831405.98065
2190513428280chair62valid203.58179.65105.27139.557696.12525
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

18391 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589740 113354 zebra 24 valid 366.49 174.59 \n467905 58393 person 1 valid 342.52 163.33 \n1710990 58393 person 1 valid 418.99 182.65 \n... ... ... ... ... ... ... \n1101888 428280 laptop 73 valid 118.71 138.34 \n2190513 428280 chair 62 valid 203.58 179.65 \n331107 349837 refrigerator 82 valid 66.00 94.87 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n602093 85.89 40.67 2605.72090 \n589740 115.67 142.71 5784.68620 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n... ... ... ... \n1101888 44.79 35.83 1405.98065 \n2190513 105.27 139.55 7696.12525 \n331107 71.25 194.26 12029.44125 \n333394 113.49 298.65 30406.51295 \n333731 39.61 328.64 12492.52165 \n\n[18391 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
592005113354zebra24valid3.24151.28265.34175.8216206.37480
\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n592005 113354 zebra 24 valid 3.24 151.28 \n\n box_width box_height area \nid \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n592005 265.34 175.82 16206.37480 " }, "metadata": {}, "output_type": "display_data" @@ -4656,106 +5018,69 @@ ] } }, - "96a55a100d624cbaa1c00842f2c787a8": { + "b39364cbbf6b4a91af4b560782c16676": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_9e5e24ac2e3c472fa147368ac95fe73b", + "style": "IPY_MODEL_a280778b18634b7dbfefbd13f3430577", + "value": "

Dataset object containing 5,000 images and 18,391 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } + }, + "b3d6201c37db428ca755b1d1ad26a7a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "9708ae09d6604e1ebdbca8d38412ac07": { + "b5454727f531449daeee78ba0af3a2ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "976a13b001fc4c14b8d5f1ce936a2950": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_08ad16cf9e114914a8ad1185eedf13ed", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "97bff9602f63475ea1f3ce1f071c56de": { + "b60cb52cd3e4493283ae46259ea964f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "99863d1d296942bfbdd46bf539f89dd4": { - "model_module": "@jupyter-widgets/controls", + "b75cc350015f4ed68787675876e5fc41": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_c0248a690e684be4a425ea2258a92f50", - "style": "IPY_MODEL_731539e5661148739eb8978c60efc5f8", - "value": "

Dataset object containing 4,706 images and 18,391 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } + "model_name": "LayoutModel", + "state": {} }, - "9aa80116a3f949efb8b955b1c1859744": { - "model_module": "@jupyter-widgets/controls", + "b7a7836c0928481eb773f233fab0a635": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "TabModel", - "state": { - "children": [ - "IPY_MODEL_b6bb53f483984e70a586347fa92c47e8", - "IPY_MODEL_0dd1ab8bff564398a639b3c2bc691991", - "IPY_MODEL_3a04df0b705943e68db3868587365f3e" - ], - "layout": "IPY_MODEL_bb6f967f14d344e0bd5669ad4689f243", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] - } + "model_name": "LayoutModel", + "state": {} }, - "9b126ac85da4482fb2ce94024da03eaf": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_1aaf92bec1cd442b9330a198f7d56ee1", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } + "b9305f4cb6694a218d938b1c821d0423": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "9d2fbc38a7c741a2a614b451744d80cb": { + "bb6a36c9e5c746dda3420c6d73a19013": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "9da439c98f3c4d7aa6caa27ed70dfa32": { + "bb79da4e6a5746d8b82f1ea4709f1076": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_076cb45525fa49a5a362cab29f375942", - "IPY_MODEL_93a3eb772998444fa5ec05bc76d9bcac", - "IPY_MODEL_9b126ac85da4482fb2ce94024da03eaf" + "IPY_MODEL_bc1651b6de75415c95fdffbbd183db65", + "IPY_MODEL_cbfbf0e7eb0d4637b841fa079d924fd0", + "IPY_MODEL_8b2d0ddb5a004197b4a18f8aae9de750" ], - "layout": "IPY_MODEL_cadb58ff30e043c998fae6ee670d2804", + "layout": "IPY_MODEL_1b66cc1c194b4bb1b4de420e94dd4e1a", "selected_index": 0, "titles": [ "Images", @@ -4764,23 +5089,17 @@ ] } }, - "9e58315f930e4a6a9cd5ba303d306d9b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9e5d5573a9094a1cb9d624e4d3fb5a75": { + "bc1651b6de75415c95fdffbbd183db65": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3488cb51a933422dbe5951753f695c6f", + "layout": "IPY_MODEL_85980c920f294c12bb127a444d35c92b", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
\n
", - "text/plain": "Empty DataFrame\nColumns: [image_id, category_str, category_id, split, box_x_min, box_y_min, box_width, box_height, area]\nIndex: []" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4788,113 +5107,97 @@ ] } }, - "9f98f4f9a484443d86f7a8b53a6f0383": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_ba07b59a8dcd4f12ae197bdba17a4081", - "style": "IPY_MODEL_cbc53dde861749d4b4644390f6d89b24", - "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } - }, - "9fdc80dfaf034401a9557abb6745c036": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_0f046094f30d46c8af05aa99c92e13d1", - "IPY_MODEL_1a50fd3cde1b41f78d149c09b1dc5a17" - ], - "layout": "IPY_MODEL_daf121e7d7c343c9bc202fb4003d4687" - } - }, - "a05d6961fe7a4f9abf64888cd1d54d39": { + "bc33b1752fbc42b1bb971160aa734c1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "a067adea60de4cbab6648d9900b8fb71": { + "bc405de6314442108a926ea56be3411f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "a0f0c5093c8f41ef9ec406b059d3a1ca": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_1fc92f635def49f58903c29563dec9c3", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "a4a609c3e02041e892e87a1e15cf5dae": { + "bd34f01e287a47d79a85c4dfb923c687": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "a74d5337152d43b7997d568b0e8858da": { + "bf056b3aad2f4866a73886e0a2548fc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "a7c264d282b0470087525fab6eb267dd": { + "bf859b3043c14f999f630d7d9657d4b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_653a77ebba1c491d989943e25eabb70f", - "IPY_MODEL_34eb9b2674ae420189320d71c7421a95" + "IPY_MODEL_33e8c53a668c4f61bfde88a0a536ea24", + "IPY_MODEL_7624ce323ee04e1c9158288ba8c702ef", + "IPY_MODEL_003973ba6429441696690892068b30b5" ], - "layout": "IPY_MODEL_8bc6ea76bfde4b87a33bd825ccecc77b" + "layout": "IPY_MODEL_4af4df92ffd74f19a264c6298fec7326", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "a89a3d4f3b88410084208619d227f84f": { + "c0010570c6a04f1b978cf99e5d075b34": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c0624f6057fb4ff99ed6509a042305ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "TabModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_2a3ca1e55ef24e72b351e4d45e0d7d53", + "IPY_MODEL_1d6d3b6ca031443a9d4de538dee1f120", + "IPY_MODEL_7b0b2bd0a9fa41339eb0b6c7dc605df2" + ], + "layout": "IPY_MODEL_2315e499822d468c8925f1d42b700cf9", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "a906e40c8dfe421791496e5865113d98": { + "c1120547b03e442abc27bc1dd3d922d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_4b5120a0e8274f3babc93743e1e22543", + "IPY_MODEL_7bec16f4b1874da8953d4f5e66dca55e" + ], + "layout": "IPY_MODEL_0207c44a5d5142f5bdc2c9757b174ff4" } }, - "a9ff964c470040dcb0296533c1fc1549": { + "c1569471bd79471f9f571bd1e87ccf78": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_b78b3fc0a8e44db3b3cd13d6a6afe869", + "layout": "IPY_MODEL_3ea45c5b477b49308bb0e428284e33f5", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589740113354zebra24valid366.49174.59115.67142.715784.68620
46790558393person1valid342.52163.33192.2477.475408.64720
171099058393person1valid418.99182.6561.1245.001792.80770
..............................
1101888428280laptop73valid118.71138.3444.7935.831405.98065
2190513428280chair62valid203.58179.65105.27139.557696.12525
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

18391 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589740 113354 zebra 24 valid 366.49 174.59 \n467905 58393 person 1 valid 342.52 163.33 \n1710990 58393 person 1 valid 418.99 182.65 \n... ... ... ... ... ... ... \n1101888 428280 laptop 73 valid 118.71 138.34 \n2190513 428280 chair 62 valid 203.58 179.65 \n331107 349837 refrigerator 82 valid 66.00 94.87 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n602093 85.89 40.67 2605.72090 \n589740 115.67 142.71 5784.68620 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n... ... ... ... \n1101888 44.79 35.83 1405.98065 \n2190513 105.27 139.55 7696.12525 \n331107 71.25 194.26 12029.44125 \n333394 113.49 298.65 30406.51295 \n333731 39.61 328.64 12492.52165 \n\n[18391 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -4902,83 +5205,45 @@ ] } }, - "ad1d0e8ccf70489e92d61f052a5ae159": { + "c17e5469e14e45389ae5670a74d3fd6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "ad42a634393a424db47916adc2a6de41": { + "c1ee2b30e8c1430a91065ddc529d89e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_045f69ca6a5c4daca8d9dab65a019d26", - "IPY_MODEL_be068f84bdb143528958fa4a53c67238" - ], - "layout": "IPY_MODEL_096be585560a408c9d51d1f1422f2473" - } - }, - "ae3cf866393b4ec4ac40269a750d3a10": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_7c4075c4396641a8a621885ace1f814b", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
0640483Images/valid/000000000632.jpg.jpgvalid
1375500Images/valid/000000000724.jpg.jpgvalid
2428640Images/valid/000000000776.jpg.jpgvalid
3640425Images/valid/000000000785.jpg.jpgvalid
4640427Images/valid/000000001268.jpg.jpgvalid
..................
4995640428Images/valid/000000580418.jpg.jpgvalid
4996640425Images/valid/000000580757.jpg.jpgvalid
4997500375Images/valid/000000581062.jpg.jpgvalid
4998479640Images/valid/000000581206.jpg.jpgvalid
4999478640Images/valid/000000581615.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n0 640 483 Images/valid/000000000632.jpg .jpg valid\n1 375 500 Images/valid/000000000724.jpg .jpg valid\n2 428 640 Images/valid/000000000776.jpg .jpg valid\n3 640 425 Images/valid/000000000785.jpg .jpg valid\n4 640 427 Images/valid/000000001268.jpg .jpg valid\n... ... ... ... ... ...\n4995 640 428 Images/valid/000000580418.jpg .jpg valid\n4996 640 425 Images/valid/000000580757.jpg .jpg valid\n4997 500 375 Images/valid/000000581062.jpg .jpg valid\n4998 479 640 Images/valid/000000581206.jpg .jpg valid\n4999 478 640 Images/valid/000000581615.jpg .jpg valid\n\n[5000 rows x 5 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "description_width": "", + "font_size": null, + "text_color": null } }, - "aec15b706feb48c3a2221de4a0413308": { + "c497c29f8fa5485fb878086fd794cf28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b0981334e1e44bc29936fb70b73a97a8": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_d94834afc1d8491187d1bf1c9284a9df", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
00person1valid384.43172.2115.1235.74435.14495
10person1valid412.80157.6153.05138.012913.11040
20chair62valid290.69218.0061.8398.481833.78400
30chair62valid317.40219.2421.5811.59210.14820
40chair62valid358.98218.0556.00102.832245.34355
..............................
367764999banana52valid439.3394.35160.05171.8616690.94945
367774999banana52valid467.23280.45172.77177.6322016.99120
367784999banana52valid467.750.0070.4125.881191.12265
367794999banana52valid561.816.8778.1134.131736.78505
367804999banana52valid582.44141.9157.5686.751752.08170
\n

36781 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 0 person 1 valid 384.43 172.21 \n1 0 person 1 valid 412.80 157.61 \n2 0 chair 62 valid 290.69 218.00 \n3 0 chair 62 valid 317.40 219.24 \n4 0 chair 62 valid 358.98 218.05 \n... ... ... ... ... ... ... \n36776 4999 banana 52 valid 439.33 94.35 \n36777 4999 banana 52 valid 467.23 280.45 \n36778 4999 banana 52 valid 467.75 0.00 \n36779 4999 banana 52 valid 561.81 6.87 \n36780 4999 banana 52 valid 582.44 141.91 \n\n box_width box_height area \nid \n0 15.12 35.74 435.14495 \n1 53.05 138.01 2913.11040 \n2 61.83 98.48 1833.78400 \n3 21.58 11.59 210.14820 \n4 56.00 102.83 2245.34355 \n... ... ... ... \n36776 160.05 171.86 16690.94945 \n36777 172.77 177.63 22016.99120 \n36778 70.41 25.88 1191.12265 \n36779 78.11 34.13 1736.78505 \n36780 57.56 86.75 1752.08170 \n\n[36781 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "b162419c877c48d5a1025451a2672beb": { + "c6a12a1635ad495cb5d87a4f8c586bfb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b217ba852a2d4c8eb6ab3838bed537d6": { + "c6f7a9fda097487d8e8c50b0cacdf846": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_154d29f071ef4168bb329113f398f898", - "IPY_MODEL_bbfdb4d23a9440c1aaddd36ad24d1208", - "IPY_MODEL_01d1d33815be4b048ac730311c5cfde4" + "IPY_MODEL_d7cdaeb49f004a8dbdf16961b178f497", + "IPY_MODEL_cc4cba889012456087f1096113d0d4a9", + "IPY_MODEL_2eda4e5db5ac43819b8bbcb8291987d2" ], - "layout": "IPY_MODEL_0e212d1045d44311b3a2fa8d30176599", + "layout": "IPY_MODEL_9b15214c36064511b4f73ebeb3398915", "selected_index": 0, "titles": [ "Images", @@ -4987,54 +5252,40 @@ ] } }, - "b24720adc0f24e8d8b8e4dbe2c94c131": { + "c74870f966e84cdf8b0134024009119e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b2814f143f0d47e2844ca6f2b94aa4d6": { - "model_module": "@jupyter-widgets/base", + "c7a7060a8aa7446299af9cc8d1cab19e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b3ad25f52517499fa3b2aaa22bf9cce3": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_65ded6abaf904351b029a28e9981d390", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_839cd65655db4ceda9d80564d684e040", + "style": "IPY_MODEL_fbeaaa18eb984d3196b1f14067c573b2", + "value": "

Dataset object containing 1 image and 3 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "b4c56bc21a884ca1a28d53108f8b0d72": { + "c7aea4c13f6f4566a773c0c3cc2be09c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b4cfae471bba4a5b9000ccfcad6796dd": { + "c7f4e636fea5416abe53471ffe768a14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b64aba9ae4c0484594269ccb84a79bdd": { + "c986fa54a7fa47558c32767b5450a531": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_5a017b0de8d848dfb02a489f6bdc0623", + "layout": "IPY_MODEL_47f377ac62584f86894264ba0e7c570d", "outputs": [ { "data": { @@ -5047,17 +5298,33 @@ ] } }, - "b6bb53f483984e70a586347fa92c47e8": { + "cb175f16ce6c4ed3963131b9bc9d71d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "cb80ecd92080438fa9609089ad11c3ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cbfbf0e7eb0d4637b841fa079d924fd0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_92f76b574def4824babeb0351b7c45f7", + "layout": "IPY_MODEL_4e9e02be8d9f47a883d4b2e4c7dd3f5f", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
649319201080Images/NORM0020_frame0282.jpg.jpgParis
589019201080Images/NORM0018_frame0928.jpg.jpgParis
224719201080Images/NORM0015_frame183.jpg.jpgParis
218919201080Images/NORM0015_frame123.jpg.jpgParis
574519201080Images/NORM0018_frame0763.jpg.jpgParis
..................
98287415640Images/valid/000000098287.jpg.jpgvalid
507893427640Images/valid/000000507893.jpg.jpgvalid
524280640640Images/valid/000000524280.jpg.jpgvalid
344059640427Images/valid/000000344059.jpg.jpgvalid
311295640427Images/valid/000000311295.jpg.jpgvalid
\n

5076 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n6493 1920 1080 Images/NORM0020_frame0282.jpg .jpg Paris\n5890 1920 1080 Images/NORM0018_frame0928.jpg .jpg Paris\n2247 1920 1080 Images/NORM0015_frame183.jpg .jpg Paris\n2189 1920 1080 Images/NORM0015_frame123.jpg .jpg Paris\n5745 1920 1080 Images/NORM0018_frame0763.jpg .jpg Paris\n... ... ... ... ... ...\n98287 415 640 Images/valid/000000098287.jpg .jpg valid\n507893 427 640 Images/valid/000000507893.jpg .jpg valid\n524280 640 640 Images/valid/000000524280.jpg .jpg valid\n344059 640 427 Images/valid/000000344059.jpg .jpg valid\n311295 640 427 Images/valid/000000311295.jpg .jpg valid\n\n[5076 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582object3valid112.43195.32214.78438.1948685.67910
535917352582object3valid0.00256.0080.54376.8122650.73800
46790558393object3valid342.52163.33192.2477.475408.64720
171099058393object3valid418.99182.6561.1245.001792.80770
1238519147729object3valid0.0087.01310.67287.9955847.52705
..............................
1192747105455vehicle2valid333.56517.2117.4314.58182.21680
108177428280object3valid3.58189.14176.88125.329942.25095
108343428280object3valid244.05152.2968.5134.491457.96785
109094428280object3valid187.71114.8044.0766.412069.93800
2190513428280object3valid203.58179.65105.27139.557696.12525
\n

20607 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 object 3 valid 112.43 195.32 \n535917 352582 object 3 valid 0.00 256.00 \n467905 58393 object 3 valid 342.52 163.33 \n1710990 58393 object 3 valid 418.99 182.65 \n1238519 147729 object 3 valid 0.00 87.01 \n... ... ... ... ... ... ... \n1192747 105455 vehicle 2 valid 333.56 517.21 \n108177 428280 object 3 valid 3.58 189.14 \n108343 428280 object 3 valid 244.05 152.29 \n109094 428280 object 3 valid 187.71 114.80 \n2190513 428280 object 3 valid 203.58 179.65 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n1192747 17.43 14.58 182.21680 \n108177 176.88 125.32 9942.25095 \n108343 68.51 34.49 1457.96785 \n109094 44.07 66.41 2069.93800 \n2190513 105.27 139.55 7696.12525 \n\n[20607 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5065,41 +5332,27 @@ ] } }, - "b78b3fc0a8e44db3b3cd13d6a6afe869": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b8a7a55a22e448aabe6ce60dec5abc5f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b8e095a727784910a052e99351504d70": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b8efc68be03649a0b3adffb9ecf00404": { - "model_module": "@jupyter-widgets/base", + "cc19a92483ae462d8c39de44985974e6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } }, - "b980e912c86342cc8d197540ea3b61d2": { + "cc4cba889012456087f1096113d0d4a9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3bed826eda09408fb0bf2e04c4e47e36", + "layout": "IPY_MODEL_83026b8c3977479cb2153844b6328384", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
535917352582person1valid0.00256.0080.54376.8122650.73800
589077113354zebra24valid260.99158.88141.52194.119978.94125
592005113354zebra24valid3.24151.28265.34175.8216206.37480
57690058393bench15valid44.78242.27547.16224.9882291.54995
322417147729cell phone77valid254.48117.5449.9275.001306.79705
..............................
578099428280bench15valid0.75184.42181.43132.9013841.81490
1117514428280keyboard76valid121.04165.6540.276.02217.08440
330925349837refrigerator82valid14.97104.0262.11166.128470.60700
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
\n

18390 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n535917 352582 person 1 valid 0.00 256.00 \n589077 113354 zebra 24 valid 260.99 158.88 \n592005 113354 zebra 24 valid 3.24 151.28 \n576900 58393 bench 15 valid 44.78 242.27 \n322417 147729 cell phone 77 valid 254.48 117.54 \n... ... ... ... ... ... ... \n578099 428280 bench 15 valid 0.75 184.42 \n1117514 428280 keyboard 76 valid 121.04 165.65 \n330925 349837 refrigerator 82 valid 14.97 104.02 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n\n box_width box_height area \nid \n535917 80.54 376.81 22650.73800 \n589077 141.52 194.11 9978.94125 \n592005 265.34 175.82 16206.37480 \n576900 547.16 224.98 82291.54995 \n322417 49.92 75.00 1306.79705 \n... ... ... ... \n578099 181.43 132.90 13841.81490 \n1117514 40.27 6.02 217.08440 \n330925 62.11 166.12 8470.60700 \n332788 98.25 252.00 23037.46875 \n333685 125.17 318.78 37187.97840 \n\n[18390 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5107,41 +5360,23 @@ ] } }, - "ba07b59a8dcd4f12ae197bdba17a4081": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ba4c9be84f0049739a9704cc7ba1fc97": { + "cc92718aa17c4fdc9b519e75d09e7773": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "baea9dbca41f47418600d6921d343386": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_e42a3be280b24ebe8713b30646861e81", - "IPY_MODEL_44d3c3fb8de24a27b5fd44fb2ec9d271" - ], - "layout": "IPY_MODEL_ad1d0e8ccf70489e92d61f052a5ae159" - } - }, - "bb4462384b104b4e9366bf2bc44e2481": { + "ccbe6d78c4684bbe927f1efdbdc0f52d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_fa2fc2f687fa4c698311a6a8630bad21", + "layout": "IPY_MODEL_33dd6b044ff448fb8de7b1e2d0f8cf58", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
10640426Images/valid/000000000139.jpg.jpgvalid
11586640Images/valid/000000000285.jpg.jpgvalid
12640483Images/valid/000000000632.jpg.jpgvalid
13375500Images/valid/000000000724.jpg.jpgvalid
14428640Images/valid/000000000776.jpg.jpgvalid
..................
5005640354Images/valid/000000581317.jpg.jpgvalid
5006612612Images/valid/000000581357.jpg.jpgvalid
5007640427Images/valid/000000581482.jpg.jpgvalid
5008478640Images/valid/000000581615.jpg.jpgvalid
5009640478Images/valid/000000581781.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n10 640 426 Images/valid/000000000139.jpg .jpg valid\n11 586 640 Images/valid/000000000285.jpg .jpg valid\n12 640 483 Images/valid/000000000632.jpg .jpg valid\n13 375 500 Images/valid/000000000724.jpg .jpg valid\n14 428 640 Images/valid/000000000776.jpg .jpg valid\n... ... ... ... ... ...\n5005 640 354 Images/valid/000000581317.jpg .jpg valid\n5006 612 612 Images/valid/000000581357.jpg .jpg valid\n5007 640 427 Images/valid/000000581482.jpg .jpg valid\n5008 478 640 Images/valid/000000581615.jpg .jpg valid\n5009 640 478 Images/valid/000000581781.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person15valid112.43195.32214.78438.1948685.67910
535917352582person15valid0.00256.0080.54376.8122650.73800
46790558393person15valid342.52163.33192.2477.475408.64720
171099058393person15valid418.99182.6561.1245.001792.80770
1238519147729person15valid0.0087.01310.67287.9955847.52705
..............................
906701608203105455car7valid333.56517.2117.4314.58182.21680
906700523633428280chair9valid3.58189.14176.88125.329942.25095
906700523799428280chair9valid244.05152.2968.5134.491457.96785
906700524550428280chair9valid187.71114.8044.0766.412069.93800
906702605969428280chair9valid203.58179.65105.27139.557696.12525
\n

41900 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 15 valid 112.43 195.32 \n535917 352582 person 15 valid 0.00 256.00 \n467905 58393 person 15 valid 342.52 163.33 \n1710990 58393 person 15 valid 418.99 182.65 \n1238519 147729 person 15 valid 0.00 87.01 \n... ... ... ... ... ... ... \n906701608203 105455 car 7 valid 333.56 517.21 \n906700523633 428280 chair 9 valid 3.58 189.14 \n906700523799 428280 chair 9 valid 244.05 152.29 \n906700524550 428280 chair 9 valid 187.71 114.80 \n906702605969 428280 chair 9 valid 203.58 179.65 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n906701608203 17.43 14.58 182.21680 \n906700523633 176.88 125.32 9942.25095 \n906700523799 68.51 34.49 1457.96785 \n906700524550 44.07 66.41 2069.93800 \n906702605969 105.27 139.55 7696.12525 \n\n[41900 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5149,23 +5384,17 @@ ] } }, - "bb6f967f14d344e0bd5669ad4689f243": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bbfdb4d23a9440c1aaddd36ad24d1208": { + "ccc69999bf004cdcbde3354d74c78850": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_d31926bb825d406ea36d40fbff476929", + "layout": "IPY_MODEL_cb175f16ce6c4ed3963131b9bc9d71d4", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
592005113354zebra24valid3.24151.28265.34175.8216206.37480
\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n592005 113354 zebra 24 valid 3.24 151.28 \n\n box_width box_height area \nid \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n592005 265.34 175.82 16206.37480 " + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.6791
535917352582person1valid0.00256.0080.54376.8122650.7380
602093352582frisbee34valid171.63424.0385.8940.672605.7209
\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.6791 \n535917 80.54 376.81 22650.7380 \n602093 85.89 40.67 2605.7209 " }, "metadata": {}, "output_type": "display_data" @@ -5173,23 +5402,23 @@ ] } }, - "bc76242669d94ef9a846f77b88e3ae51": { + "ccd0c39ae0d646ff9987e51710d01995": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "bc91ae56ebad45d3a817b074743e94ab": { + "cda0463595624e2b80fb4a544b051fe8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_8866070e785345b5a49551110ed6f1c4", - "IPY_MODEL_484a683f058b4f2a83759a3a75551b9f", - "IPY_MODEL_6fd00400082e4cd887a8653fded7f9ef" + "IPY_MODEL_9fe2579380ec4ab2afa63f5f450a27b6", + "IPY_MODEL_215230f60dc54b66975684b3962c0042", + "IPY_MODEL_c986fa54a7fa47558c32767b5450a531" ], - "layout": "IPY_MODEL_d8b4bc9c844a4f58bf4571cbe7af2136", + "layout": "IPY_MODEL_196967d5069f4d189f12628fb951211b", "selected_index": 0, "titles": [ "Images", @@ -5198,17 +5427,27 @@ ] } }, - "be068f84bdb143528958fa4a53c67238": { + "cdeae99bee7c45338863518450b71d07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d2a60949036846628bae224850cb21e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_5785926c454d47ac882ec6924f2d8120", - "IPY_MODEL_3bef596caff049db9aaeb69ed2efedab", - "IPY_MODEL_4690c73043464e7ba090c642268abcce" + "IPY_MODEL_7855f691fd2d417fb13802123060f0f9", + "IPY_MODEL_51b02e3991f24fd6b09d0dbe65efc24f", + "IPY_MODEL_a92f13c01f914b8496025488730f1f55" ], - "layout": "IPY_MODEL_584b7077356449debe4c2b23f086ed9d", + "layout": "IPY_MODEL_ee65a2fc04d248e18e8798ea317f9557", "selected_index": 0, "titles": [ "Images", @@ -5217,48 +5456,37 @@ ] } }, - "be1a9f5f95b741a7a45238443bceafb3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bedb4bd1670c4e22b1ec4fdb51fab79e": { - "model_module": "@jupyter-widgets/base", + "d38bd83f704041fa94c4b2e8a381b218": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_dadb0f6788394aa0a94d6c7588d79522", + "style": "IPY_MODEL_03a9542f0e794f079aad4ea10017013f", + "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + } }, - "bf201b396f8d44d38c03c7b6acdaaaab": { + "d5e3a1dbf17e4f24bbac1e79e3ccea3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "HTMLModel", "state": { - "children": [ - "IPY_MODEL_18979c5911324f4387b6ebc581d763a8", - "IPY_MODEL_53a00408a1f04292b07cf3406f47fb46", - "IPY_MODEL_124de2c7cc8e4c51984f12359b9c672d" - ], - "layout": "IPY_MODEL_3ba04c02df0443dc8bf6107f9f7e4a6c", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] + "layout": "IPY_MODEL_8b7d15b97de0461e877c1b7f01376573", + "style": "IPY_MODEL_c1ee2b30e8c1430a91065ddc529d89e7", + "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "c00c162a663347309527f2fd54726282": { + "d6baaeeb0c864af38c19897ffc3f5189": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_bc76242669d94ef9a846f77b88e3ae51", + "layout": "IPY_MODEL_cc92718aa17c4fdc9b519e75d09e7773", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person2valid112.43195.32214.78438.1948685.67910
535917352582person2valid0.00256.0080.54376.8122650.73800
46790558393person2valid342.52163.33192.2477.475408.64720
171099058393person2valid418.99182.6561.1245.001792.80770
1238519147729person2valid0.0087.01310.67287.9955847.52705
..............................
1420625363188bag61valid221.41199.7691.3663.64865.42470
2026890363188person2valid80.77158.4623.1445.34600.52020
900100363188363188person2valid0.00129.00305.00115.004293.00000
1724916311180person2valid0.92103.12446.49536.47125482.38805
1192747105455sedan100valid333.56517.2117.4314.58182.21680
\n

16147 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 2 valid 112.43 195.32 \n535917 352582 person 2 valid 0.00 256.00 \n467905 58393 person 2 valid 342.52 163.33 \n1710990 58393 person 2 valid 418.99 182.65 \n1238519 147729 person 2 valid 0.00 87.01 \n... ... ... ... ... ... ... \n1420625 363188 bag 61 valid 221.41 199.76 \n2026890 363188 person 2 valid 80.77 158.46 \n900100363188 363188 person 2 valid 0.00 129.00 \n1724916 311180 person 2 valid 0.92 103.12 \n1192747 105455 sedan 100 valid 333.56 517.21 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n1420625 91.36 63.64 865.42470 \n2026890 23.14 45.34 600.52020 \n900100363188 305.00 115.00 4293.00000 \n1724916 446.49 536.47 125482.38805 \n1192747 17.43 14.58 182.21680 \n\n[16147 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5266,68 +5494,82 @@ ] } }, - "c0248a690e684be4a425ea2258a92f50": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c0d860e092934ea5a2ebd12f84322fe1": { + "d6fe810a673b4df3b2dee940a9ca2897": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_562914ef9a784277a4e422b9e7b527fe", - "style": "IPY_MODEL_e715cd29143641e1aa536a5f73b00a74", - "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "description_width": "", + "font_size": null, + "text_color": null } }, - "c259d5ca11ee4e528183f9b259bba383": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c2972b90c94b4f49ad06b3ebfa80f78e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "d7cdaeb49f004a8dbdf16961b178f497": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_c5dd9f6ff57b46b0896b4967e34afe6f", - "style": "IPY_MODEL_5325a2c6f5e347cdbdb4246f9b7c00f5", - "value": "

Dataset object containing 5,000 images and 18,391 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "layout": "IPY_MODEL_24c3935dccad491d92f92a9a01fa5f37", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "c417fee3d8f34750a905b314223cd36e": { + "d89a9273a3264bdc8aaeac981e15bd3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c572ffaa12b845f485859ee7a5558489": { + "d8da17be643c4a63813fb457a14bd259": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_7c3f6d4e80634978b877f69ba9e8e026", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
\n
", + "text/plain": "Empty DataFrame\nColumns: [image_id, category_str, category_id, split, box_x_min, box_y_min, box_width, box_height, area]\nIndex: []" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d9593d212484414b8ba57837f931a0f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c5dd9f6ff57b46b0896b4967e34afe6f": { + "d9b40f57cb824239b65cd0e1c09fc5c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c6411dd5bd3d4967b3ab76ebe377228b": { + "d9c58b82617642ef812454748838b5f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c6e20f31e53c4079a45532555e89d324": { + "dabce91a4a4b454dabeb9c3a486c0d43": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_0c708588cba74f558e1ffa788728f142", + "layout": "IPY_MODEL_b189ddb82297439bb62349d10e0b8c8c", "outputs": [ { "data": { @@ -5340,39 +5582,41 @@ ] } }, - "c809aeda1ca94d378c54d210891e5745": { + "dadb0f6788394aa0a94d6c7588d79522": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c80b1625d5c248d4b69aea8814bffd4d": { - "model_module": "@jupyter-widgets/controls", + "db244fd778374cd9a420b62f45288859": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_649d1e92ccb14b228ac02eae8896d0e3", - "style": "IPY_MODEL_7b439da9083b497faeabde84b2b6936f", - "value": "

Dataset object containing 5,076 images and 19,822 objects\nName :\n\tsmartcity_capta+coco\nImages root :\n\tnotebook_data

" - } + "model_name": "LayoutModel", + "state": {} + }, + "dba7cb9df18749acb55c70e3e98d0170": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "c8707bef186a4880894260f278718efd": { + "dd35663bc1bb459985d75e20a0f2885d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c88eb912639647eeb382b2315fb3144a": { + "de540a7ac8634e82ac874e14cb8ee255": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_8da4dc5f90684d39a3623070462c412d", + "layout": "IPY_MODEL_bf056b3aad2f4866a73886e0a2548fc2", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
229airplane5valid282.23139.3851.2243.78567.94110
329airplane5valid150.178.6374.0977.191454.47215
461airplane5valid9.43105.72621.76183.1540544.34585
561airplane5valid51.40249.06250.4428.092415.22505
6139airplane5valid0.00142.01566.13143.9430298.91215
..............................
367784838zebra24valid70.112.16433.62434.69122687.61775
367794966zebra24valid107.31141.6479.67159.545946.64725
367804966zebra24valid342.29164.82224.42222.7823360.62700
367814966zebra24valid418.15164.9182.4663.513431.98040
367824966zebra24valid190.56143.9161.39172.455648.15435
\n

36781 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n2 29 airplane 5 valid 282.23 139.38 \n3 29 airplane 5 valid 150.17 8.63 \n4 61 airplane 5 valid 9.43 105.72 \n5 61 airplane 5 valid 51.40 249.06 \n6 139 airplane 5 valid 0.00 142.01 \n... ... ... ... ... ... ... \n36778 4838 zebra 24 valid 70.11 2.16 \n36779 4966 zebra 24 valid 107.31 141.64 \n36780 4966 zebra 24 valid 342.29 164.82 \n36781 4966 zebra 24 valid 418.15 164.91 \n36782 4966 zebra 24 valid 190.56 143.91 \n\n box_width box_height area \nid \n2 51.22 43.78 567.94110 \n3 74.09 77.19 1454.47215 \n4 621.76 183.15 40544.34585 \n5 250.44 28.09 2415.22505 \n6 566.13 143.94 30298.91215 \n... ... ... ... \n36778 433.62 434.69 122687.61775 \n36779 79.67 159.54 5946.64725 \n36780 224.42 222.78 23360.62700 \n36781 82.46 63.51 3431.98040 \n36782 61.39 172.45 5648.15435 \n\n[36781 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5380,189 +5624,116 @@ ] } }, - "c93d2cfc133b401282f6f045f1bb0223": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "deed7abbfb4942c1bc39b66fb3b7efe4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "df046193ac084c8c98cdfa41744e9f6a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_000a5e54b1f8484e853f08284f4e546b", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582frisbee34valid171.63424.0385.8940.672605.72090
589077113354zebra24valid260.99158.88141.52194.119978.94125
589740113354zebra24valid366.49174.59115.67142.715784.68620
..............................
331107349837refrigerator82valid66.0094.8771.25194.2612029.44125
332788349837refrigerator82valid138.0062.6398.25252.0023037.46875
333394349837refrigerator82valid234.4429.87113.49298.6530406.51295
333685349837refrigerator82valid335.0410.48125.17318.7837187.97840
333731349837refrigerator82valid460.390.0039.61328.6412492.52165
\n

34818 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n589077 113354 zebra 24 valid 260.99 158.88 \n589740 113354 zebra 24 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 349837 refrigerator 82 valid 66.00 94.87 \n332788 349837 refrigerator 82 valid 138.00 62.63 \n333394 349837 refrigerator 82 valid 234.44 29.87 \n333685 349837 refrigerator 82 valid 335.04 10.48 \n333731 349837 refrigerator 82 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[34818 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_63b646f5fe4b44e5a9eb540679b38179", + "style": "IPY_MODEL_3209edc462354a22a7d772253934a13c", + "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "c97e3bee005b413d880e928a544d3b93": { + "df16b3e64151406f8c3c36f3c8b766ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "VBoxModel", "state": { - "layout": "IPY_MODEL_aec15b706feb48c3a2221de4a0413308", - "style": "IPY_MODEL_a89a3d4f3b88410084208619d227f84f", - "value": "

Dataset object containing 1 image and 3 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "children": [ + "IPY_MODEL_b39364cbbf6b4a91af4b560782c16676", + "IPY_MODEL_78b68e6794c840619e4f1949ebeace98" + ], + "layout": "IPY_MODEL_160d21b7b91544a69bd0ec984366f70e" } }, - "ca5cf90d157543809b2d73cc8535dc2a": { + "e10607eb5ef04569a4c9a797967b2da8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "cadb58ff30e043c998fae6ee670d2804": { + "e2d3753a75aa4fb1924f269175afeeab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "cb34e0259b7b42dca74f2e85e1c4cd83": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_8b6c8cf1908b4457ad894110df2ccdb8", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
2person
111bicycle
100sedan
110motorcycle
102bus
12train
10car
41domestical animal
410dog
61bag
60suitcase
\n
", - "text/plain": " category string\ncategory_id \n2 person\n111 bicycle\n100 sedan\n110 motorcycle\n102 bus\n12 train\n10 car\n41 domestical animal\n410 dog\n61 bag\n60 suitcase" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } + "e345619f1ff841aeb526c74d4a9afa99": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "cbc53dde861749d4b4644390f6d89b24": { - "model_module": "@jupyter-widgets/controls", + "e7dc427815dc4f14ba367e6f6e37a129": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } + "model_name": "LayoutModel", + "state": {} }, - "cc92f80ed7f64507864d11686ca932ed": { + "e7ea818c8348466b9b548a435e1af377": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "ccafb9f9f93b452f9b3e814de8580e87": { - "model_module": "@jupyter-widgets/controls", + "e82f91fa62f44f708868b2c85acde7b1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_35f84b4b3b814c9f8c65f601f9de52c7", - "style": "IPY_MODEL_45971d712c1c4124958d079879aedb19", - "value": "

Dataset object containing 2 images and 1 object\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } + "model_name": "LayoutModel", + "state": {} }, - "cdb2244ab6324797b2d8130dd7866839": { - "model_module": "@jupyter-widgets/controls", + "ea17d1aba9cb4d4cac2d795b5295c04c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "TabModel", - "state": { - "children": [ - "IPY_MODEL_87b279cadf97461ca3f14ca371df9b8e", - "IPY_MODEL_922e430cc62c4c54ad988163641fc111", - "IPY_MODEL_3f1ac25d4b364b9ebea791c29d10fa9f" - ], - "layout": "IPY_MODEL_23897ec8a10d41658c76b17eb00cf4d4", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] - } + "model_name": "LayoutModel", + "state": {} }, - "cfcd6ea1fc124ddb9c7419fdb1e18c9e": { - "model_module": "@jupyter-widgets/controls", + "ea276594fe214985ae130d548ca3874a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "TabModel", - "state": { - "children": [ - "IPY_MODEL_8b16b8c0e8934287a02f8dede6779d8e", - "IPY_MODEL_b0981334e1e44bc29936fb70b73a97a8", - "IPY_MODEL_3a5cf62bea6d48008548721eb87a96dd" - ], - "layout": "IPY_MODEL_2055ad3d77a84aa69d7093f46273f036", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] - } + "model_name": "LayoutModel", + "state": {} }, - "d24df15b211a47abbdec19ef62c8883d": { + "ea3aef7e74fd4993a10850c12aa9ef62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_e3084fee85314470b2978885adaf88c2", - "IPY_MODEL_d4cad2637a7545adb905408699f590fb" + "IPY_MODEL_f9cc155120424502aaf9267336ce1ae1", + "IPY_MODEL_550e373b38a54c63974397f70115ae35" ], - "layout": "IPY_MODEL_c6411dd5bd3d4967b3ab76ebe377228b" + "layout": "IPY_MODEL_5fb86192340c4526a85900dff25de564" } }, - "d31926bb825d406ea36d40fbff476929": { - "model_module": "@jupyter-widgets/base", + "ea8cea5708c2485c9e3df8088c556f5c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d4a3c75f41264f90a6ad3589e582f618": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_a4a609c3e02041e892e87a1e15cf5dae", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_b5454727f531449daeee78ba0af3a2ec", + "style": "IPY_MODEL_fec8054bf05b46a3a571f7d52a80ea4b", + "value": "

Dataset object containing 1 image and 3 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "d4cad2637a7545adb905408699f590fb": { - "model_module": "@jupyter-widgets/controls", + "eb29c47be0b14b9dbbeebf180e3c7c02": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "TabModel", - "state": { - "children": [ - "IPY_MODEL_ae3cf866393b4ec4ac40269a750d3a10", - "IPY_MODEL_2778d61fc01a436e916253188585e30e", - "IPY_MODEL_0fa247a61d2a4c5ca4d561745684b411" - ], - "layout": "IPY_MODEL_df6d5349154049a2a94e7c04bd055bc0", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] - } + "model_name": "LayoutModel", + "state": {} }, - "d62aac955151470987acadb3fa557eb5": { + "ec10a02b68d543e2a7202f4f193def5c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_881fd8c193694b139321ae4143205526", + "layout": "IPY_MODEL_a31aecdc64ab40a5ba5b7779bcf4a93b", "outputs": [ { "data": { @@ -5575,17 +5746,35 @@ ] } }, - "d6c7a6732abe4d088111573889108ec2": { + "ecc7c3f906844b789a62761ee82aeaa9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_6ec0501159b94ca7aaeac2588c2e0a9e", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

4722 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[4722 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ecd7d7225e2840839e4dd5c06d2928ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_27fb01ccb6a046238a4f7b5203c95ac6", - "IPY_MODEL_8aa03c053dd8485397c26faee0ac7bd5", - "IPY_MODEL_d62aac955151470987acadb3fa557eb5" + "IPY_MODEL_f5bc91bf4a9a43e085d27ce6c37f462a", + "IPY_MODEL_1ffadd66d4824428bf4bd02321a8baf0", + "IPY_MODEL_2d7db77130b54cafb143a1b7c507fa71" ], - "layout": "IPY_MODEL_13fb585955bb4ac18e1d173f5be42a61", + "layout": "IPY_MODEL_f7009f2f215643cb9acae7c654699e36", "selected_index": 0, "titles": [ "Images", @@ -5594,47 +5783,17 @@ ] } }, - "d82087924e4142f288a9b8904f221455": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_15b687c65c5748a69ead0b5e940730bd", - "IPY_MODEL_658725de461042c19f6367fdfe0fd4df" - ], - "layout": "IPY_MODEL_23ed09427de242f3b230bd3767bf66b0" - } - }, - "d8b4bc9c844a4f58bf4571cbe7af2136": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d94834afc1d8491187d1bf1c9284a9df": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dac711e998d6487e8db47bb49ba810c0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "daeaa77f2e9347cc9f7d1387f782ed57": { + "ecf576b29a014db481e9829081b09c68": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_301bb5947ad745acb8a094b89f6cc57d", + "layout": "IPY_MODEL_bc405de6314442108a926ea56be3411f", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
10640426Images/valid/000000000139.jpg.jpgvalid
11586640Images/valid/000000000285.jpg.jpgvalid
12640483Images/valid/000000000632.jpg.jpgvalid
13375500Images/valid/000000000724.jpg.jpgvalid
14428640Images/valid/000000000776.jpg.jpgvalid
..................
5005640354Images/valid/000000581317.jpg.jpgvalid
5006612612Images/valid/000000581357.jpg.jpgvalid
5007640427Images/valid/000000581482.jpg.jpgvalid
5008478640Images/valid/000000581615.jpg.jpgvalid
5009640478Images/valid/000000581781.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n10 640 426 Images/valid/000000000139.jpg .jpg valid\n11 586 640 Images/valid/000000000285.jpg .jpg valid\n12 640 483 Images/valid/000000000632.jpg .jpg valid\n13 375 500 Images/valid/000000000724.jpg .jpg valid\n14 428 640 Images/valid/000000000776.jpg .jpg valid\n... ... ... ... ... ...\n5005 640 354 Images/valid/000000581317.jpg .jpg valid\n5006 612 612 Images/valid/000000581357.jpg .jpg valid\n5007 640 427 Images/valid/000000581482.jpg .jpg valid\n5008 478 640 Images/valid/000000581615.jpg .jpg valid\n5009 640 478 Images/valid/000000581781.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5642,65 +5801,41 @@ ] } }, - "daf121e7d7c343c9bc202fb4003d4687": { + "ee65a2fc04d248e18e8798ea317f9557": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "dbcd7f1499f840b3acd3d02b57937b0d": { + "f1a4502ebbd14377b5b5f6c34f45482f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "dc26d390ce884090834f8acf5f829cdf": { + "f1b510f4d8bb4bba8ad06e2e2a53619f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "dd26702479034291a38500897b696c79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_c0d860e092934ea5a2ebd12f84322fe1", - "IPY_MODEL_9da439c98f3c4d7aa6caa27ed70dfa32" - ], - "layout": "IPY_MODEL_8973924984f448c58cbcd96c50034a4e" - } - }, - "dda17401931441fbb6a1eba601641cf4": { + "f2276d30d3b548dbbec09aca7a954f7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "de4fc22b09c6427496f1627a544e7432": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_5656d447bdef47bc91c96668e7dc2340", - "IPY_MODEL_6e0419c231fa4d2f85d0bf5ba7a88cbf" - ], - "layout": "IPY_MODEL_888c450cc9534c22910a09e17a2c0e55" - } - }, - "deece2bc27d64e809b0f0ffe181fe420": { + "f288611e5cda425387ea6350e30e1af2": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_870237b6891d4247bffa5f8263e685d4", + "layout": "IPY_MODEL_7967dc587bfc4f6a929cd6958633f189", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
2person
111bicycle
100sedan
110motorcycle
102bus
12train
10car
41domestical animal
410dog
61bag
60suitcase
\n
", - "text/plain": " category string\ncategory_id \n2 person\n111 bicycle\n100 sedan\n110 motorcycle\n102 bus\n12 train\n10 car\n41 domestical animal\n410 dog\n61 bag\n60 suitcase" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid" }, "metadata": {}, "output_type": "display_data" @@ -5708,41 +5843,45 @@ ] } }, - "defd8db7be584ef58af4221757118c85": { - "model_module": "@jupyter-widgets/base", + "f29e02fa480a4e51b63c85f5a07560dc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } }, - "df472973aa4c44fea3741d7fe7a7f497": { + "f2c0045fe58b43f59f4729a0edddcbdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "df6d5349154049a2a94e7c04bd055bc0": { + "f32c7f63262042e18b56852b902d40c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "dfc2ca586a0848a58b017be7170c7d7a": { + "f3b91b3242c840a7891a3d9c2f89fb51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e055ea2e96554b52921c4fe1ec020a1d": { + "f5bc91bf4a9a43e085d27ce6c37f462a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_a05d6961fe7a4f9abf64888cd1d54d39", + "layout": "IPY_MODEL_faba574fc64a47609236f420e3c1a5be", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5750,33 +5889,23 @@ ] } }, - "e1666ba9e67d45b38ea7819535b4f572": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_defd8db7be584ef58af4221757118c85", - "style": "IPY_MODEL_e8344b3188234da191f1627817096f50", - "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } - }, - "e227b9c8d8194bdf809f1902470c9900": { + "f5df0a434c4f4e739d799df0d6930bf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e237f37431f04ccdaefe08f7b83935b6": { + "f61c9d7c59b849afb523a7044b316296": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_7ea38cc2303346d29dcafdaf0c4587db", + "layout": "IPY_MODEL_29c931608dbf4121b1cbb276ae817e39", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
357584310072Vehicle1valid223.850.00258.8369.0814718.47935
358258310072Vehicle1valid0.001.94135.9966.276989.84750
363154310072Vehicle1valid170.890.0071.0636.961729.26630
1337431310072Vehicle1valid631.997.358.0115.4691.97330
1368385310072Vehicle1valid0.000.00131.8771.467558.39585
..............................
10068189806Animal3valid263.63193.10180.04103.5910866.03335
46540189806Animal3valid130.91165.2094.54104.735204.68295
344755363188Vehicle1valid590.03198.9249.97106.424084.58345
1420625363188Bag2valid221.41199.7691.3663.64865.42470
1192747105455Vehicle1valid333.56517.2117.4314.58182.21680
\n

5143 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n357584 310072 Vehicle 1 valid 223.85 0.00 \n358258 310072 Vehicle 1 valid 0.00 1.94 \n363154 310072 Vehicle 1 valid 170.89 0.00 \n1337431 310072 Vehicle 1 valid 631.99 7.35 \n1368385 310072 Vehicle 1 valid 0.00 0.00 \n... ... ... ... ... ... ... \n10068 189806 Animal 3 valid 263.63 193.10 \n46540 189806 Animal 3 valid 130.91 165.20 \n344755 363188 Vehicle 1 valid 590.03 198.92 \n1420625 363188 Bag 2 valid 221.41 199.76 \n1192747 105455 Vehicle 1 valid 333.56 517.21 \n\n box_width box_height area \nid \n357584 258.83 69.08 14718.47935 \n358258 135.99 66.27 6989.84750 \n363154 71.06 36.96 1729.26630 \n1337431 8.01 15.46 91.97330 \n1368385 131.87 71.46 7558.39585 \n... ... ... ... \n10068 180.04 103.59 10866.03335 \n46540 94.54 104.73 5204.68295 \n344755 49.97 106.42 4084.58345 \n1420625 91.36 63.64 865.42470 \n1192747 17.43 14.58 182.21680 \n\n[5143 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1aeroplane
2bicycle
3bird
4boat
5bottle
6bus
7car
8cat
9chair
10cow
11diningtable
12dog
13horse
14motorbike
15person
16pottedplant
17sheep
18sofa
19train
20tvmonitor
\n
", + "text/plain": " category string\ncategory_id \n1 aeroplane\n2 bicycle\n3 bird\n4 boat\n5 bottle\n6 bus\n7 car\n8 cat\n9 chair\n10 cow\n11 diningtable\n12 dog\n13 horse\n14 motorbike\n15 person\n16 pottedplant\n17 sheep\n18 sofa\n19 train\n20 tvmonitor" }, "metadata": {}, "output_type": "display_data" @@ -5784,17 +5913,17 @@ ] } }, - "e2d11117fd6242049b20c972dc998ee5": { + "f628d827f3494e61a5e13c72567f8983": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_07f29f6774364a5985f926be014bb2fa", + "layout": "IPY_MODEL_7921b054744a46839a97eb1cff3c0d4d", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1animal
2vehicle
3object
\n
", + "text/plain": " category string\ncategory_id \n1 animal\n2 vehicle\n3 object" }, "metadata": {}, "output_type": "display_data" @@ -5802,33 +5931,31 @@ ] } }, - "e3084fee85314470b2978885adaf88c2": { - "model_module": "@jupyter-widgets/controls", + "f7009f2f215643cb9acae7c654699e36": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_4887dda2b4d747b99b53512b1b0d8269", - "style": "IPY_MODEL_1416f9b474a24937b723b5f3b963bc3d", - "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } + "model_name": "LayoutModel", + "state": {} }, - "e42a3be280b24ebe8713b30646861e81": { - "model_module": "@jupyter-widgets/controls", + "f7fb857318714b95b6a4cadc2be3f42c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_109cf86ee75244a3867eede424c06f8c", - "style": "IPY_MODEL_3f0c3be359c24aa1b99018d38ebfd8f3", - "value": "

Dataset object containing 2 images and 0 object\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } + "model_name": "LayoutModel", + "state": {} + }, + "f85df88b19a548c1a10678b27bff5d50": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "e48adcf89c284bb28ad16c35c5e4ee35": { + "f8bb9c3a15c947268a2a91f733da3611": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e5203aea1a034e4f8f07478a1518f32c": { + "f8f81c3b192844218d8f0deddc1a2ade": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5838,47 +5965,46 @@ "text_color": null } }, - "e5f03032a64d45dea659775708127005": { + "f8fae047eba64b2ba615717c3e6424da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_9f98f4f9a484443d86f7a8b53a6f0383", - "IPY_MODEL_bf201b396f8d44d38c03c7b6acdaaaab" + "IPY_MODEL_fb7106a5a3a8416ba13d80976377be51", + "IPY_MODEL_fd96c177ea0f47a7b9d0151b6a44e3d3", + "IPY_MODEL_63d68d45e3cc4478ac890817f2e48433" ], - "layout": "IPY_MODEL_740572852b404ab6b16bf51549e42d4a" + "layout": "IPY_MODEL_bc33b1752fbc42b1bb971160aa734c1f", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "e632e552abae4b039b2c3233f81dfdc9": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "f9cc155120424502aaf9267336ce1ae1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_3b42f9bab9dd407e8bde63abe3e9128e", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

4722 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[4722 rows x 5 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_494d15aa83c24127ac87b30c627df20b", + "style": "IPY_MODEL_68d2c10291ca463ab2cf05746ca09093", + "value": "

Dataset object containing 4,722 images and 34,818 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" } }, - "e6ebee4fb350450bb503c6456b6bc95e": { + "fa468d8ea1954346ba62e1f3ba16da9d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4d401b4c71724b63b1789803f9ea6065", + "layout": "IPY_MODEL_31e84d0a79824ce9a92d05234d3306bf", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightareaconfidence
id
0352582suitcase60valid212.5320.0212.5320.068000.00.5
\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 352582 suitcase 60 valid 212.5 320.0 \n\n box_width box_height area confidence \nid \n0 212.5 320.0 68000.0 0.5 " + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
0640483Images/valid/000000000632.jpg.jpgvalid
1375500Images/valid/000000000724.jpg.jpgvalid
2428640Images/valid/000000000776.jpg.jpgvalid
3640425Images/valid/000000000785.jpg.jpgvalid
4640427Images/valid/000000001268.jpg.jpgvalid
..................
4995640428Images/valid/000000580418.jpg.jpgvalid
4996640425Images/valid/000000580757.jpg.jpgvalid
4997500375Images/valid/000000581062.jpg.jpgvalid
4998479640Images/valid/000000581206.jpg.jpgvalid
4999478640Images/valid/000000581615.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n0 640 483 Images/valid/000000000632.jpg .jpg valid\n1 375 500 Images/valid/000000000724.jpg .jpg valid\n2 428 640 Images/valid/000000000776.jpg .jpg valid\n3 640 425 Images/valid/000000000785.jpg .jpg valid\n4 640 427 Images/valid/000000001268.jpg .jpg valid\n... ... ... ... ... ...\n4995 640 428 Images/valid/000000580418.jpg .jpg valid\n4996 640 425 Images/valid/000000580757.jpg .jpg valid\n4997 500 375 Images/valid/000000581062.jpg .jpg valid\n4998 479 640 Images/valid/000000581206.jpg .jpg valid\n4999 478 640 Images/valid/000000581615.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5886,27 +6012,23 @@ ] } }, - "e715cd29143641e1aa536a5f73b00a74": { - "model_module": "@jupyter-widgets/controls", + "faba574fc64a47609236f420e3c1a5be": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } + "model_name": "LayoutModel", + "state": {} }, - "e74072710cb94a5980b1e917c349935b": { + "fb7106a5a3a8416ba13d80976377be51": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_393643a9a08e4705afc5d024a8e91484", + "layout": "IPY_MODEL_b9305f4cb6694a218d938b1c821d0423", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1vehicle
3animal
2bag
\n
", - "text/plain": " category string\ncategory_id \n1 vehicle\n3 animal\n2 bag" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid" }, "metadata": {}, "output_type": "display_data" @@ -5914,7 +6036,7 @@ ] } }, - "e8344b3188234da191f1627817096f50": { + "fbeaaa18eb984d3196b1f14067c573b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5924,65 +6046,29 @@ "text_color": null } }, - "ea1b07e366954852a0ace5768fbcb0c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_c97e3bee005b413d880e928a544d3b93", - "IPY_MODEL_4a40453dda51443aa1c46c0544921913" - ], - "layout": "IPY_MODEL_4158d35d56e14215b55f2422f226c30e" - } - }, - "eb06369aa3a344fb8b751e5ac90a6203": { + "fbf95a22080b42069f45fa21cb13bec1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_85d2ea2bad2f4a7db8cad0a38b39482b", - "IPY_MODEL_906e0da2a30a4c56b6ee41b001a230db" + "IPY_MODEL_aae989eac45f42fcb39884378a59e020", + "IPY_MODEL_6d671c481a0946cd93a7b18099a60178" ], - "layout": "IPY_MODEL_8dcdde34750d48e6bb1a27ce1967692e" - } - }, - "ed07319a399f4efeaae1d78094d4cfae": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_17c92255a8d94ff583db6d932cbb04da", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.6791
535917352582person1valid0.00256.0080.54376.8122650.7380
602093352582frisbee34valid171.63424.0385.8940.672605.7209
\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 frisbee 34 valid 171.63 424.03 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.6791 \n535917 80.54 376.81 22650.7380 \n602093 85.89 40.67 2605.7209 " - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_9d1b24a324584fc58c0802d2c2705993" } }, - "ee5240ec7e3b462999c0e290894a742a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ef65891409c4419cb88edce2789aa500": { + "fcae50c271324f3e885edb43b9eef38b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_621338b9b40b4f12b0ec1611a641de2d", + "layout": "IPY_MODEL_c7f4e636fea5416abe53471ffe768a14", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1vehicle
3animal
2bag
\n
", - "text/plain": " category string\ncategory_id \n1 vehicle\n3 animal\n2 bag" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5990,79 +6076,29 @@ ] } }, - "f00954000e754a3e84f45957d4308d35": { + "fcc69010130c4e48b06ad36220cd6afe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f10b710cf65e4d5dbdf713d4b0f32c92": { + "fcff304526f24f9b8d49b5adc8dfe9a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f135817d2e6744df8c945f080d445594": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f13edfa87c774800b7e35122ce7a5a3d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f13f64836c2041b2b68511545a916b59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b4cfae471bba4a5b9000ccfcad6796dd", - "style": "IPY_MODEL_009f7a851044439da752f8e57b304336", - "value": "

Dataset object containing 5,000 images and 36,781 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" - } - }, - "f4b6c2ed9df4470da8287ed4be6c26b5": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_cc92f80ed7f64507864d11686ca932ed", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2bicycle
3car
4motorcycle
5airplane
......
86vase
87scissors
88teddy bear
89hair drier
90toothbrush
\n

80 rows × 1 columns

\n
", - "text/plain": " category string\ncategory_id \n1 person\n2 bicycle\n3 car\n4 motorcycle\n5 airplane\n... ...\n86 vase\n87 scissors\n88 teddy bear\n89 hair drier\n90 toothbrush\n\n[80 rows x 1 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "f687b523e612474c9c9c9b671423f44d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f736863a3caf4884a3920ece493808a4": { + "fd96c177ea0f47a7b9d0151b6a44e3d3": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_69e62664e91d46899829f613e0a8dcb7", + "layout": "IPY_MODEL_70a610378d7c4d968d72b37013edc46b", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000000352582.jpg.jpgvalid
113354640480Images/valid/000000113354.jpg.jpgvalid
58393640486Images/valid/000000058393.jpg.jpgvalid
147729500375Images/valid/000000147729.jpg.jpgvalid
310072640383Images/valid/000000310072.jpg.jpgvalid
..................
311180480640Images/valid/000000311180.jpg.jpgvalid
302030640359Images/valid/000000302030.jpg.jpgvalid
105455427640Images/valid/000000105455.jpg.jpgvalid
428280500333Images/valid/000000428280.jpg.jpgvalid
349837500333Images/valid/000000349837.jpg.jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg valid\n113354 640 480 Images/valid/000000113354.jpg .jpg valid\n58393 640 486 Images/valid/000000058393.jpg .jpg valid\n147729 500 375 Images/valid/000000147729.jpg .jpg valid\n310072 640 383 Images/valid/000000310072.jpg .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg valid\n302030 640 359 Images/valid/000000302030.jpg .jpg valid\n105455 427 640 Images/valid/000000105455.jpg .jpg valid\n428280 500 333 Images/valid/000000428280.jpg .jpg valid\n349837 500 333 Images/valid/000000349837.jpg .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightareaconfidence
id
0352582tvmonitor20valid212.5320.0212.5320.068000.00.5
11133542121valid0.00.0320.0240.076800.00.5
\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 352582 tvmonitor 20 valid 212.5 320.0 \n1 113354 21 21 valid 0.0 0.0 \n\n box_width box_height area confidence \nid \n0 212.5 320.0 68000.0 0.5 \n1 320.0 240.0 76800.0 0.5 " }, "metadata": {}, "output_type": "display_data" @@ -6070,57 +6106,21 @@ ] } }, - "f83cc91c00ed4d3ebcfa0cc56ad1aa2c": { + "fde5fa1711764a049b5bfa5f32acc020": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f94af64c1feb49ffabd1d93d796846ba": { + "fec8054bf05b46a3a571f7d52a80ea4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_4576ccff891c4058b055cee50877ea63", - "style": "IPY_MODEL_7c2e5007141746398e1584d8537559f5", - "value": "

Dataset object containing 5,000 images and 18,391 objects\nName :\n\tcoco\nImages root :\n\tnotebook_data

" + "description_width": "", + "font_size": null, + "text_color": null } - }, - "fa2fc2f687fa4c698311a6a8630bad21": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fbda8167b66041dbbe24a73e25266251": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fc7764aa992e48b38aecdce96132b7a1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fd4ae0e039444acfb4dc5c74c68ba84b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fd96899755ae416ba93e40a6f52d069d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fe9750a4cfca439798219a9dcb1c53bd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} } }, "version_major": 2, diff --git a/docs/notebooks/2_demo_split.ipynb b/docs/notebooks/2_demo_split.ipynb index 0a6ec4c..b4a8a3c 100644 --- a/docs/notebooks/2_demo_split.ipynb +++ b/docs/notebooks/2_demo_split.ipynb @@ -66,7 +66,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b478fb9952c04297b477d3b1f95a471e", + "model_id": "e4f4e2e8881e42cfacf0a90d66a935b0", "version_major": 2, "version_minor": 0 }, @@ -347,7 +347,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5f8d6e1c7f6742a89f1c311b406641a4", + "model_id": "700b811ca9f1445199cd2c2385e09058", "version_major": 2, "version_minor": 0 }, @@ -370,7 +370,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "29dae4561e3944439638c71d86f3c294", + "model_id": "2151c89e8fe341e188e5b5d65891f38a", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66e35a8659ce4beab5255d00bfbe7e76", + "model_id": "0e93c4082f7d4b1f9e342a52bb3d5771", "version_major": 2, "version_minor": 0 }, @@ -514,7 +514,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd4ea21f9baf4a40a54fe7992befa85b", + "model_id": "d65b33b4f1da4a32bb18fcb502bf7739", "version_major": 2, "version_minor": 0 }, @@ -628,7 +628,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9101218a401f49d48512607ef01713a2", + "model_id": "ea9f640fccfa43129c473bf451d43110", "version_major": 2, "version_minor": 0 }, @@ -651,7 +651,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "982eede774ab4ecc9665a8e2e5452c31", + "model_id": "31ea1b63d25e451c8191cbfaa6f4c773", "version_major": 2, "version_minor": 0 }, @@ -759,7 +759,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00907b9259ba45c8a7de8faaa04221fe": { + "001af8e3cada48b0a20e216720aaa501": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -769,7 +769,31 @@ "text_color": null } }, - "026fb8fdccfa41ad927d81115c7a692c": { + "01a4715c715e4610a2696df8627d449b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "06780701795b4f189eaaca142ea0bd9d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_a09bdaa346e34f88be6f10b0c9cfb598", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
1person
2vehicle
3outdoor
4animal
5accessory
6sports
7kitchen
8food
9furniture
10electronic
11appliance
12indoor
\n
", + "text/plain": " category string\ncategory_id \n1 person\n2 vehicle\n3 outdoor\n4 animal\n5 accessory\n6 sports\n7 kitchen\n8 food\n9 furniture\n10 electronic\n11 appliance\n12 indoor" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0a428e31196f4a429baf938eba49b9bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -779,101 +803,129 @@ "text_color": null } }, - "050a42cc91704e749ea85fd5873bb1f9": { - "model_module": "@jupyter-widgets/controls", + "0e76d83938904f81a075fb2a24aed972": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_1ef5d0ef3a9b4cfb997333ca22556913", - "max": 3300, - "style": "IPY_MODEL_2598ea9b532a4115a0825834efe64442", - "value": 3300 - } + "model_name": "LayoutModel", + "state": {} }, - "0670a2b10f1e4ca39ece556b2b27b7fb": { + "0e93c4082f7d4b1f9e342a52bb3d5771": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_bbd27fbb6f1b4bd094d1c80c6f7808c2", - "IPY_MODEL_48795fd9958f4a9d89cf9e15fdbfb043", - "IPY_MODEL_a12eaa47da6f47b4b8b8ca170e6b2b0e" + "IPY_MODEL_c8209c90bf94495e8b381e6d9bf09bc4", + "IPY_MODEL_ff5721f87299486284789f221ee5239c", + "IPY_MODEL_113f3413426442ae9efdf7b5ed9bffe8" ], - "layout": "IPY_MODEL_a09e6ea957e44b85bfe932d3d6bbebaf" + "layout": "IPY_MODEL_8fb665f005e547ba8410221e641ca1df" } }, - "076bc4b5ef734f6299f2b64ace949b7a": { - "model_module": "@jupyter-widgets/base", + "113f3413426442ae9efdf7b5ed9bffe8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_b9673433920c496e8af9d0ed6ea75b8c", + "style": "IPY_MODEL_98d8d55835a8436494b95fb10d282cfd", + "value": " 2699/2699 [00:07<00:00, 351.15it/s]" + } }, - "129b3901a58445ce8a03019be07712f5": { + "14a390092d19470996ec861b19820181": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_076bc4b5ef734f6299f2b64ace949b7a", - "style": "IPY_MODEL_00907b9259ba45c8a7de8faaa04221fe", - "value": "100%" + "description_width": "", + "font_size": null, + "text_color": null } }, - "19d7d6bc1af14c0fb1331e14c2e07af6": { + "1719754cee6348e092d96954a3cbf58d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_87b76337e4024a329cb6bbffcfdc7861", - "style": "IPY_MODEL_6717ac478c96459da2ee53d1a6d92bed", - "value": " 1700/1700 [00:01<00:00, 1044.34it/s]" + "layout": "IPY_MODEL_51172097fe70464ba2ffe5bbc43bb2ab", + "style": "IPY_MODEL_0a428e31196f4a429baf938eba49b9bd", + "value": " 2301/2301 [00:01<00:00, 1082.39it/s]" } }, - "1ef5d0ef3a9b4cfb997333ca22556913": { + "1926858e7ebd45cf87b5fac4e82d9ce3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "215d0b119143454ca0be1233adeb2ebf": { - "model_module": "@jupyter-widgets/base", + "1e40a145890a486cb1be740351fac829": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_7d08aefff56a4157bee18e00de8a0775", + "style": "IPY_MODEL_7964e7a3675d4da2b7cb4d36613eeb80", + "value": " 2301/2301 [00:01<00:00, 1582.34it/s]" + } + }, + "1e51358c7c41430b85b62994b9761abb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } }, - "22d45f40b4e04826894e312952411e8d": { + "2151c89e8fe341e188e5b5d65891f38a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_8c5704bde0f7475f948942a44d2f51ed", - "IPY_MODEL_e946289e0d0b4f5388f6ebda3cc7238e", - "IPY_MODEL_3bf43783786d4bd8b261b3387b6d46f4" + "IPY_MODEL_66474c43346b47a08c5e7a325eeda3db", + "IPY_MODEL_37e44f855d804d179a54a1f255ffafd6", + "IPY_MODEL_1e40a145890a486cb1be740351fac829" ], - "layout": "IPY_MODEL_8c8fb186acfd49cb9c4302cb12fcf1e9" + "layout": "IPY_MODEL_8d12b7d757514ebe8c226e17ffde5c69" } }, - "2598ea9b532a4115a0825834efe64442": { + "22e7893c82454c77a4dcf5ee9a982684": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { - "description_width": "" + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "23616145e70743d9ad8767e1d3eb0ed1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null } }, - "2b6b480ed6a0417cbca20c3f29942f64": { + "2d9a3eb9312a413ab2ce496cfa5eeb9e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "2ec3a0cdb1f046e1866d2067a88ee1bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_3fe44efe444342b79cb7c9ec0f575ae9", - "IPY_MODEL_ba1b645407234261a52f7bc80acc0e7e", - "IPY_MODEL_d5ec9a7801074becb38d80f120238412" + "IPY_MODEL_cbf26f9aaf6449a68ad658633ca0437b", + "IPY_MODEL_2fe5a29c97f5493cab425bcb6e6cff13", + "IPY_MODEL_06780701795b4f189eaaca142ea0bd9d" ], - "layout": "IPY_MODEL_91557e7942e34165b79267d87204e8de", + "layout": "IPY_MODEL_01a4715c715e4610a2696df8627d449b", "selected_index": 0, "titles": [ "Images", @@ -882,27 +934,17 @@ ] } }, - "3bf43783786d4bd8b261b3387b6d46f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_7ae4d08c105141caa9e80c20053e9f13", - "style": "IPY_MODEL_8a48e41906ce4fcda54b1296c958fa00", - "value": " 3300/3300 [00:14<00:00, 208.32it/s]" - } - }, - "3fe44efe444342b79cb7c9ec0f575ae9": { + "2fe5a29c97f5493cab425bcb6e6cff13": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4ab1bd769bf64a569ad72dd2a2b4ed39", + "layout": "IPY_MODEL_f3ff9b0416a0406d961b525fd9d2c3de", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000....jpgvalid
113354640480Images/valid/000....jpgvalid
58393640486Images/valid/000....jpgvalid
147729500375Images/valid/000....jpgvalid
310072640383Images/valid/000....jpgvalid
..................
311180480640Images/valid/000....jpgvalid
302030640359Images/valid/000....jpgvalid
105455427640Images/valid/000....jpgvalid
428280500333Images/valid/000....jpgvalid
349837500333Images/valid/000....jpgvalid
\n

5000 rows × 5 columns

\n
", - "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000... .jpg valid\n113354 640 480 Images/valid/000... .jpg valid\n58393 640 486 Images/valid/000... .jpg valid\n147729 500 375 Images/valid/000... .jpg valid\n310072 640 383 Images/valid/000... .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000... .jpg valid\n302030 640 359 Images/valid/000... .jpg valid\n105455 427 640 Images/valid/000... .jpg valid\n428280 500 333 Images/valid/000... .jpg valid\n349837 500 333 Images/valid/000... .jpg valid\n\n[5000 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
1238519147729person1valid0.0087.01310.67287.9955847.52705
358258310072vehicle2valid0.001.94135.9966.276989.84750
154490250149food8valid367.27103.8310.8518.53151.32335
90520005014950149food8valid10.0041.00403.00152.0027277.00000
..............................
1867794363188kitchen7valid282.02318.3919.3467.84485.40985
1141692302030indoor12valid163.1912.8115.1056.19575.10890
1987393302030indoor12valid186.9416.8721.4352.83821.67360
109094428280furniture9valid187.71114.8044.0766.412069.93800
333731349837appliance11valid460.390.0039.61328.6412492.52165
\n

3679 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n1238519 147729 person 1 valid 0.00 87.01 \n358258 310072 vehicle 2 valid 0.00 1.94 \n1544902 50149 food 8 valid 367.27 103.83 \n905200050149 50149 food 8 valid 10.00 41.00 \n... ... ... ... ... ... ... \n1867794 363188 kitchen 7 valid 282.02 318.39 \n1141692 302030 indoor 12 valid 163.19 12.81 \n1987393 302030 indoor 12 valid 186.94 16.87 \n109094 428280 furniture 9 valid 187.71 114.80 \n333731 349837 appliance 11 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n1238519 310.67 287.99 55847.52705 \n358258 135.99 66.27 6989.84750 \n1544902 10.85 18.53 151.32335 \n905200050149 403.00 152.00 27277.00000 \n... ... ... ... \n1867794 19.34 67.84 485.40985 \n1141692 15.10 56.19 575.10890 \n1987393 21.43 52.83 821.67360 \n109094 44.07 66.41 2069.93800 \n333731 39.61 328.64 12492.52165 \n\n[3679 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -910,145 +952,170 @@ ] } }, - "40818a432f37472ea47fc309854cd174": { + "311799bd47d74042afe3d6147020004d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "layout": "IPY_MODEL_4327977c6f7e46d59bf6d8ea5f60e474", - "style": "IPY_MODEL_72d241dfaf36490dabc8e3a73151690a", - "value": " 1700/1700 [00:01<00:00, 1034.33it/s]" + "description_width": "" } }, - "42513bf0b31744a8a4bd2d506e7ac987": { - "model_module": "@jupyter-widgets/base", + "31ea1b63d25e451c8191cbfaa6f4c773": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_93782eb2e1f648e48059079435b2b766", + "IPY_MODEL_47563edc1e5040648f992d5f166ef748", + "IPY_MODEL_43dc0d2936cc4ff79d0447576c86e67f" + ], + "layout": "IPY_MODEL_0e76d83938904f81a075fb2a24aed972" + } }, - "428ec57c22b04ac5b6dd32ba6fce3eb3": { + "35fa25948f4e406296a0d5b4cf953b94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { - "description_width": "" + "description_width": "", + "font_size": null, + "text_color": null } }, - "4327977c6f7e46d59bf6d8ea5f60e474": { + "37c571ac909548dca624efc9a40d6813": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "48795fd9958f4a9d89cf9e15fdbfb043": { + "37e44f855d804d179a54a1f255ffafd6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", - "layout": "IPY_MODEL_42513bf0b31744a8a4bd2d506e7ac987", - "max": 1700, - "style": "IPY_MODEL_8097c881d3c6436cae2a2900927871d6", - "value": 1700 + "layout": "IPY_MODEL_1926858e7ebd45cf87b5fac4e82d9ce3", + "max": 2301, + "style": "IPY_MODEL_3f2ea06b37fd4a68a80da5c013ae692a", + "value": 2301 } }, - "4ab1bd769bf64a569ad72dd2a2b4ed39": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4b4dec99f852425482136365a5b8efbc": { + "3bd6d741838a4bee8b6bf027db90f310": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", - "layout": "IPY_MODEL_8e33553b60e24701ace41123a36d8950", - "max": 1700, - "style": "IPY_MODEL_eb00737fe2fd471a8d3fb2d2397fa072", - "value": 1700 + "layout": "IPY_MODEL_56aa1273a4f44599a31057697cf2ca1c", + "max": 2301, + "style": "IPY_MODEL_311799bd47d74042afe3d6147020004d", + "value": 2301 } }, - "5156acc8ce6d4882bd8a9f7116105c2d": { - "model_module": "@jupyter-widgets/base", + "3f2ea06b37fd4a68a80da5c013ae692a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } }, - "5329cddc328b4afeaac2c1341db40e3e": { + "43dc0d2936cc4ff79d0447576c86e67f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_6d48738981be4e65b0b4a59cb6b8c8fd", - "style": "IPY_MODEL_a609e0f072ac471f99fb302110816269", - "value": " 3300/3300 [00:15<00:00, 220.39it/s]" + "layout": "IPY_MODEL_37c571ac909548dca624efc9a40d6813", + "style": "IPY_MODEL_541138cd42964516a2c00dc84ca62650", + "value": " 2301/2301 [00:01<00:00, 1559.26it/s]" } }, - "54c7210180a04ee38eead021f416a42b": { + "47563edc1e5040648f992d5f166ef748": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "FloatProgressModel", "state": { - "children": [ - "IPY_MODEL_da8216d686624e0cb9df1f8a822c2fa1", - "IPY_MODEL_2b6b480ed6a0417cbca20c3f29942f64" - ], - "layout": "IPY_MODEL_5b7a33e253fc442b8bf8993d8a3b232f" + "bar_style": "success", + "layout": "IPY_MODEL_e389589f34bb4a37b23f40c48dc7415b", + "max": 2301, + "style": "IPY_MODEL_57bde4e6276f477abbcfc68646c817c0", + "value": 2301 + } + }, + "47b465fd954a4771b742e76b3995247f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_b17ef3a9a1cc4b0e9dfb5e1410a080c6", + "style": "IPY_MODEL_af4e9405ffdd492b99aad7ed36795ea7", + "value": "100%" } }, - "567862447079441d988bdb0478a76884": { + "4fe81d0b53f74383828f5e8e28e8ea2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5a988935343c4ba5b3a557dadf622ecf": { + "51172097fe70464ba2ffe5bbc43bb2ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5aebf1b047fb42459de4f18a2b16c440": { + "541138cd42964516a2c00dc84ca62650": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "543c9014d77f46c3b2c82f1e12bc0fbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5b7a33e253fc442b8bf8993d8a3b232f": { + "56aa1273a4f44599a31057697cf2ca1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5c25955d7f9e42f9b4407b6d726cbe23": { + "57bde4e6276f477abbcfc68646c817c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "children": [ - "IPY_MODEL_dbda812cf5b04500aeed7a7cb9d1793f", - "IPY_MODEL_6a1bcc68bf514af1901d4c05feccad09", - "IPY_MODEL_40818a432f37472ea47fc309854cd174" - ], - "layout": "IPY_MODEL_9c2f7143bf894359acb52e17ca31b2de" + "description_width": "" } }, - "5e130d84deef4835bf3d27d62a4cb7ef": { + "6616f38c036c45349fb2f800c407710c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { - "children": [ - "IPY_MODEL_b925cfb7e41f4947ad370557018eafae", - "IPY_MODEL_4b4dec99f852425482136365a5b8efbc", - "IPY_MODEL_19d7d6bc1af14c0fb1331e14c2e07af6" - ], - "layout": "IPY_MODEL_215d0b119143454ca0be1233adeb2ebf" + "layout": "IPY_MODEL_8f9330b41e934b74989d2efd87d626dd", + "style": "IPY_MODEL_35fa25948f4e406296a0d5b4cf953b94", + "value": "100%" + } + }, + "66474c43346b47a08c5e7a325eeda3db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_543c9014d77f46c3b2c82f1e12bc0fbf", + "style": "IPY_MODEL_69b5f53181534088b7e4973880e7054d", + "value": "100%" } }, - "6717ac478c96459da2ee53d1a6d92bed": { + "69b5f53181534088b7e4973880e7054d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1058,50 +1125,44 @@ "text_color": null } }, - "691931e9c5f1459aa9fe2a0a8be95175": { + "6c921b85dfb147e4a1c53f912ec10c1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6a1bcc68bf514af1901d4c05feccad09": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_691931e9c5f1459aa9fe2a0a8be95175", - "max": 1700, - "style": "IPY_MODEL_9764429dfca142669c7b1fbebab9d630", - "value": 1700 - } - }, - "6bddc045adae418da6fda50982f6b216": { + "700b811ca9f1445199cd2c2385e09058": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_8f554a4e8115492b89a8b3e1ae13f915", - "IPY_MODEL_8c8c16b7a97f4106abaf964476e44013", - "IPY_MODEL_5329cddc328b4afeaac2c1341db40e3e" + "IPY_MODEL_47b465fd954a4771b742e76b3995247f", + "IPY_MODEL_c98170bf87644dea83ac838e8a9ef973", + "IPY_MODEL_dd44f8edc4eb413aa41c1fc6433b0fcc" ], - "layout": "IPY_MODEL_8723b4e3d63e45b898160214d2d8911c" + "layout": "IPY_MODEL_75933fed108c471289c65d15e33f250d" } }, - "6d48738981be4e65b0b4a59cb6b8c8fd": { - "model_module": "@jupyter-widgets/base", + "7313c99e15fb41deb8e047f686805f86": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "FloatProgressModel", + "state": { + "bar_style": "success", + "layout": "IPY_MODEL_2d9a3eb9312a413ab2ce496cfa5eeb9e", + "max": 2699, + "style": "IPY_MODEL_1e51358c7c41430b85b62994b9761abb", + "value": 2699 + } }, - "702fe4f43f99431e9adde1e90f173beb": { + "75933fed108c471289c65d15e33f250d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "72d241dfaf36490dabc8e3a73151690a": { + "7964e7a3675d4da2b7cb4d36613eeb80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1111,125 +1172,103 @@ "text_color": null } }, - "76ddf5dcf6584dfc97cd03c4ba5ca332": { - "model_module": "@jupyter-widgets/controls", + "7b4583bf1e6742c68649e4004e864c3a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } + "model_name": "LayoutModel", + "state": {} }, - "7ae4d08c105141caa9e80c20053e9f13": { + "7c9a94b381c148d5b8c18743ddd48f3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7ffdb3532d574627a47f6b24a1c8ebad": { + "7d08aefff56a4157bee18e00de8a0775": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8097c881d3c6436cae2a2900927871d6": { - "model_module": "@jupyter-widgets/controls", + "8d12b7d757514ebe8c226e17ffde5c69": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } + "model_name": "LayoutModel", + "state": {} }, - "8723b4e3d63e45b898160214d2d8911c": { + "8f9330b41e934b74989d2efd87d626dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "87b76337e4024a329cb6bbffcfdc7861": { + "8fb665f005e547ba8410221e641ca1df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8a48e41906ce4fcda54b1296c958fa00": { - "model_module": "@jupyter-widgets/controls", + "91733687a4aa44e3a9b81d1a6f5bec99": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } + "model_name": "LayoutModel", + "state": {} }, - "8c5704bde0f7475f948942a44d2f51ed": { + "93782eb2e1f648e48059079435b2b766": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_9285b291a3324c92830f808a6a8ae318", - "style": "IPY_MODEL_98d4d917a6c647ffbebf42f1ab72245b", + "layout": "IPY_MODEL_91733687a4aa44e3a9b81d1a6f5bec99", + "style": "IPY_MODEL_9646e95e9d9644f59da7933516e418ba", "value": "100%" } }, - "8c8c16b7a97f4106abaf964476e44013": { + "9646e95e9d9644f59da7933516e418ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "bar_style": "success", - "layout": "IPY_MODEL_5a988935343c4ba5b3a557dadf622ecf", - "max": 3300, - "style": "IPY_MODEL_428ec57c22b04ac5b6dd32ba6fce3eb3", - "value": 3300 + "description_width": "", + "font_size": null, + "text_color": null } }, - "8c8fb186acfd49cb9c4302cb12fcf1e9": { + "9749f77ca04647a5ad6cb0274343b5fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8e33553b60e24701ace41123a36d8950": { + "9895169c9e1545ecb627d367eced6b66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8f554a4e8115492b89a8b3e1ae13f915": { + "98d8d55835a8436494b95fb10d282cfd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_d727658fbd8246e59b149bcac411e501", - "style": "IPY_MODEL_026fb8fdccfa41ad927d81115c7a692c", - "value": "100%" + "description_width": "", + "font_size": null, + "text_color": null } }, - "91557e7942e34165b79267d87204e8de": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9285b291a3324c92830f808a6a8ae318": { + "a09bdaa346e34f88be6f10b0c9cfb598": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "928acf565b8e42c2a2d2d18b9f052acd": { + "a0c7d25cc4b94b4fa2ba5fee8291f562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "92cb613c22414cbb8a5fbe85d3a3afa7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "97031f8040bb42878ac6fffb0fa7da28": { + "af4e9405ffdd492b99aad7ed36795ea7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1239,31 +1278,13 @@ "text_color": null } }, - "9764429dfca142669c7b1fbebab9d630": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "98d4d917a6c647ffbebf42f1ab72245b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9c2f7143bf894359acb52e17ca31b2de": { + "b17ef3a9a1cc4b0e9dfb5e1410a080c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "9d4003c87bdb4952b5842c0d07b27120": { + "b7eec2c352e04e2bb9798bf2fad21657": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1273,69 +1294,63 @@ "text_color": null } }, - "a09e6ea957e44b85bfe932d3d6bbebaf": { + "b9673433920c496e8af9d0ed6ea75b8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "a12eaa47da6f47b4b8b8ca170e6b2b0e": { + "bd89918b1dcf4f3482d3358755293fa2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_928acf565b8e42c2a2d2d18b9f052acd", - "style": "IPY_MODEL_e0e6a5ef9f6b4c49a0273ea2a8fca43a", - "value": " 1700/1700 [00:01<00:00, 1021.42it/s]" + "layout": "IPY_MODEL_7c9a94b381c148d5b8c18743ddd48f3a", + "style": "IPY_MODEL_001af8e3cada48b0a20e216720aaa501", + "value": " 2699/2699 [01:05<00:00, 43.30it/s]" } }, - "a609e0f072ac471f99fb302110816269": { + "befd48cd714a41e5923182735778e7eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "description_width": "" } }, - "a65dbc3ff39b4a9eaba923aef9d12ae1": { + "c8209c90bf94495e8b381e6d9bf09bc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_f41dfe998b0a4bb59d08e9887e4de381", + "style": "IPY_MODEL_14a390092d19470996ec861b19820181", + "value": "100%" } }, - "b7d50424e45f44f2b78a55cf9a206cd8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b925cfb7e41f4947ad370557018eafae": { + "c98170bf87644dea83ac838e8a9ef973": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { - "layout": "IPY_MODEL_cc3988ff995e4437a5b3fe3d932660eb", - "style": "IPY_MODEL_9d4003c87bdb4952b5842c0d07b27120", - "value": "100%" + "bar_style": "success", + "layout": "IPY_MODEL_ef9f7e599da8495aa04e229df51d089b", + "max": 2699, + "style": "IPY_MODEL_dff95d845e714818890643d32074ec91", + "value": 2699 } }, - "ba1b645407234261a52f7bc80acc0e7e": { + "cbf26f9aaf6449a68ad658633ca0437b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_db4c3953cc6b4921bdd9d4ddf871b0cd", + "layout": "IPY_MODEL_7b4583bf1e6742c68649e4004e864c3a", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person2valid112.43195.32214.78438.1948685.67910
535917352582person2valid0.00256.0080.54376.8122650.73800
46790558393person2valid342.52163.33192.2477.475408.64720
171099058393person2valid418.99182.6561.1245.001792.80770
1238519147729person2valid0.0087.01310.67287.9955847.52705
..............................
1420625363188bag61valid221.41199.7691.3663.64865.42470
2026890363188person2valid80.77158.4623.1445.34600.52020
900100363188363188person2valid0.00129.00305.00115.004293.00000
1724916311180person2valid0.92103.12446.49536.47125482.38805
1192747105455sedan100valid333.56517.2117.4314.58182.21680
\n

16147 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 2 valid 112.43 195.32 \n535917 352582 person 2 valid 0.00 256.00 \n467905 58393 person 2 valid 342.52 163.33 \n1710990 58393 person 2 valid 418.99 182.65 \n1238519 147729 person 2 valid 0.00 87.01 \n... ... ... ... ... ... ... \n1420625 363188 bag 61 valid 221.41 199.76 \n2026890 363188 person 2 valid 80.77 158.46 \n900100363188 363188 person 2 valid 0.00 129.00 \n1724916 311180 person 2 valid 0.92 103.12 \n1192747 105455 sedan 100 valid 333.56 517.21 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n1420625 91.36 63.64 865.42470 \n2026890 23.14 45.34 600.52020 \n900100363188 305.00 115.00 4293.00000 \n1724916 446.49 536.47 125482.38805 \n1192747 17.43 14.58 182.21680 \n\n[16147 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypesplit
id
352582425640Images/valid/000....jpgvalid
113354640480Images/valid/000....jpgvalid
58393640486Images/valid/000....jpgvalid
147729500375Images/valid/000....jpgvalid
310072640383Images/valid/000....jpgvalid
..................
311180480640Images/valid/000....jpgvalid
302030640359Images/valid/000....jpgvalid
105455427640Images/valid/000....jpgvalid
428280500333Images/valid/000....jpgvalid
349837500333Images/valid/000....jpgvalid
\n

5000 rows × 5 columns

\n
", + "text/plain": " width height relative_path type split\nid \n352582 425 640 Images/valid/000... .jpg valid\n113354 640 480 Images/valid/000... .jpg valid\n58393 640 486 Images/valid/000... .jpg valid\n147729 500 375 Images/valid/000... .jpg valid\n310072 640 383 Images/valid/000... .jpg valid\n... ... ... ... ... ...\n311180 480 640 Images/valid/000... .jpg valid\n302030 640 359 Images/valid/000... .jpg valid\n105455 427 640 Images/valid/000... .jpg valid\n428280 500 333 Images/valid/000... .jpg valid\n349837 500 333 Images/valid/000... .jpg valid\n\n[5000 rows x 5 columns]" }, "metadata": {}, "output_type": "display_data" @@ -1343,143 +1358,128 @@ ] } }, - "bbd27fbb6f1b4bd094d1c80c6f7808c2": { - "model_module": "@jupyter-widgets/controls", + "cdffcb439ddd46b3b29deaabc537ac58": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_92cb613c22414cbb8a5fbe85d3a3afa7", - "style": "IPY_MODEL_ebac8d123a9c44eca6ec29a45f9d85b9", - "value": "100%" - } + "model_name": "LayoutModel", + "state": {} }, - "c6e368200475445bb18db56c23060cdc": { + "d65b33b4f1da4a32bb18fcb502bf7739": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_129b3901a58445ce8a03019be07712f5", - "IPY_MODEL_050a42cc91704e749ea85fd5873bb1f9", - "IPY_MODEL_f27c3977337f4ea7aae01e12093acb28" + "IPY_MODEL_e7de82e04b914d3e9baf20e63527fcae", + "IPY_MODEL_3bd6d741838a4bee8b6bf027db90f310", + "IPY_MODEL_1719754cee6348e092d96954a3cbf58d" ], - "layout": "IPY_MODEL_702fe4f43f99431e9adde1e90f173beb" + "layout": "IPY_MODEL_9895169c9e1545ecb627d367eced6b66" } }, - "cc3988ff995e4437a5b3fe3d932660eb": { - "model_module": "@jupyter-widgets/base", + "dd44f8edc4eb413aa41c1fc6433b0fcc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d5ec9a7801074becb38d80f120238412": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_567862447079441d988bdb0478a76884", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
2person
111bicycle
100sedan
110motorcycle
102bus
12train
10car
41domestical animal
410dog
61bag
60suitcase
\n
", - "text/plain": " category string\ncategory_id \n2 person\n111 bicycle\n100 sedan\n110 motorcycle\n102 bus\n12 train\n10 car\n41 domestical animal\n410 dog\n61 bag\n60 suitcase" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_a0c7d25cc4b94b4fa2ba5fee8291f562", + "style": "IPY_MODEL_b7eec2c352e04e2bb9798bf2fad21657", + "value": " 2699/2699 [00:09<00:00, 306.79it/s]" } }, - "d727658fbd8246e59b149bcac411e501": { - "model_module": "@jupyter-widgets/base", + "dff95d845e714818890643d32074ec91": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } }, - "da8216d686624e0cb9df1f8a822c2fa1": { + "e22fd4e2e595402e9cebe0136fd373b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_5aebf1b047fb42459de4f18a2b16c440", - "style": "IPY_MODEL_a65dbc3ff39b4a9eaba923aef9d12ae1", - "value": "

Dataset object containing 5,000 images and 16,147 objects\nName :\n\tcoco\nImages root :\n\t.

" + "layout": "IPY_MODEL_fac1535a6ffa44988f3d91b773c1c7e0", + "style": "IPY_MODEL_22e7893c82454c77a4dcf5ee9a982684", + "value": "

Dataset object containing 5,000 images and 3,679 objects\nName :\n\tcoco\nImages root :\n\t.

" } }, - "db4c3953cc6b4921bdd9d4ddf871b0cd": { + "e389589f34bb4a37b23f40c48dc7415b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "dbda812cf5b04500aeed7a7cb9d1793f": { + "e4f4e2e8881e42cfacf0a90d66a935b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "VBoxModel", "state": { - "layout": "IPY_MODEL_b7d50424e45f44f2b78a55cf9a206cd8", - "style": "IPY_MODEL_faa8a9da9f7c463b9f5447d3a0d66b79", - "value": "100%" + "children": [ + "IPY_MODEL_e22fd4e2e595402e9cebe0136fd373b2", + "IPY_MODEL_2ec3a0cdb1f046e1866d2067a88ee1bb" + ], + "layout": "IPY_MODEL_6c921b85dfb147e4a1c53f912ec10c1c" } }, - "e0e6a5ef9f6b4c49a0273ea2a8fca43a": { + "e7de82e04b914d3e9baf20e63527fcae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_cdffcb439ddd46b3b29deaabc537ac58", + "style": "IPY_MODEL_23616145e70743d9ad8767e1d3eb0ed1", + "value": "100%" } }, - "e946289e0d0b4f5388f6ebda3cc7238e": { + "ea9f640fccfa43129c473bf451d43110": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { - "bar_style": "success", - "layout": "IPY_MODEL_7ffdb3532d574627a47f6b24a1c8ebad", - "max": 3300, - "style": "IPY_MODEL_76ddf5dcf6584dfc97cd03c4ba5ca332", - "value": 3300 + "children": [ + "IPY_MODEL_6616f38c036c45349fb2f800c407710c", + "IPY_MODEL_7313c99e15fb41deb8e047f686805f86", + "IPY_MODEL_bd89918b1dcf4f3482d3358755293fa2" + ], + "layout": "IPY_MODEL_9749f77ca04647a5ad6cb0274343b5fa" } }, - "eb00737fe2fd471a8d3fb2d2397fa072": { - "model_module": "@jupyter-widgets/controls", + "ef9f7e599da8495aa04e229df51d089b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } + "model_name": "LayoutModel", + "state": {} }, - "ebac8d123a9c44eca6ec29a45f9d85b9": { - "model_module": "@jupyter-widgets/controls", + "f3ff9b0416a0406d961b525fd9d2c3de": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } + "model_name": "LayoutModel", + "state": {} }, - "f27c3977337f4ea7aae01e12093acb28": { - "model_module": "@jupyter-widgets/controls", + "f41dfe998b0a4bb59d08e9887e4de381": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_5156acc8ce6d4882bd8a9f7116105c2d", - "style": "IPY_MODEL_97031f8040bb42878ac6fffb0fa7da28", - "value": " 3300/3300 [01:56<00:00, 27.66it/s]" - } + "model_name": "LayoutModel", + "state": {} }, - "faa8a9da9f7c463b9f5447d3a0d66b79": { + "fac1535a6ffa44988f3d91b773c1c7e0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "ff5721f87299486284789f221ee5239c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "bar_style": "success", + "layout": "IPY_MODEL_4fe81d0b53f74383828f5e8e28e8ea2f", + "max": 2699, + "style": "IPY_MODEL_befd48cd714a41e5923182735778e7eb", + "value": 2699 } } }, diff --git a/docs/notebooks/3_demo_evaluation_detection.ipynb b/docs/notebooks/3_demo_evaluation_detection.ipynb index f79e739..aa8dd0a 100644 --- a/docs/notebooks/3_demo_evaluation_detection.ipynb +++ b/docs/notebooks/3_demo_evaluation_detection.ipynb @@ -89,7 +89,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "623b2eb35013443d9f560d474b379c5c", + "model_id": "e1340eaaa32d438ba1d3421f7f6e9808", "version_major": 2, "version_minor": 0 }, @@ -124,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "f612ac81", "metadata": { "ExecuteTime": { @@ -143,7 +143,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "32048f051638403a87a7c8572a478000", + "model_id": "be8313e445274fa48df3bc9e22226fc8", "version_major": 2, "version_minor": 0 }, @@ -282,7 +282,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "384c5823af284c8baa7b952cf7e7bf0b", + "model_id": "ae73360346b148089338d1a9ea0c7237", "version_major": 2, "version_minor": 0 }, @@ -292,124 +292,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
prediction_idiougroundtruth_id
0480420.895466230831
1480300.840631233201
0479980.000000<NA>
1480090.000000<NA>
2480080.000000<NA>
............
60179790.000000<NA>
61179800.000000<NA>
62179810.000000<NA>
63179820.000000<NA>
64179830.000000<NA>
\n", - "

86339 rows × 3 columns

\n", - "
" - ], - "text/plain": [ - " prediction_id iou groundtruth_id\n", - "0 48042 0.895466 230831\n", - "1 48030 0.840631 233201\n", - "0 47998 0.000000 \n", - "1 48009 0.000000 \n", - "2 48008 0.000000 \n", - ".. ... ... ...\n", - "60 17979 0.000000 \n", - "61 17980 0.000000 \n", - "62 17981 0.000000 \n", - "63 17982 0.000000 \n", - "64 17983 0.000000 \n", - "\n", - "[86339 rows x 3 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -429,7 +311,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "18a911f7", "metadata": { "ExecuteTime": { @@ -437,22 +319,7 @@ "start_time": "2023-06-22T09:38:08.617771Z" } }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "cedf63bfd0f440bc9fff6743aa1381b6", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "VBox(children=(HTML(value=' Evaluation object, containing 5,000 images, 36,781 groundtruth objects, and 2 p…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "evaluator" ] @@ -467,7 +334,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "8a292fe7", "metadata": { "ExecuteTime": { @@ -475,28 +342,7 @@ "start_time": "2023-06-22T09:38:08.654621Z" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA180lEQVR4nO3deXxU1f3/8fdkmyRAEiBkIQTCvshqgBjUamtqqpTWtlaKVJBaqy1aNLZWXKB+rYZapVhF+Wql+v1aRe1PrV+lWIyiohEkEGXfAiQsSQiQTEjINnN+fwwZTQmYgSR3ltfz8ZjHo9w5984nc5C8e+4559qMMUYAAAAWCbG6AAAAENwIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAAS4VZXUBbuFwuHTx4UN26dZPNZrO6HAAA0AbGGFVXV6t3794KCTn9+IdfhJGDBw8qNTXV6jIAAMBZKCkpUZ8+fU77vl+EkW7dukly/zAxMTEWVwMAANrC4XAoNTXV83v8dPwijDTfmomJiSGMAADgZ75uigUTWAEAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAAS3kdRj788ENNmTJFvXv3ls1m0xtvvPG156xatUrnn3++7Ha7Bg0apOeee+4sSgUAAIHI6zBSU1OjMWPGaPHixW1qv2fPHk2ePFnf/OY3VVhYqNtuu00///nP9c4773hdLAAACDxebwd/xRVX6Iorrmhz+yVLlqh///569NFHJUnDhw/X6tWr9ec//1nZ2dnefjwAAAgwHT5nJD8/X1lZWS2OZWdnKz8//7Tn1NfXy+FwtHgBAIDA1OFhpLS0VImJiS2OJSYmyuFw6MSJE62ek5ubq9jYWM8rNTW1o8sEACAoPfbuTj3w1hYVH6m1rAafXE0zd+5cVVVVeV4lJSVWlwQAQEB6taBEz67eo4qaestq8HrOiLeSkpJUVlbW4lhZWZliYmIUFRXV6jl2u112u72jSwMAIOjVN7kkSZFhoZbV0OEjI5mZmcrLy2txbOXKlcrMzOzojwYAAF+jrtEpSYoMt+5mideffPz4cRUWFqqwsFCSe+luYWGhiouLJblvscyYMcPT/uabb1ZRUZHuvPNObdu2TU8++aReeeUV3X777e3zEwAAgLNijFF948mRkXA/GhlZt26dxo0bp3HjxkmScnJyNG7cOM2bN0+SdOjQIU8wkaT+/fvr7bff1sqVKzVmzBg9+uij+utf/8qyXgAALFbmqFeD06XQEJt6dImwrA6v54xceumlMsac9v3Wdle99NJLtWHDBm8/CgAAdKCtpe6tMwbEd/GvkREAABAYCvYekyQNT46xtA7CCAAAQajcUafnP9krScoakXjmxh2MMAIAQJBpdLp0+yuFqq5v0pg+sfruqGRL6yGMAAAQRIwxevDtrfp41xFFhYfqkR+PUUiIzdKaCCMAAAQJY4z+/O5OPXfy9syj14zR4MRu1halTtiBFQAAWM/pMnpo+VY9u3qPJGn+lBG60uLbM80IIwAABLj9x2p1xyufa82eo5Kku68cplkX9re4qi8RRgAACFBNTpee+2Sv/rxyh2oanIqOCNUffzRaU8b0trq0FggjAAAEoPXFx3TP65u09ZB7Y7Px/brr0WvGqF/PLhZXdirCCAAAAaT4SK3+/O4Ovb7hgCQpLjpcc68Yph+np1q+auZ0CCMAAASA6rpGLX5/t55dXaRGp/uxLVen99HcK4apZ1e7xdWdGWEEAAA/5nQZvbquRI/8e7sqjjdIki4eHK/fZg/V6D5x1hbXRoQRAAD8kMtltGJzqRau3KFd5ccluR94d/eVw3XZ8ATZbL55S6Y1hBEAAPyIMUYrt5Tpsbyd2nzQPTk1Nipcv75ssGZk9lN4qP/tZ0oYAQDAD7hcRu9vL9fClTs8IaRLRKhuuHiAfn5xf8VEhltc4dkjjAAA4MMamlx68/ODevrD3dpR5r4d0yUiVDMmpenGiweoR5cIiys8d4QRAAB8UE19k15aW6xnV+/Roao6SVI3e5iuzeirmy4ZGBAhpBlhBAAAH1JZ26DnPtmr5z7Zq8raRklSQje7fnZRf12b0devb8ecDmEEAAAfsP9YrZ77eK9eXFus2ganJCmtZ7RuvmSgfnB+iuxhoRZX2HEIIwAAWGjTgSo99cFu/WvjIbnce5VpRHKMfvXNgbpiZLJCfXTX1PZEGAEAoJMZY7R2z1E9uWq3Pthx2HN80sCeuvHiAbp0aC+/2ifkXBFGAADoJMYY5W0t11Mf7FbBvmOSpBCb9N3RvXXzJQM1oneMxRVagzACAEAHa3K69NYXh/TUqt3aXlYtSYoIDdHV4/vopm8M8Mkn6XYmwggAAB2krtGpVwv26+kPd6vk6AlJ7j1CfnpBP91wUX8lxERaXKFvIIwAANDOKmsb9L/5+/R8/j5VHK+XJPXoEqGfXZim6y5IU2x04C3PPReEEQAA2smR4/V6+qMivZC/TzUnl+emxEXpxov7a+qEvoqKCNzlueeCMAIAwDk6crxez3y0R/+Tv9ezR8iwpG666ZIB+u7o3n758LrORBgBAOAsHa6u1zMfFemFT/d5QsiolFjdljVY3xqWEFTLc88FYQQAAC8drDyhx9/bpf+3fr8amlySpJEpMZpz2RBlDSeEeIswAgBAG5VX1+nJ93frxTXFanC6Q8i4vnG69VuD9M2hhJCzRRgBAOBrHK9v0jMfFumZj4o8t2My+vfQHZcP1YS07oSQc0QYAQDgNOoanfr7mmI9tWq3Z4numNQ4/ebyIbpoUDwhpJ0QRgAA+A/GGP2z8KD+uGKbDlXVSXI/Qfc32UM1eVQyIaSdEUYAAPiKL/ZX6g9vbdXavUclScmxkbr1W4N1dXofRYSxRLcjEEYAAJC0/1it/vTOdv2z8KAkKSIsRLd+c5Bu/MYARYazWVlHIowAAIJak9OlpR/v0cKVO1TX6F4h84NxKbrzO0OVHBtlcXXBgTACAAhaBfuO6fdvbtbGA1WS3Ctk7vvuCI1MibW4suBCGAEABJ09FTV65N/b9fYXhyRJMZFhumfycF0zPpXJqRYgjAAAgkaT06WnPyrS43m7dKLRKZtN+nF6H/0me6gSukVaXV7QIowAAIJCwb5jmvfPTdp80CFJyhzQU/OmjNDw5BiLKwNhBAAQ0BqaXFq4coeWfLBbktQtMkzzp5ynH45LUUgIt2R8AWEEABCw1hcf053/+EK7yo9Lkn50fh/dfeUw9exqt7gyfBVhBAAQcGobmrTgX9v0v5/ukzFSzy4RevAHI/WdkclWl4ZWEEYAAAFly0GHfr1sg2c05IfjUjRvygjFRUdYXBlOhzACAAgIjU6Xnv6wSI+9u1MNTpcSutm18JqxumhwvNWl4WsQRgAAfq/cUadfL9ugT4vcz5PJGp6oBT8apXjmhvgFwggAwK+9v61cd7z6uY7WNCg6IlQPfH+kfnh+CpuX+RHCCADALzU0uZT7r63628d7JUnDk2P0+LRxGpTQ1drC4DXCCADA7+w/Vqtfv7RB64srJUnXT0rTXVcM4+m6foowAgDwK//eXKo7Xvlc1fVN6hYZpoXXjNW3RyRaXRbOAWEEAOAXGp3unVSfWuXeSfX8vnH689Sx6tezi8WV4VwRRgAAPu9g5Qnd/EKBvthfJUn62YX9NffKYQoPDbG4MrQHwggAwKcV7Dumm/63QBXH6xUbFa6HfjBKk0ezk2ogIYwAAHzWPwr26+7XNqrB6dKwpG7668zx6tM92uqy0M4IIwAAn+NyGS1YsU1Pf1gkSco+L1ELrxmrLnZ+bQUiehUA4FPqGp269aUNWrmlTJL0628N0m1ZQxQSwiZmgYowAgDwGY66Rv3if9bp06KjiggL0Z+uHq3vj02xuix0sLOahrx48WKlpaUpMjJSGRkZWrt27RnbL1q0SEOHDlVUVJRSU1N1++23q66u7qwKBgAEpv3HavXjp/L1adFRdbWH6flZEwkiQcLrkZGXX35ZOTk5WrJkiTIyMrRo0SJlZ2dr+/btSkhIOKX9iy++qLvuuktLly7VpEmTtGPHDl1//fWy2WxauHBhu/wQAAD/tqu8Wtc+s0bl1fVK6GbX0usnaGRKrNVloZN4PTKycOFC3XjjjZo1a5ZGjBihJUuWKDo6WkuXLm21/SeffKILL7xQ1157rdLS0nT55Zdr2rRpXzuaAgAIDgX7jupHT+WrvLpegxO66o3ZFxJEgoxXYaShoUEFBQXKysr68gIhIcrKylJ+fn6r50yaNEkFBQWe8FFUVKTly5fryiuvPO3n1NfXy+FwtHgBAALP2j1H9dO/rlXViUaN6ROrl2/KVO+4KKvLQifz6jZNRUWFnE6nEhNbPgMgMTFR27Zta/Wca6+9VhUVFbroootkjFFTU5Nuvvlm3X333af9nNzcXN1///3elAYA8DNrio7o58+v04lGp74xpJeemn4+S3eDVIfvo7tq1So99NBDevLJJ7V+/Xq99tprevvtt/XAAw+c9py5c+eqqqrK8yopKenoMgEAnWjFpkO6bulaVdc36YIBPfT0dekEkSDmVc/Hx8crNDRUZWVlLY6XlZUpKSmp1XPuu+8+XXfddfr5z38uSRo1apRqamr0i1/8Qvfcc49CQk7NQ3a7XXa73ZvSAAB+4v1t5br1pQ1qdBpdPiJRf5k2TpHhoVaXBQt5NTISERGh9PR05eXleY65XC7l5eUpMzOz1XNqa2tPCRyhoe6/dMYYb+sFAPixzQerdNMLBWp0Gn13dLKe+mk6QQTeL+3NycnRzJkzNX78eE2cOFGLFi1STU2NZs2aJUmaMWOGUlJSlJubK0maMmWKFi5cqHHjxikjI0O7du3SfffdpylTpnhCCQAg8B2oPKEbnlunhiaXLhnSS3+eOlah7KoKnUUYmTp1qg4fPqx58+aptLRUY8eO1YoVKzyTWouLi1uMhNx7772y2Wy69957deDAAfXq1UtTpkzRgw8+2H4/BQDAp1XWNmjm0rUqddRpcEJX/eUn4xQe2uHTFuEnbMYP7pU4HA7FxsaqqqpKMTExVpcDAPDCiQanfvrsGhXsO6akmEi99qtJLN8NEm39/U0sBQB0mCanS7e+tF4F+44pJjJM/3PDRIIITkEYAQB0mAeXb9W7W8tlDwvRs9dP0JDEblaXBB9EGAEAdIiPd1Xobx/vlSQ99pOxmpDWw9qC4LMIIwCAdldeXafbXi6UJF2b0VffGZlsbUHwaYQRAEC7ctQ1avoza3S4ul4De3XRfZNHWF0SfBxhBADQblwuo1+/tEE7y48rMcauZ2dOUFQEe0rhzAgjAIB28/h7u7Rq+2H3hNWZE5QW38XqkuAHCCMAgHbxwY7DWpS3Q5L04A9GaWRKrMUVwV8QRgAA5+xQ1QnNWbZBxkjTJvbV1el9rC4JfoQwAgA4J8YY3ffGZlXWNmpUSqzmT2HCKrxDGAEAnJNX1pXo3a1liggN0cNXj+YpvPAaYQQAcNZKjtbqD29tlSTdcfkQDU/m+WHwHmEEAHBWjDG6//82q7q+Sef3jdMNF/W3uiT4KcIIAOCsvPxZid7dWq7wUJse+uEohYXyKwVnh785AACvHa6u1wNvbZEk3XH5UA1L4vYMzh5hBADgtYdXbFNNg1Nj+sTqFxcPsLoc+DnCCADAKwX7jurVgv2y2aT53ztPISE2q0uCnyOMAADazBijB06unrkmPVXn9+1ucUUIBIQRAECbLd9YqsKSSkWFh+qO7CFWl4MAQRgBALRJdV2j/uutzZKkn12UpoRukRZXhEBBGAEAtMmSD3arzFGvfj2jdeu3BltdDgIIYQQA8LUOVp7QXz/aI0m658rhbPmOdkUYAQB8rUf+vV31TS5N7N9D3x6RaHU5CDCEEQDAGW06UKXXNxyQ5B4VsdlYyov2RRgBAJzRH1dskzHS98f21pjUOKvLQQAijAAATmv1zgp9tLNC4aE23fHtoVaXgwBFGAEAtMrlMsr9l3uDs+kZ/dS3Z7TFFSFQEUYAAK16ZV2JNh90qKs9TLd+a5DV5SCAEUYAAKdodLq0eNUuSdJtWYPVs6vd4ooQyAgjAIBTvLKuRCVHT6hnlwhNz+hndTkIcIQRAEALTU6XnnjPPSpyy7cGKSqCDc7QsQgjAIAW3t1apkNVderZJULTJva1uhwEAcIIAMDDGKMlHxRJkn4yMZVt39EpCCMAAI9Pi46qsKRS9rAQXT+pv9XlIEgQRgAAHv8o2C9J+sG4FPXqxgoadA7CCABAkrT/WK3eKHQ/g+bH41MtrgbBhDACAJAkPf/JXjldRpMG9lR6v+5Wl4MgQhgBAMhR16hla0skST+/mLki6FyEEQCAnv94r6rrmzSwVxddOiTB6nIQZAgjABDkGppcej5/nyTp1m8NVkiIzeKKEGwIIwAQ5P69pVQVx+uV0M2uyaOTrS4HQYgwAgBB7oVP3aMiP5mQqvBQfi2g8/G3DgCC2K7yan1adFQhNuknbP0OixBGACCIvfBpsSTpsuGJ6h0XZXE1CFaEEQAIUrUNTfp/J3dcve6CfhZXg2BGGAGAIPVm4UFV1zepX89oXTQo3upyEMQIIwAQpP6+xn2LZnpGX5bzwlKEEQAIQttLq7XxQJXCQ2360fl9rC4HQY4wAgBB6P+td88V+ebQBPXsytN5YS3CCAAEmSanS69vcD+d9+p0RkVgPcIIAASZj3ZW6HB1vXp0idClQ3kODaxHGAGAILPsM/fE1e+N6a2IMH4NwHr8LQSAILK3okb/3lImSbo2gx1X4RsIIwAQRF7bcEDGSN8Y0ktDErtZXQ4giTACAEElb6t7VOR7Y3pbXAnwJcIIAASJ4iO12nzQodAQm745tJfV5QAeZxVGFi9erLS0NEVGRiojI0Nr1649Y/vKykrNnj1bycnJstvtGjJkiJYvX35WBQMAzs6/Nh2SJGX078HeIvApYd6e8PLLLysnJ0dLlixRRkaGFi1apOzsbG3fvl0JCacuEWtoaNC3v/1tJSQk6B//+IdSUlK0b98+xcXFtUf9AIA2Wr7RHUauGJVscSVAS16HkYULF+rGG2/UrFmzJElLlizR22+/raVLl+quu+46pf3SpUt19OhRffLJJwoPD5ckpaWlnVvVAACv7Cyr1uf7qxRik75zXpLV5QAteHWbpqGhQQUFBcrKyvryAiEhysrKUn5+fqvnvPnmm8rMzNTs2bOVmJiokSNH6qGHHpLT6Tzt59TX18vhcLR4AQDOXvOOq5cNT1SvbtyigW/xKoxUVFTI6XQqMTGxxfHExESVlpa2ek5RUZH+8Y9/yOl0avny5brvvvv06KOP6g9/+MNpPyc3N1exsbGeV2pqqjdlAgD+Q97WcknSZG7RwAd1+Goal8ulhIQEPf3000pPT9fUqVN1zz33aMmSJac9Z+7cuaqqqvK8SkpKOrpMAAhYh6pOaHtZtWw26ZIhrKKB7/Fqzkh8fLxCQ0NVVlbW4nhZWZmSklq/B5mcnKzw8HCFhoZ6jg0fPlylpaVqaGhQRETEKefY7XbZ7QwjAkB7eH/bYUnSmD5x6t7l1H9zAat5NTISERGh9PR05eXleY65XC7l5eUpMzOz1XMuvPBC7dq1Sy6Xy3Nsx44dSk5ObjWIAADaV/MqmqzhPBQPvsnr2zQ5OTl65pln9Pzzz2vr1q365S9/qZqaGs/qmhkzZmju3Lme9r/85S919OhRzZkzRzt27NDbb7+thx56SLNnz26/nwIA0KqjNQ36eHeFJOn7Y1MsrgZonddLe6dOnarDhw9r3rx5Ki0t1dixY7VixQrPpNbi4mKFhHyZcVJTU/XOO+/o9ttv1+jRo5WSkqI5c+bod7/7Xfv9FACAVr27pUzGSOf1jlFqj2irywFaZTPGGKuL+DoOh0OxsbGqqqpSTEyM1eUAgN/42XOf6b1t5brj20N062WDrS4HQaatv795Ng0ABKjj9U1avct9iyZ7JBudwXcRRgAgQOXvPqKGJpf69YzW4ISuVpcDnBZhBAACVP7uI5KkCwfFy2azWVwNcHqEEQAIUPlF7jBywYCeFlcCnBlhBAACUMXxem095H6u16SBhBH4NsIIAASg1TvdE1dHJMcovis7WsO3EUYAIAB9uMO9Bfw3eBYN/ABhBAACjNNl9OHO5jASb3E1wNcjjABAgCksqVTF8QZ1iwxTer/uVpcDfC3CCAAEmOb5It8Y3Ev2sNCvaQ1YjzACAAHmo5O3aCYNYhUN/ANhBAACSG1DkwpLKiW5R0YAf0AYAYAAsnF/lZpcRkkxkTylF36DMAIAAWTNnqOSpPP7xVlbCOAFwggABJDmyauTBrKkF/6DMAIAAeJ4fZPW7XOPjFzCZmfwI4QRAAgQBfuOyWWklLgo5ovArxBGACBAfLzLfYsmkwfjwc8QRgAgQHyy2x1GLhrEfBH4F8IIAASAytoGbT7okCRNYmQEfoYwAgAB4NOiIzJGGpzQVQkxkVaXA3iFMAIAAeDjXUckMSoC/0QYAYAAULDvmCTpggGEEfgfwggA+LljNQ3aXlYtSRqTGmdtMcBZIIwAgJ/7cOdhOV1GQxO7qXdclNXlAF4jjACAn8vf7Z4vcslQdl2FfyKMAIAfM8bogx2HJUkXDOhhcTXA2SGMAIAf23ukVoeq6hQRGsLD8eC3CCMA4Mc+2+t+MN6Y1FhFhodaXA1wdggjAODHCva6l/SOT+MWDfwXYQQA/Nhn+9wjI+P7dbe4EuDsEUYAwE8dOV6vosM1kqR0wgj8GGEEAPzUupO7rg5J7Kq46AiLqwHOHmEEAPxU8xbwzBeBvyOMAICfal5Jw3wR+DvCCAD4oYYmlzYfcEhivgj8H2EEAPzQ1kMONThdio0KV98e0VaXA5wTwggA+KHP91dKksb1jZPNZrO2GOAcEUYAwA9tOei+RTMiOcbiSoBzRxgBAD9UWFIpSRrdJ87SOoD2QBgBAD9T29CkHWXVkty3aQB/RxgBAD+z6YBDLiMlxUQqMSbS6nKAc0YYAQA/89Un9QKBgDACAH5m04EqSdIEdl5FgCCMAICf2V7qni8yJLGbxZUA7YMwAgB+pKa+SXuOuJ/UO5xlvQgQhBEA8CN7j9TIGKlHlwj16ma3uhygXRBGAMCP7Co/LknqH9/F4kqA9kMYAQA/suWQe+fVYUnMF0HgIIwAgB/ZuN+9kmZkCst6ETgIIwDgJ4wxnmW9owgjCCCEEQDwEyVHT8hR16SI0BCW9SKgEEYAwE9sOugeFRma1E0RYfzzjcDB32YA8BMbio9Jkkb14RYNAgthBAD8xI4y97Je5osg0BBGAMBPbCt1L+sdnNDV4kqA9nVWYWTx4sVKS0tTZGSkMjIytHbt2jadt2zZMtlsNl111VVn87EAELTKq+tU5qiXzSad15uREQQWr8PIyy+/rJycHM2fP1/r16/XmDFjlJ2drfLy8jOet3fvXv3mN7/RxRdffNbFAkCwan44XlrPLoqKCLW4GqB9eR1GFi5cqBtvvFGzZs3SiBEjtGTJEkVHR2vp0qWnPcfpdGr69Om6//77NWDAgHMqGACCUXMYYedVBCKvwkhDQ4MKCgqUlZX15QVCQpSVlaX8/PzTnvdf//VfSkhI0A033HD2lQJAENt6yB1GhhJGEIDCvGlcUVEhp9OpxMTEFscTExO1bdu2Vs9ZvXq1nn32WRUWFrb5c+rr61VfX+/5s8Ph8KZMAAg428t4Jg0CV4eupqmurtZ1112nZ555RvHx8W0+Lzc3V7GxsZ5XampqB1YJAL6trtHpuU0zIpnJqwg8Xo2MxMfHKzQ0VGVlZS2Ol5WVKSkp6ZT2u3fv1t69ezVlyhTPMZfL5f7gsDBt375dAwcOPOW8uXPnKicnx/Nnh8NBIAEQtLYecqjRadSzS4RSe0RZXQ7Q7rwKIxEREUpPT1deXp5nea7L5VJeXp5uueWWU9oPGzZMGzdubHHs3nvvVXV1tR577LHTBgy73S673e5NaQAQsDYddN+iGd0nVjabzeJqgPbnVRiRpJycHM2cOVPjx4/XxIkTtWjRItXU1GjWrFmSpBkzZiglJUW5ubmKjIzUyJEjW5wfFxcnSaccBwC0bne5e+fVwTwcDwHK6zAydepUHT58WPPmzVNpaanGjh2rFStWeCa1FhcXKySEjV0BoL3sKHPPFxnEzqsIUDZjjLG6iK/jcDgUGxurqqoqxcTEWF0OAHSq8X94VxXH6/XG7As1NjXO6nKANmvr72+GMADAhx2raVDFcfdWBzyTBoGKMAIAPqz5Fk1KXJS62L2+sw74BcIIAPiwHScnrw5JZFQEgYswAgA+bOfJkZEhrKRBACOMAIAPa955lTCCQEYYAQAfttNzm4YwgsBFGAEAH1VxvF5Haxpks7HHCAIbYQQAfFTzSprU7tGKigi1uBqg4xBGAMBH7SxjJQ2CA2EEAHxU88gIz6RBoCOMAICP2uFZ1svICAIbYQQAfJAxRttOLusdlsQzuRDYCCMA4IMqjjeouq5JITapf3wXq8sBOhRhBAB80O7D7smrfbpHKzKclTQIbIQRAPBBzWFkYC9GRRD4CCMA4IOKDtdIkgb2YvIqAh9hBAB8kGdkhJ1XEQQIIwDgg5rDyAAmryIIEEYAwMfUNTq1/9gJSYyMIDgQRgDAx+w9UiNjpNiocPXsEmF1OUCHI4wAgI/ZXd48ebWLbDabxdUAHY8wAgA+xjNfhJU0CBKEEQDwMbvKm/cYIYwgOBBGAMDH7Klw36ZhG3gEC8IIAPiY4qO1kqQB7L6KIEEYAQAfUl3XqKoTjZKk5NhIi6sBOgdhBAB8yNZD1ZLcQaRbZLjF1QCdgzACAD6keSXN4MRuFlcCdB7CCAD4kCK2gUcQIowAgA9pXknD5FUEE8IIAPiQosMnw0g8e4wgeBBGAMBHNDpdLOtFUCKMAICPKD5aqyaXUVR4qJJiWNaL4EEYAQAf0XyLpn98F4WE8IA8BA/CCAD4CM9KGm7RIMgQRgDAR3gmr/KAPAQZwggA+Iiiiuan9TIyguBCGAEAH8GyXgQrwggA+ABHXaOO1DRIkvozMoIgQxgBAB9QfMS9v0iPLhHqag+zuBqgcxFGAMAH7Cp3zxcZxORVBCHCCAD4gL1HvtxjBAg2hBEA8AHNt2n69oy2uBKg8xFGAMAH7CivliQN5DYNghBhBAB8wL4jPCAPwYswAgAWqzrRqOq6JklSn+5RFlcDdD7CCABYrOSoe1QkvmuEoiNY1ovgQxgBAIvtP+YOIylxjIogOBFGAMBiRRUs60VwI4wAgMX2esIIK2kQnAgjAGCxg5V1kpi8iuBFGAEAix2sPCFJSo6LtLgSwBqEEQCwkNNlVHJyAmvfHuy+iuBEGAEACx04dkKNTqOIsBAlx3KbBsGJMAIAFiqqcD+tN61ntEJDbBZXA1iDMAIAFmpeSZPWk2W9CF6EEQCw0J7mZb08kwZB7KzCyOLFi5WWlqbIyEhlZGRo7dq1p237zDPP6OKLL1b37t3VvXt3ZWVlnbE9AAST/cfcK2mYvIpg5nUYefnll5WTk6P58+dr/fr1GjNmjLKzs1VeXt5q+1WrVmnatGl6//33lZ+fr9TUVF1++eU6cODAORcPAP7uwMllvb2ZvIogZjPGGG9OyMjI0IQJE/TEE09Iklwul1JTU3Xrrbfqrrvu+trznU6nunfvrieeeEIzZsxo02c6HA7FxsaqqqpKMTEx3pQLAD5t5Px3dLy+Se/mXKJBCezAisDS1t/fXo2MNDQ0qKCgQFlZWV9eICREWVlZys/Pb9M1amtr1djYqB49epy2TX19vRwOR4sXAASamvomHa9vkiQlx7LhGYKXV2GkoqJCTqdTiYmJLY4nJiaqtLS0Tdf43e9+p969e7cINP8pNzdXsbGxnldqaqo3ZQKAX2ievBobFa4u9jCLqwGs06mraRYsWKBly5bp9ddfV2Tk6f9fwNy5c1VVVeV5lZSUdGKVANA5th5yj/oOT+5mcSWAtbyK4vHx8QoNDVVZWVmL42VlZUpKSjrjuY888ogWLFigd999V6NHjz5jW7vdLrvd7k1pAOB3dpW7NzwbmkgYQXDzamQkIiJC6enpysvL8xxzuVzKy8tTZmbmac97+OGH9cADD2jFihUaP3782VcLAAFk58kwMogwgiDn9U3KnJwczZw5U+PHj9fEiRO1aNEi1dTUaNasWZKkGTNmKCUlRbm5uZKkP/7xj5o3b55efPFFpaWleeaWdO3aVV27MnMcQPDaWV4tSRrMKhoEOa/DyNSpU3X48GHNmzdPpaWlGjt2rFasWOGZ1FpcXKyQkC8HXJ566ik1NDTo6quvbnGd+fPn6/e///25VQ8AfupEg9Oz4RlhBMHO631GrMA+IwACzaYDVfru46vVPTpcG+ZdbnU5QIfokH1GAADto3lZ74BejIoAhBEAsMAentYLeBBGAMACX46MEEYAwggAWKA5jPSPJ4wAhBEA6GTGGBUddu8xQhgBCCMA0OmO1TbKUed+QB5zRgDCCAB0uuZt4HvHRioqItTiagDrEUYAoJNtL21+QB77JgESYQQAOt3eI7WSWEkDNCOMAEAn23tyJU3fHtEWVwL4BsIIAHSy7WXuB+QN4Wm9gCTCCAB0quP1TZ4H5BFGADfCCAB0op0nR0V6dbOre5cIi6sBfANhBAA60Y6TYWQooyKAB2EEADrR9lL3HiPcogG+RBgBgE7kGRlJ6mpxJYDvIIwAQCdiJQ1wKsIIAHSSw9X1OlxdL5uNMAJ8FWEEADrJ1kPubeD7x3dRF3uYxdUAvoMwAgCdpHm+yLAkRkWAryKMAEAn2VbKfBGgNYQRAOgk20sZGQFaQxgBgE7gdBntLG9e1htjcTWAbyGMAEAn2H+sVnWNLtnDQnhaL/AfCCMA0Amab9EM6NVVoSE2i6sBfAthBAA6waaD7mW95/XmFg3wnwgjANAJthyskkQYAVpDGAGADmaMUWGJO4yM7hNrcTWA7yGMAEAHO1RVp4rj9QoNsem83oQR4D8RRgCgg31eUilJGprYTZHhodYWA/ggwggAdLDVuyokSRPSultcCeCbCCMA0MHW7DkqScocGG9xJYBvIowAQAcqc9RpV/lxhdikCwb0sLocwCcRRgCgAxXsOyZJGpYUo7joCIurAXwTYQQAOtD6k2FkTGqctYUAPowwAgAd6LO97vkiGf25RQOcDmEEADpIXaPTsw38BMIIcFqEEQDoINtKq+V0GcV3jVDv2EirywF8FmEEADrIB9sPS5LGpnaXzcaTeoHTIYwAQAd5Z3OpJOny8xItrgTwbYQRAOgAJUdrteWQQyE26bJhCVaXA/g0wggAdIBVO9y3aNL7dVfPrnaLqwF8G2EEADpA3tYySdKlQxkVAb4OYQQA2lm5o04fnhwZ+c7IJIurAXwfYQQA2tmKzaVyGWlsapwG9upqdTmAzyOMAEA7+/dm9y2aK0cxKgK0BWEEANpR1YlGfVp0RJL07RGEEaAtCCMA0I5WbS9Xk8toUEJX9Y/vYnU5gF8gjABAO3rh032SpCuZuAq0GWEEANrJpgNV+mzvMYWH2jQto6/V5QB+gzACAO3k72tOjoqMSlZybJTF1QD+gzACAO2guq5R/yw8KEm6diKjIoA3CCMA0A5eW39AtQ1ODUroqon9e1hdDuBXCCMAcI6anC797eM9kqTrLugnm81mcUWAfyGMAMA5em39Ae09Uqvu0eG6Or2P1eUAfocwAgDn4FDVCf1xxTZJ0uxvDlIXe5jFFQH+56zCyOLFi5WWlqbIyEhlZGRo7dq1Z2z/6quvatiwYYqMjNSoUaO0fPnysyoWAHxJfZNTN7+wXkdqGjQ8OUY/vaCf1SUBfsnrMPLyyy8rJydH8+fP1/r16zVmzBhlZ2ervLy81faffPKJpk2bphtuuEEbNmzQVVddpauuukqbNm065+IBwEq/f3OLPi+pVGxUuJ6+Ll2R4aFWlwT4JZsxxnhzQkZGhiZMmKAnnnhCkuRyuZSamqpbb71Vd9111yntp06dqpqaGr311lueYxdccIHGjh2rJUuWtOkzHQ6HYmNjVVVVpZiYGG/KBYAO8b/5e3XfPzfLZpOemzVRlwzpZXVJgM9p6+9vr25uNjQ0qKCgQHPnzvUcCwkJUVZWlvLz81s9Jz8/Xzk5OS2OZWdn64033jjt59TX16u+vt7zZ4fD4U2Zbfbs6j0qOVp7ztdpa55rS6u2RkPThqu15VptTaJtq6t9ampru7Z8B22/Vvtcx32t9vnAtvdNG773Nl+rDW3adJ32+2+ibd9VO/5daEObUkedCksqJUl3fHsIQQQ4R16FkYqKCjmdTiUmJrY4npiYqG3btrV6TmlpaavtS0tLT/s5ubm5uv/++70p7ay8/cVBrS+u7PDPARCYbrpkgH516SCrywD8nk9O+547d26L0RSHw6HU1NR2/5wfpffRpIHxX9uurVsGtHlngTZesC2t2l5bGz+zDc3a+nO2ubZ23JMhIL6PNlyxvbexaGsftO/fyTa2a8MFrfhvdHhSN41PY3MzoD14FUbi4+MVGhqqsrKyFsfLysqUlNT6EyqTkpK8ai9Jdrtddrvdm9LOyvQMZr4DAGA1r1bTREREKD09XXl5eZ5jLpdLeXl5yszMbPWczMzMFu0laeXKladtDwAAgovXt2lycnI0c+ZMjR8/XhMnTtSiRYtUU1OjWbNmSZJmzJihlJQU5ebmSpLmzJmjSy65RI8++qgmT56sZcuWad26dXr66afb9ycBAAB+yeswMnXqVB0+fFjz5s1TaWmpxo4dqxUrVngmqRYXFysk5MsBl0mTJunFF1/Uvffeq7vvvluDBw/WG2+8oZEjR7bfTwEAAPyW1/uMWIF9RgAA8D9t/f3Ns2kAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKW83g7eCs2bxDocDosrAQAAbdX8e/vrNnv3izBSXV0tSUpNTbW4EgAA4K3q6mrFxsae9n2/eDaNy+XSwYMH1a1bN9lstna7rsPhUGpqqkpKSnjmjY+ij3wb/eP76CPfFuj9Y4xRdXW1evfu3eIhuv/JL0ZGQkJC1KdPnw67fkxMTED+JQgk9JFvo398H33k2wK5f840ItKMCawAAMBShBEAAGCpoA4jdrtd8+fPl91ut7oUnAZ95NvoH99HH/k2+sfNLyawAgCAwBXUIyMAAMB6hBEAAGApwggAALAUYQQAAFgqqMPI4sWLlZaWpsjISGVkZGjt2rVWl+T3cnNzNWHCBHXr1k0JCQm66qqrtH379hZt6urqNHv2bPXs2VNdu3bVj370I5WVlbVoU1xcrMmTJys6OloJCQn67W9/q6amphZtVq1apfPPP192u12DBg3Sc889d0o99PGZLViwQDabTbfddpvnGP1jvQMHDuinP/2pevbsqaioKI0aNUrr1q3zvG+M0bx585ScnKyoqChlZWVp586dLa5x9OhRTZ8+XTExMYqLi9MNN9yg48ePt2jzxRdf6OKLL1ZkZKRSU1P18MMPn1LLq6++qmHDhikyMlKjRo3S8uXLO+aH9hNOp1P33Xef+vfvr6ioKA0cOFAPPPBAi2ev0D9nwQSpZcuWmYiICLN06VKzefNmc+ONN5q4uDhTVlZmdWl+LTs72/ztb38zmzZtMoWFhebKK680ffv2NcePH/e0ufnmm01qaqrJy8sz69atMxdccIGZNGmS5/2mpiYzcuRIk5WVZTZs2GCWL19u4uPjzdy5cz1tioqKTHR0tMnJyTFbtmwxjz/+uAkNDTUrVqzwtKGPz2zt2rUmLS3NjB492syZM8dznP6x1tGjR02/fv3M9ddfb9asWWOKiorMO++8Y3bt2uVps2DBAhMbG2veeOMN8/nnn5vvfe97pn///ubEiROeNt/5znfMmDFjzKeffmo++ugjM2jQIDNt2jTP+1VVVSYxMdFMnz7dbNq0ybz00ksmKirK/Pd//7enzccff2xCQ0PNww8/bLZs2WLuvfdeEx4ebjZu3Ng5X4YPevDBB03Pnj3NW2+9Zfbs2WNeffVV07VrV/PYY4952tA/3gvaMDJx4kQze/Zsz5+dTqfp3bu3yc3NtbCqwFNeXm4kmQ8++MAYY0xlZaUJDw83r776qqfN1q1bjSSTn59vjDFm+fLlJiQkxJSWlnraPPXUUyYmJsbU19cbY4y58847zXnnndfis6ZOnWqys7M9f6aPT6+6utoMHjzYrFy50lxyySWeMEL/WO93v/udueiii077vsvlMklJSeZPf/qT51hlZaWx2+3mpZdeMsYYs2XLFiPJfPbZZ542//rXv4zNZjMHDhwwxhjz5JNPmu7du3v6rPmzhw4d6vnzNddcYyZPntzi8zMyMsxNN910bj+kH5s8ebL52c9+1uLYD3/4QzN9+nRjDP1ztoLyNk1DQ4MKCgqUlZXlORYSEqKsrCzl5+dbWFngqaqqkiT16NFDklRQUKDGxsYW3/2wYcPUt29fz3efn5+vUaNGKTEx0dMmOztbDodDmzdv9rT56jWa2zRfgz4+s9mzZ2vy5MmnfIf0j/XefPNNjR8/Xj/+8Y+VkJCgcePG6ZlnnvG8v2fPHpWWlrb47mJjY5WRkdGij+Li4jR+/HhPm6ysLIWEhGjNmjWeNt/4xjcUERHhaZOdna3t27fr2LFjnjZn6sdgNGnSJOXl5WnHjh2SpM8//1yrV6/WFVdcIYn+OVt+8aC89lZRUSGn09niH1NJSkxM1LZt2yyqKvC4XC7ddtttuvDCCzVy5EhJUmlpqSIiIhQXF9eibWJiokpLSz1tWuub5vfO1MbhcOjEiRM6duwYfXway5Yt0/r16/XZZ5+d8h79Y72ioiI99dRTysnJ0d13363PPvtMv/71rxUREaGZM2d6vuPWvruvfv8JCQkt3g8LC1OPHj1atOnfv/8p12h+r3v37qftx+ZrBKO77rpLDodDw4YNU2hoqJxOpx588EFNnz5dkuifsxSUYQSdY/bs2dq0aZNWr15tdSk4qaSkRHPmzNHKlSsVGRlpdTlohcvl0vjx4/XQQw9JksaNG6dNmzZpyZIlmjlzpsXV4ZVXXtHf//53vfjiizrvvPNUWFio2267Tb1796Z/zkFQ3qaJj49XaGjoKSsEysrKlJSUZFFVgeWWW27RW2+9pffff199+vTxHE9KSlJDQ4MqKytbtP/qd5+UlNRq3zS/d6Y2MTExioqKoo9Po6CgQOXl5Tr//PMVFhamsLAwffDBB/rLX/6isLAwJSYm0j8WS05O1ogRI1ocGz58uIqLiyV9+R2f6btLSkpSeXl5i/ebmpp09OjRdunHYO6j3/72t7rrrrv0k5/8RKNGjdJ1112n22+/Xbm5uZLon7MVlGEkIiJC6enpysvL8xxzuVzKy8tTZmamhZX5P2OMbrnlFr3++ut67733ThlmTE9PV3h4eIvvfvv27SouLvZ895mZmdq4cWOL/1hXrlypmJgYzz/SmZmZLa7R3Kb5GvRx6y677DJt3LhRhYWFntf48eM1ffp0z/+mf6x14YUXnrIcfseOHerXr58kqX///kpKSmrx3TkcDq1Zs6ZFH1VWVqqgoMDT5r333pPL5VJGRoanzYcffqjGxkZPm5UrV2ro0KHq3r27p82Z+jEY1dbWKiSk5a/O0NBQuVwuSfTPWbN6Bq1Vli1bZux2u3nuuefMli1bzC9+8QsTFxfXYoUAvPfLX/7SxMbGmlWrVplDhw55XrW1tZ42N998s+nbt6957733zLp160xmZqbJzMz0vN+8dPTyyy83hYWFZsWKFaZXr16tLh397W9/a7Zu3WoWL17c6tJR+vjrfXU1jTH0j9XWrl1rwsLCzIMPPmh27txp/v73v5vo6GjzwgsveNosWLDAxMXFmX/+85/miy++MN///vdbXTo6btw4s2bNGrN69WozePDgFktHKysrTWJiornuuuvMpk2bzLJly0x0dPQpS0fDwsLMI488YrZu3Wrmz5/vt0tH28vMmTNNSkqKZ2nva6+9ZuLj482dd97paUP/eC9ow4gxxjz++OOmb9++JiIiwkycONF8+umnVpfk9yS1+vrb3/7maXPixAnzq1/9ynTv3t1ER0ebH/zgB+bQoUMtrrN3715zxRVXmKioKBMfH2/uuOMO09jY2KLN+++/b8aOHWsiIiLMgAEDWnxGM/r46/1nGKF/rPd///d/ZuTIkcZut5thw4aZp59+usX7LpfL3HfffSYxMdHY7XZz2WWXme3bt7doc+TIETNt2jTTtWtXExMTY2bNmmWqq6tbtPn888/NRRddZOx2u0lJSTELFiw4pZZXXnnFDBkyxERERJjzzjvPvP322+3/A/sRh8Nh5syZY/r27WsiIyPNgAEDzD333NNiCS794z2bMV/ZNg4AAKCTBeWcEQAA4DsIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACw1P8H7JLhjXsqofgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plt.plot(\n", " evaluator.matches[\"category_specific\"][\"predictions\"][\"iou\"].sort_values().values\n", @@ -522,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "dcecb002", "metadata": { "ExecuteTime": { @@ -530,631 +376,7 @@ "start_time": "2023-06-22T09:38:08.767034Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "computing matches between groundtruth and predictions2 (category agnostic)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1ac6da55a3ba4d5b96827ddfc0936848", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/4979 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
accessoryanimalapplianceelectronicfoodfurnitureindoorkitchenoutdoorpersonsportsvehicleNonemodel
label
accessory0.7985110.0021270.0005320.0010630.0026580.0101010.0037210.0031900.0074430.1148330.0053160.0180750.032430predictions
animal0.0007410.9381480.0003700.0022220.0000000.0018520.0014810.0007410.0014810.0118520.0011110.0033330.036667predictions
appliance0.0000000.0000000.8620070.0071680.0107530.0268820.0017920.0555560.0000000.0107530.0000000.0017920.023297predictions
electronic0.0052910.0022680.0015120.8760390.0022680.0249430.0128500.0083140.0015120.0204080.0000000.0060470.038549predictions
food0.0000000.0000000.0042330.0000000.9015870.0292770.0014110.0299820.0000000.0045860.0003530.0017640.026808predictions
furniture0.0081540.0029120.0032030.0078630.0186370.8037270.0151430.0343620.0081540.0553290.0011650.0034940.037857predictions
indoor0.0055000.0020000.0025000.0100000.0020000.0335000.8695000.0140000.0015000.0110000.0005000.0025000.045500predictions
kitchen0.0024410.0016270.0100350.0029830.0219690.0344450.0094930.8622190.0018990.0094930.0013560.0016270.040412predictions
outdoor0.0085540.0015550.0000000.0015550.0000000.0209950.0015550.0007780.7970450.0482120.0023330.0171070.100311predictions
person0.0092690.0021810.0002730.0013630.0017270.0097240.0010910.0026350.0012720.9272080.0042710.0130860.025900predictions
sports0.0025110.0010050.0000000.0005020.0000000.0045200.0005020.0005020.0015070.0371670.8980410.0060270.047715predictions
vehicle0.0049000.0019600.0000000.0002450.0000000.0022050.0007350.0009800.0036750.0330720.0012250.9147480.036257predictions
None0.0754210.0482650.0123440.0258600.1073300.1149630.0918180.1082970.0354060.2303370.0397060.1102520.000000predictions
accessory0.7985110.0021270.0005320.0010630.0026580.0101010.0037210.0031900.0074430.1148330.0053160.0180750.032430predictions2
animal0.0007410.9381480.0003700.0022220.0000000.0018520.0014810.0007410.0014810.0118520.0011110.0033330.036667predictions2
appliance0.0000000.0000000.8620070.0071680.0107530.0268820.0017920.0555560.0000000.0107530.0000000.0017920.023297predictions2
electronic0.0052910.0022680.0015120.8760390.0022680.0249430.0128500.0083140.0015120.0204080.0000000.0060470.038549predictions2
food0.0000000.0000000.0042330.0000000.9015870.0292770.0014110.0299820.0000000.0045860.0003530.0017640.026808predictions2
furniture0.0081540.0029120.0032030.0078630.0186370.8037270.0151430.0343620.0081540.0553290.0011650.0034940.037857predictions2
indoor0.0055000.0020000.0025000.0100000.0020000.0335000.8695000.0140000.0015000.0110000.0005000.0025000.045500predictions2
kitchen0.0024410.0016270.0100350.0029830.0219690.0344450.0094930.8622190.0018990.0094930.0013560.0016270.040412predictions2
outdoor0.0085540.0015550.0000000.0015550.0000000.0209950.0015550.0007780.7970450.0482120.0023330.0171070.100311predictions2
person0.0092690.0021810.0002730.0013630.0017270.0097240.0010910.0026350.0012720.9272080.0042710.0130860.025900predictions2
sports0.0025110.0010050.0000000.0005020.0000000.0045200.0005020.0005020.0015070.0371670.8980410.0060270.047715predictions2
vehicle0.0049000.0019600.0000000.0002450.0000000.0022050.0007350.0009800.0036750.0330720.0012250.9147480.036257predictions2
None0.0754210.0482650.0123440.0258600.1073300.1149630.0918180.1082970.0354060.2303370.0397060.1102520.000000predictions2
\n", - "" - ], - "text/plain": [ - " accessory animal appliance electronic food furniture \\\n", - "label \n", - "accessory 0.798511 0.002127 0.000532 0.001063 0.002658 0.010101 \n", - "animal 0.000741 0.938148 0.000370 0.002222 0.000000 0.001852 \n", - "appliance 0.000000 0.000000 0.862007 0.007168 0.010753 0.026882 \n", - "electronic 0.005291 0.002268 0.001512 0.876039 0.002268 0.024943 \n", - "food 0.000000 0.000000 0.004233 0.000000 0.901587 0.029277 \n", - "furniture 0.008154 0.002912 0.003203 0.007863 0.018637 0.803727 \n", - "indoor 0.005500 0.002000 0.002500 0.010000 0.002000 0.033500 \n", - "kitchen 0.002441 0.001627 0.010035 0.002983 0.021969 0.034445 \n", - "outdoor 0.008554 0.001555 0.000000 0.001555 0.000000 0.020995 \n", - "person 0.009269 0.002181 0.000273 0.001363 0.001727 0.009724 \n", - "sports 0.002511 0.001005 0.000000 0.000502 0.000000 0.004520 \n", - "vehicle 0.004900 0.001960 0.000000 0.000245 0.000000 0.002205 \n", - "None 0.075421 0.048265 0.012344 0.025860 0.107330 0.114963 \n", - "accessory 0.798511 0.002127 0.000532 0.001063 0.002658 0.010101 \n", - "animal 0.000741 0.938148 0.000370 0.002222 0.000000 0.001852 \n", - "appliance 0.000000 0.000000 0.862007 0.007168 0.010753 0.026882 \n", - "electronic 0.005291 0.002268 0.001512 0.876039 0.002268 0.024943 \n", - "food 0.000000 0.000000 0.004233 0.000000 0.901587 0.029277 \n", - "furniture 0.008154 0.002912 0.003203 0.007863 0.018637 0.803727 \n", - "indoor 0.005500 0.002000 0.002500 0.010000 0.002000 0.033500 \n", - "kitchen 0.002441 0.001627 0.010035 0.002983 0.021969 0.034445 \n", - "outdoor 0.008554 0.001555 0.000000 0.001555 0.000000 0.020995 \n", - "person 0.009269 0.002181 0.000273 0.001363 0.001727 0.009724 \n", - "sports 0.002511 0.001005 0.000000 0.000502 0.000000 0.004520 \n", - "vehicle 0.004900 0.001960 0.000000 0.000245 0.000000 0.002205 \n", - "None 0.075421 0.048265 0.012344 0.025860 0.107330 0.114963 \n", - "\n", - " indoor kitchen outdoor person sports vehicle \\\n", - "label \n", - "accessory 0.003721 0.003190 0.007443 0.114833 0.005316 0.018075 \n", - "animal 0.001481 0.000741 0.001481 0.011852 0.001111 0.003333 \n", - "appliance 0.001792 0.055556 0.000000 0.010753 0.000000 0.001792 \n", - "electronic 0.012850 0.008314 0.001512 0.020408 0.000000 0.006047 \n", - "food 0.001411 0.029982 0.000000 0.004586 0.000353 0.001764 \n", - "furniture 0.015143 0.034362 0.008154 0.055329 0.001165 0.003494 \n", - "indoor 0.869500 0.014000 0.001500 0.011000 0.000500 0.002500 \n", - "kitchen 0.009493 0.862219 0.001899 0.009493 0.001356 0.001627 \n", - "outdoor 0.001555 0.000778 0.797045 0.048212 0.002333 0.017107 \n", - "person 0.001091 0.002635 0.001272 0.927208 0.004271 0.013086 \n", - "sports 0.000502 0.000502 0.001507 0.037167 0.898041 0.006027 \n", - "vehicle 0.000735 0.000980 0.003675 0.033072 0.001225 0.914748 \n", - "None 0.091818 0.108297 0.035406 0.230337 0.039706 0.110252 \n", - "accessory 0.003721 0.003190 0.007443 0.114833 0.005316 0.018075 \n", - "animal 0.001481 0.000741 0.001481 0.011852 0.001111 0.003333 \n", - "appliance 0.001792 0.055556 0.000000 0.010753 0.000000 0.001792 \n", - "electronic 0.012850 0.008314 0.001512 0.020408 0.000000 0.006047 \n", - "food 0.001411 0.029982 0.000000 0.004586 0.000353 0.001764 \n", - "furniture 0.015143 0.034362 0.008154 0.055329 0.001165 0.003494 \n", - "indoor 0.869500 0.014000 0.001500 0.011000 0.000500 0.002500 \n", - "kitchen 0.009493 0.862219 0.001899 0.009493 0.001356 0.001627 \n", - "outdoor 0.001555 0.000778 0.797045 0.048212 0.002333 0.017107 \n", - "person 0.001091 0.002635 0.001272 0.927208 0.004271 0.013086 \n", - "sports 0.000502 0.000502 0.001507 0.037167 0.898041 0.006027 \n", - "vehicle 0.000735 0.000980 0.003675 0.033072 0.001225 0.914748 \n", - "None 0.091818 0.108297 0.035406 0.230337 0.039706 0.110252 \n", - "\n", - " None model \n", - "label \n", - "accessory 0.032430 predictions \n", - "animal 0.036667 predictions \n", - "appliance 0.023297 predictions \n", - "electronic 0.038549 predictions \n", - "food 0.026808 predictions \n", - "furniture 0.037857 predictions \n", - "indoor 0.045500 predictions \n", - "kitchen 0.040412 predictions \n", - "outdoor 0.100311 predictions \n", - "person 0.025900 predictions \n", - "sports 0.047715 predictions \n", - "vehicle 0.036257 predictions \n", - "None 0.000000 predictions \n", - "accessory 0.032430 predictions2 \n", - "animal 0.036667 predictions2 \n", - "appliance 0.023297 predictions2 \n", - "electronic 0.038549 predictions2 \n", - "food 0.026808 predictions2 \n", - "furniture 0.037857 predictions2 \n", - "indoor 0.045500 predictions2 \n", - "kitchen 0.040412 predictions2 \n", - "outdoor 0.100311 predictions2 \n", - "person 0.025900 predictions2 \n", - "sports 0.047715 predictions2 \n", - "vehicle 0.036257 predictions2 \n", - "None 0.000000 predictions2 " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "confusion_data = evaluator.compute_confusion_matrix()\n", "confusion_data" @@ -1170,7 +392,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "2d6d6324", "metadata": { "ExecuteTime": { @@ -1178,18 +400,7 @@ "start_time": "2023-06-22T09:38:44.848955Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAHWCAYAAADAcHv5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6KElEQVR4nOzdd3xTVf/A8U+aziQdlAItUGkZXYyWIcgSVBQeER/QBwGRqYhAKXtvBMqWPUSWbBVRfoogIkMEBTtYLYWWlkIpUEZpBnQk+f0RSBsp0KZpSst5v155Qe8433NvTm5Ozjn3XIler9cjCIIgCIJQRDYlnQFBEARBEMoGUakQBEEQBMEiRKVCEARBEASLEJUKQRAEQRAsQlQqBEEQBEGwCFGpEARBEATBIkSlQhAEQRAEixCVCkEQBEEQLEJUKgRBEARBsAhRqRAEwUgikTB16lTj3xs2bEAikZCUlGRWer1798bHx8cieRME4fknKhWC8IJYsWIFEomEJk2alHRWCmTWrFn88MMPJZ0NQRAKQVQqBOEFsWXLFnx8fDhx4gTx8fElnZ1nEpUKQSh9RKVCEF4AiYmJHDt2jIULF1KhQgW2bNlS0lkSBKEMEpUKQXgBbNmyhXLlytG+fXv+97//FUul4ocffqBOnTo4OjpSp04ddu3ale928+fPp1mzZpQvXx4nJycaNmzId999Z7KNRCJBrVazceNGJBIJEomE3r17A3D58mUGDhyIv78/Tk5OlC9fns6dO5s97kMQBMuxLekMCIJQ/LZs2cJ7772Hvb093bp1Y+XKlZw8eZKXX37ZIun/+uuvvP/++wQFBREeHs7t27fp06cPVatWfWzbxYsX8+6779K9e3eysrLYvn07nTt35qeffqJ9+/YAbNq0iU8++YTGjRvz6aefAlCjRg0ATp48ybFjx+jatStVq1YlKSmJlStX0rp1a2JiYpDJZBY5JkEQzKAXBKFM++eff/SAfv/+/Xq9Xq/X6XT6qlWr6ocMGfLYtoB+ypQpxr/Xr1+vB/SJiYlPjRESEqL38vLSp6enG5f9+uuvekBfrVo1k201Go3J31lZWfo6deroX3/9dZPlcrlc36tXr8di/Xt/vV6vP378uB7Qf/3110/NpyAIxUt0fwhCGbdlyxYqVarEa6+9Bhi6Frp06cL27dvRarVFTj81NZXo6Gh69eqFq6urcfmbb75JUFDQY9s7OTkZ/3/37l3u3btHy5YtiYyMLFC8vPtnZ2dz+/ZtatasiZubW4HTEASheIhKhSCUYVqtlu3bt/Paa6+RmJhIfHw88fHxNGnShBs3bnDgwIEix7h8+TIAtWrVemydv7//Y8t++uknXnnlFRwdHXF3d6dChQqsXLmSe/fuFSje/fv3mTx5Mt7e3jg4OODh4UGFChVIT08vcBqCIBQPMaZCEMqw33//ndTUVLZv38727dsfW79lyxbeeustq+Xnjz/+4N133+XVV19lxYoVeHl5YWdnx/r169m6dWuB0hg8eDDr169n6NChNG3aFFdXVyQSCV27dkWn0xXzEQiC8DSiUiEIZdiWLVuoWLEiy5cvf2zd999/z65du1i1apVJl0JhVatWDYCLFy8+ti4uLs7k7507d+Lo6Mi+fftwcHAwLl+/fv1j+0okknzjfffdd/Tq1YsFCxYYlz148ID09HRzsi8IggWJSoUglFH379/n+++/p3Pnzvzvf/97bH3lypXZtm0bu3fvpkuXLmbH8fLyIiQkhI0bNzJ27FjjuIr9+/cTExNjrHQASKVSJBKJyViOpKSkfCe5ksvl+VYUpFIper3eZNnSpUstMj5EEISiEZUKQSijdu/ejVKp5N133813/SuvvGKcCKsolQqA8PBw2rdvT4sWLejbty937txh6dKl1K5dG5VKZdyuffv2LFy4kHbt2vHhhx9y8+ZNli9fTs2aNTl9+rRJmg0bNuS3335j4cKFVK5cGV9fX5o0acI777zDpk2bcHV1JSgoiOPHj/Pbb79Rvnz5Ih2DIAhFJwZqCkIZtWXLFhwdHXnzzTfzXW9jY0P79u3Zu3cvt2/fLlKsdu3a8e2336LVahk3bhzff/8969evp1GjRibbvf7666xdu5br168zdOhQtm3bxpw5c+jUqdNjaS5cuJCGDRsyceJE49waYJjnomfPnmzZsoURI0aQmprKb7/9hkKhKNIxCIJQdBL9v9sRBUEQBEEQzCBaKgRBEARBsAhRqRAEQRAEwSJEpUIQBEEQBIsQlQpBEARBECxCVCoEQRAEQbAIUakQBEEQBMEixORXpYhOp+PatWs4Ozs/cQpjQRAE4dn0ej1KpZLKlStjY1P8v68fPHhAVlZWkdKwt7fH0dHRQjkqHqJSUYpcu3YNb2/vks6GIAhCmXHlyhWqVq1arDEePHiAbzUF128WbSp5T09PEhMTn+uKhahUlCLOzs4AzDnUCEdF8b51uxpVKtb0BQuwkVonjq6MPVPDSudNWqPaszeyAG3CZavEAZDYWecrQ2Jb/O9Rjj6bI5rvjNfV4pSVlcX1m1ouR/jg4mxeq0iGUke1hklkZWWJSoVgGY+6PBwVtjgVc6XCVmJXrOkLFiCxUqVCUsaGXlnpvEmlDs/eyAIkVvysSiRWqlRYKY4hlvW6khXOEhTO5sXTUTq6vEWlQhAEQRCsQKvXoTXzwRhavc6ymSkmolIhCIIgCFagQ48O82oV5u5nbWWsXVMQBEEQhJIiWioEQRAEwQp06DC3E8P8Pa1LVCoEQRAEwQq0ej1avXndGObuZ22iUiEIgiAIVvAijKkQlYoyKCrcmbvn7CgXlE398Urj8it7HYhbJwcJBH6qpsobmRaN239qCn7B97l4xolVk6tYNG0RpxDpTbmKXz01F8/KWDUld7K0av73CQtPRiKBpeO9SYyV0W1wKh163WLfjvJsnFe5yLFBnLdn6TfwFLX875Jw0Y3Vy0KMy7t0P887HRPY/4sPX6+r/cRlz9vxAHw68TJ+9dTEn5Wzanru/BzV/DSEzUgCCSyb5EPieRlhMxOp5ncf9LBssmFZgeOMT6RWHRXxMQpWz/DNjVNLzeDplwxxplQnKU5O/4mJ1AhUY+egY80sH2IiXQp9XELhiYGaVlDUqVkL4+45W3I0El7ffAddloQ7Z3LrjRc2ymm98Q6tN97hwga5RePWrKvBSa5jRKea2Nnp8QvWWDR9EaeA6dXR4CTXMuJ9/4fpqY3reo26xuxBvswc4EuvkakA/LLNgzlhPkWKaRJfnLenqlHrLk5OOYwe0hpbWx21/O8Y1+3b48O8mS+bbJ/fsufpeABq1lbjJNcx8oMgbO30+NVTGdf1HJ5C+JAazAqtSc/hVwHYsbIyIzoHsWB0dbqHpRQ4To0gFY4yLaM+rIudnQ6/urk/mHoOvcLsYX6ED/Gj59BkAL6aXY3R3esQHuZHlwFXzTo2S9OhR2vmq7S0VJRopWLv3r20aNECNzc3ypcvzzvvvENCQoJx/dWrV+nWrRvu7u7I5XIaNWrE33//bVz/f//3f7z88ss4Ojri4eFBp06djOsyMzMZOXIkVapUQS6X06RJEw4dOmRcf/nyZTp06EC5cuWQy+XUrl2bPXv2AHD37l26d+9OhQoVcHJyolatWqxfv96475kzZ3j99ddxcnKifPnyfPrpp6hUuR+k3r1707FjR2bOnEnlypXx9/dn+vTp1KlT57FzEBISwqRJkyxyPgFun7LDs5mhElOpWSa3ou2N6xTeWnLuS8jRSLBVWHbQT0ADDZFHDDPTRf2hILCR+hl7iDjFESeggZrII4ZfZFFHnQlsmJuewlVLWqo9t6/bI3c1zJKZfssOS3bVivP2jDhBd4iKMMxWGx1ZicDauZWK9LuO6PWmExzlt6xAcaxYDgLqq4g8+jDWny4ENsi9Fjq75nAr1YHbN+yRuxhi3bhqmBRMmy1Bpyv4sQWEKIn6080Q55gbAfVz4yhcc7h13YHbNxxQPIyjzTF8vTnKdFyKteyPKHM96v4w91UalGilQq1WM3z4cP755x8OHDiAjY0NnTp1QqfToVKpaNWqFSkpKezevZtTp04xevRodDrDl+HPP/9Mp06dePvtt4mKiuLAgQM0btzYmHZoaCjHjx9n+/btnD59ms6dO9OuXTsuXrwIwKBBg8jMzOTIkSOcOXOGOXPmoFAoAJg0aRIxMTH88ssvxMbGsnLlSjw8PIx5btu2LeXKlePkyZN8++23/Pbbb4SGhpoc24EDB4iLi2P//v389NNP9O3bl9jYWE6ePGncJioqitOnT9OnT598z09mZiYZGRkmr2fJUtoYKwx2Cj3ZGbkf2iptHrD/PQ/2d/Kg1keW/QWpcNGiURqKk1opNX6wLU3EKUB6qofpZZimZ5Pn+l1cc/OJ8/Z0ckU2GrWh9VCtskWuyC5iivmzZjmQu2jRKA2zlGqUUuTOubHyTsb674kr+4y+wo8bCv44AMMxGeIY3vOcfOPkPahJy88zc30M0cfcChynOD0aqGnuqzQo0TEV77//vsnf69ato0KFCsTExHDs2DHS0tI4efIk7u7uANSsWdO47cyZM+natSvTpk0zLgsODgYgOTmZ9evXk5ycTOXKhv7BkSNHsnfvXtavX8+sWbNITk7m/fffp27dugBUr17dmE5ycjL169enUaNGAPj4+BjXbd26lQcPHvD1118jlxtqv8uWLaNDhw7MmTOHSpUMHxK5XM5XX32FvX1uS0Hbtm1Zv349L79saM5cv349rVq1MomdV3h4uMnxFYSdQk/Ow4tJtkqCnUtuQYxZqaDdT7cA+KN/OTyb38k3DXOolVJkzobKjEyhRZVRPFMhizgFSO9hpVLmbJpe3kuSrpiuT+K8PZ1GbYdMbvgylMlzUKuKZ4pta5YDjVKK7GFFQqbQolbmiZUn/bwTQnbsc53keCfO/VPw524Yjik3jiojz9fXE+J8PigAD89MJiyNY1jnegWOJZivRFsqLl68SLdu3ahevTouLi7GL+/k5GSio6OpX7++sULxb9HR0bzxxhv5rjtz5gxarRY/Pz8UCoXxdfjwYWP3SlhYGDNmzKB58+ZMmTKF06dPG/cfMGAA27dvJyQkhNGjR3Ps2DHjutjYWIKDg40VCoDmzZuj0+mIi4szLqtbt65JhQKgX79+bNu2zfgI3K1bt9K3b98nnp9x48Zx79494+vKlStP3PYRj5AsbvxliHvjuAPlg3N/CdnY65E66pE66dFZ+AdSbISMkBaGPs76LVWcjyie5kYR51npyXPTa6HkfGRuesp0KR5eWbhXyjL+srQ0cd6eEeecO8ENbgIQ0vAm52Pyv74VlTXLQWykgvrNDK2oIc0ziI1S5Illi4dnFu4Vs4ytDA1a3iOooYqtSws3IDQ2ypmQZvcAqN8snfPR/46TaRLHzt5Qu7ivlvJAY6Xn5DyDroiv0qBEWyo6dOhAtWrVWLNmDZUrV0an01GnTh2ysrJwcnJ66r5PW69SqZBKpURERCCVmhamR10cn3zyCW3btuXnn3/m119/JTw8nAULFjB48GD+85//cPnyZfbs2cP+/ft54403GDRoEPPnzy/wseWtdOQ9XgcHB3bt2oW9vT3Z2dn873//e2IaDg4OODgU7qFE5WrnIHXQ8/tH7rgFZCPz0hKzSk7QZ2pqdL3P790NF7Hqne8XKt1niT8jIyvzLgt2xZNwzpG46IKP6BZxLBcn/qyMrEwJC3bGkRAj42aKPd0Gp7JtqRebFngxfkUiAMsmGO4GaNv1Fh16puHspkXhmsPyiS89V8djrTjWOm8JF8uRnXWZuYsPcSnejbQbMrp0P8+OLQG89XYi7f97CWfnLBTOWaxYXD/fZc/T8QDEn5OTlWnD/G9iSIiRkZZiT9dB19i+vDKbF1Vh3NJ4AJZPNtwVMnDqZTRKKXO3nefqJUeWTPB9WvK55y5GQVZmGvO2nuFSrJy0aw50HXCV7SursmmJN2MXXQBgxTRDy+/YRRdQuORgY6NnwwLrPDH2WR4NujR339JAoteXTEfN7du38fDw4MiRI7Rs2RKAo0eP0rJlS3bt2sW9e/cICwsjMTEx39aK1157jSpVqrB58+bH1l24cAF/f3+TtJ9l3Lhx/PzzzyYtFo+sXr2aUaNGkZGRwZo1axgzZgxXrlwxVhz27NlDhw4duHbtGpUqVaJ3796kp6fzww8/PJbWmDFjiIqKwt7enipVqrB69eoC5Q8gIyMDV1dXFv/zSrE/pfSbQM9iTV+wAPHoc/NY69HntQr2ZVlU2ouJVokD1nz0efHHydFn8bt6G/fu3cPFpXhvN3107T4dUxFnMx99rlTqqBd00yr5LYoS6/4oV64c5cuX58svvyQ+Pp7ff/+d4cOHG9d369YNT09POnbsyJ9//smlS5fYuXMnx48fB2DKlCls27aNKVOmEBsbaxxsCeDn50f37t3p2bMn33//PYmJiZw4cYLw8HB+/vlnAIYOHcq+fftITEwkMjKSgwcPEhgYCMDkyZP58ccfiY+P59y5c/z000/Gdd27d8fR0ZFevXpx9uxZDh48yODBg+nRo4dxPMXTfPLJJ/z+++/s3bv3qV0fgiAIglDalFilwsbGhu3btxMREUGdOnUYNmwY8+bNM663t7fn119/pWLFirz99tvUrVuX2bNnG7szWrduzbfffsvu3bsJCQnh9ddf58SJE8b9169fT8+ePRkxYgT+/v507NiRkydP8tJLhmY9rVbLoEGDCAwMpF27dvj5+bFixQpj7HHjxlGvXj1effVVpFIp27dvB0Amk7Fv3z7u3LnDyy+/zP/+9z/eeOMNli1bVqDjrlWrFs2aNSMgIIAmTZpY5FwKgiAIz78XYUxFiXV/vKj0ej21atVi4MCBJi0zBSG6PwQTovvDPKL7w2yi+8M8j67dkTGVUJjZ/aFS6mgQdOO57/4Q03RbUVpaGtu3b+f69etPnJtCEARBKJt0evNv4y2u28AtTVQqrKhixYp4eHjw5ZdfUq5cuZLOjiAIgiBYlKhUWJHoaRIEQXhxaZGgNXMeU3P3szZRqRAEQRAEKxCVCkEQBEEQLEKnl6Az4wFxj/YtDcSjzwVBEARBsAjRUlEK7WpUCVtJ8TyI6JF916KLNf1H2lYOsUqcMqms3eppLVY6b1a71dOK5UCfaZ1YNoV8PIE5JHrrPw9EdH8IgiAIgmARWmzQmtlBUFp+QohKhSAIgiBYgb4IYyr0YkyFIAiCIAgvEtFSIQiCIAhWIMZUCIIgCIJgEVq9DVq9mWMqSsnciaJSIQiCIAhWoEOCzsxRBzpKR61CVCoEQRAEwQpehO4PMVAzHxs2bMDNza3MxBEEQRAEaxCVinx06dKFCxculHQ2LKL/1BQW7Irns+kpFklv1ZTKDO9Yk5WTqpgsjzisYMg7tRj1vxokX8yduEavhwFt/Plli7tF4oPlj0nEEXGsGaf/lKss2BnHZ9OumCyv5n+fBd/HsXBXHL6BGgC6DU5l6z9n6DXqmkViG/NQSs9dv7EJzN18iv7jE0yWV6ulZt6WU8zfegofP7Vxub2Dls1//EVI07sWiV9Uj8ZUmPsqDUpHLq3MycmJihUrlnQ2iqxmXQ1Och0jOtXEzk6PX7CmSOldPO3EfbWUhT/Ek50tIS7aybhuyxeezPkmgbHLL7Npvqdx+V+/uuBaPqdIcfOy9DGJOCKONePUrKPBSa5lxPv+D9PL/QLsNeoaswf5MnOAL71GpgLwyzYP5oT5FCnmY3kopeeuRpAKJ5mO0R8FY2uno1YdpXFdj7DLzBkRQPjQAHoMSTIub9v5OpcvyIsU15IMYyrMf5UGZbJSsXfvXlq0aIGbmxvly5fnnXfeISHBULNNSkpCIpHw/fff89prryGTyQgODub48ePG/f/dLTF16lRCQkJYt24dL730EgqFgoEDB6LVapk7dy6enp5UrFiRmTNnmuRj4cKF1K1bF7lcjre3NwMHDkSlUlnlHAAENNAQecQZgKg/FAQ2Uj9jj6c7HymjwauGD3L9lkpi/zH9sDrKdJSvlEPq5dyWioO7ytH6v5b7lWDpYxJxRBxrxglooCbyiIshvaPOBDbMTU/hqiUt1Z7b1+2RuxrmT0y/ZYfewuPzSu25C84g6pgbANHHyxFYP8O4TuGaw63rDty+6YDCxfAjxtZOR0CwkpgolyLFtSTdwxk1zXmZO8DT2kpHLgtJrVYzfPhw/vnnHw4cOICNjQ2dOnVCp9MZt5kwYQIjR44kOjoaPz8/unXrRk7Ok39RJyQk8Msvv7B37162bdvG2rVrad++PVevXuXw4cPMmTOHiRMn8vfffxv3sbGxYcmSJZw7d46NGzfy+++/M3r06GI99rwULlo0SsNbrFZKUbgUbaJXVYYUmbMhDbmzFlWG6dz5d9NsSb7oYOz+iDjkTN2mKmwsOMW+pY9JxBFxrBlH4aJFo3qYXoZpejZ5fogW52/S0nru5C45aFRSY3py59zrtY0kt+b16Ny16XSDg7tLf4tzaVMm7/54//33Tf5et24dFSpUICYmBoVCAcDIkSNp3749ANOmTaN27drEx8cTEBCQb5o6nY5169bh7OxMUFAQr732GnFxcezZswcbGxv8/f2ZM2cOBw8epEmTJgAMHTrUuL+Pjw8zZszgs88+Y8WKFQU6jszMTDIzM41/Z2RkPGXrx6mVUmTOhoqUTPF4JaCw5M46NEpDGhqV6UXik4nXmDWgGpWqZlP7ZcMvkl+2uTN6cTKHfixXpLh5WfqYRBwRx5px1EopMsXD9P5VMc/bIKErxrsHS+u50yhtkSm0xvTUytyvL9NzJ8FGqqdhi7vMDAvCP1jJ86Jo81SUjltKy2RLxcWLF+nWrRvVq1fHxcUFHx8fAJKTk43b1KtXz/h/Ly8vAG7evPnENH18fHB2djb+XalSJYKCgrCxsTFZljeN3377jTfeeIMqVarg7OxMjx49uH37NhpNwfoWw8PDcXV1Nb68vb0LtN8jsREyQlo86q5QcT6iaH2LgQ3VRB81VMqi/nAmoGHucQQ10jDvuwS6hV3npVqGilBKgiNT+/qyc3UFdn1VwWQAp7ksfUwijohjzTixEfLc9FooOR+Zm54yXYqHVxbulbKMlffiUGrPXbQLwU3TAQhpms756NxuDWW6HeUrZeJeMRONSkq58llU8Mpk+pqzvNbhJr2HJ6FwyS5SfEvQPezGMPdVGpSOXBZShw4duHPnDmvWrOHvv/82dklkZWUZt7Gzy310uERiaDDL2z3yb3m3f7RPfssepZGUlMQ777xDvXr12LlzJxERESxfvvyxfDzNuHHjuHfvnvF15cqVZ++UR/wZGVmZNizYFY9OB3HRskLt/2+16t3H3kHP8I41sbHRU7FKFlsXVwJg6+JKjPpfDdaFV6b7sOsArPwtjllbL/F+/zQ6fZJmrGwUhaWPScQRcawZJ/6sjKxMCQt2xqHTSbiZYk+3wYZBmZsWeDF+RSITVyXy9XzDD522XW/x6aSrvN7pDoNmJD8t6YLnoZSeu4QYBdmZNszdfAqdDtJSHejS33BONi+txrgvzjN+0Xk2L6nG7ZsODO1cn8n96nDw/yqyYaEPqgy7Z0Qoflq9pEiv0qDMdX/cvn2buLg41qxZQ8uWLQE4evSo1fMRERGBTqdjwYIFxtaMb775plBpODg44OBQtF/3qyZXefZGhTDgc9Nbwz4ccsP476P//9tbXe5YNA+WPiYRR8SxZpxVU0xbHLctNVQgEmNlDO/kb7Ju33YP9m33sGh8KL3nbvWsGiZ/71j9EgBJF+SM/DA43322LKtm0TwIT1fmKhXlypWjfPnyfPnll3h5eZGcnMzYsWOtno+aNWuSnZ3N0qVL6dChA3/++SerVq2yej4EQRCE58OjOznM21eMqSgRNjY2bN++nYiICOrUqcOwYcOYN2+e1fMRHBzMwoULmTNnDnXq1GHLli2Eh4dbPR+CIAjC80GntynSqzSQ6PWlZEipQEZGBq6urrTmv9hKird/cN+16GJN/5G2lUOsEkcQrM6S91I/ja54bgktSVKX4p9bIkefxYGMzdy7dw+XYo736Nq9JrIhMmfzyoVGqaVfgwir5LcoSkfVRxAEQRCEQlu+fDk+Pj44OjrSpEkTTpw48dTtFy1ahL+/P05OTnh7ezNs2DAePHhQ4HhlbkyFIAiCIDyPdGD2XRxPvjfxyXbs2MHw4cNZtWoVTZo0YdGiRbRt25a4uLh8H0WxdetWxo4dy7p162jWrBkXLlygd+/eSCQSFi5cWKCYoqVCEARBEKzA2vNULFy4kH79+tGnTx+CgoJYtWoVMpmMdevW5bv9sWPHaN68OR9++CE+Pj689dZbdOvW7ZmtG3mJSoUgCIIgWIE1n1KalZVFREQEbdq0MS6zsbGhTZs2Js+6yqtZs2ZEREQYKxGXLl1iz549vP322wWOK7o/BEEQBKGU+PfjGp40n9GtW7fQarVUqlTJZHmlSpU4f/58vml/+OGH3Lp1ixYtWqDX68nJyeGzzz5j/PjxBc6faKkQBEEQBCuwxKPPvb29TR7fYMmpCg4dOsSsWbNYsWIFkZGRfP/99/z88898/vnnBU5DtFQI+bLWrZ6fJ560SpxJNV6xShxrsnFytEocnbp4Ho39b9JK1nmipPbGk5/xIzwfdJlFn9L/mTH01n8WSNEeKGbY78qVKya3lD5p1mUPDw+kUik3bpjOdHzjxg08PT3z3WfSpEn06NGDTz75BIC6deuiVqv59NNPmTBhgsmzrp5EtFQIgiAIghU8mlHT3BeAi4uLyetJlQp7e3saNmzIgQMHjMt0Oh0HDhygadOm+e6j0WgeqzhIpYZ5NQo6pZVoqRAEQRCEMmj48OH06tWLRo0a0bhxYxYtWoRaraZPnz4A9OzZkypVqhi7UDp06MDChQupX78+TZo0IT4+nkmTJtGhQwdj5eJZRKVCEARBEKxAp5egM3eeCjP269KlC2lpaUyePJnr168TEhLC3r17jYM3k5OTTVomJk6ciEQiYeLEiaSkpFChQgU6dOjAzJkzCxxTVCoEQRAEwQp0RXigmDnzVACEhoYSGhqa77pDhw6Z/G1ra8uUKVOYMmWKWbFAVCoEQRAEwSqK8mCw0vJAsdKRS0EQBEEQnnuipUIQBEEQrECLBC3mjakwdz9re2FaKjZs2ICbm5vx76lTpxISElJi+REEQRBeLI+6P8x9lQYvbEvFyJEjGTx4cElno9j1n5qCX/B9Lp5xYtXkKqUm1p7Pvbl2Wo5XHQ3tpyQbl5/9uRxHv/REIoFXB6YS+FY6mnQpuyf4oLlrS/VmGbQOTS1cvqdcxa+emotnZaya4m1cXs3/PmHhyUgksHS8N4mxMroNTqVDr1vs21GejfMqP5dxPh2fSK06KuJjFKye4Zsbp5aawdMvgQSWTalOUpyc/hMTqRGoxs5Bx5pZPsREujwl5QIep4XLXL8RcdQKyiDhvDOr5wUYl1eroSJ0QiwSiZ5lswJJuuiMwiWbwRNicXHLIvqEOzvWVi9yfEsfj7XKwVPzYKXrgqXjfDrxMn711MSflbNqejXj8mp+GsJmJBnK9iQfEs/LCJuZSDW/+6CHZZMNy0qaFvNbHLSWzUqxKR1Vn2KgUCgoX758SWejWNWsq8FJrmNEp5rY2enxC9aUiljXzsrIUkv55NvzaLMlXD0lN647ts6Tvtvj6Lv9PMfWGm6LOri4Cm8MT6Hv1rhCVyhq1tHgJNcy4n3/h/nOnT2y16hrzB7ky8wBvvQaaUj3l20ezAnzKfQxWStOjSAVjjItoz6si52dDr+6SuO6nkOvMHuYH+FD/Og51FBR+2p2NUZ3r0N4mB9dBlwtdLx/s3SZqxGQgZNMy+iPX8bWTk+toHvGdT0GxjNnXF3CR9ejx8AEALr3T2DTyhqM69/IIhUKSx+PtcrBU/NgpeuCxc9dbTVOch0jPwjC1k6PXz2VcV3P4SmED6nBrNCa9BxuKMc7VlZmROcgFoyuTvewlCLFFgruuahU7N27lxYtWuDm5kb58uV55513SEgwXCSSkpKQSCRs376dZs2a4ejoSJ06dTh8+LBx/0OHDiGRSPj555+pV68ejo6OvPLKK5w9e/aJMf/d/XHy5EnefPNNPDw8cHV1pVWrVkRGRprsI5FI+Oqrr+jUqRMymYxatWqxe/duk23OnTvHO++8g4uLC87OzrRs2dJ4LABfffUVgYGBODo6EhAQwIoVK4py6p4qoIGGyCPOAET9oSCwUfFNt2zJWFei5NRoYfjyqNE8gyuRuZUK95cekK2xIUstxUGhA+DmBScOL/diXTd/kvNsW7B8q4k8Yvh1HnXUmcCGuflWuGpJS7Xn9nV75K6G3wnpt+wo4MRyJRMnREnUn26GOMfcCKife+FVuOZw67oDt284oHAxxNHmGC4BjjIdl2ILd+7yjW/hMhdQ9x5Rf7kDEP23O4HBuZUKhUsOt244cjvNEYWzYcrlajXUdPk4kfAv/yGgXnqRYkMxHI+VysHT82Cd64LFz119FZFHH567P10IbJBbtp1dc7iV6sDtG/bIH5btG1cNM01qsyXodM/HeIQXofvjucilWq1m+PDh/PPPPxw4cAAbGxs6deqETqczbjNq1ChGjBhBVFQUTZs2pUOHDty+fdsknVGjRrFgwQJOnjxpnLQjO7tg87srlUp69erF0aNH+euvv6hVqxZvv/02SqXSZLtp06bxwQcfcPr0ad5++226d+/OnTt3AEhJSeHVV1/FwcGB33//nYiICPr27UtOTg4AW7ZsYfLkycycOZPY2FhmzZrFpEmT2LhxY1FO3xMpXLRolIa3WK2UGr9InvdYDzJscXQ27O/orOWBMreXLrBtOiveqc3y9rV5pZdhTvvkCAWvDkzlgyUJ7Av3zjfNp+Zb9TDfGab5tslzHSrqJcm6cQwz3xneh5zctPN+2vMEmrT8PDPXxxB9zK2I0S1f5uTOOWjUhvdfrbJF7pz7ebaxyf22lTw8nsDgdL5Z58OcsXX5eOjFIsUGyx+PtcrBM/NgheuCxcuCixaN0lC2NUopcufc9PKWbcm/Tl6f0Vf4cYPpkzpLijUffV5SnosxFe+//77J3+vWraNChQrExMSgUCgAwwQej7ZbuXIle/fuZe3atYwePdq435QpU3jzzTcB2LhxI1WrVmXXrl188MEHz8zD66+/bvL3l19+iZubG4cPH+add94xLu/duzfdunUDYNasWSxZsoQTJ07Qrl07li9fjqurK9u3b8fOzg4APz8/k/wtWLCA9957DwBfX19iYmJYvXo1vXr1eixPmZmZZOZ5sM6/H3n7LGqlFJmzoWImU2hRZRRsmlVzWDKWoSJh2P+BSoqjc+4X46EllRn86xkANvX1o+arGZT3fUDFmg+Axy8oBcr3wxYPmbNpvvP+QNQV8deideMYLraG9yHPRzxP2vrc+jqfDwrAwzOTCUvjGNa5XtHjW7DMaVS2yOSG918mz0GttDOuy/sL/tEv0ZRkGVcSFY+tN5elj8da5eCZebDCdcHiZUEpReacW7bVyjzn7gllu2Of6yTHO3HuH+cixbYUfZ6njZqzb2nwXFR9Ll68SLdu3ahevTouLi74+PgAhilEH8n7ABRbW1saNWpEbGysSTp5t3F3d8ff3/+xbZ7kxo0b9OvXj1q1auHq6oqLiwsqlcokDwD16uVedOVyOS4uLty8aXjqYXR0NC1btjRWKPJSq9UkJCTw8ccfo1AojK8ZM2aYdI/kFR4ebvKIW2/vwv0Kj42QEdLC0NJSv6WK8xFFb962RizvBiouHTM0c1760wXv+rnNprb2OuycdNjLdGizDB8yD98HKG/akaWxQact3AcvNkKem+8WSs7n6T5Rpkvx8MrCvVKW8ReSuawWJ8qZkGaGLoL6zdI5H63IE8cWD89M3CtmGVsz7OwNV+D7aikPNEX/crF0mYs97UpwY0NLYEiTO5w/7Wpcp7xnR/mKD3Cv8ACN2pD3lMsyynlk4uCoxUZa9G9mix+PlcrB0/NgneuCxc9dpIL6zQw/rEKaZxAb9e+ynWVSthu0vEdQQxVbl1pugKvwbM9FS0WHDh2oVq0aa9asoXLlyuh0OurUqUNWVpbV8tCrVy9u377N4sWLqVatGg4ODjRt2vSxPPy7wiCRSIzdNE5OTk9MX6Uy9P+tWbOGJk2amKx70oNaxo0bx/Dhw41/Z2RkFKpiEX9GRlbmXRbsiifhnCNx0cU3+tmSsSrX0WDroOerzgF4BmlwrZLJoWVetA5N5eWPbvLV/wIBaNQtDYDXh6XwTVh1ch7Y8NqQa4XL91kZWZkSFuyMIyFGxs0Ue7oNTmXbUi82LfBi/IpEAJZNMJz3tl1v0aFnGs5uWhSuOSyf+NJzFSchRkFWZhrztp7hUqyctGsOdB1wle0rq7JpiTdjF10AYMU0wyDGsYsuoHDJwcZGz4YF1Z6WdMGO08JlLuG8C9lZNsxde5JLF5xJu+5Il48vsWNtdTavqsG4OacNxxNuKBObV9VgTPgZHBy0bPmy6AM1LX081ioH1jwma8WJPycnK9OG+d/EkBAjIy3Fnq6DrrF9eWU2L6rCuKXxACyfbCjHA6deRqOUMnfbea5ecmTJBN+nJW8Vlnj0+fNOoi/o80yLye3bt/Hw8ODIkSO0bNkSgKNHj9KyZUt27dpFSEgIvr6+zJkzx9jVkZOTQ/Xq1QkNDWX06NEcOnSI1157jR07dhi7Ou7evUvVqlVZv349H3zwARs2bGDo0KGkp6cDhoGaP/zwA9HR0QA4OzuzYsUKevToARieWf/SSy/xxRdfMHToUMBQgdi1axcdO3Y05t/NzY1FixbRu3dvpk2bxsaNG4mLi8u3taJKlSp89tlnTJo0yaxzlZGRgaurK635L7aSx9MvjT5PPGmVOJNqvGKVONZk4+RolTg6dfEN8M1LWqmiVeJob9y0Shxsiq+1wYSutNxsWHCSJzzO25Jy9NkczPyGe/fu4eJS9Fupn+bRtXvEn+/goDDv2p2pymZB85+skt+iKPGWinLlylG+fHm+/PJLvLy8SE5OZuzYsY9tt3z5cmrVqkVgYCBffPEFd+/epW/fvibbTJ8+nfLly1OpUiUmTJiAh4eHSQXgaWrVqsWmTZto1KgRGRkZjBo16qktD/kJDQ1l6dKldO3alXHjxuHq6spff/1F48aN8ff3Z9q0aYSFheHq6kq7du3IzMzkn3/+4e7duyYtEoIgCELZoy3CA8XM3c/aSjyXNjY2bN++nYiICOrUqcOwYcOYN2/eY9vNnj2b2bNnExwczNGjR9m9ezceHh6PbTNkyBAaNmzI9evX+b//+z/s7e0LlI+1a9dy9+5dGjRoQI8ePQgLC6NixcL9cipfvjy///47KpWKVq1a0bBhQ9asWWNstfjkk0/46quvWL9+PXXr1qVVq1Zs2LABX9+Sb5YTBEEQhKIq8e6PZ0lKSsLX15eoqKgnTqv9qPvj7t27JlNxlzWi+8N8ovvDfKL7w0yi+8NsZbX7I+zof4vU/bGkxY+i+0MQBEEQBNBhg87MDgJz97M2UakQBEEQBCvQ6iVo9WY++8PM/aztua9U+Pj48KwemtatWz9zG0EQBEEQitdzX6kQBEEQhLJAp5egM7PFwdz9rE1UKgRBEATBCvRFeDCYvpRMfiUqFYIgCIJgBVokaM18hoe5+1mbqFSURjZSkBTz7WpWuk1tku/LVomzKOkPq8QBGOrTzCpx9Dk5z97IEqx0a6Q27fazNypFJHbWubzqM614S6mVyoKNFW4ptdFLIPPZ2wmFIyoVgiAIgmAFOr35YyOK88m1liQqFYIgCIJgBboijKkwdz9rE5UKQRAEQbACHRJ0Zo6NMHc/aysdVR9BEARBEJ57oqVCEARBEKxAzKgpCIIgCIJFiDEVgiAIgiBYhI4izKgpxlQU3aFDh5BIJKSnp5d0VswmkUj44YcfSjobgiAIglDsnutKhaWVRCUlNTWV//znP8Uep/+UqyzYGcdn066YLK/mf58F38excFccvoEaALoNTmXrP2foNeqaZfMwNYUFu+L5bHqKRdMt7ji7pvuwpHMdvp/qY7I8+ufyLPxvXRb+ty5nfi33xGVFZenj+XTiZeZ/E8Nnky+bLK/mp2HBNzEs+DYG3wBDWQibmciCb2NY8E3usgLn20plrqTLdml9f57G0sdkrfeo39gE5m4+Rf/xCaZxaqmZt+UU87eewsdPbVxu76Bl8x9/EdL0rhlHZXn6h3d/mPPSi5aK0isrK8tiaXl6euJQzLPD1ayjwUmuZcT7/tjZ6fELzv1Q9Rp1jdmDfJk5wJdeI1MB+GWbB3PCfCybh7oanOQ6RnSq+TAPlrsAFmecK2flZGqkhH17lpxsG5JPKYzrDq31InT7OUJ3nOPQV5WfuKwoLH08NWurcZLrGPlBELZ2evzqqYzreg5PIXxIDWaF1qTn8KsA7FhZmRGdg1gwujrdwwr+BWOtMlfSZbu0vj9PzYOlj8lK71GNIBVOMh2jPwrG1k5HrTpK47oeYZeZMyKA8KEB9BiSZFzetvN1Ll+Qm31slvbogWLmvkqDEq9U6HQ6wsPD8fX1xcnJieDgYL777rsnbn/06FFatmyJk5MT3t7ehIWFoVbnFuLMzEzGjBmDt7c3Dg4O1KxZk7Vr15KUlMRrr70GQLly5ZBIJPTu3RswPDo9NDSUoUOH4uHhQdu2bQE4fPgwjRs3xsHBAS8vL8aOHUtOnqmRW7duTVhYGKNHj8bd3R1PT0+mTp1qkt9/d39cvXqVbt264e7ujlwup1GjRvz9999FOocBDdREHnEBIOqoM4ENc8+HwlVLWqo9t6/bI3c1TOebfssOSz8pPqCBhsgjzoY8/KEgsJH6GXs8H3EuRznj3yIdAP8W6SRG5lYqPKo9IEtjQ5baBkdn7ROXFYWljyegvorIow/Lwp8uBDbI/dJyds3hVqoDt2/YI3cx5P3GVUOFV5stQacr+EXLWmWupMt2aX1/npoHSx+TtcpCcAZRx9wAiD5ejsD6GXni5HDrugO3bzqgcDFco23tdAQEK4mJcjHzyCzv0UBNc1+lQYnnMjw8nK+//ppVq1Zx7tw5hg0bxkcffcThw4cf2zYhIYF27drx/vvvc/r0aXbs2MHRo0cJDQ01btOzZ0+2bdvGkiVLiI2NZfXq1SgUCry9vdm5cycAcXFxpKamsnjxYuN+GzduxN7enj///JNVq1aRkpLC22+/zcsvv8ypU6dYuXIla9euZcaMGSZ52rhxI3K5nL///pu5c+cyffp09u/fn++xqlQqWrVqRUpKCrt37+bUqVOMHj0anU5XpHOocNGiURneSnWGFIVL7pedTZ7rUHHWcxUuWjTKh3lQmubheY5zP0OKo8KQhqOzlvsZuWOX67a9w7z2wcx7O5iWvVKfuKwoLH08chctGqXh+QwapRR5noqPJM+nXfKvwtBn9BV+3FCpwHGsVeZKumyX1vfnaSx9TNZ6j+QuOWhUhnOnVkqRO+f+wLOR5NZSHsVp0+kGB3dXLGJUobBK9O6PzMxMZs2axW+//UbTpk0BqF69OkePHmX16tV8+umnJtuHh4fTvXt3hg4dCkCtWrVYsmQJrVq1YuXKlSQnJ/PNN9+wf/9+2rRpY0zvEXd3dwAqVqyIm5ubSdq1atVi7ty5xr8nTJiAt7c3y5YtQyKREBAQwLVr1xgzZgyTJ0/GxsbwIapXrx5TpkwxprFs2TIOHDjAm2+++djxbt26lbS0NE6ePGnMS82aNZ96fjIzc594k5GRke92aqUUmcJQMZE5a1Fl5D70J+8PguKcO16tlCJzfpgHhWkenuc4js5aHjy8UD1QSXFyyb1Q7Vvszbj90QCs7hNIwKv38l1WFJY+Ho1SiuzhF5VMoUWtzFMW8rz/+jz12I59rpMc78S5f5wLl28rlLmSLtul9f15Gksfk7XeI43SFpki77nL/foyjSPBRqqnYYu7zAwLwj9YyfOiKN0YovujAOLj49FoNLz55psoFArj6+uvvyYhIeGx7U+dOsWGDRtMtm3bti06nY7ExESio6ORSqW0atWq0Hlp2LChyd+xsbE0bdoUSZ6fDM2bN0elUnH16lXjsnr16pns5+Xlxc2bN/ONER0dTf369Y0VimcJDw/H1dXV+PL29s53u9gIOSEtDB+c+i2UnI/M7UNUpkvx8MrCvVKW8RdScYiNkOXmoaWK8xHF049p6Tg+DZRc+NMVgAtH3fCpn9scbWuvw85Ji71MizZb8sRlRWHp44mNVFC/maHyGdI8g9io3O4cZbotHp5ZuFfMMv7ia9DyHkENVWxdWrjxIdYqcyVdtkvr+/PUPFj6mKxVFqJdCG6aDkBI03TOR+d2ayjT7ShfKRP3iploVFLKlc+iglcm09ec5bUON+k9PAmFS3aR4luCuYM0izK9t7WVaEuFSmW4gP/8889UqVLFZJ2Dg8NjFQuVSkX//v0JCwt7LK2XXnqJ+Ph4s/Mil5v3wbKzszP5WyKRPLE7w8nJqVBpjxs3juHDhxv/zsjIyLdiEX9WRlamhAU740iIkXEzxZ5ug1PZttSLTQu8GL8iEYBlEwz7tu16iw4903B206JwzWH5xJcKla/8xJ+RkZV5lwW74kk450hctKzIaVojjncdNXYOOpZ0rkOVIDXlKmfy67IqvBWaQvOPrrP4/boANO12AyDfZUVh6eOJPycnK9OG+d/EkBAjIy3Fnq6DrrF9eWU2L6rCuKWGz8jyydUAGDj1MhqllLnbznP1kiNLJvgWLI6VylxJl+3S+v5Y9Zis9B4lxCjIzrRh7uZTXDovJy3VgS79k9mx+iU2L63GuC/OA7Bieg1u33RgaOf6AHQPvcy5CBdUGXZPS94qXoSWColeb+khewWnVCqpUKECa9asoUePHo+tP3ToEK+99hp3797Fzc2N7t27c+PGDX777bd800tKSqJ69er8+uuvxu6PvI4dO0bz5s25desW5cuXNy5v3bo1ISEhLFq0yLhswoQJ7Ny5k9jYWGNrxYoVKxg7dizp6enY2Njku1/Hjh1xc3Njw4YNgKGSsWvXLjp27MjGjRsJCwsjMTGxwK0VeWVkZODq6kprm/ewlRTzB0RXPGMiSsqipGNWizXUp5lV4kiK+a6iR/TZOc/eqDSxUtm22vuTp4u02NkUX2tnXlJF8d+xkaPP4kDGZu7du4eLS/EO5nx07W6/7xPs5PZmpZGtzuLntl9ZJb9FUaLdH87OzowcOZJhw4axceNGEhISiIyMZOnSpWzcuPGx7ceMGcOxY8cIDQ0lOjqaixcv8uOPPxoHavr4+NCrVy/69u3LDz/8QGJiIocOHeKbb74BoFq1akgkEn766SfS0tKMLSX5GThwIFeuXGHw4MGcP3+eH3/8kSlTpjB8+HDjeIrC6tatG56ennTs2JE///yTS5cusXPnTo4fP25WeoIgCELpIW4ptYLPP/+cSZMmER4eTmBgIO3atePnn3/G1/fxZr569epx+PBhLly4QMuWLalfvz6TJ0+mcuXc/saVK1fyv//9j4EDBxIQEEC/fv2Mt5xWqVKFadOmMXbsWCpVqmRy18i/ValShT179nDixAmCg4P57LPP+Pjjj5k4caLZx2pvb8+vv/5KxYoVefvtt6lbty6zZ89GKrVO7V8QBEEoOS9CpaJEuz+EwhHdH+YT3R/mE90f5hHdH+Yrq90fb+7pX6Tuj/1vrxbdH4IgCIIgvBjEU0oFQRAEwQr0mP+00dLSpSAqFYIgCIJgBS/CLaWiUiEIgiAIViAqFYIgCIIgWMSLUKkQAzUFQRAEQbAI0VIhCIIgCFbwIrRUiEpFaaTTmj4nWXgma80dAbAh+ahV4vQNbGuVONaaB8HGzOfvFJbu4WR4xc2q80dYi5Xm+NBriz+OXm/9uXj0egl6MysH5u5nbaJSIQiCIAhWUJSnjZaWp5SKn7uCIAiCIFiEaKkQBEEQBCsQYyoEQRAEQbAIMabioYyMjAIn+Dw/6EQQBEEQSopoqXjIzc0NieTpB6TX65FIJGitMGpXEARBEITnT4EqFQcPHizufDxX9Ho9/fv357vvvuPu3btERUUREhJi8TitW7cmJCSERYsWWTxtQRAE4fkiuj8eatWqVXHn47myd+9eNmzYwKFDh6hevToeHh4lnSWz9Z+agl/wfS6ecWLV5CplIlZpj7N1mi9JpxVUq6Om+7RLxuVnj7jx/YKXsHfU0XNmApVr3jcr/U/HJ1Krjor4GAWrZ/gal1erpWbw9EsggWVTqpMUJ6f/xERqBKqxc9CxZpYPMZFF77609Hkra8fzPMQqrXFKuiwUlb4I3R+lpVJh1i2lf/zxBx999BHNmjUjJSUFgE2bNnH0qHUm/SluCQkJeHl50axZMzw9PbG1LZ3jWWvW1eAk1zGiU03s7PT4BWtKfazSHifpjJwHainjd54hJ1vCpVMK47rdi70Zs+0sny2J44eFL5mVfo0gFY4yLaM+rIudnQ6/ukrjup5DrzB7mB/hQ/zoOTQZgK9mV2N09zqEh/nRZcDVoh0clj9vZe14nodYpTVOSZcFS9ADer2Zr5LOfAEVulKxc+dO2rZti5OTE5GRkWQ+nDXu3r17zJo1y+IZtLbevXszePBgkpOTkUgk+Pj4kJmZSVhYGBUrVsTR0ZEWLVpw8uRJk/0OHz5M48aNcXBwwMvLi7Fjx5KTk2Ncr1ar6dmzJwqFAi8vLxYsWFDsxxLQQEPkEWcAov5QENio+GYStFas0h4nIcqZOi3TAQhqkU5ChLPJegeZDrdK2dy87GhW+gEhSqL+dAMg6pgbAfVVxnUK1xxuXXfg9g0HFC6GsU/aHMMlwFGm41Js0We0tPR5K2vH8zzEKq1xSrosCAVT6ErFjBkzWLVqFWvWrMHOzs64vHnz5kRGRlo0cyVh8eLFTJ8+napVq5KamsrJkycZPXo0O3fuZOPGjURGRlKzZk3atm3LnTt3AEhJSeHtt9/m5Zdf5tSpU6xcuZK1a9cyY8YMY7qjRo3i8OHD/Pjjj/z6668cOnSo2M+XwkWLRml4i9VKqfHDVppjlfY4mgxbHJ0NlU2Zcw6aDNNWsHtpdlyLd+JavMys9BUuWjQqKfAo37kVW5OZ3fO0pE5afp6Z62OIPuZmVszH4lvwvJW143keYpXWOCVdFizh0Yya5r5Kg0K368fFxfHqq68+ttzV1ZX09HRL5KlEubq64uzsjFQqxdPTE7VazcqVK9mwYQP/+c9/AFizZg379+9n7dq1jBo1ihUrVuDt7c2yZcuQSCQEBARw7do1xowZw+TJk9FoNKxdu5bNmzfzxhtvALBx40aqVq361LxkZmYaW4KgcLf2guGDJ3PWASBTaFFlSAu1//MYq7THcXLW8kBp+NjdV9kiy3Nh/GB8EitD/SlfJZNajQr3Xj+iVkqRKQwXb0O+83zE87Sf6nW5//98UAAenplMWBrHsM71zIprEt+C562sHc/zEKu0xinpsmAJL8JAzUK3VHh6ehIfH//Y8qNHj1K9enWLZOp5kpCQQHZ2Ns2bNzcus7Ozo3HjxsTGxgIQGxtL06ZNTW67bd68OSqViqtXr5KQkEBWVhZNmjQxrnd3d8ff3/+pscPDw3F1dTW+vL29C5X32AgZIS0M/Y71W6o4H1F8TYDWilXa49RskEHMn64AxBx1o0aD3H7hmg2VjN1xlg6Dr5g9SDM2ypmQZvcAqN8snfPRuWM2lOm2eHhm4l4xy/iLz87ecAW+r5byQFP0LxdLn7eydjzPQ6zSGqeky4IlPJqnwtxXaVDoSkW/fv0YMmQIf//9NxKJhGvXrrFlyxZGjhzJgAEDiiOPL6xx48Zx79494+vKlSuF2j/+jIysTBsW7IpHp4O4aPOa1J+nWKU9jk9dNXYOema9XxeJVI975Ux2LzW0WO1eWpXZXerw3Wwf/vtwsFlhJcQoyMq0Yd7WM+i0EtKuOdD14SC1TUu8GbvoAuOXxLFpsWEg6NhFF5iz+SxTV8eyeUnhKq35sfR5K2vH8zzEKq1xSroslFbLly/Hx8cHR0dHmjRpwokTJ566fXp6OoMGDcLLywsHBwf8/PzYs2dPgeNJ9Hp9oQaV6vV6Zs2aRXh4OBqNYTSvg4MDI0eO5PPPPy9MUs+tRYsWsWjRIpKSklCr1bi7u7N+/Xo+/PBDALKzs/H19WXo0KGMHDmSCRMmsHPnTmJjY42tFStWrGDs2LGkp6ej0Whwd3dny5YtdO7cGYC7d+9StWpV+vXrV+B5KjIyMnB1daU1/8VWYvfsHYQSUdYefW6tR4WXtUefC+azRlnI0Wfxu3ob9+7dK/aZoB9du2vvGIVU5mBWGlpNJue6zCtUfnfs2EHPnj1ZtWoVTZo0YdGiRXz77bfExcVRsWLFx7bPysqiefPmVKxYkfHjx1OlShUuX76Mm5sbwcHBBYpZ6DEVEomECRMmMGrUKOLj41GpVAQFBaFQKJ69cykkl8sZMGAAo0aNwt3dnZdeeom5c+ei0Wj4+OOPARg4cCCLFi1i8ODBhIaGEhcXx5QpUxg+fDg2NjYoFAo+/vhjRo0aRfny5alYsSITJkzAxkY8JFYQBOFFYe0xFQsXLqRfv3706dMHgFWrVvHzzz+zbt06xo4d+9j269at486dOxw7dsx4I4aPj0+hYpo9AYO9vT3Ozs44OzuX2QrFI7Nnz0an09GjRw+USiWNGjVi3759lCtXDoAqVaqwZ88eRo0aRXBwMO7u7nz88cdMnDjRmMa8efNQqVR06NABZ2dnRowYwb1790rqkARBEAQrs0Sl4t8D9h0cHHBweLz1Iysri4iICMaNG2dcZmNjQ5s2bTh+/Hi+MXbv3k3Tpk0ZNGgQP/74IxUqVODDDz9kzJgxSKUFG5dS6J/KOTk5TJo0CVdXV3x8fPDx8cHV1ZWJEyeSnZ1d2OSeS0OHDiUpKcn4t6OjI0uWLCEtLY0HDx5w9OhRXn75ZZN9WrVqxYkTJ8jMzCQ1NZXZs2ebTJqlUCjYtGkTarWa69evM2rUKA4dOiSm6BYEQRAKzNvb22QAf3h4eL7b3bp1C61WS6VKlUyWV6pUievXr+e7z6VLl/juu+/QarXs2bOHSZMmsWDBApPpEZ6l0C0VgwcP5vvvv2fu3Lk0bdoUgOPHjzN16lRu377NypUrC5ukIAiCIJR5Or0ESRGfUnrlyhWTMRX5tVKYS6fTUbFiRb788kukUikNGzYkJSWFefPmMWXKlAKlUehKxdatW9m+fbtxzgaAevXq4e3tTbdu3USlQhAEQRDy8WjKbXP3BXBxcSnQQE0PDw+kUik3btwwWX7jxg08PT3z3cfLyws7OzuTro7AwECuX79OVlYW9vb2z4xb6O4PBweHfAdu+Pr6FiigIAiCILyIDJUKiZmvwsWyt7enYcOGHDhwwLhMp9Nx4MABYy/DvzVv3pz4+Hh0utwZxC5cuICXl1eBv98LXakIDQ3l888/N5npMTMzk5kzZxIaGlrY5ARBEARBKAbDhw9nzZo1bNy4kdjYWAYMGIBarTbeDdKzZ0+TgZwDBgzgzp07DBkyhAsXLvDzzz8za9YsBg0aVOCYBer+eO+990z+/u2336hatarxvtVTp06RlZVlnIJaEARBEART1r6ltEuXLqSlpTF58mSuX79OSEgIe/fuNQ7eTE5ONpnawNvbm3379jFs2DDq1atHlSpVGDJkCGPGjClwzAJVKlxdXU3+fv/9903+Luz00YIgCILwotFj/iPMzd0vNDT0ib0Ihw4demxZ06ZN+euvv8yMVsBKxfr1680OIAiCIAjCi/FAMbMnvxJKkI0UJMX8gBxd8T3iuUTYWO+BQn1qWacbsHN0glXifBtSzSpxrMZKZUFaobxV4mhv3LRKHGuSFHCipSLF0D8fDxkra8yqVHz33Xd88803JCcnk5WVZbIuMjLSIhkTBEEQhDKlJPo/rKzQd38sWbKEPn36UKlSJaKiomjcuDHly5fn0qVLJnNXCIIgCIKQh9m3k0qglHR/FLpSsWLFCr788kuWLl2Kvb09o0ePZv/+/YSFhYlnWQiCIAjCEzya/MrcV2lQ6EpFcnIyzZo1A8DJyQmlUglAjx492LZtm2VzJwiCIAhCqVHoSoWnpyd37twB4KWXXjLeepKYmIi+tFSlBEEQBMHKzJ9N0/y7Rqyt0JWK119/nd27dwPQp08fhg0bxptvvkmXLl3o1KmTxTMoCIIgCGXCo7ER5r5KgULf/fHll18a5wUfNGgQ5cuX59ixY7z77rv079/f4hkUBEEQhLLAEg8Ue94VuqXCxsYGW9vcukjXrl1ZsmQJgwcPLpYHiun1ej799FPc3d2RSCRER0dbPMYjrVu3ZujQocWWviAIgiCUZQVqqTh9+nSBE6xXr57ZmcnP3r172bBhA4cOHaJ69ep4eHhYNP28vv/+e+zs7Ix/+/j4MHTo0FJR0eg/5Sp+9dRcPCtj1ZTcadOr+d8nLDwZiQSWjvcmMVZGt8GpdOh1i307yrNxXmXL5WFqCn7B97l4xolVk6tYLN3ijmOtc/fpxMv41VMTf1bOqum5E0pV89MQNiMJJLBskg+J52WEzUykmt990MOyyYZlhRUV7szdc3aUC8qm/nilcfmVvQ7ErZODBAI/VVPljcynpFLyx/Pp+ERq1VERH6Ng9Qzf3Di11AyefskQZ0p1kuLk9J+YSI1ANXYOOtbM8iEm8tmPiH7EWuWg34g4agVlkHDemdXzAnLj1FAROiEWiUTPslmBJF10RuGSzeAJsbi4ZRF9wp0da6sXKtYTj7WUflb7jU2gVh0VCTEKVs+qYVxerZaa0KnxSCSwbGpNki7IAbB30LLut5PMH+1P9PFyRY5fZGKeCoOQkBDq169PSEjIU1/169e3eAYTEhLw8vKiWbNmeHp6mrSSFFR2dnaBtnN3d8fZ2bnQ6T/LvycIs7SadTQ4ybWMeN8fOzs9fsFq47peo64xe5AvMwf40mtkKgC/bPNgTpiPZfNQV4OTXMeITjUf5kFj0fSLK461zl3N2mqc5DpGfhCErZ0ev3oq47qew1MIH1KDWaE16Tn8KgA7VlZmROcgFoyuTvewlELHu3vOlhyNhNc330GXJeHOmdzPzYWNclpvvEPrjXe4sEFe6LSteTw1glQ4yrSM+rAudnY6/OrmVo56Dr3C7GF+hA/xo+fQZAC+ml2N0d3rEB7mR5cBVwt+PFYqBzUCMnCSaRn98cvY2umpFZR7G36PgfHMGVeX8NH16DHQMFtq9/4JbFpZg3H9G1msQlFaP6s1glQ4yXSM/igYWzsdterkloUeYZeZMyKA8KEB9BiSZFzetvN1Ll8wr4wXBzFQ86HExEQuXbpEYmLiU1+XLl2yaOZ69+7N4MGDSU5ORiKR4OPjg4+PD4sWLTLZLiQkhKlTpxr/lkgkrFy5knfffRe5XM7MmTOZOnUqISEhbNq0CR8fH1xdXenatavxllgw7f5o3bo1ly9fZtiwYUgkEiQSwxv6KJ28Fi1ahI+Pj0m+O3bsyMyZM6lcuTL+/v4AXLlyhQ8++AA3Nzfc3d3573//S1JSUpHPU0ADNZFHDL/Ioo46E9gw94KocNWSlmrP7ev2yF0NU2+n37KzeP9cQAMNkUcMFbKoPxQENlI/Y4/nI461zl1AfRWRRx/G+dOFwAa5X8LOrjncSnXg9g175C6GODeuOgCgzZag0xX+YnL7lB2ezQyV2UrNMrkVnds1qfDWknNfQo5Ggq1CV/iDseLxBIQoifrTzRDnmBsB9XPjKFxzuHXdgds3HFA8jKPNMVzSHGU6LsUW/MvEauWg7j2i/nIHIPpvdwKDcysVCpccbt1w5HaaIwpnww+hajXUdPk4kfAv/yGgXnrhA+aXh9L6WQ3OIOqYGwDRx8sRWD/DuM5YFm46oHDJAcDWTkdAsJKYqIK3VlmF3sxXKVGgSkW1atUK/LKkxYsXM336dKpWrUpqaionT54s8L5Tp06lU6dOnDlzhr59+wKGVo8ffviBn376iZ9++onDhw8ze/bsfPf//vvvqVq1KtOnTyc1NZXU1NRC5f3AgQPExcWxf/9+fvrpJ7Kzs2nbti3Ozs788ccf/PnnnygUCtq1a/fElozMzEwyMjJMXvlRuGjRqAxvpTpDarzAAtjkuX4XZz1X4aJFo3yYB6VpHp7nONY6d3IXLRql4VkDGqUUuXNuHEmeT6HkX4H6jL7CjxsqFTpeltLGWGGwU+jJzshNuEqbB+x/z4P9nTyo9ZF5vx6tdTyG98cQx/B+5+QbJ+8bNGn5eWaujyH64RdQweNYoRw456BRG1qN1Cpb5M65rag2NrnfHI/OW2BwOt+s82HO2Lp8PPRiEaMblNbPqtwlx6QsyJ1zy4KNJM+5e/hvm043OLi7YpFiCoX3XD9QzNXVFWdnZ6RSKZ6enoXa98MPP6RPnz4my3Q6HRs2bDB2cfTo0YMDBw4wc+bMx/Z3d3dHKpXi7Oxc6NgAcrmcr776yjh4dfPmzeh0Or766itjq8f69etxc3Pj0KFDvPXWW4+lER4ezrRp054ZS62UInv4BSJz1qLKyH1QTt4Krq4Ya7tqpRSZ88M8KEzz8DzHsda50yilyB5+8coUWtTKPHHypK3P03DQsc91kuOdOPdP4bvk7BR6ch5+SWarJNi55AaJWamg3U+3APijfzk8m98pdPrWOh7D+5MbR5WR55L1hDifDwrAwzOTCUvjGNa5YGO8rFYOVLbI5IYvQ5k8B7UydwxX3vP2qDUnJVnGlUTFY+uLorR+VjVKW5OyoFbmlgXT90iCjVRPwxZ3mRkWhH+wkufFi/CU0kLf/VFaNGrU6LFlPj4+JmMmvLy8uHmzeJ7wV7duXZO7YU6dOkV8fDzOzs4oFAoUCgXu7u48ePCAhIT8nzY5btw47t27Z3xduXIl3+1iI+SEtDB8cOq3UHI+MrfZV5kuxcMrC/dKWcZflsUhNkKWm4eWKs5HFE8/pqXjWOvcxUYqqN/M0NIU0jyD2ChFnji2eHhm4V4xy/hLrEHLewQ1VLF1qXkDaT1Csrjxl6H83TjuQPngPL+I7fVIHfVInfToCjbcqMSOJzbKmZBmhi6C+s3SOR/97ziZJnHs7A1fYvfVUh5oCv6eWa0cnHYluLGhEhfS5A7nT7vmxrlnR/mKD3Cv8ACN2hAn5bKMch6ZODhqsZFaplZRaj+r0S4EN00HIKRpOuejc7s1lOl2lK+UiXvFTDQqKeXKZ1HBK5Ppa87yWoeb9B6ehMLFzMJuSeZ2fZSiLpDnuqUiPzY2No/N3JnfQEy5/PECnPfODjCMvXg050Zxx1epVDRs2JAtW7Y8tm2FChXyjeXg4ICDg8Mz8xR/VkZWpoQFO+NIiJFxM8WeboNT2bbUi00LvBi/IhGAZRMMI9rbdr1Fh55pOLtpUbjmsHziS8+M8cw8nJGRlXmXBbviSTjnSFx04e9WKIk41jp38efkZGXaMP+bGBJiZKSl2NN10DW2L6/M5kVVGLc0HoDlkw1diAOnXkajlDJ323muXnJkyQTfpyX/mHK1c5A66Pn9I3fcArKReWmJWSUn6DM1Nbre5/fuhn796p3vFypdax9PQoyCrMw05m09w6VYOWnXHOg64CrbV1Zl0xJvxi66AMCKaYZBjGMXXUDhkoONjZ4NCwreHWutcpBw3oXsLBvmrj3JpQvOpF13pMvHl9ixtjqbV9Vg3BzDnXYrwgMB2LyqBmPCz+DgoGXLl5YZqFlaP6sJMQqyM22Yu/kUl87LSUt1oEv/ZHasfonNS6sx7ovzAKyYXoPbNx0Y2tlw40D30Muci3BBlWH3tOStRIL5nWilo6VCon/O59ZetGgRixYtMg5obNKkCa1atWLu3LkAZGRk4OnpyejRo42DNSUSCbt27aJjx47GdKZOncoPP/xgMs/Fv9Nu3bo1ISEhxoGgfn5+9O/fnxEjRhj3WblyJVOnTuX69evGbozu3bvz559/GtPp3bs36enp/PDDD8b91qxZw5gxY0hKSsLFxbyBQxkZGbi6utLa5j1sJcX8AdEVTz9ribEpvlaaf5PYWaeu3jn6slXifBti2bFSTyIx484uc+juP7BKHGmF8laJo71RPK2tJUlq5jWyMHL0WRzI2My9e/fMviYX1KNrt/eqqdg4OZqVhu7+A658NtUq+S0Ks7s/srKyuHr1KsnJySav4vb666+zadMm/vjjD86cOUOvXr2QSovnC8PHx4cjR46QkpLCrVuGPujWrVuTlpbG3LlzSUhIYPny5fzyyy/PTKt79+54eHjw3//+lz/++IPExEQOHTpEWFgYV68W/NY3QRAEoZR6Abo/Cl2puHjxIi1btsTJyYlq1arh6+uLr68vPj4++PoWronWHOPGjaNVq1a88847tG/fno4dO1KjRo1n72iG6dOnk5SURI0aNYxdFIGBgaxYsYLly5cTHBzMiRMnGDly5DPTkslkHDlyhJdeeon33nuPwMBAPv74Yx48ePBc1zoFQRAEC3kBKhWF7v5o3rw5tra2jB07Fi8vL2MXwCPBwcEWzaCQS3R/FIHo/jCb6P4wj+j+MF+Z7f5YPq1o3R+Dpjz33R+F/hRHR0cTERFBQEDAszcWBEEQBOGFUehKRVBQkHF8gSAIgiAIBSOeUvpQ3hkd58yZw+jRozl06BC3b98u0IyPgiAIgvDCewHGVBSopcLNzc1k7IRer+eNN94w2Uav1yORSNBqy1hfvCAIgiBYgl5ieJm7bylQoErFwYMHizsfgiAIgiCUcgWqVLRq1cr4/+TkZLy9vR+760Ov1z9xGmlBEARBeNFJ9IaXufuWBoUeqOnr60tqaioVK5o+/e3OnTv4+vqK7g/hhafPzLRKnO8aFc/8LP82+/zvVokzpkYzq8Sx1u3S2rTbVolTJlnjtuxCPqLBIooyNqKsVioejZ34N5VKhaOjefffCoIgCEKZJ8ZU5Bo+fDhgeK7GpEmTkMlyHw6j1Wr5+++/CQkJsXgGBUEQBEEoHQpcqYiKigIMLRVnzpwxeay3vb09wcHBBZquWhAEQRBeSKL7I9ejO0D69OnD4sWLn+tpQgVBEAThuSMqFY9bv359ceRDEARBEMo2Ual43Ouvv/7U9b//bp2R4oIgCIIgPF8KXan491NIs7OziY6O5uzZs/Tq1ctiGRMEQRCEMkXc/fG4L774It/lU6dORaVSFTlDlta6dWtCQkJYtGiRWfsnJSXh6+tLVFSUuLtFEARBMJuY/KoQPvroIxo3bsz8+fMtlaRFfP/999jZ2ZV0Nopd/ylX8aun5uJZGaumeBuXV/O/T1h4MhIJLB3vTWKsjG6DU+nQ6xb7dpRn47zKlsvD1BT8gu9z8YwTqyZXsVi6xR2npM+dpY/n0/GJ1KqjIj5GweoZvsbl1WqpGTz9Ekhg2ZTqJMXJ6T8xkRqBauwcdKyZ5UNMZMEHYP/f5y9x9bScKnU0vDvlsnH56Z/dOfylFxIJvDbwGrXfusuWwTVRpdmRkyUh+4ENQ/ecLXCcsvb+lPTxQOn9rPYbfZFaQUoSYp1ZPaeWcXm1mipCJ11AItGzbIY/SRcUDJsRy0u+ajIzpez9rjKH9lQqcvwiewHGVBToKaUFcfz48edy8it3d3ecnZ1LOhtPpdfrycnJMXv/mnU0OMm1jHjfHzs7PX7BauO6XqOuMXuQLzMH+NJrZCoAv2zzYE6YT1GzbZqHuhqc5DpGdKr5MA8ai6ZfXHFK+txZ+nhqBKlwlGkZ9WFd7Ox0+NVVGtf1HHqF2cP8CB/iR8+hyQB8Nbsao7vXITzMjy4DrhY4TspZGZlqKQO+jUWbLeHKKblx3R/rPOm/PZb+22P4Y60nAN2XxtN/eyyt+qcS+Hp6geOUtfenpI8HSu9ntUagEicnLaN7N8DWTket2rlPxe4Rmsic0UGEj6xDj9BE4/K5Y4MY27f+81GheEEUulLx3nvvmbw6derEK6+8Qp8+fejfv39x5LFIWrduzdChQwHw8fFh1qxZ9O3bF2dnZ1566SW+/PJLk+1PnDhB/fr1cXR0pFGjRsb5OfI6fPgwjRs3xsHBAS8vL8aOHWtSKcjMzCQsLIyKFSvi6OhIixYtOHnypHH9oUOHkEgk/PLLLzRs2BAHBweOHj1q9jEGNFATecTwCzPqqDOBDXMvVApXLWmp9ty+bo/c1TA9cfotO/QWrvUGNNAQecRQeYv6Q0FgI/Uz9ng+4pT0ubP48YQoifrTzZDeMTcC6ud2SSpcc7h13YHbNxxQuBiOR5tjuAQ4ynRcipU/lt6TJEcpqNXiHgA1m98jOVJhXFf+pUyyNDZkqqU4KkynxD63rxx12t0p+PGUtfdHfFbNT69eBlF/uQMQ/Vc5AoNzKxUKlxxu3XDk9k0HFM7ZhoV6GDErlilLT1PR60GRYgsFV+hKhaurq8nL3d2d1q1bs2fPHqZMmVIcebSoBQsWGCsLAwcOZMCAAcTFxQGGqcbfeecdgoKCiIiIYOrUqY9N6JWSksLbb7/Nyy+/zKlTp1i5ciVr165lxowZxm1Gjx7Nzp072bhxI5GRkdSsWZO2bdty547pxXTs2LHMnj2b2NhY6tWr91heMzMzycjIMHnlR+GiRaMyvJXqDKnxCwPAJs/YnuIc5qNw0aJRPsyD0jQPz3Ockj53xXM80jzp5VZ2JXk/7XkOaNLy88xcH0P0MbcCx7mfYYujsyGvjs5a7itze1LrtL3D4nfqsrh9XZr1umFcrs2WcD1ORpU6Bf/FWjbfH/FZNYfcOTu3bKtskbtkG9fZ2OTWvB49RWLNvJqM7NGQb9e9xCcj44sU21Ik5I6rKPSrpDNfQIUaU6HVaunTpw9169alXLlyxZWnYvX2228zcOBAAMaMGcMXX3zBwYMH8ff3Z+vWreh0OtauXYujoyO1a9fm6tWrDBgwwLj/ihUr8Pb2ZtmyZUgkEgICArh27Rpjxoxh8uTJ3L9/n5UrV7Jhwwb+85//ALBmzRr279/P2rVrGTVqlDGt6dOn8+abbz4xr+Hh4UybNu2Zx6RWSpEpDA/HkTlrUWVIjevy/sjRFWOfnFopReb8MA8K0zw8z3FK+twVz/Fo86SX5yOe5xj0eZ6l9PmgADw8M5mwNI5hnR+v3ObH0VnLA6Uhr5kqKU7OuZWX35ZUYcSvpwFY39cfv1cNLRoJfzlT/ZX8K8ZPP56y9v6Iz6o5NCrb3LIt16LOyB0rl7c1R6czfP2qHq6PiXKjz9BLRYptMS/A3R+FaqmQSqW89dZbpKenF1N2il/eFgGJRIKnpyc3b94EMLYY5B0b0rRpU5P9Y2Njadq0qclD1Zo3b45KpeLq1askJCSQnZ1N8+bNjevt7Oxo3LgxsbGxJmk1atToqXkdN24c9+7dM76e9Gj52Ag5IS0Mfef1Wyg5H5nbjK1Ml+LhlYV7pSw0yuK5eBjyIMvNQ0sV5yMK3pReknFK+txZ/HiinAlpZvgSr98snfPRud0SynRbPDwzca+YZfzFZ2dvuOjfV0t5oCn4MVZroCT+mKEZ/+KfrryUp5vF1l6PnZMWe5mWnKzcz8m5X92p/dbdwh1PWXt/xGfV/PROuRLcxFB+Ql65w/nTuYOKlffsKF/pAe4VMo1l20luqOhW8dGgVlrhqacFoS/iqxQo9JmuU6cOly5dwtfX99kbP4f+fSeIRCJBVxKPwAXk8qd/yBwcHHBwcHhmOvFnZWRlSliwM46EGBk3U+zpNjiVbUu92LTAi/ErDAOXlk0wjDRv2/UWHXqm4eymReGaw/KJLxX5WOLPyMjKvMuCXfEknHMkLlr27J2egzglfe4sfTwJMQqyMtOYt/UMl2LlpF1zoOuAq2xfWZVNS7wZu+gCACumVQdg7KILKFxysLHRs2FBtQLHqVJHg52DnpWdA6kcpMGtSha/L6vM66HXeOWjG6z8X20AmnQzVNj1ekiOVPDfaUmFOp6y9v6U9PEUxzFZK05CrDPZmTbM3RDJpTgFaakOdOmXxI41Pmxe4cu4eecAWDHTD4DRs2NQuOSg18PyGX5FPh6hYCR6feGGAe3du5dx48bx+eef07Bhw8e+GJ+3Z4LknafCx8eHoUOHGgduAoSEhNCxY0emTp3Kl19+yfjx47l69aqxtWL16tV89tlnxnkqJkyYwM6dO4mNjTW2VqxYsYKxY8eSnp7O/fv3cXd3Z/369Xz44YeAYYIwX19fhg4dysiRIzl06BCvvfYad+/exc3NrcDHkpGRgaurK61t3sNWUsy3yeqKp5+1xNgU3y+/x1jp3Nk8o1JqKeFnrTNL7pgazawSx2pl21plrqx9VgFpefdij5Gjy+LAnQ3cu3ev2L+3Hl27q82aiY2Zd0nqHjzg8vgJVslvURR6oObbb7/NqVOnePfdd6latSrlypWjXLlyuLm5ldpxFo98+OGHSCQS+vXrR0xMDHv27Hls3o2BAwdy5coVBg8ezPnz5/nxxx+ZMmUKw4cPx8bGBrlczoABAxg1ahR79+4lJiaGfv36odFo+Pjjj0voyARBEISSZvYgzSJMmmVthe7+ePS00rJIoVDwf//3f3z22WfUr1+foKAg5syZw/vvv2/cpkqVKuzZs4dRo0YRHByMu7s7H3/8MRMnTjRuM3v2bHQ6HT169ECpVNKoUSP27dtX6itdgiAIQhG8AJNfFbr7Qyg5ovujCET3h9lE94eZRPeH2cpq94fPjKJ1fyRNfP67P8waEpuens6JEye4efPmY4Mce/bsaZGMCYIgCEKZ8gK0VBS6UvF///d/dO/eHZVKhYuLi8mtlRKJRFQqBEEQBCEfL8IDxQo9UHPEiBH07dsXlUpFeno6d+/eNb7+PWOkIAiCIAgPPZr8ytxXKVDoSkVKSgphYWHIZMVzb7MgCIIgCKVToSsVbdu25Z9//imOvAiCIAhC2SVm1DTYvXu38f/t27dn1KhRxMTEULdu3cdmqHz33Xctm0NBEARBKANehDEVBapUdOzY8bFl06dPf2yZRCJBqy17tzc9d3Tafz1yshQrg7fdSQowtXppYq1bPT9P+MsqcSb5vmyVOEIRZOc8e5ui0lshxmMxEXd/ACX2bAxBEARBEEqPQv/c/frrr8nMzHxseVZWFl9//bVFMiUIgiAIZU5RpuguJS0Vha5U9OnTh3v37j22XKlU0qdPH4tkShAEQRDKHDFQ83F6vd5kwqtHrl69iqurq0UyJQiCIAhljhhTkat+/fpIJBIkEglvvPEGtra5u2q1WhITE2nXrl2xZFIQBEEQhOdfgSsVj+4AiY6Opm3btigUCuM6e3t7fHx8TJ7mKQiCIAhCLnFLaR5TpkwBwMfHhy5duuBo5pPWBEEQBEEomwo9ULNXr144OjqSlZXF1atXSU5ONnmVhNatWzN06NB81/Xu3TvfeTYKwxJpCIIgCC+4EhiouXz5cnx8fHB0dKRJkyacOHGiQPtt374diURS6O++Qg/UvHjxIn379uXYsWMmyx8N4HzeJr9avHgxen3uu9G6dWtCQkJYtGhRyWXKivpPTcEv+D4XzzixanKVUhOr/5Sr+NVTc/GsjFVTvI3Lq/nfJyw8GYkElo73JjFWRrfBqXTodYt9O8qzcV7loh5Gbh4sfO4+nXgZv3pq4s/KWTW9mnF5NT8NYTOSQALLJvmQeF5G2MxEqvndBz0sm2xYVuA44xOpVUdFfIyC1TN8c+PUUjN4+iVDnCnVSYqT039iIjUC1dg56Fgzy4eYSJcCx7HWe7Tnc2+unZbjVUdD+ym5P1zO/lyOo196IpHAqwNTCXwrHU26lN0TfNDctaV6swxah6YWKla+x2nhclAWy7a14vQbm0CtOioSYhSsnlXDuLxaLTWhU+ORSGDZ1JokXZADYO+gZd1vJ5k/2p/o4+WKHL+02bFjB8OHD2fVqlU0adKERYsW0bZtW+Li4qhYseIT90tKSmLkyJG0bNmy0DEL3VLRu3dvbGxs+Omnn4iIiCAyMpLIyEiioqKIjIwsdAaKm6urK25ubiWdjRJRs64GJ7mOEZ1qYmenxy9YUypi1ayjwUmuZcT7/g/TUhvX9Rp1jdmDfJk5wJdeIw1fGL9s82BOmE9RD8E0DxY+dzVrq3GS6xj5QRC2dnr86qmM63oOTyF8SA1mhdak5/CrAOxYWZkRnYNYMLo63cNSChynRpAKR5mWUR/Wxc5Oh19dZW6coVeYPcyP8CF+9Bxq+HL+anY1RnevQ3iYH10GXC348VjpPbp2VkaWWson355Hmy3h6im5cd2xdZ703R5H3+3nOba2EgAHF1fhjeEp9N0aZ5EKhcXLQRks29aKUyNIhZNMx+iPgrG101GrTm7Z7hF2mTkjAggfGkCPIUnG5W07X+fyBXk+qZUMc+eoMHcsxsKFC+nXrx99+vQhKCiIVatWIZPJWLdu3RP30Wq1dO/enWnTplG9evVCxyx0pSI6OprVq1fzn//8h5CQEIKDg01ez4Off/4ZV1dXtmzZYtJ10bt3bw4fPszixYuNd7IkJSUBcO7cOd555x1cXFxwdnamZcuWJCQkmKQ7f/58vLy8KF++PIMGDSI7O9u4LjMzk5EjR1KlShXkcjlNmjTh0KFDxvUbNmzAzc2Nffv2ERgYiEKhoF27dqSmFv3C9yQBDTREHnEGIOoPBYGN1M/Y4/mIFdBATeQRwy/mqKPOBDbMTUvhqiUt1Z7b1+2RuxpaxdJv2aE3s2nwyXmw7LkLqK8i8ujDY/rThcAGuZUKZ9ccbqU6cPuGPXIXwzHduGqY6lubLUGnK/gjjwNClET96WaIc8yNgPq5cRSuOdy67sDtGw4oHsbR5hguAY4yHZdiC37xtdZ7dCVKTo0WhnlxajTP4Epkbh7dX3pAtsaGLLUUB4Vh1t+bF5w4vNyLdd38SY4s+peJxctBGSzb1ooTEJxB1DE3AKKPlyOwfoZxnbFs33RA4WKYftvWTkdAsJKYqIK3vllFEbs+MjIyTF75TUYJhgkpIyIiaNOmjXGZjY0Nbdq04fjx40/M3vTp06lYsSIff/yxWYdX6EpFUFAQt27dMiuYNWzdupVu3bqxZcsWunfvbrJu8eLFNG3alH79+pGamkpqaire3t6kpKTw6quv4uDgwO+//05ERAR9+/YlJyd3bviDBw+SkJDAwYMH2bhxIxs2bGDDhg3G9aGhoRw/fpzt27dz+vRpOnfuTLt27bh48aJxG41Gw/z589m0aRNHjhwhOTmZkSNHPvFYMjMzHytAhaFw0aJRGt5itVJq/CIpDpaMpXDRolE9TCvDNC2bPN+vBf+qNTMPFjx3chctGqXhOScapRS5c256eR/j8u8pYPqMvsKPGyoVOI7h3BniGPKdW4ZNHheTJ86k5eeZuT6G6IcX7ILHKf736EGGLY4Pz5Wjs5YHytwe28C26ax4pzbL29fmlV43AEiOUPDqwFQ+WJLAvnDvfNMsDEuXg7JYtq0VR+6SY1K25c65Zdsmz8/4R+euTacbHNz95Cb+EmGBMRXe3t64uroaX+Hh4fmGunXrFlqtlkqVTK8flSpV4vr16/nuc/ToUdauXcuaNWvMPsRCj6mYM2cOo0ePZtasWfk+pdTFpeRqhcuXL2fChAn83//9H61atXpsvaurK/b29shkMjw9PU32c3V1Zfv27cbj8fPzM9m3XLlyLFu2DKlUSkBAAO3bt+fAgQP069eP5ORk1q9fT3JyMpUrG/o9R44cyd69e1m/fj2zZs0CIDs7m1WrVlGjhqEvMDQ0NN8Hsz0SHh7OtGnTzD4faqUUmbPhF5xMoUWVUXwP77JkLLVSiuzhL0+Zs2laeX+06YrxFitLnzuNUors4ZejTKFFrcxzTHmOQ5/nMTsd+1wnOd6Jc/84Fy7fitw4qow8H/EnxPl8UAAenplMWBrHsM71ChGn+N8jQ0XCkPYDlRTHPF8kh5ZUZvCvZwDY1NePmq9mUN73ARVrPgAer6CZw9LloCyWbWvF0ShtTcq2Ok8F0/TcSbCR6mnY4i4zw4LwD1ZSlly5csXke9bBQg8wVCqV9OjRgzVr1uDh4WF2OoVuqWjTpg1//fUXb7zxBhUrVqRcuXKUK1cONzc3ypUruYEw3333HcOGDWP//v35ViieJjo6mpYtWz5WQcqrdu3aSKW5HwovLy9u3rwJwJkzZ9Bqtfj5+aFQKIyvw4cPm3ShyGQyY4Xi32nkZ9y4cdy7d8/4unLlSqGOKzZCRkgLwweqfksV5yOKr2/RkrFiI+S5abVQcj5PM7YyXYqHVxbulbKMv/yLg6XPXWykgvrNDC1NIc0ziI3KnedFmW6Lh2cW7hWzjL/EGrS8R1BDFVuXFm5wXmyUMyHNDN0F9Zulcz7633EyTeLY2Rsu+vfVUh5oCn4+rfUeeTdQcemY4QJ66U8XvOvnNqHb2uuwc9JhL9OhzTLUIDx8H6C8aUeWxgadtui1CouXgzJYtq0VJzbaheCm6QCENE3nfHTuF6sy3Y7ylTJxr5iJRiWlXPksKnhlMn3NWV7rcJPew5NQuGQ/IWXrscSYChcXF5PXkyoVHh4eSKVSbty4YbL8xo0bJj+qH0lISCApKYkOHTpga2uLra0tX3/9Nbt378bW1vax4QBPUuiWioMHDxZ2F6uoX78+kZGRrFu3jkaNGuU7lfiTODk5PXObf1c4JBKJ8emtKpUKqVRKRESEScUDMJkkLL809E/pMHVwcChSLTT+jIyszLss2BVPwjlH4qILfgdBScaKPysjK1PCgp1xJMTIuJliT7fBqWxb6sWmBV6MX5EIwLIJhubttl1v0aFnGs5uWhSuOSyf+NJzdTwA8efkZGXaMP+bGBJiZKSl2NN10DW2L6/M5kVVGLc0HoDlkw13hQycehmNUsrcbee5esmRJRN8n5a8UUKMgqzMNOZtPcOlWDlp1xzoOuAq21dWZdMSb8YuugDAimmGAVhjF11A4ZKDjY2eDQuqPS1p0+Ox0ntUuY4GWwc9X3UOwDNIg2uVTA4t86J1aCovf3STr/4XCECjbmkAvD4shW/CqpPzwIbXhlwr8PE88TgtXQ7KYNm2VpyEGAXZmTbM3XyKS+flpKU60KV/MjtWv8TmpdUY98V5AFZMr8Htmw4M7VwfgO6hlzkX4YIq48k/Gq3GitN029vb07BhQw4cOGAcV6jT6Thw4AChoaGPbR8QEMCZM2dMlk2cOBGlUsnixYvx9i5Yd6JE/7RvtVLi0W2iAwcOpHXr1rz33nssW7YMMAzOTE9P54cffgDgrbfewt/fn6VLlxr3nzZtGhs3biQuLi7f1op/pwEwdOhQoqOjOXToEBcuXMDf358jR4488RacDRs2MHToUNLT043LfvjhBzp16vTUikVeGRkZuLq60pr/Yit5Dj4glmBTfL/ITOisd6uzxELNkc+MY1vo3wRm0d1/YJU4nyf8ZZU4k3xftkqcsli2rUVqhW70HH0WBzI2c+/evWLvtn907fYbOQupg3kTR2ozH3Bh/vhC5XfHjh306tWL1atX07hxYxYtWsQ333zD+fPnqVSpEj179qRKlSpPHJeR33ffsxT6qnTkyJGnrn/11VcLm6TF+Pn5cfDgQVq3bo2trW2+c1H4+Pjw999/k5SUhEKhwN3dndDQUJYuXUrXrl0ZN24crq6u/PXXXzRu3Bh/f/8Cxe3evTs9e/ZkwYIF1K9fn7S0NA4cOEC9evVo3759MRytIAiCIDxZly5dSEtLY/LkyVy/fp2QkBD27t1rHLyZnJyMjU2hR0E8VaErFa1bt35sWd6uhpKe/Mrf35/ff/+d1q1bP9YVAYYBlL169SIoKIj79++TmJiIj48Pv//+O6NGjaJVq1ZIpVJCQkJo3rx5geOuX7+eGTNmMGLECFJSUvDw8OCVV17hnXfeseThCYIgCKVVCTylNDQ0NN/uDsBk2oP85L3DsaAK3f1x7949k7+zs7OJiopi0qRJzJw5kzfeeKPQmRAKRnR/FIHo/jCb6P4wUxks29ZSZrs/hhex+2Nh4bo/SkKhr0qurq6PLXvzzText7dn+PDhREREWCRjgiAIglCWvAhPKbVYZ0qlSpWIi4uzVHKCIAiCIJQyhW6pOH36tMnfer2e1NRUZs+eTUhIiKXyJQiCIAhlSwmMqbC2QlcqQkJC8p1f4ZVXXnnqQ0oEQRAE4YUmKhWPS0xMNPnbxsaGChUq4Oho3uATQRAEQXgRvAhjKgpdqahWreCz7gmCIAiC8OIw6560w4cPM3/+fGJjYwHDk0tHjRr1xNkkBQuzkYKkmG9Xs9ZtamXwdjj9Ex5FXGpZ6T2y1q2eH8Tm/4RGS9vZIsgqcbS371glDljvdmkqmf9AqwLTZkLhHvxcdC9A90eh7/7YvHkzbdq0QSaTERYWRlhYGE5OTrzxxhts3bq1OPIoCIIgCKWeJR4o9rwrdEvFzJkzmTt3LsOGDTMuCwsLY+HChXz++ed8+OGHFs2gIAiCIJQJoqXicZcuXaJDhw6PLX/33XcfG8QpCIIgCMKLo9CVCm9vbw4cOPDY8t9++63Aj0YVBEEQhBeOvoivUqDQ3R8jRowgLCyM6OhomjVrBsCff/7Jhg0bWLx4scUzKAiCIAhlgeThy9x9S4NCVyoGDBiAp6cnCxYs4JtvvgEgMDCQHTt28N///tfiGRQEQRCEMuEFGFNRqEpFTk4Os2bNom/fvhw9erS48iQIgiAIQilUqDEVtra2zJ07l5ycnOLKz3NJIpHwww8/lHQ2BEEQhFJM3FKajzfeeIPDhw/j4+NTDNmxnqlTp/LDDz8QHR1d0lmxiP5TruJXT83FszJWTckdMFvN/z5h4clIJLB0vDeJsTK6DU6lQ69b7NtRno3zKlsuD1NT8Au+z8UzTqyaXMVi6Yo4hfPpxMv41VMTf1bOqum5M+BW89MQNiMJJLBskg+J52WEzUykmt990MOyyYZlRVVaz1teUeHO3D1nR7mgbOqPVxqXX9nrQNw6OUgg8FM1Vd4o/ERn/UZfpFaQkoRYZ1bPqWVcXq2mitBJF5BI9Cyb4U/SBQXDZsTykq+azEwpe7+rzKE9lSxyfKW9zPUbdJpaAekkXHBj9dJ6xuVdPorjnU6X2L+nGl+vtc7kY4XyAnR/FPruj//85z+MHTuWkSNHsm3bNnbv3m3yEsyTnZ1t9r4162hwkmsZ8b4/dnZ6/ILVxnW9Rl1j9iBfZg7wpdfIVAB+2ebBnDCfombZNA91NTjJdYzoVPNhHjQWTV/EKWB6tdU4yXWM/CAIWzs9fvVUxnU9h6cQPqQGs0Jr0nP4VQB2rKzMiM5BLBhdne5hKUWKDaX3vOV195wtORoJr2++gy5Lwp0zub+9LmyU03rjHVpvvMOFDfJCp10jUImTk5bRvRtga6ejVu3cKR17hCYyZ3QQ4SPr0CM09/b8uWODGNu3vsUqFKW9zNWolY6TLIfRg181nMOAu8Z1+36uxrwZjYp0PMWuDN/5AWZUKgYOHMiNGzdYuHAh3bt3p2PHjsZXp06diiOP+crMzCQsLIyKFSvi6OhIixYtOHnyJAAbNmzAzc3NZPsffvgBiURiXD9t2jROnTqFRCJBIpGwYcMGAC5evMirr76Ko6MjQUFB7N+//7HYZ86c4fXXX8fJyYny5cvz6aefolLlfpB0Oh3Tp0+natWqODg4EBISwt69e43rk5KSkEgk7Nixg1atWuHo6MiWLVvMPhcBDdREHnEBIOqoM4ENcysVClctaan23L5uj9zVMN1y+i079BYupAENNEQecTbk4Q8FgY3Uz9hDxCmOOAH1VUQefVgW/nQhsEFuuXR2zeFWqgO3b9gjdzGUhRtXDdMua7Ml6HRFH19eWs9bXrdP2eHZLAuASs0yuRVtb1yn8NaSc19CjkaCrUJX6LQD6mUQ9Zc7ANF/lSMwOLdSoXDJ4dYNR27fdEDh/PBHhh5GzIplytLTVPR6UISjypOHUl7mAmrfIeqfigBE/1OBwNq505Sn33W0+LVNKJxCVyp0Ot0TX1qt9Z7jMHr0aHbu3MnGjRuJjIykZs2atG3bljt3nj0PfpcuXRgxYgS1a9cmNTWV1NRUunTpgk6n47333sPe3p6///6bVatWMWbMGJN91Wo1bdu2pVy5cpw8eZJvv/2W3377jdDQUOM2ixcvZsGCBcyfP5/Tp0/Ttm1b3n33XS5evGiS1tixYxkyZAixsbG0bdv2sXxmZmaSkZFh8sqPwkWLRmV4K9UZUhQuue+DTZ7PbHHekqRw0aJRPsyD0jQPIo714shdtGiUhufCaJRS5M656UnyfNol/yoMfUZf4ccNRf8lXFrPW15ZShtjhcFOoSc7I/dkVWnzgP3vebC/kwe1Pir8L3y5czYaleH9UatskbvktlDa2OR+Gz56f9bMq8nIHg35dt1LfDIy3pzDeUxpL3NyRTYatR0AarUdcoX5rbzW9iKMqSh0peJ5oFarWblyJfPmzeM///kPQUFBrFmzBicnJ9auXfvM/Z2cnFAoFNja2uLp6YmnpydOTk789ttvnD9/nq+//prg4GBeffVVZs2aZbLv1q1befDgAV9//TV16tTh9ddfZ9myZWzatIkbN24AMH/+fMaMGUPXrl3x9/dnzpw5hISEsGjRIpO0hg4dynvvvYevry9eXl6P5TM8PBxXV1fj60mTi6mVUmQPL4IyZy2qjNyHjeUth7piLJRqpRSZ88M8KEzzIOJYL45GKUX28KIuU2hRK/OUhTzvvz7Pj+yOfa6THO/EuX+cixQbSu95y8tOoSfnYSU9WyXBziX3xMWsVNDup1u0+/kWMSsUhU5bo7JFpnj4/si1qDPsjOvyvj+PfsGrHq6PiXKjnEdWoePlp7SXOY3KDpncUJGQybJRq+yescdz5AWY/KrAlYr79+/z008/Gf8eN24cw4cPN75GjRrFgweWaZ57loSEBLKzs2nevLlxmZ2dHY0bNzY+OdUcsbGxeHt7U7ly7uDFpk2bPrZNcHAwcnluf2rz5s3R6XTExcWRkZHBtWvXTPL2aJt/561Ro6f3/Y0bN4579+4ZX1euXMk/3xFyQloYBpPVb6HkfGRu3pTpUjy8snCvlGX8NVEcYiNkuXloqeJ8ROH7m0WcoseJjVRQv5mhRSukeQaxUblffMp0Wzw8s3CvmGX8tdyg5T2CGqrYutQyA3ZL63nLyyMkixt/Gbo8bhx3oHxwntYEez1SRz1SJz06M34gx55yJbiJYQxAyCt3OH/axbhOec+O8pUe4F4h0/j+OMkNd9pV8dGgVpr1UOnH81DKy1zsOXeCG6QZ4jVK4/y5ckXKvzWJloo8Nm7cyOrVq41/L1u2jGPHjhEVFUVUVBSbN29m5cqVxZLJwrKxsUH/r461ogyELC55Kyb5cXBwwMXFxeSVn/izMrIyJSzYGYdOJ+Fmij3dBhsGZW5a4MX4FYlMXJXI1/MNrSFtu97i00lXeb3THQbNSLbIscSfkZGVacOCXfHodBAXXfS7CEQcM9I7Jycr04b538Sg00Faij1dB10DYPOiKoxbGs+E5fF8vdAw4n/g1Mt4Vs1k7rbzhM0s+rN7Sut5y6tc7RykDnp+/8gdiVSPzEtLzCrDZ7VG1/v83t2d3z90p3rn+4VOOyHWmexMG+ZuiESnk5CW6kCXfkkAbF7hy7h55xi/4Cybl/sCMHp2DPM2RjJk6nnWL6pukeMr7WUu4aIb2VlS5i49YjiHN2V0+SgOgLfeTuKTgWdp/eYVBg6NLtJxCeaR6P/97fsELVu2ZPTo0caHiTk7O3Pq1CmqVzcU9M2bN7N8+XKOHz9efLl9SK1W4+7uzvr1641PRc3OzsbX15ehQ4dSu3Zt2rdvj1KpNH5xT5gwgVmzZhkrG7NmzWLbtm2cOXPGmO6vv/5K+/btSU5ONnZH7Nu3j3bt2rFr1y46duzImjVrGDNmDFeuXDGmvWfPHjp06MC1a9eoVKkSVapUYdCgQYwfP96YduPGjWncuDHLli0jKSkJX19foqKiCAkJKfBxZ2Rk4OrqSmub97CVFHOTn85642ME80gcHKwSR59Z+Nsmn2cfxF63SpydLaxzS6P29rPHkVmKtcqczUvFdyvyIznaTA4kLObevXtP/MFmKY+u3XU/noXU3tGsNLRZDzizdrxV8lsUBW6piI+Pp27dusa/HR0dsbHJ3b1x48bExMRYNndPIJfLGTBgAKNGjWLv3r3ExMTQr18/NBoNH3/8MU2aNEEmkzF+/HgSEhLYunWr8e6OR3x8fEhMTCQ6Oppbt26RmZlJmzZt8PPzo1evXpw6dYo//viDCRMmmOzXvXt3HB0d6dWrF2fPnuXgwYMMHjyYHj16UKmSYdDRqFGjmDNnDjt27CAuLo6xY8cSHR3NkCFDrHJ+BEEQhOeP6P7IIz09ncw8v1jS0tJMJsDS6XQm64vb7Nmzef/99+nRowcNGjQgPj6effv2Ua5cOdzd3dm8eTN79uyhbt26bNu2jalTp5rs//7779OuXTtee+01KlSowLZt27CxsWHXrl3cv3+fxo0b88knnzBz5kyT/WQyGfv27ePOnTu8/PLL/O9//+ONN95g2bJlxm3CwsIYPnw4I0aMoG7duuzdu5fdu3dTq1YtBEEQhBfUCzBQs8DdH7Vq1TJ+kefnm2++Yfz48cTHW+a2J+FxovtDyEt0f5hHdH+YT3R/mOfRtbten6J1f5xeX4a6P95++20mT56c7x0e9+/fZ9q0abRv396imRMEQRCEMuMFaKko8D1K48eP55tvvsHf35/Q0FD8/PwAiIuLY9myZeTk5JgMTBQEQRAEIVdRxkaUljEVBa5UVKpUiWPHjjFgwADGjh1rvItCIpHw5ptvsmLFCuNARUEQBEEQ/qUoLQ5lrVIB4Ovry969e7lz545x7ETNmjVxd3cvlswJgiAIQlkh0euRmPlwEnP3szazpmhzd3encePGls6LIAiCIAilmGXmfRUEQRAE4elE94cgCM8rfXZOSWehVPom0NMqcX5K2W+VOO9UaWiVOGC9Mqe/dqP4Y+gt84C2whADNQVBEARBsIwXoKWiVD76XBAEQRCE549oqRAEQRAEKxDdH4IgCIIgWMYL0P0hKhWCIAiCYAUvQkuFGFMhCIIgCIJFiJYKQRAEQbAG0f0hCIIgCIKllJZuDHOJSkUZ0X/KVfzqqbl4VsaqKd7G5dX87xMWnoxEAkvHe5MYK6Pb4FQ69LrFvh3l2TivsuXyMDUFv+D7XDzjxKrJVSyWrohTyPRKuCyU1vNmrThrplTl4mkZNepq6D/9qnF51BFnNs+tjL2jnoGzL+NdM5Nvl1Ui4qArmfdt6Dz4Os3+k17k+FB6y9yn4xOpVUdFfIyC1TN8c+PUUjN4+iWQwLIp1UmKk9N/YiI1AtXYOehYM8uHmEiXIh9nken1hpe5+5YCYkzFM2i1WnQ6XUln46lq1tHgJNcy4n1/7Oz0+AWrjet6jbrG7EG+zBzgS6+RqQD8ss2DOWE+ls1DXQ1Och0jOtV8mAeNRdMXcQqYXgmXhdJ63qwVJ/6ME/c1NszddYGcLBsuRMuM67Z94cXMby4yavklts43fNl26n+D2TsvMOvbC+xcbpmnQJfWMlcjSIWjTMuoD+tiZ6fDr67SuK7n0CvMHuZH+BA/eg5NBuCr2dUY3b0O4WF+dBlw9UnJChZW5ioVrVu3JjQ0lNDQUFxdXfHw8GDSpEnGR7VnZmYycuRIqlSpglwup0mTJhw6dMi4/4YNG3Bzc2P37t0EBQXh4OBAcnIyhw4donHjxsjlctzc3GjevDmXL1827rdy5Upq1KiBvb09/v7+bNq0ySRfEomEr776ik6dOiGTyahVqxa7d++2yDEHNFATecRQC4866kxgw9wPtcJVS1qqPbev2yN31QKQfsvO4pXegAYaIo84G/Lwh4LARupn7CHiFEecki4LpfW8WStOXISC+i0NX4YhLTM4HyE3We8o0+FeKYfUyw4A2NoZlmc9sKFawIMixX6ktJa5gBAlUX+6GeIccyOgvipPnBxuXXfg9g0HFC6GONocw9ebo0zHpVj5Y+mVhEd3f5j7Kg3KXKUCYOPGjdja2nLixAkWL17MwoUL+eqrrwAIDQ3l+PHjbN++ndOnT9O5c2fatWvHxYsXjftrNBrmzJnDV199xblz53B3d6djx460atWK06dPc/z4cT799FMkEgkAu3btYsiQIYwYMYKzZ8/Sv39/+vTpw8GDB03yNW3aND744ANOnz7N22+/Tffu3blz506Rj1fhokWjMryV6gyp8UMFYCPJ3U7y7x0tSOGiRaN8mAelaR5EHOvFKemyUFrPm7XiqDOkyJwNacidtagzTHug76bZciXegSsXHY3LVozzJrRNEPWaZxQp9iOltcwZ4kgNcZRSFC65zyGR5P0myxNo0vLzzFwfQ/QxtyJGtxB9EV+lQJkcU+Ht7c0XX3yBRCLB39+fM2fO8MUXX9C2bVvWr19PcnIylSsbmhdHjhzJ3r17Wb9+PbNmzQIgOzubFStWEBwcDMCdO3e4d+8e77zzDjVq1AAgMDDQGG/+/Pn07t2bgQMHAjB8+HD++usv5s+fz2uvvWbcrnfv3nTr1g2AWbNmsWTJEk6cOEG7du3yPY7MzEwyMzONf2dk5H9RUSulyBSGLhqZsxZVhtS4Lm851BVjoVQrpcicH+ZBYZoHEcd6cUq6LJTW82atODIXLRqlIQ2NSoo8zxdjnwkpzB1QnYpVMwl6OffX/sDwK/Qal8Ko/wbQutPdIsWH0lvmDHEMFRZDvvN8feVJW5+nt/rzQQF4eGYyYWkcwzrXK1oGLECiM7zM3bc0KJMtFa+88oqxFQGgadOmXLx4kTNnzqDVavHz80OhUBhfhw8fJiEhwbi9vb099erlFkB3d3d69+5N27Zt6dChA4sXLyY1NdW4PjY2lubNm5vkoXnz5sTGxposy5umXC7HxcWFmzdvPvE4wsPDcXV1Nb68vb3z3S42Qk5IC0OTav0WSs5H5jb1KdOleHhl4V4py3gxKw6xEbLcPLRUPdasK+JYJ05Jl4XSet6sFSegoYpTRw1dD9F/OOPfILfyENhITfh3F/gg7DpVa90HIDvTcB2zd9TjpLBMa0xpLXOxUc6ENLtniNMsnfPRijxxbPHwzMS9YpaxNcPO3vAtfF8t5YGm+K59gqky2VLxJCqVCqlUSkREBFKpaSFTKHILqJOTk0mlBGD9+vWEhYWxd+9eduzYwcSJE9m/fz+vvPJKgePb2dmZ/C2RSJ46CHTcuHEMHz7c+HdGRka+FYv4szKyMiUs2BlHQoyMmyn2dBucyralXmxa4MX4FYkALJtg2Ldt11t06JmGs5sWhWsOyye+VOBjeJL4MzKyMu+yYFc8CeccicszAM2SRJxnpFfCZaG0njdrxalZ9z52jjpGd/Kjeu37VKySxY7FnnQZcp0diz2J/sMF53I5hM4xjNdaPdmbqwmO5GRJeH+AZR4HXlrLXEKMgqzMNOZtPcOlWDlp1xzoOuAq21dWZdMSb8YuugDAimnVARi76AIKlxxsbPRsWFCtSMdoMS/APBUSvb6U3KdSQK1btyYtLY1z584Zl40bN44ff/yRH374AX9/f44cOULLli3z3X/Dhg0MHTqU9PT0p8Zp2rQpL7/8MkuWLKF58+bUrl2bL7/80rj+gw8+QKPR8NNPPwGGCsSuXbvo2LGjcRs3NzcWLVpE7969C3RsGRkZuLq60trmPWwlds/eoSh0xdNHLViQjZV+fYmyYJafUiKsEuedKg2tEgewWpmzcXJ89kZFlKPP4nf1Nu7du4eLS/Hebvro2t34vzOwtTPv2HKyH3Dix4lWyW9RlMmWiuTkZIYPH07//v2JjIxk6dKlLFiwAD8/P7p3707Pnj1ZsGAB9evXJy0tjQMHDlCvXj3at2+fb3qJiYl8+eWXvPvuu1SuXJm4uDguXrxIz549ARg1ahQffPAB9evXp02bNvzf//0f33//Pb/99ps1D1sQBEF4nr0A81SUyUpFz549uX//Po0bN0YqlTJkyBA+/fRTwNCNMWPGDEaMGEFKSgoeHh688sorvPPOO09MTyaTcf78eTZu3Mjt27fx8vJi0KBB9O/fH4COHTuyePFi5s+fz5AhQ/D19WX9+vW0bt3aGocrCIIgCM+FMtn9ERISwqJFi0o6KxYnuj8EE6L747kmuj+KEKaMdn806fB5kbo//v6/SaL7QxAEQRAEXoiBmqJSIQiCIAhWUJSZMUvLjJplrlKRd8ptQRAEQRCsp8xVKgRBEAThuSTu/hAEQRAEwRJE94cgCIIgCJYhBmoKzyWd9l+P5RNeSOJWz+fafwNfe/ZGFrAheY9V4gD09mlllTgSR4fij6GTQNGe+i7kQ1QqBEEQBMEKXoTuD/FzVxAEQRCsQacv2ssMy5cvx8fHB0dHR5o0acKJEyeeuO2aNWto2bIl5cqVo1y5crRp0+ap2+dHVCoEQRAEwRr0RXwV0o4dOxg+fDhTpkwhMjKS4OBg2rZty82bN/Pd/tChQ3Tr1o2DBw9y/PhxvL29eeutt0hJSSlwTFGpEARBEIQyaOHChfTr148+ffoQFBTEqlWrkMlkrFu3Lt/tt2zZwsCBAwkJCSEgIICvvvoKnU7HgQMHChxTVCoEQRAEwQok5I6rKPSrkLGysrKIiIigTZs2xmU2Nja0adOG48ePFygNjUZDdnY27u7uBY4rBmoKgiAIgjVYYPKrjIwMk8UODg44ODx+t8ytW7fQarVUqlTJZHmlSpU4f/58gUKOGTOGypUrm1RMnkW0VAiCIAiCFZjdSpHnrhFvb29cXV2Nr/Dw8GLJ6+zZs9m+fTu7du3C0bHgT1YVLRWCIAiCUEpcuXLF5NHn+bVSAHh4eCCVSrlx44bJ8hs3buDp6fnUGPPnz2f27Nn89ttv1KtXr1D5Ey0VxWjq1KmEhISUaB76T01hwa54Ppte8NG7z3ssEUfEKc1x+o1NYO7mU/Qfn2CyvFotNfO2nGL+1lP4+OXOymTvoGXzH38R0vSu2TG3TvNl1vt12TKlusnys0fcmP7feszuUodr8U5mp99/ylUW7Izjs2lXTJZX87/Pgu/jWLgrDt9ADQDdBqey9Z8z9Bp1rdBx+o2+yNwNkfQfc9E0Tk0V8zZGMv/rCHz8VAAMmxHLF1v+Yfa6KFq/fSO/5KzPAnd/uLi4mLyeVKmwt7enYcOGJoMsHw26bNq06ROzOHfuXD7//HP27t1Lo0aNCn2IolJRDPR6PTk5OSWdDWrW1eAk1zGiU03s7PT4BWtKfSwRR8QpzXFqBKlwkukY/VEwtnY6atVRGtf1CLvMnBEBhA8NoMeQJOPytp2vc/mC3OyYSWfkPFBLGb/zDDnZEi6dUhjX7V7szZhtZ/lsSRw/LHzJrPRr1tHgJNcy4n3/h+cot0LUa9Q1Zg/yZeYAX3qNTAXgl20ezAnzKXScGoFKnJy0jO7dwHDuaueOLegRmsic0UGEj6xDj9BE4/K5Y4MY27c+h/ZUyi9Jq5Po9UV6Fdbw4cNZs2YNGzduJDY2lgEDBqBWq+nTpw8APXv2ZNy4ccbt58yZw6RJk1i3bh0+Pj5cv36d69evo1KpChzzhalUfPfdd9StWxcnJyfKly9PmzZtUKvV9O7dm44dOzJt2jQqVKiAi4sLn332GVlZWcZ9MzMzCQsLo2LFijg6OtKiRQtOnjxpXH/o0CEkEgm//PLL/7d31uFRHV0YfzdCXHBCQtwFgkMCwQKhWHAnBC80pRSH4sWKO4UWdwtSoFCgBIJLcLcECxAkDrF9vz+2e8mS8DW7EaTze548sPfenTNz996ZM+ecOYOKFStCT08Pa9euxfjx43Hp0iXIZDLIZDKsXLkSJDFu3DhYW1tDT08PpUuXRv/+/fOlza4VkhFx1AQAcCHcGG6V8i8nbUHJEnKEnC9Zjmu5eFw4YQ4AuHiyMNzKvx8Yjc3S8fKZHl690IOxqWJSoqMrh2u5BFy/YJpdcTni3gUTeNaMBQC414jFvfMmKuf1DOUwL5mGF1E595tnxrVCEiKOKup34ZgJ3Cq+v0fGZhmIiS6EV88KwchMkVY+9qWuRrGKrmXjceGUYhXCxVOF4VYu070zTcfL5/qKe2eSpjhIYNDkGxg7/zJKWLzTqG15jjyXf2rSrl07zJgxA2PGjIG3tzcuXryIffv2ScGbDx8+RHR0tHT94sWLkZqaitatW8PCwkL6mzFjRo5l/idiKqKjo9GhQwdMmzYNLVq0QEJCAsLDw8F/nuxDhw5BX18fYWFhiIyMRLdu3VC0aFFMmjQJADB06FBs27YNq1atgo2NDaZNm4aAgADcvXtXZanN8OHDMWPGDNjb20NfXx+DBg3Cvn37cPDgQQCAmZkZtm3bhtmzZ2Pjxo3w8PDAs2fPcOnSpXxpt7FpBp5FFQIAJCVow8Yl/16sgpIl5Ag5X7IcI9N0PHukL5Vn7fjeoqmVKQ+zcvmgf4vnOLyrBFzKJUBTkuN1UNxaUW9Dk3Q8vW2ocj4uRhdJcTp4etcwu6//K8amGXj28J97FK8NG+f390gr0zpIdZdEfoiRSRqePf7n3iXqwNrxvfKipZXp3v0j6LfpjkiM14V7+Vj0HHwXkwd55rIGXyYhISEICQnJ9lxYWJjK58jIyFzL+88oFenp6WjZsiVsbGwAAF5eXtL5QoUKYfny5TA0NISHhwcmTJiAIUOG4Oeff8bbt2+xePFirFy5Et988w0ARSrTAwcOYNmyZRgyZIhUzoQJE1C/fn3ps7GxMXR0dFSCYh4+fIhSpUrB398furq6sLa2RpUqVbKtd0pKClJSUqTPHy4l+jeSErRhaKJQbw2NM5AYr63W9z9HWUKOkPMly0lO0IGhcYZUXlLC+y448+RdThm0tImKNd5gUn/3XCkVBiYZePePnLeJOjA0fa/ItB0ZicUhLihqmQKnSur1L0qSErRhaPzPPTJRvUeqbdKoeInkxEz3zigDSfG67+VkKlsuV2gVif+cv37BHN0G3M+d8DxCUzeG8rtfAv8J90e5cuVQr149eHl5oU2bNvjtt9/w5s0blfOGhu+19OrVqyMxMRGPHj3CvXv3kJaWBl9fX+m8rq4uqlSpghs3bqjIyUlQS5s2bfD27VvY29ujV69e2L59+0fjL6ZMmaKydKhMmTJqtfvGeUN411B0RuVrJuLmec39sp+LLCFHyPmS5dy4aIpy1WMBAN7VY3Hz4nu3RkKsLoqWTEGREilITtRG4aKpKG6Rggm/XUWdpi8QPDASxqZpast0rBCP68fNAADXj5nDocJ7BcWxYgKGb7qKpt8/QmnHt5q16bzR+3tUIwE3I97fo4RYbRSzSEWRkqlITsidQnbjkhnKVVX0297VXuPm5Uz3Lk4XRUu+Q5HiinsHAAZGin7V0jZZRXn7pBRwmu5PwX9CqdDW1saBAwfw559/wt3dHfPnz4eLiwsePHjw719WAyOjf+9wypQpg1u3bmHRokUwMDBAv3794Ofnh7S0rJ3FiBEjEBcXJ/09evQomxI/zt0rhkhN0cLM7XchlwO3Lmpm3vycZAk5Qs6XLOfedWOkpWhh2tpLkMuBmGg9tOvzEACwdr4NRsy+iZFzbmLtPBu8eqGHAW3KY0wvTxz+owRWzrKVZt/qYOuVBF09YnIrL8i0iSKlU7BrvhUAYNd8K0xt54mtU20ROOChRm26e9UQqSkyzNx2C3K5DC+eFEKH7xV++jUzLTBy0QOM+vUBVs+wAAAEtH+J3qMfo26L1/huYs5l3rthorh3KyMgl8sU965XJABg7SI7jJh+DSNnXsXahXYAgKFTr2P6qgj8MO4mVsyx/z8lFyDK5Fea/n0ByMgvpKZ5SEZGBmxsbDBw4EBcvnwZf/zxBx4/fgwDA8WSqiVLlmDw4MGIi4vD27dvUaRIEaxYsQIdO3YEAKSlpcHOzg4DBgzA4MGDERYWhjp16uDNmzcwNzeX5EyePBkbNmzAlStXPlqXW7duwdXVFefPn0eFChX+b73j4+NhZmaG2giEjkz9zkUgEBQc2plyCeQny67uLRA5ABBsW6tA5GgXNst3GenyVBx6vRJxcXEqeR/yA2Xf7ec7Gjo6mgXEpqe/w9HjPxdIfXPDZ2ITyl9Onz6NQ4cOoUGDBihRogROnz6NmJgYuLm54fLly0hNTUWPHj0watQoREZGYuzYsQgJCYGWlhaMjIzQt29fDBkyBEWKFIG1tTWmTZuG5ORk9OjR4//KtbW1xYMHD3Dx4kVYWVnBxMQEGzZsQEZGBqpWrQpDQ0OsXbsWBgYGUqyHQCAQCL5OMmfG1OS7XwL/CaXC1NQUR48exZw5cxAfHw8bGxvMnDkT33zzDTZt2oR69erByckJfn5+SElJQYcOHTBu3Djp+1OnToVcLkeXLl2QkJCASpUqYf/+/ShcuPD/lduqVSuEhoaiTp06iI2NxYoVK2Bubo6pU6di4MCByMjIgJeXF/744w8ULVo0n++CQCAQCD4pebD3x+fOf9L9kZng4GDExsZix44dn7oq/4pwfwgEXw7C/aE5X6v7o3bVUblyf4SdnvjZuz/+E4GaAoFAIBAI8p//hPtDIBAIBIJPzn/A/fGfVypWrlz5qasgEAgEgv8Cuck38WXoFEKpEAgEAoGgIBAZNQUCgUAgEAhyiLBUCAQCgUBQEIiYCoFAIBAIBHkCodEW5tJ3vwCEUiEQCAT5ADMyCkROsHWNApEDAOseHS0QOUEe3+S/EGa/kWN+ImIqBAKBQCAQCHKIsFQIBAKBQFAQELmIqcjTmuQbQqkQCAQCgaAgEIGaAoFAIBAI8gQ5AFkuvvsFIGIqBAKBQCAQ5AnCUiEQCAQCQQEgVn/8x5DJZP93C/SwsDDIZDLExsbmqLzatWtjwIABeVI3gUAgEHzhKGMqNP37AhCWCjXw8fFBdHQ0zMzMPnVVckyfcU/gXO4t7lwxwK9jLL8KWUKOkPMly+k98gGcPBNx97oxlky0k47bOCXh+wn3ARmwYKw9Im8Zoc+oB3BwS4Kunhy/TbbF9QjTXMsH8r5Na8bZ4cFlI9h6JSFo/APp+JWjZtgywwaF9OXoPvkeSju+RdjGEtgxrwycK8Wj37w7asnpNfwenDwTce+6MZZMdpCO2zglIWTcXchkwIJxjoi8bQQAKKSXgeUHz2LGUBdcPFk41+3MNf+BQE1hqVCDQoUKoVSpUpDJNI20KVgcvZJhYCTHoBaO0NUlnMslf/GyhBwh50uW4+CeCH3DDAzp6AVdXTmcvRKkc0EDHmHqj86Y8oMzggY8BAD8PtUGQzt5Ykp/Z7Tr+zhXspXkdZseXDHCu2QtjAm9ivRUGe5dNJbObZ9TBiM3XsV3829h60xrAEDFBq8xfN01teU4uCfCwFCOoZ3LQUdXDifP9/euS/8o/DLIFVMGuKLLD5HS8YA2zxD1j4LxWfAfsFR8NUrF0qVLUbp0acjlqiGygYGB6N69OwBg586dqFChAvT19WFvb4/x48cjPV01q9rLly/RokULGBoawsnJCbt27ZLOZef+OH78OGrXrg1DQ0MULlwYAQEBePPmTbZ1TElJweDBg2FpaQkjIyNUrVoVYWFheXMDssG1QjIijpoAAC6EG8OtUtIXL0vIEXK+ZDmu3gm4cNxcUd4Jc7iWT5TOGZul4+UzPbx6rgdjU0U2zox0RRetbyjH/Rt5MzjmdZvuRpjAq2YsAMCzZhzuRJionNc3lKNwyTS8iNIHAJgUSYe2jvoDpGu5eFw4YQ4AuHiyMNzKx0vnpHv3Qg/Gpoo+XUdXDtdyCbh+IW+sO4Kc8dUoFW3atMGrV69w+PBh6djr16+xb98+dOrUCeHh4QgKCsIPP/yA69evY8mSJVi5ciUmTZqkUs748ePRtm1bXL58GY0aNUKnTp3w+vXrbGVevHgR9erVg7u7O06ePIljx46hadOmyPhIet6QkBCcPHkSGzduxOXLl9GmTRs0bNgQd+6oZwLMKcamGUhOUPzESQnaUkf1JcsScoScL1mOsWkGkhO1M5X3flIjy9wbZzKGjl54E5NWXMfFfwbU3JLXbUqO14GBsaIMQ5N0JMeretXjYnTx9K4Bnt41yJUcI9N0lXtnZPL+3mnJ3ispylvn3+I5Du8qkSuZeY48l39fAF+NUlG4cGF88803WL9+vXRs69atKFasGOrUqYPx48dj+PDh6Nq1K+zt7VG/fn38/PPPWLJkiUo5wcHB6NChAxwdHTF58mQkJibizJkz2cqcNm0aKlWqhEWLFqFcuXLw8PBASEgIihUrluXahw8fYsWKFdiyZQtq1qwJBwcHDB48GDVq1MCKFSuyLT8lJQXx8fEqf+qQlKANQxPFk2honIHEeG21vv85yhJyhJwvWU5SgjYMlQOwcQYSMw/AmSbvzDSA/PydK35s44XgQVG5kq1Shzxsk4FJOt7+M9i/TdSGYSZFqcNPUZj/nQt2LbSEUyX1+q8PSU7QUbl3SQnv711mu4ecMmhpExVrvMG58CK5kpnXKFd/aPr3JfDVKBUA0KlTJ2zbtg0pKSkAgHXr1qF9+/bQ0tLCpUuXMGHCBBgbG0t/vXr1QnR0NJKT3/sUy5YtK/3fyMgIpqamePHiRbbylJaKnHDlyhVkZGTA2dlZpQ5HjhzBvXv3sv3OlClTYGZmJv2VKVMmp7cCAHDjvCG8ayj8juVrJuLm+fzzLRaULCFHyPmS5dy4YAJvnzhFeT6xuJkp/iAhVgfFSqWgSIlUaUauW0gx+L9N0sa75LxRnPK6TU4VE3DtH5fO1XBzOJVPUDk3avNVNO//GJZOb3Ml58ZFU5SrHgsA8K4ei5sX37s1EmJ1UbRkCoqUSEFyojYKF01FcYsUTPjtKuo0fYHggZEwNk3Llfw84T8QU/FVrf5o2rQpSGLPnj2oXLkywsPDMXv2bABAYmIixo8fj5YtW2b5nr6+vvR/XV1dlXMymSxLnIYSA4Ocm/MSExOhra2N8+fPQ1tbtXMwNjbO9jsjRozAwIEDpc/x8fFqKRZ3rxgiNeUNZm6/i3vX9HHromGOv6suBSVLyBFyvmQ5964bIzUlBtPXX8H9G0aIeaqH9n0fY+NiK6yZVwbD59wGACwabw8AGD7nNoxN06GlRaycaZPr9gB53yY7L8XqlAktPWHjkYSilinYMc8Kzfs/xo55Vrh6zBzGhdPQY6pi8hRxsDD+WGSFF1H6mNPbBQOW3sqRnHvXjZGWooVpay/h/k0jxETroV2fh9i0xBpr59tgxOybAIBFExzw6oUeBrQpDwDoFBKFa+dNkRiv+/+KF+QRMvILUX9ySLdu3RAfH4+qVatixYoVuHHjBgDA19cXrq6uWLZs2Ue/K5PJsH37djRv3lw6Zm5ujjlz5iA4OBhhYWGoU6cO3rx5A3Nzc3Tr1g137tzBsWPHsi2vdu3a8Pb2xpw5c3D79m24uLjg6NGjqFmzpkZti4+Ph5mZGWojEDoy8YIIBJ8zWkYFs+pAnpR/Adgfsu7R8QKRUxBbn6czFYfi1yIuLg6mpvkbzKnsu/0dBkBHW0+jMtIzUnDw3pwCqW9u+KosFYDCBdKkSRNcu3YNnTt3lo6PGTMGTZo0gbW1NVq3bi25RK5evYqJEydqJGvEiBHw8vJCv3798O2336JQoUI4fPgw2rRpkyWuwtnZGZ06dUJQUBBmzpyJ8uXLIyYmBocOHULZsmXRuHHjXLVbIBAIBJ85Ik/Fl0fdunVRpEgR3Lp1Cx07dpSOBwQEYPfu3fjrr79QuXJlVKtWDbNnz4aNjeYmRWdnZ/z111+4dOkSqlSpgurVq2Pnzp3Q0cleV1uxYgWCgoIwaNAguLi4oHnz5jh79iysra01roNAIBAIvhRyE0/xZSgVX53742tGuD8Egi8H4f7QnK/W/WHfHzpaGro/5Ck4eH+ecH8IBAKBQCDAf8L9IZQKgUAgEAgKAnku3BhyoVQIBAKBQCBQQrlqZjN1v/sF8NUFagoEAoFAIPg0CEuFQCAQCAQFgYipEAgEAoFAkCeImAqBQCAQCAR5grBUCD5HdKxKa7zWOacw0yZr+UnGm7gCkaNloP/vF+URMiuLApNVEMhSC2YjJhYqoNwr0dlvEJjXJNZxLRA5xodvFogcAAjy71ogcjLi7+a/DH4GG4x9hQilQiAQCASCgoDIhaUiT2uSbwilQiAQCASCgkC4PwQCgUAgEOQJcjkADfNNyEWeCoFAIBAIBP8hhKVCIBAIBIKCQLg/BAKBQCAQ5AlCqRAIBAKBQJAn/AeSX/3nYyqCg4Mhk8kwdepUleM7duyATCb7RLVSn14DruOXJSfQe+A1leM29gmYtvQEpi89AVvHeABAjbrRmLX8GGYtO45qfs/UkzP0DqatjECfYXdU5TgmYvqqCMxYfR62zokAgB8n3sDsdecwdfkF1G70XC05fcY+xsxtt/Dt+EeqclzeYmboLczafgt2bopcGh2+j8b6c1fQdchTtWQo6T3yAaavv4I+ox6oynJKwowNVzBj4xXYuiQp6jXqAaatu4rZWy/DvUK8WnJ69buEaXPD0Cfkosrxdp1uYs2WPQjqfu3/Hvvs5PS/il8WHUPvH66oHLexi8e0RccwfXE4bB0UeUi8K7/AzKXhmDL/OKysEz7P9gy/h2lrL6HPyHuq7XFKwvR1lzBj/SXYOidJxwvpZWBt+Cl4V3+jlpyQ1icxf9Au9G9zQuX44I7hWDh4FxYM2gV7y1cAgE4NLmLej39gybDtqFnuQXbFffL2AAX3G32MPuOeYOb2u/h2wpM8K1OgGf95pQIA9PX18csvv+DNG/Vfps8BB5c46BukY1gfH+joyOHkFiud69znFqaNKo+pP1VAlz63AQDNO9zHiL7VMbxfNTTvkPOOysEtAQYGGRgaXAE6unI4ebwfVLuEPMAvQ90xZbAnuoS8L3PacHcM714eYXtL5liOo2cyDIwyMKiVC3R1Cedy7zu+rkOeYup3dpjU1w5dB0cDAP7cUAy/9LfNcfkqbXJPhL5hBoZ09IKurhzOXu8HvKABjzD1R2dM+cEZQQMeAgB+n2qDoZ08MaW/M9r1fZxzOU5vYGCQjqE/1Fb8Ri6vpXP799pi+qTKKtdnd+yzkuMcq3jm+tVQPAuu79+dzr1uYtq4ipg6uhK69LoFAOjQ7TZG9q+OaeMqolPPW59fe9wTYWAox9DO5RTt8Xz/HHTpH4VfBrliygBXdPkhUjoe0OYZom4bqSXHucxLGOil4fuZzaCjI4erTYx0bt3+cvhuRjNMXV0L3RpHAAA2HiyL/rObYsCcJugYcPmzaw9QcL/Rx3D0SoaBkRyDWjj+018UTOI+TSDlufr7EhBKBQB/f3+UKlUKU6ZM+eg127Ztg4eHB/T09GBra4uZM2eqnLe1tcXkyZPRvXt3mJiYwNraGkuXLlW55tGjR2jbti3Mzc1RpEgRBAYGIjIyMtf1d/V8gwtnigEALp4tBlev9x28sUkaXr4wwKsYfRgZKzLIRT8xgp5BOvQN0pGclHMPmGvZeFw4VUQh51RhuJV7r1QYm6bj5XN9vHqhB2OTfzLVERg0+QbGzr+MEhbvci6nQhIijpoCAC4cM4FbxfdKhbFZBmKiC+HVs0IwMssAAMS+1NXY3ejqnYALx80Vsk6Yw7V8YiZZ6Xj5TA+vnuvB2FQhKyNd8croG8px/0bOO2BX99e4cF6hWF2MKAk3j/cdb+wbfZCqVrHsjn1Wcjze4MLZ4go554rD1TObZ+6lgfTMAUDKOx28eaUPC8ukLOV98vaUi8eFE+YKOScLw618pmdb+Ry80IOxaToAQEdXDtdyCbh+wVQtOe52L3DuhiUA4PxNS3jYv7fgRb9SlJWeoYUMuaINGXLF81ZINx0Pnhb+7NoDFNxv9FH5FZIRcdQEAHAh3BhulXL+fBU4pMKNocnfFxJTIZQKANra2pg8eTLmz5+Px4+zzj7Pnz+Ptm3bon379rhy5QrGjRuH0aNHY+XKlSrXzZw5E5UqVcKFCxfQr18/9O3bF7duKWZlaWlpCAgIgImJCcLDw3H8+HEYGxujYcOGSE1NzVX9jYzT8fYf5SA5URfGJunSOa1Mv7DSm3MyrCTmrzmG+WvC8ccW25zLMUlDcqI2ACApUQdGpu8HDC2t9w+8Us5v0x0xuEtFbFlujZ6Dc55219g0A8mJioonxWtLAzoAaGXqi/KiW1LI+qdNCdpSJwsAssxvRyZhoxfexKQV13Hxn047JxgZp0kKXFKijspgm5cUmByTNLxNUqTVVjxzH3sW3v/fvPA7WFknoIzNe8XtX+UUVHtM01WeA6PM71CmNigfA/8Wz3F4Vwm15RgbpiDpXSEAQOLbQjA2yPru925+FtsOe0qff2x/DCtHbUPErdI5llNQ7QEK7jf6GMamGUhO+Ke/SFDtLz47lIGamv59AQil4h9atGgBb29vjB07Nsu5WbNmoV69ehg9ejScnZ0RHByMkJAQTJ8+XeW6Ro0aoV+/fnB0dMSwYcNQrFgxHD58GACwadMmyOVy/P777/Dy8oKbmxtWrFiBhw8fIiwsLNs6paSkID4+XuUvO5KSdGBgpOg0DI3SkJjw3vqQ+TlU5k7p0OMuvm3vh2/b10KHHqqxEf+P5EQdGBpn/CMnA0nx7/dqUJWj6KoS/zl//YI5ChfLueKUlKANQ2NFZQ1NMpAYr/1eTqbr8iJuSSHrnzYZZyAxPpPlJlP5mS2PP3/nih/beCF4UFSO5SQn6cJQ+o3SkZSYP/tcFJScpERdGBil/SMnDYkJmZ+F9xqY8llYsdAdwyacR5sud3H9SpEcyymw+5ago/IcJGV+hzJdJ6cMWtpExRpvcC485+1QkvS2EIz0Fe+CkX4qEt8WUjnfpu4VREab48q9UtKx2RtroPO4tujS8MJn1x6g4H6jj5GUoA1Dk3/6C2PV/kJQ8AilIhO//PILVq1ahRs3bqgcv3HjBnx9fVWO+fr64s6dO8jIeK8Vly1bVvq/TCZDqVKl8OKFYvOiS5cu4e7duzAxMYGxsTGMjY1RpEgRvHv3DvfuqQZSKZkyZQrMzMykvzJlymR73c0rheFdWRHY5V35JW5dfW8mTYjXRdESb1Gk2DvJmpGWqoWUd9pIeasDHZ2c++luXDJDuaoKM7d3tde4efm9qTQhThdFS75DkeIp0gxJqehY2iardGr/Kue8EbxrKHzA5Wsk4GbEezdDQqw2ilmkokjJVCQn5L7zuHHBBN4+imDC8j6xuHnROJMsHRQrlYIiJVKlNukWUtyvt0naeJecc/k3rhVBuQqKZ8G74gvcvK5ZB/65yLl5tTC8K75UyKn0EreuffDMFf/nmUtW/O43rxXBiO99sWmVEx5FGmdbZnYU2H27aIpy1WMVcqrH4ubFTM92rC6KlkxBkRKKZ7tw0VQUt0jBhN+uok7TFwgeGAlj05zNzq/dL4mKroqA4oquT3D9/nvrQGW3x/Cwf47Vf5aXjunqKPqXlDRtycLxObUHKLjf6KPyzxu+7y9qJuLmefXjQgoMuTx3f18AYklpJvz8/BAQEIARI0YgODhY7e/r6qpq6DKZDPJ/HoTExERUrFgR69aty/K94sWLZ1veiBEjMHDgQOlzfHx8torFvVtmSE3Vwi9LTuDBbVPEPNNHu+A72LTSCet+c8bwiYoZzuLpHgCAvaHWmLH0JABg3w7rHLfv3g0TpKVoYdrKCNy/ZYyYaD206xWJTb/ZYu0iO4yYrojmXjTJGQAwdOp1GJumgwQWTnTOsZy7Vw2RmiLDzG23cO+6IV48KYQO30djw3wLrJlpgZGLFIGgC35S3IuA9i/RNCgGJuYZMDZLx8JRarTpujFSU2Iwff0V3L9hhJinemjf9zE2LrbCmnllMHyOIrh10Xh7AMDwObdhbJoOLS1i5UybnMu5UxhpqVGYNjcM9++aI+a5Idp1uolN61zRoNEDNA68DxOTVBibpGLR3PLZHvus5Nw2R2rqI/yy6Bge3DFDzHMDtAu6jU2rnbFumQuGTzgHAFg8S6Fotwu6De/KMYiPK4QF08p9fvfturHi2V57CfdvGime7T4PsWmJNdbOt8GI2YqdQBdNcMCrF3oY0EZRbqeQKFw7bypZ5f6N24+KITVNG/MH7cLdR0Xx/I0xujS8gDX7yuOHdieQ9FYXc3/cg0fPzTBjfU30b3MC1qXioKudgY0Hyv67gAJuD1Bwv9HHuHvFEKkpbzBz+13cu6aPWxcNc1VevsJcLCn9QtwfMvILqWk+ERwcjNjYWOzYsQMAcOXKFXh7e2Pw4MGYNm0aSKJTp06IiYnBX3/9JX1v6NCh2Lt3L65evQpAEag5YMAADBgwQLrG29sbzZs3x7hx4/Dbb79h2LBhiIyMhKmp+sFQgEKpMDMzg79VX7H1uZqIrc81R2x9rhlf49bnsNAs7kJdMm7l/9bn6UxDGHYiLi5O4z45pyj77rqG7aEjy7nFKTPpTMXfyRsLpL65Qbg/PsDLywudOnXCvHnzpGODBg3CoUOH8PPPP+P27dtYtWoVFixYgMGDB+e43E6dOqFYsWIIDAxEeHg4Hjx4gLCwMPTv3z/b4FCBQCAQCL40hFKRDRMmTJDcFgBQoUIFbN68GRs3boSnpyfGjBmDCRMmqOUiMTQ0xNGjR2FtbY2WLVvCzc0NPXr0wLt37z5rrVMgEAgEecR/YPXHfz6m4sNloYDClZGSkqJyrFWrVmjVqtVHy8ku38TFixdVPpcqVQqrVq3SpJoCgUAg+NKRE5B93TEV/3mlQiAQCASCAoEEoOEqji9EqRDuD4FAIBAIBHmCUCoEAoFAICgAKGeu/jRh4cKFsLW1hb6+PqpWrYozZ8783+u3bNkCV1dX6Ovrw8vLC3v37lVLnlAqBAKBQCAoCCjP3Z+abNq0CQMHDsTYsWMRERGBcuXKISAgQErK+CEnTpxAhw4d0KNHD1y4cAHNmzdH8+bNpdQJOUEoFQKBQCAQFAAFbamYNWsWevXqhW7dusHd3R2//vorDA0NsXz58myvnzt3Lho2bIghQ4bAzc0NP//8MypUqIAFCxbkWKZQKgQCgUAg+MpITU3F+fPn4e/vLx3T0tKCv78/Tp48me13Tp48qXI9AAQEBHz0+uwQqz++IJTJT9PludvVNEeyCkAGAGSwYLI1arHg9GdZRsq/X/QFIZMXUEbNjALa24AF82ynp70rGDkF1B4AQAE92wXRL6RDIaMgk0qnM0UjNwbwvr4fbiypp6cHPb2sGZZfvnyJjIwMlCxZUuV4yZIlcfNm9llYnz17lu31z549y3E9hVLxBZGQoNg0J+zpsk9cky+QpAKUlfONXwVfM3s+dQXygew3Sv6iSUhIgJmZWb7KKFSoEEqVKoVjz9QLevwQY2PjLPs/jR07FuPGjctVuXmJUCq+IEqXLo1Hjx7BxMQEMpns37+A95uQPXr0qEDy2xeELCFHyPka5RSkLCFHYaFISEhA6dKl861eSvT19fHgwQOkpubOqkQyS9+fnZUCAIoVKwZtbW08f/5c5fjz589RqlSpbL9TqlQpta7PDqFUfEFoaWnByspKo++ampoWWDrwgpIl5Ag5X6OcgpT1X5eT3xaKzOjr60Nfv+A2NixUqBAqVqyIQ4cOoXnz5gAAuVyOQ4cOISQkJNvvVK9eHYcOHVLZGPPAgQOoXr16juUKpUIgEAgEgq+QgQMHomvXrqhUqRKqVKmCOXPmICkpCd26dQMABAUFwdLSElOmTAEA/PDDD6hVqxZmzpyJxo0bY+PGjTh37hyWLl2aY5lCqRAIBAKB4CukXbt2iImJwZgxY/Ds2TN4e3tj3759UjDmw4cPoaX1Pojdx8cH69evx6hRozBy5Eg4OTlhx44d8PT0zLFMoVR85ejp6WHs2LEf9bt9ibKEHCHna5RTkLKEnP8OISEhH3V3hIWFZTnWpk0btGnTRmN5MhbkehqBQCAQCARfLSL5lUAgEAgEgjxBKBUCgUAgEAjyBKFUCAQCgUAgyBOEUiHIE0RojkAgEAiEUiHIE6KjowEokqsIckZoaCgOHjz4qashEAgEeYZQKv4j3Lp1K9/K3rFjB8qUKYNTp05BS0tLKBY5IDIyEj/99BMWLlyI8PDwT10dwb+gtMS9ePHiE9ck9wiroiA/EUrFf4B169bh+++/B5A/HYqDgwNatmyJli1b4vTp0/mmWGQu88Py81qe8j7Fx8cjLS3vd0y0tbXF3LlzERMTg3nz5uHw4cN5LuNTobx3T548yZd79ymQyWTYsmULevXqhQcPHuS7vPwa+OVyubR3xKNHj/JFBqBafzHJ+G8hlIr/ANbW1jh48CD+/PPPHG9Epg5eXl6YMGEC/Pz80LRp03xRLORyuZT57ddff0Xv3r3RoUMHTJ8+HRkZGSpZ4XKLctOePXv2oHfv3ggPD0dKSt5t+ZyRkQG5XI4GDRpg6NChePbsGRYtWoQTJ07kmYzMKDv4q1evIjw8HKGhofna0ctkMmzatAl16tTBgwcPvuiZsbLuMTExmDhxIho2bAg7O7t8k5eeng4A+fKeZn6HJk+ejJCQEJw6dSrP5SjfnwMHDmDQoEHw9/fH8uXLcf78+TyXpZQn+HwQSsVXCkmQREZGBmrWrIlevXph3bp1SExMzJeX0M3NDWPGjEHdunXzRbFQdobDhg3D2LFjYWtrC1tbW8yZMydX2d+yQyaTYefOnWjbti3c3d1RpkyZPM3Up6WlBS0tLezatQtHjx7F69evsX37dvz88884duxYnskB3nfwoaGhaNSoEQYPHozvvvsOvr6++OOPP/L0WVCW9e7dO4SGhqJfv35wdnbO8wFSKef27du4efMmbt++neVcXiGTybB//37MmDEDZcuWRfv27fO0/MzMmjULPXv2RIcOHXDz5s08t/Io36GhQ4dizpw56Natm1q7T+YUmUyGHTt2oEWLFpDL5ahQoQIWLlyIAQMGICoqKk9lKZ/vsLAwjB49Gp06dcLGjRsRExOTp3IEakDBV8mLFy9UPi9dupSlS5fmw4cPSZJyuTxf5F6+fJnt2rVj8eLFeerUKZJkRkZGnpR94sQJOjs788SJEyTJ0NBQGhsb87ffflO5Lrdte/z4Mb28vDhnzpw8LTczhw8fpra2NhcvXsy///6bq1evppOTE1u2bMnw8PA8k0Mq7lvhwoW5cuVKkuTNmzcpk8m4ZMmSPJVDKtrl4+PDJk2a8Pr163levpKtW7eyVKlStLa2prOzMxcvXiydy+tne9GiRZTJZCxWrBjv37+fp2UrmTRpEk1NTdm3b186OTnR0tKSW7ZsYXJycp7K+fPPP2lra8tz586RJNPT0/nmzZs8eeaU9/3Ro0f09vaWfpPk5GSamJhw2LBhuZaRHdu2baO5uTk7dOjAH3/8kdra2uzevTujo6PzRZ7g/yOUiq+QXbt2sVixYpwzZw4vXrwoHa9duzbbtWuXJ52usoyoqCg+ePCAN27ckM5lp1ikp6fnWub27dvp6elJUqFQmJiYSB1XYmIid+7cqXaZM2fO5JUrV1SOPXjwgPb29pLyQqoOVLnp6JXlDB48mPXq1VM5t3fvXtrZ2bFhw4YqsnPLggUL2LJlS5IKhcLBwYE9e/aUzuflwBUeHk47OzsWKlRIuq95pVQq711MTAwdHBy4bNky7t27l2PGjKG2tjZnzpyZ5dq8YvXq1dTS0uKoUaPy5FnOTFRUFLt168Zjx45Jx1q3bk0bGxtu3rw5T3+frVu30snJiSR57do1jhs3jo6OjjQ0NGRgYKDa5W3YsIGbNm1SOfbw4UN6enry1atXvHPnDq2srNirVy/pfHh4eJZJj6bcv3+fzs7OKgqyoaEhhw8fniflC9RHKBVfGaNGjeKwYcM4e/ZsOjk5sUqVKgwODubt27c5e/ZstmzZUpptadrxKr+3Y8cOent7087Ojh4eHhw9erR0zZUrV9iuXTuWLl1apbPMKdkNREePHmVgYCBXrVpFY2Nj/vrrr9K5Q4cOsXfv3jmeScrlcr57945eXl68deuWyrmLFy9SS0uLhw8fJqmqEF28eJEHDhxgWlqa2m1SyiXJsWPHskaNGkxJSaFcLpeOL126lAYGBmzQoAGPHj2aKxlKhXLQoEHs3LkzMzIyaGVlxd69e0vXrFmzhvPmzdNITnakpKTw+PHjtLGxYZ06dSQ5eaVYHDx4kBMmTOCAAQOkMuPi4vjLL79QJpOpKBaaoKzv69ev+fjxY5Lv675gwQJqaWlx6tSpeaa0LF++nAYGBvTy8uLly5dVzrVp04Y2NjbcsmULk5KS1C777Nmz0v9nz57Nv//+m6dPn6aLiwsrVapES0tLduvWjb/++ivPnDlDmUzGAwcO5Lj8Fy9esGLFivT391dR6C9fvkx3d3eePHmS9vb27Nmzp3QPL126xG7dukmWktxy8+ZNVq1alSR5+/ZtWlpaqigwV69ezRM5gpwjlIqviC1btrBUqVIMCwsjSd65c4fbtm1j2bJlWbt2bVaqVIkymYyzZ8/Otaw9e/bQyMiI8+fP55UrVzhz5kzKZDIOHjxYuubq1av85ptv6OTkxLdv3+a4I848AK1cuZL79u3ju3fv+PTpU1pZWVEmk6m4Jt6+fcuGDRuyQ4cOastQ/nv8+HFeuHBB+hwYGMgaNWpksWL07duX3bp149u3b3Mk52Ns2LCBOjo63L9/v8rx0NBQli1blk2aNJEGNU3YvXs3ZTIZL1++zPDwcDo4ONDY2JjfffedynX9+vVjx44dmZiYqLaMzObumzdv8unTp9K548eP08LCggEBAdKx3CoWb9++5cCBAymTyejj46NyTqlYFCpUiBMnTtSo/MzKsnLQrVq1Kn/66Se+fv2aJDl//nxqaWlx2rRpeaZY+Pv7UyaTcfPmzVmsIO3ataOenh4PHTqkVpk3b96ks7MzQ0JCJJfAvXv3mJaWxv3793PQoEHcvHmzZDF48uQJq1atyjNnzqgl5+LFi2zQoAEDAgK4Y8cO6XizZs0ok8nYvXt3leuHDx/OSpUqqTwrueH06dO0srLisWPH6ODgwF69ekn38PTp02zRokWWSYMgfxFKxVfCnj17GBISwgULFmR7fuvWrRw2bBiNjY1Zrlw53rlzR2NZ0dHRDAwM5KxZs0iST58+pa2tLevUqUM9PT3+8MMP0rXXr1/XeHAcMmQIS5UqxTlz5kidX0REBI2NjdmuXTuuXLmSW7duZb169ejp6SlZD9Tp7DMyMpienk5bW1u6urry0qVLJBUuJH9/f1atWpV//PEHd+/ezYEDB9Lc3DzLjPL/oazLvXv3GBERoeKO6tWrF01NTbl3717GxsaSJEeOHMnRo0fzzZs3OZbxIQ8fPuSAAQMk19DTp0/Zp08f2tvbc+3atSTJZ8+eceTIkSxevLhGsQ/Kdm3bto329va0t7enoaEh+/Tpw5MnT5J8r1g0btxY47Z8yN27dzl8+HDKZDKuWbNG5VxcXBzHjRvHwoUL89WrVxoN+n/99Rf19PQ4adIk/vHHHwwJCWG1atXYtm1b6TdZvHhxFsU2t/j4+NDW1pbh4eFZlC9NXC5xcXFcvHgxzc3NaWxs/NEZe2pqKl++fMkmTZrQx8cnx3LkcrmK9aFevXoMCAjgtm3bSCp+p1q1atHW1pZ//fUXN2zYwAEDBtDExER6x9RF+Xt++Lu2bt2a2trabNu2rcrxESNG0MfHh8+ePdNInkAzhFLxFXDu3DlWqFCBZmZmXLhwIcn3s8IPO4k///yTNjY23Lt3r8bykpKSOH36dN6/f5/Pnj2jh4cH+/Tpw+TkZA4aNIgymYzffvut5g0i+dtvv7FEiRK8cOGCpCxktipUrVqVdnZ29PHxYfv27ZmamkpS89iN2NhYuri4sEKFCrx27RpJhUulc+fONDAwoKurK6tUqcILFy7kuExl57d161Y6ODiwdOnStLW1ZbVq1fjs2TO+e/eOffr0oa6uLr29vVm5cmUaGBho3OmS5IULFxgQEMCyZctK8SykwhTepUsXFi5cmE5OTqxcuTJtbGwYERGhsayjR4/S0NCQc+fO5eXLl7l8+XLWqFGDzZo14+nTp0kqfit9fX22atVK7fKV9+/ly5d8+PCh9BzExcXx+++/p7GxMdetW6fynfj4eL58+VIjWampqezevTv79u2rcm7FihWsUqUKJ02aJNVp+fLlGgei7tmzhwsXLuT27dtVXBRVqlShvb19tooFmbNnO/P3Dh48yOLFi9PR0ZH9+/eXjivv49u3b7l69WrWqlWLlStXlt6hnFiUlPdBaeHKrFjs2rWLJHnjxg0GBgayTJky9PDwYEBAQK4ViiNHjnD8+PGcNm0ao6KiSCr6tGrVqrFOnTo8ffo0Dx48yEGDBtHU1DRX75JAM4RS8ZWwZMkSurm5sUKFCtnGTGT+f4cOHdi8efNcBZwpg8dmzZpFf39/Pn/+nKTCd1u2bFlaWVnlysT5/fffS8GEynpm7uySk5P54sULvn79WmpbTuMclNfHxsYyPT1dZbCyt7dnhQoVVGZ29+/f54sXLzSyHoSHh9PQ0JBLly7luXPneODAAVaqVImurq6MiYkhqQhAnTNnDidPnpxrU+3u3btZq1Yt6uvrc+PGjSrnoqOjefLkSU6dOpU7d+6UOmV1Ud6/4cOHs0mTJirn9u3bx2rVqknWqrS0NJ46dYq3b9/WSIbSFaFUxkaPHs1Xr17xxYsXHDhwIE1MTLhhwwaN2pEdbdq0YYsWLbIc79atG/38/HJd/uDBg1myZElWqFCB1tbWdHd3lyYCJFmtWjU6OTnx4MGDuXKv9OvXj3369OGFCxe4cOFCenp6ZlH03759y3Xr1nHWrFnSO5CTd0hZrz///JOdO3eWgrSVikX9+vX5xx9/SNffvn2bcXFxjI+P17g9pEIZ09bWZkBAAPX09Ojr6yvFcoSGhrJRo0bU1dWlp6cnfX19VayCgoJDKBVfOJkVg+XLl7Nq1ars2LEjIyMjSaoqE8pBuVWrVuzatataHciVK1f4xx9/MCoqSoonkMvl7N69O2vVqiVdP3jwYM6cOVOjwLLMbfL19WW7du2y1D0lJYUXLlzgu3fvsq1nTtm5cyfr1avHihUrcs6cOZJ1IjY2lvb29qxYsSIvXryY6ziAWbNmsVGjRir1e/HiBcuXL69y33JLZpfM4cOHpbb99ddf0vG8XhExfPhw1qpVi2lpaSplL1y4kKamphpZDDKzf/9+GhkZccaMGXz27Bm///57GhkZcfv27SQVbp7BgwdTJpNxy5YtuZKVkZHBjIwMDhkyhJUqVWJkZKRKm1avXk13d3cptkITNm/ezOLFi/PYsWOUy+W8fPkyhw4dSktLS/7+++/SdY6OjmzTpo3Gcu7du0cPDw8p0DcuLo6zZ8+ml5eXSkzNmDFj+Pfff0uf1ZlkKJdzDxs2jOfPn5eOZ7ZYKH+n3KD8DZ49e8bg4GBp+fjLly9Zv359+vj4qMRyXL58mS9fvsyV+1CQO4RS8YWyYMECduzYkW3atOGUKVOk47/99htr1KjBTp06STPRzBH4kZGR1NHRUSv6OjQ0lObm5rS0tGTp0qU5ZcoUKU5i27Zt1NXVZadOndi+fXuam5urLC/9Nz42aM+cOZMuLi48ePCgyvE7d+6wdevWarkhPuT06dM0MjLiqFGj2LFjR5YrV45dunSR7klsbCydnZ3p6OiYJVBTXQYOHEgHBwfps1KRCw0NpZOTE+/evZur8klFXg1HR0dp2SipGJCbNGlCf39/lXuYl4rFr7/+Sn19fcmEryw7LCyM7u7uGluqMjIymJqayqCgIA4ZMoSkYhmpjY1NlkDTJ0+ecOTIkbx586ZaMpR1ffHiBePi4iS/+4sXL1i6dGk2btyY9+/fl6779ttvWbdu3Vwt7xw/fnyWZcSRkZHs06cPGzZsKFmuSM3deJMmTWLXrl3Zs2dPlUlDbGws58yZQw8PD9aqVYsNGzZk6dKlcywn83v64MEDOjg4ZIkpyRxjERAQwGrVqnHPnj0atSMzx44dY6NGjVijRg0VBeb58+cMCAigj48PN23alGcrjAS5QygVXyDDhg1j8eLF+e233zI4OJj6+vps1KiR5IJYvHgxa9WqxW+++SbbIKWcmiEzMjIYGxvL+vXr8/fff2dMTAyHDRtGb29vDhkyhE+ePKFcLufSpUtZs2ZNtmzZUi0fZuZO4NSpUzxw4IBUt4iICNaoUYOtWrWSOqbIyEg2a9aMvr6+Gne69+/f5/jx4/nLL79Ix9asWcMaNWqwY8eOkmLx5s0bent75zrZ0fHjx+no6Kiy/JVUDLw2NjZquwWyIyEhgYsWLaKHhwc7d+4sHf/zzz/ZpEkTBgQE5CqGRjmwRkZG8ubNmypKY4sWLWhhYcGTJ08yISGBpEKRKleuXK5niy1btuT27dv57Nkzli5dmr1795bO7dixg0eOHCGZc7fXh+1RulZcXFzo6uoqrYq6c+cOLS0tWb58edapU4dt2rShiYlJrs3p8+fPp7u7O588eaJyfPPmzTQ0NOS9e/dUjqv7jKelpXH06NGUyWSsWrVqlriq+Ph4bt26lZ06dWL37t1zFIe0YMGCLIrouXPn6OrqqlLfDwf08+fPMzAwUGMXW2bu3r1LV1dXamlpSQnclMTExLBx48b09PSUgkQFnxahVHxhRERE0MrKSsVseePGDZYqVUolGG7mzJns27dvttr7v81WleeTkpKYnp7Onj178tGjR9L5iRMnSoqFUml59+6dxssshwwZwiJFirB48eIsVaqU1DmEhYWxWbNmLFasGMuUKUN3d3dWrFhRrYCyzNy/f5+VK1dm6dKlOXXqVJVza9asoa+vL7t06SIFOOZ0Vp85z0RkZCSvXr3KBw8ekFQM+F27dmW9evUk33lycjJHjhzJcuXKaRxU+CEJCQn8/fff6ezsrKJY7N+/nzVr1mTz5s01ckllXuXh6upKCwsLOjg4sHHjxkxKSmJsbCxbtWpFQ0NDli9fnn5+fjQ3N8+VJUn5u7Zs2ZL169envb09+/btKykP8fHxbNeuHWfMmKHx7HT//v3U09PjrFmzuHz5ck6cOJEymUwKaHz58iUnTpzI3r17c/DgwRoHZR44cEDK7Hjo0CGWKVOGc+bMUXGjnD9/nuXKlVM7nia75+DNmzecMWMGZTIZ586dKx3/2H36fwpZZGQk3dzcsqwUO378OPX09FTeE2Vdjh49KimdH7ooc8ODBw/o7e3N2rVrS/ljlDx//pytW7eW3jnBp0UoFV8YR48epaWlpTTbUXYKZ86coaGhoYofMzeJh3bs2EEfHx+WLVuW7u7uWWYcEydOZKVKldivXz+1l4xm7gwPHjzIsmXL8tChQ4yKimKXLl1YokQJaUby/Plznjp1ivPnz+euXbukWZWmyad++eUXlilThgEBAVnatG7dOnp4eLBXr1589+7dvyoVSqtK5oHXxsaGDg4OLFSoEIOCgnjhwgW+evWK3bp1o729PS0sLFijRg0WKVIk1ysvPkx7nJCQwGXLltHOzk4lP8DBgwel9OyaEBYWRgMDAy5evJiHDx9maGgoHRwcWL16daakpJBUKGXTp0/ntGnT1FqurFzSSyr85vHx8ZLF49q1a7S3t1dxH5HkTz/9RDs7uxy7jjJnb1T+Vj179mRQUJDKdbt27aJMJpOUv9wm7ho5ciStra25du1a6T6NGTOGhQsX5vjx4xkWFsY7d+6wQYMG9PPzU0tO5mufPHmSxeI1fvz4LKnYMw/+mdv3/1AqoqdPn5ZkPnjwgJUrV2a/fv2yWFe6d+/OPn36ZImzySnK79y8eZMHDhzg2bNnpQnNrVu36OXlxQYNGmRRLITr4/NBKBVfCMrZ+d27d6mnp6cS8S6Xy/nixQs6OTlx9erVKt9T58VWXnv58mXq6+tz5MiRbN++Pa2srNiyZcssg/DIkSPp5+cnuV3UZcmSJZwwYQLHjBmjcrxHjx4sUaIEV61ala2rRp219Nkxc+ZMenl5ceDAgVJAq5JNmzblaMbTq1cvdu/eXVJujh49KiUDu3HjBjdv3iz5ri9evMikpCReunSJEydO5MqVK3M8IH6sDT///DMtLS05atQoleNJSUn87rvvKJPJVAJdc0p27p6ff/45y4qIBw8e0M7OTiWOQx02bdok5bMgFQqZt7c3HR0d+e2330pBhqtWraKRkRFr1qzJTp06sU2bNixcuHCOFbKFCxfS2dlZxXWRmprKunXrSquLlDEcpOKZrlixIl+/fi09Z5oMjmPHjmXJkiUZHh4u5SBRMnPmTFaoUIH6+vr08vJi1apVNVrOSSpyWHh6etLc3Jzly5fnjBkzJLfThAkTqKWlxaVLl6pd/8zExsbSysqKVapUkY7NmTOHjo6O7N27Nw8dOsSIiAgOHDiQRYoU0TiLZeYl2JaWlrS1taWNjQ1dXFwkV5dSsWjUqFGWxHGCzwOhVHwBrFixgsuXL+fLly+Znp7Ob7/9ltWqVePu3bula5KSkujp6ZklIZC6nDt3jgsXLlTJSvjrr7/Sz8+PnTp1yjLjzU2Ev4+PD2UyGVu3bp3F8tCzZ09aWlpy8eLFGgXHKTuo8PBwjho1imPHjlWJsJ82bRq9vb05YMAAtf2+GzZsYPHixVVM/JMmTWL9+vVVrgsLC6Ovr69KLIAmREdHSwGja9eu5apVqxgXF8fJkyfTzc2NI0aMULl+6dKlrFChAv38/NSyIimzcH4Yf9G9e3d6e3tLn5W/lXJFROZnIicD8M2bN1m5cmU2bNiQV65c4aNHj1ikSBHOmDGDo0ePZsOGDenr6yvNRi9fvswuXbqwS5cu/Omnn9RyE7x69YpWVlb08fHhpUuXpPpNnDiRVlZW0qof5WA+a9YsFRebJjx//pzVqlWTcmg8e/aMZ8+e5YABA7h161ampqYyJiaGZ86cUbEAqGt9mzJlCosWLcqNGzfy+PHj7NGjB6tVq8aBAwcyPj6eGRkZnDx5MmUymcoKCXWRy+VSxsrMK5Z+/fVX1qtXjzo6OnRzc6O7u7vGbi9l20+fPk0TExP++uuvfPz4McPCwti5c2fq6+tLiuadO3dYpkwZtmzZMlerzAT5g1AqPnOUWSVXrlwpuTxOnDjBdu3a0cnJiWPHjuVvv/1Gf39/li1bVq3grqFDh3L58uXS5+joaPr7+9PIyEiKuleyaNEi1qhRg127ds0yu88J2S1tJcm2bdvS1NSUe/bsydKptmrVik2bNtV4xcK2bdtoaGjIxo0bs3r16jQ2Nmbz5s0l+VOmTGHlypXZq1cvtdwD06ZNo6urK0mFm2j27NmcPHmy5A7IXN9Vq1bRwMBA4x0T4+LiWK5cOQYFBUmp0JUm7efPn3PixIn08PBQ2UBp1KhRHDdunEZ5Abp27crChQvzzz//lI7t27ePDg4OWRJN/fHHH7S1tVWJt8kpW7ZsYUBAAFu0aMFJkybxp59+ks4dOXKErVu3ZrVq1XI1G1W6HOLj42lnZ0dfX19p9cCFCxfYoEEDBgYGqsRL/Pjjj/T395dcMOpy7tw5RkdHs3jx4vz999+5f/9+BgUFsXLlynRycqKTk1OWoF1SPfO9XC5nbGwsa9asyfnz56ucmzRpEr28vCQlIj4+nqtWrVIrh4uyLqmpqSrK1alTp1imTBkVxeLVq1e8fv06b968qdEEI/PS3fT0dP7++++sU6eOyv2Ijo5mx44dWb58eek9evDgQRbXi+DzQCgVnzHz58+nhYWFStY9JY8fP+a4ceNYunRpaeWFOlkl4+LiOH78+CyrNdatW0dfX1/a2dllWRK4dOlSenp6snfv3mrNqjJ3EHK5XOrslTRo0IAWFhbcv39/lnKV31VXsYiMjKSdnZ0UrJacnMzw8HCWLl1axZQ/btw4+vn5qZXK98yZM3RxcWHdunWlWeCmTZuoo6Mj7bui5MSJE3Rzc1M7puHIkSPSfTpx4gQtLCwok8k4adIkleueP3/OqVOnskyZMnR1dWXjxo1pbGys8RJLkuzTpw9NTU2lzaWioqLYunVrNm7cWLKEpaamSvs4qJO7IfOzuXXrVjZs2JDW1tbs169flva3bt2aNWrUUNmsShN33vPnz7lz507KZDI2atRIMs+HhoayQYMGLFmyJFu1asVGjRrlapXHjz/+yMKFCzMtLY2DBw+mubk5jYyMOHjwYClfiL+/P3/88UeNys9MSkoKK1euLFkUM783NWvWzDaD6f97ZyMiIlQUqd27d7Njx45s0KABd+3aJVkEMisWuV2e/O7dO1arVo22trZSWbNmzWLhwoUlF47y+O7du1mmTBmNA2YFBYdQKj5jgoKC+P3335NUmPzWr19PPz8/1qtXT1r6mJCQoBJUqM5gr7x2//79KnuGhIaG0tfXl3Xr1s0yC12+fLlalorMCsXs2bPZoUMHVqpUiatXr1YZaBs0aMDSpUtnuwNoTmdxmTu5O3fu0NraOksnFBYWRlNTU5WYlFevXuW4PUr69etHmUzGatWqScc6duzIokWL8tChQ5IfffDgwdI20Dll/fr1rFOnDp8/f065XM5Xr16xZMmSLFq0KHv37p1l0IuLi+Px48cZHBzMH3/8UTLpq4PyHh87doxbtmyhjo4OLS0tJYvFpUuX2LZtW9ra2tLJyYl16tRRK7ZByYcD0a5du1i1alXa29tnyZ0SHh7OBg0asH79+hqbuUNDQ2lkZMRhw4axcePGLFasGKtUqSKtULh27RrnzJnDdu3acciQIRoPWk+fPuX333+vsvHXmTNnssQX1KtXjxMmTFCr7I+l7P7mm29Ys2bNLBlnhw0bxlatWuVo0JfL5QwLC1MJUD1y5AgNDQ0ZHBzMRo0aUVtbm+PGjZMCXk+fPk0HBweWL18+VwGScrmc4eHh9PT0pLe3N+VyOe/du0d3d3fOmjVLZUnyrVu3aG9vL6V/F3y+CKXiM0Q5Q+3bty/r1avH8ePHs1atWmzatCm7du3K5s2b08PDI8umSZrMHFJSUjhy5EjKZDIVs+zmzZtZu3Zt1q1bV6MNwT7sbEaMGMGSJUtKG2aZmJhw6NChKp1uw4YNKZPJ1N4pMTPbt2/n/PnzGRMTQ1NT0yzr2t+8eUMPD49cbQaVnJwsBfq5u7uzQ4cOJBUdfZcuXainp0dPT09Wr15do1UeSUlJUpyH8t/Y2FgePnyY1tbW7Nq160dn05quiiEVrhxDQ0OOHTuW/fr1o5+fH01MTKQYi8ePH/P48eMcMmQIFy5cqHHq7b/++oujR4+Wnqtdu3axTp06bNq0aRbF4sSJExq5V0jFQG9vb8/p06dLx+7fv08bGxtWrVqVV65c+egmVeqwZs0aGhoa0svLi3fv3s3y7MfHxzMiIkLKp6Cple/69et89OiRpIzfu3ePxYoVY7t27RgXF8eUlBSmpaXR19c3i+Xn3xg2bBj19PS4fPlyTp48mfPmzZPOLViwgKamphwzZoykWBw7doxeXl4auUI/bN/Jkyfp4uLCypUrk1Ss7vHy8uK0adP47NkzJiQkcNiwYXR0dNQ4KFxQcAil4jNj1apV3LZtG9PT0/n333+zY8eOdHBw4C+//CIFQS1dupSNGjXKVTBZZqKiojhmzBiamJhw0aJF0vHNmzfT39+fFSpUyJKwRx02bdpEe3t7yY1z/vx5ymQyFi1alH379lUx1Q8YMEDjxFYXLlxg8eLFuWTJEiYmJjI4OJgNGjTIkpXTz89P2mFVU5Qz52XLltHFxUUlN8SWLVs4b948zpkzR+2MmZkHkcuXL7N8+fKcPn26FKy6Z88eWltbs3v37tLzMHLkSJX9IzQhISGBVatWVYmliY2NZZcuXWhiYsJ9+/blqnwl27Zto4mJCQcNGqRiUQkNDaW/vz8bN26sVrZXJcrlkpnvX0xMDB0cHKTkacrB/M6dOyxSpAibN2+eJzPfv//+mw0bNqSRkZH0LGd+N//880/6+vqyfv36Gm98N3ToUNra2tLCwoIuLi4qVoXixYvTw8ODNWrUYPXq1enu7p5jxSVzPUaMGMFChQrR0dFRJaiZVLhiTUxMOG7cOMlVqEleGuX+M5lJTU3l6dOnaWdnJ+2vMnr0aHp6elJfX5/VqlVj8eLFc7UEW1BwCKXiM2Lo0KEsWbIkV6xYIb24iYmJKqZzuVzORo0asX379rlaB/7ixQuVmImnT59y5MiRWRSLNWvWsGnTpjmekXTp0kVl5UhaWppkPSAVs1IzMzOuX7+ea9eupUwm48CBA7N0GOp2urdu3eKYMWM4ePBg6djRo0dZv3591q1bl4sWLeKJEyc4cOBAFi5cOE/SY5OKwXj58uV0cXGRLBZ5RVJSEtu2bcsaNWpw1qxZKoqFo6Mj69aty2bNmlFXV1dlR1JNiIuLo6urqxQEqhycX716Je0Im9uUy9euXaOVlZW0f8OHhIaGsmHDhqxZs2aOVxEon+fMQannz5/n7du3+fbtW1pZWaksu01PT2dqair9/Pwok8kYEBCQ6yRNcrmcp0+fZsWKFWlnZyfN5pXP8Lt373j06FG1cqxkfrd37tzJUqVKce/evdy6dSvHjRtHLS0t/vzzzyQVv9GECRM4fPhwTpo0Sa3NwUhVBUiZBGzgwIFZglUXLVpEmUzGyZMna+T2ePjwIYsWLUqZTMbatWtzxIgRPHToEOPi4kgq3EVeXl709fUlqVBAli1bxtDQ0FxbRAQFh1AqPhNmz57NUqVKZZmlKQeSN2/ecPfu3QwICKCXl5fUEWiiWISGhtLZ2ZkuLi6sU6eOlJfh+fPnkmKR2RWS01UEcXFxXL16dRYLysOHD/n06VM+e/aMlStXlszRcXFxLF26NLW1tdV2R2Ru98uXL1mxYkUWKVIky/LNY8eO8dtvv6W5uTldXV3p5eWVq2yP2ZGYmMjly5fT09OTTZs21bic7H7LxMREdu3alVWrVlVRLP7++28OGDCAwcHBGucF+JBmzZqxdu3a0mCkrE9QUBB1dHRYpkwZaatrTTh06BDLlSvHp0+fZrvzLKmwajVv3lytwNbo6GhWq1aN+/bt4549e6ilpcVjx46RVAyEFhYWWVZc/PjjjwwLC9NYuQwNDeWCBQs4b948KT4jIiKCPj4+dHd3l8z0Hw7s6irLu3btYs+ePbME6K5YsYIymSzLTrTqyPlY3zFy5EhqaWnx119/zfJ7//bbb2oHASuJjIykt7c3XVxcWKlSJXbt2pX6+vr09vZmly5duGnTJm7evJkODg6sX79+nm+AJygYhFLxGSCXy9mpUydpln3//n1u3bqV/v7+7NixI48ePcqnT58yKCiInTt3VnsmopRBkhcvXmSJEiU4ceJELl++nJUqVVJxTTx//lzaP2DZsmU5Ll+ZNEnZmS1ZsoSdOnVSuebGjRt0c3OT3BFRUVEMCQnhxo0bc9QJZt6pVMm5c+eYlJTEnTt30svLi25ubjxx4kSWtr98+ZJRUVG52mXy/5GYmMhFixaxSpUqGrmKMqc5HjNmDBcvXiwtf1Sm+lYqFkqzc2pqqkauIqWsV69eqWxitXPnTlasWJH9+/dXGey///57/vnnnznyZ2e3WkdpCVi1ahX19PSkgSpz3c+dOyfFWKi7FPby5cvs2bMnbWxsqKenp7Jj6aNHjyQL4KBBg7hmzRqGhITQzMxMrRU/mRkyZAgtLCzYunVrent7s3z58tK7cvz4cdasWZOenp4aLSPOfN9v3brFypUr08zMjKNHjyb5fslnRkYGO3bsyI4dO0qxFOqg/H2OHDnCoUOHMiQkRGVjwuHDh1NHR4eLFy/O01wQd+7cYYsWLRgYGMhTp04xKiqKGzZsoK+vL6tUqSLFpshkMjZv3lylroIvA6FUfAa8e/eObdq0YbNmzTht2jTWr1+fjRo1YqtWrdisWTNpZ8OHDx9qtMpDyblz57hjxw6pgyIVA1PNmjVpZ2cnWUmio6P5888/53i30alTp1Imk0nLUxMTEzlx4kS6ubmp7Cp58uRJFitWjJMmTeK+ffvYuHFjBgQESOdzMkA+fPiQHh4ekiJhbm4u+Wh37tzJChUqsHPnzioWn9wEL6qDci8MTdmxYwcNDAxYrVo1Ojs709vbm3/88QfJ94qFr68vJ0+enGVZrrqEhoayWrVqtLGxkeIbMjIypGyP1atX55QpU9ipUyeampqqlXo7KipKcnFs3LiRAQEBTElJ4d27d+np6cmhQ4dK90n5mwcHB3Py5MkaDyBr1qyhTCajhYVFFjfNkydPuGzZMjo4ONDLy4ve3t4aW6vWr19PKysrSQlfvnw5CxUqpLKZ1enTp+ni4pJFqf43MisUO3fu5MuXL6VNzzK/n0q+++47NmjQQKN2kO/jW3r27MmQkBBaWVmxTp060vmRI0fSwMCAs2fPzlPF4ubNmwwICGD9+vVVgrLfvHnD1atXc+TIkSxfvryIofhCEUrFJyRzzoajR4+yXr16tLa25uTJk6WXbcaMGWzUqFGuV3m8e/eOzs7OlMlkKkGF5HvFwtnZWRqg1ZkBnz9/ni1btqSlpaW0KuHly5ecM2cOvby8+O2330rXTp48mcWLF6eDgwN9fHzUduNERUWxdu3aLFWqFLW1tbOYf7ds2cJKlSqxc+fOKtskf+48e/aMo0aNkma8J06cYLdu3Whtbc1du3aRVCgWLVu2pL+/v9oWl8z39+zZsyxevDhHjx7NSZMm0cbGhoGBgTxz5gzlcjn/+usvtmnThtWqVWODBg3UytuQlpbGPn360Nvbm71796a2trbUpvT0dA4aNIg+Pj4cMGAAY2JiePPmTf70008sXry42ss5M7fp0qVLXLJkCfv160dXV1du3rw527olJSVJPnxNmDBhAjt27EhSEchsamrKxYsXk1T8PsqETFeuXFHrHcrclhEjRrBUqVJSMOa2bdvo5+fHhg0bSgNtYmIi/fz8suxfklOioqLo6uoqxTrdv3+fxYsXZ69evVTqEhISwmLFiuV6x9kPuX37NgMCAhgQEJAltwtZcBMBQd4jlIpPxIwZM9ilSxe6u7tz7ty5UiDSh5sfNWrUiF26dMkTE2BUVBR9fX3p6Ogo+ZIzWz6UszhNAtcuX77M5s2b08LCQpoFvnz5krNmzaKXlxd79eolXXvlyhXeunVL4/TEyllpkSJFJPN95jiOLVu2sHr16mzWrFmex0/kB1evXmXZsmVZsWJFlURnly9fZvfu3VmmTBlJsUhMTFTLvbJx40YVi9Pdu3c5ffp0KciPVCgZFStWZNOmTXn8+HHpeFJSUo4tIr///ruUSpxU5GOQyWTs2rWrynUpKSkcO3YsK1asSC0tLXp4eNDe3l7jWenhw4dVrF1nzpxhjx496Orqyq1bt0rHd+/erfYuoNkxbNgwjhw5kidPnqSxsbGkUMjlci5fvpwzZsxQeRbVdU9NmDCBxYoV45kzZ1SsXjt27KCvry9NTEzo5+fHdu3a0dvbW/p9cpqTQsmdO3fo4uJCUmH9s7KyYp8+faTzmTOZZu6T8pLbt2+zYcOGDAgIUHnuBF82Qqn4BAwfPpzFixfn/PnzOWXKFNrb27Nx48bSKo/Y2Fju2rWLjRo1oqenp0ZBmZl3+zt79qyUN//Ro0f09PRk5cqVpWC4zIqFulHWH84WP6ZYlC1bVsVioUTdxFbJycm8du0aV6xYwW+++YalS5eWFKTMA+DWrVtZq1atXC2FzU+U7YmIiOCiRYsYGBhIIyMjlS3tSYUC1qtXLxoZGWXZk+PfePToEWvUqCH9zq9fv6alpSUNDAykpGpKTp8+zQoVKrBVq1Zqy1HmYFDG1cjlcjZr1oy+vr6sWbMmFyxYoKI4ZmRk8PXr19y9ezfPnDmTJXOrOhw4cIDGxsYqboCzZ8+yZ8+edHFx4bx58zh27Fjq6+trvFPr3bt3+eTJE6ampvL48eOUyWSUyWQq1pDExEQ2aNCAAwcO1Lgtr169or+/P9euXUtSkRfk77//Zs+ePblx40bOmjWLvr6+rFixosoKGnWWlp88eZLz5s3jgwcP6Ovryz/++IPW1tbSzqKkIh9G586dpeW2+RnTcPv2bTZp0oTVqlXLstRU8GUilIoC5vTp03R1dZWWAIaHh1NXV1dld9F79+4xMDCQ7dq1y1VQ5vbt22lra0s3NzcaGBgwODiYT58+leISKleuLCUWUrfj+JgycOXKFTZr1iyLYjF79myWLFlSJRGRuu3Zt28f+/fvz/DwcJKK/P/+/v60sLBQ2Vl09+7dTExM/Ow3G9qzZw9LlSrFI0eOMCwsjPXr16erq2uWzvXChQsMCQlRO9kU+X710OXLl/n69WuePHmS1tbWrFGjRhYrztmzZ2lnZ8dOnTqpfe+U5vHz589LysW7d+/YsWNHVq9enfPnz1d5hjXJcZAdaWlpPHToEC0tLVm3bl3peEREBH/88UdaW1uzbNmyGuW+IBWWCVdXVxYtWpR+fn5cvHgxly1bRj09Pa5bt46RkZG8fPkyAwICWL58+VyZ7V+/fs3SpUvzp59+4pEjR9iuXTtWqVKFlSpVYqlSpbhkyRJu2bJF2rMkpzFPStLS0hgcHMxatWoxNjaWPj4+1NbWZpcuXVSuGzRoEGvUqFFgiaZu3LjB1q1bq72xn+DzRCgVBczJkyelHR83bdqkYkJNTEyUgsyePHmisXuAVJgvzc3NuWTJEqakpHDv3r3SdtjKrHzKrabVzZiZWaEIDQ3lihUruHr1amld++3bt7MoFi9evMjxKo/sCA0NpZ6eHidPnszLly9Lx6Oioli/fn1aWFhw7969HDx4MEuUKPHZd1CvX79m//79OW3aNOnYkSNH2KJFC5YvXz5LUqbcBGbGxcXRy8uLHTp04KtXr3jy5EmWKVOGwcHBKveSVFUKckLm31Op5Pn7+0vxLK9fv2bHjh3p6+vLefPmMSMjg6NGjWKTJk00fhYyu1mUdTh48CAtLS2loGZSEePw4sULjc33GzZsYKlSpbhjxw6uXLmSQ4YMoZ6eHr/99lvOnTuX+vr6tLCwoLe3N+vUqaNxYqvM/P777yxcuDBNTU05dOhQaf+Vjh07skePHiQVLq0GDRqwTp06ai8nvnHjBg0NDbl3717euHGDxsbGbNeuHbdt28bw8HD279+fZmZmWfYEym9yG3gs+HwQSkUBc+DAAbq6unLDhg00MzNT2XPjr7/+YseOHVVmpJokmYmLi2Pv3r05fvx4koogLAcHB7Zu3ZpmZmZs1qwZIyMjGRkZyerVq6s1iGS2aAwaNIgmJib09vamnp4efX19JT/2rVu32Lx5c1pZWWUZINXtdO/cuUMnJydJ+fqQJ0+esEWLFixTpgzd3d01npUWFKdPn6aFhQXLlSsnre5QcvjwYTZv3pxVqlSRci3kBWfPnmWlSpXYvXt3vn79mseOHZMUiw8HaU3YvXs3Fy9ezJUrV9Lf35+BgYEqikVwcDA9PDzo6enJokWLamzqfvr0KUuUKMG2bduqHE9NTeWuXbtYqFAhtmvXLtftOXz4MHv27KmSeTUuLo4LFy6kiYkJd+/ezXv37jEsLIwRERG5mgB8SFRUVJY+oF69eio70a5atYrNmjX7vynMP7Q+Kuv4ww8/SMs1Dx48SB8fH1pYWNDDw4O+vr4ab6gmEJBCqSgQFi9erDIgNmjQgDKZTEWhePv2LRs3bszWrVvnapMeUqH1b968mXfv3uWrV69Yvnx5aZazfv16ymQyfvPNN3z8+LHGnaDS0nH27FkmJyfzxYsX0gZHypTOly5dkvYsITX3zZ46dYp2dnYqg192ZV25ckUl78LnjPIZmDZtWhaf+JEjR1i3bl3WqlWLb9++zTOfdkREBL29vVUUC3t7e7Zq1UqtTcj27NkjzWSVdWvZsqW0kmD9+vWsW7euimIRFxfHzZs3c/78+Rq5cZS8ffuWy5Yto42NTRazfVxcHCtWrEiZTMZmzZppLCM6OpoODg40MTFRyQ5LKlx5gYGBDAkJyfK93L63H5KQkMDw8HA2adKEXl5eWd7VnOTzCAsL45o1a1Tqtm3bNhYuXFhadRETE8OoqCg+fvw4VytjBAJSKBX5zuDBg1mmTBmOGjVKmlWcO3eOVapUoaOjI9euXcv58+ezQYMG9PDwkDqO3HZQSp/1mjVrWL16dUn2hg0bWLt2bdrY2GjsIpg8eTKbNm3KNm3aMDk5WWWLaR8fHzZq1Ei69t69exq3RVnuzp07Wbx4cclNk9lUeurUKZWdIT9nrl69qrIuv1GjRixWrBj379+fxXoTHh6u8UZa/4/MisWbN294+PBhenp65jig9dmzZ7Szs2O3bt1UFJGaNWuqxMts2rRJUixyswJH+QxcunSJe/fu5Z49exgZGcnVq1fTwcFBZXl0RkYGv/32W27btk1a2qkply5dooODAytUqJBlZUqPHj34zTff5Kr8f0Mul/Pw4cNs0qQJAwICVFwrOVUyU1JSOGDAAMpkMrZs2VLl9+nVqxerV6+udqIxgeDfEEpFPrJmzRoWL148izk+PT2d165dY9u2benq6ko/Pz92795d6jjyco32hAkT6OnpKeU1GD58OOfPn6/xZmQZGRmcO3cuDQ0N6eTkJHVKyvLCw8NZqFChLL56TbYvV5KYmEhLS0u2adMmy7kBAwZw5MiRud6/IT+Ry+V8/vw5nZ2d2aFDB5Xnwd/fX9ryPTe+eHWIiIhgpUqV2LZtW8bGxkrBnDnl/PnzrFy5Mnv27ClZjxo0aCCtWlCybt061q1bl3Xq1MnyPKjDli1bWLRoUXp7e0v7RkyePJmrV6+mnZ0dmzZtyj///JMDBgygm5ubRpkss+PSpUssV64cg4KCJMUoPj6ePj4+Kkuk84t3797liWvl+vXr7Nu3L11dXenq6srly5dz7ty5bNasmbQqTCDIK4RSkY+MGDFCSk7zsc2Enj17pnIsr5O+RERESPEO9erVo6mpqVpBWNkpA/Hx8Vy2bBl1dXU5YsQIlXNhYWF0cHDQaKaoVChOnDjBSZMmcdSoUdywYQNJhcm2aNGibNGiBa9fv86TJ09y+PDhNDMzU8t0XxB8bPa3YcMGenl5sXv37ir5KOrVq0cbGxvu3bu3wBSLM2fO0M/PT+PlnBEREaxQoQK7d+/OK1eusF27dtlajBYuXMhOnTppbHWJiIhgsWLF+Pvvv/P169eMjo5mUFAQ69evz2nTpnHfvn10cXGho6MjXVxc8jwLY0REBN3d3VmqVCk2adKELVu2ZPny5dXKD5EX5IXlMiYmhj169GCDBg1oaWlJmUzG/v3751ENBQIFQqnIR7p06cKaNWtKn5Ud0Nu3b6Wo7szkVwd14sQJdu7cmd99951a0eKZO7IbN27w3LlzKubXhQsXUltbmwMGDOCxY8d49epVfvPNN6xWrZrGnaBSeQgMDGT37t0pk8k4atQovnnzhgcPHqSzszNLly5NOzs7enl5fXapfHv16sVu3bpJg86HVoCtW7fSzc2NPXr0ULFYVKpUiW5ubgW6DDa3yzqVFo+uXbvS2NiY9vb29Pf3Z/369VmrVi36+/uzb9++ubIcrFu3ju7u7oyLi5Oeu+joaHbo0IF16tShXC5neno67927l2/7uly5coV2dnasWbOmSmyUpta+T82lS5e4YMECOjo6iqBMQZ4jlIo8JvPGSHPnzqWLiwv//vtvlTiA58+fs0aNGmonGcoNGRkZGistw4YNo4WFBc3MzOjg4MCxY8dKPvhFixbRwMCAMpmMP/74IwMDAyVXRE4Ui8zX3L59m9bW1lIA6+PHj2lgYMAffvhBuiYlJYUnT57k1atX8y3Tn6Zs2LCBxYsXl0zlx48f56hRo7JYbbZs2UIrKyt27txZRSn63JfBZsf58+fp5eXFcuXKsWPHjly1ahXnzp3LsWPHcuLEibm2Im3YsIEODg6SYqK05D148IAymUwKCs5vLly4wKpVq7JXr15q7YPyOfHh+/85uwwFXy5CqchDRowYQS8vL27evJkZGRl8+/Yty5Urx8qVK3Pr1q2Mjo7mnTt32LhxY/r4+BSYqVtdMg/0ygFw165dvH79OocOHcpq1aqxd+/eUnKcFStW0NDQkGPGjJG+92/rzjPv2aGUd+rUKfr6+pJUDBqWlpYqWTg/95Tb06ZNo6urK0lFoq7SpUuzaNGiHDlyZJZMpfPnz6eJiQnbt2//2S+B/TcuXLggxVhkTkKWF9y9e5d6enocNWqUyvHIyEh6eXlJSeQKgoiICFapUoXt27dXO/HU54jY/VOQHwilIo+YOHEiS5QowYMHD6psvpOUlER/f396eHhQT0+P5cuXZ5UqVfIkUU5+s379es6cOZO//PKLyvF58+bR09NTygKamJjIxYsXU1tbm5MmTfrXch89ekQ9Pb0sOyyeOHGC7u7uPHz4MG1tbdm7d2/p/pw5c4atWrWSUnJ/jpw5c4YuLi6sU6cOtbS0ePToUS5ZsoSWlpYcPny4yoC7adMmli1bljVq1MhVmurPhYiICFauXJnt2rVTe2Owf2Pt2rUsVKgQhw8fzjt37vD58+f86aefWKZMmQJPw37mzBnWqlXrq/jNBIL8QCgVuUQul/Ply5esWrUqf//9d5Vzytl6amoqr169yo0bNzIsLOyjQZufE/Hx8SxdujRlMhl79uyZ5Xzz5s1V4kVSUlK4ZMkSymSyHKXiPnLkCK2trVWW5kVFRdHf35+mpqbSTpBKhgwZQn9/f758+TIXrcp/+vXrR5lMxqpVq0rH5syZIykWylUQP/30ExctWpSrrdI/N/JrwJXL5dywYQNNTExobW1NZ2dnWllZfbJdaPMqxbhA8DUilIo84OHDhyxevLgU/Z7ZfZCcnJztbOpzs1BkF//w8OFD+vj40M7OLotvfPr06axdu7ZKB5uSksLly5fnaKYql8sZHh5OCwsLNmzYUDq+ZMkSlixZkiEhITx58iQvXLjAgQMH0tzcPFfLEguC5ORk1q1blz179qS7uzvbt28vnZs/fz49PDzo6OhIHx8fGhsb50kmy8+N/BxwIyMjuW/fPu7ZsydfcngIBILcIyNJCHJFeno6nJ2d0bRpU8ydOxcAkJGRAW1tbZw4cQLnz59H165dYWpq+olrmj1yuRxaWloAgIMHDyIxMRFaWlpo1qwZHj9+jEaNGkFHRwe//vornJycoKuri4YNG6JkyZLYtm2bWrJIQiaTSZ+PHTuGzp07w9HREQcPHgQATJ8+Hbt27cKZM2fg7u4OmUyG5cuXw9vbO8/anF8kJyfD0NAQy5cvx7Rp01C+fHls2LABAHDgwAFcv34dMTEx6NKlC1xcXD5xbQUCgSBvEUqFhigHX5Jo0aIFpkyZgi1btqBjx44YPHgwAIWy0aRJE5iYmGDz5s0qg+nnQuZBfsSIEVizZg1KlCiBGzduoF27dpg4cSJIomnTprh79y5cXFzg5OSEe/fu4fjx4yhUqFAWReHfZJ06dQoXL17EmzdvULVqVejo6KB3796wsrKSFIvo6GhER0ejSJEiMDU1RZEiRfL1PuQ1iYmJ2LJli6RYrF+//lNXSSAQCPIdoVRowIeDb48ePRAYGIjdu3dj//79sLGxgbW1Na5du4aEhARERERAV1c3x4Pvp2DatGmYM2cOduzYgSpVqmDBggXo378/WrRogTlz5gAAgoKCEBERgX379qF69eoAgLS0NOjq6uZYzrZt29CjRw988803iIqKglwuh5eXF4KCgtC+fXt4eXlh3759+dHEAicpKQmbN2/GrFmzYGdnh127dn3qKgkEAkH+8kmcLl8wv/zyCy0sLKSdN+fPn0+ZTMbu3bszPDycO3bsYIsWLdihQwcOGTJECsb8nIMynzx5wq5du0rLPJUbDo0ePZpmZmZs2bIl7927x4cPH9LNzY1Vq1bVKOr++vXrtLa25q+//ip9NjAwkJYLhoeH08HBgdWqVcu7xn1iEhMTuWjRIlapUqXAVyoIBAJBQSOUCjX42OA7atQompqasn379nz48GGW731uQZkf8vbtW4aGhvLNmzc8e/YsbW1tOXfuXJLkzJkzKZPJWKdOHcbExPDRo0f08vKis7OzlOQrp+zfv5/ly5cnqdiO3cbGRmUPhbNnz/LQoUP08PDI9j5+qSQlJX1VqzwEAoHgY2h9akvJl0SRIkUQGBiIgIAAnDt3DoMGDcK4cePw888/Y8yYMdi0aROCgoLw6NEjle9pa2t/ohrnDH19fTRp0gTm5uY4ePAgPDw80LVrVwBAoUKF0LlzZ+jp6cHc3BxWVlb4448/ULhwYaSlpaklRyaTwcLCApGRkfDz80NAQAAWL14MADh+/Di2b98OBwcHnD17FmXKlMnzdn4qDA0NYWZm9qmrIRAIBPmOUCrU4P8Nvnp6eujcuTP09fVhaWn5iWuqPjo6OgCA27dvIy4uDjKZDO/evcP+/fvRuHFj/Pnnn9DR0UF6ejpsbGxw7Ngx2NraqiXDyckJYWFhsLe3R8uWLbFkyRJJ4dq0aRPOnTsHMzMzGBgY5HXzBAKBQFAA6HzqCnxp/L/Bt3PnzmjXrh0A1WWaXwLKANLevXvDz88Pvr6+SElJgb6+Plq1aiVdp2y/8l91sLW1xfr169GpUycYGBjgzp07SElJwapVq7BmzRqEh4fD3Nw8T9ojEAgEgoJHrP7QkFOnTsHPzw8uLi7S4BsREaHRYPu5ERERgdDQUJiammLgwIGShSIv2paRkYE1a9bghx9+gKmpKUxMTFCoUCGsWLEC5cuXz4PaCwQCgeBTIZSKXJCfg+/nRH606fHjx4iMjISxsTGsrKxQrFixPC1fIBAIBAWPUCrykK9RoRAIBAKBIKcIpUIgEAgEAkGe8OVEEgoEAoFAIPisEUqFQCAQCASCPEEoFQKBQCAQCPIEoVQIBAKBQCDIE4RSIRAIBAKBIE8QSoVAIBAIBII8QSgVAoFAIBAI8gShVAgE/zGCg4PRvHlz6XPt2rUxYMCAXJWZF2X8G2FhYZDJZIiNjc3xd/KiXitXrhR70ggEOUQoFQLBZ0BwcDBkMhlkMhkKFSoER0dHTJgwAenp6fkuOzQ0FD///HOOrv3YwK5OGQKB4OtF5JQWCD4TGjZsiBUrViAlJQV79+7Fd999B11dXYwYMSLLtampqShUqFCeyC1SpMhnUYZAIPjyEZYKgeAzQU9PD6VKlYKNjQ369u0Lf39/7Nq1C8B7l8WkSZNQunRpuLi4AAAePXqEtm3bwtzcHEWKFEFgYCAiIyOlMjMyMjBw4ECYm5ujaNGiGDp0KD7MzP+hiyAlJQXDhg1DmTJloKenB0dHRyxbtgyRkZGoU6cOAKBw4cKQyWQIDg7Otow3b94gKCgIhQsXhqGhIb755hvcuXNHOq90Kezfvx9ubm4wNjZGw4YNER0dneP79erVK3To0AGWlpYwNDSEl5cXNmzYkOW69PR0hISEwMzMDMWKFcPo0aNV7kFKSgoGDx4MS0tLGBkZoWrVqggLC8txPQQCwXuEUiEQfKYYGBggNTVV+nzo0CHcunULBw4cwO7du5GWloaAgACYmJggPDwcx48flwZn5fdmzpyJlStXYvny5Th27Bhev36N7du3/1+5QUFB2LBhA+bNm4cbN25gyZIlMDY2RpkyZbBt2zYAwK1btxAdHY25c+dmW0ZwcDDOnTuHXbt24eTJkyCJRo0aIS0tTbomOTkZM2bMwJo1a3D06FE8fPgQgwcPzvH9effuHSpWrIg9e/bg6tWr6N27N7p06YIzZ86oXLdq1Sro6OjgzJkzmDt3LmbNmoXff/9dOh8SEoKTJ09i48aNuHz5Mtq0aYOGDRuqKEECgSCHUCAQfHK6du3KwMBAkqRcLueBAweop6fHwYMHS+dLlizJlJQU6Ttr1qyhi4sL5XK5dCwlJYUGBgbcv38/SdLCwoLTpk2TzqelpdHKykqSRZK1atXiDz/8QJK8desWAfDAgQPZ1vPw4cMEwDdv3qgcz1zG7du3CYDHjx+Xzr98+ZIGBgbcvHkzSXLFihUEwLt370rXLFy4kCVLlvzoPfqY7Mw0btyYgwYNUqmXm5ubyj0aNmwY3dzcSJJRUVHU1tbmkydPVMqpV68eR4wYIdXVzMzsozIFAsF7REyFQPCZsHv3bhgbGyMtLQ1yuRwdO3bEuHHjpPNeXl4qcRSXLl3C3bt3YWJiolLOu3fvcO/ePcTFxSE6OhpVq1aVzuno6KBSpUpZXCBKLl68CG1tbdSqVUvjdty4cQM6OjoqcosWLQoXFxfcuHFDOmZoaAgHBwfps4WFBV68eJFjORkZGZg8eTI2b96MJ0+eIDU1FSkpKTA0NFS5rlq1apDJZNLn6tWrY+bMmcjIyMCVK1eQkZEBZ2dnle+kpKSgaNGiOa6LQCBQIJQKgeAzoU6dOli8eDEKFSqE0qVLQ0dH9fU0MjJS+ZyYmIiKFSti3bp1WcoqXry4RnUwMDDQ6HuaoKurq/JZJpN9VNnJjunTp2Pu3LmYM2cOvLy8YGRkhAEDBqi4jP6NxMREaGtr4/z589DW1lY5Z2xsnONyBAKBAqFUCASfCUZGRnB0dMzx9RUqVMCmTZtQokQJmJqaZnuNhYUFTp8+DT8/PwCKoMXz58+jQoUK2V7v5eUFuVyOI0eOwN/fP8t5paUkIyPjo/Vyc3NDeno6Tp8+DR8fHwCKoMpbt27B3d09x+37N44fP47AwEB07twZACCXy3H79u0sMk6fPq3y+dSpU3BycoK2tjbKly+PjIwMvHjxAjVr1syzugkE/1VEoKZA8IXSqVMnFCtWDIGBgQgPD8eDBw8QFhaG/v374/HjxwCAH374AVOnTsWOHTtw8+ZN9OvX7/8mj7K1tUXXrl3RvXt37NixQypz8+bNAAAbGxvIZDLs3r0bMTExSExMzFKGk5MTAgMD0atXLxw7dgyXLl1C586dYWlpicDAwDxrv5OTEw4cOIATJ07gxo0b6NOnD54/f57luocPH2LgwIG4desWNmzYgPnz5+OHH34AADg7O6NTp04ICgpCaGgoHjx4gDNnzmDKlCnYs2dPntVVIPivIJQKgeALxdDQEEePHoW1tTVatmwJNzc39OjRA+/evZMsF4MGDUKXLl3QtWtXVK9eHSYmJmjRosX/LXfx4sVo3bo1+vXrB1dXV/Tq1QtJSUkAAEtLS4wfPx7Dhw9HyZIlERISkm0ZK1asQMWKFdGkSRNUr14dJLF3794sLo/cMGrUKFSoUAEBAQGoXbs2SpUqpZIpVElQUBDevn2LKlWq4LvvvsMPP/yA3r17q9Q1KCgIgwYNgouLC5o3b46zZ8/C2to6z+oqEPxXkFEdJ6ZAIBAIBALBRxCWCoFAIBAIBHmCUCoEAoFAIBDkCUKpEAgEAoFAkCcIpUIgEAgEAkGeIJQKgUAgEAgEeYJQKgQCgUAgEOQJQqkQCAQCgUCQJwilQiAQCAQCQZ4glAqBQCAQCAR5glAqBAKBQCAQ5AlCqRAIBAKBQJAnCKVCIBAIBAJBnvA/gnwA/fnDj/8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "display_confusion_matrix(\n", " confusion_data.loc[confusion_data[\"model\"] == \"predictions\"].drop(columns=\"model\"),\n", @@ -1209,7 +420,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "ad364adb", "metadata": { "ExecuteTime": { @@ -1217,45 +428,7 @@ "start_time": "2023-06-22T09:38:45.140726Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing confusion matrix for model=predictions\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAHWCAYAAADAcHv5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeVhUVRvAfzPsM8OOIioCKpsbmKa5W5qaS2l+5ZZrmbnmvptLuae5r7lluVS2a+ZSaqalsbgiKqIoIoqKMKAMzNzvj5GBEdQBhkHs/J7nPjDnnnPe95x77r3vPct7ZJIkSQgEAoFAIBAUEXlJKyAQCAQCgeD5QBgVAoFAIBAIzIIwKgQCgUAgEJgFYVQIBAKBQCAwC8KoEAgEAoFAYBaEUSEQCAQCgcAsCKNCIBAIBAKBWRBGhUAgEAgEArMgjAqBQCAQCARmQRgVFuDChQu0atUKZ2dnZDIZP/zwg1nzv3z5MjKZjI0bN5o1X1PZvHkzQUFB2NjY4OLiUiI6lAQbN25EJpNx+fJlQ1jz5s1p3rz5U9PKZDKGDBlSfMoVI0Upd3FQmuvyaRw7dgxbW1uuXLlS0qoInkFeeuklxo4dW9JqGPGfMSpiYmIYMGAAlStXxt7eHicnJxo1asTixYu5f/9+scru3bs3p06dYubMmWzevJm6desWqzxLcu7cOfr06UOVKlVYu3Yta9asKWmVBILnhkmTJtGtWzd8fHyMwqOiomjTpg0qlQo3Nzd69uzJrVu3TMpTrVYzfPhwKlasiJ2dHcHBwaxcubI41DeJWbNmmf1D6/bt28yfP5+mTZtSpkwZXFxceOmll9i+fXueuH369EEmkz32iI+Pf6q8ffv28fLLL+Ph4YGLiwv16tVj8+bNZi1TfowbN47ly5dz48aNYpdlKtYlrYAl2LlzJ2+99RZ2dnb06tWLGjVqoNFoOHz4MGPGjOHMmTPF9jK8f/8+R48eZdKkScX2NeXj48P9+/exsbEplvyfxIEDB9DpdCxevJiqVataXL7g2WDPnj0lrcJzR2RkJPv27ePIkSNG4deuXaNp06Y4Ozsza9Ys1Go1n376KadOnTL0bDwOrVZL69at+ffffxk8eDD+/v789ttvDBo0iLt37zJx4sTiLlYeZs2axf/+9z86duxotjyzn7lt27Zl8uTJWFtbs2PHDrp27crZs2eZPn26Ie6AAQNo2bKlUXpJkvjggw/w9fWlQoUKT5T1008/0bFjRxo0aMC0adOQyWR8/fXX9OrVi6SkJEaMGGG2cj3KG2+8gZOTEytWrGDGjBnFJqdASM85ly5dklQqlRQUFCRdv349z/kLFy5IixYtKjb5V65ckQBp/vz5xSajJJk+fboESLdu3TJbnmlpaWbLqzjZsGGDBEixsbGGsGbNmknNmjV7alpAGjx4cPEpV4zkV+6SpDTX5ZMYNmyYVKlSJUmn0xmFDxw4UHJwcJCuXLliCNu7d68ESKtXr35inl9//bUESOvWrTMK79y5s2Rvby8lJiaarwAmolQqpd69e5s1z0uXLkmXL182CtPpdNIrr7wi2dnZSWq1+onp//zzTwmQZs6c+VRZr776qlS+fHnpwYMHhrDMzEypSpUqUq1atQpXgAIwZMgQycfHJ087KSme++GPefPmoVarWbduHV5eXnnOV61alQ8//NDwOysri48//pgqVapgZ2eHr68vEydOJCMjwyidr68v7du35/Dhw9SrVw97e3sqV67MF198YYgzbdo0Q7flmDFjkMlk+Pr6Avout+z/c5Nt6eZm7969NG7cGBcXF1QqFYGBgUZfFI+bU/H777/TpEkTlEolLi4uvPHGG0RFReUr7+LFi/Tp0wcXFxecnZ3p27cv6enpj6/Yh3UwdepUAMqUKYNMJmPatGmG8ytWrKB69erY2dlRvnx5Bg8eTHJyslEezZs3p0aNGoSFhdG0aVMUCsUTv5Zu3LhB3759DV23Xl5evPHGG0bj+9nX5sCBA9StWxcHBwdq1qzJgQMHAPjuu++oWbMm9vb21KlTh4iICCMZJ0+epE+fPoahsnLlytGvXz9u3779xPooDF999RWBgYEGXQ4dOpQnTkREBK+99hpOTk6oVCpatGjB33//bRQnv3YD+c9/MKXtZnPmzBleeeUVHBwcqFixIp988gk6nS5PvEfnVBw4cMDwxTZz5kwqVqyIvb09LVq04OLFi3nSL1++nMqVK+Pg4EC9evX4888/CzxPwxx1+fvvvyOXy/noo4+M0m3ZsgWZTGY0TBAfH0+/fv3w9PTEzs6O6tWrs379+jwyly5dSvXq1VEoFLi6ulK3bl22bNny1PL88MMPvPLKK3mu644dO2jfvj2VKlUyhLVs2ZKAgAC+/vrrJ+b5559/AtC1a1ej8K5du/LgwQN+/PFHQ1ifPn1QqVRcunSJ1q1bo1QqKV++PDNmzEDKtbn11KlTkcvl7N+/3yjP999/H1tbW06cOPFYfWQyGWlpaWzatMkw3NCnTx/DeVPafn74+fnlGTKSyWR07NiRjIwMLl269MT02de7e/fuT5WVkpKCq6srdnZ2hjBra2s8PDxwcHAwhGXfE9u3b2fixImUK1cOpVLJ66+/ztWrVw3xoqKicHBwoFevXkZyDh8+jJWVFePGjTMKf/XVV7ly5QqRkZFP1dUilLRVU9xUqFBBqly5ssnxe/fuLQHS//73P2n58uVSr169JEDq2LGjUTwfHx8pMDBQ8vT0lCZOnCgtW7ZMeuGFFySZTCadPn1akiRJOnHihPTZZ59JgNStWzdp8+bN0vfff2+Q4+Pjk0f+1KlTpdyX5fTp05Ktra1Ut25dafHixdKqVauk0aNHS02bNjXEiY2NlQBpw4YNhrC9e/dK1tbWUkBAgDRv3jxp+vTpkoeHh+Tq6mr0hZktr3bt2tKbb74prVixQnrvvfckQBo7duwT6+r777+XOnXqJAHSypUrpc2bN0snTpwwyrdly5bS0qVLpSFDhkhWVlbSiy++KGk0GkMezZo1k8qVKyeVKVNGGjp0qLR69Wrphx9+eKzMhg0bSs7OztLkyZOlzz//XJo1a5b08ssvSwcPHsxzbby8vKRp06ZJn332mVShQgVJpVJJX375pVSpUiVpzpw50pw5cyRnZ2epatWqklarNaT/9NNPpSZNmkgzZsyQ1qxZI3344YeSg4ODVK9ePaOvgaL2VNSoUUPy8PCQZsyYIc2dO1fy8fGRHBwcpFOnThninT59WlIqlZKXl5f08ccfS3PmzJH8/PwkOzs76e+//zbEe7TdPElHU9quJElSQkKCVKZMGcnV1VWaNm2aNH/+fMnf31+qVavWU8v9xx9/GNpVnTp1pM8++0yaNm2apFAopHr16hnpuGLFCgmQmjRpIi1ZskQaOXKk5ObmJlWpUqVE6nLw4MGStbW1FBYWJkmSJF2/fl1yc3OTWrZsabj+N27ckCpWrCh5e3tLM2bMkFauXCm9/vrrEiB99tlnhrzWrFljeJ6sXr1aWrx4sfTuu+9Kw4YNe2KZrl27JgHSkiVL8g2fO3dunjTvvPOO5Obm9sR833//fcnKykrKzMw0Ct+5c6cESAMGDDCE9e7dW7K3t5f8/f2lnj17SsuWLZPat28vAdKUKVMM8TQajVS7dm3Jx8dHSklJkSRJknbv3i0B0scff/xEfTZv3izZ2dlJTZo0kTZv3ixt3rxZOnLkiCRJpl+vgjBx4kQJyLfXOnd53N3dpUaNGpmU57hx4yRAmjx5snThwgXp4sWL0owZMyQrKytpx44dhnjZ90TNmjWlWrVqSQsXLpTGjx8v2dvbSwEBAVJ6eroh7vz58yVA+vHHHyVJkiS1Wi1VqVJFqlatmlGPiCTltImlS5cWpCqKjefaqLh3754ESG+88YZJ8SMjIyVAeu+994zCR48eLQHS77//bgjz8fGRAOnQoUOGsJs3b0p2dnbSqFGjDGHZL/xHhz9MNSqyjZInDS/kZ1SEhoZKZcuWlW7fvm0IO3HihCSXy6VevXrlkdevXz+jPDt16iS5u7s/Vuaj6XPrd/PmTcnW1lZq1aqV0ct62bJlEiCtX7/eENasWTMJkFatWvVUWXfv3jVpKCn72mQ/nCRJkn777TcJyNNtvHr1agmQ/vjjD0NY7ps7m61bt+a53kU1KgDp33//NYRduXJFsre3lzp16mQI69ixo2RrayvFxMQYwq5fvy45OjoaGZYFNSpMabvDhw+XAOmff/4xiufs7GyyUREcHCxlZGQYwhcvXiwBhpd9RkaG5O7uLr344otGL7qNGzdKQInUZVpamlS1alWpevXq0oMHD6R27dpJTk5ORu3m3Xfflby8vKSkpCQjXbp27So5Ozsb2tAbb7whVa9e/alleJR9+/ZJgPTzzz8bhR8/flwCpC+++CJPmjFjxkhAnpdObhYsWCAB0p9//mkUPn78eAmQ2rdvbwjL/sAaOnSoIUyn00nt2rWTbG1tje75U6dOSba2ttJ7770n3b17V6pQoYJUt27dPMZLfjxu+MPU62Uqt2/flsqWLSs1adLkifF+/vlnCZBWrFhhUr5qtVp6++23JZlMZmiLCoUiz8dR9j1RoUIFg/ElSTlDUosXLzaEabVaqXHjxpKnp6eUlJRkMHSPHz+erw62trbSwIEDTdK3uHmuhz9SUlIAcHR0NCn+rl27ABg5cqRR+KhRowD9hM/cVKtWjSZNmhh+lylThsDAwKd2rRWE7CWaP/74Y77dzvmRkJBAZGQkffr0wc3NzRBeq1YtXn31VUM5c/PBBx8Y/W7SpAm3b9821GFB2LdvHxqNhuHDhyOX5zSx/v374+TklKce7ezs6Nu371PzdXBwwNbWlgMHDnD37t0nxq1WrRoNGjQw/K5fvz4Ar7zyilG3cXZ47muWu8vywYMHJCUl8dJLLwEQHh7+VD1NpUGDBtSpU8fwu1KlSrzxxhv89ttvaLVatFote/bsoWPHjlSuXNkQz8vLi+7du3P48OFCXR8wre3u2rWLl156iXr16hnF69Gjh8ly+vbtazRxMFtmtpx///2X27dv079/f6ytc+aN9+jRA1dXV5PlmLMuFQoFGzduJCoqiqZNm7Jz504+++wzQ7uRJIkdO3bQoUMHJEkiKSnJcLRu3Zp79+4Z2omLiwvXrl3j+PHjJpcFMAy1PVoH2SvVcne1Z2Nvb28UJz+6d++Os7Mz/fr1Y+/evVy+fJk1a9awYsWKx6bNPcE8e/muRqNh3759hvAaNWowffp0Pv/8c1q3bk1SUhKbNm0yuqYFwdxtX6fT0aNHD5KTk1m6dOkT427ZsgUbGxvefvttk/K2s7MjICCA//3vf2zdupUvv/ySunXr8s477+Q7VNOrVy+jd9L//vc/vLy8jJ7LcrmcjRs3olaree2111ixYgUTJkx47MpBV1dXkpKSTNK3uHmujQonJycAUlNTTYp/5coV5HJ5nlUM5cqVw8XFJc9a8dwvp2xcXV2f+sIrCF26dKFRo0a89957eHp60rVrV77++usnGhjZegYGBuY5FxwcTFJSEmlpaUbhj5Yl+2FWmLI8Tr6trS2VK1fOU48VKlR44oz1bOzs7Jg7dy6//vornp6eNG3alHnz5uW7nOrR8jg7OwPg7e2db3juct65c4cPP/wQT09PHBwcKFOmDH5+fgDcu3fvqXqair+/f56wgIAA0tPTuXXrFrdu3SI9Pf2x11Gn0xmNxRYEU9rulStX8tUxP31MlfNou8puC4/ec9bW1vnOOXoc5q7LRo0aMXDgQI4dO0br1q3p16+f4dytW7dITk5mzZo1lClTxujINo5v3rwJ6Jf8qVQq6tWrh7+/P4MHD+avv/4yuVxSrrkLkGPwPjrHC/QGcO44+VGuXDl++uknMjIyaNWqFX5+fowZM8bwolWpVEbx5XK50Usd9PUKGM3TAf28sZCQEI4dO8bUqVOpVq2aCSXMH3O3/aFDh7J7924+//xzQkJCHhtPrVbz448/0rp1a9zd3U3Ke8iQIfz8889s27aNrl270qNHD/bt24eXl5fRfL1sHm2rMpmMqlWr5qnPKlWqMG3aNI4fP0716tWZMmXKY3WQJCnfOVUlwXNvVJQvX57Tp08XKJ2pF8fKyirf8EcfBAWRodVqjX47ODhw6NAh9u3bR8+ePTl58iRdunTh1VdfzRO3KBSlLEXlSQ/BRxk+fDjnz59n9uzZ2NvbM2XKFIKDg/NMtnxceUwp59tvv83atWv54IMP+O6779izZw+7d+8GMLm3yNKY2p6ysdT1Lsl2VRQyMjIME3tjYmKMJi1nt4F33nmHvXv35ns0atQI0L8Ao6Oj2bZtG40bN2bHjh00btzYMMH5cWS/0B416rMnmyckJORJk5CQgJubW769GLlp2rQply5dIiIigsOHDxMfH2/oics2GArDpUuXuHDhAgCnTp0qdD7mZvr06axYsYI5c+bQs2fPJ8b94YcfSE9PN7k3TqPRsG7dOtq1a2fUK2tjY8Nrr73Gv//+i0ajKbTu2Uu1r1+//sSJ4snJyXh4eBRajjl5ro0KgPbt2xMTE8PRo0efGtfHxwedTme4MbJJTEwkOTk5z2ziouDq6ppnJQSQr+c8uVxOixYtWLhwIWfPnmXmzJn8/vvv/PHHH/nmna1ndHR0nnPnzp3Dw8MDpVJZtAI8gcfJ12g0xMbGFrkeq1SpwqhRo9izZw+nT59Go9GwYMGCIuWZzd27d9m/fz/jx49n+vTpdOrUiVdffTXP15o5eLSdAZw/fx6FQmH48lUoFI+9jnK53NDzkt0D8GibKoonRh8fn3x1zE+fosgA8qwIycrKyvPl9iTMWZegX9EQFRXFp59+SmxsLOPHjzecK1OmDI6Ojmi1Wlq2bJnvUbZsWUN8pVJJly5d2LBhA3FxcbRr146ZM2caehbyIygoCIDY2Fij8AoVKlCmTBn+/fffPGmOHTtGaGjo4yspF1ZWVoSGhtKoUSNUKpVhKONRfw06nS7PcO758+cBjHqSdDodffr0wcnJiYkTJ7J161a+++47k3TJzyAu6PV6HMuXL2fatGkMHz48z6qJ/Pjqq69QqVS8/vrrJul++/ZtsrKy8jXeMzMz0el0ec492lYlSeLixYt5euZWrVrF3r17mTlzJhqNhgEDBuSrQ3x8PBqNhuDgYJN0Lm6ee6Ni7NixKJVK3nvvPRITE/Ocj4mJYfHixQC0bdsWgEWLFhnFWbhwIQDt2rUzm15VqlTh3r17nDx50hCWkJDA999/bxTvzp07edJmPzjy6wIF/ddMaGgomzZtMnrJnD59mj179hjKWVy0bNkSW1tblixZYvRFum7dOu7du1foekxPT8/zIK5SpQqOjo6PrYuCkv1l/eiX9KNtwhwcPXrUaI7G1atX+fHHH2nVqhVWVlZYWVnRqlUrfvzxR6MXbGJiIlu2bKFx48aGIb4qVaoAGC2jzF6qV1jatm3L33//zbFjxwxht27d4quvvip0no9St25d3N3dWbt2LVlZWYbwr776qkBDb+asy3/++YdPP/2U4cOHM2rUKMaMGcOyZcs4ePAgoG8jnTt3ZseOHfn2gub2bPno16WtrS3VqlVDkiQyMzMfW54KFSrg7e2dr/HQuXNnfvnlF6Pu//3793P+/HneeustQ1hmZibnzp3Lt1fjUX3nzp1LrVq18hgVAMuWLTP8L0kSy5Ytw8bGhhYtWhjCFy5cyJEjR1izZg0ff/wxDRs2ZODAgSaN8yuVyjzGcEGu1+PYvn07w4YNo0ePHoZn+JO4desW+/bto1OnTigUinzjxMXFce7cOcPvsmXL4uLiwvfff2/UI6FWq/n5558JCgrK0xP7xRdfGA3Jf/vttyQkJPDaa68ZwmJjYxkzZgydO3dm4sSJfPrpp/z000/5LvsOCwsDoGHDhk8toyV47j1qVqlShS1bttClSxeCg4ONPGoeOXKEb775xrAuOiQkhN69e7NmzRqSk5Np1qwZx44dY9OmTXTs2JGXX37ZbHp17dqVcePG0alTJ4YNG0Z6ejorV64kICDA6OE4Y8YMDh06RLt27fDx8eHmzZusWLGCihUr0rhx48fmP3/+fF577TUaNGjAu+++y/3791m6dCnOzs5GviSKgzJlyjBhwgSmT59OmzZteP3114mOjmbFihW8+OKLvPPOO4XK9/z587Ro0YK3336batWqYW1tzffff09iYmKedfeFxcnJyTBXIzMzkwoVKrBnz548X4zmoEaNGrRu3Zphw4ZhZ2dnmCyX29vfJ598YvBTMmjQIKytrVm9ejUZGRnMmzfPEK9Vq1ZUqlSJd999lzFjxmBlZcX69espU6YMcXFxhdJv7NixbN68mTZt2vDhhx+iVCpZs2YNPj4+RsZwUbC1tWXatGkMHTqUV155hbfffpvLly+zceNGqlSpYvJQpLnq8sGDB/Tu3Rt/f39mzpxpyOPnn3+mb9++nDp1CqVSyZw5c/jjjz+oX78+/fv3p1q1aty5c4fw8HD27dtn+Bho1aoV5cqVo1GjRnh6ehIVFcWyZcto167dUyeQv/HGG3z//fd5xssnTpzIN998w8svv8yHH36IWq1m/vz51KxZ02jCc3x8PMHBwfTu3dvIh02zZs1o0KABVatW5caNG6xZswa1Ws0vv/xi1IUP+smfu3fvpnfv3tSvX59ff/2VnTt3MnHiRMqUKQPo/SpMmTKFPn360KFDB0DvHyU0NJRBgwY91XdGnTp12LdvHwsXLqR8+fL4+flRv359k9t+fhw7doxevXrh7u5OixYt8hjCDRs2zNP7uH37drKysp449NGrVy8OHjxo+OiwsrJi9OjRTJ48mZdeeolevXqh1WpZt24d165d48svv8yTh5ubG40bN6Zv374kJiayaNEiqlatSv/+/QG94davXz8cHBwMflEGDBjAjh07+PDDD2nZsiXly5c35Ld3714qVapE7dq1n1gnFsPi601KiPPnz0v9+/eXfH19JVtbW8nR0VFq1KiRtHTp0jye0KZPny75+flJNjY2kre3tzRhwoQ8y7R8fHykdu3a5ZHz6NK6xy0plSRJ2rNnj1SjRg3J1tZWCgwMlL788ss8SwP3798vvfHGG1L58uUlW1tbqXz58lK3bt2k8+fP55GRe0mpJOmXpTVq1EhycHCQnJycpA4dOkhnz541ipPfklBJMt1r4uPSS5J+CWlQUJBkY2MjeXp6SgMHDpTu3r2bp75MXXKXvbQqKChIUiqVkrOzs1S/fn3p66+/Nor3uGtDPp4X87s+165dkzp16iS5uLhIzs7O0ltvvSVdv35dAqSpU6ca4pnDo+aXX34p+fv7S3Z2dlLt2rWNlrZmEx4eLrVu3VpSqVSSQqGQXn75ZaPlstmEhYVJ9evXl2xtbaVKlSpJCxcufOySUlPariRJ0smTJ6VmzZpJ9vb2UoUKFaSPP/5YWrdunclLSr/55huj/B7XVpcsWSL5+PhIdnZ2Ur169aS//vpLqlOnjtSmTZvH1mE25qzLESNGSFZWVkbLaCVJkv7991/J2traaNleYmKiNHjwYMnb21uysbGRypUrJ7Vo0UJas2aNIc7q1aulpk2bSu7u7pKdnZ1UpUoVacyYMdK9e/eeWq7w8PB8l39Kkt6HQ6tWrSSFQiG5uLhIPXr0kG7cuGEUJ7uuH12uOWLECKly5cqSnZ2dVKZMGal79+5Gyzaz6d27t6RUKqWYmBiDLE9PT2nq1KmGpeJZWVnSiy++KFWsWFFKTk42Sp+9fHj79u1PLOe5c+ekpk2bSg4ODnn0NbXtP0p2u3/c8Wj7kyRJeumll6SyZctKWVlZj803ewn8o3z11VdSvXr1JBcXF8nBwUGqX7++9O233xrFyb4ntm7dKk2YMEEqW7as5ODgILVr185ouXJ2veX2cSFJkhQXFyc5OTlJbdu2NYRptVrJy8tLmjx58lPrxFLIJOkZnzElEAj+c+h0OsqUKcObb77J2rVrS1qdEqNFixaUL1/eIptTPUqfPn349ttvUavVFpf9PHLgwAFefvllvvnmG/73v/+ZJc8ffviB7t27ExMTk6/H6JLguZ9TIRAInm0ePHiQZw7LF198wZ07d0psO/VnhVmzZrF9+3ax9bkgX+bOncuQIUOeGYMC/gNzKgQCwbPN33//zYgRI3jrrbdwd3cnPDycdevWUaNGDaOJh/9F6tevX6QliYLnG1NWNVoaYVQIBIISxdfXF29vb5YsWcKdO3dwc3OjV69ezJkzxySnaAKB4NlBzKkQCAQCgUBgFsScCoFAIBAIBGZBGBUCgUAgEAjMgphTUYrQ6XRcv34dR0fHZ2bzGIFAICiNSJJEamoq5cuXz+P0qzh48OBBkSfd2traGnajfVYRRkUp4vr16yb5uxcIBAKBaVy9epWKFSsWq4wHDx7g56Pixs2ibQJZrlw5YmNjn2nDQhgVpYhst75v/NgVG2XxzopPamm+Lb4FxYQ8/x1AzY7OfLvhPhNYqN7Ub1jGbbLq+7z7gxQXcmX+e2KYXY6Lc7HLyNJpOJCw/qnu0s2BRqPhxk0tV8J8cXIsXK9ISqoOnzqX0Wg0wqgQmIfsIQ8bpW2xGxXWMptizV9gBmQWMipkz9nUKwvVm7WNZR78lrxX5TLLLPGVy5+8fbs5seRQsspRhsqxcPJ0lI4hb2FUCAQCgUBgAbSSDm0hnThoJZ15lSkmhFEhEAgEAoEF0CGho3BWRWHTWZrnrF9TIBAIBAJBSSF6KgQCgUAgsAA6dBR2EKPwKS2LMCoEAoFAILAAWklCW8idMQqbztIIo0IgEAgEAgvwX5hTIYyK5wT14vtknsvCJsAK1YicteS6FB3qeffRJUvY1LVG2Ue/zE3KkLjdOQWnqQpsXzTPkrQB0+IJCLnPhVMOrPqoglnyFHIKkd/UawTUSuPCaQWrpuY4S/MJvM+w2XHIZLB0ojexUQq6DU2gQ+8kftvuzqb55YssG0S9PY1hnY4Q5J1E9DUPFn/X0BA+5u1DVPa6iwQs+KYxMdfdeadlJC8FX8XeNosv9oZy6KRfkcsJ5q+79yfG4l9DzcWzKlZ/kqOjj38aQ2dcAhksm1qZy9FKBkyOpUpwGjZ2OtbO8uVsuJPJcvqPOEvV4HvEnHNmzcJqOXIqpzJ4/GlkMlg+tzqXLzox9pMIXN0zsLHVYWenZeg7TYpcTsHTERM1LUBRXbM+jczoLKR0CdeVjkhZkHk2y3Aufd0DFO/Z47JMZTAoAB78pMG6ivnW61etmY6DUseoTlWxsZEICEk3W95CTgHyq5GOg1LLqM6BD/NLM5zrPeY6cwb7MXOgH71HJwDw61YP5g7zLZJMI/mi3p5IQMUkHGyzGLTkdWystARVumk49+W+UAYufoNZW5rTr00YAFt/r8WQpR0YurQ977Q4UaQyZmPuuqtSTY29QsuY7jWxsdERUDPVcK7X8KvMGRHA7A8D6DU8DoDP5/gwtkcNZg8LoMvAa6bLCbyHvYOWce83wNpGh39wsuHcOx+cZ97kUOZMrE3PAecBmDe5NhMGvsSOzZU5drhskcpoLnRIaAt5lJaeihI1Knbv3k3jxo1xcXHB3d2d9u3bExMTYzh/7do1unXrhpubG0qlkrp16/LPP/8Yzv/888+8+OKL2Nvb4+HhQadOnQznMjIyGD16NBUqVECpVFK/fn0OHDhgOH/lyhU6dOiAq6srSqWS6tWrs2vXLgDu3r1Ljx49KFOmDA4ODvj7+7NhwwZD2lOnTvHKK6/g4OCAu7s777//Pmq12nC+T58+dOzYkZkzZ1K+fHkCAwOZMWMGNWrUyFMHoaGhTJkypUj1mHVai009faeTbV1rMk/neEDMuqQj/YsHJA9Rk3lKb2xImRKZZ7KwqWk+oyLohXTCD+k900X8qSK4btpTUgg5xSEn6IU0wg/pv/wiDjsSXCcnP5WzllsJtty+YYvSWd9GkpNsMOdQrai3J1PdN5Hj0fqegX/PV6CGb45RkXBHLz9LK0er0z+as//a2WRxKcG14ALzwex1F5pKxF8u+vyOuBBUO+dZqHLOIumGHbcT7VA56etOm6Uvk71Cx6UopelyaiQTccwDgMhj7gTVTM6R45hJ0k0Hbt+yR+mYZZSuQfNEjvxRrjBFMzvZwx+FPUoDJWpUpKWlMXLkSP7991/279+PXC6nU6dO6HQ61Go1zZo1Iz4+np9++okTJ04wduxYdDr9DNidO3fSqVMn2rZtS0REBPv376devXqGvIcMGcLRo0fZtm0bJ0+e5K233qJNmzZcuHABgMGDB5ORkcGhQ4c4deoUc+fORaVSATBlyhTOnj3Lr7/+SlRUFCtXrsTDw8Ogc+vWrXF1deX48eN888037Nu3jyFDhhiVbf/+/URHR7N3715++eUX+vXrR1RUFMePHzfEiYiI4OTJk/Tt2zff+snIyCAlJcXoyA+dWkKu1Htbk6lkSOqcxpd5KgtFL3ucZihQL78PwIOdGuxam9cznspJS3qqvjmlpVoZHiDmRsgxIT/1w/xSjPOT53LIV1y++US9PRlHBw1pD/T3nvq+LY4OGXnifND+GN8eyvkAGfXWYTaN+5awC+YZSiqeurPKlV/OS93IGWuuypuy/BwzN5wl8oiLyXKUjpncV+s/ntLVNqgcMw3n5PKcZ55MlvO/lZUO3yqpxEQXv9tvU8ieqFnYozRQonMqOnfubPR7/fr1lClThrNnz3LkyBFu3brF8ePHcXNzA6Bq1aqGuDNnzqRr165Mnz7dEBYSEgJAXFwcGzZsIC4ujvLl9eOdo0ePZvfu3WzYsIFZs2YRFxdH586dqVmzJgCVK1c25BMXF0ft2rWpW7cuAL6+voZzW7Zs4cGDB3zxxRcolXore9myZXTo0IG5c+fi6ekJgFKp5PPPP8fWNufl3bp1azZs2MCLL74IwIYNG2jWrJmR7NzMnj3bqHyPQ66SoUvTNzgpTUKmyrl7rSrJsfbV3/AyGUhZEppjWTjPUpJ1Jivf/ApDWqoVCke9wadQaVGnFI8rZCHHhPxUD/NzNM4v9yNJV0zPJ1FvT0Z93xalvX44VGmfSep9Y3fUbzc7xeUbrpy8lPNlveCbxqz6uR6rh//I3rCqFJXiqTttrvxyvVZy1Vduh5AfDw7Co1wGk5ZGM+KtWqbJUVvjoNI/sxTKLNSpOXPBJCnnmafT5fxfs85tToW7FaQ4giJSoj0VFy5coFu3blSuXBknJyfDyzsuLo7IyEhq165tMCgeJTIykhYtWuR77tSpU2i1WgICAlCpVIbj4MGDhuGVYcOG8cknn9CoUSOmTp3KyZMnDekHDhzItm3bCA0NZezYsRw5csRwLioqipCQEINBAdCoUSN0Oh3R0dGGsJo1axoZFAD9+/dn69athi1wt2zZQr9+/R5bPxMmTODevXuG4+rVq/nGs65hRea/+ptNczwLmxo5Dwkrbyu0STqk+xKSFnR3JXQ3dCSPUPPgt0zSVj5Al1L09c9RYQpCG+vHUms3UXMuzPRuTSHHfHKiwpQ5+TVO5Vx4Tn6pyVZ4eGlw89SQnlo8L3tRb0/m9GVP6gTEA1A3MJ4zl3PG+usFXqOGXyIb9+RsRGZjpX9ZZ2RakfbAPBOqzV53EY6ENtRvQFi7YTLnIlWGc6nJ1niUy8CtrMbQm2Fjq3/e3E+z4kG66fV57pQroXWTAAitl0T0aZccOSk2uJe9j5vHA+6n5Rg1DZsncuTAszH0AaAr4lEaKNGeig4dOuDj48PatWspX748Op2OGjVqoNFocHBweGLaJ51Xq9VYWVkRFhaGlZVxo80e4njvvfdo3bo1O3fuZM+ePcyePZsFCxYwdOhQXnvtNa5cucKuXbvYu3cvLVq0YPDgwXz66acmly230ZG7vHZ2dnz//ffY2tqSmZnJ//73v8fmYWdnh53d0zfWsQm0JsNWw92BqVj7W2HlKSdt4wOUfexRvmdP6tQ0pAxQ9LPHqowc1/X68dS0z+9jE2KN3KnotuXFUwo0GXdZ8P1FYs7YEx1ZPLsZCjlPye+0Ak2GjAU7ook5q+BmvC3dhiawdakXmxd4MXFFLADLJulXN7TumkSHXrdwdNGics5i+eRKz1R5LCXHUvV2/poHmixrVgz7iQvx7iTeVdHr1XC+2PsCIzr/RVqGLUuH/ELcTWfmf92U4Z2PUKlsMjbWOrb8HlKkMhrKaua6izmrQpNxi/lbTnEpSsmt63Z0HXiNbSsrsnmJN+MX6SdOrpiu75Edv+g8Kqcs5HKJjQt8TJcT7YxGY8XcNUeJPe/ErUQHuvS9yPYNVflqjT/jZ0YCsHJe9YcpJIJqJrNyfvXH5mlpsiddFjZtaUAmSSUzUHP79m08PDw4dOgQTZrol/ocPnyYJk2a8P3333Pv3j2GDRtGbGxsvr0VL7/8MhUqVODLL7/Mc+78+fMEBgYa5f00JkyYwM6dO416LLJZvXo1Y8aMISUlhbVr1zJu3DiuXr1qMBx27dpFhw4duH79Op6envTp04fk5GR++OGHPHmNGzeOiIgIbG1tqVChAqtXrzZJP4CUlBScnZ35375exb5L6a2GycWav8AMiK3PC4eltj7vXNciclTf/PP0SGZCns/HUrHIcXUpdhlZugz2xa/i3r17ODmZvqy1MGQ/u0+eLYtjIbc+T03VUavaTYvoWxRKbPjD1dUVd3d31qxZw8WLF/n9998ZOXKk4Xy3bt0oV64cHTt25K+//uLSpUvs2LGDo0ePAjB16lS2bt3K1KlTiYqKMky2BAgICKBHjx706tWL7777jtjYWI4dO8bs2bPZuXMnAMOHD+e3334jNjaW8PBw/vjjD4KDgwH46KOP+PHHH7l48SJnzpzhl19+MZzr0aMH9vb29O7dm9OnT/PHH38wdOhQevbsaZhP8STee+89fv/9d3bv3v3EoQ+BQCAQCEobJWZUyOVytm3bRlhYGDVq1GDEiBHMnz/fcN7W1pY9e/ZQtmxZ2rZtS82aNZkzZ45hOKN58+Z88803/PTTT4SGhvLKK69w7NgxQ/oNGzbQq1cvRo0aRWBgIB07duT48eNUqqTvptRqtQwePJjg4GDatGlDQEAAK1asMMieMGECtWrVomnTplhZWbFt2zYAFAoFv/32G3fu3OHFF1/kf//7Hy1atGDZsmUmldvf35+GDRsSFBRE/fr1zVKXAoFAIHj2+S/MqSix4Y//KpIk4e/vz6BBg4x6ZkxBDH8IjBDDH4VDDH8UGjH8UTiyn93hZz1RFXL4Q52q44VqiWL4Q5DDrVu3WLZsGTdu3HisbwqBQCAQPJ/opKIdhWH58uX4+vpib29P/fr1jXr082PRokUEBgbi4OCAt7c3I0aM4MGDBybLE3t/WJCyZcvi4eHBmjVrcHU1j3c8gUAgEAjyY/v27YwcOZJVq1ZRv359Fi1aROvWrYmOjqZs2byuy7ds2cL48eNZv349DRs25Pz58/Tp0weZTMbChQtNkimMCgsiRpoEAoHgv4sWGdpC+mUtTLqFCxfSv39/Q8/4qlWr2LlzJ+vXr2f8+PF54h85coRGjRrRvXt3QO/4sVu3bkbbYzwNMfwhEAgEAoEFyDYqCnsAebZuyMjI6+od9BtZhoWF0bJlS0OYXC6nZcuWhlWUj9KwYUPCwsIMQySXLl1i165dtG3b1uQyip4KgUAgEAgsgE6SoZMK11ORnc7b29sofOrUqUybNi1P/KSkJLRabR5XB56enpw7dy5fGd27dycpKYnGjRsjSRJZWVl88MEHTJw40WQ9hVEhEAgEAkEp4erVq0arP0zxumwqBw4cYNasWaxYsYL69etz8eJFPvzwQz7++GOTd9MWRkUpJKnlPaxl5tkH4HHsuPZ3seafTeeKL1lEznPJ87bU01JYqN6cdp22iBydpZYWA7q04tnKPg9Vi+Yu3hR02gyIL3YxRphjToWTk5NJS0o9PDywsrIiMTHRKDwxMZFy5fLfD2XKlCn07NmT9957D9DvYZWWlsb777/PpEmTkMufPmNCzKkQCAQCgcACaJEX6SgItra21KlTh/379xvCdDod+/fvp0GDBvmmSU9Pz2M4ZDucNHWhgeipEAgEAoHAAkhFmFMhFSLdyJEj6d27N3Xr1qVevXosWrSItLQ0w2qQXr16UaFCBWbPng3oN71cuHAhtWvXNgx/TJkyhQ4dOuTZnPNxCKNCIBAIBILnkC5dunDr1i0++ugjbty4QWhoKLt37zZM3oyLizPqmZg8eTIymYzJkycTHx9PmTJl6NChAzNnzjRZpnDTXYrIdvXanDfEnAqB4BnHUi6tdfdN93ZYdGGWmY8iDwkudhlZ2gx+PzXPom6695zyQVlIN91pqTpa1bzyzLvpFj0VAoFAIBBYAK0kRysVzqjQlpLPf2FUCAQCgUBgAXTI0BVyfYSO0mFVCKNCIBAIBAILYGk33SWBWFKaDxs3bsTFxeW5kSMQCAQCgSUQPRX50KVLlwL5On+WGTAtnoCQ+1w45cCqjyoUOb8N03yIOanEr0Ya7864Ygg/8osbP64sj0wGbw6Np17ruwBk3JcxqGFthi25SEiTlCLLB/OXScgRciwp5/2JsfjXUHPxrIrVn/gZwn380xg64xLIYNnUylyOVjJgcixVgtOwsdOxdpYvZ8NNn6A3YOo1AmqlceG0glVTc1w7+wTeZ9jsOGQyWDrRm9goBd2GJtChdxK/bXdn0/zyRS6jQQdz19374fj73+HiRTdWr37BEN616xnat7/Anj2V+eKLWgAMHXocH597ACxbVpfLl12KLL+oFG1ORekY/hA9Ffng4OCQ77awpY2qNdNxUOoY1akqNjYSASHpRcrv0ikFD9LkfPLdWbIy5VyMzJnd/staL2Z8e5bp35zh5zVehvD9W8tSKahocnNj7jIJOUKOJeVUqabGXqFlTPea2NjoCKiZajjXa/hV5owIYPaHAfQaHgfA53N8GNujBrOHBdBl4DXT9a6RjoNSy6jOgQ/1zvGE2XvMdeYM9mPmQD96j04A4NetHswd5luksuXRwdx1V+UO9vZZjBnTUl93AbcN53bvrsK8ecYOnb7+OpjRo1uycGF9evSwjHfTp6GfU1H4ozTwXBoVu3fvpnHjxri4uODu7k779u2JiYkB4PLly8hkMr777jtefvllFAoFISEhRru2PTosMW3aNEJDQ1m/fj2VKlVCpVIxaNAgtFot8+bNo1y5cpQtWzbPWt6FCxdSs2ZNlEol3t7eDBo0CLVabZE6AAh6IZ3wQ44ARPypIrhu0Vzsng93pFZTveVfq/E9osMcDec8fR7wIF3Og3QrHBz1y84yNTLOhzsSVNd8ZTZ3mYQcIceScoJCU4n4y0Wf3xEXgmrn3Bsq5yySbthxO9EOlZP+HtJm6R/R9godl6JMX6Ia9EIa4Yf0vRoRhx0JrpOjt8pZy60EW27fsEXprJeTnGSDuT+EzV53QbeJiNC7l46I8CQoKMeoSE62z6N/YqIKgKwsGTrds/FC1hXBm2ZhJ3hamtKhZQFJS0tj5MiR/Pvvv+zfvx+5XE6nTp3Q6XSGOJMmTWL06NFERkYSEBBAt27dyMrKemyeMTEx/Prrr+zevZutW7eybt062rVrx7Vr1zh48CBz585l8uTJRvvOy+VylixZwpkzZ9i0aRO///47Y8eOLday50blpCU9VX+J01KtDA+qwpKWYoVCpc9D4ZRFWkqOh7X6be4wunVNRreqRdu+NwD44+syNH0zqUgyH8XcZRJyhBxLylE5aUlXW+XKL+eZI8v9NM71Dpyy/BwzN5wl8ohLAeU81DvFWG95rryL81Vr9rpTaUhP1/vnSUuzQaXSmJSub9+T/PRTQJFkC0znuZxT0blzZ6Pf69evp0yZMpw9exaVSm+9jh49mnbt2gEwffp0qlevzsWLFwkKCso3T51Ox/r163F0dKRatWq8/PLLREdHs2vXLuRyOYGBgcydO5c//viD+vXrAzB8+HBDel9fXz755BM++OADVqxYYVI5MjIyyMjIMPxOSSnYnIS0VCsUjnpDSqHSok4p2sZDCsecB+L9VCuUuR4S3yyqyOI/TgIws1cgNRvdI/KgM2PXXuBChKpIcnNj7jIJOUKOJeWkpeYyzFVa1Cm5HsG5vrSlnO8fPh4chEe5DCYtjWbEW7UKIOeh3o7Geuf+oNcV4zC92esuzRaFIlOfnyITtdr2qWk6dowmLs6JM2fKFEm2uRBzKkopFy5coFu3blSuXBknJyd8fX0BvUvSbGrVyrk5vbz0cwBu3rz52Dx9fX1xdMzV3e/pSbVq1YxcnHp6ehrlsW/fPlq0aEGFChVwdHSkZ8+e3L59m/R008YWZ8+ejbOzs+Hw9vZ+eqJcRIUpCG2sH7Ot3UTNubCiefgLrJPKqcPOAJw87EzACznjwTa2EnYOWuwUWrI0cpJv2ZB03Y6PewRx6DsPvppTCXVy0R/85i6TkCPkWFJOVIQjoQ31Q4i1GyZzLjLH4E5NtsajXAZuZTUG493GVv9Svp9mxYN00++fqDBljt6NUzkXnqN3arIVHl4a3Dw1pKcW3w6nZq+7KHdCQ/U7btaunci5c+5PjP/CCwkEByexdWv1Isk1J7qHwxiFPUoDpUPLAtKhQwfu3LnD2rVr+eeffwxDEhpNTneZjU2Om2uZTN8JmHt45FFyx89Ok19Ydh6XL1+mffv21KpVix07dhAWFsby5cvz6PEkJkyYwL179wzH1atXTUqXzcVTCjQZchZ8fxGdDqIjFQVK/yiVa6ZjY6dj8pvVkMvBo4KGb5foZ4q36pXIpI41mPRGDV7tkYi7Vybzdp5mylfnaPpmEj3Gx6FyKXoXtbnLJOQIOZaUE3NWhSZDzvwtp9BpZdy6bkfXhxMwNy/xZvyi80xcEs3mxfqtv8cvOs/cL08zbXUUXy4x/aPi4mkFmgwZC3ZEo9PJuBlvS7eh+kmZmxd4MXFFLJNXxfLFp/oPqtZdk3h/yjVe6XSHwZ/EPSlr03Uwd93FuKHRWDF//j50Ohm3bino2vUMAK1axdC/fyQvv3yFQYP+BWDgwHDKlUtj7tzfGTr0eJHLYw60kqxIR2nguRv+uH37NtHR0axdu5YmTZoAcPjwYYvrERYWhk6nY8GCBYbejK+//rpAedjZ2WFnZ1ckPcy91C73MlKA/w27DsArb9/ilbdv5ZumyyjTZ62bQnEuHxRyhJzilpN7GSnAtpUVAbgcrWR015pG5z4elP9wrCnkXkYKsHWp3oCIjVIwslOg0bnftnnw2zaPQst6rA7mrrtcy0gBtm3T90Ls2VOFPXuqGJ3r37+dWWULTOO5MypcXV1xd3dnzZo1eHl5ERcXx/jx4y2uR9WqVcnMzGTp0qV06NCBv/76i1WrVllcD4FAIBA8G2Sv5ChcWjGnokSQy+Vs27aNsLAwatSowYgRI5g/f77F9QgJCWHhwoXMnTuXGjVq8NVXXxn2rBcIBALBfw+dJC/SURoQW5+XIsTW5wJB6UFsfV54ntetz9eG10HhWLjJsempWvq/EPbMb31eOkwfgUAgEAgEzzzP3ZwKgUAgEAieRXRQ6FUcj1+b+GwhjAqBQCAQCCxAUfxNlBY/FcKoEAgEAoHAAhTNo2bpMCpKh5YCgUAgEAieeURPhUAgEAgEFqAoW5iXlq3PhVEhyBdLLfV8//wli8hZE1DZInIsiXVFy3iUzLoWbxE5VtUDnx7JDGjPRFtEjsWWelpomaclkSfeKX4ZOtO2SzAn/4XhD2FUCAQCgUBgAYrmUbN0GBWlQ0uBQCAQCATPPKKnQiAQCAQCC6CTZOgK66dC7FIqEAgEAoEgG10Rhj+EnwqBQCAQCAQGirIxWGnZUKx0aCkQCAQCgeCZRxgVAoFAIBBYAC2yIh2FYfny5fj6+mJvb0/9+vU5duzYY+M2b94cmUyW52jXrp3J8v4zRsXGjRtxcXEx/J42bRqhoaElpo9AIBAI/ltkD38U9igo27dvZ+TIkUydOpXw8HBCQkJo3bo1N2/ezDf+d999R0JCguE4ffo0VlZWvPXWWybL/M/OqRg9ejRDhw4taTWKnQHT4gkIuc+FUw6s+qh4nSWZU9aRWe4knbLFo7qGhpNvG8L3DS/L/SQrtBoZ2gcyOv8Uz79LXLm8V4Gdsw6fV9Kp1e9eUYsCWK7uzC2n/4izVA2+R8w5Z9YsrGYI96mcyuDxp5HJYPnc6ly+6MTYTyJwdc/AxlaHnZ2Woe80KbJ8s5fngwj8A+4Sc9GV1StqG8K7dD9L+9cvsne3H19srPnYsKJi7vIMmHqNgFppXDitYNVUb0O4T+B9hs2OQyaDpRO9iY1S0G1oAh16J/Hbdnc2zS9fZNkGHUpr2x51jqrVUoiJcmLNp0GGcJ8qqQyeGKVv27ODuXzBEZVTJkMmnsXJVcOJY+5sX1fyDvC0UOgeh8K4OFu4cCH9+/enb9++AKxatYqdO3eyfv16xo8fnye+m5ub0e9t27ahUCgKZFT8Z3oqHkWlUuHu7l7SahQrVWum46DUMapTVWxsJAJC0kuFrKQztmSlyXh9awLaTBk3T9oZzrVcdJMOXyYQ8l4ylV7OkfHS+Dt0+DLBbAaFperO3HKqBN7D3kHLuPcbYG2jwz842XDunQ/OM29yKHMm1qbngPMAzJtcmwkDX2LH5socO1y2SLKhGMpT9S4ODlmMHfkK1tY6/ANyPC3+tqsy82cbe37NL6womLs8VWuk46DUMqpz4MP80gzneo+5zpzBfswc6Efv0QkA/LrVg7nDfIskM48OpbVtB6Xo2/a79fRtu1rOvf7OwBjmTazFnHG16DnwIgDd34/hy1VVmTjgxWfCoLA0Go2GsLAwWrZsaQiTy+W0bNmSo0ePmpTHunXr6Nq1K0ql0mS5z4RRsXv3bho3boyLiwvu7u60b9+emJgYAC5fvoxMJmPbtm00bNgQe3t7atSowcGDBw3pDxw4gEwmY+fOndSqVQt7e3teeuklTp8+/ViZjw5/HD9+nFdffRUPDw+cnZ1p1qwZ4eHhRmlkMhmff/45nTp1QqFQ4O/vz08//WQU58yZM7Rv3x4nJyccHR1p0qSJoSwAn3/+OcHBwdjb2xMUFMSKFSuKUnVPJOiFdMIPOQIQ8aeK4LppT0nxbMhKjLSnQqP7AFRoeJ+bkXZ54lzeq8SvVY6MY5+6sbN3OZLO2hZabm4sVXfmlhNUI5mIYx4ARB5zJ6hmsuGcyjGTpJsO3L5lj9Ixyyhdg+aJHPmjXJFkQzGUJ/g2EWF6vSLDPQmulmQ4l5xsjyQZx88vrEjyzV2eF9IIP+Skz++wI8F1cvJTOWu5lWDL7Ru2KJ3136XJSTZmLY9eh1LatmsmE/GP/kMw8h93gmolG86pnDJJSrQ3ats+VdW83e8Ss1cfN4pbkphj+CMlJcXoyMjIyFdWUlISWq0WT09Po3BPT09u3LjxVF2PHTvG6dOnee+99wpUxmfCqEhLS2PkyJH8+++/7N+/H7lcTqdOndDpdIY4Y8aMYdSoUURERNCgQQM6dOjA7du3jfIZM2YMCxYs4Pjx45QpU4YOHTqQmZlpkg6pqan07t2bw4cP8/fff+Pv70/btm1JTU01ijd9+nTefvttTp48Sdu2benRowd37ui/nuLj42natCl2dnb8/vvvhIWF0a9fP7Ky9I38q6++4qOPPmLmzJlERUUxa9YspkyZwqZNm4pSfY9F5aQlPVV/idNSrVA5Fd8eAeaUpUmRY6vSX3tblY6MFONmqsuEO+f1QyMANXrd483v42k8PYkjH5un98lSdWduOUrHTO6r9aOa6WobVI457V8uz3k7yWQ5/1tZ6fCtkkpMtHORZEMxlEelIT1dX560NBuUKtPuZ3Nh7vKonLSkqx/ml2KcnzxXr3hxujkqvW07i/tp2W3bGlUuwzi/th1cK5lvNvgxd0It+n14vkiyzUX23h+FPQC8vb1xdnY2HLNnzy4WXdetW0fNmjWpV69egdI9E3MqOnfubPR7/fr1lClThrNnz6JSqQAYMmSIId7KlSvZvXs369atY+zYsYZ0U6dO5dVXXwVg06ZNVKxYke+//5633377qTq88sorRr/XrFmDi4sLBw8epH379obwPn360K1bNwBmzZrFkiVLOHbsGG3atGH58uU4Ozuzbds2bGxsAAgICDDSb8GCBbz55psA+Pn5cfbsWVavXk3v3r3z6JSRkWFkhaakpDy1HLlJS7VC4ah/OStUWtQpVgVKX1KybB11aB4+eDPVMuycdEbnrx9zwKt+zmZN9i76886+xl/fRcFSdWduOWlqaxxU+npQKLNQp9oYzkm5PPLpdDn/16xzm1PhxmOphZZv5vKkp9mgUGSXJ5M0tc1TUpgXs1+fVCsUDw1mhaNxfrk7JHRm7p3Io0NpbdvKh21BlYU6Nef1lV/bjo9TcDVW9fB8kUSbDakIu5RKD9NdvXoVJycnQ7idXd6eXAAPDw+srKxITEw0Ck9MTKRcuSf3SqalpbFt2zZmzJhRYD2fiZ6KCxcu0K1bNypXroyTkxO+vr4AxMXFGeI0aNDA8L+1tTV169YlKirKKJ/ccdzc3AgMDMwT53EkJibSv39//P39cXZ2xsnJCbVabaQDQK1atQz/K5VKnJycDDNpIyMjadKkicGgyE1aWhoxMTG8++67qFQqw/HJJ58YDY/kZvbs2UYWqbe3d77xHkdUmILQxvqeltpN1JwLM31crKCYU5Zn7QfEH3UAIP6oA2VDjLv3Lu9V4PdqTleqRq2/2R7ckaPTmucbz1J1Z2455065ElpXP0QQWi+J6NMuhnOpKTa4l72Pm8cDwxcfQMPmiRw5UPShDzB/eaLOehBSW/9QDK2dyLkoy86DMnt5wpQ5+TVO5Vx4Tn6pyVZ4eGlw89SQnlp8HwCltm2fdCG0nr5XOLTebaJPuRjOpd6zwb3sA6O2ff2KElePDOzss7CyekasCjPg5ORkdDzOqLC1taVOnTrs37/fEKbT6di/f7/RuzI/vvnmGzIyMnjnnXcKrN8zYVR06NCBO3fusHbtWv755x/++ecfQD/RxFL07t2byMhIFi9ezJEjR4iMjMTd3T2PDo8aDDKZzDBM4+Dg8Nj81Wo1AGvXriUyMtJwnD59mr///jvfNBMmTODevXuG4+rVqwUq08VTCjQZchZ8fxGdDqIjFQVKX1KyPKprsLaT+KmbFzI5qMpnEb7SBdB/cSRG2FOuTk5Pxd9z3fmxa3l2f1COeqPNs2WyperO3HJiop3RaKyYu+YoOp2MW4kOdOmrn7j21Rp/xs+MZMLsCL5cnd2DJhFUM5mzka5FLIkes5fnoiuZmVbMW/i7vjw3FXTpfhaAVm0u8d6AEzR/JY5BQ8MeG/YslefiaQWaDBkLdkSj08m4GW9Lt6H6SZmbF3gxcUUsk1fF8sWnXgC07prE+1Ou8UqnOwz+JO5JWZuuQ2lt2+ec0GTImbvumL4t3LCny7uXAPhqdRXGzznJhHkn+XJlFQC+XFWFsbNOMnv1v2z7/NmYqGmO4Y+CMHLkSNauXcumTZuIiopi4MCBpKWlGVaD9OrViwkTJuRJt27dOjp27FioxQwlPvxx+/ZtoqOjWbt2LU2a6JezHT58OE+8v//+m6ZNmwKQlZVFWFgYQ4YMyROnUqVKANy9e5fz588THBxskh5//fUXK1asoG3btoC+iykpKekpqYypVasWmzZtIjMzM4/x4enpSfny5bl06RI9evQwKT87O7vHWqGmUtzLSItLVu5lpAAvDEwGQCaDzj/GG51r+nHBrpOpWKruzC0n9zJSgO0bqgJw+aITY/o/+oUiY1jPxmaVb+7y5F5GCrB9i758e3ZXZs9u45dFfmFFxdzlyb2MFGDrUr0BERulYGSnQKNzv23z4LdtHmaVD6W4bedaRgoYVnVcvuDImH7GY/9XY1VMeP9Fs8ovKpbeUKxLly7cunWLjz76iBs3bhAaGsru3bsNkzfj4uKQy42NlejoaA4fPsyePXsKpWeJGxWurq64u7uzZs0avLy8iIuLy3f97PLly/H39yc4OJjPPvuMu3fv0q9fP6M4M2bMwN3dHU9PTyZNmoSHhwcdO3Y0SQ9/f382b95M3bp1SUlJYcyYMU/seciPIUOGsHTpUrp27cqECRNwdnbm77//pl69egQGBjJ9+nSGDRuGs7Mzbdq0ISMjg3///Ze7d+8ycuTIAskSCAQCQelCW4QNxQqbbsiQIXk+wLM5cOBAnrDAwECkIkxCKfHhD7lczrZt2wgLC6NGjRqMGDGC+fPn54k3Z84c5syZQ0hICIcPH+ann37Cw8MjT5wPP/yQOnXqcOPGDX7++WdsbU1bYrhu3Tru3r3LCy+8QM+ePRk2bBhlyxZs3b67uzu///47arWaZs2aUadOHdauXWvotXjvvff4/PPP2bBhAzVr1qRZs2Zs3LgRPz+/AskRCAQCgeBZRCYVxSSxAJcvX8bPz4+IiIjHutU+cOAAL7/8Mnfv3jVyxf28kZKSgrOzM815A2uZZWfBFxfvn79kETlrAp6NMVVzYl3RMl3YWdfinx7JDFhVD3x6JDOgPRNtETnIi2+ypRG64lsqXlJYl/N8eqQikqXTsC9xLffu3TNaTVEcZD+7hx1+AztV4Z7dGepMljT+0SL6FoUSH/4QCAQCgeC/gA45ukIOEBQ2naURRoVAIBAIBBZAK8nQFnKiZmHTWZpn3qjw9fV96qSR5s2bF2liiUAgEAgEgqLzzBsVAoFAIBA8D1h6SWlJIIwKgUAgEAgsgJRrY7DCpC0NCKNCIBAIBAILoEWGtpB7fxQ2naURRkVpRG4FsmJermahZWqWWuppqaWrYLky6e4mW0SOXFl8e8bkRht10SJyLLXU08rNxSJytEm3nx7JXFio7iRnx+KXoc2AxKfHExQMYVQIBAKBQGABdFLh50YU58615kQYFQKBQCAQWABdEeZUFDadpRFGhUAgEAgEFkCHDF0h50YUNp2lKR2mj0AgEAgEgmce0VMhEAgEAoEFEB41BQKBQCAQmAUxp0IgEAgEAoFZ0FEEj5piTkXROXDgADKZjOTk5JJWpdDIZDJ++OGHklZDIBAIBIJi5z/VU3HgwAFefvll7t69i4uLi0VkJiQk4OrqWuxyBky9RkCtNC6cVrBqqrch3CfwPsNmxyGTwdKJ3sRGKeg2NIEOvZP4bbs7m+aXN58O0+IJCLnPhVMOrPqogtnyLU45R2a5k3TKFo/qGhpOznEitG94We4nWaHVyNA+kNH5p3j+XeLK5b0K7Jx1+LySTq1+94paFMD89fb+xFj8a6i5eFbF6k/8DOE+/mkMnXEJZLBsamUuRysZMDmWKsFp2NjpWDvLl7PhTs+cHEu1bUvJ6T/mAv7VU4iJcmT13IAcOVXVDJkcjUwGyz4J5PIFFSM+PkulyulkPJCze0d5DuwqVyBZjy2rmducpZ8//QedwD/wLjEXXFi9LNQQ3qXHOdp3jGHvr758sb56UYtldqQirP6QRE9F6UWj0Zgtr3LlymFnZ2e2/PKjao10HJRaRnUOxMZGIiAkzXCu95jrzBnsx8yBfvQenQDAr1s9mDvM17w61EzHQaljVKeqD3VIN2v+xSEn6YwtWWkyXt+agDZTxs2TOdep5aKbdPgygZD3kqn0co6Ml8bfocOXCWYzKMxdb1WqqbFXaBnTvSY2NjoCaqYazvUafpU5IwKY/WEAvYbHAfD5HB/G9qjB7GEBdBl47ZmTY6m2bSk5VYJTcVBkMbZPHaxtJPyrpxjO9Rx8ibnjqjN7TA16DsnxADtvfDXGv/uC2QwKc7c5Sz9/qvjfxcEhi7EfNsfaWod/4B3Dud92+TJ/5ouFzru4yd5QrLBHaaDEjQqdTsfs2bPx8/PDwcGBkJAQvv3228fGP3z4ME2aNMHBwQFvb2+GDRtGWlpOI87IyGDcuHF4e3tjZ2dH1apVWbduHZcvX+bll18GwNXVFZlMRp8+fQD91ulDhgxh+PDheHh40Lp1awAOHjxIvXr1sLOzw8vLi/Hjx5OVlWWQ1bx5c4YNG8bYsWNxc3OjXLlyTJs2zUjfR4c/rl27Rrdu3XBzc0OpVFK3bl3++eefItVh0AtphB/Sf/lFHHYkuE5OfaictdxKsOX2DVuUznrX28lJNph7p/igF9IJP6R3rRvxp4rgumlPSVHychIj7anQ6D4AFRre52ZkXuPv8l4lfq1yZBz71I2dvcuRdNa20HJzY+56CwpNJeIvF31+R1wIqq02nFM5Z5F0w47biXaonPRtQZulfwTYK3RcijLdHbfF5FiobVtMTq17RBx1AyDyb1eCQ3KMU5VTFkmJ9ty+aYfK8eFzRoJRM88ydekJynrdL7jA/HQwd5uz8PMnqNodIsI8AYgM9yS4eo5RkXzXHukZfvlmT9Qs7FEaKHEtZ8+ezRdffMGqVas4c+YMI0aM4J133uHgwYN54sbExNCmTRs6d+7MyZMn2b59O4cPH2bIkCGGOL169WLr1q0sWbKEqKgoVq9ejUqlwtvbmx07dgAQHR1NQkICixcvNqTbtGkTtra2/PXXX6xatYr4+Hjatm3Liy++yIkTJ1i5ciXr1q3jk08+MdJp06ZNKJVK/vnnH+bNm8eMGTPYu3dvvmVVq9U0a9aM+Ph4fvrpJ06cOMHYsWPR6XRFqkOVk5Z0tf5SpqVYGR7kAPJc91dx3moqJy3pqQ91SDXW4VmVo0mRY6vS172tSkdGivHtoMuEO+f1QyMANXrd483v42k8PYkjH7sXWm5uzF1v+rZglSu/HCNYlrt4uRrDlOXnmLnhLJFHXJ5ROcXfti0lR+mYRXqaftQ5LdUapWNOvcnlOW9amUz//9pP/Rndqy7frPfhvdHm2RuleNqc5Z4/SlVmTh2qrVGqMs2Us8AclOicioyMDGbNmsW+ffto0KABAJUrV+bw4cOsXr2a999/3yj+7Nmz6dGjB8OHDwfA39+fJUuW0KxZM1auXElcXBxff/01e/fupWXLlob8snFz038hlC1bNs+cCn9/f+bNm2f4PWnSJLy9vVm2bBkymYygoCCuX7/OuHHj+Oijj5DL9TdRrVq1mDp1qiGPZcuWsX//fl599dU85d2yZQu3bt3i+PHjBl2qVq36xPrJyMgw/E5JSck3XlqqFYqHL0eFoxZ1Ss6mP7k/CIrTd3xaqhUKx4c6qIx1eFbl2Drq0Dx8GGaqZdg5GRt314854FX/geG3vYv+vLNvFubC3PWmbwvaXPnlusVzXX8pV1E/HhyER7kMJi2NZsRbtZ5BOcXfti0lJz3VGoVS334UqizSUnPqLfcXtk6n/1+dYgPA2QgX+n4YUzThDymeNme55096mk1OHSqzSFPbmCdjC1CUYQwx/GECFy9eJD09nVdffRWVSmU4vvjiC2Ji8t5AJ06cYOPGjUZxW7dujU6nIzY2lsjISKysrGjWrFmBdalTp47R76ioKBo0aIBMlnMhGzVqhFqt5tq1nDHhWrWMH45eXl7cvHkzXxmRkZHUrl3bYFA8jdmzZ+Ps7Gw4vL29840XFaYktLF+TLt241TOhed0L6cmW+HhpcHNU0N6avHtMBgVpsjRoYmac2HFs7OlOeV41n5A/FEHAOKPOlA2JMPo/OW9CvxezenK1aj1beHBHTk6rXlucHPXW1SEI6EN9V3qtRsmcy5SZTiXmmyNR7kM3MpqDL0MNrb6l8H9NCsepJvePiwmx0Jt22JyTjoTUv8uAKEv3eXcSeccOfescfd8gFuZDMOXuMPDl2cF3zQjA6RIOpi7zVn4+RN1xo2QF/TP2NA6Nzl31rTn6bNAtpvuwh6lgRLtqVCr9eOwO3fupEIF4xnIdnZ2eQwLtVrNgAEDGDZsWJ68KlWqxMWLhe8eVBZye2cbG2MrWSaTPXY4w8HBoUB5T5gwgZEjRxp+p6Sk5GtYXDytQJMhY8GOaGLOKrgZb0u3oQlsXerF5gVeTFwRC8CySfq0rbsm0aHXLRxdtKics1g+uVKB9MqPi6cUaDLusuD7i8ScsSc6UlHkPItbjkd1DdZ2Ej9188I9WIOqfBbhK114YWAykgSJEfY0+ihnRcjfc925e8EWSQf1Rt95Qs6mY+56izmrQpNxi/lbTnEpSsmt63Z0HXiNbSsrsnmJN+MXnQdgxXR9D974RedROWUhl0tsXODzzMmxVNu2lJyYKEcyNXLmbQzj0jlHbiXY0aX/Zbav9eXLFZWZMO+Mvt5m6VeFjJ1zBpVjFhKw/JNAk+vtiWU1c5uz9PMn5oIrmZorzFt8gEsXXbiVqKBLj3Ns/yqIVm1jaffGJRwdNagcNaxYXLtIZTM3/4WeCpkkmXvKnumkpqZSpkwZ1q5dS8+ePfOcf3QJaI8ePUhMTGTfvn355nf58mUqV67Mnj17DMMfuTly5AiNGjUiKSkJd/ecMfHmzZsTGhrKokWLDGGTJk1ix44dREVFGXorVqxYwfjx40lOTkYul+ebrmPHjri4uLBx40ZAb2R8//33dOzYkU2bNjFs2DBiY2NN7q3ITUpKCs7OzjSXv4m1rJi7/HTFMyeipHj//KWnRzITawIqPz2SGZAX0hB+VtHdf/D0SKUIKzcXi8jRJt1+eiRzIS++3s7cWPn7PT1SEcnSZrD/wmfcu3cPJyfTlzgXhuxnd7vf3sNGWbhJ3plpGna2/twi+haFEh3+cHR0ZPTo0YwYMYJNmzYRExNDeHg4S5cuZdOmTXnijxs3jiNHjjBkyBAiIyO5cOECP/74o2Gipq+vL71796Zfv3788MMPxMbGcuDAAb7++msAfHx8kMlk/PLLL9y6dcvQU5IfgwYN4urVqwwdOpRz587x448/MnXqVEaOHGmYT1FQunXrRrly5ejYsSN//fUXly5dYseOHRw9erRQ+QkEAoGg9CCWlFqAjz/+mClTpjB79myCg4Np06YNO3fuxM8vr6Vaq1YtDh48yPnz52nSpAm1a9fmo48+onz5HAcqK1eu5H//+x+DBg0iKCiI/v37G5acVqhQgenTpzN+/Hg8PT2NVo08SoUKFdi1axfHjh0jJCSEDz74gHfffZfJkycXuqy2trbs2bOHsmXL0rZtW2rWrMmcOXOwsrKM9S8QCASCkuO/YFSU6PCHoGCI4Y/CI4Y/nn3E8EfhEMMfhaMkhj9e3TWgSMMfe9uuFsMfAoFAIBAI/hsIo0IgEAgEAgsgUfhlpYUdUli+fDm+vr7Y29tTv359jh079sT4ycnJDB48GC8vL+zs7AgICGDXrl0my/tPbSgmEAgEAkFJYeklpdu3b2fkyJGsWrWK+vXrs2jRIlq3bk10dDRly5bNE1+j0fDqq69StmxZvv32WypUqMCVK1cKtAGnMCoEAoFAILAAljYqFi5cSP/+/enbty8Aq1atYufOnaxfv57x48fnib9+/Xru3LnDkSNHDD6YfH19CyRTDH8IBAKBQGABzLH6IyUlxejIvZVDbjQaDWFhYUY+m+RyOS1btnysG4OffvqJBg0aMHjwYDw9PalRowazZs1CqzV94r4wKgQCgUAgKCV4e3sbbd8we/bsfOMlJSWh1Wrx9PQ0Cvf09OTGjRv5prl06RLffvstWq2WXbt2MWXKFBYsWJBnI80nIYY/BAKBQCCwAOYY/rh69arRklI7Ozuz6Aag0+koW7Ysa9aswcrKijp16hAfH8/8+fMNG2c+DWFUlEZ02kf2ly7FWGjdu6V8RwB8dfUvi8jpGdTKInJ0aWlPj2QGrFycnx7JDGiT71lGzp1ki8ixKBbyXyPL0BS/DF3xy3gUSZIZ7UZb0LQATk5OJvmp8PDwwMrKisTERKPwxMREypUrl28aLy8vbGxsjBwyBgcHc+PGDTQaDba2T/ex8Zy8mQQCgUAgeLax5C6ltra21KlTh/379+fI1+nYv38/DRo0yDdNo0aNuHjxotGmmOfPn8fLy8skgwKEUSEQCAQCwXPJyJEjWbt2LZs2bSIqKoqBAweSlpZmWA3Sq1cvJkyYYIg/cOBA7ty5w4cffsj58+fZuXMns2bNYvDgwSbLFMMfAoFAIBBYAEsvKe3SpQu3bt3io48+4saNG4SGhrJ7927D5M24uDijDTK9vb357bffGDFiBLVq1aJChQp8+OGHjBs3zmSZwqgQCAQCgcACmGNORUEZMmTIYzfPPHDgQJ6wBg0a8PfffxdKFphoVKSkpJic4bO80YlAIBAIBCWFpXsqSgKTjAoXFxdksicXSJIkZDJZgZxkCAQCgUAgeH4wyaj4448/iluPZwpJkhgwYADffvstd+/eJSIigtDQULPLad68OaGhoSxatMjseQsEAoHg2aIkhj8sjUlGRbNmzYpbj2eK3bt3s3HjRg4cOEDlypXx8PAoaZUKzYBp8QSE3OfCKQdWfVSh1MgaMPUaAbXSuHBawaqp3oZwn8D7DJsdh0wGSyd6ExuloNvQBDr0TuK37e5sml++qMXI0cHMdbd5mh+xJ5X41kyj1/RYQ/g/v7jzy6oKyGTw+pBr1G19hy+m+nHljJLMDDk9Pool8MVUk+W8PzEW/xpqLp5VsfoTP0O4j38aQ2dcAhksm1qZy9FKBkyOpUpwGjZ2OtbO8uVseNGHL81db/3HxeBfI5WYsypWz65qCPepmsaQqReQyWDZjKpcPq8CwNZOy/q9x/h0XBCRR12LLN/c5Xke27al5PQfdpqqQfeIOe/MmkU1DOE+lVMYPOYkMhksn1+LyzFONH75Om/2iAEJvv7Cn7//zN83gyWRijD8UVqMikItKf3zzz955513aNiwIfHx8QBs3ryZw4cPm1W5kiImJgYvLy8aNmxIuXLlsLYunfNZq9ZMx0GpY1SnqtjYSASEpJcKWVVrpOOg1DKqc+DDvHKcL/Uec505g/2YOdCP3qMTAPh1qwdzh/kWtQjGOpi57mJPKXmQLuej706TpZERE6kynPv18/JM/uY0k78+za9r9S+O7pMvM+Xb0wxdGc1PyyqaLKdKNTX2Ci1jutfExkZHQM0cY6TX8KvMGRHA7A8D6DU8DoDP5/gwtkcNZg8LoMvAa0UqI5i/3qoEp+Kg0DK2ZyjWNhL+NXLK03PYZeaOCWL2yGB6DrtiCG/9vxtcOa8sktxszF2e57FtW0pOlYBk7BVaxg1qhLW1Dv/gZMO5d/pHM29qHeZMrkPP988B0LHrJSYMbsD4wQ3p2DWmSLLNhQRIUiGPklbeRApsVOzYsYPWrVvj4OBAeHi4YTOTe/fuMWvWLLMraGn69OnD0KFDiYuLQyaT4evrS0ZGBsOGDaNs2bLY29vTuHFjjh8/bpTu4MGD1KtXDzs7O7y8vBg/fjxZWVmG82lpafTq1QuVSoWXlxcLFiwo9rIEvZBO+CFHACL+VBFct/g8I5pTVtALaYQf0n8xRxx2JLhOTl4qZy23Emy5fcMWpbN+/k5ykg2Sme84c9fdxXBHajZJBqBGk3tcCHc0nCvr84CMdDkP0uU4OOrLZG2jL1BGmpxKwabLDgpNJeIvF73eR1wIqq02nFM5Z5F0w47biXaonPRytFn6R4C9QselqKK/iM1db0EhqUQ87G2IPOpCcGjOpHGVUxZJN+y5fdMOlaP+XrO20REUksLZCPNMGDd7eZ7Dtm0pOUE1kok4VgaAyH89CKpxx3BO5ZhJ0k0Hbic5oFRlApAQr8DOQYu9Iov0NJsiyRaYToGNik8++YRVq1axdu1aw9aooPfEFR4eblblSoLFixczY8YMKlasSEJCAsePH2fs2LHs2LGDTZs2ER4eTtWqVWndujV37ugbdXx8PG3btuXFF1/kxIkTrFy5knXr1hltwjJmzBgOHjzIjz/+yJ49ezhw4ECx15fKSUt6qv4Sp6VaGV4kz7oslZOWdPXDvFKM85Ln6gEszs5Ac9ddeoo1Dip9HgrHLNJTcnq/Xmxzm4ltQpnYOpRWfRIM4Z+9F8ScHtWp0cR0t9L6urPKpXeOYWvk2T1X5U1Zfo6ZG84SecSlYIV6nHwz1pvSKSunPGprlI455ZHLc962Mpn+/5YdE/njZ+MNlIqCucvzPLZtS8lRqjK5n6a/b9LVNqhUj2sL+r9HD3qxdOMhlm46xM/f+hZJtrmwpEfNkqLARkV0dDRNmzbNE+7s7ExycrI5dCpRnJ2dcXR0xMrKinLlyqFQKFi5ciXz58/ntddeo1q1aqxduxYHBwfWrVsHwIoVK/D29mbZsmUEBQXRsWNHpk+fzoIFC9DpdKjVatatW8enn35KixYtqFmzJps2bTLqyciPjIyMPNvcFoS0VCsUjnp3qwqVFnVK8e2zYU5ZaalWKFQP83I0ziv3R5uuGPsDzV13Do5Z3H/4cryvtkKR62X/3SJv5v0ewbw/Ivh+cc4Y+4jPzzH955Nsn+tTML2zjReVFnUu4yV35Uk5Xnj5eHAQI96qSZ9ROUMIhcXc9Zaeap1THqWWtNSc8uQeY9bpZMitJOo0usu/f7oVSWZuzF2e57FtW0pOmtoaB6X+vlEos1Crc7eFnHg6nb5ddOt7ng+6N+eDbs3p1vd8kWSbi+yJmoU9SgMFNirKlSvHxYsX84QfPnyYypUtt2mTpYiJiSEzM5NGjRoZwmxsbKhXrx5RUVEAREVF0aBBA6Nlt40aNUKtVnPt2jViYmLQaDTUr1/fcN7NzY3AwMAnyp49e7bRFrfe3t5PjP8oUWEKQhvrx6BrN1FzLsw848zFLSsqTJmTV+NUzoXn5JWabIWHlwY3Tw3pqcVnJJm77vzrpHLm4bDE6T9d8K+dMzfAxlZ62E2rJUujb0OZGfq/9gp9uMl6RzgS2lDfs1G7YTLncs3dSE22xqNcBm5lNYavfxtb/UP/fpoVD9KLXp/mrreoSEdCXroLQGiDu5w7kTNslHrPGnfPDNzKZJCutsLVXUMZrwfMWH2KlzvcpM/wWFROmUWTb+7yPIdt21Jyzp12JbTuLQBCX7xF9OmcSbipKba4l7mPm8cDQ29GZqacjAwrMh5YG4YTS5psPxWFPUoDBZ6B2L9/fz788EPWr1+PTCbj+vXrHD16lNGjRzNlypTi0PE/y4QJExg5cqThd0pKSoEMi4unFGgy7rLg+4vEnLEnOlJRHGqaXdbF0wo0GTIW7Igm5qyCm/G2dBuawNalXmxe4MXEFfqVE8sm6euiddckOvS6haOLFpVzFssnV3qmygPgV1O/wmLGmzXwqZ6Ge4UMflhSkY7DrtGi5w2md6oFwCs99DsKLh0USHqKNTotdBlveg9CzFkVmoxbzN9yiktRSm5dt6PrwGtsW1mRzUu8Gb9I/8W2Yrr+A2D8ovOonLKQyyU2LjC9R+RxmLveYqIcycxIZN7mSC6dU3ErwZ4uA+LYvroSXy7zYcICvWG/4pOq3L5px/AuLwDQY/BlzoQ7o04p2li6ucvzPLZtS8mJOe+CRnONuSv+IvaCE7cSHejS+zzbNwXw1eeBjP84DICVC2oCsOt7Xz5dpd8xePePRa83gWnIJKlg04AkSWLWrFnMnj2b9HT9bF47OztGjx7Nxx9/XCxKWppFixaxaNEiLl++TFpaGm5ubmzYsIHu3bsDkJmZiZ+fH8OHD2f06NFMmjSJHTt2EBUVZeitWLFiBePHjyc5OZn09HTc3Nz46quveOuttwC4e/cuFStWpH///ib7qUhJScHZ2ZnmvIG17DmZeGShrc8ttWUziK3PC8vztvX589i2LYW1b/EbAVm6DPZdWc69e/eK3RN09rO7+vYxWCnsCpWHNj2DM13mW0TfolDgngqZTMakSZMYM2YMFy9eRK1WU61aNVQq1dMTl0KUSiUDBw5kzJgxuLm5UalSJebNm0d6ejrvvvsuAIMGDWLRokUMHTqUIUOGEB0dzdSpUxk5ciRyuRyVSsW7777LmDFjcHd3p2zZskyaNMloIxeBQCAQPN8I51dPwNbWFkdHRxwdHZ9bgyKbOXPmoNPp6NmzJ6mpqdStW5fffvsNV1f9mF6FChXYtWsXY8aMISQkBDc3N959910mT55syGP+/Pmo1Wo6dOiAo6Mjo0aN4t49C30xCQQCgaDE+S8YFQUe/sjKymL69OksWbIEtVq/Bl6lUjF06FCmTp1qtMxUYF7E8EcREMMfhUYMfxSS57BtW4rndfgjeOu4Ig1/RHWb+/wNfwwdOpTvvvuOefPm0aBBAwCOHj3KtGnTuH37NitXrjS7kgKBQCAQlHZ0kgyZ2KXUmC1btrBt2zZee+01Q1itWrXw9vamW7duwqgQCAQCgSAfsl1uFzZtaaDARoWdnR2+vr55wv38/LC1tTWHTgKBQCAQPHfojYrCzqkwszLFRIGXHwwZMoSPP/7YsOcH6D0/zpw5kyFDhphVOYFAIBAIBKUHk3oq3nzzTaPf+/bto2LFioSEhABw4sQJNBoNLVq0ML+GAoFAIBA8B/wXVn+YZFQ4OxvPyu7cubPR74K6jxYIBAKB4L+GROG3MC8lox+mGRUbNmwobj0EAoFAIHiuET0VgmcTuRXIinkNvKXWvltKjqV8BgA9vBs9PZIZqHLcMnUXU98ydadNUVtEjsyucH4CCoq2XjWLyJH/GWEROXphlmkLktKh+GVohUfj4qBQRsW3337L119/TVxcHBqNxuhceHi4WRQTCAQCgeC54j8w/lFgU23JkiX07dsXT09PIiIiqFevHu7u7ly6dMnId4VAIBAIBIJcPBz+KMxBKRn+KLBRsWLFCtasWcPSpUuxtbVl7Nix7N27l2HDhom9LAQCgUAgeAzZzq8Ke5QGCmxUxMXF0bBhQwAcHBxITU0FoGfPnmzdutW82gkEAoFAICg1FNioKFeuHHfu3AGgUqVK/P333wDExsZSwL3JBAKBQCD4z1DYoY+irBqxNAU2Kl555RV++uknAPr27cuIESN49dVX6dKlC506dTK7ggKBQCAQPBdkz40o7FEKKLBRsWbNGiZNmgTA4MGDWb9+PcHBwcyYMUNsJiYQCAQCwWMoiTkVy5cvx9fXF3t7e+rXr8+xY8ceG3fjxo3IZDKjw97evkDyCmxUyOVyrK1zVqJ27dqVJUuWMHTo0GLZUEySJN5//33c3NyQyWRERkaaXUY2zZs3Z/jw4cWWv0AgEAgElmL79u2MHDmSqVOnEh4eTkhICK1bt+bmzZuPTePk5ERCQoLhuHLlSoFkmuSn4uTJkyZnWKtWrQIp8DR2797Nxo0bOXDgAJUrV8bDw8Os+efmu+++w8bGxvDb19eX4cOHlwpDY8DUawTUSuPCaQWrpua4TfcJvM+w2XHIZLB0ojexUQq6DU2gQ+8kftvuzqb55c2nw7R4AkLuc+GUA6s+qmC2fItbTknXnbnLk7Qwk4woHXaBcjxG57Rn7T2JW3My0SaD4kU5rv2s8w0zWW8L1Zul5Lw/+QoBtdK4eFrJqhk+OXIC0hn2yWWQwbIpvsSeUzBsZiw+AfdBgmUf6cNM5YNexwionMTFWHdWbKpvCO/e6QSvtzrH7gP+bNz+AgCOygw+7H8UJ8cHRJ72Ysv3IQUq0+MorfdQ/w8i8A+4S8xFV1avqG0I79L9LO1fv8je3X58sbHmY8NKHAv7qVi4cCH9+/enb9++AKxatYqdO3eyfv16xo8fn28amUxGuXLlCqmkiT0VoaGh1K5dm9DQ0CcetWvXfnpmBSQmJgYvLy8aNmxIuXLljHpJTCUzM9OkeG5ubjg6OhY4/6fxqIMwc1O1RjoOSi2jOgdiYyMREJJmONd7zHXmDPZj5kA/eo9OAODXrR7MHeZrXh1qpuOg1DGqU9WHOqSbNf/iklPSdWfu8mSc06FLhwpr7ZCy4MEZneHc3bVZuA2wpsJKW4PxkF+YSXpbqN4sJqd6Gg5KHaPfroa1jURArRzvnr1GxjP7wyrMGlKVXiOvAbB9ZXlGvVWNBWMr02NYvOly/G7jYJ/JyGltsbbWEVAlyXBu1+8BzF7W1Ch+z/9FsunrUMZ+3MZsBkVpvYeqVL2Lg0MWY0e+grW1Dv+AO4Zzv+2qzPzZLxnFzy+spDHHRM2UlBSjI/eO4bnRaDSEhYXRsmVLQ5hcLqdly5YcPXr0sTqq1Wp8fHzw9vbmjTfe4MyZMwUqo0lGRWxsLJcuXSI2NvaJx6VLlwok/Gn06dOHoUOHEhcXh0wmw9fXF19fXxYtWmQULzQ0lGnTphl+y2QyVq5cyeuvv45SqWTmzJlMmzaN0NBQNm/ejK+vL87OznTt2tWwJBaMhz+aN2/OlStXGDFihGFsCTDkk5tFixbh6+trpHfHjh2ZOXMm5cuXJzAwEICrV6/y9ttv4+LigpubG2+88QaXL18ucj0FvZBG+CEnACIOOxJcJ+emVjlruZVgy+0btiid9W6dk5NszL7mOeiFdMIP6Q2yiD9VBNdNe0qKZ0NOSdeducvz4JQORX39be1QT86DUzlGhSZG4u6GLOI/0PDgpO6xYabpbZl6s5ic2mrCDz+U85cTwS/kGBWOzlkkJdhxO9EWpZNeTuI1vatvbaYMnc70CXTB/rcIO6n/Og8/5UU1/5xu6OR7Dnl09/VOplunU8z/aDfB/o/vsi4IpfUeCgq+TUSY/gs6MtyT4Go5Bllysn2ePPMLeyaQCnk8xNvbG2dnZ8Mxe/bsfMUkJSWh1Wrx9PQ0Cvf09OTGjRv5pgkMDGT9+vX8+OOPfPnll+h0Oho2bMi1a9dMLp5JRoWPj4/JhzlZvHgxM2bMoGLFiiQkJHD8+HGT006bNo1OnTpx6tQp+vXrB+h7PX744Qd++eUXfvnlFw4ePMicOXPyTf/dd99RsWJFZsyYYRhbKgj79+8nOjqavXv38ssvv5CZmUnr1q1xdHTkzz//5K+//kKlUtGmTZvH9mRkZGTksUrzQ+WkJV2tv5RpKVaonHL2hJDnet4V59xhlZOW9NSHOqQa6/AsyynpujN3eXRqkCv1/8uVoMuxmXlwSodrH2s8Z9pwe0nmY8NM1tsC9WYpOUonLemp+n0t0lOtUDrmyJHlekrKHhHUd+xVftxo/NB+EiqFhvT7+iGptPu2qJRP7sWsFniTbT/UZObiZrz/zr8my3miDqX0HlKqNKSn63vT0tJsUKpMb6/PE1evXuXevXuGY8KECWbLu0GDBvTq1YvQ0FCaNWvGd999R5kyZVi9erXJeTzTG4o5Ozvj6OiIlZVVgcd4unfvbhhHykan07Fx40bDEEfPnj3Zv38/M2fOzJPezc0NKysrHB0dCzW+pFQq+fzzzw2TV7Otvs8//9zQ67FhwwZcXFw4cOAArVq1ypPH7NmzmT59+lNlpaVaoVDpvzIVjlrUKTmb/uQ21HXFaLWnpVqhcHyog8pYh2dZTknXnbnLI1eC7uGHoi4N5LlG82wqybD1e/iGlD8+zGS9LVBvlpKTnmqF4qEhoVBpSUvNJSdX3lKuzpyOfW8Qd9GBM/+aPmSalm6DwkH/MlQ6ZKJOe/Lk9msJTsTFuwCgM9OSwtJ6D6Wn2aBQZOnlKDNJU9s8JcWzhzl2KXVycsLJyemp8T08PLCysiIxMdEoPDEx0eR3mo2NDbVr1+bixYsm6/ncbtNWt27dPGG+vr5Gcya8vLyeOAu2KNSsWdNoNcyJEye4ePEijo6OqFQqVCoVbm5uPHjwgJiYmHzzmDBhgpFFevXq1XzjRYUpCW2s/ySt3TiVc+FKw7nUZCs8vDS4eWoMX2LFQVSYIkeHJmrOhSmfkuLZkFPSdWfu8tjXknP/uP4Bf/+YDvuaObe4TSUZWUkSuvsSUtbjw0zT2zL1ZjE54SpqN9T3BIY2SiEqQpVLjjUe5TS4ldWQrtbLeaHJParVUbNlacEmGp69UJbaNfW9nrVrXifqQpknxo9PcMLNJR17u0ys5KYPTz2J0noPRZ31IKS2/gUZWjuRc1HuRcqvRCjs0EchJnja2tpSp04d9u/fbwjT6XTs37+fBg0amJSHVqvl1KlTeHl5mSz3me6pyA+5XJ7Hc2d+EzGVyrw3Su6VHaCfe6HTFexGLax8tVpNnTp1+Oqrr/LELVMm/weLnZ0ddiZs03zxtAJNhowFO6KJOavgZrwt3YYmsHWpF5sXeDFxRSwAyybpZ2W37ppEh163cHTRonLOYvnkSk+V8VQdTinQZNxlwfcXiTljT3Sk6bPhS1JOSdeductjFyRHZqslvn8GtgFyrD1l3F2fhWs/a9zetyZxkgYpA1z762/9/MJM0ttC9WYxOWeUaDLkfPr1WWLOKrgVb0vXwdfZtrw8Xy6qwISl+i+15R/ph3gHTbtCeqoV87ae49ole5ZM8jNNTqw7mRorFk7bRcwVN24mKene6QRbvg+hzcvn6dAqGkdVBo5KDUvXv8Smr2szcdhBbG21fPltqEkynqpDKb2HYi66kplpxbyFv3MpxoVbNxV06X6W7Vuq0arNJdp1iMHRUYPKUcOKpXXyDSt5ZBR+IKjg6UaOHEnv3r2pW7cu9erVY9GiRaSlpRl68Xv16kWFChUM8zJmzJjBSy+9RNWqVUlOTmb+/PlcuXKF9957z3QtpWfct/aiRYtYtGiRYUJj/fr1adasGfPmzQP0M2HLlSvH2LFjDZM1ZTIZ33//PR07djTkM23aNH744QcjPxeP5t28eXNCQ0MNE0EDAgIYMGAAo0aNMqRZuXIl06ZN48aNG4ZhjB49evDXX38Z8unTpw/Jycn88MMPhnRr165l3LhxXL582aSuq/xISUnB2dmZ5vI3sZYVc9efrnjmRJQY8uLrpcmDhequyvGCOaUpLDH1n6+xa5mNZb6ltPWqWUSO/M8Ii8jRC7PMfWQVXLXYZWRpM9gf9Sn37t0r9DPZVLKf3d6rpiF3KNx9q7v/gKsfTCuwvsuWLWP+/PncuHGD0NBQlixZQv36+qXMzZs3x9fXl40bNwIwYsQIvvvuO27cuIGrqyt16tThk08+KdDKzkIPf2g0Gq5du0ZcXJzRUdy88sorbN68mT///JNTp07Ru3dvrKyKp6H7+vpy6NAh4uPjSUrSzzRu3rw5t27dYt68ecTExLB8+XJ+/fXXp+bVo0cPPDw8eOONN/jzzz+JjY3lwIEDDBs2rEAzawUCgUBQSrHg8Ec2Q4YM4cqVK2RkZPDPP/8YDAqAAwcOGAwKgM8++8wQ98aNG+zcubPAriIKbFRcuHCBJk2a4ODggI+PD35+fvj5+eHr64ufn2ldgEVhwoQJNGvWjPbt29OuXTs6duxIlSpVikXWjBkzuHz5MlWqVDEMUQQHB7NixQqWL19OSEgIx44dY/To0U/NS6FQcOjQISpVqsSbb75JcHAw7777Lg8ePCh2K1kgEAgEzwAlYFRYmgIPfzRq1Ahra2vGjx+Pl5eXYQggm5AQ8zhoEeRFDH8UATH8UWjE8EfhEMMfhee5Hf5YPr1owx+Dp1pE36JQ4LsrMjKSsLAwgoKCikMfgUAgEAgEpZQCGxXVqlUzzC8QCAQCgUBgGkXZbfTZXlKRg0lzKnJ7dJw7dy5jx47lwIED3L592ySPjwKBQCAQ/Of5D8ypMKmnwsXFxWjuhCRJtGjRwiiOJEnIZDK02udsLF4gEAgEAnMgyfRHYdOWAkwyKv7444/i1kMgEAgEAkEpxySjolmzZob/4+Li8Pb2zrPqQ5Kkx7qRFggEAoHgv45M0h+FTVsaKPBETT8/PxISEihbtqxR+J07d/Dz8xPDHwKBhbj8WvHsr/IoK2J/tIicQX7Nnh7JDEgZGRaRI//rpEXkWBRLLTXPsoCcknhXFWVuxPNqVGTPnXgUtVqNvb1l1s0LBAKBQFDqEHMqchg5ciSg31djypQpKBQ5m9BotVr++ecfQkNDza6gQCAQCASC0oHJRkVEhN5rmyRJnDp1ymhbb1tbW0JCQkxyVy0QCAQCwX8SMfyRQ/YKkL59+7J48eJn2k2oQCAQCATPHMKoyMuGDRuKQw+BQCAQCJ5vhFGRl1deeeWJ53///fdCKyMQCAQCgaD0UmCj4tFdSDMzM4mMjOT06dP07t3bbIoJBAKBQPBcIVZ/5OWzzz7LN3zatGmo1eoiK2RumjdvTmhoKIsWLSpU+suXL+Pn50dERIRY3SIQCASCQiOcXxWAd955h3r16vHpp5+aK0uz8N1332FjY1PSahQ7A6ZeI6BWGhdOK1g11dsQ7hN4n2Gz45DJYOlEb2KjFHQbmkCH3kn8tt2dTfPLm0+HafEEhNznwikHVn1UwWz5Freckq47c5en/5gL+FdPISbKkdVzAwzhPlXVDJkcjUwGyz4J5PIFFSM+PkulyulkPJCze0d5DuwqZ7Kcb2f4ceWkCu8aabw97ZIhPHynO3tXV0Qmg9aDrxLS6g6/Lq3IoS+8aPB2Iq+PiStQeZ6361PS5YHSe69m03/QCfwD7xJzwYXVy0IN4V16nKN9xxj2/urLF+urm02e2fgPzKkwaZdSUzh69Ogz6fzKzc0NR0fHklbjiUiSRFZWVqHTV62RjoNSy6jOgdjYSASEpBnO9R5znTmD/Zg50I/eoxMA+HWrB3OH+RZVbWMdaqbjoNQxqlPVhzqkmzX/4pJT0nVn7vJUCU7FQZHF2D51sLaR8K+es3Nwz8GXmDuuOrPH1KDnkBwjYN74aox/94UCGRRxp5RkpFkx6ttTaDNlXD6hMpzb/3kFRmw/xfDtp9j/uf5F0qhrIn0Wny9weZ6361PS5YHSe69mU8X/Lg4OWYz9sDnW1jr8A+8Yzv22y5f5M180ixxB4SiwUfHmm28aHZ06deKll16ib9++DBgwoDh0LBLNmzdn+PDhAPj6+jJr1iz69euHo6MjlSpVYs2aNUbxjx07Ru3atbG3t6du3boG/xy5OXjwIPXq1cPOzg4vLy/Gjx9vZBRkZGQwbNgwypYti729PY0bN+b48eOG8wcOHEAmk/Hrr79Sp04d7OzsOHz4cKHLGPRCGuGH9Et8Iw47Elwn50GlctZyK8GW2zdsUTrr3dImJ9kgmdnqDXohnfBDeuMt4k8VwXXTnpLi2ZBT0nVn9vLUukfEUTcAIv92JTjknuGcyimLpER7bt+0Q+X4sL1KMGrmWaYuPUFZr/smy4mNcCSoSbJeZqNkYsNzDPcyPg/ISJeTkSbHXqWvN6cymeTjiPfp5Xnero+4V4ueb7U7RIR5AhAZ7klw9RyjIvmuPVIpmXvwvFJgo8LZ2dnocHNzo3nz5uzatYupU6cWh45mZcGCBQZjYdCgQQwcOJDo6GhA72q8ffv2VKtWjbCwMKZNm5bHoVd8fDxt27blxRdf5MSJE6xcuZJ169bxySefGOKMHTuWHTt2sGnTJsLDw6latSqtW7fmzp07RnmNHz+eOXPmEBUVRa1atfLompGRQUpKitGRHyonLelq/aVMS7FC5ZTj016e6/4qzltN5aQlPfWhDqnGOjzLckq67sxdHqVjFulp1g/zs0bpmGPsyuU5byfZwwHatZ/6M7pXXb5Z78N7oy+aLOd+ijX2Kn3eDk5Z3E/JGUkNaX2b2W1rM+u12jTvc71I5Xnerk9Jl8egQym8V7NRqjJz2rjaGqUq0yz5WgIZOfMqCnyUtPImUqA5FVqtlr59+1KzZk1cXV2LS6dipW3btgwaNAiAcePG8dlnn/HHH38QGBjIli1b0Ol0rFu3Dnt7e6pXr861a9cYOHCgIf2KFSvw9vZm2bJlyGQygoKCuH79OuPGjeOjjz7i/v37rFy5ko0bN/Laa68BsHbtWvbu3cu6desYM2aMIa8ZM2bw6quvPlbX2bNnM3369KeWKS3VCoVKB4DCUYs6xcpwLvdHjq4Yx+TSUq1QOD7UQWWsw7Msp6TrztzlSU+1RqHMephfFmmpObd47i84nU7/vzpFP9/obIQLfT+MMVmOg6OWB2p93vdTrXFwyjFefl3izZR94QCs6FONak2TC1cYnr/rU9LlMehQCu/VbNLTbHLauDKLNHUpmjP3H1j9UaCeCisrK1q1akVycnIxqVP85O4RkMlklCtXjps3bwIYegxyzw1p0KCBUfqoqCgaNGhgtKlao0aNUKvVXLt2jZiYGDIzM2nUqJHhvI2NDfXq1SMqKsoor7p16z5R1wkTJnDv3j3D8bit5aPClIQ2TgWgduNUzoXn7F6ZmmyFh5cGN08N6anF8/DQ66DI0aGJmnNhxbODprnllHTdmb08J50JqX8XgNCX7nLupLPhXOo9a9w9H+BWJsPwpefw8OFcwTfNyAB5Gn4vpBD9lz7vc4dd8KudajhnbSth66DFTqElK7No07aeu+sj7tWi53vGjZAX9M/s0Do3OXfWzSz5WgSpiEcpoMCrP2rUqMGlS5fw8/MrDn2KnUdXgshkMnQ6XYnoolQ++Sazs7PDzs7uqflcPK1AkyFjwY5oYs4quBlvS7ehCWxd6sXmBV5MXBELwLJJ+pnmrbsm0aHXLRxdtKics1g+uVKRy3LxlAJNxl0WfH+RmDP2REcqnp7oGZBT0nVn7vLERDmSqZEzb2MYl845civBji79L7N9rS9frqjMhHlnAFgxS78qZOycM6gcs5CA5Z8EmiynUs00rO0kFvyvJhWrpeFaPoNfl1bktaHXaPJOAgs66/3ZNO52A4C/tnlyaLMX6cnWpN+zpusnl56UvYHn7fqUdHmKo0yWlhNzwZVMzRXmLT7ApYsu3EpU0KXHObZ/FUSrtrG0e+MSjo4aVI4aViyubRaZAtORSVLBpgHt3r2bCRMm8PHHH1OnTp08L8ZnbU+Q3H4qfH19GT58uGHiJkBoaCgdO3Zk2rRprFmzhokTJ3Lt2jVDb8Xq1av54IMPDH4qJk2axI4dO4iKijL0VqxYsYLx48eTnJzM/fv3cXNzY8OGDXTv3h3QOwjz8/Nj+PDhjB49mgMHDvDyyy9z9+5dXFxcTC5LSkoKzs7ONJe/ibWsmLv8dMUzzlpiyIvvyy8PFqo7Kw93i8hZGvajReQM8mtmETkWa9uWanPP270KWAVWLXYZWdoM9l/4jHv37hX7eyv72e0zaybyQq6S1D14wJWJkyyib1EocN9k27ZtOXHiBK+//joVK1bE1dUVV1dXXFxcSu08i2y6d++OTCajf//+nD17ll27duXxuzFo0CCuXr3K0KFDOXfuHD/++CNTp05l5MiRyOVylEolAwcOZMyYMezevZuzZ8/Sv39/0tPTeffdd0uoZAKBQCAoaQo9SbMITrMsTYGHP7J3K30eUalU/Pzzz3zwwQfUrl2batWqMXfuXDp37myIU6FCBXbt2sWYMWMICQnBzc2Nd999l8mTJxvizJkzB51OR8+ePUlNTaVu3br89ttvpd7oEggEAkER+A84vyrw8Ieg5BDDH0VADH8UGjH8UUjE8EeheV6HP3w/Kdrwx+XJz/7wR6HcdCcnJ3Ps2DFu3ryZZ5Jjr169zKKYQCAQCATPFSXQU7F8+XLmz5/PjRs3CAkJYenSpdSrV++p6bZt20a3bt144403+OGHH0yWV2Cj4ueff6ZHjx6o1WqcnJyMllbKZDJhVAgEAoFAkA+W3lBs+/btjBw5klWrVlG/fn0WLVpE69atiY6OpmzZso9Nd/nyZUaPHk2TJk0KLLPAEzVHjRpFv379UKvVJCcnc/fuXcPxqMdIgUAgEAgED8l2flXYo4AsXLiQ/v3707dvX6pVq8aqVatQKBSsX7/+sWm0Wi09evRg+vTpVK5cucAyC2xUxMfHM2zYMBSK4lnbLBAIBAKBoGhoNBrCwsJo2bKlIUwul9OyZUuOHj362HQzZsygbNmyhV6tWODhj9atW/Pvv/8WyoIRCAQCgeA/ixnmVDy6B9TjnCQmJSWh1Wrx9PQ0Cvf09OTcuXP5ijh8+DDr1q0jMjKykEqaaFT89NNPhv/btWvHmDFjOHv2LDVr1szjofL1118vtDICgUAgEDyvmGNOhbe3t1H41KlTmTZtWtEUA1JTU+nZsydr167Fw8Oj0PmYZFR07NgxT9iMGTPyhMlkMrTa52950zOHTguyou2p8MzwPC67s1CZZNaFWrxVYAYHtLCInGHnT1hEzpKA6haRI7OxzPWRMsQzt9Rghp6Kq1evGi0pfdxWDh4eHlhZWZGYmGgUnpiYSLly5fLEj4mJ4fLly3To0MEQlr2609ramujoaKpUqfJUNU1q9SW1N4ZAIBAIBIIcnJycTPJTYWtrS506ddi/f7+hY0Cn07F//36GDBmSJ35QUBCnTp0yCps8eTKpqaksXrw4Tw/J4yjw5+4XX3xBRkZGnnCNRsMXX3xR0OwEAoFAIPhvUBQX3YXo4Rg5ciRr165l06ZNREVFMXDgQNLS0ujbty+g9ys1YcIEAOzt7alRo4bR4eLigqOjIzVq1MDW1tYkmQU2Kvr27cu9e/fyhKemphoUFQgEAoFA8AgW3vq8S5cufPrpp3z00UeEhoYSGRnJ7t27DZM34+LiSEhIKGqpjCjwoJ8kSUYOr7K5du0azs7OZlFKIBAIBILnjhLwqDlkyJB8hzsADhw48MS0GzduLLA8k42K2rVrI5PJkMlktGjRAutck8S0Wi2xsbG0adOmwAoIBAKBQCB4PjDZqMie6BEZGUnr1q1RqVSGc7a2tvj6+hrt5ikQCAQCgSAHS7vpLglMNiqmTp0KgK+vL126dMG+kDutCQQCgUAgeD4p8JyK3r17A/rVHvntUlqpUiXzaFYAmjdvTmhoKIsWLcpzrk+fPiQnJxdol7XiyEMgEAgE/3FKYE6FpSmwUXHhwgX69evHkSNHjMKzJ3A+a86vFi9ejCTlXI0nGSDPIwOmxRMQcp8LpxxY9VGFUiNrwNRrBNRK48JpBaum5qyP9gm8z7DZcchksHSiN7FRCroNTaBD7yR+2+7Opvnli1qMHB3MXHeWKlP/UeeoWi2FmCgn1nwalCOnSiqDJ0Yhk8Hy2cFcvuCIyimTIRPP4uSq4cQxd7avM939/vuTrxBQK42Lp5WsmuGTIycgnWGfXAYZLJviS+w5BcNmxuITcB8kWPaRPsxUDn1Slpun7SlT/QHNptw0hP/6YXnSb1mj1cjIypDR/efLZGXIODDVk5RrNrj5a2g+NfEJORtjqetjqXp7Ylkt9FwoLjn9B53AP/AuMRdcWL0s1BDepcc52neMYe+vvnyx3jJOzgTGFHhJaZ8+fZDL5fzyyy+EhYURHh5OeHg4ERERhIeHF4eORcLZ2RkXF5eSVqNEqFozHQeljlGdqmJjIxEQkl4qZFWtkY6DUsuozoEP80oznOs95jpzBvsxc6AfvUfrl0L9utWDucN8i1oEYx3MXHeWKlOVoBTsHbSMe7ce1jY6/KvlLP9+Z2AM8ybWYs64WvQceBGA7u/H8OWqqkwc8GKBDIqq1dNwUOoY/XY1rG0kAmqpDed6jYxn9odVmDWkKr1GXgNg+8ryjHqrGgvGVqbHsHiT5dw8bUdmupz/bYtDlykj8WTOsOtri6/TeUscdd6/jd/LevknNrkS+HoKb355tUAGhaWuj6Xq7Yk6WOi5UFxyqvjfxcEhi7EfNsfaWod/YM7u2L/t8mX+zBfNIqc4KKyPiqLMxbA0BTYqIiMjWb16Na+99hqhoaGEhIQYHc8CO3fuxNnZma+++oo+ffoYJpn26dOHgwcPsnjxYsNKlsuXLwNw5swZ2rdvj5OTE46OjjRp0oSYmBijfD/99FO8vLxwd3dn8ODBZGZmGs5lZGQwevRoKlSogFKppH79+kbLdTZu3IiLiwu//fYbwcHBqFQq2rRpY/Y1wrkJeiGd8EOOAET8qSK4btpTUjwbsoJeSCP8kN5jXMRhR4Lr5OSlctZyK8GW2zdsUTrre8WSk2yQzHzDmbvuLFWmoJrJRPzjDkDkP+4E1UrOkeOUSVKiPbdv2aN0zALAp6qat/tdYvbq40Zxnyqntprwww/L85cTwS/kvBwdnbNISrDjdqItSid9eRKv6V0JazNl6HSmb+F8I9IB70b6uvJumE5ChEOeODF7HKnSKhWAa/8ouLRfxY7ulbi0T5Un7mPLY6nrY6F6e6IOFnouFJecoGp3iAjT+1mIDPckuHqOUZF81x6pEFuEWxQL+agoKQpsVFSrVo2kpKTi0MUsbNmyhW7duvHVV1/Ro0cPo3OLFy+mQYMG9O/fn4SEBBISEvD29iY+Pp6mTZtiZ2fH77//TlhYGP369SMrK8uQ9o8//iAmJoY//viDTZs2sXHjRqM1vEOGDOHo0aNs27aNkydP8tZbb9GmTRsuXLhgiJOens6nn37K5s2bOXToEHFxcYwePfqxZcnIyCAlJcXoKAgqJy3pqfpLnJZqhcqp+IamzClL5aQlXf0wrxTjvOS5nhfF+egwd91ZqkxKxyzup+lHNdPV1qgcc9qwXJ7zZJI9/OwJrpXMNxv8mDuhFv0+PG+6HCct6an6PU7SU61QOuaUJ/e2NI+6tOk79io/bjTeNfFJZKRYYavSz9uyddSSkWL8yNJmQlK0HWVr6L383ouzwbe5mtc/v8qx5e7osvJkmS8Wuz4WqrcnYannQnHJUaoySX/YxtPU1ihVmU9J8QxhYedXJUGB51TMnTuXsWPHMmvWrHx3KTXFJ3lxsXz5ciZNmsTPP/9Ms2bN8px3dnbG1tYWhUJhtKHK8uXLcXZ2Ztu2bYbyBAQEGKV1dXVl2bJlWFlZERQURLt27di/fz/9+/cnLi6ODRs2EBcXR/ny+vHV0aNHs3v3bjZs2MCsWbMAyMzMZNWqVYZNWYYMGZLvxmzZzJ49m+nTpxe6PtJSrVA46h/ICpUWdUrxbXRlTllpqVYoHr5IFI7GeeW+r3TFeJOZu+4sVaY0tTUOSv2bVKHKQp2ac4vn/oLL/uqNj1NwNVb18LzpctJTrVA8fCEqVFrSUnOVJ1c+Uq553B373iDuogNn/nU0WY6toxbNw5e9Ri3Hzsl4Ynj8Pwoq1s/pVrdz1FGh3n2s7SRcfDJJT7JGVe7ploWlro+l6u1JWOq5UFxy0tNsUGS3cWUWaWqbp6QQWJIC91S0bNmSv//+mxYtWlC2bFlcXV1xdXXFxcUFV1fX4tDRJL799ltGjBjB3r178zUonkRkZCRNmjTJYyDlpnr16lhZ5dwUXl5e3LypnzR26tQptFotAQEBqFQqw3Hw4EGjIRSFQmG0y1vuPPJjwoQJ3Lt3z3BcvXq1QOWKClMQ2ljfLVy7iZpzYcoCpS8pWVFhypy8GqdyLjwnr9RkKzy8NLh5agxffMWBuevOUmU6d9KF0Hr67uDQereJPuWSI+eeDe5lH+Dm8cDQm3H9ihJXjwzs7LOwsjL9jRkVrqJ2Q33PWWijFKIicoYaUpOt8Sinwa2shnS1vjwvNLlHtTpqtiwt2KRGr9r3uXZUPznx6l9KyoXeNzqfe+gDwOuF+9yOtkOnhZRrNji4mdZVYanrY6l6e6IOFnouFJecqDNuhLygf26G1rnJubNuZsnXEvwX5lQUuKfijz/+KA49ikzt2rUJDw9n/fr11K1bN19X4o/DwSHvOO2jPGpwyGQyw3JatVqNlZUVYWFhRoYHYOQkLL88pCd8HtrZ2T12W1tTuHhKgSbjLgu+v0jMGXuiI80zc7y4ZV08rUCTIWPBjmhiziq4GW9Lt6EJbF3qxeYFXkxcEQvAskn6GfqtuybRodctHF20qJyzWD656MuazV13lipTzDknNBly5q47Rmy0I7du2NPl3UtsX1eZr1ZXYfyckwCsnKNfFfLlqiqMnXUSOzstW9Y8fVtjQ3nOKNFkyPn067PEnFVwK96WroOvs215eb5cVIEJS/UTQZd/pF/dMGjaFdJTrZi39RzXLtmzZJKfSXLK1sjAyk7i266V8AjOwLF8JsdXuPPioNtIEiREONB8Ws6EzDrv32bPmPJo1HJqdEnGyrQ9kCx2fSxVb0/UwULPheKSE3PBlUzNFeYtPsCliy7cSlTQpcc5tn8VRKu2sbR74xKOjhpUjhpWLK5tFplm4z+wpFQmPemtVkrIXiY6aNAgmjdvzptvvsmyZcuAvD4mWrVqRWBgIEuXLjWknz59Ops2bSI6Ojrf3or8/FQMHz6cyMhIDhw4wPnz5wkMDOTQoUM0adIkXx03btzI8OHDSU5ONoT98MMPdOrU6YmGRW5SUlJwdnamOW9gLXtOuvzkxdfbYITOgkudLVQm67IeFpGjvZtsETlDz5ywiJwlAZZZaiizKfA3W6GQ8tk1urRjFVi12GVkaTPYf+Ez7t27V+zD9tnP7oDRs7CyK5zjSG3GA85/OtEi+haFArf6Q4cOPfF806ZNC61MUQkICOCPP/6gefPmWFtb5+uLwtfX9//snXdYU0kXh3+hE0IRsdB7FwVFQLGLYu+KXeyry6qLWNfeu9h7W3vDsurqp64odgUVCyAWrIig0js53x/ZXIjgmoSAovM+Tx5l7tw5Mzc3M2fmnDmDGzduIC4uDgKBAPr6+ggICMCqVavQs2dPTJo0Cbq6urh+/To8PDxgb28vldw+ffqgf//+WLp0Kdzc3JCYmIjz58+jZs2aaNu2bRm0lsFgMBiM7wuZlYomTZoUSytqavjWwa/s7e3xzz//oEmTJsVMEYDIgXLAgAFwcnJCVlYWnj9/DgsLC/zzzz8YN24cGjduDGVlZbi6usLb21tqudu2bcOcOXMwduxYvHnzBgYGBvDy8kK7du0U2TwGg8FgVFSY+aM4KSkpEn/n5eXhzp07mDp1KubOnYvmzZsrtIKMQpj5oxQw84fcMPOHfDDzh/z8sOaPwFKaP5b9gOYPXV3dYmktWrSAmpoaAgMDER4erpCKMRgMBoPxI/EznFIq85bSL1GtWjXExMQoqjgGg8FgMBgVDJlXKiIjIyX+JiLEx8djwYIFcHV1VVS9GAwGg8H4sfgJfCpkVipcXV1LjK/g5eWFrVu3KqxiDAaDwWD8UDClojjPnz+X+FtJSQlVqlSBhoZ8zicMBoPBYPwM/Aw+FTIrFebm5mVRDwaDwWAwGBUcufY8Xbx4EUuWLEFUVBQA0cml48aN+2I0SYaCUVIGeGW8bbG8tmCW51bP8qKc2lReWz3La8viShuHcpHjdS+7XOTc9jUpFzn57xK+nklB8EpxbIAsZFmW/TlS+XnZQOzX8ymUn8D8IfPuj127dsHHxwd8Ph+jRo3CqFGjoKmpiebNm2PPnj1lUUcGg8FgMCo87ECxEpg7dy4WLVqE33//nUsbNWoUli1bhtmzZ6N3794KrSCDwWAwGD8EbKWiOM+ePUP79u2LpXfo0KGYEyeDwWAwGIyfB5mVClNTU5w/f75Y+rlz52BqaqqQSjEYDAaD8cNBpfxUAGQ2f4wdOxajRo3C3bt3Ub9+fQDAlStXsH37dqxYsULhFWQwGAwG40eA9+9H3nsrAjIrFSNGjED16tWxdOlSHDhwAADg6OiI/fv3o2PHjgqvIIPBYDAYPwQ/gU+FTEpFfn4+5s2bh0GDBuHy5ctlVScGg8FgMBgVEJl8KlRUVLBo0SLk5+eXVX2+S3g8Ho4ePfqtq8FgMBiMCsy32FK6Zs0aWFhYQENDA56enrh58+YX84aEhMDd3R16enrQ0tKCq6srdu7cKZM8mc0fzZs3x8WLF2FhYSHrrd8VM2bMwNGjR3H37t1vXRWFMHz6a9jVzEDsAz7WTy90mDW3z8Ko+S/B4wGrJpvieRQfvX6LR/sBSTizvzJ2LDZSXB1mvIFdrSzE3tfE+mnGCiuXyZGNYVNewK5mBp480ML6WYURcM3tMjFqThzAA1ZPtcDzaD5GzX0Oc7ssgIDV00RppaWiPre4xUrIeMiDliPBYoKQS89PAZ7NUUb+J0DXk2A8VIjkazy8XqMEJXXAckoBNC2llzN0bDRsnFLxNEoHG5cUBvwyt07Dr5OjwOMBa+Y7Ii5WGwKdPARMfgSdSrm4d7My9m+xKnU7gYr7zo3seR32FomIfWGA1Xvrcel92t1Bp2ZR+DvMDluPuAMA6ji9xqDO4cjJVcHynd549U6v1O0sNeVs/ti/fz8CAwOxfv16eHp6Ijg4GL6+voiJiUHVqlWL5dfX18cff/wBBwcHqKmp4cSJExg4cCCqVq0KX19fqWTKvPujdevWmDhxIoKCgrB3714cP35c4sOQj7y8PLnvtamRCU2tAoztag9VVYJdrQzu2oBxb7HgV0vMHWGJAUHxAIC/9xpg4SiL0lZZsg4umdDUEmJsZ5t/65Cp0PKZHCnLc86AppYQQT2coKJKsKuZzl3rH/gG80dbY16ADfoHvgYA7F9nhLHdnbB0vBX6jHpTKtlAxX1uGVGAMJMH5+0FEOYB6Q8K3eJer1eC6cgCOG0ugPFQkbLxZoMSHDcWwGZBAV6tlT66rbVDKjQ0CzBhsAdUVIWwdUrhrvUd8RSLJtfEggk10W/EEwBA72FPsWu9DSYPr6swhaKivnO2ZknQVM/D6AXtoaJSAHuLRO7aqUv2mLuxiUT+/h3uYOziNpizsSkGdgovVRsVSjnu/Fi2bBmGDh2KgQMHwsnJCevXrwefz//i4Z9NmjRB586d4ejoCGtra4wePRo1a9aUyd1BZqVi5MiRSEhIwLJly9CnTx906tSJ+3Tu3FnW4uQmJycHo0aNQtWqVaGhoYEGDRrg1q1bAIDt27dDT09PIv/Ro0fB4/G46zNnzsS9e/fA4/HA4/Gwfft2AEBsbCwaNWoEDQ0NODk54ezZs8Vk379/H82aNYOmpiYqV66MYcOGIT298IckFAoxa9YsmJiYQF1dHa6urjh9+jR3PS4uDjweD/v370fjxo2hoaGB3bt3y/0sHGpnIOKSDgDgzmVtONYpVCoEugVIjFfDh3dq0NIVhY9OTlIFyastf7EOmYi4pC2qQ5gAju4ZX7mDySkLOQ5u6Yi4/O+7cEUHjrUL30tt3XwkxavjQ4IatHRE70LCa1HY5YI8HoTC0vuXV9TnlhapBF0vkcKg60VIu1f4LDKf8PBmszIeDVaWSFfmA2pVgJzXMtTbJRl3blQGANy9URkONZO5awKdPCQlaOBDoga0tEUmZnObdPQY9AzzN9ySyFsaKuo752T9HuGPRKsqEY+M4WxTGJ78Uyq/xD4tO1cVH1P4MKqaJnO7vldSU1MlPjlfCKOfm5uL8PBw+Pj4cGlKSkrw8fHBtWvXviqHiHD+/HnExMSgUaNGUtdPZqVCKBR+8VNQUH7nOIwfPx6HDx/Gjh07EBERARsbG/j6+uLjx49fvdfPzw9jx46Fs7Mz4uPjER8fDz8/PwiFQnTp0gVqamq4ceMG1q9fjwkTJkjcm5GRAV9fX1SqVAm3bt3CwYMHce7cOQQEBHB5VqxYgaVLl2LJkiWIjIyEr68vOnTogNhYyUDzEydOxOjRoxEVFVXi0lJOTk6xF6gkBDoFyEwXfZUZqcoQ6BR+D0pFfrNluSVJoFOAzLR/65AmWQcmp/zkaOkUIDNNNHPOTFOGlnZhebwiv3beZy/DwPGvcGx7tVLJBirucytIA5QFov+rCER/i0m7x4Px4ALYLCrAy2WFDzH3A5D1HMh6Jv0vS0s7H1kZIqtzZroKBNqF/mlKSoWjIu9fA7pjzWQc3GaJhZNqYtDox/I0rRgV9Z0T8HORkaUKAEjPUoNAM/er91TSyYRp9WSYGSZLLacsUYRPhampKXR1dbnP/PnzS5SVlJSEgoICVKsm+YyrVauGd+/efbGOKSkpEAgEUFNTQ9u2bbFq1Sq0aNFC6jbKdaDYtyYjIwPr1q3D9u3b0bp1awDApk2bcPbsWWzZsgVVqlT5z/s1NTUhEAigoqKC6tWrc+n/+9//EB0djTNnzsDISORrMG/ePE4GAOzZswfZ2dn4888/oaWlBQBYvXo12rdvj4ULF6JatWpYsmQJJkyYgJ49ewIAFi5ciAsXLiA4OBhr1qzhyhozZgy6dOnyxXrOnz8fM2fO/PrzSFMGXyCaZfG1C5CeWrgcW1R5F5bhlqSMNGXwtf+tg0CyDkxO+cnJTFMG/99OnS8oQEZakXehyPdPhS4D6DTwHV4+0cTD29qlkg1U3OemLAAK/p1gF6QDykUehaY5oCm2PPw7SJr9LsST8cpQMwK0XaX/YWWkq0BTK//feucjPa2wCyYqHHXFM/g3L/l49Vzw73UZG/WlOlTQdy4jSw1amiIzsZZGLtKz1P4z/4aDHpg6/AISPgjwILb0CrNCUIBPxatXr6Cjo8Mlqyv4kDdtbW3cvXsX6enpOH/+PAIDA2FlZYUmTZpIdb/UKxVZWVk4ceIE9/ekSZMQGBjIfcaNG4fs7PI5/e/p06fIy8uDt7c3l6aqqgoPDw/u5FR5iIqKgqmpKadQAEC9evWK5alVqxanUACAt7c3hEIhYmJikJqairdv30rUTZzn87q5u7v/Z30mTZqElJQU7vPq1auS6x2uBdcGoqmVW4M0REcU1i0tWRkGhrnQr5bLzSbKgqhwfmEdGqYjOlzrK3cwOWUhJypCALf6ohUtV+9URN0RcNfSklVgUD0X+lVzkZkuehdqN0yBU5107FmlGIfdivrctGsJkXJDNJCn3OBBu2Zhz69hTshNBAoyASoQ5yc4bSmA8ZACaFpJP0pER+rB1UO0murq8QEx9/W4a2kpqqhcNRv6BtncasbbF1qoZJADdY18KCsrRquoqO/cwydVUdvxLQCgjtNbPHpa3NGwKI+eVkPg4rbYdcIVL+P1ZJJVVihipUJHR0fi8yWlwsDAAMrKykhIkDzFNiEhQWIy/TlKSkqwsbGBq6srxo4di27dun1xNaTE+6XNuGPHDmzYsIH7e/Xq1bh69Sru3LmDO3fuYNeuXVi3bp3UgssSJSUl0GdqfWkcIcuKoopJSairqxd7gUriyQM+cnN4WHo4BkIhD+/fqKHXbyKnzJ1LDTF57XNMWf8cfy4xBAD49kzCsKmv0azzR/w656VC2vLkPh+5OUpYeuQJhEIg5m7pdxEwOXKU91ALuTlKWHLgEYRCIPGNGnr+KuqIdwUbY9KqJ/hjzRP8uUxkmx454wWqm+Rg0d5ojJpb+rN7Kupz03IElNSBh/7KgBKgZkh4s0nUPZqMKEDsRGU8Gqpc6Ki5SQmPBivj1UplGA8X/lfREjyN1kFujhIWbrkJoZCHxHca8Bv8DACwe4M1Ji6IxKRFkdi1zhoAsGu9NcbPi8T8Dbexb7NiHDUr6jsX+9IAuXnKWDHxLxQIeUj4IECfdncAAG0axmCk3w34eD3B6L5XAIh2hCwbdxJDu93Cn8fdStXGioiamhrq1KkjcayGUCjE+fPni02W/wuhUPhFv42S4NHno+8XaNiwIcaPH88dJqatrY179+7Bykr0ou/atQtr1qyRygGktGRkZEBfXx/btm3jTkXNy8uDpaUlxowZA2dnZ7Rt2xZpaWncwP3HH39g3rx5nLIxb9487N27F/fv3+fK/d///oe2bdvi5cuXMDQUDcBnzpxBq1atcOTIEXTq1AmbNm3ChAkT8OrVK67sU6dOoX379nj79i2qVasGY2Nj/Prrr5g8eTJXtoeHBzw8PLB69WrExcXB0tISd+7cgaurq9TtTk1Nha6uLpoodYEKT7VUz/CrCMvPP4YhHzwFL3t+CZKhQ6kIeN0rnwnGbV+TcpGT/y7h65kURHm9czlNa5a5jPy8bFw9Nx0pKSlfnLApCnHf7TJ4HpTVNOQqoyA3G/e3TJapvvv378eAAQOwYcMGeHh4IDg4GAcOHEB0dDSqVauG/v37w9jYmFuJmD9/Ptzd3WFtbY2cnBycOnUKEydOxLp16zBkyBCpZErtU/HkyRO4uLhwf2toaEBJqXChw8PDA7/++qu0xZUKLS0tjBgxAuPGjYO+vj7MzMywaNEiZGZmYvDgwSAi8Pl8TJ48GaNGjcKNGze43R1iLCws8Pz5c9y9excmJibQ1taGj48P7OzsMGDAACxevBipqan4448/JO7r06cPpk+fjgEDBmDGjBlITEzEb7/9hn79+nEOMePGjcP06dNhbW0NV1dXbNu2DXfv3i3VDg8Gg8FgVGxKE8RKnvv8/PyQmJiIadOm4d27d9xORPFY9fLlS4lxPCMjAyNHjsTr16+hqakJBwcH7Nq1C35+flLLlFqpSE5OllgCSUxMlLgu6xJJaVmwYAGEQiH69euHtLQ0uLu748yZM6hUqRIA0crJuHHjsGnTJjRv3hwzZszAsGHDuPu7du2KkJAQNG3aFMnJydi2bRv8/f1x5MgRDB48GB4eHrCwsMDKlSvRqlUr7j4+n48zZ85g9OjRqFu3Lvh8Prp27Yply5ZxeUaNGoWUlBSMHTsW79+/h5OTE44fPw5bW9tyez4MBoPB+M74Bmd/BAQESOxOLEpoaKjE33PmzMGcOXPkE/QvUps/bG1tsWDBAnTt2rXE6wcOHMDkyZPx5MmTUlWI8WWY+YNRFGb+kA9m/pAfZv6QD3HfXXNg6cwfkdtkM398C6R21GzTpg2mTZtW4g6PrKwszJw5E23btlVo5RgMBoPB+GGQN5pmaVY4yhmpzR+TJ0/GgQMHYG9vj4CAANjZ2QEAYmJisHr1auTn50s4JjIYDAaDwSikvH0qvgVSKxXVqlXD1atXMWLECEycOJHbRcHj8dCiRQusXbu2WOQuBoPBYDAY//INfCrKG5kialpaWuL06dP4+PEj5zthY2MDfX39Mqkcg8FgMBg/Cjwi8OQMjSrvfeWNXGG69fX14eHhoei6MBgMBoPBqMBUyLM/GAwGg8GocDDzB4PB+F6hvPyvZ2IU43qtMt6O/S+7X4WUi5w+5tIfS11alDTl2w4pK5qvSj6RWZHkF5T/VmnmqMlgMBgMBkMx/AQrFVLHqWAwGAwGg8H4L9hKBYPBYDAY5QAzfzAYDAaDwVAMP4H5gykVDAaDwWCUAz/DSgXzqWAwGAwGg6EQ2EoFg8FgMBjlATN/MBgMBoPBUBQVxYwhL8z88YMwfPprLD0cg19mvpJIN7fPwtKQGCw7EgNLx0wAQK/f4rHn9n0MGPdWsXWY8QZLjzzBL7PeKLRcJkfG8r7xu1BRn1t5ydk5wxKzutTAn9MtJdJvnKiMqe1qYlr7mrh9RnSe0p/TLTG7Ww1Ma18TMbe0Zat3Ob4HQyc8xaKddzF80hNJWTYZWLzzLpbsugsLu3QuXU29ALsuXYNrvU+yyfnlDhYt+wfDR96RSPfr/Qg79x1Hf//7/5n2zSEq3acCwJSKr1BQUAChUPitq/Gf2NTIhKZWAcZ2tYeqKsGuVgZ3bcC4t1jwqyXmjrDEgKB4AMDfew2wcJSFYuvgkglNLSHGdrb5tw6ZCi2fyZGyvG/8LlTU51Zecp7f10J2phKmhTxAfi4PT+8KuGt/bzbClIMPMOXAA/y9yQgA0HtKHKYeeoDf1sXg+GoT6etdju+BtWMaNPkFGN/PFSqqBNsaady1fqPisHCcA+YHOqLfqBdcum+3d3jxWEs2OTafoKmZj/GBzaCiIoSt3Ufu2plTVlg830sif0lpjLLnh1MqmjRpgoCAAAQEBEBXVxcGBgaYOnUqd1R7Tk4OgoKCYGxsDC0tLXh6eiI0NJS7f/v27dDT08Px48fh5OQEdXV1vHz5EqGhofDw8ICWlhb09PTg7e2NFy8KfyTr1q2DtbU11NTUYG9vj507d0rUi8fjYfPmzejcuTP4fD5sbW1x/PhxhbTZoXYGIi7pAADuXNaGY53CDkSgW4DEeDV8eKcGLd0CAEBykqrClV6H2pmIuCSaSd0JE8DRPeMrdzA5ZSHnW78LFfW5lZecJxHacGmYDACo0TAFsRGFqw9VzbORk6mE7EwlaGqLvh8V1X/7rQwlmDlKL7s83wOHWmm4c60SAODuNT04uhaG2Bbo5CPpnQY+vFeHQDv/3zYJ4VArFY/u6Mgmx/ED7oRXF8mJqAZHpyTuWnKyRrH6l5T2rRHv/pD3UxH44ZQKANixYwdUVFRw8+ZNrFixAsuWLcPmzZsBAAEBAbh27Rr27duHyMhIdO/eHa1atUJsbCx3f2ZmJhYuXIjNmzfj4cOH0NfXR6dOndC4cWNERkbi2rVrGDZsGHg8HgDgyJEjGD16NMaOHYsHDx5g+PDhGDhwIC5cuCBRr5kzZ6JHjx6IjIxEmzZt0KdPH3z8+BGlRaBTgMx00VeZkaoMgU4Bd02JV5iP9/mNCkSgU4DMtH/rkCZZByan/OR863ehoj638pKTmaoCTYGoDL52PjJTC93a6rb6gMmtXDHZ1xUt/eO59OVDHLCgjzNqNEyRrd7l9B5o6eQjM11ZJCtdBVrahWfSKCkVjoS8f0dFn04JuPBXNdnlCHKRmSl6XhkZqtAS5JWm2t8GKuWnAvBDOmqamppi+fLl4PF4sLe3x/3797F8+XL4+vpi27ZtePnyJYyMRMuLQUFBOH36NLZt24Z58+YBAPLy8rB27VrUqlULAPDx40ekpKSgXbt2sLa2BgA4Ojpy8pYsWQJ/f3+MHDkSABAYGIjr169jyZIlaNq0KZfP398fvXr1AgDMmzcPK1euxM2bN9GqVasS25GTk4OcnMJDb1JTSz5kJyNNGXyByETD1y5Aeqoyd63oeygsw5cyI00ZfO1/6yCQrAOTU35yvvW7UFGfW3nJ0dTOR9a/A3BWujL4OoUDcEiwKRb9I/IVWDzACTUbJwMAft8cjQ/xalgx3AGzjkdKX+9yeg8y01TAFytKWgXISCscVogK1RahkAclZUId70+YO8YJ9jVlOzQsM0MVfH7+v3LykJFePgfDKRKeUPSR996KwA+5UuHl5cWtIgBAvXr1EBsbi/v376OgoAB2dnYQCATc5+LFi3j69CmXX01NDTVr1uT+1tfXh7+/P3x9fdG+fXusWLEC8fGFM4moqCh4e3tL1MHb2xtRUVESaUXL1NLSgo6ODt6/f//FdsyfPx+6urrcx9TUtMR8UeFacG0gsmO6NUhDdEShrTItWRkGhrnQr5aLzLSy6XhFdeAX1qFhOqLDZbOXMjmKkfOt34WK+tzKS45tnTQ8vKIHAHgQpgdbt0L/A1U1grpmATT4BcjPFfVfeTmifzX4onTp611+70HUXW3U8hI5XLrW+4Toe4UmnbQUFVSulgP9KjnITFdGpcq5qGKYjVkb7qNp+/fwH/McAh3pVhyiHhmglluCSI5bAqKjKpe67gzF80OuVHyJ9PR0KCsrIzw8HMrKkj8mgaDQYUpTU1NCKQGAbdu2YdSoUTh9+jT279+PKVOm4OzZs/Dykt4RSFVVUrPm8Xj/6QQ6adIkBAYGcn+npqaWqFg8ecBHbg4PSw/H4OkjPt6/UUOv3+Kxd5Uhdi41xOS1zwEAq/8Q3evbMwnt+ydCW68AAt18rJliJnUbvsST+3zk5nzC0iNP8PShBmLu8ktdJpMjR3nf+F2oqM+tvORYumRAVV2IWV1qwNw5A5WNc3B0pQk6jXqN5v3eYWZn0cSjWR/R4LlqpD0yU1UgLAD8Jr74r6Il612O78HTKG3k5SRg0c67eBYtQGK8BvyGv8T+DWbYtdock5aKJldr59jgw3t1jPGrDQDo82scHkboIj1VuhWHp08qIS9PGYuW/YNnT/WQ+J4Pv96PsH+PE1q2eoa27Z9CWzsXAu1crF1Vp8S0b85PEKeCR/S9ubKUjiZNmiAxMREPHz7k0iZNmoRjx47h6NGjsLe3x6VLl9CwYcMS79++fTvGjBmD5OTk/5RTr1491K1bFytXroS3tzecnZ2xceNG7nqPHj2QmZmJEydOABApEEeOHEGnTp24PHp6eggODoa/v79UbUtNTYWuri6aKHWBCq+Ml/6EZWOjZigQpbJbeZKAvQtysfvVlXKR08e8UbnIAQBlHcHXMykC4+plLiK/IAfno5YgJSUFOjqyOY3Kirjv9ug4ByqqGnKVkZ+XjZvHppRLfUvDD7lS8fLlSwQGBmL48OGIiIjAqlWrsHTpUtjZ2aFPnz7o378/li5dCjc3NyQmJuL8+fOoWbMm2rZtW2J5z58/x8aNG9GhQwcYGRkhJiYGsbGx6N+/PwBg3Lhx6NGjB9zc3ODj44O//voLISEhOHfuXHk2m8FgMBjfM6WJN1FB5v8/pFLRv39/ZGVlwcPDA8rKyhg9ejSGDRsGQGTGmDNnDsaOHYs3b97AwMAAXl5eaNeu3RfL4/P5iI6Oxo4dO/DhwwcYGhri119/xfDhwwEAnTp1wooVK7BkyRKMHj0alpaW2LZtG5o0aVIezWUwGAwG47vghzR/uLq6Ijg4+FtXReEw8wdDAmb++K5h5o9S8IOaPzzbzy6V+ePGX1OZ+YPBYDAYDAZ+CkfNH3JLKYPBYDAY3xvfIqLmmjVrYGFhAQ0NDXh6euLmzZtfzLtp0yY0bNgQlSpVQqVKleDj4/Of+Uvih1MqQkNDf0jTB4PBYDAYsrB//34EBgZi+vTpiIiIQK1ateDr6/vF+EihoaHo1asXLly4gGvXrsHU1BQtW7bEmzfSH6b3wykVDAaDwWB8l5TzKaXLli3D0KFDMXDgQDg5OWH9+vXg8/nYunVrifl3796NkSNHwtXVFQ4ODti8eTOEQiHOnz8vtUymVDAYDAaDUQ6Up/kjNzcX4eHh8PHx4dKUlJTg4+ODa9euSVVGZmYm8vLyoK+vL7Vc5qjJYDAYDEZ5oABHzc/PgFJXV4e6unqx7ElJSSgoKEC1apKHt1WrVg3R0dFSiZwwYQKMjIwkFJOvwZSKioiwAOCxRSYG43umv1uHcpFz+OXJcpEDAF3NvL+eSQEoG+SWvZCCcpBRBnx+VMP06dMxY8YMhctZsGAB9u3bh9DQUGhoSL8NlikVDAaDwWCUA6XZxSG+79WrVxJxKkpapQAAAwMDKCsrIyEhQSI9ISEB1av/dxyQJUuWYMGCBTh37pzEQZjSwKa7DAaDwWCUB0Iq3QeAjo6OxOdLSoWamhrq1Kkj4WQpdrqsV6/eF6u4aNEizJ49G6dPn4a7u7vMTWQrFQwGg8FglAflHPwqMDAQAwYMgLu7Ozw8PBAcHIyMjAwMHDgQgOhIC2NjY8yfPx8AsHDhQkybNg179uyBhYUF3r17B0B0infRk7z/C6ZUMBgMBoPxA+Ln54fExERMmzYN7969g6urK06fPs05b758+RJKSoUGi3Xr1iE3NxfdunWTKEcWvw2mVDAYDAaDUQ7wUAqfCjllBgQEICAgoMRroaGhEn/HxcXJKaUQplQwGAwGg1EesKPPGQwGg8FgKAJF7P743mG7PxgMBoPBYCgEtlJRhsyYMQNHjx7F3bt3v1kdhs94A7taWYi9r4n104x/CFlMzlfKm/4adjUzEPuAj/XTCwPlmNtnYdT8l+DxgFWTTfE8io9ev8Wj/YAknNlfGTsWG5VaNlBxn1t5yRk6Lha2zql4GqWNDQvtuHRzm3QETIkBjwesnmOPuFgBfp/9CGZWmcjJVsLpw0YIPfXf8QWKsm2GOZ5GasGyRgYGz3rBpV89oY9j64zA4wFdfnsDD99PAICcLB5G1nfDqJVPUKth6peKLZHyeueGBtyHrX0ynsbqYsPKwvgJ5papCBh7V/TsltZC3DNduLm/R7/BUcjJUcaaZbXw+qW2TLLKBHb0OUMeiAj5+fnfuhqwccmEppYQYzvbQFWVYFcrs8LLYnK+Ul6NTGhqFWBsV/t/y8vgrg0Y9xYLfrXE3BGWGBAUDwD4e68BFo6yKJVMCfkV9LmVlxxrxzRo8vMx3r8OVFQJts6Fg3e/X59h4QRnzB9XA/0CnnHpiyY6YeLg2jIpFM/u85GdoYQ5IY+Qn6eEJ3e1uGsnNhli1qFHmHnwIf7aaMiln99bFWYOsrevvN45a7tkaGrmY/xvDaGiIoStwyfuWr/BUVg4yx3zp9dFvyFRAIBeA2Iw6XdvLJrtjr6DpAtLXdbwiEr1qQj8NErFoUOH4OLiAk1NTVSuXBk+Pj7IyMiAv78/OnXqhJkzZ6JKlSrQ0dHBL7/8gtzcwhCuOTk5GDVqFKpWrQoNDQ00aNAAt27d4q6HhoaCx+Ph77//Rp06daCuro5du3Zh5syZuHfvHng8Hng8HrZv3w4iwowZM2BmZgZ1dXUYGRlh1KhRZdJmh9qZiLgk0s7vhAng6J7xlTu+f1lMztfKy0DEJVG0vTuXteFYp7A8gW4BEuPV8OGdGrR0CwAAyUmqCvX/qqjPrbzkONRMwZ1rosOZ7l6vBMdaKdw1gU4+khI08OG9OgTa/05KCBg79xGmr7qHqoZZUst5HKGNmo1EZddskIKY8MJZejXzbGRnKiE7Uxma2qL3IC+Xh8cR2nBwT5e9TeX0zjk4fcSd21UBAHfDq8DR+WOhHO1cJL3n40OSJgSCPC49J1sFnz5owNCo7Po+mRCW8lMB+CmUivj4ePTq1QuDBg1CVFQUQkND0aVLF9C/b/b58+e59L179yIkJAQzZ87k7h8/fjwOHz6MHTt2ICIiAjY2NvD19cXHjx8l5EycOBELFixAVFQUWrRogbFjx8LZ2Rnx8fGIj4+Hn58fDh8+jOXLl2PDhg2IjY3F0aNH4eLiUibtFugUIDNN9BVnpClDoFNQJnLKUxaTI0V56f+WlypZnlKRPWnybk+TSn4FfG7lJUdLOx+ZGSr/lqcCLe3CFU0lpcKRlvevV96mJbYI6u+Og1vNMSToidRyMlKVwReI6srXyUdGqjJ3zbPVRwT5uiCoZU20GSgKbnThQBU06pIkV5vK653TEuQVPrt0VWgVUR6KhFoAr4ggvUrZMDFLg6l5WimlM6Tlp/CpiI+PR35+Prp06QJzc3MAkBjI1dTUsHXrVvD5fDg7O2PWrFkYN24cZs+ejaysLKxbtw7bt29H69atAQCbNm3C2bNnsWXLFowbN44rZ9asWWjRogX3t0AggIqKikSc9ZcvX6J69erw8fGBqqoqzMzM4OHhUWK9c3JykJOTw/39+el0XyMjTRl8bZF6yxcUIL1Ix6JoyksWkyNFeYJ/y9OWLK/o5FBYRiupFfW5lZeczDQV8LXy/y0vHxlphV0wUeFoKBSK/p+eqgoAeHRHDwNHP5VaDl+7AJnporpmpSlDq8hAfzDYBCsuRAIA5va3h4t3Cu5e1MX4TbGIvSNd1MSilNc7l5mhWvjstPKRka5aKKdI2cJ/Z/Rb1ztjwvTbeJ+giUcPpD+6uywpjRmDmT++I2rVqoXmzZvDxcUF3bt3x6ZNm/Dp0yeJ63w+n/u7Xr16SE9Px6tXr/D06VPk5eXB27vwdD5VVVV4eHggKipKQo40cdK7d++OrKwsWFlZYejQoThy5MgX/S/mz58PXV1d7vP56XRfIyqcD9cGIg3drWE6osO1vnKH/JSXLCbna+VpFZbXIA3REYXlpSUrw8AwF/rVcpGZVjaDcEV9buUlJypSF7U8RX2Pq9cnREfqctfSUlRQuVo29KvkcDNyzX8HUWOLDAkF5GvY10nD/cuisiMv68KuduFMXVWNoK5ZAHV+AfJzlZCcqIqkt+qY3ccBl0IMsHuBGdKTpX8/yuudi3qoj1p1EgEArnUSEf2oUFFIS1VD5SpZ0K+chcxMkbIR/VAfk8Y0wP6d9nj14jtw0gQKHTXl/VQAfgqlQllZGWfPnsXff/8NJycnrFq1Cvb29nj+/LlC5Whpfb3DMTU1RUxMDNauXQtNTU2MHDkSjRo1Ql5eXrG8kyZNQkpKCvd59eqVTPV5cp+P3BwlLD3yBEIhEHOX//Wb5KS8ZDE5XynvAR+5OTwsPRwDoZCH92/U0Os3kYPczqWGmLz2Oaasf44/l4gc9Hx7JmHY1Ndo1vkjfp3z8rtrz48m52mUNvJylbBoeziEBTwkxqvDb2gcAGDXWitMWvQQk5c8wK41lgCA8QseYvH2cIyeEY1tK6yllmPlkglVdSGmdHGCkhJgYJyLQytFOy1a9k/AH51q4I+ONdCiTwIqG+Zh0ckHmLo7Go26JKHPxJcQ6Elv5imvd+7pYz3Rs1sVBqEQSEzQhF+/GADArq0OmDTjFibPuoVdWxwAAH79YjA/+DL8hz3Cnu0OUsspU8TBr+T9VAB4RBWkpgqkoKAA5ubmCAwMRGRkJP766y+8fv0ampqaAIANGzYgKCgIKSkpyMrKgr6+PrZt24bevXsDAPLy8mBpaYkxY8YgKCgIoaGhaNq0KT59+gQ9PT1Ozrx587B3717cv3//i3WJiYmBg4MDwsPDUbt27f+sd2pqKnR1ddEEHaHCU/3PvIyfAKWyM2dJICw7X5wfGWWDyuUi58Ddk+UiBwC6mnl/PZMCULYyK3MZ+QU5OP9sJVJSUiSOEi8LxH13I++pUFHRkKuM/PxsXLoyu1zqWxp+Cp+KGzdu4Pz582jZsiWqVq2KGzduIDExEY6OjoiMjERubi4GDx6MKVOmIC4uDtOnT0dAQACUlJSgpaWFESNGYNy4cdDX14eZmRkWLVqEzMxMDB48+D/lWlhY4Pnz57h79y5MTEygra2NvXv3oqCgAJ6enuDz+di1axc0NTU5Xw8Gg8Fg/Jj8DBE1fwqlQkdHB5cuXUJwcDBSU1Nhbm6OpUuXonXr1ti/fz+aN28OW1tbNGrUCDk5OejVq5fEiWwLFiyAUChEv379kJaWBnd3d5w5cwaVKlX6T7ldu3ZFSEgImjZtiuTkZGzbtg16enpYsGABAgMDUVBQABcXF/z111+oXLl8ZjUMBoPB+Eb8BGd//JTmj6L4+/sjOTkZR48e/dZV+SrM/MGQgJk/vmuY+UN+flTzRxPPKaUyf4TemPPdmz9+CkdNBoPBYDAYZc9PYf5gMBgMBuOb8xOYP356pWL79u3fugoMBoPB+Bn4CQ4U++mVCgaDwWAwygMWUZPBYDAYDAZDSthKBYPBYDAY5QHzqWAwGAwGg6EQCPIfYV4xdAqmVDAYFRYWP4IBoKuJV7nJOvM2vFzktK1vXOYyeN/g98N8KhgMBoPBYDCkhK1UMBgMBoNRHhBK4VOh0JqUGUypYDAYDAajPGCOmgwGg8FgMBSCEACvFPdWAJhPBYPBYDAYDIXAVioYDAaDwSgH2O6Pnwwej/efR6CHhoaCx+MhOTlZqvKaNGmCMWPGKKRuDAaDwajgiH0q5P1UAJhSIQP169dHfHw8dHV1v3VVpGb4jDdYeuQJfpn15oeRxeQwORVZztBxsVi0PRzDJzyWSDe3Scfi7eFYsiMcFrbpAIDfZz/C8t23sWBLBJq0eacQ+YDi27R+uhECO9lg3VTJ+BKX/tLFb21sMaqtLa6e1gEApH5Sxpzh5hjf3Rp7VlSTSc7QUQ+wcO0VDBvzQCLd3CoVi9ZdxuL1l2FhnQoAaND0LZZtDsOyTWHwaqi4Z1cqvoFSsWbNGlhYWEBDQwOenp64efPmF/M+fPgQXbt2hYWFBXg8HoKDg2WWx5QKGVBTU0P16tXB48nraVO+2LhkQlNLiLGdbaCqSrCrlVnhZTE5TE5FlmPtmAZNfj7G+9eBiirB1jmVu9bv12dYOMEZ88fVQL+AZ1z6oolOmDi4NkJPVS+VbDGKblNspCayMpSx7OgT5OXxEHNXk7sWsrEqFh96gsWHniBkY1UAwO5l1dE/6B0WHXyK3qMTpJZjbZcMDX4BJoz0hoqKELaOydy1vkNjsGh6HSyYUgf9hkUDADr1fIZJv9bDxF/ro1PPp6Vqo8IoZ6Vi//79CAwMxPTp0xEREYFatWrB19cX79+/LzF/ZmYmrKyssGDBAlSvLt/79sMoFRs3boSRkRGEQkkX2Y4dO2LQoEEAgGPHjqF27drQ0NCAlZUVZs6cifz8fIn8SUlJ6Ny5M/h8PmxtbXH8+HHuWknmjytXrqBJkybg8/moVKkSfH198enTpxLrmJOTg6CgIBgbG0NLSwuenp4IDQ1VzAMoAYfamYi4pA0AuBMmgKN7RoWXxeQwORVZjkPNFNy5pg8AuHu9EhxrpXDXBDr5SErQwIf36hBo/9svETB27iNMX3UPVQ2zSiWbq4OC2xQdwUftRmkAALeGaYi6rcVdM7LIQXaWErIylcAXiCJYxsVoYN+qahjXzRqPbvOlr3eNZNy5WQUAcPe2ARxqfOSuCbTzkPReEx+SNKElyAMAxL/hQ12zABr8fGRmqJaqjRWVZcuWYejQoRg4cCCcnJywfv168Pl8bN26tcT8devWxeLFi9GzZ0+oq6vLJfOHUSq6d++ODx8+4MKFC1zax48fcfr0afTp0wdhYWHo378/Ro8ejUePHmHDhg3Yvn075s6dK1HOzJkz0aNHD0RGRqJNmzbo06cPPn78+Lk4AMDdu3fRvHlzODk54dq1a7h8+TLat2+PgoKSw78GBATg2rVr2LdvHyIjI9G9e3e0atUKsbGxinsQRRDoFCAzTfQVZ6QpQ6BTdmFpy0sWk8PkVGQ5Wtr5yMxQ+bc8FWhpF05qlJQKZ6I8nuj/m5bYIqi/Ow5uNceQoCelki1G0W1KT1UGX1tUhpZ2AdJTlblr9Vun4NeW9hjZwh4dByUBAB7d1kLP3xIwed0LbJ5tJLUcLUEesv59dpnpqhAIvvTsRP9eu2iIVdsvYdWOS/jrkIW8zVMswlJ+AKSmpkp8cnJyShSVm5uL8PBw+Pj4cGlKSkrw8fHBtWvXyqR5wA+kVFSqVAmtW7fGnj17uLRDhw7BwMAATZs2xcyZMzFx4kQMGDAAVlZWaNGiBWbPno0NGzZIlOPv749evXrBxsYG8+bNQ3p6+hdtUIsWLYK7uzvWrl2LWrVqwdnZGQEBATAwMCiW9+XLl9i2bRsOHjyIhg0bwtraGkFBQWjQoAG2bdtWYvk5OTnFXiBZyEhTBl9b9CbyBZI/dkVTXrKYHCanIsvJTFMBXyv/3/LykZFWuAGPqNCsKhSK/p+eKpphP7qjh0qVc0slW4yi26SlLURmmqiMzHRJJWX3surYGBqNTRejsXu5yH/C2CoHZrY5qFQlHzwZRqCMdBVoip+dVj7S04s+u8J84mfXa+Bj/NK7CX7p1QS9Bkr6r3wrxLs/5P0AgKmpKXR1dbnP/PnzS5SVlJSEgoICVKsm6bdSrVo1vHtXdj4mP4xSAQB9+vTB4cOHOc1t9+7d6NmzJ5SUlHDv3j3MmjULAoGA+wwdOhTx8fHIzCy0KdasWZP7v5aWFnR0dL5ofxKvVEjD/fv3UVBQADs7O4k6XLx4EU+flmzvmz9/vsTLY2pqKu2jAABEhfPh2kC8LJmO6HCtr9whP+Uli8lhciqynKhIXdTyFJlHXb0+ITqy0Ok7LUUFlatlQ79KDreaIR5EjS0yJBSQUtVBwW1yrJOBu5cFAIA7YdpwqFPYn6qqC6GhKYQGX4i8PNFgb2KVgw8JKsjOVEJBvvT+adEPKsHVPREA4Fo3ETEPKnHX0lLVULlKFvQNsrnVjLw8JeTkKCMnWwUqqt/JzgkF+FS8evUKKSkp3GfSpEnfuFGS/FBxKtq3bw8iwsmTJ1G3bl2EhYVh+fLlAID09HTMnDkTXbp0KXafhoYG939VVUnbG4/HK+anIUZTU7PE9JJIT0+HsrIywsPDoawsOTMQCAQl3jNp0iQEBgZyf6empsqkWDy5z0duzicsPfIETx9qIOau9PZLWSkvWUwOk1OR5TyN0kZerhIWbQ/Hs2htJMarw29oHPZvssCutVaYtOghAGDtPDsAwPgFDyHQzgcBWDPHvrTNAaD4NtnWzIKaOiGwkw2snbNQ1TgXe1ZUQ+/RCWjX/wN+72gLAGjT5wMAoF9QPBaMtEBONg99A6WfMT99rIfc3NdYuPYKnsfqIDFBE34DHmP/Djvs3myPibNFJ6iuW+oCADh1xAJL1l8BAJw+ZlaqNn5P6OjoQEdH56v5DAwMoKysjIQESWfYhIQEuZ0wpYFHVEE2v0rJwIEDkZqaCk9PT2zbtg1RUVEAAG9vbzg4OGDLli1fvJfH4+HIkSPo1KkTl6anp4fg4GD4+/sjNDQUTZs2xadPn6Cnp4eBAwciNjYWly9fLrG8Jk2awNXVFcHBwXj8+DHs7e1x6dIlNGzYUK62paamQldXF03QESq8n9PxiMGoKCgbVC4XOQVJH8pFDgCceXu3XOS0rd+hzGXkC3Nw7sUapKSkSDVIlwZx3+1jPQYqyvI5QOYX5ODc02CZ6uvp6QkPDw+sWrUKACAUCmFmZoaAgABMnDjxP++1sLDAmDFjZI619EOtVAAiE0i7du3w8OFD9O3bl0ufNm0a2rVrBzMzM3Tr1o0ziTx48ABz5syRS9akSZPg4uKCkSNH4pdffoGamhouXLiA7t27F/OrsLOzQ58+fdC/f38sXboUbm5uSExMxPnz51GzZk20bdu2VO1mMBgMxndOOR8oFhgYiAEDBsDd3R0eHh4IDg5GRkYGBg4cCADo378/jI2NOb+M3NxcPHr0iPv/mzdvcPfuXQgEAtjY2Egl84fyqQCAZs2aQV9fHzExMejduzeX7uvrixMnTuB///sf6tatCy8vLyxfvhzm5uZyy7Kzs8P//vc/3Lt3Dx4eHqhXrx6OHTsGFZWSdbVt27ahf//+GDt2LOzt7dGpUyfcunULZmY/ztIcg8FgML5EafwpZFcq/Pz8sGTJEkybNg2urq64e/cuTp8+zTlvvnz5EvHx8Vz+t2/fws3NDW5uboiPj8eSJUvg5uaGIUOGSC3zhzN//Mgw8weDUXFg5g/5+WHNH1ajoKIkp/lDmINzz1aWS31Lww9n/mAwGAwG47uknM0f3wKmVDAYDAaDUR4I5TNjFN77/cOUCgaDwWAwygMSij7y3lsB+OEcNRkMBoPBYHwb2EoFg8FgMBjlAfOpYDAYDAaDoRCYTwWDwWAwGAyFwFYqGN8jKtWqQkVJ7VtXQyHkv08qFzlKmhpfz6QgeIZVy03WD4Vy2Z2iK8GHT+UiJq2RdBEIS4vO1fLrxlt2G1Aucnhx98pcRj7llbmMnxGmVDAYDAaDUR4QSrFSodCalBlMqWAwGAwGozxg5g8Gg8FgMBgKQSgEIGe8CSGLU8FgMBgMBuMngq1UMBgMBoNRHjDzB4PBYDAYDIXAlAoGg8FgMBgKgQW/+vHx9/fHjh07MH/+fEycOJFLP3r0KDp37gyqINrh0LHRsHFKxdMoHWxc4sClm1un4dfJUeDxgDXzHREXqw2BTh4CJj+CTqVc3LtZGfu3WH13coZPfw27mhmIfcDH+ummhXLsszBq/kvweMCqyaZ4HsVHr9/i0X5AEs7sr4wdi42kliFm2OTnsK2RjiePBNgwx7JQlm0Gfpv1DOABq6dbIS5GC8OnPIe1YwZU1YXYNM8CjyJ0pJYzNOA+bO2T8TRWFxtW1iyUY5mKgLF3weMBq5fWQtwzXbi5v0e/wVHIyVHGmmW18Pql9k8rR0LmyHuwtf+Ep7F62LDalUv36xONdp2e4uzfFvhzq7N8ZY+Lha1zKp5GaWPDQrvC9tikI2BKjKg9c+wRFyvA77MfwcwqEznZSjh92Aihp6pLLee3Lldhb5aEx68MsPJwfS49qOclWBl+AgFYtr8Bnr6tDP/W4fB0egUA2PxXXYQ/Npa+PeX0WwWAX/xvwdb6A54808e6bR5ceq8ukejQKgZn/rHB9n1uonb+egVmJinIyVXGqbO2uHBZNlklMXzGG9jVykLsfU2snyb9M2IoHuaoCUBDQwMLFy7Ep0/lExRH0Vg7pEJDswATBntARVUIW6cU7lrfEU+xaHJNLJhQE/1GPAEA9B72FLvW22Dy8LoydR7lJcemRiY0tQowtqs9VFUJdrUyuGsDxr3Fgl8tMXeEJQYExQMA/t5rgIWjLKQuX6JNTunQ4BdgXG8XqKoKYeeSxl3rP+YVFvxuh/mj7dB/zEsAwOYF5hjfpwbmj7KD34jX0suxS4amZj7G/9YQKipC2DoUvmv9Bkdh4Sx3zJ9eF/2GRAEAeg2IwaTfvbFotjv6Dor+aeVIyLT9JJI5uolIpv1H7tqZUxZYPLeuXOUCgLVjGjT5+RjvXwcqqgRb59TC9vz6DAsnOGP+uBroF/CMS1800QkTB9eWSaGwM0mCpno+AoI7QFWlAA5m77lru8+6YuTyjpi/qwn824SL2nXTFiOWdsK4ta25NKnaU06/VQCwsfwADY08jJ3aCioqQthZFwa0+/u8LRasaFjsngUrGmDcdF+FKBQ2LpnQ1BJibGebf/uLzFKXWVYQCUv1qQgwpQKAj48Pqlevjvnz538xz+HDh+Hs7Ax1dXVYWFhg6dKlEtctLCwwb948DBo0CNra2jAzM8PGjRsl8rx69Qo9evSAnp4e9PX10bFjR8TFxZW6/g4uybhzozIA4O6NynComcxdE+jkISlBAx8SNaClnQ9ANPPqMegZ5m+4JZH3u5FTOwMRl0QrAHcua8OxTqFSIdAtQGK8Gj68U4OWbgEAIDlJVW5zo4NrGu5c0RPJuqoHB7f0IrLykfROHR8S1CHQEckqyBf9ZDT4QjyL0pJejtNH3LktirR5N7wKHJ0LB0SBdi6S3vPxIUkTAkFhlL+cbBV8+qABQ6OMYuX9LHKKyQyvJpIZUU1CZvInDRDx5CoXABxqpuDONX1R2dcrwbFW4SAs0MkXvdvv1SH4990GAWPnPsL0VfdQ1TBLajlOlgm4FS2aSd+OMYazZaFSEf9B9M7nFyhBKFSSSMvNVwZkaF95/VYBwNEuERH3RCuEdyIN4WSfyF1LTtEstthPBIz77QpmTfwHVQ3SUVocamci4pJo5etOmACO7vK9X+UCkciMIc+ngqyaM6UCgLKyMubNm4dVq1bh9evis8/w8HD06NEDPXv2xP379zFjxgxMnToV27dvl8i3dOlSuLu7486dOxg5ciRGjBiBmJgYAEBeXh58fX2hra2NsLAwXLlyBQKBAK1atUJubm6p6q+lnY+sDJElKzNdpbDjA6CkVPgi8nii/zvWTMbBbZZYOKkmBo1+/N3JEegUIDNd9GpmpCpzAzoAKBXpV+UfQj6XJQoPnZGmDIFOYZt4RX8dRYRNXRONudse4e5VPanlaAnykPnvs8tIV4VWkcFWqYgcXhE5epWyYWKWBlPzwtWTn03Ol2WqSMgsLVra+YVlp6lwgy1Q8ru9aYktgvq74+BWcwwJeiK1HG3NXGRki0Lsp2epQVszp1ie4R1u4lBoDYm0QW3CceyKo0ztKY/fKgBoaeUhM0sVAJCRqQot/n/3Zxv/dMfvf7TG/qPOGD7gtkyySkKgU4DMtH/7izTJ/uK7Q+yoKe+nAsCUin/p3LkzXF1dMX369GLXli1bhubNm2Pq1Kmws7ODv78/AgICsHjxYol8bdq0wciRI2FjY4MJEybAwMAAFy5cAADs378fQqEQmzdvhouLCxwdHbFt2za8fPkSoaGhJdYpJycHqampEp+SyEhXgaaWqNPgC/KRnlboKlN09iYUiv7/5iUfr54LkPxRXab3tNzkpCmDLxAt9fG1C5CeWngmRNFiFOG3JJIl6oT4ggKkpxZxMypSftGVx9m/OuD37i7wH/tCajmZGargi5+dVj4y0lULyy4iRxzfZut6Z0yYfhvd+zzGowf6P60caWWWlsw0lcKyBfnI+Mq7nZ4qkv3ojh4qVZZ+UpCerQYtDVF+LY08pGWpS1zv3uQ+4t5Vwv1nhSaVhjWfQ1crG+duS3+WSHn9VgGRIsHXFCl4fH4eMjL/+1yitHRRmx9GV0MlPelXeb4oP00ZfO1/+wuBZH/BKH+YUlGEhQsXYseOHYiKipJIj4qKgre3t0Sat7c3YmNjUVBQqBXXrFnorMbj8VC9enW8fy9a3rx37x6ePHkCbW1tCAQCCAQC6OvrIzs7G0+fPi2xPvPnz4euri73MTU1LTFfdKQeXD1ES8GuHh8Qc1+Pu5aWoorKVbOhb5DNzVzevtBCJYMcqGvkQ1lZ+h6kvOREhWvBtYFoNuvWIA3REYVmhrRkZRgY5kK/Wi4y00rfeUTd0YZrfdFSt1v9ZETfFRSRpQKD6jnQr5rLrWaoqok6r6wMZWRnSi8/6qE+atURLQu71klE9KPCgTUtVQ2Vq2RBv3IWMjNFg1X0Q31MGtMA+3fa49UL6Z0afzQ5xWTWfv+vzPcSMktLVKQuanmK/EJcvT4hOlKXu5aWooLK1bKhXyWHW80QD9jGFhkSCsjXePisGurYvwEAuNu/waO4wsPn6jq8Rg2rBOw47calWRt9QJdGj7DsQAOZ2lNev1UAiIqpAjcXkX9TbZd4RD2u8p/5+ZoipcrEKAXpX1FApJIfzi/sLxqmIzpcerNkuSMUlu5TAfjpd38UpVGjRvD19cWkSZPg7+8v8/2qqpIzJx6PB+G/L0J6ejrq1KmD3bt3F7uvSpWSf4STJk1CYGAg93dqamqJisXTaB3k5ihh4ZabeB6jjcR3GvAb/Az7t1hh9wZrTFwQCQBYt0DkAb5rvTXGz4uEunoB9my0lrp95SXnyQM+cnN4WHo4Bk8f8fH+jRp6/RaPvasMsXOpISavfQ4AWP2H6Fn49kxC+/6J0NYrgEA3H2ummEnfpkcC5OYkYvGe+3gWpYXEt+roOeI19q0zwc6VppgYLFoKXjtT5FA2MfgxBDr5UFIibF9qLr2cx3rIy1XColVhePZEB4kJmvDrF4P9O+2xa6sDJs24JZKzXKSY+vWLgWudRKSlqmHVEtefVo6EzNhKyMt9gUUrQvHsiR4SE/jw6xON/bsd0LLNc7Tt+Aza2rkQaOdi7Qq3rxdYtOwobVF7tofjWbQ2EuPV4Tc0Dvs3WWDXWitMWvRQ1J55ol0h4xc8hEA7HwRgzRx7qeU8fm2A3DwVrB5zHE/eVEbCRwH6+UZg55naGNP9CjKy1bBy9Am8TNDFkn2NMLLzDVTSycTSX08hPUsNkzf6SteecvqtAsCT55WRm6eMpbNP4+nzSnifpIVeXSKxN6QmWjWLRXvfGGgLciEQ5GL1Zk9MHH0ZAq0cEHhYtdFTJlklyr/PR27OJyw98gRPH2og5i6/1GWWGVSKLaUVxPzBo4qyZ7KM8Pf3R3JyMo4ePQoAuH//PlxdXREUFIRFixaBiNCnTx8kJibif//7H3ff+PHjcerUKTx48ACAyFFzzJgxGDNmDJfH1dUVnTp1wowZM7Bp0yZMmDABcXFx0NGRfhtiUVJTU6GrqwufakPZ0ecywo4+rwCwo8/lQudqXLnIAYA8K+l3upQG3tXyOfo8FMeQkpIid58sLeK+uxm/J1R48vXd+ZSLfzL3lUt9SwMzf3yGi4sL+vTpg5UrV3JpY8eOxfnz5zF79mw8fvwYO3bswOrVqxEUFCR1uX369IGBgQE6duyIsLAwPH/+HKGhoRg1alSJzqEMBoPBYFQ0mFJRArNmzeLMFgBQu3ZtHDhwAPv27UONGjUwbdo0zJo1SyYTCZ/Px6VLl2BmZoYuXbrA0dERgwcPRnZ29netdTIYDAZDQfwEuz9+ep+Kz7eFAiJTRk6O5Favrl27omvXrl8sp6R4E3fv3pX4u3r16tixY4c81WQwGAxGRUdIAO/H9qn46ZUKBoPBYDDKBSIAcu7iqCBKBTN/MBgMBoPBUAhMqWAwGAwGoxwgIZXqIw9r1qyBhYUFNDQ04OnpiZs3b/5n/oMHD8LBwQEaGhpwcXHBqVOnZJLHlAoGg8FgMMoDEpbuIyP79+9HYGAgpk+fjoiICNSqVQu+vr5cUMbPuXr1Knr16oXBgwfjzp076NSpEzp16sSFTpAGplQwGAwGg1EOlPdKxbJlyzB06FAMHDgQTk5OWL9+Pfh8PrZu3Vpi/hUrVqBVq1YYN24cHB0dMXv2bNSuXRurV6+WWiZTKhgMBoPB+MHIzc1FeHg4fHx8uDQlJSX4+Pjg2rVrJd5z7do1ifwA4Ovr+8X8JcF2f1QgxMFP84WlO9X0eyKfFHfS5H+hROWnP/MKip88yZCGcoqoWU6/n/y87PKRU479QX5++bSJVw79Qj5EMsozqHQ+5chlxgAK6/v5wZLq6upQV1cvlj8pKQkFBQWoVq2aRHq1atUQHR1doox3796VmP/du3dS15MpFRWItDTRoTmhiSzWhcxklKOsZ+Uoi/H9cvxbV6AMSPjWFVA8aWlp0NXV/XrGUqCmpobq1avj8jvZnB4/RyAQFDv/afr06ZgxY0apylUkTKmoQBgZGeHVq1fQ1tYGj8f7+g0oPITs1atX5RLfvjxkMTlMzo8opzxlMTmiFYq0tDQYGRmVWb3EaGho4Pnz58jNLd2qEhEV6/tLWqUAAAMDAygrKyMhQVITTEhIQPXqJZ/hUr16dZnylwRTKioQSkpKMDExketeHR2dcgsHXl6ymBwm50eUU56yfnY5Zb1CURQNDQ1oaJTfwYZqamqoU6cOzp8/j06dOgEAhEIhzp8/j4CAgBLvqVevHs6fPy9xMObZs2dRr149qeUypYLBYDAYjB+QwMBADBgwAO7u7vDw8EBwcDAyMjIwcOBAAED//v1hbGyM+fPnAwBGjx6Nxo0bY+nSpWjbti327duH27dvY+PGjVLLZEoFg8FgMBg/IH5+fkhMTMS0adPw7t07uLq64vTp05wz5suXL6GkVOjEXr9+fezZswdTpkzB5MmTYWtri6NHj6JGjRpSy2RKxQ+Ouro6pk+f/kW7W0WUxeQwOT+inPKUxeT8PAQEBHzR3BEaGlosrXv37ujevbvc8nhUnvtpGAwGg8Fg/LCw4FcMBoPBYDAUAlMqGAwGg8FgKASmVDAYDAaDwVAITKlgKATmmsNgMBgMplQwFEJ8fDwAUXAVhnSEhITg3Llz37oaDAaDoTCYUvGTEBMTU2ZlHz16FKamprh+/TqUlJSYYiEFcXFx+OOPP7BmzRqEhYV96+owvoJ4Je79+/ffuCalh60qMsoSplT8BOzevRu//fYbgLLpUKytrdGlSxd06dIFN27cKDPFomiZn5evaHni55Samoq8PMWfmGhhYYEVK1YgMTERK1euxIULFxQu41shfnZv3rwpk2f3LeDxeDh48CCGDh2K58+fl7m8shr4hUIhd3bEq1evykQGIFl/Nsn4uWBKxU+AmZkZzp07h7///lvqg8hkwcXFBbNmzUKjRo3Qvn37MlEshEIhF/lt/fr1GDZsGHr16oXFixejoKBAIipcaREf2nPy5EkMGzYMYWFhyMlR3HHmBQUFEAqFaNmyJcaPH493795h7dq1uHr1qsJkFEXcwT948ABhYWEICQkp046ex+Nh//79aNq0KZ4/f16hZ8biuicmJmLOnDlo1aoVLC0ty0xefn4+AJTJ77Tob2jevHkICAjA9evXFS5H/Ps5e/Ysxo4dCx8fH2zduhXh4eEKlyWWx/h+YErFDwoRgYhQUFCAhg0bYujQodi9ezfS09PL5Efo6OiIadOmoVmzZmWiWIg7wwkTJmD69OmwsLCAhYUFgoODSxX9rSR4PB6OHTuGHj16wMnJCaampgqN1KekpAQlJSUcP34cly5dwsePH3HkyBHMnj0bly9fVpgcoLCDDwkJQZs2bRAUFIRff/0V3t7e+OuvvxT6LojLys7ORkhICEaOHAk7OzuFD5BiOY8fP0Z0dDQeP35c7Jqi4PF4OHPmDJYsWYKaNWuiZ8+eCi2/KMuWLcOQIUPQq1cvREdHK3yVR/wbGj9+PIKDgzFw4ECZTp+UFh6Ph6NHj6Jz584QCoWoXbs21qxZgzFjxuDFixcKlSV+v0NDQzF16lT06dMH+/btQ2JiokLlMGSAGD8k79+/l/h748aNZGRkRC9fviQiIqFQWCZyIyMjyc/Pj6pUqULXr18nIqKCggKFlH316lWys7Ojq1evEhFRSEgICQQC2rRpk0S+0rbt9evX5OLiQsHBwQottygXLlwgZWVlWrduHf3zzz/0559/kq2tLXXp0oXCwsIUJodI9NwqVapE27dvJyKi6Oho4vF4tGHDBoXKIRK1q379+tSuXTt69OiRwssXc+jQIapevTqZmZmRnZ0drVu3jrum6Hd77dq1xOPxyMDAgJ49e6bQssXMnTuXdHR0aMSIEWRra0vGxsZ08OBByszMVKicv//+mywsLOj27dtERJSfn0+fPn1SyDsnfu6vXr0iV1dX7jvJzMwkbW1tmjBhQqlllMThw4dJT0+PevXqRb///jspKyvToEGDKD4+vkzkMf4bplT8gBw/fpwMDAwoODiY7t69y6U3adKE/Pz8FNLpist48eIFPX/+nKKiorhrJSkW+fn5pZZ55MgRqlGjBhGJFAptbW2u40pPT6djx47JXObSpUvp/v37EmnPnz8nKysrTnkhkhyoStPRi8sJCgqi5s2bS1w7deoUWVpaUqtWrSRkl5bVq1dTly5diEikUFhbW9OQIUO464ocuMLCwsjS0pLU1NS456oopVL87BITE8na2pq2bNlCp06domnTppGysjItXbq0WF5F8eeff5KSkhJNmTJFIe9yUV68eEEDBw6ky5cvc2ndunUjc3NzOnDggEK/n0OHDpGtrS0RET18+JBmzJhBNjY2xOfzqWPHjjKXt3fvXtq/f79E2suXL6lGjRr04cMHio2NJRMTExo6dCh3PSwsrNikR16ePXtGdnZ2Egoyn8+niRMnKqR8huwwpeIHY8qUKTRhwgRavnw52drakoeHB/n7+9Pjx49p+fLl1KVLF262JW/HK77v6NGj5OrqSpaWluTs7ExTp07l8ty/f5/8/PzIyMhIorOUlpIGokuXLlHHjh1px44dJBAIaP369dy18+fP07Bhw6SeSQqFQsrOziYXFxeKiYmRuHb37l1SUlKiCxcuEJGkQnT37l06e/Ys5eXlydwmsVwiounTp1ODBg0oJyeHhEIhl75x40bS1NSkli1b0qVLl0olQ6xQjh07lvr27UsFBQVkYmJCw4YN4/Ls3LmTVq5cKZecksjJyaErV66Qubk5NW3alJOjKMXi3LlzNGvWLBozZgxXZkpKCi1cuJB4PJ6EYiEP4vp+/PiRXr9+TUSFdV+9ejUpKSnRggULFKa0bN26lTQ1NcnFxYUiIyMlrnXv3p3Mzc3p4MGDlJGRIXPZt27d4v6/fPly+ueff+jGjRtkb29P7u7uZGxsTAMHDqT169fTzZs3icfj0dmzZ6Uu//3791SnTh3y8fGRUOgjIyPJycmJrl27RlZWVjRkyBDuGd67d48GDhzIrZSUlujoaPL09CQiosePH5OxsbGEAvPgwQOFyGFID1MqfiAOHjxI1atXp9DQUCIiio2NpcOHD1PNmjWpSZMm5O7uTjwej5YvX15qWSdPniQtLS1atWoV3b9/n5YuXUo8Ho+CgoK4PA8ePKDWrVuTra0tZWVlSd0RFx2Atm/fTqdPn6bs7Gx6+/YtmZiYEI/HkzBNZGVlUatWrahXr14yyxD/e+XKFbpz5w73d8eOHalBgwbFVjFGjBhBAwcOpKysLKnkfIm9e/eSiooKnTlzRiI9JCSEatasSe3ateMGNXk4ceIE8Xg8ioyMpLCwMLK2tiaBQEC//vqrRL6RI0dS7969KT09XWYZRZe7o6Oj6e3bt9y1K1eukKGhIfn6+nJppVUssrKyKDAwkHg8HtWvX1/imlixUFNTozlz5shVflFlWTzoenp60h9//EEfP34kIqJVq1aRkpISLVq0SGGKhY+PD/F4PDpw4ECxVRA/Pz9SV1en8+fPy1RmdHQ02dnZUUBAAGcSePr0KeXl5dGZM2do7NixdODAAW7F4M2bN+Tp6Uk3b96USc7du3epZcuW5OvrS0ePHuXSO3ToQDwejwYNGiSRf+LEieTu7i7xrpSGGzdukImJCV2+fJmsra1p6NCh3DO8ceMGde7cudikgVG2MKXiB+HkyZMUEBBAq1evLvH6oUOHaMKECSQQCKhWrVoUGxsrt6z4+Hjq2LEjLVu2jIiI3r59SxYWFtS0aVNSV1en0aNHc3kfPXok9+A4btw4ql69OgUHB3OdX0REBAkEAvLz86Pt27fToUOHqHnz5lSjRg1u9UCWzr6goIDy8/PJwsKCHBwc6N69e0QkMiH5+PiQp6cn/fXXX3TixAkKDAwkPT29YjPK/0Jcl6dPn1JERISEOWro0KGko6NDp06douTkZCIimjx5Mk2dOpU+ffoktYzPefnyJY0ZM4YzDb19+5aGDx9OVlZWtGvXLiIievfuHU2ePJmqVKkil++DuF2HDx8mKysrsrKyIj6fT8OHD6dr164RUaFi0bZtW7nb8jlPnjyhiRMnEo/Ho507d0pcS0lJoRkzZlClSpXow4cPcg36//vf/0hdXZ3mzp1Lf/31FwUEBJCXlxf16NGD+07WrVtXTLEtLfXr1ycLCwsKCwsrpnzJY3JJSUmhdevWkZ6eHgkEgi/O2HNzcykpKYnatWtH9evXl1qOUCiUWH1o3rw5+fr60uHDh4lI9D01btyYLCws6H//+x/t3buXxowZQ9ra2txvTFbE3+fn32u3bt1IWVmZevToIZE+adIkql+/Pr17904ueQz5YErFD8Dt27epdu3apKurS2vWrCGiwlnh553E33//Tebm5nTq1Cm55WVkZNDixYvp2bNn9O7dO3J2dqbhw4dTZmYmjR07lng8Hv3yyy/yN4iINm3aRFWrVqU7d+5wykLRVQVPT0+ytLSk+vXrU8+ePSk3N5eI5PfdSE5OJnt7e6pduzY9fPiQiEQmlb59+5KmpiY5ODiQh4cH3blzR+oyxZ3foUOHyNramoyMjMjCwoK8vLzo3bt3lJ2dTcOHDydVVVVydXWlunXrkqamptydLhHRnTt3yNfXl2rWrMn5sxCJlsL79etHlSpVIltbW6pbty6Zm5tTRESE3LIuXbpEfD6fVqxYQZGRkbR161Zq0KABdejQgW7cuEFEou9KQ0ODunbtKnP54ueXlJREL1++5N6DlJQU+u2330ggENDu3bsl7klNTaWkpCS5ZOXm5tKgQYNoxIgREte2bdtGHh4eNHfuXK5OW7duldsR9eTJk7RmzRo6cuSIhInCw8ODrKysSlQsiKR7t4ved+7cOapSpQrZ2NjQqFGjuHTxc8zKyqI///yTGjduTHXr1uV+Q9KsKImfg3iFq6hicfz4cSIiioqKoo4dO5KpqSk5OzuTr69vqRWKixcv0syZM2nRokX04sULIhL1aV5eXtS0aVO6ceMGnTt3jsaOHUs6Ojql+i0x5IMpFT8IGzZsIEdHR6pdu3aJPhNF/9+rVy/q1KlTqRzOxM5jy5YtIx8fH0pISCAike22Zs2aZGJiUqolzt9++41zJhTXs2hnl5mZSe/fv6ePHz9ybZPWz0GcPzk5mfLz8yUGKysrK6pdu7bEzO7Zs2f0/v17uVYPwsLCiM/n08aNG+n27dt09uxZcnd3JwcHB0pMTCQikQNqcHAwzZs3r9RLtSdOnKDGjRuThoYG7du3T+JafHw8Xbt2jRYsWEDHjh3jOmVZET+/iRMnUrt27SSunT59mry8vLjVqry8PLp+/To9fvxYLhliU4RYGZs6dSp9+PCB3r9/T4GBgaStrU179+6Vqx0l0b17d+rcuXOx9IEDB1KjRo1KXX5QUBBVq1aNateuTWZmZuTk5MRNBIiIvLy8yNbWls6dO1cq88rIkSNp+PDhdOfOHVqzZg3VqFGjmKKflZVFu3fvpmXLlnG/AWl+Q+J6/f3339S3b1/OSVusWLRo0YL++usvLv/jx48pJSWFUlNT5W4PkUgZU1ZWJl9fX1JXVydvb2/OlyMkJITatGlDqqqqVKNGDfL29pZYFWSUH0ypqOAUVQy2bt1Knp6e1Lt3b4qLiyMiSWVCPCh37dqVBgwYIFMHcv/+ffrrr7/oxYsXnD+BUCikQYMGUePGjbn8QUFBtHTpUrkcy4q2ydvbm/z8/IrVPScnh+7cuUPZ2dkl1lNajh07Rs2bN6c6depQcHAwtzqRnJxMVlZWVKdOHbp7926p/QCWLVtGbdq0kajf+/fvyc3NTeK5lZaiJpkLFy5wbfvf//7HpSt6R8TEiROpcePGlJeXJ1H2mjVrSEdHR64Vg6KcOXOGtLS0aMmSJfTu3Tv67bffSEtLi44cOUJEIjNPUFAQ8Xg8OnjwYKlkFRQUUEFBAY0bN47c3d0pLi5Ook1//vknOTk5cb4V8nDgwAGqUqUKXb58mYRCIUVGRtL48ePJ2NiYNm/ezOWzsbGh7t27yy3n6dOn5OzszDn6pqSk0PLly8nFxUXCp2batGn0zz//cH/LMskQb+eeMGEChYeHc+lFVyzE31NpEH8H7969I39/f277eFJSErVo0YLq168v4csRGRlJSUlJpTIfMkoHUyoqKKtXr6bevXtT9+7daf78+Vz6pk2bqEGDBtSnTx9uJlrUAz8uLo5UVFRk8r4OCQkhPT09MjY2JiMjI5o/fz7nJ3H48GFSVVWlPn36UM+ePUlPT09ie+nX+NKgvXTpUrK3t6dz585JpMfGxlK3bt1kMkN8zo0bN0hLS4umTJlCvXv3plq1alG/fv24Z5KcnEx2dnZkY2NTzFFTVgIDA8na2pr7W6zIhYSEkK2tLT158qRU5ROJ4mrY2Nhw20aJRANyu3btyMfHR+IZKlKxWL9+PWloaHBL+OKyQ0NDycnJSe6VqoKCAsrNzaX+/fvTuHHjiEi0jdTc3LyYo+mbN29o8uTJFB0dLZMMcV3fv39PKSkpnN39/fv3ZGRkRG3btqVnz55x+X755Rdq1qxZqbZ3zpw5s9g24ri4OBo+fDi1atWKW7kikt+MN3fuXBowYAANGTJEYtKQnJxMwcHB5OzsTI0bN6ZWrVqRkZGR1HKK/k6fP39O1tbWxXxKivpY+Pr6kpeXF508eVKudhTl8uXL1KZNG2rQoIGEApOQkEC+vr5Uv3592r9/v8J2GDFKB1MqKiATJkygKlWq0C+//EL+/v6koaFBbdq04UwQ69ato8aNG1Pr1q1LdFKSdhmyoKCAkpOTqUWLFrR582ZKTEykCRMmkKurK40bN47evHlDQqGQNm7cSA0bNqQuXbrIZMMs2glcv36dzp49y9UtIiKCGjRoQF27duU6pri4OOrQoQN5e3vL3ek+e/aMZs6cSQsXLuTSdu7cSQ0aNKDevXtzisWnT5/I1dW11MGOrly5QjY2NhLbX4lEA6+5ubnMZoGSSEtLo7Vr15KzszP17duXS//777+pXbt25OvrWyofGvHAGhcXR9HR0RJKY+fOncnQ0JCuXbtGaWlpRCRSpGrVqlXq2WKXLl3oyJEj9O7dOzIyMqJhw4Zx144ePUoXL14kIunNXp+3R2xasbe3JwcHB25XVGxsLBkbG5Obmxs1bdqUunfvTtra2qVeTl+1ahU5OTnRmzdvJNIPHDhAfD6fnj59KpEu6zuel5dHU6dOJR6PR56ensX8qlJTU+nQoUPUp08fGjRokFR+SKtXry6miN6+fZscHBwk6vv5gB4eHk4dO3aU28RWlCdPnpCDgwMpKSlxAdzEJCYmUtu2balGjRqckyjj28KUigpGREQEmZiYSCxbRkVFUfXq1SWc4ZYuXUojRowoUXv/2mxVfD0jI4Py8/NpyJAh9OrVK+76nDlzOMVCrLRkZ2fLvc1y3LhxpK+vT1WqVKHq1atznUNoaCh16NCBDAwMyNTUlJycnKhOnToyOZQV5dmzZ1S3bl0yMjKiBQsWSFzbuXMneXt7U79+/TgHR2ln9UXjTMTFxdGDBw/o+fPnRCQa8AcMGEDNmzfnbOeZmZk0efJkqlWrltxOhZ+TlpZGmzdvJjs7OwnF4syZM9SwYUPq1KmTXCapors8HBwcyNDQkKytralt27aUkZFBycnJ1LVrV+Lz+eTm5kaNGjUiPT29Uq0kib/XLl26UIsWLcjKyopGjBjBKQ+pqank5+dHS5YskXt2eubMGVJXV6dly5bR1q1bac6cOcTj8TiHxqSkJJozZw4NGzaMgoKC5HbKPHv2LBfZ8fz582RqakrBwcESZpTw8HCqVauWzP40Jb0Hnz59oiVLlhCPx6MVK1Zw6V96Tv+lkMXFxZGjo2OxnWJXrlwhdXV1id+JuC6XLl3ilM7PTZSl4fnz5+Tq6kpNmjTh4seISUhIoG7dunG/Oca3hSkVFYxLly6RsbExN9sRdwo3b94kPp8vYccsTeCho0ePUv369almzZrk5ORUbMYxZ84ccnd3p5EjR8q8ZbRoZ3ju3DmqWbMmnT9/nl68eEH9+vWjqlWrcjOShIQEun79Oq1atYqOHz/OzarkDT61cOFCMjU1JV9f32Jt2r17Nzk7O9PQoUMpOzv7q0qFeFWl6MBrbm5O1tbWpKamRv3796c7d+7Qhw8faODAgWRlZUWGhobUoEED0tfXL/XOi8/DHqelpdGWLVvI0tJSIj7AuXPnuPDs8hAaGkqampq0bt06unDhAoWEhJC1tTXVq1ePcnJyiEiklC1evJgWLVok03Zl8ZZeIpHdPDU1lVvxePjwIVlZWUmYj4iI/vjjD7K0tJTadFQ0eqP4uxoyZAj1799fIt/x48eJx+Nxyl9pA3dNnjyZzMzMaNeuXdxzmjZtGlWqVIlmzpxJoaGhFBsbSy1btqRGjRrJJKdo3jdv3hRb8Zo5c2axUOxFB/+i7fsvxIrojRs3OJnPnz+nunXr0siRI4utrgwaNIiGDx9ezM9GWsT3REdH09mzZ+nWrVvchCYmJoZcXFyoZcuWxRQLZvr4fmBKRQVBPDt/8uQJqaurS3i8C4VCev/+Pdna2tKff/4pcZ8sP2xx3sjISNLQ0KDJkydTz549ycTEhLp06VJsEJ48eTI1atSIM7vIyoYNG2jWrFk0bdo0ifTBgwdT1apVaceOHSWaamTZS18SS5cuJRcXFwoMDOQcWsXs379fqhnP0KFDadCgQZxyc+nSJS4YWFRUFB04cICzXd+9e5cyMjLo3r17NGfOHNq+fbvUA+KX2jB79mwyNjamKVOmSKRnZGTQr7/+SjweT8LRVVpKMvfMnj272I6I58+fk6WlpYQfhyzs37+fi2dBJFLIXF1dycbGhn755RfOyXDHjh2kpaVFDRs2pD59+lD37t2pUqVKUitka9asITs7OwnTRW5uLjVr1ozbXST24SASvdN16tShjx8/cu+ZPIPj9OnTqVq1ahQWFsbFIBGzdOlSql27NmloaJCLiwt5enrKtZ2TSBTDokaNGqSnp0dubm60ZMkSzuw0a9YsUlJSoo0bN8pc/6IkJyeTiYkJeXh4cGnBwcFkY2NDw4YNo/Pnz1NERAQFBgaSvr6+3FEsi27BNjY2JgsLCzI3Nyd7e3vO1CVWLNq0aVMscBzj+4ApFRWAbdu20datWykpKYny8/Ppl19+IS8vLzpx4gSXJyMjg2rUqFEsIJCs3L59m9asWSMRlXD9+vXUqFEj6tOnT7EZb2k8/OvXr088Ho+6detWbOVhyJAhZGxsTOvWrZPLOU7cQYWFhdGUKVNo+vTpEh72ixYtIldXVxozZozMdt+9e/dSlSpVJJb4586dSy1atJDIFxoaSt7e3hK+APIQHx/POYzu2rWLduzYQSkpKTRv3jxydHSkSZMmSeTfuHEj1a5dmxo1aiTTKpI4Cufn/heDBg0iV1dX7m/xdyXeEVH0nZBmAI6Ojqa6detSq1at6P79+/Tq1SvS19enJUuW0NSpU6lVq1bk7e3NzUYjIyOpX79+1K9fP/rjjz9kMhN8+PCBTExMqH79+nTv3j2ufnPmzCETExNu1494MF+2bJmEiU0eEhISyMvLi4uh8e7dO7p16xaNGTOGDh06RLm5uZSYmEg3b96UWAGQdfVt/vz5VLlyZdq3bx9duXKFBg8eTF5eXhQYGEipqalUUFBA8+bNIx6PJ7FDQlaEQiEXsbLojqX169dT8+bNSUVFhRwdHcnJyUlus5e47Tdu3CBtbW1av349vX79mkJDQ6lv376koaHBKZqxsbFkampKXbp0KdUuM0bZwJSK7xxxVMnt27dzJo+rV6+Sn58f2dra0vTp02nTpk3k4+NDNWvWlMm5a/z48bR161bu7/j4ePLx8SEtLS3O617M2rVrqUGDBjRgwIBis3tpKGlrKxFRjx49SEdHh06ePFmsU+3atSu1b99e7h0Lhw8fJj6fT23btqV69eqRQCCgTp06cfLnz59PdevWpaFDh8pkHli0aBE5ODgQkchMtHz5cpo3bx5nDiha3x07dpCmpqbcJyampKRQrVq1qH///lwodPGSdkJCAs2ZM4ecnZ0lDlCaMmUKzZgxQ664AAMGDKBKlSrR33//zaWdPn2arK2tiwWa+uuvv8jCwkLC30ZaDh48SL6+vtS5c2eaO3cu/fHHH9y1ixcvUrdu3cjLy6tUs1GxySE1NZUsLS3J29ub2z1w584datmyJXXs2FHCX+L3338nHx8fzgQjK7dv36b4+HiqUqUKbd68mc6cOUP9+/enunXrkq2tLdna2hZz2iWSbfleKBRScnIyNWzYkFatWiVxbe7cueTi4sIpEampqbRjxw6ZYriI65KbmyuhXF2/fp1MTU0lFIsPHz7Qo0ePKDo6Wq4JRtGtu/n5+bR582Zq2rSpxPOIj4+n3r17k5ubG/c7ev78eTHTC+P7gCkV3zGrVq0iQ0NDiah7Yl6/fk0zZswgIyMjbueFLFElU1JSaObMmcV2a+zevZu8vb3J0tKy2JbAjRs3Uo0aNWjYsGEyzaqKdhBCoZDr7MW0bNmSDA0N6cyZM8XKFd8rq2IRFxdHlpaWnLNaZmYmhYWFkZGRkcRS/owZM6hRo0YyhfK9efMm2dvbU7NmzbhZ4P79+0lFRYU7d0XM1atXydHRUWafhosXL3LP6erVq2RoaEg8Ho/mzp0rkS8hIYEWLFhApqam5ODgQG3btiWBQCD3FksiouHDh5OOjg53uNSLFy+oW7du1LZtW24lLDc3lzvHQZbYDUXfzUOHDlGrVq3IzMyMRo4cWaz93bp1owYNGkgcViWPOS8hIYGOHTtGPB6P2rRpwy3Ph4SEUMuWLalatWrUtWtXatOmTal2efz+++9UqVIlysvLo6CgINLT0yMtLS0KCgri4oX4+PjQ77//Llf5RcnJyaG6detyK4pFfzcNGzYsMYLpf/1mIyIiJBSpEydOUO/evally5Z0/PhxbkWgqGJR2u3J2dnZ5OXlRRYWFlxZy5Yto0qVKnEmHHH6iRMnyNTUVG6HWUb5wZSK75j+/fvTb7/9RkSiJb89e/ZQo0aNqHnz5tzWx7S0NAmnQlkGe3HeM2fOSJwZEhISQt7e3tSsWbNis9CtW7fKtFJRVKFYvnw59erVi9zd3enPP/+UGGhbtmxJRkZGJZ4AKu0srmgnFxsbS2ZmZsU6odDQUNLR0ZHwSfnw4YPU7REzcuRI4vF45OXlxaX17t2bKleuTOfPn+fs6EFBQdwx0NKyZ88eatq0KSUkJJBQKKQPHz5QtWrVqHLlyjRs2LBig15KSgpduXKF/P396ffff+eW9GVB/IwvX75MBw8eJBUVFTI2NuZWLO7du0c9evQgCwsLsrW1paZNm8rk2yDm84Ho+PHj5OnpSVZWVsVip4SFhVHLli2pRYsWci9zh4SEkJaWFk2YMIHatm1LBgYG5OHhwe1QePjwIQUHB5Ofnx+NGzdO7kHr7du39Ntvv0kc/HXz5s1i/gXNmzenWbNmyVT2l0J2t27dmho2bFgs4uyECROoa9euUg36QqGQQkNDJRxUL168SHw+n/z9/alNmzakrKxMM2bM4Bxeb9y4QdbW1uTm5lYqB0mhUEhhYWFUo0YNcnV1JaFQSE+fPiUnJydatmyZxJbkmJgYsrKy4sK/M75fmFLxHSKeoY4YMYKaN29OM2fOpMaNG1P79u1pwIAB1KlTJ3J2di52aJI8M4ecnByaPHky8Xg8iWXZAwcOUJMmTahZs2ZyHQj2eWczadIkqlatGndglra2No0fP16i023VqhXxeDyZT0osypEjR2jVqlWUmJhIOjo6xfa1f/r0iZydnUt1GFRmZibn6Ofk5ES9evUiIlFH369fP1JXV6caNWpQvXr15NrlkZGRwfl5iP9NTk6mCxcukJmZGQ0YMOCLs2l5d8UQiUw5fD6fpk+fTiNHjqRGjRqRtrY252Px+vVrunLlCo0bN47WrFkjd+jt//3vfzR16lTuvTp+/Dg1bdqU2rdvX0yxuHr1qlzmFSLRQG9lZUWLFy/m0p49e0bm5ubk6elJ9+/f/+IhVbKwc+dO4vP55OLiQk+ePCn27qemplJERAQXT0HeVb5Hjx7Rq1evOGX86dOnZGBgQH5+fpSSkkI5OTmUl5dH3t7exVZ+vsaECRNIXV2dtm7dSvPmzaOVK1dy11avXk06Ojo0bdo0TrG4fPkyubi4yGUK/bx9165dI3t7e6pbty4RiXb3uLi40KJFi+jdu3eUlpZGEyZMIBsbG7mdwhnlB1MqvjN27NhBhw8fpvz8fPrnn3+od+/eZG1tTQsXLuScoDZu3Eht2rQplTNZUV68eEHTpk0jbW1tWrt2LZd+4MAB8vHxodq1axcL2CML+/fvJysrK86MEx4eTjwejypXrkwjRoyQWKofM2aM3IGt7ty5Q1WqVKENGzZQeno6+fv7U8uWLYtF5WzUqBF3wqq8iGfOW7ZsIXt7e4nYEAcPHqSVK1dScHCwzBEziw4ikZGR5ObmRosXL+acVU+ePElmZmY0aNAg7n2YPHmyxPkR8pCWlkaenp4SvjTJycnUr18/0tbWptOnT5eqfDGHDx8mbW1tGjt2rMSKSkhICPn4+FDbtm1livYqRrxdsujzS0xMJGtray54mngwj42NJX19ferUqZNCZr7//PMPtWrVirS0tLh3uehv8++//yZvb29q0aKF3AffjR8/niwsLMjQ0JDs7e0lVhWqVKlCzs7O1KBBA6pXrx45OTlJrbgUrcekSZNITU2NbGxsJJyaiUSmWG1tbZoxYwZnKpQnLo34/Jmi5Obm0o0bN8jS0pI7X2Xq1KlUo0YN0tDQIC8vL6pSpUqptmAzyg+mVHxHjB8/nqpVq0bbtm3jfrjp6ekSS+dCoZDatGlDPXv2LNU+8Pfv30v4TLx9+5YmT55cTLHYuXMntW/fXuoZSb9+/SR2juTl5XGrB0SiWamuri7t2bOHdu3aRTwejwIDA4t1GLJ2ujExMTRt2jQKCgri0i5dukQtWrSgZs2a0dq1a+nq1asUGBhIlSpVUkh4bCLRYLx161ayt7fnViwURUZGBvXo0YMaNGhAy5Ytk1AsbGxsqFmzZtShQwdSVVWVOJFUHlJSUsjBwYFzAhUPzh8+fOBOhC1tyOWHDx+SiYkJd37D54SEhFCrVq2oYcOGUu8iEL/PRZ1Sw8PD6fHjx5SVlUUmJiYS227z8/MpNzeXGjVqRDwej3x9fUsdpEkoFNKNGzeoTp06ZGlpyc3mxe9wdnY2Xbp0SaYYK0V/28eOHaPq1avTqVOn6NChQzRjxgxSUlKi2bNnE5HoO5o1axZNnDiR5s6dK9PhYESSCpA4CFhgYGAxZ9W1a9cSj8ejefPmyWX2ePnyJVWuXJl4PB41adKEJk2aROfPn6eUlBQiEpmLXFxcyNvbm4hECsiWLVsoJCSk1CsijPKDKRXfCcuXL6fq1asXm6WJB5JPnz7RiRMnyNfXl1xcXLiOQB7FIiQkhOzs7Mje3p6aNm3KxWVISEjgFIuiphBpdxGkpKTQn3/+WWwF5eXLl/T27Vt69+4d1a1bl1uOTklJISMjI1JWVpbZHFG03UlJSVSnTh3S19cvtn3z8uXL9Msvv5Cenh45ODiQi4tLqaI9lkR6ejpt3bqVatSoQe3bt5e7nJK+y/T0dBowYAB5enpKKBb//PMPjRkzhvz9/eWOC/A5HTp0oCZNmnCDkbg+/fv3JxUVFTI1NeWOupaH8+fPU61atejt27clnjxLJFrV6tSpk0yOrfHx8eTl5UWnT5+mkydPkpKSEl2+fJmIRAOhoaFhsR0Xv//+O4WGhsqtXIaEhNDq1atp5cqVnH9GREQE1a9fn5ycnLhl+s8HdlmV5ePHj9OQIUOKOehu27aNeDxesZNoZZHzpb5j8uTJpKSkROvXry/2fW/atElmJ2AxcXFx5OrqSvb29uTu7k4DBgwgDQ0NcnV1pX79+tH+/fvpwIEDZG1tTS1atFD4AXiM8oEpFd8BQqGQ+vTpw82ynz17RocOHSIfHx/q3bs3Xbp0id6+fUv9+/envn37yjwTEcsgIrp79y5VrVqV5syZQ1u3biV3d3cJ00RCQgJ3fsCWLVukLl8cNEncmW3YsIH69OkjkScqKoocHR05c8SLFy8oICCA9u3bJ1UnWPSkUjG3b9+mjIwMOnbsGLm4uJCjoyNdvXq1WNuTkpLoxYsXpTpl8r9IT0+ntWvXkoeHh1ymoqJhjqdNm0br1q3jtj+KQ32LFQvxsnNubq5cpiKxrA8fPkgcYnXs2DGqU6cOjRo1SmKw/+233+jvv/+Wyp5d0m4d8UrAjh07SF1dnRuoitb99u3bnI+FrFthIyMjaciQIWRubk7q6uoSJ5a+evWKWwEcO3Ys7dy5kwICAkhXV1emHT9FGTduHBkaGlK3bt3I1dWV3NzcuN/KlStXqGHDhlSjRg25thEXfe4xMTFUt25d0tXVpalTpxJR4ZbPgoIC6t27N/Xu3ZvzpZAF8fdz8eJFGj9+PAUEBEgcTDhx4kRSUVGhdevWKTQWRGxsLHXu3Jk6duxI169fpxcvXtDevXvJ29ubPDw8ON8UHo9HnTp1kqgro2LAlIrvgOzsbOrevTt16NCBFi1aRC1atKA2bdpQ165dqUOHDtzJhi9fvpRrl4eY27dv09GjR7kOikg0MDVs2JAsLS25VZL4+HiaPXu21KeNLliwgHg8Hrc9NT09nebMmUOOjo4Sp0peu3aNDAwMaO7cuXT69Glq27Yt+fr6ctelGSBfvnxJzs7OnCKhp6fH2WiPHTtGtWvXpr59+0qs+JTGeVEWxGdhyMvRo0dJU1OTvLy8yM7OjlxdXemvv/4iokLFwtvbm+bNm1dsW66shISEkJeXF5mbm3P+DQUFBVy0x3r16tH8+fOpT58+pKOjI1Po7RcvXnAmjn379pGvry/l5OTQkydPqEaNGjR+/HjuOYm/c39/f5o3b57cA8jOnTuJx+ORoaFhMTPNmzdvaMuWLWRtbU0uLi7k6uoq92rVnj17yMTEhFPCt27dSmpqahKHWd24cYPs7e2LKdVfo6hCcezYMUpKSuIOPSv6+xTz66+/UsuWLeVqB1Ghf8uQIUMoICCATExMqGnTptz1yZMnk6amJi1fvlyhikV0dDT5+vpSixYtJJyyP336RH/++SdNnjyZ3NzcmA9FBYUpFd+QojEbLl26RM2bNyczMzOaN28e92NbsmQJtWnTptS7PLKzs8nOzo54PJ6EUyFRoWJhZ2fHDdCyzIDDw8OpS5cuZGxszO1KSEpKouDgYHJxcaFffvmFyztv3jyqUqUKWVtbU/369WU247x48YKaNGlC1atXJ2Vl5WLLvwcPHiR3d3fq27evxDHJ3zvv3r2jKVOmcDPeq1ev0sCBA8nMzIyOHz9ORCLFokuXLuTj4yPzikvR53vr1i2qUqUKTZ06lebOnUvm5ubUsWNHunnzJgmFQvrf//5H3bt3Jy8vL2rZsqVMcRvy8vJo+PDh5OrqSsOGDSNlZWWufLMyygAAH5RJREFUTfn5+TR27FiqX78+jRkzhhITEyk6Opr++OMPqlKliszbOYu26d69e7RhwwYaOXIkOTg40IEDB0qsW0ZGBmfDl4dZs2ZR7969iUjkyKyjo0Pr1q0jItH3Iw7IdP/+fZl+Q0XbMmnSJKpevTrnjHn48GFq1KgRtWrVihto09PTqVGjRsXOL5GWFy9ekIODA+fr9OzZM6pSpQoNHTpUoi4BAQFkYGBQ6hNnP+fx48fk6+tLvr6+xWK7EJXfRICheJhS8Y1YsmQJ9evXj5ycnGjFihWcI9Lnhx+1adOG+vXrp5AlwBcvXpC3tzfZ2NhwtuSiKx/iWZw8jmuRkZHUqVMnMjQ05GaBSUlJtGzZMnJxcaGhQ4dyee/fv08xMTFyhycWz0r19fW55fuifhwHDx6kevXqUYcOHRTuP1EWPHjwgGrWrEl16tSRCHQWGRlJgwYNIlNTU06xSE9Pl8m8sm/fPokVpydPntDixYs5Jz8ikZJRp04dat++PV25coVLz8jIkHpFZPPmzVwocSJRPAYej0cDBgyQyJeTk0PTp0+nOnXqkJKSEjk7O5OVlZXcs9ILFy5IrHbdvHmTBg8eTA4ODnTo0CEu/cSJEzKfAloSEyZMoMmTJ9O1a9dIIBBwCoVQKKStW7fSkiVLJN5FWc1Ts2bNIgMDA7p586bEqtfRo0fJ29ubtLW1qVGjRuTn50eurq7c9yNtTAoxsbGxZG9vT0Si1T8TExMaPnw4d71oJNOifZIiefz4MbVq1Yp8fX0l3jtGxYYpFd+AiRMnUpUqVWjVqlU0f/58srKyorZt23K7PJKTk+n48ePUpk0bqlGjhlxOmUVP+7t16xYXN//Vq1dUo0YNqlu3LucMV1SxkNXL+vPZ4pcUi5o1a0qsWIiRNbBVZmYmPXz4kLZt20atW7cmIyMjTkEqOgAeOnSIGjduXKqtsGWJuD0RERG0du1a6tixI2lpaUkcaU8kUsCGDh1KWlpaxc7k+BqvXr2iBg0acN/zx48fydjYmDQ1NbmgamJu3LhBtWvXpq5du8osRxyDQexXIxQKqUOHDuTt7U0NGzak1atXSyiOBQUF9PHjRzpx4gTdvHmzWORWWTh79iwJBAIJM8CtW7doyJAhZG9vTytXrqTp06eThoaG3Ce1PnnyhN68eUO5ubl05coV4vF4xOPxJFZD0tPTqWXLlhQYGCh3Wz58+EA+Pj60a9cuIhLFBfnnn39oyJAhtG/fPlq2bBl5e3tTnTp1JHbQyLK1/Nq1a7Ry5Up6/vw5eXt7019//UVmZmbcyaJEongYffv25bbblqVPw+PHj6ldu3bk5eVVbKspo2LClIpy5saNG+Tg4MBtAQwLCyNVVVWJ00WfPn1KHTt2JD8/v1I5ZR45coQsLCzI0dGRNDU1yd/fn96+fcv5JdStW5cLLCRrx/ElZeD+/fvUoUOHYorF8uXLqVq1ahKBiGRtz+nTp2nUqFEUFhZGRKL4/z4+PmRoaChxsuiJEycoPT39uz9s6OTJk1S9enW6ePEihYaGUosWLcjBwaFY53rnzh0KCAiQOdgUUeHuocjISPr48SNdu3aNzMzMqEGDBsVWcW7dukWWlpbUp08fmZ+deHk8PDycUy6ys7Opd+/eVK9ePVq1apXEOyxPjIOSyMvLo/Pnz5OxsTE1a9aMS4+IiKDff/+dzMzMqGbNmnLFviASrUw4ODhQ5cqVqVGjRrRu3TrasmULqaur0+7duykuLo4iIyPJ19eX3NzcSrVs//HjRzIyMqI//viDLl68SH5+fuTh4UHu7u5UvXp12rBhAx08eJA7s0RanycxeXl55O/vT40bN6bk5GSqX78+KSsrU79+/STyjR07lho0aFBugaaioqKoW7duMh/sx/g+YUpFOXPt2jXuxMf9+/dLLKGmp6dzTmZv3ryR2zxAJFq+1NPTow0bNlBOTg6dOnWKOw5bHJVPfNS0rBEziyoUISEhtG3bNvrzzz+5fe2PHz8upli8f/9e6l0eJRESEkLq6uo0b948ioyM5NJfvHhBLVq0IENDQzp16hQFBQVR1apVv/sO6uPHjzRq1ChatGgRl3bx4kXq3Lkzubm5FQvKVBrHzJSUFHJxcaFevXrRhw8f6Nq1a2Rqakr+/v4Sz5JIUimQhqLfp1jJ8/Hx4fxZPn78SL179yZvb29auXIlFRQU0JQpU6hdu3ZyvwtFzSziOpw7d46MjY05p2YikY/D+/fv5V6+37t3L1WvXp2OHj1K27dvp3HjxpG6ujr98ssvtGLFCtLQ0CBDQ0NydXWlpk2byh3YqiibN2+mSpUqkY6ODo0fP547f6V37940ePBgIhKZtFq2bElNmzaVeTtxVFQU8fl8OnXqFEVFRZFAICA/Pz86fPgwhYWF0ahRo0hXV7fYmUBlTWkdjxnfD0ypKGfOnj1LDg4OtHfvXtLV1ZU4c+N///sf9e7dW2JGKk+QmZSUFBo2bBjNnDmTiEROWNbW1tStWzfS1dWlDh06UFxcHMXFxVG9evVkGkSKrmiMHTuWtLW1ydXVldTV1cnb25uzY8fExFCnTp3IxMSk2AApa6cbGxtLtra2nPL1OW/evKHOnTuTqakpOTk5yT0rLS9u3LhBhoaGVKtWLW53h5gLFy5Qp06dyMPDg4u1oAhu3bpF7u7uNGjQIPr48SNdvnyZUyw+H6Tl4cSJE7Ru3Travn07+fj4UMeOHSUUC39/f3J2dqYaNWpQ5cqV5V7qfvv2LVWtWpV69OghkZ6bm0vHjx8nNTU18vPzK3V7Lly4QEOGDJGIvJqSkkJr1qwhbW1tOnHiBD19+pRCQ0MpIiKiVBOAz3nx4kWxPqB58+YSJ9Hu2LGDOnTo8J8hzD9ffRTXcfTo0dx2zXPnzlH9+vXJ0NCQnJ2dydvbW+4D1RgMIqZUlAvr1q2TGBBbtmxJPB5PQqHIysqitm3bUrdu3Up1SA+RSOs/cOAAPXnyhD58+EBubm7cLGfPnj3E4/GodevW9Pr1a7k7QfFKx61btygzM5Pev3/PHXAkDul879497swSIvlts9evXydLS0uJwa+ksu7fvy8Rd+F7RvwOLFq0qJhN/OLFi9SsWTNq3LgxZWVlKcymHRERQa6urhKKhZWVFXXt2lWmQ8hOnjzJzWTFdevSpQu3k2DPnj3UrFkzCcUiJSWFDhw4QKtWrZLLjCMmKyuLtmzZQubm5sWW7VNSUqhOnTrE4/GoQ4cOcsuIj48na2tr0tbWlogOSyQy5XXs2JECAgKK3Vfa3+3npKWlUVhYGLVr145cXFyK/ValiecRGhpKO3fulKjb4cOHqVKlStyui8TERHrx4gW9fv26VDtjGAwiplSUOUFBQWRqakpTpkzhZhW3b98mDw8PsrGxoV27dtGqVauoZcuW5OzszHUcpe2gxDbrnTt3Ur169TjZe/fupSZNmpC5ubncJoJ58+ZR+/btqXv37pSZmSlxxHT9+vWpTZs2XN6nT5/K3RZxuceOHaMqVapwZpqiS6XXr1+XOBnye+bBgwcS+/LbtGlDBgYGdObMmWKrN2FhYXIfpPVfFFUsPn36RBcuXKAaNWpI7dD67t07srS0pIEDB0ooIg0bNpTwl9m/fz+nWJRmB474Hbh37x6dOnWKTp48SXFxcfTnn3+StbW1xPbogoIC+uWXX+jw4cPc1k55uXfvHllbW1Pt2rWL7UwZPHgwtW7dulTlfw2hUEgXLlygdu3aka+vr4RpRVolMycnh8aMGUM8Ho+6dOki8f0MHTqU6tWrJ3OgMQbjazClogzZuXMnValSpdhyfH5+Pj18+JB69OhBDg4O1KhRIxo0aBDXcShyj/asWbOoRo0aXFyDiRMn0qpVq+Q+jKygoIBWrFhBfD6fbG1tuU5JXF5YWBipqakVs9XLc3y5mPT0dDI2Nqbu3bsXuzZmzBiaPHlyqc9vKEuEQiElJCSQnZ0d9erVS+J98PHx4Y58L40tXhYiIiLI3d2devToQcnJyZwzp7SEh4dT3bp1aciQIdzqUcuWLbldC2J2795NzZo1o6ZNmxZ7H2Th4MGDVLlyZXJ1deXOjZg3bx79+eefZGlpSe3bt6e///6bxowZQ46OjnJFsiyJe/fuUa1atah///6cYpSamkr169eX2CJdVmRnZyvEtPLo0SMaMWIEOTg4kIODA23dupVWrFhBHTp04HaFMRiKgikVZcikSZO44DRfOkzo3bt3EmmKDvoSERHB+Ts0b96cdHR0ZHLCKkkZSE1NpS1btpCqqipNmjRJ4lpoaChZW1vLNVMUKxRXr16luXPn0pQpU2jv3r1EJFqyrVy5MnXu3JkePXpE165do4kTJ5Kurq5MS/flwZdmf3v37iUXFxcaNGiQRDyK5s2bk7m5OZ06darcFIubN29So0aN5N7OGRERQbVr16ZBgwbR/fv3yc/Pr8QVozVr1lCfPn3kXnWJiIggAwMD2rx5M338+JHi4+Opf//+1KJFC1q0aBGdPn2a7O3tycbGhuzt7RUehTEiIoKcnJyoevXq1K5dO+rSpQu5ubnJFB9CEShi5TIxMZEGDx5MLVu2JGNjY+LxeDRq1CgF1ZDBEMGUijKkX79+1LBhQ+5vcQeUlZXFeXUXpaw6qKtXr1Lfvn3p119/lclbvGhHFhUVRbdv35ZYfl2zZg0pKyvTmDFj6PLly/TgwQNq3bo1eXl5yd0JipWHjh070qBBg4jH49GUKVPo06dPdO7cObKzsyMjIyOytLQkFxeX7y6U79ChQ2ngwIHcoPP5KsChQ4fI0dGRBg8eLLFi4e7uTo6OjuW6Dba02zrFKx4DBgwggUBAVlZW5OPjQy1atKDGjRuTj48PjRgxolQrB7t37yYnJydKSUnh3rv4+Hjq1asXNW3alIRCIeXn59PTp0/L7FyX+/fvk6WlJTVs2FDCN0re1b5vzb1792j16tVkY2PDnDIZCocpFQqm6MFIK1asIHt7e/rnn38k/AASEhKoQYMGMgcZKg0FBQVyKy0TJkwgQ0ND0tXVJWtra5o+fTpng1+7di1pamoSj8ej33//nTp27MiZIqRRLIrmefz4MZmZmXEOrK9fvyZNTU0aPXo0lycnJ4euXbtGDx48KLNIf/Kyd+9eqlKlCrdUfuXKFZoyZUqxVZuDBw+SiYkJ9e3bV0Ip+t63wZZEeHg4ubi4UK1atah37960Y8cOWrFiBU2fPp3mzJlT6lWkvXv3krW1NaeYiFfynj9/Tjwej3MKLmvu3LlDnp6eNHToUJnOQfme+Pz3/z2bDBkVF6ZUKJBJkyaRi4sLHThwgAoKCigrK4tq1apFdevWpUOHDlF8fDzFxsZS27ZtqX79+uW21C0rRQd68QB4/PhxevToEY0fP568vLxo2LBhXHCcbdu2EZ/Pp2nTpnH3fW3fedEzO8Tyrl+/Tt7e3kQkGjSMjY0lonB+7yG3Fy1aRA4ODkQkCtRlZGRElStXpsmTJxeLVLpq1SrS1tamnj17fvdbYL/GnTt3OB+LokHIFMGTJ09IXV2dpkyZIpEeFxdHLi4uXBC58iAiIoI8PDyoZ8+eMgee+h5hp38yygKmVCiIOXPmUNWqVencuXMSh+9kZGSQj48POTs7k7q6Orm5uZGHh4dCAuWUNXv27KGlS5fSwoULJdJXrlxJNWrU4KKApqen07p160hZWZnmzp371XJfvXpF6urqxU5YvHr1Kjk5OdGFCxfIwsKChg0bxj2fmzdvUteuXbmQ3N8jN2/eJHt7e2ratCkpKSnRpUuXaMOGDWRsbEwTJ06UGHD3799PNWvWpAYNGpQqTPX3QkREBNWtW5f8/PxkPhjsa+zatYvU1NRo4sSJFBsbSwkJCfTHH3+QqalpuYdhv3nzJjVu3PiH+M4YjLKAKRWlRCgUUlJSEnl6etLmzZslroln67m5ufTgwQPat28fhYaGftFp83siNTWVjIyMiMfj0ZAhQ4pd79Spk4S/SE5ODm3YsIF4PJ5UobgvXrxIZmZmElvzXrx4QT4+PqSjo8OdBClm3Lhx5OPjQ0lJSaVoVdkzcuRI4vF45OnpyaUFBwdzioV4F8Qff/xBa9euLdVR6d8bZTXgCoVC2rt3L2lra5OZmRnZ2dmRiYnJNzuFVlEhxhmMHxGmVCiAly9fUpUqVTjv96Lmg8zMzBJnU9/bCkVJ/g8vX76k+vXrk6WlZTHb+OLFi6lJkyYSHWxOTg5t3bpVqpmqUCiksLAwMjQ0pFatWnHpGzZsoGrVqlFAQABdu3aN7ty5Q4GBgaSnp1eqbYnlQWZmJjVr1oyGDBlCTk5O1LNnT+7aqlWryNnZmWxsbKh+/fokEAgUEsnye6MsB9y4uDg6ffo0nTx5skxieDAYjNLDIyICo1Tk5+fDzs4O7du3x4oVKwAABQUFUFZWxtWrVxEeHo4BAwZAR0fnG9e0ZIRCIZSUlAAA586dQ3p6OpSUlNChQwe8fv0abdq0gYqKCtavXw9bW1uoqqqiVatWqFatGg4fPiyTLCICj8fj/r58+TL69u0LGxsbnDt3DgCwePFiHD9+HDdv3oSTkxN4PB62bt0KV1dXhbW5rMjMzASfz8fWrVuxaNEiuLm5Ye/evQCAs2fP4tGjR0hMTES/fv1gb2//jWvLYDAYioUpFXIiHnyJCJ07d8b8+fNx8OBB9O7dG0FBQQBEyka7du2gra2NAwcOSAym3wtFB/lJkyZh586dqFq1KqKiouDn54c5c+aAiNC+fXs8efIE9vb2sLW1xdOnT3HlyhWoqakVUxS+Juv69eu4e/cuPn36BE9PT6ioqGDYsGEwMTHhFIv4+HjEx8dDX18fOjo60NfXL9PnoGjS09Nx8OBBTrHYs2fPt64Sg8FglDlMqZCDzwffwYMHo2PHjjhx4gTOnDkDc3NzmJmZ4eHDh0hLS0NERARUVVWlHny/BYsWLUJwcDCOHj0KDw8PrF69GqNGjULnzp0RHBwMAOjfvz8iIiJw+vRp1KtXDwCQl5cHVVVVqeUcPnwYgwcPRuvWrfHixQsIhUK4uLigf//+6NmzJ1xcXHD69OmyaGK5k5GRgQMHDmDZsmWwtLTE8ePHv3WVGAwGo2z5JkaXCszChQvJ0NCQO3lz1apVxOPxaNCgQRQWFkZHjx6lzp07U69evWjcuHGcM+b37JT55s0bGjBgALfNU3zg0NSpU0lXV5e6dOlCT58+pZcvX5KjoyN5enrK5XX/6NEjMjMzo/Xr13N/a2pqctsFw8LCyNramry8vBTXuG9Meno6rV27ljw8PMp9pwKDwWCUN0ypkIEvDb5TpkwhHR0d6tmzJ718+bLYfd+bU+bnZGVlUUhICH369Ilu3bpFFhYWtGLFCiIiWrp0KfF4PGratCklJibSq1evyMXFhezs7LggX9Jy5swZcnNzIyLRcezm5uYSZyjcunWLzp8/T87OziU+x4pKRkbGD7XLg8FgML6E0rdeKalI6Ovro2PHjvD19cXt27cxduxYzJgxA7Nnz8a0adOwf/9+9O/fH69evZK4T1lZ+RvVWDo0NDTQrl076Onp4dy5c3B2dsaAAQMAAGpqaujbty/U1dWhp6cHExMT/PXXX6hUqRLy8vJkksPj8WBoaIi4uDg0atQIvr6+WLduHQDgypUrOHLkCKytrXHr1i2YmpoqvJ3fCj6fD11d3W9dDQaDwShzmFIhA/81+Kqrq6Nv377Q0NCAsbHxN66p7KioqAAAHj9+jJSUFPB4PGRnZ+PMmTNo27Yt/v77b6ioqCA/Px/m5ua4fPkyLCwsZJJha2uL0NBQWFlZoUuXLtiwYQOncO3fvx+3b9+Grq4uNDU1Fd08BoPBYJQDKt+6AhWN/xp8+/btCz8/PwCS2zQrAmIH0mHDhqFRo0bw9vZGTk4ONDQ00LVrVy6fuP3if2XBwsICe/bsQZ8+faCpqYnY2Fjk5ORgx44d2LlzJ8LCwqCnp6eQ9jAYDAaj/GG7P+Tk+vXraNSoEezt7bnBNyIiQq7B9nsjIiICISEh0NHRQWBgILdCoYi2FRQUYOfOnRg9ejR0dHSgra0NNTU1bNu2DW5ubgqoPYPBYDC+FUypKAVlOfh+T5RFm16/fo24uDgIBAKYmJjAwMBAoeUzGAwGo/xhSoUC+REVCgaDwWAwpIUpFQwGg8FgMBRCxfEkZDAYDAaD8V3DlAoGg8FgMBgKgSkVDAaDwWAwFAJTKhgMBoPBYCgEplQwGAwGg8FQCEypYDAYDAaDoRCYUsFgMBgMBkMhMKWCwfjJ8Pf3R6dOnbi/mzRpgjFjxpSqTEWU8TVCQ0PB4/GQnJws9T2KqNf27dvZmTQMhpQwpYLB+A7w9/cHj8cDj8eDmpoabGxsMGvWLOTn55e57JCQEMyePVuqvF8a2GUpg8Fg/LiwmNIMxndCq1atsG3bNuTk5ODUqVP49ddfoaqqikmTJhXLm5ubCzU1NYXI1dfX/y7KYDAYFR+2UsFgfCeoq6ujevXqMDc3x4gRI+Dj44Pjx48DKDRZzJ07F0ZGRrC3twcAvHr1Cj169ICenh709fXRsWNHxMXFcWUWFBQgMDAQenp6qFy5MsaPH4/PI/N/biLIycnBhAkTYGpqCnV1ddjY2GDLli2Ii4tD06ZNAQCVKlUCj8eDv79/iWV8+vQJ/fv3R6VKlcDn89G6dWvExsZy18UmhTNnzsDR0RECgQCtWrVCfHy81M/rw4cP6NWrF4yNjcHn8+Hi4oK9e/cWy5efn4+AgADo6urCwMAAU6dOlXgGOTk5CAoKgrGxMbS0tODp6YnQ0FCp68FgMAphSgWD8Z2iqamJ3Nxc7u/z588jJiYGZ8+exYkTJ5CXlwdfX19oa2sjLCwMV65c4QZn8X1Lly7F9u3bsXXrVly+fBkfP37EkSNH/lNu//79sXfvXqxcuRJRUVHYsGEDBAIBTE1NcfjwYQBATEwM4uPjsWLFihLL8Pf3x+3bt3H8+HFcu3YNRIQ2bdogLy+Py5OZmYklS5Zg586duHTpEl6+fImgoCCpn092djbq1KmDkydP4sGDBxg2bBj69euHmzdvSuTbsWMHVFRUcPPmTaxYsQLLli3D5s2buesBAQG4du0a9u3bh8jISHTv3h2tWrWSUIIYDIaUEIPB+OYMGDCAOnbsSEREQqGQzp49S+rq6hQUFMRdr1atGuXk5HD37Ny5k+zt7UkoFHJpOTk5pKmpSWfOnCEiIkNDQ1q0aBF3PS8vj0xMTDhZRESNGzem0f9v535CouriMI5/hzsFzmgtrEwFC2rUCWbRGNUI/aOgRcFUtEobobDAwpFmUUGL3GQQghHh0lVEswgX1sZFf42mEJIW04giRSKZEMFEWt0570Kat8to+freRdHz2Z05Z37ndwcGHu493HjcGGNMJpMxgOnv75+zz3v37hnAfPjwwfH5jzWGh4cNYAYGBvLzU1NTpqioyCSTSWOMMT09PQYwIyMj+TXXr183ZWVl8/5G8+39o3379plEIuHoKxgMOn6js2fPmmAwaIwx5vXr18ayLDM+Pu6os3v3bnP+/Pl8r8uXL593TxH5l85UiPwm+vr6KC4u5uvXr+RyOY4cOcLFixfz86FQyHGOYmhoiJGREUpKShx1pqenGR0d5ePHj0xMTLBly5b8nNfrZdOmTQWPQL578eIFlmWxY8eORV9HOp3G6/U69i0tLaWmpoZ0Op3/zOfzsW7duvy4vLycycnJBe9j2zaXLl0imUwyPj7Oly9fmJmZwefzOdZt3boVj8eTH0ciETo7O7Ftm5cvX2LbNtXV1Y7vzMzMUFpauuBeRGSWQoXIb2LXrl10d3ezdOlSKioq8Hqdf0+/3+8YZ7NZ6urquHHjRkGtlStXLqqHoqKiRX1vMZYsWeIYezyeecPOXK5cucLVq1fp6uoiFArh9/tpa2tzPDL6lWw2i2VZDA4OYlmWY664uHjBdURklkKFyG/C7/ezfv36Ba8Ph8PcunWLVatWsWzZsjnXlJeXk0ql2L59OzB7aHFwcJBwODzn+lAoRC6X48GDB+zZs6dg/vudEtu25+0rGAzy7ds3UqkU9fX1wOyhykwmw4YNGxZ8fb8yMDBANBqlsbERgFwux/DwcMEeqVTKMX769CmBQADLsti4cSO2bTM5Ocm2bdtc603kb6WDmiJ/qIaGBlasWEE0GuXRo0eMjY1x//59Wltbefv2LQDxeJzLly/T29vLq1evaGlp+enLo9auXUtTUxPHjh2jt7c3XzOZTAKwZs0aPB4PfX19vH//nmw2W1AjEAgQjUZpbm7m8ePHDA0N0djYSGVlJdFo1LXrDwQC9Pf38+TJE9LpNCdPnuTdu3cF6968ecOZM2fIZDLcvHmTa9euEY/HAaiurqahoYFYLMbt27cZGxvj2bNndHR0cOfOHdd6FflbKFSI/KF8Ph8PHz6kqqqKQ4cOEQwGOX78ONPT0/k7F4lEgqNHj9LU1EQkEqGkpISDBw/+tG53dzeHDx+mpaWF2tpampub+fTpEwCVlZW0t7dz7tw5ysrKOH369Jw1enp6qKurY//+/UQiEYwx3L17t+CRx/9x4cIFwuEwe/fuZefOnaxevdrxptDvYrEYnz9/ZvPmzZw6dYp4PM6JEyccvcZiMRKJBDU1NRw4cIDnz59TVVXlWq8ifwuP+S8PMUVERETmoTsVIiIi4gqFChEREXGFQoWIiIi4QqFCREREXKFQISIiIq5QqBARERFXKFSIiIiIKxQqRERExBUKFSIiIuIKhQoRERFxhUKFiIiIuEKhQkRERFzxD3WnmYDqwD3SAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAHWCAYAAADAcHv5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1hT1xvHv0kggUyWTBFwACIKqLV122pLXa3WWrX+3HUjdW8FB+KuA3DVVetqa9W2Wlv3rrUMF0NBEEFEHEBCkEByfn9ELkRAEkgC6Pk8z32Uc8953/ecnHvue89kEUIIKBQKhUKhUKoJu6YNoFAoFAqF8nZAnQoKhUKhUCh6gToVFAqFQqFQ9AJ1KigUCoVCoegF6lRQKBQKhULRC9SpoFAoFAqFoheoU0GhUCgUCkUvUKeCQqFQKBSKXqBOBYVCoVAoFL1AnYpKuHfvHj755BNIJBKwWCwcOXJEr/JTUlLAYrGwa9cuvcrVlj179sDT0xOmpqawsLCoERuMRXllHRwcDBaLVXNGlQOLxUJAQEBNm1Eldu3aBRaLhZSUFCasS5cu6NKlS43YU5fLsjL+/fdfcLlcPHjwoKZNodRhYmNjYWJigtu3b+tFXp1wKpKSkjB27Fg0bNgQZmZmEIvFaN++PdavX4/8/HyD6h42bBhu3bqFkJAQ7NmzB61btzaoPmMSHx+P4cOHo1GjRti2bRu2bt1a0yZRKBQtmTdvHgYNGgQXFxcAgEqlwq5du/DZZ5/B2dkZAoEA3t7eWLp0KV6+fKmRttj5q+jau3dvpfrv3buHgQMHon79+uDz+fD09MTixYshl8sNkt83ERsbi+DgYA1nVh8MHz78jeWUnp4OAJDL5QgPD8cnn3wCBwcHiEQi+Pn5YdOmTVAqlVrrk0qlmDlzJtzc3MDj8eDk5IQvv/zSoGXq5eWFnj17YuHChXqRZ6IXKQbk2LFj6N+/P3g8HoYOHQpvb28oFApcunQJM2bMwJ07dwz2MszPz8fVq1cxb948g33tuLi4ID8/H6ampgaR/ybOnTsHlUqF9evXo3HjxkbXXxuYP38+Zs+eXdNmvNX8/fffNW3CW0dMTAxOnTqFK1euMGFyuRwjRozABx98gHHjxsHW1hZXr15FUFAQTp8+jTNnzjC9cp06dcKePXvKyP3uu+9w48YNdO3a9Y36Hz58iDZt2kAikSAgIABWVlaMrsjISBw9elS/Ga6E2NhYLFq0CF26dIGrq6ve5I4dOxbdunXTCCOEYNy4cXB1dYWTkxMA4P79+5g0aRK6du2KqVOnQiwW46+//sKECRPwzz//YPfu3ZXqysnJQefOnZGWloYxY8agcePGyMrKwsWLF1FQUAA+n6+3fL3OuHHj0KNHDyQlJaFRo0bVE0ZqMffv3ydCoZB4enqSR48elbl/7949sm7dOoPpf/DgAQFAVq1aZTAdNcmiRYsIAJKVlaU3mXl5eXqTpW+Sk5MJALJz586aNuWNACATJ06saTOqxM6dOwkAkpycXNOmEELqdlm+icDAQNKgQQOiUqmYsIKCAnL58uUycYuf85MnT75RplwuJyKRiHz88ceV6g8JCSEAyO3btzXChw4dSgCQ58+fa5kT/fDzzz8TAOTs2bMG13Xx4kUCgISEhDBhWVlZZcqCEEJGjBhBAJB79+5VKnf8+PHEwsKC3L9/X6/2aoNCoSCWlpZkwYIF1ZZVq4c/Vq5cCZlMhu3bt8PBwaHM/caNG+Pbb79l/i4qKsKSJUvQqFEj8Hg8uLq6Yu7cuSgoKNBI5+rqil69euHSpUto06YNzMzM0LBhQ/zwww9MnODgYKZbccaMGWCxWIwHPHz48HK94fLG50+ePIkOHTrAwsICQqEQHh4emDt3LnO/ojkVZ86cQceOHSEQCGBhYYHPP/8ccXFx5epLTEzE8OHDYWFhAYlEghEjRlTaXebq6oqgoCAAQL169cBisRAcHMzcj4iIQLNmzcDj8eDo6IiJEyciOztbQ0aXLl3g7e2NyMhIdOrUCXw+XyNvrzN8+HAIhUKkpqaiV69eEAqFcHJyQnh4OADg1q1b+OijjyAQCODi4oJ9+/aVkZGdnY3JkyfD2dkZPB4PjRs3xooVK6BSqcrEGz58OCQSCSwsLDBs2LAy9pcuw2LeNMfl9TIqTnv37l3873//g0QiQb169bBgwQIQQvDw4UN8/vnnEIvFsLe3x5o1ayosm/LYu3cvPDw8YGZmhlatWuHChQtl4kRHR6N79+4Qi8UQCoXo2rUr/vnnnzfmsZjy5j9o82wUc+fOHXz00UcwNzdH/fr1sXTp0jK/A1B2TsW5c+fAYrHw008/ISQkBPXr14eZmRm6du2KxMTEMunDw8PRsGFDmJubo02bNrh48aLO8zT0UZZnzpwBm80u0028b98+sFgsbNq0iQlLT0/HyJEjYWdnBx6Ph2bNmmHHjh1ldG7cuBHNmjUDn8+HpaUlWrduXW69f50jR47go48+0vhduVwu2rVrVyZu3759AaBM+/E6v//+O6RSKQYPHlyp/tzcXACAnZ2dRriDgwPYbDa4XC4TVjyv5U2/QX5+Pjw9PeHp6akxpP38+XM4ODigXbt2FQ4j7Nq1C/379wcAfPjhh8zQxLlz55g42rRn2lL8e3/99ddMmI2NDZo1a1YmrrZln52djZ07d2LMmDFwc3ODQqEo894qprgdvX//Pvz9/SEQCODo6IjFixeDlDp0PCgoCGw2G6dPn9ZIP2bMGHC5XNy4cYMJMzU1RZcuXfTTw1Rtt8SAODk5kYYNG2odf9iwYQQA+fLLL0l4eDjjNffp00cjnouLC/Hw8CB2dnZk7ty5JCwsjLRs2ZKwWCzG27xx4wb57rvvCAAyaNAgsmfPHnL48GFGj4uLSxn9QUFBpHSR3r59m3C5XNK6dWuyfv16snnzZjJ9+nTSqVMnJk55X88nT54kJiYmxN3dnaxcuZIsWrSI2NjYEEtLS40vwGJ9fn5+5IsvviARERHkm2++IQDIzJkz31hWhw8fJn379iUAyKZNm8iePXvIjRs3NOR269aNbNy4kQQEBBAOh0Pee+89olAoGBmdO3cm9vb2pF69emTSpElky5Yt5MiRI2/8fczMzIiXlxcZN24cCQ8PJ+3atWPy7+joSGbMmEE2btxImjVrRjgcjobXnpeXR1q0aEGsra3J3LlzyebNm8nQoUMJi8Ui3377LRNPpVKRTp06ETabTSZMmEA2btxIPvroI9KiRYsyZf36b/am3gwAJCgoqExaX19fMmjQIBIREUF69uxJAJC1a9cSDw8PMn78eBIREUHat29PAJDz58+/8Xcp1uPt7U1sbGzI4sWLyYoVK4iLiwsxNzcnt27dYuLdvn2bCAQC4uDgQJYsWUKWL19O3NzcCI/HI//880+FeSymvF4FbZ4NQgjJyMgg9erVI5aWliQ4OJisWrWKNGnShCnj0jI7d+5MOnfuzPx99uxZpt62atWKfPfddyQ4OJjw+XzSpk0bDRsjIiIIANKxY0eyYcMGMnXqVGJlZUUaNWqkIdNYZTlx4kRiYmJCIiMjCSGEPHr0iFhZWZFu3boxvQaPHz8m9evXJ87OzmTx4sVk06ZN5LPPPiMAyHfffcfI2rp1K9Nebdmyhaxfv56MGjWKBAYGvjFPaWlpBADZsGFDpfknhJC///6bACD79u17Y7zPPvuMmJubk9zc3Epl/vnnnwQA+eyzz0h0dDRJTU0lBw4cIGKxmEyePFkjrra/wT///EM4HA6ZMmUKEzZw4EBibm5OEhISKrQlKSmJBAYGEgBk7ty5ZM+ePWTPnj3k8ePHhBDt2zNtUCgUxNramrRv316r+MW/8ZUrV94Y7/fffycAyNatW0m/fv0Ih8MhLBaLtGvXjkRHR2vELW5HmzRpQoYMGULCwsJIr169CACNngaFQkH8/PyIi4sL85ueOHGCACBLliwpY8PSpUsJm80mOTk5WuWtImqtU5GTk0MAkM8//1yr+DExMQQA+eabbzTCp0+fTgCQM2fOMGEuLi4EALlw4QIT9uTJE8Lj8ci0adOYsOIXzOvDH9o6FcVOyZuGF8p7ifn6+hJbW1vy7NkzJuzGjRuEzWaToUOHltE3cuRIDZl9+/Yl1tbWFep8PX1p+548eUK4XC755JNPiFKpZMLDwsIIALJjxw4mrHPnzgQA2bx5c6W6CClx+pYtW8aEvXjxgpibmxMWi0UOHDjAhMfHx5d5iS9ZsoQIBAJy9+5dDbmzZ88mHA6HpKamEkIIOXLkCAFAVq5cycQpKioiHTt2NIhTMWbMGA099evXJywWiyxfvrxMPocNG1ZpOQEgAMh///3HhD148ICYmZmRvn37MmF9+vQhXC6XJCUlMWGPHj0iIpFIw3HV1anQ5tmYPHkyAUCuXbumEU8ikWjtVDRt2pQUFBQw4evXrycAmBdNQUEBsba2Ju+99x4pLCxk4u3atYsA0Nqp0GdZ5uXlkcaNG5NmzZqRly9fkp49exKxWEwePHjAxBk1ahRxcHAgT58+1bBl4MCBRCKRELlcTggh5PPPPyfNmjWrNA+vc+rUKQKA/P7771rF79atGxGLxeTFixcVxnn27Bnhcrnkq6++0tqOJUuWEHNzc6aMAZB58+aViaftb0AIIXPmzCFsNptcuHCBGdLQZoi7ouEPXdozbSh++UdERFQat6CggHh5eRE3NzeN+lsea9euJQCItbU1adOmDdm7dy+JiIggdnZ2xNLSUmP4v7gdnTRpEhOmUqlIz549CZfL1WjPb926RbhcLvnmm2/IixcviJOTE2ndunW59uzbt6/MM10Vau3wR3H3mkgk0ir+8ePHAQBTp07VCJ82bRoA9YTP0nh5eaFjx47M3/Xq1YOHhwfu379fZZtfp3iJ5tGjR8vtFi6PjIwMxMTEYPjw4bCysmLCW7RogY8//pjJZ2nGjRun8XfHjh3x7Nkzpgx14dSpU1AoFJg8eTLY7JLqMXr0aIjF4jLlyOPxMGLECJ10fPPNN8z/LSws4OHhAYFAgK+++ooJ9/DwgIWFhcbv8fPPP6Njx46wtLTE06dPmatbt25QKpVMd+rx48dhYmKC8ePHM2k5HA4mTZqkk51VyQ+Hw0Hr1q1BCMGoUaPK5FPb+tW2bVu0atWK+btBgwb4/PPP8ddff0GpVEKpVOLvv/9Gnz590LBhQyaeg4MDvv76a1y6dKlKvz+g3bNx/PhxfPDBB2jTpo1GPG26zosZMWKERjd5sc5iPf/99x+ePXuG0aNHw8SkZE754MGDYWlpqbUefZYln8/Hrl27EBcXh06dOuHYsWP47rvv0KBBAwDqSXyHDh1C7969QQjRqKf+/v7IyclBVFQUAHWdSEtLw/Xr17XOCwA8e/YMALQqg2XLluHUqVNYvnz5G5eM//LLL1AoFDr9fq6urujUqRO2bt2KQ4cOYeTIkVi2bBnCwsLKxK3sNygmODgYzZo1w7BhwzBhwgR07twZgYGBWtv0Orq2Z5Wxb98+mJqaarRVFREQEIDY2FiEhYVp1N/ykMlkANRDRadPn8bXX3+N8ePH48iRI3jx4gUzRPy6/GKKh5gUCgVOnTrFhHt7e2PRokX4/vvv4e/vj6dPn2L37t3l2lNcn54+fVpp3t5ErXUqxGIxAPUSG2148OAB2Gx2mVUM9vb2sLCwKLOWu7gRKI2lpSVevHhRRYvLMmDAALRv3x7ffPMN7OzsMHDgQPz0009vdDCK7fTw8Chzr2nTpnj69Cny8vI0wl/PS3HlqEpeKtLP5XLRsGHDMuXo5OSk8WKoDDMzM9SrV08jTCKRoH79+mXG/SUSiUYe7t27hxMnTqBevXoaV/Hs7CdPnjB5cHBwgFAo1JBXXpnqg9fLXyKRwMzMDDY2NmXCtf1NmjRpUibM3d0dcrkcWVlZyMrKglwur7CeqFQqPHz4UIdclKDNs/HgwYNybdSljCurt8V17fVn2sTERKcZ/vouy/bt22P8+PH4999/4e/vj5EjRzL3srKykJ2dja1bt5app8XOd3E9nTVrFoRCIdq0aYMmTZpg4sSJuHz5stb5IqXGz8vj4MGDmD9/PkaNGqXhYJfH3r17YWVlhe7du2ul+8CBAxgzZgy+//57jB49Gl988QW2b9+OYcOGYdasWYzjU0xlv0ExXC4XO3bsQHJyMqRSKXbu3FmtfWR0bc/ehEwmw9GjR+Hv7w9ra+s3xl21ahW2bduGJUuWoEePHpXKNjc3BwD07t1bo9364IMP4ObmprHKBwDYbLaGAwyoyxNAmWW1M2bMgI+PD/79918EBQXBy8urXBuK61N19+2ptUtKxWIxHB0ddd6QQ9sC4XA45YZX9qC+ScfrE4nMzc1x4cIFnD17FseOHcOJEydw8OBBfPTRR/j7778rtEFXqpOX6lL8MGhLRbZqkweVSoWPP/4YM2fOLDdu8UNVHbT9bUtTnu01+Zu8jq55MpbttamMdKGgoICZBJiUlAS5XM4s9yv+YPjf//6HYcOGlZu+RYsWANQOS0JCAv744w+cOHEChw4dQkREBBYuXIhFixZVqL/4hfYmB/XkyZMYOnQoevbsic2bN78xP6mpqbh48SLGjBmj9dL2iIgI+Pn5oX79+hrhn332GXbt2oXo6OgySzG15a+//gIAvHz5Evfu3YObm1uV5OibI0eOQC6XV9qbs2vXLsyaNQvjxo3D/PnztZLt6OgIoOzEVwCwtbWt1sfu/fv3ce/ePQDqyfAVUazj9Y8hXam1PRUA0KtXLyQlJeHq1auVxnVxcYFKpWIKr5jMzExkZ2czKzn0gaWlZbkzh8vzetlsNrp27Yq1a9ciNjYWISEhOHPmDM6ePVuu7GI7ExISytyLj4+HjY0NBAJB9TLwBirSr1AokJycrNdy1JVGjRpBJpOhW7du5V7FX74uLi7IyMhguhSLKa9MX6f4a/n139fYuxa+Xo8B4O7du+Dz+cyXL5/Pr7CesNlsODs7AzBMnlxcXMq1UZsy1kUHgDIrQoqKinTa5EifZQmoZ9XHxcVh9erVSE5O1tjnpF69ehCJRFAqlRXWU1tbWya+QCDAgAEDsHPnTqSmpqJnz54ICQkps1lVaTw9PQEAycnJ5d6/du0a+vbti9atW+Onn36qtOt9//79IIToNPSRmZlZrlNaWFgIQP0blaay36CYmzdvYvHixRgxYgT8/PzwzTffICcnp1J7KnKc9dme7d27F0KhEJ999lmFcY4ePYpvvvkGX3zxRblDFhVRPDRUvJlWaR49elSmd1elUpUZSr179y4AaPTiqVQqDB8+HGKxGHPnzsX+/fvx66+/lmtDcnIy2Gx2tT/OarVTMXPmTAgEAnzzzTfIzMwscz8pKQnr168HAKaLad26dRpx1q5dCwDo2bOn3uxq1KgRcnJycPPmTSYsIyMDhw8f1oj3/PnzMml9fX0BoMLlQg4ODvD19cXu3bs1XgK3b9/G33//rVVXWnXo1q0buFwuNmzYoPHFuH37duTk5Oi1HHXlq6++wtWrV5kvmdJkZ2czDVmPHj1QVFSkscRPqVRi48aNleoQi8WwsbEps+QwIiKimtbrxtWrV5mxd0C92dDRo0fxySefgMPhgMPh4JNPPsHRo0c1XrCZmZnYt28fOnTowAwhFm9mUzpPeXl5Wm3IUxE9evTAP//8g3///ZcJy8rK0monRm1p3bo1rK2tsW3bNo2X1N69e3X6ctNnWV67dg2rV6/G5MmTMW3aNMyYMQNhYWE4f/48AHXvS79+/XDo0KFye1lLd/W/PkTA5XLh5eUFQgjzci4PJycnODs747///itzLy4uDj179oSrqyv++OMPrXoS9+3bhwYNGqBDhw7l3n/69Cni4+M1lqm7u7sjOjqaeZEVs3//frDZbKY3ppjKfgNA7ZAMHz4cjo6OWL9+PXbt2oXMzExMmTKl0jwUf2i97jjrqz3LysrCqVOn0Ldv3wo3obpw4QIGDhyITp06Ye/evRpzOEpTWFiI+Ph4ZGRkMGEeHh7w8fHB0aNHNeY0/P3333j48CE+/vjjMnJKz10hhCAsLAympqYaG5etXbsWV65cwdatW7FkyRK0a9cO48ePL3feRGRkJJo1awaJRFJ5gbyJak3zNAJHjx4lZmZmxNLSknz77bdk27ZtJDw8nAwePJhwuVyNmffFs2K/+uorEh4ezvxd3pLSnj17ltH1+iz1ilZ/PH36lAgEAtKwYUOybt06smzZMuLs7ExatmypMcv+22+/JX5+fmT+/Plk27ZtJCQkhDg5OZH69euT7OxsDR3lLSn19PQkq1atIosXL2aW75VeYlne6g1CtN+AqKL0xeGffPIJCQsLI5MmTapwSakus9eHDRtGBAJBmfCK5Lz+O+Xl5ZGWLVsSExMT8s0335BNmzaR1atXM3KL86FUKkn79u2ZJaVhYWFaLyklRL2aBAAZNWoU2bRpExk0aBBp1apVhas/Xi8/XfP5OqhgCZ6ZmRmz7JeQkmWQTk5OJCQkhKxYsYI0bNiwzDJIhUJBGjRoQGxsbMiKFSvI6tWriZeXF5On11d/aPNsPHr0iFhbW1drSenPP/+soaO8Z2Hjxo3MktKNGzeSadOmEWtra9KoUSPSpUsXo5Zlfn4+8fDwIJ6eniQ/P58Qop7h36xZM+Lm5kZkMhkhRL2k1MXFhfD5fPLtt9+SLVu2kNDQUNK/f39iaWnJ6GzZsiXp0aMHCQkJId9//z2ZNm0a4fF4pHfv3pXmKyAggDg5OWlsfpWbm0ucnZ0Jm80my5cvZ5ZWFl/lLWu8desWAUBmz55doa7iel56ZcX58+cJh8Mhtra2ZPHixSQ8PJx079693BV42v4GCxcuJCwWS2Ol3tKlSwkAcuzYsTeWR0ZGBuFwOOSDDz4gu3btIvv37yeZmZka9lfWnr2J4np44sSJcu+npKQQiURCzM3NSXh4eJmyL53P4nr++kqwM2fOEA6HQzw8PMjatWtJUFAQEYlExN3dnUilUiZe6SWlQ4cOJeHh4cyS0rlz5zLxYmNjiZmZGRk+fDgTdvfuXcLn80n//v01dCsUCmJlZUXmz5+vVXm8iVrvVBCiLojRo0cTV1dXwuVyiUgkIu3btycbN24kL1++ZOIVFhaSRYsWETc3N2JqakqcnZ3JnDlzNOIQUn2nghD12m9vb2/C5XKJh4cH+fHHH8u8oE6fPk0+//xz4ujoSLhcLnF0dCSDBg3SWBJZ0RLGU6dOkfbt2xNzc3MiFotJ7969SWxsrEYcQzkVhKiXXHl6ehJTU1NiZ2dHxo8fX2ZJmrGdCkIIkUqlZM6cOaRx48aEy+USGxsb0q5dO7J69WqNBuLZs2dkyJAhRCwWE4lEQoYMGUKio6O1cirkcjkZNWoUkUgkRCQSka+++oo8efLEqE7FxIkTyY8//kiaNGlCeDwe8fPzK3e3wKioKOLv70+EQiHh8/nkww8/LPflERkZSd5//33C5XJJgwYNyNq1aytcUqrNs0EIITdv3iSdO3cmZmZmxMnJiSxZsoRs375dr04FIYRs2LCBuLi4EB6PR9q0aUMuX75MWrVqRT799NMKy7AYfZbllClTCIfDKbPk7r///iMmJiZk/PjxTFhmZiaZOHEicXZ2JqampsTe3p507dqVbN26lYmzZcsW0qlTJ2JtbU14PB5p1KgRmTFjhlb7BERFRREA5OLFi0xYcflVdJW3nLnYgb5582aFuspzKggh5Nq1a6R79+7E3t6emJqaEnd3dxISElJmuaI2v0FkZCQxMTHRWCZJiHqJ9nvvvUccHR3fuCSWEEK2bdtGGjZsSDgcThl7tWnP3sQHH3xAbG1tSVFRUbn3i+t0RVfpdqMip4IQ9QflBx98QMzMzIiVlRUZMmQIycjI0IhT3L4kJSWRTz75hPD5fGJnZ0eCgoKYZbPF5Vb6A7aY4qXbBw8eZMKK9x3RZufPymARUstnRVEoFEopVCoV6tWrhy+++ALbtm2raXNqjK5du8LR0bHcMzxqEywWCxMnTix3qSlFd4YPH45ffvmlzJyx6tCnTx+wWKwyQ/hVoVbPqaBQKO82L1++LLMa5IcffsDz589r7Dj12sKyZctw8OBBevQ5pVrExcXhjz/+wJIlS/Qir9YuKaVQKJR//vkHU6ZMQf/+/WFtbY2oqChs374d3t7ezHkP7yrvv/8+FApFTZtBqeM0bdq0zGqd6kCdCgqFUmtxdXWFs7MzNmzYgOfPn8PKygpDhw7F8uXLddp0jUKhGAc6p4JCoVAoFIpeoHMqKBQKhUKh6AXqVFAoFAqFQtELdE5FHUKlUuHRo0cQiUTVPvSFQqFQ3mUIIZBKpXB0dKxw90t98vLly2pPrOVyuTAzM9OTRYaBOhV1iEePHmmcQUChUCiU6vHw4cMyB6Ppm5cvX8LNRYjHTyo+mFAb7O3tkZycXKsdC+pU1CFEIhEAYMMFH5gL9XPCaUXsbUmdl1oP27B1gEFVvYaw1mGkcjNxdjCKnqKHGZVH0hMs07fnlVFECnFRcZhpVw2JQqHA4ydKPIh0hVhUtV6RXKkKLq1SoFAoqFNB0Q/FQx7mQg74BnYqTFjaHYFMqUFYRnIqWG/Z1CsjlZsJm2cUPTDis8pivX2vDGMOJQtFLAhFVdOnQt0Y8n77agiFQqFQKLUQJVFBWcVNHJREpV9jDAR1KigUCoVCMQIqEKhQNa+iqumMzVvWr0mhUCgUCqWmoD0VFAqFQqEYARVUqOogRtVTGhfqVFAoFAqFYgSUhEBZxZMxqprO2FCngkKhUCgUI/AuzKmgTsVbwrVllnh2mwsrLwU+mP+CCU/+k4/b28UAC2gxNgcu3fLxz1JLPI/nQlnAQpvZL2DXqkAvNowNToe7Tz7u3TLH5oVOepFJ9VRBXlAa3Fvk4d5tPjYHlew34uKRj8DQVLBYwMa5zkiO42PQpAz0HvYUfx20xu5VjtXWDdByq4zRgbfR2DMHSXcl2LrOu0RPw1xMnHETLBYQvqoFUpLE8H0vC0NGx0NRwEH46uZIe6D9ngrGrAdj5j+Ae4s8JN4WYPNilxJd7nIELk0BWEDYAlckx/MRGJIMF/d8gABhC9VhtU0PperQiZpGoLpbs1bG0ztcFMlZ6LEvE6pCFrJulhwJfWe3CN33ZKL7nkzc2SUGALSZ9QI9fszEh+uycHOLWC82NG4uh7lAhWl9G8PUlMDdR64XuVSPjvK85TAXKDGtn8creXnMvWEzHmH5RDeEjHfDsOnqDZP+3G+DFYGu1dKpoZ+W2xtp5J4NM74Ssya0h4mJCk2aZjP3/jc6ASuDWmH5/FYYMiYeADBoxF3MDWyLlcEtMXjU3VqXHwBo3CwP5gIVpn/lBRNTAvcWMube0KnpCP22EZYFNMbQqWkAgIObHDGtvxfWzGyIwYHptU6PIVGBQFnFq670VNSoU3HixAl06NABFhYWsLa2Rq9evZCUlMTcT0tLw6BBg2BlZQWBQIDWrVvj2rVrzP3ff/8d7733HszMzGBjY4O+ffsy9woKCjB9+nQ4OTlBIBDg/fffx7lz55j7Dx48QO/evWFpaQmBQIBmzZrh+PHjAIAXL15g8ODBqFevHszNzdGkSRPs3LmTSXvr1i189NFHMDc3h7W1NcaMGQOZrKSCDx8+HH369EFISAgcHR3h4eGBxYsXw9u75KukGF9fXyxYsKBa5ZgVw4Vju5cAAMd2L5EVU7Lpjti5CEX5LBTJWeAK1RN92K/2yimUs2HlWVgt3cV4tpQj6oL6Kyr6ohBNW+dVkoLqMYQez5Z5iLqgdhSjL4nQtFWJPKFEiawMLp495kIgUe+Smf3UFPocqqXlVoke72xE/1sPABDznw08vZ+X6BEV4ukTczx7ag6BsOS5LHhpghfPzODgpH0ejVkPPP1kiLr0StdlMZq2LGkLRZIiPM3g4VkmFwKxWldmmrp9UhayoFJpv6GTsfQYkuLhj6pedYEadSry8vIwdepU/Pfffzh9+jTYbDb69u0LlUoFmUyGzp07Iz09Hb/99htu3LiBmTNnQqVSvxiPHTuGvn37okePHoiOjsbp06fRpk0bRnZAQACuXr2KAwcO4ObNm+jfvz8+/fRT3Lt3DwAwceJEFBQU4MKFC7h16xZWrFgBoVAIAFiwYAFiY2Px559/Ii4uDps2bYKNjQ1js7+/PywtLXH9+nX8/PPPOHXqFAICAjTydvr0aSQkJODkyZP4448/MHLkSMTFxeH69etMnOjoaNy8eRMjRowot3wKCgqQm5urcZWHQsqG6SuHgStSQZFb8rM2+FiOo30ccPRzBzT9n7TEvon18PdIWzi0fandj1UJQrEScqlab56UA6HYMFs7Uz1ayJO9kperKY9dql01VBNLy+3NCISFyM9TjzrLZaYQCotK9LBLXhqlN3m0sCxAfRcpnF1LXqKVYcx6IBArIZeqdymVSzkQiEp0ld6M9fWNK0fMfIiju+xqnR5DUjxRs6pXXaBG51T069dP4+8dO3agXr16iI2NxZUrV5CVlYXr16/DysoKANC4cWMmbkhICAYOHIhFixYxYT4+PgCA1NRU7Ny5E6mpqXB0VI8PTp8+HSdOnMDOnTuxbNkypKamol+/fmjevDkAoGHDhoyc1NRU+Pn5oXXr1gAAV1dX5t6+ffvw8uVL/PDDDxAIBACAsLAw9O7dGytWrICdnbryCgQCfP/99+ByS4Yi/P39sXPnTrz33nsAgJ07d6Jz584auksTGhqqkb+K4IpUKHzVgChkLHDFJUuPboRboO/xRwCAk6Nt4dRB7UR0Dc9C3mMOzgbWg2Pbx5XqqIw8KQd8kVovX6iELNcwWyFTPVrIe+Vg8kWa8ko3SSoDtU+03CrRIzOBuUDtSPAFRZDJSprg0u+M4i/rnRFNMWtxJJ48NkfsLUvt9RixHsilHPBfveD5QiXypKV0lZJfekPIPiMeIzXRHHf+036OiLH0UKpHjfZU3Lt3D4MGDULDhg0hFouZl3dqaipiYmLg5+fHOBSvExMTg65du5Z779atW1AqlXB3d4dQKGSu8+fPM8MrgYGBWLp0Kdq3b4+goCDcvHmTST9+/HgcOHAAvr6+mDlzJq5cucLci4uLg4+PD+NQAED79u2hUqmQkJDAhDVv3lzDoQCA0aNHY//+/cwRuPv27cPIkSMrLJ85c+YgJyeHuR4+fFhuvHq+Cjz6R33ATMYVc9TzLZl4yeYSmJgRmJgTqArVDZXy1RQPE74KJub6WfscF8mHbwd1T4hfRxniIwWVpKB6DKEnLlJQIq+DFPFRJfKk2RzYOChgZadgvvj0DS23NxN/2xK+rbMAAL7vZSHhdomjIM3lwrpePqxsXjK9GfG3rTBnUjsc3N0ED1O0fzEasx7ERQnh107di+rbPhdx0cJSukxgY6+Ala0CcplaV8uOOfBqJcO+jbpNCDWWHkOiquZVF6jRnorevXvDxcUF27Ztg6OjI1QqFby9vaFQKGBubv7GtG+6L5PJwOFwEBkZCQ5H86EpHuL45ptv4O/vj2PHjuHvv/9GaGgo1qxZg0mTJqF79+548OABjh8/jpMnT6Jr166YOHEiVq9erXXeSjsdpfPL4/Fw+PBhcLlcFBYW4ssvv6xQBo/HA49X+aFENs0USOQSHP/aDlZNFRA4FOHGJjF8xufCc5AUxwbZAwA8Bqi7T89NrgeFlA2iBFpNzdY6T28i8RYfioIXWHM4EUl3zJAQY5iZ1lRPJfJu86EoYGHNoQQkxfLxJJ2LQZMysH+jA/asccDciGQAQNg89WoA/4FP0XtoFkQWSgglRQif36BW5cdYeoxVbkl3LaBQpGFFxGUk3xMjK9McA4bdxcHd7tj7vQdmL4kEAGxao+5BHTDsLnxbP0VuLhdhK1rUuvwAQOIdARQFbKz+KRZJsXxkpXMxcOIjHAh3xI/rnDBnYyIAIHyherXGhOAHkEs5WLk/Hmn3zbBhnlut0mNIiiddVjVtXYBFSM0M1Dx79gw2Nja4cOECOnbsCAC4dOkSOnbsiMOHDyMnJweBgYFITk4ut7fiww8/hJOTE3788ccy9+7evQsPDw8N2ZUxZ84cHDt2TKPHopgtW7ZgxowZyM3NxbZt2zBr1iw8fPiQcRyOHz+O3r1749GjR7Czs8Pw4cORnZ2NI0eOlJE1a9YsREdHg8vlwsnJCVu2bNHKPgDIzc2FRCLBtqiWBj+ldKeHS+WRKDULPfq8ahjr6PMGhltOW5qiVOOtbHjbjj4/W/ATcnJyIBbrZxVcRRS33TdjbSGq4tHnUqkKLbyeGMXe6lBjwx+WlpawtrbG1q1bkZiYiDNnzmDq1KnM/UGDBsHe3h59+vTB5cuXcf/+fRw6dAhXr14FAAQFBWH//v0ICgpCXFwcM9kSANzd3TF48GAMHToUv/76K5KTk/Hvv/8iNDQUx44dAwBMnjwZf/31F5KTkxEVFYWzZ8+iadOmAICFCxfi6NGjSExMxJ07d/DHH38w9wYPHgwzMzMMGzYMt2/fxtmzZzFp0iQMGTKEmU/xJr755hucOXMGJ06ceOPQB4VCoVAodY0acyrYbDYOHDiAyMhIeHt7Y8qUKVi1ahVzn8vl4u+//4atrS169OiB5s2bY/ny5cxwRpcuXfDzzz/jt99+g6+vLz766CP8+++/TPqdO3di6NChmDZtGjw8PNCnTx9cv34dDRqou/WUSiUmTpyIpk2b4tNPP4W7uzsiIiIY3XPmzEGLFi3QqVMncDgcHDhwAADA5/Px119/4fnz53jvvffw5ZdfomvXrggLC9Mq302aNEG7du3g6emJ999/Xy9lSaFQKJTaz7swp6LGhj/eVQghaNKkCSZMmKDRM6MNdPiDogEd/qgadPijytDhj6pR3HZHxdpBWMXhD5lUhZZembV++OPtqSF1gKysLBw4cACPHz+ucG8KCoVCobydqEjVl/Eaahm4vqFOhRGxtbWFjY0Ntm7dCktL7decUygUCoVSF6BOhRGhI00UCoXy7qIEC8oq7mNa1XTGhjoVFAqFQqEYAepUUCgUCoVC0QsqwoKKVM05qGo6Y0OPPqdQKBQKhaIXaE9FHWRvS2eYsEwNquNQ2j8GlV9Mv/ofGEXPW8nbttTTWBip3Iy21NOI9YAUVh5HH7DNKj+eoLqwiPGfHzr8QaFQKBQKRS8owYayigMEdeUTgjoVFAqFQqEYAVKNORWEzqmgUCgUCoXyLkF7KigUCoVCMQJ0TgWFQqFQKBS9oCRsKEkV51TUkb0TqVNBoVAoFIoRUIEFVRVnHahQN7wK6lRQKBQKhWIE3oXhDzpRsxx27doFCwuLt0YPhUKhUCjGgPZUlMOAAQPQo0ePmjZDL4wNToe7Tz7u3TLH5oVO1Za3M9gFSTcFcPPOw6jFD5jwGxck2L+qPrhmKowJTUb9xi8BAIQA0/2bo/vwx+j2dVa19QP6zxPVQ/UYU8/YoDS4t8jDvdt8bA5yZsJdPPIRGJoKFgvYONcZyXF8DJqUgd7DnuKvg9bYvcqx2roZG+ponsbMS0ETbxkS7wiwZalbiZ4mckxach9gAWEL3ZCSIMDY+clo5JUHUy7BtmUuiI0SVzuf1aV6cyrqxvAH7akoB3Nzc9ja2ta0GdWmcXM5zAUqTOvbGKamBO4+8mrJu3+Lj5d5bCz9NRZFhWwkxgiYez+vc0LwwThMCUvEwTUljcp/Jy0httbfNnz6zhPVQ/UYU09jbznMBUpM6+fxSl4ec2/YjEdYPtENIePdMGx6BgDgz/02WBHoWi2dZWyoo3lq1EwGM74SMwZ5q/U0lzH3hk5JxfIpTRAa2ARDpzwEAHy/3AUzv/ZGaKA7Bow30u6mlaCeU1H1qy7wVjoVJ06cQIcOHWBhYQFra2v06tULSUlJAICUlBSwWCz8+uuv+PDDD8Hn8+Hj44OrV68y6V8flggODoavry927NiBBg0aQCgUYsKECVAqlVi5ciXs7e1ha2uLkJAQDTvWrl2L5s2bQyAQwNnZGRMmTIBMJoOx8GwpR9QFEQAg+qIQTVvnVZLizdyNEqFFpxwAQIsOOUiIFGncN+OrYGlXiMwHJVvsXjxijfafPauW3tLoO09UD9VjTD2eLfMQdUH9xRx9SYSmrUrkCSVKZGVw8ewxFwKJev/E7Kem0PcHal3Nk6evDNGXJWo9VyTw9JNq6HmawcOzTB6E4iIAgLJI/XozEyhxP15QVmANoHq1o2ZVrqpO8DQ2dcNKHcnLy8PUqVPx33//4fTp02Cz2ejbty9UKhUTZ968eZg+fTpiYmLg7u6OQYMGoaioqEKZSUlJ+PPPP3HixAns378f27dvR8+ePZGWlobz589jxYoVmD9/Pq5du8akYbPZ2LBhA+7cuYPdu3fjzJkzmDlzpkHzXhqhWAm5VP0T50k5EIqrt9FrXi4HfKFaBl9chLxcjsb97CxTpCWaIe2eOQAg5rwEXh9IweaUEVVl9J0nqofqMaYeoVgJueyVvFxNeexSH6KG/Catq3kSiosgl6kbE7XdJe01i1W+l7IgIh4hO2MR88oZoRiet3JORb9+/TT+3rFjB+rVq4fY2FgIhUIAwPTp09GzZ08AwKJFi9CsWTMkJibC09OzXJkqlQo7duyASCSCl5cXPvzwQyQkJOD48eNgs9nw8PDAihUrcPbsWbz//vsAgMmTJzPpXV1dsXTpUowbNw4RERFa5aOgoAAFBQXM37m5uVqXAaB+8PgitSPFFyohy63e250vUjIPdb6UA0GpxmPIvFSsndAY9eor4Pme+gvi1H5bBK5LxKXfbKqltzT6zhPVQ/UYU0+elAO+8JU8kaa80q9FlQGHz+tqnvKkJiUfNUIlZLnlv75Kb2e9ZIInbOwLMC/sLqZ82bx6BugBOqeijnLv3j0MGjQIDRs2hFgshqurKwAgNTWVidOiRQvm/w4ODgCAJ0+eVCjT1dUVIlFJd7+dnR28vLzAZrM1wkrLOHXqFLp27QonJyeIRCIMGTIEz549g1yu3RhmaGgoJBIJczk7O1eeqBRxkXz4dlC/4P06yhAfWb0uQI9WUty6pPb4b16SwL2ltNQ9GRb/HId+k9Lh1DgfAJBx3wwrRnng9y0O+GO7A9ISzaqlH9B/nqgeqseYeuIiBSXyOkgRH1UiT5rNgY2DAlZ2CsilhnGS1DbUzTzFRQvh21Y9/OrXPgfxMcJSekxgY18AK1sF8+FjylU7Ovl5HLyU145XnerVMEZVr7pA3bBSR3r37o3nz59j27ZtuHbtGjMkoVAomDimpiVHh7NYas+29PDI65SOX5ymvLBiGSkpKejVqxdatGiBQ4cOITIyEuHh4WXseBNz5sxBTk4Ocz18+FCrdMUk3uJDUcDGmsOJUKmAhBi+Tulfp2FzOUx5Ksz/wgtsNmDjpMAvG9Szt3/Z4IiF/Zti73JnfDVFPSlqzd+3sGBvPHqPzUCvURnMipDqoO88UT1UjzH1JN7mQ1HAwppDCVCpWHiSzsWgSeoJjHvWOGBuRDLmb07GD6vVHzr+A59izII0fNT3OSYuTX2TaO1tqKN5SrojhKKAjVX7b0OlZCHrEQ8Dx6ep9ax3xuz19zB3413sWaf++Jq9/i5W7L2D4K3x+HG9bh9khkJJWNW66gIsQupIn4qWPHv2DDY2Nrhw4QI6duwIALh06RI6duyIw4cPw9fXF25uboiOjoavry8AIDs7G5aWljh79iy6dOmCXbt2YfLkycjOzgagnqh55MgRxMTEMHqGDx+O7OxsHDlyhAnr0qULfH19sW7dOhw6dAiDBg3Cy5cvmd6MpUuXYsGCBXjx4gUsLCzK6KmM3NxcSCQSdMHnMGGZVp6gGhxK+8eg8ovpV/8Do+ihUIyOPicTvQmVEQ/FNlKe2Ga8yiNVkyKiwBn5AeTk5EAsNuxy0+K2e090c/BFVStDuVSJIX63jGJvdXjr5lRYWlrC2toaW7duhYODA1JTUzF79myj29G4cWMUFhZi48aN6N27Ny5fvozNmzcb3Q4KhUKh1A6KV3JULW3d+P5/64Y/2Gw2Dhw4gMjISHh7e2PKlClYtWqV0e3w8fHB2rVrsWLFCnh7e2Pv3r0IDQ01uh0UCoVCqR2oCLtaV13grRv+eJuhwx8USh2CDn9UXc1bOvyxLapVtYY/RreMrPXDH3XD9aFQKBQKhVLreevmVFAoFAqFUhtRAVVexVHx2sTaBXUqKBQKhUIxAtXZb6Ku7FNBnQoKhUKhUIxA9XbUrBtORd2wkkKhUCgUSq2H9lRQKBQKhWIEqnOEeV05+pw6FZRyMdZSz3UpV4yiZ7JrO6PoMSYcIy0rU+p4kF1VYfEMv4wQAEipQ/ooOmKk5assE8O/mljE+FMfa2L4Izw8HKtWrcLjx4/h4+ODjRs3ok2bNhXGX7duHTZt2oTU1FTY2Njgyy+/RGhoKMzMtDu7iToVFAqFQqEYgertqKl7uoMHD2Lq1KnYvHkz3n//faxbtw7+/v5ISEiAra1tmfj79u3D7NmzsWPHDrRr1w53797F8OHDwWKxsHbtWq100jkVFAqFQqG8haxduxajR4/GiBEj4OXlhc2bN4PP52PHjh3lxr9y5Qrat2+Pr7/+Gq6urvjkk08waNAg/Pvvv1rrpE4FhUKhUChGQEVY1bp0QaFQIDIyEt26dWPC2Gw2unXrhqtXr5abpl27doiMjGSciPv37+P48ePo0aOH1nrp8AeFQqFQKEZAVY3hj+J9KnJfm+PE4/HAK2c+0tOnT6FUKmFnZ6cRbmdnh/j4+HJ1fP3113j69Ck6dOgAQgiKioowbtw4zJ07V2s7aU8FhUKhUChGQB8Hijk7O0MikTCXPg+qPHfuHJYtW4aIiAhERUXh119/xbFjx7BkyRKtZdCeCgqFQqFQ6ggPHz7UOFCsvF4KALCxsQGHw0FmZqZGeGZmJuzt7ctNs2DBAgwZMgTffPMNAKB58+bIy8vDmDFjMG/ePLDZlfdD0J4KCoVCoVCMgBKsal0AIBaLNa6KnAoul4tWrVrh9OnTTJhKpcLp06fRtm3bctPI5fIyjgOHoz5VVdsDzd8Zp2LXrl2wsLBg/g4ODoavr2+N2UOhUCiUdwt9DH/owtSpU7Ft2zbs3r0bcXFxGD9+PPLy8jBixAgAwNChQzFnzhwmfu/evbFp0yYcOHAAycnJOHnyJBYsWIDevXszzkVlvLPDH9OnT8ekSZNq2gyDMzY4He4++bh3yxybFzrVSV2HF7vi4S0h6jeT4YvgFCY84aIEx9c0gKmZCv2X3odd43y96QSMV3b61jN6dhKaeMuQFCvElmWNmHCXJnkICE4EiwWEBTdGyl0BAIDLU2LHqetYPdMDMVctq61f3/kZM/8B3FvkIfG2AJsXuzDhLu5yBC5NAVhA2AJXJMfzERiSDBf3fIAAYQvVYdVF3/kZG5QG9xZ5uHebj81Bzky4i0c+AkNTwWIBG+c6IzmOj0GTMtB72FP8ddAau1c5Vls3YwOt2zWCEmB6HKqSVlcGDBiArKwsLFy4EI8fP4avry9OnDjBTN5MTU3V6JmYP38+WCwW5s+fj/T0dNSrVw+9e/dGSEiI1jrfmZ6K1xEKhbC2tq5pMwxK4+ZymAtUmNa3MUxNCdx95HVO18PbAhTIOQj8+TaKCtlIvSFk7v21wRkT9t3BkA138ed3zm+QojvGKjt962nkJYM5X4WZ//OBiakKTbylzL0hgQ+wYponQid7Ysi3KUy4f//HePCqEa4u+s5P42Z5MBeoMP0rL5iYEri3kDH3hk5NR+i3jbAsoDGGTk0DABzc5Ihp/b2wZmZDDA5Mr5ZuwAD58ZbDXKDEtH4er+TlMfeGzXiE5RPdEDLeDcOmZwAA/txvgxWBrtXSWcYGWrffKQICAvDgwQMUFBTg2rVreP/995l7586dw65du5i/TUxMEBQUhMTEROTn5yM1NRXh4eEavfyVUSucihMnTqBDhw6wsLCAtbU1evXqhaSkJABASkoKWCwWDhw4gHbt2sHMzAze3t44f/48k/7cuXNgsVg4duwYWrRoATMzM3zwwQe4fft2hTpfH/64fv06Pv74Y9jY2EAikaBz586IiorSSMNisfD999+jb9++4PP5aNKkCX777TeNOHfu3EGvXr0gFoshEonQsWNHJi8A8P3336Np06YwMzODp6cnIiIiqlN0b8SzpRxRF0QAgOiLQjRtnVdJitqn60G0CB4dsgEAHh2ykRwl1LjP46sgsS3Es1TttpDVFmOVnb71ePrkIvqKBQAg5qolmvqVLD8TSorw9DEPz57wIBQXAQBMTFXw9JEiNlo/W37rPT9+MkRdUtsWfVmMpi1LnAqRpAhPM3h4lsmFQKz+jstMU48vKwtZUKmqf1aC3vPTMg9RF17l55IITVuVyBNKlMjK4OLZYy4EEnV+sp+aQsuhbB1soHW7pjD28EdNUCuszMvLw9SpU/Hff//h9OnTYLPZ6Nu3L1Sqkr3ZZ8yYgWnTpiE6Ohpt27ZF79698ezZMw05M2bMwJo1a3D9+nWm26awsFArG6RSKYYNG4ZLly7hn3/+QZMmTdCjRw9IpVKNeIsWLcJXX32FmzdvokePHhg8eDCeP38OAEhPT0enTp3A4/Fw5swZREZGYuTIkSgqUlfyvXv3YuHChQgJCUFcXByWLVuGBQsWYPfu3dUpvgoRipWQS9U/cZ6UA6HYcPv2G0pXfi4HZkK1LDOREvm5miN20ixTZCaaIzPRXC/6ijFW2elbj0BcBLmMw8gTiIqYe2xWydup+HXbrW8mzv5WdrveqqL//Cghl6rzI5dyIBCVyGOVar1Yr/kPI2Y+xNFdmuvzq4K+8yMUKyGXvZKXqymPXSoPhjw6itbtmqP47I+qXnWBWjGnol+/fhp/79ixA/Xq1UNsbCyEQvWXaUBAABNv06ZNOHHiBLZv346ZM2cy6YKCgvDxxx8DAHbv3o369evj8OHD+Oqrryq14aOPPtL4e+vWrbCwsMD58+fRq1cvJnz48OEYNGgQAGDZsmXYsGED/v33X3z66acIDw+HRCLBgQMHYGpqCgBwd3fXsG/NmjX44osvAABubm6IjY3Fli1bMGzYsDI2FRQUoKDU4Uevb3pSGXlSDvgitWPGFyohy9Vuok1VMJQuM5ESL181JC9lHJiLSxqS3rNTsHuSOyydCuDWWlqRiCphrLLTtx651AT8V04YX6hEnrTkES/9wasiLLA5BK06vEBIoBc8fPRTfvrPDwd8Uen8lMgr/QVf+myoPiMeIzXRHHf+E1VLN6D//ORJOeALX8kTacrT/H2qpaZyG2jdrhFINU4pJXXklNJa4frcu3cPgwYNQsOGDSEWi+Hq6gpAPYmkmNJLYExMTNC6dWvExcVpyCkdx8rKCh4eHmXiVERmZiZGjx6NJk2aQCKRQCwWQyaTadgAAC1atGD+LxAIIBaL8eTJEwBATEwMOnbsyDgUpcnLy0NSUhJGjRoFoVDIXEuXLtUYHilNaGioxiYnzs66zRuIi+TDt4P6gfLrKEN8pOHGFg2ly7WlFHcvSwAAdy9ZwNWvpPvbrZUMAQfu4JOANNg10u+4sLHKTt964mLE8GmbDQDwbZuN+JiSrl9ptims7QpgZVsAuYwDS2sF6jkUYPG22/iw9xMMn5oCoVi7nr0K9es7P1FC+LVTO9O+7XMRF10y/CXNNoGNvQJWtgrmC7Zlxxx4tZJh30b9TGrUe34iBSXyOkgRH1UiT5rNgY2DAlZ2CqZ3xhDQuk0xJLWip6J3795wcXHBtm3b4OjoCJVKBW9vbygUCqPZMGzYMDx79gzr16+Hi4sLeDwe2rZtW8aG1x0GFovFDNOYm1fcBS+TqV+G27Zt05goA6DCpTpz5szB1KlTmb9zc3N1ciwSb/GhKHiBNYcTkXTHDAkx1Z8Jb2xdzt55MOWpsKG/N5y88mDpWIC/w5zwSUA6/g5zwt1LFhBYFuGrZeU7ZlXFWGWnbz1JsUIUFrCx8scbuB8vQFYGDwPGpuLglgb4caML5nyn3p43YnEjPHvCw+T+fgCAwQEPcCdSDFluWYe4JvOTeEcARQEbq3+KRVIsH1npXAyc+AgHwh3x4zonzNmYCAAIX6heFTIh+AHkUg5W7o9H2n0zbJjnVrvyc5sPRQELaw4lICmWjyfpXAyalIH9Gx2wZ40D5kYkAwDC5qmfc/+BT9F7aBZEFkoIJUUIn9+gWvoNkSdj6anpuq0PauLoc2NT407Fs2fPkJCQgG3btqFjx44AgEuXLpWJ988//6BTp04AgKKiIkRGRiIgIKBMnAYN1A/dixcvcPfuXTRt2lQrOy5fvoyIiAjm4JSHDx/i6dOnOuWlRYsW2L17NwoLC8s4H3Z2dnB0dMT9+/cxePBgreRVtKe7Lhh6GakxdJVeRgoAnwSkM/8W/98QGKvs9K2n9FI7ADi4Rf1MpNwVYPrXPuWm2RvmUm54VdB3fkovIwWAA+HqXojkeD6m9ffSuPdN1xbQN3rPT5Dmh8H+jQ4AgOQ4Pqb29dC499cBG/x1wEav+gFat2uKqhwMVjptXaDGnQpLS0tYW1tj69atcHBwQGpqKmbPnl0mXnh4OJo0aYKmTZviu+++w4sXLzBy5EiNOIsXL4a1tTXs7Owwb9482NjYoE+fPlrZ0aRJE+zZswetW7dGbm4uZsyY8caeh/IICAjAxo0bMXDgQMyZMwcSiQT//PMP2rRpAw8PDyxatAiBgYGQSCT49NNPUVBQgP/++w8vXrzQ6JGgUCgUytuHshoHilU1nbGpcSvZbDYOHDiAyMhIeHt7Y8qUKVi1alWZeMuXL8fy5cvh4+ODS5cu4bfffoONjU2ZON9++y1atWqFx48f4/fffweXy9XKju3bt+PFixdo2bIlhgwZgsDAQNja6jZz2NraGmfOnIFMJkPnzp3RqlUrbNu2jem1+Oabb/D9999j586daN68OTp37oxdu3bBza16XbQUCoVCodQGWETbDb1riJSUFLi5uSE6OrrCbbXPnTuHDz/8EC9evNBpk466Rm5uLiQSCbrgc5iwan58UB+sS7liFD2TXdsZRY8x4YiNs/5eqeOqo6rCquZQn7aQUiuqDArbcJMtNVAZbql4TWGMul1EFDid+yNycnI0DugyBMVtd+Clz8ETVq3tLpAVYkOHo0axtzrU+PAHhUKhUCjvAiqwoariAEFV0xkb6lRQKBQKhWIElIQFZRUnXFY1nbGp9U6Fq6trpUeudunSRetjWSkUCoVCoRiGWu9UUCgUCoXyNkCXlFIoFAqFQtELpBoHgxG6+RWFQqFQKJRilGBBWcUzPKqazthQp6IuwuYALAMvVzPSMrXJDTsaRc/mB+eNogcAxrl1Nooe1Vu2NJIUFlUeifJOQIoMXxcIofXNEFCngkKhUCgUI6AiVZ8bYciTa/UJdSooFAqFQjECqmrMqahqOmNDnQoKhUKhUIyACiyoqjg3oqrpjE3dcH0oFAqFQqHUemhPBYVCoVAoRoDuqEmhUCgUCkUv0DkVFAqFQqFQ9IIK1dhRk86pqD7nzp0Di8VCdnZ2TZtSZVgsFo4cOVLTZlAoFAqFYnBqtVOhb2rCScnIyED37t0NrmdsUBrWHErAuEUPNcJdPPKx5tcErD2cALemcgDAoEkZ2PffLQyb8Ui/NgSnY83hRIxbnF59WUbMz0+L3bD6y+Y4GNxQIzz2ogVW9GmBtQO88TjRHABw+aAd5rVvjR3futfaPI2Z/wCrf4rFuIUPNPW4y7Hmp1is+TkWbp5qPYEhyVjzcyzW/FQSVtvyU9N1W5/1Gqj5/AD6z5Ox9IyZl4JV+29j7PxkjXCXJnKsPnAbqw/ehqtHnlr3/GSs3Hcb3/1yC14tc/Wiv7qQV6s/qnIR2lNRd1EoFHqTZW9vDx6Ppzd55dHYWw5zgRLT+nnA1JTA3SePuTdsxiMsn+iGkPFuGDY9AwDw534brAh01a8NzeUwF6gwrW/jVzbo9oLSkGXE/KTeEqAgj4Ppv9yCspCFlBtC5t7x9c6YvO82Rm1IwO/fNQAA+Hz8DN/uvV1r89S4WR7MBSpM/8oLJqYE7i1kzL2hU9MR+m0jLAtojKFT0wAABzc5Ylp/L6yZ2RCDA7Vv+I2Wnxqu2/qs10DN5wfQf56MpadRMxnM+ErMGOStlte8VN2ekorlU5ogNLAJhk5RO2vfL3fBzK+9ERrojgHjDes8aUvxgWJVveoCNe5UqFQqhIaGws3NDebm5vDx8cEvv/xSYfxLly6hY8eOMDc3h7OzMwIDA5GXV/JgFhQUYNasWXB2dgaPx0Pjxo2xfft2pKSk4MMPPwQAWFpagsViYfjw4QDUR6cHBARg8uTJsLGxgb+/PwDg/PnzaNOmDXg8HhwcHDB79mwUldo+tkuXLggMDMTMmTNhZWUFe3t7BAcHa9j7+vBHWloaBg0aBCsrKwgEArRu3RrXrl2rVhl6tsxD1AUxACD6kghNW5WUh1CiRFYGF88ecyGQqLfezn5qCn2fFO/ZUo6oCyK1DReFaNo6r5IUb5JlvPzcjxahacdstd722bgfJdK4z+OrILErRNYDM7V+qyKwOborM1aePP1kiLr0Ss9lMZq2LGl4RZIiPM3g4VkmFwKxWk9mmtrhVRayoFJp32gZLT81XLf1Wa/V8t6uZ9WYejx9ZYi+LFHLuyKBp5+UuSeUKF/VbR6EYnUbrSxSv97MBErcjxdUS7e+KJ6oWdWrLlDjVoaGhuKHH37A5s2bcefOHUyZMgX/+9//cP582bMakpKS8Omnn6Jfv364efMmDh48iEuXLiEgIICJM3ToUOzfvx8bNmxAXFwctmzZAqFQCGdnZxw6dAgAkJCQgIyMDKxfv55Jt3v3bnC5XFy+fBmbN29Geno6evTogffeew83btzApk2bsH37dixdulTDpt27d0MgEODatWtYuXIlFi9ejJMnT5abV5lMhs6dOyM9PR2//fYbbty4gZkzZ0KlUlWrDIViJeQy9U+Zl8uBUFxybge71HvCkH6uUKyEXPrKBqmmDVWSZaT85OeawFyoboTMxUXIz9Wcu5ybZYrHieZ4nMivlh5j5UkgVkIuVZ/VIZdyIBCV6GGVetpZrykaMfMhju6y01qPsfJT03Vbn/WakfcWPavG1CMUF0Eu45SSV/KBx2KV73ktiIhHyM5YxLxyRiiGp0ZXfxQUFGDZsmU4deoU2rZtCwBo2LAhLl26hC1btmDMmDEa8UNDQzF48GBMnjwZANCkSRNs2LABnTt3xqZNm5CamoqffvoJJ0+eRLdu3Rh5xVhZWQEAbG1tYWFhoSG7SZMmWLlyJfP3vHnz4OzsjLCwMLBYLHh6euLRo0eYNWsWFi5cCDZb/bC0aNECQUFBjIywsDCcPn0aH3/8cZn87tu3D1lZWbh+/TpjS+PGjd9YPgWlDo3KzS1/XDBPygFfqHZM+CIlZLklB0CVftQMuXd8npQDvuiVDUJNG6oky0j5MRcpkS9TPwYvpSYwL9VQfTEnBd8HeMCqfgEata7emKyx8iSXcsB/5UjwhUrkSUvpKSWblPJj+4x4jNREc9z5T7OX5k0YKz81Xbf1Wa8ZeW/Rs2pMPXlSE/CFJXVbllv+64uUGiZYMsETNvYFmBd2F1O+bF4t/fqgOsMYdPhDCxITEyGXy/Hxxx9DKBQy1w8//ICkpKQy8W/cuIFdu3ZpxPX394dKpUJycjJiYmLA4XDQubPup0S2atVK4++4uDi0bdsWrFKfdO3bt4dMJkNaWhoT1qJFC410Dg4OePLkSbk6YmJi4OfnxzgUlREaGgqJRMJczs7O5caLixTAt4O6K9CvgxTxUSVdfdJsDmwcFLCyUzBfsIYgLpJfYkNHGeIjq97daMz8NGyZi4RXXzFxlyzgVqpLtWErKaYevI3uAQ9h3zi/WnqMlae4KCH82qkdIN/2uYiLLpkjIs02gY29Ala2CuaLr2XHHHi1kmHfRsfamZ8artv6rNdqeW/Xs2pMPXHRQvi2zVHLa5+D+JjX63aBRt025aodmvw8Dl7Ka7xTHgCqPEmzOtt7G5sa7amQydTjvceOHYOTk5PGPR6PV8axkMlkGDt2LAIDA8vIatCgARITE6tsi0BQtQpvamqq8TeLxapwOMPc3Fwn2XPmzMHUqVOZv3Nzc8t1LBJv86EoYGHNoQQkxfLxJJ2LQZMysH+jA/asccDcCPVM6bB56rT+A5+i99AsiCyUEEqKED6/gU52lUfiLT4UBS+w5nAiku6YISGm6sMFxsxPg+Z5MOERrP6yOep75cHKsQDHN9ZHj0lpOL6xPuIvWUBgWYTBoeq6dfO0Jf6KqI+sB+bYMtYTY7fE16o8Jd4RQFHAxuqfYpEUy0dWOhcDJz7CgXBH/LjOCXM2qvMRvtAFADAh+AHkUg5W7o9H2n0zbJjnVrvyU8N1W5/1ujbkxxB5MpaepDtCKAqysGr/bdyPEyDrEQ8Dx6fhwKb62LPeGbPX3wMARASr6/Ds9XchFCvBZhPsWl39ctMH70JPBYsQfU8D0h6pVIp69eph27ZtGDJkSJn7586dw4cffogXL17AwsICgwcPRmZmJk6dOlWuvJSUFDRs2BB///03M/xRmitXrqB9+/Z4+vQprK2tmfAuXbrA19cX69atY8LmzZuHQ4cOIS4ujumtiIiIwOzZs5GdnQ02m11uuj59+sDCwgK7du0CoHYyDh8+jD59+mD37t0IDAxEcnKy1r0VpcnNzYVEIkEX9hcwYZlWnqA6qAwzzloGtuG+yEqzObnsHB1DMc5N956yqsAyNc43ASksqjxSXeItq9tGy48RYfMN4+iUpogocEZ+ADk5ORCLxQbVVdx29/zrG5gKuFWSUZinwDH/741ib3Wo0T4hkUiE6dOnY8qUKdi9ezeSkpIQFRWFjRs3Yvfu3WXiz5o1C1euXEFAQABiYmJw7949HD16lJmo6erqimHDhmHkyJE4cuQIkpOTce7cOfz0008AABcXF7BYLPzxxx/IyspiekrKY8KECXj48CEmTZqE+Ph4HD16FEFBQZg6dSozn0JXBg0aBHt7e/Tp0weXL1/G/fv3cejQIVy9erVK8igUCoVSd6BLSo3AkiVLsGDBAoSGhqJp06b49NNPcezYMbi5le2GbdGiBc6fP4+7d++iY8eO8PPzw8KFC+HoWDIevGnTJnz55ZeYMGECPD09MXr0aGbJqZOTExYtWoTZs2fDzs5OY9XI6zg5OeH48eP4999/4ePjg3HjxmHUqFGYP39+lfPK5XLx999/w9bWFj169EDz5s2xfPlycDhG+qKhUCgUSo3xLjgVNTr8QdENOvxRdejwR9Whwx9VhA5/VJm3dfjj4+NjqzX8cbLHFjr8QaFQKBQK5d2AnlJKoVAoFIoRIKj6aaN1ZUiBOhUUCoVCoRiBd2FJKXUqKBQKhUIxAtSpoFAoFAqFohfeBaeCTtSkUCgUCoWiF2hPBYVCoVAoRuBd6KmgTkVdRKXUPMe6LmOkNfbjXDoYRQ8AHHh40Sh6vvYouxW9ISClTso1JCwezyh6SIGR9nV4C/ePMBaql4avcypSaHAdr0MIS+MUVV3T1gWoU0GhUCgUihGozmmjdeWU0rfkc5dCoVAoFEpNQ3sqKBQKhUIxAnROBYVCoVAoFL1A51S8Ijc3V2uBtfmgEwqFQqFQagraU/EKCwsLsFhvzhAhBCwWC0olnfFMoVAoFMq7iFZOxdmzZw1tR62CEIKxY8fil19+wYsXLxAdHQ1fX1+96+nSpQt8fX2xbt06vcumUCgUSu2CDn+8onPnzoa2o1Zx4sQJ7Nq1C+fOnUPDhg1hY2NT0yZVmbHB6XD3yce9W+bYvNDprdBVV/XsDnbF/ZtCuDWXYfiiFCb85gUJflrdAFwzFUYtuw+nxvk4Gu6EmLMWKMjnoE9AGtp0f661njHzUtDEW4bEOwJsWerGhLs0kWPSkvsACwhb6IaUBAHGzk9GI688mHIJti1zQWxU9Ycv9V1uY+Y/gHuLPCTeFmDzYhcm3MVdjsClKer8LHBFcjwfgSHJcHHPBwgQtlAdVl3oM1R79IwNSoN7izzcu83H5iBnJtzFIx+BoalgsYCNc52RHMfHoEkZ6D3sKf46aI3dqxyrrVsfkGoMf9QVp6JKS0ovXryI//3vf2jXrh3S09MBAHv27MGlS5f0alxNkZSUBAcHB7Rr1w729vYwMamb81kbN5fDXKDCtL6NYWpK4O4jr/O66qqe5FsCFMg5WPTrbRQp2EiKETL3Dq1zxvwDdzBp4138vEbdUPYc8whBv9zBwp9u47dN2jfGjZrJYMZXYsYgb7XdzWXMvaFTUrF8ShOEBjbB0CkPAQDfL3fBzK+9ERrojgHj06uVR0D/5da4WR7MBSpM/8oLJqYE7i1K5WdqOkK/bYRlAY0xdGoaAODgJkdM6++FNTMbYnBg7ctPbdBVV/U09pbDXKDEtH4er+TlMfeGzXiE5RPdEDLeDcOmZwAA/txvgxWBrtXSqW8IAEKqeNW08Vqis1Nx6NAh+Pv7w9zcHFFRUSh4tdteTk4Oli1bpncDjc3w4cMxadIkpKamgsViwdXVFQUFBQgMDIStrS3MzMzQoUMHXL9+XSPd+fPn0aZNG/B4PDg4OGD27NkoKipi7ufl5WHo0KEQCoVwcHDAmjVrDJ4Xz5ZyRF0QAQCiLwrRtHVeJSlqv666qudelAjNO2YDAJp3zMbdKKHGfTO+CpZ2hXjywAwAYGKqbkIUL9lw9tC+Mfb0lSH6skRt9xUJPP2kzD2hRImnGTw8y+RBKFbXTWWRugkwEyhxP15QtcyV1q/ncvP0kyHqkrr3JPqyGE1bljgVIknRq/xwIRCr53Jlpql35VQWsqBSVf/Ljj5DtUePZ8s8RF14VRcuidC0VYk8oUSJrAwunj3mQiBR14Xsp6YgdeVN/Bahs1OxdOlSbN68Gdu2bYOpqSkT3r59e0RFRenVuJpg/fr1WLx4MerXr4+MjAxcv34dM2fOxKFDh7B7925ERUWhcePG8Pf3x/Pn6i7p9PR09OjRA++99x5u3LiBTZs2Yfv27Vi6dCkjd8aMGTh//jyOHj2Kv//+G+fOnTN4eQnFSsil6p84T8qBUGy4SbTG0lVX9eTlcmAuVMvgi5SQ52r2fmVnmSI90RzpieZM2Pa5DTHzE180a5ejg91FkMs4pewucWxZrPJb2AUR8QjZGYuYV85IddB3uQnESsil6vzIpRwIRCXySu9U//o88hEzH+LoLrtq6QboM1Sb9AjFSshlr+Tlaspjl/r9a/MgQfGOmlW96gI6OxUJCQno1KlTmXCJRILs7Gx92FSjSCQSiEQicDgc2Nvbg8/nY9OmTVi1ahW6d+8OLy8vbNu2Debm5ti+fTsAICIiAs7OzggLC4Onpyf69OmDRYsWYc2aNVCpVJDJZNi+fTtWr16Nrl27onnz5ti9e7dGT0Z5FBQUIDc3V+PShTwpB3yRCgDAFyohy+VUrVBqka66qocvUiL/1cs+X8YBv9TLfvC8FGyY6I6j4U5wb13SszBq2X2sPRuNI2H1dbDbBPxi50WohCy3/KG70uOzSyZ4YsqXzTF8eqpOeSpfv37LTS7lgC8qyU+etERe6a9Qoir5f58Rj5GaaI47/4mqpRugz1Bt0pMn5YAvfCVPpCmvtLusqsW9E8UTNat61QV0dirs7e2RmJhYJvzSpUto2LChXoyqTSQlJaGwsBDt27dnwkxNTdGmTRvExcUBAOLi4tC2bVuNZbft27eHTCZDWloakpKSoFAo8P777zP3rays4OHh8UbdoaGhkEgkzOXs7PzG+K8TF8mHbwf1S8qvowzxkdXv3q5pXXVVj3srKW6/6gm4ddECTfxkpe7JsPCnO+gbmAanJuqhjsICdV3imqmYHg6t7I4WwretumfDr30O4kvN3ZBmm8DGvgBWtgqmN8OUq26k8/M4eCmv/q79+i63uCgh/NqpnWnf9rmIi349PwqN/LTsmAOvVjLs26ifiXn0Gao9euIiBSXyOkgRH1UiT5rNgY2DAlZ2CqZnqzZSvE9FVa+6gM6tyOjRo/Htt9/i2rVrYLFYePToEfbu3Yvp06dj/PjxhrDxnWXOnDnIyclhrocPH+qUPvEWH4oCNtYcToRKBSTEVH8mfE3rqqt63JrnwZSnQtAX3mBzCGycCnB4g3oC5uENTlj8VTPsX+6CfpPVEw53B7thUf9mWPRVM/Qep/2Ew6Q7QigK2Fi1/zZUShayHvEwcLxa5p71zpi9/h7mbryLPevUDurs9XexYu8dBG+Nx4/rdXNay0Pf5ZZ4RwBFARurf4qFSgVkpXMxcOIjAMCP65wwZ2Mi5oUn4oe16rKcEPwA9vULsHJ/PAJDkmtdfmqDrrqqJ/E2H4oCFtYcSoBKxcKTdC4GTVJPytyzxgFzI5Ixf3MyfljtAADwH/gUYxak4aO+zzFxafV74SjawSJEt6kshBAsW7YMoaGhkMvVX1U8Hg/Tp0/HkiVLDGKksVm3bh3WrVuHlJQU5OXlwcrKCjt37sTXX38NACgsLISbmxsmT56M6dOnY968eTh06BDi4uKY3oqIiAjMnj0b2dnZkMvlsLKywt69e9G/f38AwIsXL1C/fn2MHj1a630qcnNzIZFI0AWfw4RlWnkCSo1w4OEVo+gx1tHnKrnhVjyUxnhHnxvnKHdKNWAbvrehiBTinOpX5OTkGHwn6OK2u9nBGeDwq1bPlfIC3Bmwyij2Vged10qyWCzMmzcPM2bMQGJiImQyGby8vCAUCitPXAcRCAQYP348ZsyYASsrKzRo0AArV66EXC7HqFGjAAATJkzAunXrMGnSJAQEBCAhIQFBQUGYOnUq2Gw2hEIhRo0ahRkzZsDa2hq2traYN28e2Gx6SCyFQqG8K9DNr94Al8uFSCSCSCR6ax2KYpYvXw6VSoUhQ4ZAKpWidevW+Ouvv2BpaQkAcHJywvHjxzFjxgz4+PjAysoKo0aNwvz58xkZq1atgkwmQ+/evSESiTBt2jTk5Gg/q59CoVAodZt3wanQefijqKgIixYtwoYNGyCTqSebCYVCTJo0CUFBQRrLTCn6hQ5/1A3o8EfVoMMfFIa3dPij6f5Z1Rr+iBu0Qmd7w8PDsWrVKjx+/Bg+Pj7YuHEj2rRpU2H87OxszJs3D7/++iueP38OFxcXrFu3Dj169NBKn849FZMmTcKvv/6KlStXom3btgCAq1evIjg4GM+ePcOmTZt0FUmhUCgUyluPirDAMuIppQcPHsTUqVOxefNmvP/++1i3bh38/f2RkJAAW1vbMvEVCgU+/vhj2Nra4pdffoGTkxMePHgACwsLrXXq7FTs27cPBw4cQPfu3ZmwFi1awNnZGYMGDaJOBYVCoVAo5VC85XZV0+rK2rVrMXr0aIwYMQIAsHnzZhw7dgw7duzA7Nmzy8TfsWMHnj9/jitXrjCjDq6urjrp1HmmII/HK1eJm5sbuFyuruIoFAqFQnknUDsVVd38SjddCoUCkZGR6NatZJiUzWajW7duuHr1arlpfvvtN7Rt2xYTJ06EnZ0dvL29sWzZMiiV2u+Vo7NTERAQgCVLljBnfgDqnR9DQkIQEBCgqzgKhUKhUCha8vouywUVzBF6+vQplEol7Ow0t6u3s7PD48ePy01z//59/PLLL1AqlTh+/DgWLFiANWvWaBw5URlaDX988cUXGn+fOnUK9evXh4+PDwDgxo0bUCgU6Nq1q9aKKRQKhUJ5l9DH6o/Xd1YOCgpCcHBwdU0DAKhUKtja2mLr1q3gcDho1aoV0tPTsWrVKgQFBWklQyunQiLRPGioX79+Gn/run00hUKhUCjvGgRVP8K8ON3Dhw81Vn/wKlg1ZWNjAw6Hg8zMTI3wzMxM2Nvbl5vGwcEBpqam4HBKVt80bdoUjx8/hkKh0GqKg1ZOxc6dO7WJRqFQKBQKpQL00VMhFou1WlLK5XLRqlUrnD59Gn369AGg7ok4ffp0hVMV2rdvj3379kGlUjGbM969excODg5az5ms8uZXlBqEzQFYBl7HrTLcEc81ghHWvRcz0KWjUfSMT7hpFD2bKjn4jlI+HLuyS/YMgTLziVH0GBOO0HAHtxVDiALQ7eDnOsfUqVMxbNgwtG7dGm3atMG6deuQl5fHrAYZOnQonJycEBoaCgAYP348wsLC8O2332LSpEm4d+8eli1bhsDAQK11Vsmp+OWXX/DTTz8hNTUVCoVC415UVFRVRFIoFAqF8najj/EPHRgwYACysrKwcOFCPH78GL6+vjhx4gQzeTM1NVXjuAhnZ2f89ddfmDJlClq0aAEnJyd8++23mDVrltY6dXYqNmzYgHnz5mH48OE4evQoRowYgaSkJFy/fh0TJ07UVRyFQqFQKO8G1Rj+QBXTBQQEVDjcce7cuTJhbdu2xT///FMlXUAVlpRGRERg69at2LhxI7hcLmbOnImTJ08iMDCQnmVBoVAoFEoFFG9+VdWrLqCzU5Gamop27doBAMzNzSGVSgEAQ4YMwf79+/VrHYVCoVAolDqDzk6Fvb09nj9/DgBo0KAB002SnJwMHc8mo1AoFArlnaHqu2lWY9jEyOjsVHz00Uf47bffAAAjRozAlClT8PHHH2PAgAHo27ev3g2kUCgUCuWtgLCqd9UBdJ6ouXXrVqhUKgDAxIkTYW1tjStXruCzzz7D2LFj9W4ghUKhUChvA8Y+UKwm0Lmngs1mw8SkxBcZOHAgNmzYgEmTJhnkQDFCCMaMGQMrKyuwWCzExMToXUcxXbp0weTJkw0mn0KhUCiUtxmteipu3tR+k50WLVpU2ZjyOHHiBHbt2oVz586hYcOGsLGx0av80vz666/Mca+A+sjXyZMn1wlHY2xQGtxb5OHebT42B5Vsm+7ikY/A0FSwWMDGuc5IjuNj0KQM9B72FH8dtMbuVY76syE4He4++bh3yxybFzrpTa6h9Rir7Iyl53KIDZ7c5qGeVwE6LHjKhCf9KUDM95YAgJbjX8CtWx4AoOglCz9+6IJuqzNRv31+rcvPmPkP4N4iD4m3Bdi82KVEj7scgUtTABYQtsAVyfF8BIYkw8U9HyBA2EJ1WHXRd30bPS0BTbxykRQvwpZVnky4SyMZAubFgcUiCFvWFCn3RBCKCzFpXhzEFgrE/GuFg9sbVls/UHef1dGzk9DEW4akWCG2LGvEhLs0yUNAcCJYLCAsuDFS7qo3z+LylNhx6jpWz/RAzFXLauuvNkbep6Im0KqnwtfXF35+fvD19X3j5efnp3cDk5KS4ODggHbt2sHe3l6jl0RbCgsLtYpnZWUFkUiks/zKeH2DMH3T2FsOc4ES0/p5wNSUwN0nj7k3bMYjLJ/ohpDxbhg2PQMA8Od+G6wIdNWvDc3lMBeoMK1v41c2yPUq31B6jFV2xtKTdYeHQjkLffenQ1nIwpObJecC3Nhpgc9+TMfne9NxY4cFEx73kxjW7rrVUaOVW7M8mAtUmP6VF0xMCdxbyJh7Q6emI/TbRlgW0BhDp6YBAA5ucsS0/l5YM7MhBgem66yvjH4917dGnrkw5ysxc9R7MDElaOJVsgx/yIRErJjTHKEzW2DIhCQAwOCxSdizqRHmjG2tN4eirj6rjbxkMOerMPN/PjAxVaGJt5S5NyTwAVZM80ToZE8M+TaFCffv/xgP7hp+d05toRM1X5GcnIz79+8jOTn5jdf9+/f1atzw4cMxadIkpKamgsViwdXVFa6urli3bp1GPF9fX41T2lgsFjZt2oTPPvsMAoEAISEhCA4Ohq+vL/bs2QNXV1dIJBIMHDiQWRILaA5/dOnSBQ8ePMCUKVPAYrHAYql/0GI5pVm3bh1cXV017O7Tpw9CQkLg6OgIj1fbHD98+BBfffUVLCwsYGVlhc8//xwpKSnVLifPlnmIuqDeCz76kghNW5U08EKJElkZXDx7zIVAot56O/upqd7H5zxbyhF1Qe2QRV8UomnrvEpS1A49xio7Y+nJjOExvQ3128nxONqMuSdpUIgiOQuFeSxwhep5UUoFkBljBvtWL2tlfjz9ZIi69ErPZTGatixxKkSSIjzN4OFZJhcCsVpPZpraiVIWsqBSVb8R1nt9a56D6H+sAAAx16zQ1KfEqRCKi/A00wzPsswgFKk/hFwa5WHAqGSEbv0Pni2yq6WbsaGuPqs+uYi+YgEAiLlqiaZ+JXtsCyVFePqYh2dPeBCKiwAAJqYqePpIERtd+TkZRoVU8aojaOVUuLi4aH3pk/Xr12Px4sWoX78+MjIycP36da3TBgcHo2/fvrh16xZGjhwJQN3rceTIEfzxxx/4448/cP78eSxfvrzc9L/++ivq16+PxYsXIyMjAxkZGTrZfvr0aSQkJODkyZP4448/UFhYCH9/f4hEIly8eBGXL1+GUCjEp59+WmFPRkFBAXJzczWu8hCKlZDL1D9lXi4HQnHJuR3sUu2qIf1coVgJufSVDVJNG2qzHmOVnbH0FORyGIeBJ1JBkVvyiLt9nIefP2+Anz9vgOZDsgEACb+K0eRzaXmi3oix8iMQKyGXqs9tkUs5EIhK9LBKtV6s1xSNmPkQR3fZVVO7/uubQFQEeZ66tzVPZgKBqKQXlc0ueXMU56epTzZ+2uGKFbObY9Tke9XSXUxdfVYF4iLIZRxGnkBUxNxjs0qV3at/u/XNxNnfjHP+CqWEWn2gmEQigUgkAofDqfCo1or4+uuvmUNTilGpVNi1axczxDFkyBCcPn0aISEhZdJbWVmBw+FAJBLprBsABAIBvv/+e2by6o8//giVSoXvv/+e6fXYuXMnLCwscO7cOXzyySdlZISGhmLRokWV6sqTcsB/9SLhi5SQ5ZYcnlXawVUZ0NvNk3LAF72yQahpQ23WY6yyM5YenkgFxauXvULGBlesYu79F2aFgX8+AAAcG+0Ip7bpSL3Ix6fhj/Hkhlm58irCWPmRSzngv3Ik+EIl8qSl9JSSTUqyiT4jHiM10Rx3/qv+UKa+65tcZgK+QP0y5AuKkCctmcNVOj/FvSzpqXw8TBaWuV8d6uqzKpeagC8sXRdKXl+adY4FNoegVYcXCAn0goeP7k6zodDHKaW1HZ1Xf9QVWrduXSbM1dVVY86Eg4MDnjwxzAl/zZs311gNc+PGDSQmJkIkEkEoFEIoFMLKygovX75EUlJSuTLmzJmDnJwc5nr48GG58eIiBfDtoH5w/DpIER9VMoYozebAxkEBKzsF88VnCOIi+SU2dJQhPtIw45j61mOssjOWHju/l0i/Yg4ASLvCh51vybAGh0tgYk5gwidQFbIgf8qBLMMEf4x0wN2jQvyzxhoFOdo1CUYrtygh/Nqpe+h82+ciLlpYSo8JbOwVsLJVMF+wLTvmwKuVDPs26mcCst7r200JfNqoNw/0ff854m9KmHvSHFNY276EVb2XkOep85P+gA9LmwLwzJRgc/TjVdTZZzVGDJ+22QAA37bZiI8pGdaQZpvC2q4AVrYFkMs4sLRWoJ5DARZvu40Pez/B8KkpEIq1m1tnUKo69FGHhkBqdU9FebDZ7DI7d5Y3EVMgKFuBS6/sANRzL4r33DC0fplMhlatWmHv3r1l4tarV69cXTweDzwer9x7pUm8zYeigIU1hxKQFMvHk3QuBk3KwP6NDtizxgFzI5IBAGHz1DP0/Qc+Re+hWRBZKCGUFCF8foNKdVRqwy0+FAUvsOZwIpLumCEhpvqz7o2hx1hlZyw99ZoVgMMjODzICTZNCyByLEJkhCVaTXiBZl/n4PCA+gCApgNyIbRX4stf1RMcr2+wgkOrfPAk2j0PRiu3OwIoCthY/VMskmL5yErnYuDERzgQ7ogf1zlhzsZEAED4QvXQ64TgB5BLOVi5Px5p982wYZ6bVnoq1K/n+pYUL0ahgo2V26/j/l0Rsh6bYcCo+zi4vSF+3NwIc1aoV9pFhDYFAPy4uRFmhd4Cj6fE3q36mahZV5/VpFghCgvYWPnjDdyPFyArg4cBY1NxcEsD/LjRBXO+iwcARCxuhGdPeJjcX71wYHDAA9yJFEOWa/om8UaChaoPCtaNngoWqeV7a69btw7r1q1jJjS+//776Ny5M1auXAkAyM3Nhb29PWbOnMlM1mSxWDh8+DD69OnDyAkODsaRI0c09rl4XXaXLl3g6+vLTAR1d3fH2LFjMW3aNCbNpk2bEBwcjMePHzPDGIMHD8bly5cZOcOHD0d2djaOHDnCpNu2bRtmzZqFlJQUiMVVmziUm5sLiUSCLuwvYMIy8AOiMsw4a43BNlwvTU0xPiHBKHo2vZpobGhYpsb5xiEFBUbRw7Ezzni+MtMwva01CaeKbaQuFBEFTuf+iJycnCq3ydpS3HY7bw4G21y3ocZiVPkv8XBcsFHsrQ5VHv5QKBRIS0tDamqqxmVoPvroI+zZswcXL17ErVu3MGzYMHA4hnlhuLq64sKFC0hPT8fTp+r1/l26dEFWVhZWrlyJpKQkhIeH488//6xU1uDBg2FjY4PPP/8cFy9eRHJyMs6dO4fAwECkpaUZxH4KhUKh1CLegeEPnZ2Ke/fuoWPHjjA3N4eLiwvc3Nzg5uYGV1dXuLlVr6tRG+bMmYPOnTujV69e6NmzJ/r06YNGjRpVnrAKLF68GCkpKWjUqBEzRNG0aVNEREQgPDwcPj4++PfffzF9+vRKZfH5fFy4cAENGjTAF198gaZNm2LUqFF4+fJlrfY6KRQKhaIn3gGnQufhj/bt28PExASzZ8+Gg4MDMwRQjI+Pj14NpJRAhz+qAR3+qDJ0+KNq0OGPqvPWDn+EL6re8MfEoFo//KHzUxwTE4PIyEh4enpWHplCoVAoFMo7g85OhZeXFzO/gEKhUCgUinbQU0pfUXpHxxUrVmDmzJk4d+4cnj17ptWOjxQKhUKhvPO8A3MqtOqpsLCw0Jg7QQhB165dNeIQQsBisaBUvmVj8RQKhUKh6APCUl9VTVsH0MqpOHv2rKHtoFAoFAqFUsfRyqno3Lkz8//U1FQ4OzuXWfVBCKlwG2kKhUKhUN51WER9VTVtXUDniZpubm7IyMiAra3mcqnnz5/Dzc2NDn9QKEZajrvFp4VR9Ky6f8YoemY0bG8UPcZCmfWspk2os5CiosojVVcHMbyOskpR9bkRb6tTUTx34nVkMhnMzKq2/pZCoVAolLceOqeihKlTpwJQn6uxYMEC8Pklh8MolUpcu3YNvr6+ejeQQqFQKBRK3UBrpyI6OhqAuqfi1q1bGsd6c7lc+Pj4aLVdNYVCoVAo7yR0+KOE4hUgI0aMwPr162v1NqEUCoVCodQ6qFNRlp07dxrCDgqFQqFQ3m6oU1GWjz766I33z5wxzkxxCoVCoVAotQudnYrXTyEtLCxETEwMbt++jWHDhunNMAqFQqFQ3iro6o+yfPfdd+WGBwcHQyaTVdsgfdOlSxf4+vpi3bp1VUqfkpICNzc3REdH09UtFAqFQqkydPMrHfjf//6HNm3aYPXq1foSqRd+/fVXmJqa1rQZBmdsUBrcW+Th3m0+Ngc5M+EuHvkIDE0FiwVsnOuM5Dg+Bk3KQO9hT/HXQWvsXuWoPxuC0+Huk497t8yxeaGT3uQaWk9Nl52+8zNmXgqaeMuQeEeALUvdmHCXJnJMWnIfYAFhC92QkiDA2PnJaOSVB1MuwbZlLoiN0n4C9m+LXZB2SwCnZnn4PPgBE37jmBXOb1WXzUcT0+H9yQvcvSjBX2vqw9RMhS+WJsO28Uut9bxtv09N5weou8+qseq2wXgH5lRodUqpNly9erVWbn5lZWUFkUhU02a8EUIIiqqxg1xjbznMBUpM6+cBU1MCd5885t6wGY+wfKIbQsa7Ydj0DADAn/ttsCLQtbpma9rQXA5zgQrT+jZ+ZYNcr/INpaemy07f+WnUTAYzvhIzBnmr5TUv6T0cOiUVy6c0QWhgEwydot5S//vlLpj5tTdCA90xYHy61nrSbvNRIGdjws+xKCpk4+ENAXPv4nYHjDsQi/EH7+Di9w4AgFMbnDB2Xxy+3pCIv79zrkhsGd6236em8wPU3WfVWHWbUj10diq++OILjatv37744IMPMGLECIwdO9YQNlaLLl26YPLkyQAAV1dXLFu2DCNHjoRIJEKDBg2wdetWjfj//vsv/Pz8YGZmhtatWzP7c5Tm/PnzaNOmDXg8HhwcHDB79mwNp6CgoACBgYGwtbWFmZkZOnTogOvXrzP3z507BxaLhT///BOtWrUCj8fDpUuXqpxHz5Z5iLqg9sKjL4nQtFVJQyWUKJGVwcWzx1wIJOrto7OfmoLo2ev1bClH1AW18xZ9UYimrfMqSVE79NR02ek9P74yRF+WqOVdkcDTT8rcE0qUeJrBw7NMHoRidX1VFqmbADOBEvfjBWUFVkBqtAjuHXIAAE065OBBVInjbu3yEgo5GwV5HPBEJVuWc/kqiG0L8SyVp31+3rbfhz6rVZdnpLpNqR46OxUSiUTjsrKyQpcuXXD8+HEEBQUZwka9smbNGsZZmDBhAsaPH4+EhAQA6q3Ge/XqBS8vL0RGRiI4OLjMhl7p6eno0aMH3nvvPdy4cQObNm3C9u3bsXTpUibOzJkzcejQIezevRtRUVFo3Lgx/P398fz5cw1Zs2fPxvLlyxEXF4cWLcqe41BQUIDc3FyNqzyEYiXkMvVPmZfLgVBc0pCzS83tMeQ0H6FYCbn0lQ1STRtqs56aLjv956cIchmnlLwSZ5dVwaDsgoh4hOyMRcyrBlsb8nM54AnVtpqJipCfy2Huefs/x7qezfFdjxZoP+wxEy7NMsWTRDNkJprrkJ+37fehz2rV5RmnbhsSFkrmVeh81bTxWqLTnAqlUokRI0agefPmsLS0NJRNBqVHjx6YMGECAGDWrFn47rvvcPbsWXh4eGDfvn1QqVTYvn07zMzM0KxZM6SlpWH8+PFM+oiICDg7OyMsLAwsFguenp549OgRZs2ahYULFyI/Px+bNm3Crl270L17dwDAtm3bcPLkSWzfvh0zZsxgZC1evBgff/xxhbaGhoZi0aJFleYpT8oBX6gCAPBFSshKNfClHzWVAcfk8qQc8EWvbBBq2lCb9dR02ek/Pybgv3rZq+WV/4iTUjPJl0zwhI19AeaF3cWUL5trpcdMpETBqwa+QMaBeakXxsn19TH95E0AwPYRHvDolIMes1Oxd1JjWDgp4NpaWq7M8vPztv0+9Fmtujzj1G2D8g6s/tCpp4LD4eCTTz5Bdna2gcwxPKV7BFgsFuzt7fHkyRMAYHoMSs8Nadu2rUb6uLg4tG3bVuNQtfbt20MmkyEtLQ1JSUkoLCxE+/YlJy6ampqiTZs2iIuL05DVunXrN9o6Z84c5OTkMFdFR8vHRQrg20HdUPt1kCI+qqSrT5rNgY2DAlZ2Csilhmk81DbwS2zoKEN8pGG6G/Wtp6bLTu/5iRbCt616WMKvfQ7iY4TMPWm2CWzsC2Blq2C++Ey56kY/P4+Dl3LtmwOXllLce/X1d++SBA1KdUWbcAlMzZXg8pVQFqpluraSYdyBOHQNSIddo3zt8/O2/T70Wa26PCPVbYNCqnnVAXRe/eHt7Y379+/Dzc2t8si1kNdXgrBYLKhUqhqxRSB480PG4/HA41U+/px4mw9FAQtrDiUgKZaPJ+lcDJqUgf0bHbBnjQPmRiQDAMLmqSfI+Q98it5DsyCyUEIoKUL4/AbVzkviLT4UBS+w5nAiku6YISGGX3miWqCnpstO3/lJuiOEoiALq/bfxv04AbIe8TBwfBoObKqPPeudMXv9PQBARLD6+Z29/i6EYiXYbIJdq7XPS31vOUx5KkT094KjlxwWjgqcDnNE14BHaPu/TIT38wYAvD8oEwBwOswR9y5JwLcsQr9lyVrredt+n5rOjyHyZCw9xqrblOrBIkS3aUAnTpzAnDlzsGTJErRq1arMi7G2nQlSep8KV1dXTJ48mZm4CQC+vr7o06cPgoODsXXrVsydOxdpaWlMb8WWLVswbtw4Zp+KefPm4dChQ4iLi2N6KyIiIjB79mxkZ2cjPz8fVlZW2LlzJ77++msA6g3C3NzcMHnyZEyfPh3nzp3Dhx9+iBcvXsDCwkLrvOTm5kIikaAL+wuYsAy8TFZlmHHWGoNtuC+/Mhip7Nh8w7wMXmdFrHF2yZ3RsH3lkfSBseq2serc2/aswjh1u4gocEZ+ADk5OQZ/bxW33S7LQsCu4ipJ1cuXeDB3nlHsrQ469wn16NEDN27cwGeffYb69evD0tISlpaWsLCwqLPzLIr5+uuvwWKxMHr0aMTGxuL48eNl9t2YMGECHj58iEmTJiE+Ph5Hjx5FUFAQpk6dCjabDYFAgPHjx2PGjBk4ceIEYmNjMXr0aMjlcowaNaqGckahUCiUmqbKkzSrsWmWsdF5+KP4tNK3EaFQiN9//x3jxo2Dn58fvLy8sGLFCvTr14+J4+TkhOPHj2PGjBnw8fGBlZUVRo0ahfnz5zNxli9fDpVKhSFDhkAqlaJ169b466+/6rzTRaFQKJRq8A5sfqXz8Ael5qDDH9WADn9UGTr8UUXo8EeVeVuHP1yXVm/4I2V+7R/+qNI23dnZ2fj333/x5MmTMpMchw4dqhfDKBQKhUJ5q3gHeip0dip+//13DB48GDKZDGKxWGNpJYvFok4FhUKhUCjl8C4cKKbzRM1p06Zh5MiRkMlkyM7OxosXL5jr9R0jKRQKhUKhvKJ486uqXnUAnZ2K9PR0BAYGgm+k8VwKhUKhUCh1A52dCn9/f/z333+GsIVCoVAolLcXuqOmmt9++435f8+ePTFjxgzExsaiefPmZXao/Oyzz/RrIYVCoVAobwHvwpwKrZyKPn36lAlbvHhxmTAWiwWl8u1b3lTrUCkBVi3Zy766vI3L7oyUJ2KkZ81YSz03J583ip5xLh2MoodSdYxRtwmpgeMZ6OoPNTV1NgaFQqFQKJS6g86fuz/88AMKCgrKhCsUCvzwww96MYpCoVAolLeO6mzRXUd6KnR2KkaMGIGcnJwy4VKpFCNGjNCLURQKhUKhvHXQiZplIYRobHhVTFpaGiQSiV6MolAoFArlrYPOqSjBz88PLBYLLBYLXbt2hYlJSVKlUonk5GR8+umnBjGSQqFQKBRK7Udrp6J4BUhMTAz8/f0hFAqZe1wuF66urhqneVIoFAqFQimBLiktRVBQEADA1dUVAwYMgFkVT1qjUCgUCoXydqLznIphw4YBUK/2KO+U0gYNGujHMh3o0qULfH19sW7dujL3hg8fjuzsbBw5cqTK8vUhg0KhUCjvOHRORVnu3buHkSNH4sqVKxrhxRM4a9vmV+vXrwchJb/GmxyQt5Gxwelw98nHvVvm2LzQqc7oGhuUBvcWebh3m4/NQc5MuItHPgJDU8FiARvnOiM5jo9BkzLQe9hT/HXQGrtXOVY3GyU26LnsjJWnMfMfwL1FHhJvC7B5sUuJHnc5ApemACwgbIErkuP5CAxJhot7PkCAsIXqsNqWn58WuyH1phDO3nkYEHyfCY+9aIHf1zSAKU+Fr0OSYN84H5cP2uH4Bmc0ap2Lkevv6qSnwnzW0XrwRhuM1C7oW4+x6jal6ui8pHT48OFgs9n4448/EBkZiaioKERFRSE6OhpRUVGGsLFaSCQSWFhY1LQZNULj5nKYC1SY1rcxTE0J3H3kdUJXY285zAVKTOvn8UpWHnNv2IxHWD7RDSHj3TBsegYA4M/9NlgR6FrdLGjaoOeyM1aeGjfLg7lAhelfecHElMC9hYy5N3RqOkK/bYRlAY0xdGoaAODgJkdM6++FNTMbYnBgeq3LT+otAQryOJj+yy0oC1lIuVEyl+v4emdM3ncbozYk4Pfv1D2kPh8/w7d7b+uspyLqaj14ow1Gahf0XnZGqtuGpKp7VFRnLoax0dmpiImJwZYtW9C9e3f4+vrCx8dH46oNHDt2DBKJBHv37sXw4cOZSabDhw/H+fPnsX79emYlS0pKCgDgzp076NWrF8RiMUQiETp27IikpCQNuatXr4aDgwOsra0xceJEFBYWMvcKCgowffp0ODk5QSAQ4P3338e5c+eY+7t27YKFhQX++usvNG3aFEKhEJ9++ikyMjIMVg6eLeWIuiACAERfFKJp67xKUtQOXZ4t8xB1QayWdUmEpq1KZAklSmRlcPHsMRcCibpXLPupKYieHzh9l52x8uTpJ0PUpVd6LovRtGVJwyuSFOFpBg/PMrkQiNV6MtN4AABlIQsqlfZHKxsrP/ejRWjaMVuts3027keJNO7z+CpI7AqR9UA9x0toVQQ2R3+Voa7WgzfbYJx2Qe9lZ6S6bXCMvEdFeHg4XF1dYWZmhvfffx///vuvVukOHDgAFotV7jEdb0Jnp8LLywtPnz7VNZnR2LdvHwYNGoS9e/di8ODBGvfWr1+Ptm3bYvTo0cjIyEBGRgacnZ2Rnp6OTp06gcfj4cyZM4iMjMTIkSNRVFTEpD179iySkpJw9uxZ7N69G7t27cKuXbuY+wEBAbh69SoOHDiAmzdvon///vj0009x7949Jo5cLsfq1auxZ88eXLhwAampqZg+fXqFeSkoKEBubq7GpQtCsRJyqfonzpNyIBQbbmhKn7qEYiXksleycjVlsUu1DYZsJvRddsbKk0CshFyqPntELuVAICrRU/q4mNe3mhkx8yGO7rLTWo+x8pOfawJzofo5NBcXIT9Xc8Q2N8sUjxPN8TjRMF3bdbUeVGqDEdoFfesxVt02KEbe/OrgwYOYOnUqgoKCEBUVBR8fH/j7++PJkydvTJeSkoLp06ejY8eOOuvU2alYsWIFZs6ciXPnzuHZs2fVeunpm/DwcEyYMAG///47evXqVea+RCIBl8sFn8+Hvb097O3tweFwEB4eDolEggMHDqB169Zwd3fHiBEj4OHhwaS1tLREWFgYPD090atXL/Ts2ROnT58GAKSmpmLnzp34+eef0bFjRzRq1AjTp09Hhw4dsHPnTkZGYWEhNm/ejNatW6Nly5YICAhgZJRHaGgoJBIJczk7O1cYtzzypBzwReqJtHyhErJcwx10pU9deVIO+MJXskSasko/VyoDdgfqu+yMlSe5lAP+q8aWL1QiT1pKTynZpc9S6jPiMVITzXHnP81egDdhrPyYi5TIl6kdiZdSE5iLSxz9L+ak4PsAD5zYVB+NWhum7amr9aBSG4zQLuhbj7Hq9tvE2rVrMXr0aIwYMQJeXl7YvHkz+Hw+duzYUWEapVKJwYMHY9GiRWjYsKHOOnV2Krp164Z//vkHXbt2ha2tLSwtLWFpaQkLCwtYWlrqbIC++OWXXzBlyhScPHkSnTt31iltTEwMOnbsWOYY99I0a9YMHE5JJXZwcGC8vVu3bkGpVMLd3R1CoZC5zp8/rzGEwufz0ahRo3JllMecOXOQk5PDXA8fPtQpX3GRfPh2kAIA/DrKEB8p0Cl9TemKixSUyOogRXxUiSxpNgc2DgpY2SmYrxZDoO+yM1ae4qKE8GunfsH6ts9FXHTJHARptgls7BWwslVALlPradkxB16tZNi3UbdJgMbKT8OWuUi4rN6pN+6SBdz8pCX3Wkkx9eBtdA94CPvG+dXSUxF1tR682QbjtAt6Lzsj1W1Doo85Fa9/yJd3FhegXqEZGRmJbt26MWFsNhvdunXD1atXK7Rx8eLFsLW1xahRo6qUR51Xf5w9e7ZKigyNn58foqKisGPHDrRu3brcrcQrwtzcvNI4rzscLBaLWU4rk8nA4XAQGRmp4XgA0NgkrDwZ5A0DpjweDzwer1LbKiLxFh+KghdYczgRSXfMkBBjuNnP+tSVeJsPRQELaw4lICmWjyfpXAyalIH9Gx2wZ40D5kYkAwDC5ql7bvwHPkXvoVkQWSghlBQhfH71lzXru+yMlafEOwIoCthY/VMskmL5yErnYuDERzgQ7ogf1zlhzsZEAED4QvXM+QnBDyCXcrByfzzS7pthwzy3WpWfBs3zYMIjWP1lc9T3yoOVYwGOb6yPHpPScHxjfcRfsoDAsgiDQ9X5unnaEn9F1EfWA3NsGeuJsVvitdJTYT7raD0wZp6MpcdYddug6GFJ6es91kFBQQgODi4T/enTp1AqlbCz0xz6sbOzQ3x8+c/FpUuXsH37dsTExFTRSIBF3vRWqyMULxOdMGECunTpgi+++AJhYWEAyu4x8cknn8DDwwMbN25k0i9atAi7d+9GQkJCub0V5e1TMXnyZMTExODcuXO4e/cuPDw8cOHChQrHoHbt2oXJkycjOzubCTty5Aj69u37RseiNLm5uZBIJOiCz2HCqrhXpU7BNtwXmQYqIy51NlKeWKY6fxNUCVJYVHkkPbA5+bxR9Ixz6WAUPW9l3TYSrGp8TGlLESnE2YKfkJOTA7FYbFBdxW23+/Rl4PCqtnGksuAl7q6ei4cPH2rYW9HH56NHj+Dk5IQrV66gbdu2TPjMmTNx/vx5XLt2TSO+VCpFixYtEBERge7duwOo2h5NOrdKFy5ceOP9Tp066SpSb7i7u+Ps2bPo0qULTExMyt2LwtXVFdeuXUNKSgqEQiGsrKwQEBCAjRs3YuDAgZgzZw4kEgn++ecftGnTRmNexZv0Dh48GEOHDsWaNWvg5+eHrKwsnD59Gi1atEDPnj0NkFsKhUKhvGuIxWKtnCAbGxtwOBxkZmZqhGdmZsLe3r5M/KSkJKSkpKB3795MWHFvvImJCRISEjSG7ytCZ6eiS5cuZcJKDzXU9OZXHh4eOHPmDLp06VJmKAIApk+fjmHDhsHLywv5+flITk6Gq6srzpw5gxkzZqBz587gcDjw9fVF+/bttda7c+dOLF26FNOmTUN6ejpsbGzwwQcflDthlEKhUCjvIEbcUZPL5aJVq1Y4ffo0syxUpVLh9OnTCAgIKBPf09MTt27d0gibP38+pFIp1q9fr/VCAZ2HP3JycjT+LiwsRHR0NBYsWICQkBB07dpVF3EUHaDDH9WADn9UGTr8UUXexrptJN7a4Y+p1Rz+WDtXJ3sPHjyIYcOGYcuWLWjTpg3WrVuHn376CfHx8bCzs8PQoUPh5OSE0NDQctMbZfhDIpGUCfv444/B5XIxdepUREZG6iqSQqFQKJS3HmOfUjpgwABkZWVh4cKFePz4MXx9fXHixAlm8mZqairYbJ0Xgb4RvX3q2NnZISEhQV/iKBQKhUKhVJOAgIByhzsAaOz6XB6lN3jUFp2dips3b2r8TQhBRkYGli9fDl9fX50NoFAoFArlnYCeUloWX1/fcvdX+OCDD964SxeFQqFQKO801KkoS3JyssbfbDYb9erVg5lZ1SafUCgUCoXyLmDsORU1gc5OhYuLS+WRKBQKhUKhvHNUaaLm+fPnsXr1asTFxQFQn1w6Y8aMKp1oRnnHeQuXwxkrT6TQKGqMlh9jLfVclfKPUfTMbvGJUfQoZYY5urwmYRthSSmbsIDyj80wHO/A8IfOa0l+/PFHdOvWDXw+H4GBgQgMDIS5uTm6du2Kffv2GcJGCoVCoVDqPPo4UKy2o3NPRUhICFauXIkpU6YwYYGBgVi7di2WLFmCr7/+Wq8GUigUCoXyVkB7Kspy//59jb3Bi/nss8/KTOKkUCgUCoXy7qCzU+Hs7IzTp0+XCT916pTWe4NTKBQKhfLOQap51QF0Hv6YNm0aAgMDERMTg3bt2gEALl++jF27dmH9+vV6N5BCoVAolLcB1qurqmnrAjo7FePHj4e9vT3WrFmDn376CQDQtGlTHDx4EJ9//rneDaRQKBQK5a3gHZhToZNTUVRUhGXLlmHkyJG4dOmSoWyiUCgUCoVSB9FpToWJiQlWrlyJoiLjHIVcW2CxWDod/UqhUCgUyuu8C0tKdZ6o2bVrV5w/f94QthiV4ODgd+IAtLHB6VhzOBHjFqe/NbqonkrkBaVhzaEEjFv0UCPcxSMfa35NwNrDCXBrKgcADJqUgX3/3cKwGY/0ohuou+X222IXRPT3wtFgzV2DbxyzwobPvbHhc2/c/tsSAHD3ogQb+zTD5oFN8SRRtyMKRs9Owsofb2Ds3CSNcJcmeVi19wZW77sBV/eSDa24PCV+vPgPfNu+0EmPMeuBsXQZq+wMxjswUVNnp6J79+6YPXs2pk+fjv379+O3337TuChVo7BQ/9sjNm4uh7lAhWl9G8PUlMDdR653HcbWRfVUIs9bDnOBEtP6ebySV9LADpvxCMsnuiFkvBuGTc8AAPy53wYrAl2rpVNDfx0tt7TbfBTI2ZjwcyyKCtl4eEPA3Lu43QHjDsRi/ME7uPi9AwDg1AYnjN0Xh683JOLv77Rf9dbISwZzvgoz/+cDE1MVmnhLmXtDAh9gxTRPhE72xJBvU5hw//6P8eCuoBxpFWPMemAsXcYqO4PzFjsUQBWcigkTJiAzMxNr167F4MGD0adPH+bq27evIWwsl4KCAgQGBsLW1hZmZmbo0KEDrl+/DkB9BryFhYVG/CNHjoDFYjH3Fy1ahBs3boDFYoHFYjHnxt+7dw+dOnWCmZkZvLy8cPLkyTK6b926hY8++gjm5uawtrbGmDFjIJPJmPsqlQqLFy9G/fr1wePx4OvrixMnTjD3U1JSwGKxcPDgQXTu3BlmZmbYu3evnksI8GwpR9QFEQAg+qIQTVsbbjtfY+mieiqTl4eoC2K1vEsiNG1VIk8oUSIrg4tnj7kQSNRbb2c/NQXRY4NVV8stNVoE9w45AIAmHXLwIErE3LN2eQmFnI2CPA54opIty7l8FcS2hXiWqv2W0p4+uYi+YgEAiLlqiaZ+ucw9oaQITx/z8OwJD0KxeojZxFQFTx8pYqPFOuXHmPXAWLqMVXaU6qGzU6FSqSq8lErjneMwc+ZMHDp0CLt370ZUVBQaN24Mf39/PH/+vNK0AwYMwLRp09CsWTNkZGQgIyMDAwYMgEqlwhdffAEul4tr165h8+bNmDVrlkbavLw8+Pv7w9LSEtevX8fPP/+MU6dOISAggImzfv16rFmzBqtXr8bNmzfh7++Pzz77DPfu3dOQNXv2bHz77beIi4uDv79/GTsLCgqQm5urcemCUKyEXKr+ifOkHAjFhvt9jKWL6tFCnuyVvFxNeexSa9IMtTytrpZbfi4HPKFahpmoCPm5HOaet/9zrOvZHN/1aIH2wx4z4dIsUzxJNENmornWegTiIshlHMZugahkfhq71KB58e/TrW8mzv5mq3N+jFkPjKXLWGVnSOicilpKXl4eNm3ahFWrVqF79+7w8vLCtm3bYG5uju3bt1ea3tzcHEKhECYmJrC3t4e9vT3Mzc1x6tQpxMfH44cffoCPjw86deqEZcuWaaTdt28fXr58iR9++AHe3t746KOPEBYWhj179iAzMxMAsHr1asyaNQsDBw6Eh4cHVqxYAV9fX6xbt05D1uTJk/HFF1/Azc0NDg4OZewMDQ2FRCJhLl03F8uTcsAXqQAAfKESslINpb4xli6qRwt5wlfyRJrySrdJKgM1UHW13MxEShS8emEVyDgwL/ViPLm+PqafvIkZp27g1AYnAECP2anYO6kxzmxygmtrabkyy0MuNQH/lfPCFyqRJy1ZgKf5+7DA5hC06vAC/1200jk/xqwHxtJlrLIzKHRORQn5+fn4448/mL/nzJmDqVOnMteMGTPw8uVLgxj5OklJSSgsLET79u2ZMFNTU7Rp04Y5ObUqxMXFwdnZGY6OjkxY27Zty8Tx8fGBQFAyTte+fXuoVCokJCQgNzcXjx490rCtOM7rtrVu3fqN9syZMwc5OTnM9fDhwzfGL5OfSD58O6gbPL+OMsRHGm5s0Vi6qJ7K5AlK5HWQIj6qRJ40mwMbBwWs7BSQSw3zsq+r5ebSUop7lyUAgHuXJGjgV+IomHAJTM2V4PKVUBaqm0zXVjKMOxCHrgHpsGuUr73dMWL4tM0GAPi2zUZ8TEnXvDTbFNZ2BbCyLYBcxoGltQL1HAqweNttfNj7CYZPTYFQrN3cK2PWA2PpMlbZGZJ3oadC630qdu/ejWPHjqFXr14AgLCwMDRr1gzm5uquv/j4eDg6OmocNFZTsNlskNcG7QwxEbK6lHZMyoPH44FXjSOAE2/xoSh4gTWHE5F0xwwJMfwqy6otuqieSuTd5kNRwMKaQwlIiuXjSToXgyZlYP9GB+xZ44C5EckAgLB56l4v/4FP0XtoFkQWSgglRQif36BW5cdYeup7y2HKUyGivxccveSwcFTgdJgjugY8Qtv/ZSK8nzcA4P1B6t7I02GOuHdJAr5lEfotS9ZaT1KsEIUFbKz88QbuxwuQlcHDgLGpOLilAX7c6II538UDACIWN8KzJzxM7u8HABgc8AB3IsWQ5ZpqpceY9cBYuoxVdpTqwSKvv30roGPHjpg5cyZzmJhIJMKN/7d33mFRHV0c/i2dpYoYKdJ7U0AFBbsoxgb2jtijEjWIvTfsvRtjiVGsWKJGo36iqFhRsaCCUiyoWOhI2T3fH5u9soLJ7rKg6LzPs49yy5yZu7Mz555z5szt27C2tgYg2hJ97dq1iImJqbja/kNubi4MDAywdetWblfUoqIiWFlZYcyYMXBxcUG7du2QnZ3NTdxTpkxBeHg4p2yEh4cjIiICd+7c4cr9+++/0a5dO6SmpnLuiJMnT6JNmzY4ePAgAgMD8euvv2LChAl4+vQpV/bx48fRoUMHvHjxAjVr1oSpqSlGjhyJyZMnc2V7eXnBy8sLa9asQXJyMqysrHDz5k2ZlrVmZWVBT08PzRAAFR77gXz3KFWcO0sCYeXFSlUGi5MvV4qcibVbV4ocQU7FBWB/KZS1K37FRjEV4kzWH8jMzISubsUGc4rHbrdB4VBWk20JshhB4Qfc+W1ypdS3PEjt/khMTISbmxv3t4aGBpSUPt7u5eWF+/fvK7Z2n0FLSwvDhw/HuHHjcOLECdy/fx9DhgxBXl4eBg0aBG9vb/D5fEyePBmPHz/Grl27uNUdYiwtLZGUlIRbt27hzZs3KCgogJ+fH+zt7dG/f3/cvn0b0dHRmDJlisR9ffr0gYaGBvr374+7d+/i7Nmz+Pnnn9GvXz/UrFkTADBu3DgsXLgQe/bswcOHDzFx4kTcunULo0ePrpTnw2AwGIyvj+/B/SG1UpGRkYGCggLu7/T0dFhaWnJ/C4VCifMVzYIFC9ClSxf069cPnp6eSExMxMmTJ1GtWjUYGBjgjz/+wPHjx+Hm5oaIiAjMnDlT4v4uXbqgTZs2aN68OWrUqIGIiAgoKSnh4MGDyM/Ph5eXFwYPHox58+ZJ3Mfn83Hy5Em8e/cO9evXR9euXdGyZUusWbOGu2bUqFEIDQ3F2LFj4ebmhhMnTuDIkSOws7OrjEfDYDAYjK+R7yBQU2r3h52dHTeRl8XevXsxefJkJCYmKrSCjI8w9wdDAub+kAvm/vj6+VbdH7UHlM/9Ebf1G3J/tG3bFtOnTy9zhUd+fj5mzZqFdu3aKbRyDAaDwWB8M3wHlgqpV39MnjwZe/fuhYODA0JCQmBvbw8AePjwIdasWYPi4mKJwEQGg8FgMBgfKU9sRFWJqZBaqahZsyYuXbqE4cOHY+LEidwqCh6Ph1atWmHdunVcoCKDwWAwGIxPKI/F4VtTKgDAysoKJ06cwLt377jYCVtbWxgYfGVZyxgMBoPB+MrgEYEn5yYr8t5X2cikVIgxMDCAl5eXouvCYDAYDAajCiOXUsFgMBgMBkNGmPuD8VWipAzwKng54Te2jJDBEDPOskGlyNn99ESlyOlp5lMpcgBU2jJmYSXkPBJS5W/dwAI1GQwGg8FgKIbvwFJRJbc+ZzAYDAaD8fXBLBUMBoPBYFQCzP3BYDAYDAZDMXwH7g+mVDAYDAaDUQl8D5YKFlPBYDAYDAZDITBLBYPBYDAYlQFzfzAYDAaDwVAUVcWNIS9MqfhGGDbjGexr5yLhLh8bZphxxy0c8jFqfip4PGD1ZDMkxfPR6+c0dOj/Bif3VMf2xSaKq8PM57Cvk4+EO5rYMN1UYeUyOTKW94X7QlV9bpUlZ/tMSzyJ04aVWw6CZyVzx+PO62HvEnOoaQgxKPwJTG3zcXitKW6d1UdBvjICQ57B68d35ZYPVN0+N3RqCuxr5yLxrhY2zLb4KMc+D6PmJgM8YM00SyQ94GPUvCRY2OcDBKyZLjr2xSESfeS9twrAYir+A4FAAKFQ+KWr8a/YuuZBU0uAsV0coKpKsK+Ty53rP+4FFoy0wrzhVugflgYA+CvCEAtHWSq2Dm550NQSYmwn23/qkKfQ8pkcKcv7wn2hqj63ypKTdEcLBXnKmBV5F8WFSnh8S5s7d2CFGabuvoefVz/CvqWiibnd0BeYsf8epu+9iyPrFaM4VdU+Z+uSC00tIcK6O0NFlWBfO4c7FxT6HPNH2yA8xBZBoc8AAHvWm2BsN2csHW+NPqOel6uNDOn55pSKZs2aISQkBCEhIdDT04OhoSGmTZvGbdVeUFCAsLAwmJqaQktLC97e3oiKiuLu37ZtG/T19XHkyBE4OztDXV0dqampiIqKgpeXF7S0tKCvrw9fX1+kpKRw961fvx42NjZQU1ODg4MDduzYIVEvHo+HzZs3o1OnTuDz+bCzs8ORI0cU0mZHz1zEntcFANy8oAOnuh9/1Np6AqSnqeHtSzVo6YlSb2e8UVW40uvomYfY8zqiOkRrw6le7n/cweRUhJwv3Req6nOrLDkJsTpwa5wBAHBrnIFHsdoS5zX4QlSrWYTXKRoAABVV0ZdT+EEJZg6KUZyqap9z9MhB7IV/5FzUhZPnR6VCR68Yb9LU8faVGrR0RXJePVMHAAiKeBAKeXK1TdGIV3/I+6kKfHNKBQBs374dKioquHr1KlauXIlly5Zh8+bNAICQkBDExMRg9+7diIuLQ7du3dCmTRskJCRw9+fl5WHhwoXYvHkz7t27BwMDAwQGBqJp06aIi4tDTEwMhg4dCh5P1FEPHjyI0aNHY+zYsbh79y6GDRuGAQMG4OzZsxL1mjVrFrp37464uDi0bdsWffr0wbt35TdnausKkJcj+ipzs5Shrftx3w6lEr+livxZaesKkJf9Tx2yJevA5FSenC/dF6rqc6ssOblZytDUFpXB1xEgL0vSA52RrorniZp4nqjJHfttsjXGt3aHi09muWSLqap9TktXgLxs0d4jednK0NL5KIdXYibjfSJowPinOLytZjmlKwgq56cK8E3GVJiZmWH58uXg8XhwcHDAnTt3sHz5cvj7+2Pr1q1ITU2FiYnIlxcWFoYTJ05g69atCA8PBwAUFRVh3bp1qFOnDgDg3bt3yMzMRPv27WFjYwMAcHJy4uQtWbIEwcHBGDFiBAAgNDQUly9fxpIlS9C8eXPuuuDgYPTq1QsAEB4ejlWrVuHq1ato06ZNme0oKChAQYmNdbKyssq8LjdbGXxtkYuGryNATtbHTX9K9kNhBXbK3Gxl8HX+qYO2ZB2YnMqT86X7QlV9bpUlh68jQH6OqIz8HGXwdYu5c32mJGPVSHsYmhbAvl42d3xQ+BP0mpiC6Z3c0KjTm3LJB6pun8vLVgb/H0WCry1AbnYJOSXKphLe6sABL5GaqIl713XKJ1xB8ISij7z3VgW+SUtFgwYNOCsCADRs2BAJCQm4c+cOBAIB7O3toa2tzX3OnTuHx48fc9erqamhdu3a3N8GBgYIDg6Gv78/OnTogJUrVyItLY07Hx8fD19fX4k6+Pr6Ij4+XuJYyTK1tLSgq6uL169ff7Yd8+fPh56eHvcxMzMr87r4G1pwbyQahDwaZeNBrBZ3LjtDGYbGhTCoWchp+RVB/A3+xzo0zsGDG1r/cQeTUxFyvnRfqKrPrbLk2NfNxt2LegCAO9H6sPPIKXEuB9P33kOnUc9gaidydRQViMYxNQ0hZ+EoL1W1z8XHasPDR/Ri5e6bhfibH11H2RkqMDQqhMEPhcj7R2nzbJwJ57o52LVaccHojP/mm1QqPkdOTg6UlZVx48YN3Lp1i/vEx8dj5cqV3HWampoSSgkAbN26FTExMfDx8cGePXtgb2+Py5cvyyRfVVVV4m8ej/evQaCTJk1CZmYm93n69GmZ1yXe5aOwgIelBx5CKOTh9XM19PpZpPTsWGqMyeuSMHVDEn5fYgwA8O/5BkOnPUOLTu8wcm6qTG34HIl3+CgsUMLSg4kQCoGHtyom0prJ+Y/yvnBfqKrPrbLkWLnlQlVdiBmdXaGkTDA0LcDBVaIAzIOrTDG7uwsiFligyxhRsOH2mVaY1c0Fs7q7oMNPigk2rKp9LvGeFgoLlLBk730IhUD6czX0HPkCAPDHClNMWp2IKWsT8fsy0fMcMTMFRrUKsCjiAUbNSypXGxXGd+D+4BFVkXUqUtKsWTOkp6fj3r173LFJkybh8OHDOHToEBwcHHD+/Hk0bty4zPu3bduGMWPGICMj41/lNGzYEPXr18eqVavg6+sLFxcXbNq0iTvfvXt35OXl4ejRowBECsTBgwcRGBjIXaOvr48VK1YgODhYqrZlZWVBT08PzZQ6Q4Wn+t83lAdhxfioGQpEqeIsTxKwviAXu59eqhQ5Pc18KkUOgErrczzVivfMF1MRzhbsRWZmJnR1dStUlnjs9gqYCxVVDbnKKC76gKuHp1ZKfcvDNxlTkZqaitDQUAwbNgyxsbFYvXo1li5dCnt7e/Tp0wdBQUFYunQpPDw8kJ6ejjNnzqB27dpo165dmeUlJSVh06ZN6NixI0xMTPDw4UMkJCQgKCgIADBu3Dh0794dHh4e8PPzw59//onIyEicPn26MpvNYDAYjK+Z7yBPxTepVAQFBSE/Px9eXl5QVlbG6NGjMXToUAAiN8bcuXMxduxYPH/+HIaGhmjQoAHat2//2fL4fD4ePHiA7du34+3btzA2NsbIkSMxbNgwAEBgYCBWrlyJJUuWYPTo0bCyssLWrVvRrFmzymgug8FgMBhfBd+k+8Pd3R0rVqz40lVROMz9wZCAuT++apj7Q36+VfeHd4c55XJ/XPlzGnN/MBgMBoPBANtQjMFgMBgMhmIoT2bMqpJR85tTKkqm3GYwGAwGg1F5fHNKBYPBYDAYXyVs9QeDwWAwGAxFwNwfDAaDwWAwFAML1GR8lQgFktvyMb5P2FLPr5reDn6VImf308pLstfTouxMxAyGGKZUMBgMBoNRCTD3B4PBYDAYDMUgJPn3gC/v3vGVBFMqGAwGg8GoDL6DmArmmGcwGAwG4xtl7dq1sLS0hIaGBry9vXH16tXPXvvrr7+icePGqFatGqpVqwY/P79/vb4smFLBYDAYDEYlwMPHuAqZP3LI27NnD0JDQzFjxgzExsaiTp068Pf3x+vXr8u8PioqCr169cLZs2cRExMDMzMztG7dGs+fP5daJlMqGAwGg8GoDMTJr+T9yMiyZcswZMgQDBgwAM7OztiwYQP4fD62bNlS5vU7d+7EiBEj4O7uDkdHR2zevBlCoRBnzpyRWiZTKhgMBoPBqATktlKUWDWSlZUl8SkoKChTVmFhIW7cuAE/v49Lm5WUlODn54eYmBip6puXl4eioiIYGBhI3UamVDAYDAaDUUUwMzODnp4e95k/f36Z17158wYCgQA1a9aUOF6zZk28fPlSKlkTJkyAiYmJhGLyX7DVHxXIzJkzcejQIdy6deuL1WHYzOewr5OPhDua2DDd9JuQxeQwOVVZztApybBzzUHiPS1snGvFHbewy8PPc54APGDNdCskP9TCsKlJsHHOhaoa4ddwC9yP1ZVazvaZlngSpw0rtxwEz0rmjsed18PeJeZQ0xBiUPgTmNrm4/BaU9w6q4+CfGUEhjyD14/vZGrTsBnPYF87Fwl3+dgww+xjmxzyMWp+Kng8YPVkMyTF89Hr5zR06P8GJ/dUx/bFJjLJGTo1Bfa1c5F4VwsbZlt8lGOfh1Fzk0XPbpolkh7wMWpeEizs8wEC1kwXHfviKGD1x9OnT6Gr+7EfqKurl7taZbFgwQLs3r0bUVFR0NDQkPo+ZqmoAIgIxcXFX7oasHXLg6aWEGM72UJVlWBfJ6/Ky2JymJyqLMfGJQcafAHG9XIVleeWw50L+iUVC36xw/xRdgj65SkAYPMCC4zv7Yr5o+zRY7j0wXJJd7RQkKeMWZF3UVyohMe3tLlzB1aYYerue/h59SPsWypSANoNfYEZ++9h+t67OLJeNsXJ1jUPmloCjO3i8M8zyuXO9R/3AgtGWmHecCv0D0sDAPwVYYiFoyxlkgEAti650NQSIqy7M1RUCfa1Szy70OeYP9oG4SG2CAp9BgDYs94EY7s5Y+l4a/QZJf2zq0h4ROX6AICurq7E53NKhaGhIZSVlfHq1SuJ469evYKRkdG/1nPJkiVYsGAB/v77b9SuXVumNn43SsX+/fvh5uYGTU1NVK9eHX5+fsjNzUVwcDACAwMxa9Ys1KhRA7q6uvjpp59QWFjI3VtQUIBRo0bhhx9+gIaGBho1aoRr165x56OiosDj8fDXX3+hbt26UFdXxx9//IFZs2bh9u3b4PF44PF42LZtG4gIM2fOhLm5OdTV1WFiYoJRo0ZVSJsdPfMQe14HAHAzWhtO9XL/446vXxaTw+RUZTmO7jm4eVFPVN4lPTh6ZHPntPUEeJOmjrev1KGtK3opERSLhmgNLQGePNCSWk5CrA7cGmcAANwaZ+BRrLbEeQ2+ENVqFuF1iugNVEVVNGEVflCCmYNsipOjZy5iz4venG9e0IFT3Y/PSFtPgPQ0Nbx9qQYtPVFa+Yw3qnJtuOnokYPYC//IuagLJ8+PSoWOXvE/z04NWroiOa+eiSZbQREPQqE8aycqAGE5PzKgpqaGunXrSgRZioMuGzZs+Nn7Fi1ahDlz5uDEiROoV6+ebELxnSgVaWlp6NWrFwYOHIj4+HhERUWhc+fOoH969pkzZ7jjERERiIyMxKxZs7j7x48fjwMHDmD79u2IjY2Fra0t/P398e6dpIlw4sSJWLBgAeLj49GqVSuMHTsWLi4uSEtLQ1paGnr06IEDBw5g+fLl2LhxIxISEnDo0CG4ublVSLu1dQXIyxZ9xbnZytDWrbi9IipLFpPD5FRlOdq6xcjLUS5R3keLJu8zeZinrXuAeVvv49Y/yog05GYpQ1NbVFe+jgB5WZKe7ox0VTxP1MTzRE3u2G+TrTG+tTtcfDKllgP884xylDi5JZ+RUom5vLzTupauAHnZomeXl60MLZ2PckpuhcT7RNCA8U9xeJtkXMH3QmhoKH799Vds374d8fHxGD58OHJzczFgwAAAQFBQECZNmsRdv3DhQkybNg1btmyBpaUlXr58iZcvXyInJ+dzIkrxXcRUpKWlobi4GJ07d4aFhcgPV3IiV1NTw5YtW8Dn8+Hi4oLZs2dj3LhxmDNnDvLz87F+/Xps27YNP/74IwBRgpBTp07ht99+w7hx47hyZs+ejVatWnF/a2trQ0VFRcLUlJqaCiMjI/j5+UFVVRXm5ubw8vIqs94FBQUSkb1ZWVkytTs3Wxl8HZF6y9cWICdLWab7v0ZZTA6TU5Xl5GargC+e7LUFyMkqewgm+jgzzhnhCEOjAkxZ8wi/dJXuBYSvI0D+P8pLfo4y+CWUlz5TkrFqpD0MTQtgX++jpWRQ+BP0mpiC6Z3c0KjTGxnapAy+tpCTW/IZlVSTyptlOi9bGXydj88uN7uEnBJlU4k3+sABL5GaqIl713XKJ1xBlHRjyHOvrPTo0QPp6emYPn06Xr58CXd3d5w4cYIL3kxNTYWS0keNbP369SgsLETXrl0lypkxYwZmzpwplczvwlJRp04dtGzZEm5ubujWrRt+/fVXvH//XuI8n/8xiKdhw4bIycnB06dP8fjxYxQVFcHX15c7r6qqCi8vL8THx0vIkcZU1K1bN+Tn58Pa2hpDhgzBwYMHPxt/MX/+fIkoXzMzszKv+xzxN/hwbyQaNDwa5+DBDenNp7JSWbKYHCanKsuJv6kN94YiS4CHbyYelIh1yM5QgaFRAQx+KOSsGapqohkyP1cZH/KkH67t62bj7j+WjTvR+rDzyClxLgfT995Dp1HPYGoncnUUFYiUGDUNIWfhkLpNN7Q+PqNG2XgQ+/EZZWcow9C4EAY1Czkrg7zEx2rDw0f0YuXum4X4m58+u0KJZ+fZOBPOdXOwa7VswaAVCpXzIwchISFISUlBQUEBrly5Am9vb+5cVFQUtm3bxv2dnJwMIir1kVahAL4TpUJZWRmnTp3CX3/9BWdnZ6xevRoODg5ISkpSqBwtrf8ecMzMzPDw4UOsW7cOmpqaGDFiBJo0aYKioqJS106aNAmZmZnc5+nTpzLVJ/EOH4UFSlh6MBFCIfDwVsVFP1eWLCaHyanKch7f00ZhgRIWR9yFUMBD+gt19BwuCizcsdIME1cmYPLqR9ixQvQCMXHlIyzceQ8zNz3AHyulf6mwcsuFqroQMzq7QkmZYGhagIOrRAGYB1eZYnZ3F0QssECXMSLZ22daYVY3F8zq7oIOP8kW1Jh4l4/CAh6WHngIoZCH18/V0OtnUVDmjqXGmLwuCVM3JOH3JcYAAP+ebzB02jO06PQOI+emSi/nnhYKC5SwZO99CIVA+nM19Bz5AgDwxwpTTFqdiClrE/H7MlE7R8xMgVGtAiyKeIBR8xQ71stNJSe/+hLwiKpITRWIQCCAhYUFQkNDERcXhz///BPPnj2DpqbIv7hx40aEhYUhMzMT+fn5MDAwwNatW9G7d28AQFFREaysrDBmzBiEhYUhKioKzZs3x/v376Gvr8/JCQ8PR0REBO7cufPZujx8+BCOjo64ceMGPD09/7XeWVlZ0NPTQzMEQIWnWv4HwWAwKgwlfuUsYdz18HSlyAGAnhaNK0UOT7XiPfPFVISzBXuRmZkpsUSzIhCP3U18p0FFRfrlmSUpLv6A8xfnVEp9y8N3EVNx5coVnDlzBq1bt8YPP/yAK1euID09HU5OToiLi0NhYSEGDRqEqVOnIjk5GTNmzEBISAiUlJSgpaWF4cOHY9y4cTAwMIC5uTkWLVqEvLw8DBo06F/lWlpaIikpCbdu3UKtWrWgo6ODiIgICAQCeHt7g8/n448//oCmpiYX68FgMBiMb5OSmTHlubcq8F0oFbq6ujh//jxWrFiBrKwsWFhYYOnSpfjxxx+xZ88etGzZEnZ2dmjSpAkKCgrQq1cvCR/SggULIBQK0a9fP2RnZ6NevXo4efIkqlWr9q9yu3TpgsjISDRv3hwZGRnYunUr9PX1sWDBAoSGhkIgEMDNzQ1//vknqlevXsFPgcFgMBhflPK4MaqIU+G7dH+UJDg4GBkZGTh06NCXrsp/wtwfDEbVgbk/5OdbdX80855aLvdH1JW5X73747sI1GQwGAwGg1HxfBfuDwaDwWAwvjjfgfvju1cqSq7RZTAYDAajwlDAhmJfO9+9UsFgMBgMRmVQ2Rk1vwQspoLBYDAYDIZCYJYKBoPBYDAqAxZTwWAwGAwGQyEQZN7CXOLeKgBTKhgMBqMCIEHFbMf+KT3NfCpFDgCcfHGjUuT416pb4TKIyt7IsSJhMRUMBoPBYDAYUsIsFQwGg8FgVAaEcsRUKLQmFQZTKhgMBoPBqAxYoCaDwWAwGAyFIATAK8e9VQAWU8FgMBgMBkMhMEsFg8FgMBiVAFv98Z3B4/H+dQv0qKgo8Hg8ZGRkSFVes2bNMGbMGIXUjcFgMBhVHHFMhbyfKgCzVMiAj48P0tLSoKen96WrIjXDZj6HfZ18JNzRxIbppt+ELCaHyanKcoZOTYF97Vwk3tXChtkW3HEL+zyMmpsM8IA10yyR9ICPUfOSYGGfDxCwZrromCJQdJs2zDDBo9t82LnlY/ic59zxG+e08ftiY6hpCPHz/GcwtytA4Qce1kyuhZdP1WBh/wEj5z3/l5I/qfeMZ7CvnYuEu3xsmGHGHbdwyMeo+ang8YDVk82QFM9Hr5/T0KH/G5zcUx3bF5uUu40K4TsI1GSWChlQU1ODkZEReDx5I20qF1u3PGhqCTG2ky1UVQn2dfKqvCwmh8mpynJsXXKhqSVEWHdnqKgS7GvncOeCQp9j/mgbhIfYIij0GQBgz3oTjO3mjKXjrdFnlPST77/WQcFtSojTRH6uMpYdSkRREQ8Pb2ly53YuN8LCvY8xcW0KdiwxAgAc+q0Gmnd6j0X7HsukUNi65kFTS4CxXRz+qXcud67/uBdYMNIK84ZboX9YGgDgrwhDLBxlWa62KZzvwFLxzSgVmzZtgomJCYRCyRDZgIAADBw4EABw+PBheHp6QkNDA9bW1pg1axaKiyWzqr158wadOnUCn8+HnZ0djhw5wp0ry/1x8eJFNGvWDHw+H9WqVYO/vz/ev39fZh0LCgoQFhYGU1NTaGlpwdvbG1FRUYp5AGXg6JmH2PM6AICb0dpwqpf7H3d8/bKYHCanKstx9MhB7AVdUXkXdeHk+VGp0NErxps0dbx9pQYtXVE2zlfP1AEAgiIehELFvMwouk0PYvnwbJINAPBonI3461oS5zX4QlSvWYy0FFFb4mK0cflvPYzrYouYk7oy1DsXsef/eXYXdOBU92O9tfUESE9Tw9uXatDSEz27jDeqVWUe/qb4ZpSKbt264e3btzh79ix37N27dzhx4gT69OmD6OhoBAUFYfTo0bh//z42btyIbdu2Yd68eRLlzJo1C927d0dcXBzatm2LPn364N27d2XKvHXrFlq2bAlnZ2fExMTgwoUL6NChAwSfSc8bEhKCmJgY7N69G3FxcejWrRvatGmDhIQExT2IEmjrCpCXLfqKc7OVoa1bcWmDK0sWk8PkVGU5WroC5GUrAwDyspWhpfOxPF6J0fhTY+iA8U9xeFvNcskWo+g25WQpg/9PO7R0BMjJUpY4/z5dBakJ6khNECkVaclq8GqZhTk7nmDXCiMIpMyWra0rQF7OP/XOkqy3Uonn9VXbkYXl/FQBvpmYimrVquHHH3/Erl270LJlSwDA/v37YWhoiObNm6N169aYOHEi+vfvDwCwtrbGnDlzMH78eMyYMYMrJzg4GL169QIAhIeHY9WqVbh69SratGlTSuaiRYtQr149rFu3jjvm4uJSZv1SU1OxdetWpKamwsRE5N8LCwvDiRMnsHXrVoSHh5e6p6CgAAUFBdzfWVlZMj2T3Gxl8HVEPZGvXfrHrkgqSxaTw+RUZTl52R8nYL62ALnZH8sr+VZNJSaQwAEvkZqoiXvXdcolW4yi26SlI/yoKOVITvaDp75A+HAL1KxVBJf6IssCX1cAt4Y5UFMnmFgW4H26KgyNi6Srt/Y/9f5EeSlpkBB+xdYJtvqjitGnTx8cOHCAm4h37tyJnj17QklJCbdv38bs2bOhra3NfYYMGYK0tDTk5X30KdauXZv7v5aWFnR1dfH69esy5YktFdJw584dCAQC2NvbS9Th3LlzePz4cZn3zJ8/H3p6etzHzMyszOs+R/wNPtwbic2SOXhwQ+s/7pCfypLF5DA5VVlOfKw2PHxELwfuvlmIv6nNncvOUIGhUSEMfihEXo5owvRsnAnnujnYtVpxgYaKbpNT3VzcuiBqx81oHTjW/TieOtfLw+L9j9Fr1EuY2xVwx5LiNSAQAK+eqUGvunSmivgbWh/r3SgbD2I/1js7QxmGxoUwqFnIKThfJd9BTMU3Y6kAgA4dOoCIcOzYMdSvXx/R0dFYvnw5ACAnJwezZs1C586dS92noaHB/V9VVVXiHI/HKxWnIUZTU7PM42WRk5MDZWVl3LhxA8rKkp1eW1u7zHsmTZqE0NBQ7u+srCyZFIvEO3wUFrzH0oOJeHxPAw9vKSZy/EvKYnKYnKosJ/GeFgoLlLBk7308vs9H+nM19Bz5ArvXmuCPFaaYtDoRALB2umhVyIiZKcjLVsaiiAd49kQDq6ZYfXVtsqudDzV1QmigLWxc8vGDaSF2rayJ3qNfYdfKmrgZrQ3dagKMXvgUANB95CssGW2OvBxl/Nj7LVTVpJssE+/yUVjAw9IDD/H4Ph+vn6uh189piFhtjB1LjTF5XRIAYM0U0Rjp3/MNOgSlQ0dfAG29Yqydal6udjKkg0dURdQfKRkwYACysrLg7e2NrVu3Ij4+HgDg6+sLR0dH/Pbbb5+9l8fj4eDBgwgMDOSO6evrY8WKFQgODkZUVBSaN2+O9+/fQ19fHwMGDEBCQgIuXLhQZnnNmjWDu7s7VqxYgUePHsHBwQHnz59H48aN5WpbVlYW9PT00AwBUOGp/vcNDAbji8FTV68UOVTCRVrRnHxxq1LkVMbW58VUhChhJDIzM6GrK33AqDyIx24/mzFQUZavXxQLCnD68YpKqW95+KYsFYDIBdK+fXvcu3cPffv25Y5Pnz4d7du3h7m5Obp27cq5RO7evYu5c+fKJWvSpElwc3PDiBEj8NNPP0FNTQ1nz55Ft27dYGhoKHGtvb09+vTpg6CgICxduhQeHh5IT0/HmTNnULt2bbRr165c7WYwGAzGVw7LU1H1aNGiBQwMDPDw4UP07t2bO+7v74+jR4/i77//Rv369dGgQQMsX74cFhYW/1Lav2Nvb4+///4bt2/fhpeXFxo2bIjDhw9DRaVsXW3r1q0ICgrC2LFj4eDggMDAQFy7dg3m5swsx2AwGN8+5YmnqBpKxTfn/viWYe4PBqPqwNwf8vPNuj+sR0FFSU73h7AAp5+sYu4PBoPBYDAY+C7cH0ypYDAYDAajMhCWw43xNSfgKAFTKhgMBoPBqAxIKJnZTNZ7qwDfXKAmg8FgMBiMLwOzVDAYDAaDURmwmAoGg8FgMBgKgcVUMBgMBoPBUAjMUsH4GlGpZSL3WmdpEb4te7t3hcv5UDlr7HmqldfVlWwtK0UOLze/UuSQlvR73JRLjnIlbVqdmFopYrLa1/7vixSAzuGblSIHANr5dKwcQcJK+I6ofFu+M8qGKRUMBoPBYFQGhHJYKhRakwqDKRUMBoPBYFQGzP3BYDAYDAZDIQiFAOTMNyFkeSoYDAaDwWB8RzBLBYPBYDAYlQFzfzAYDAaDwVAITKlgMBgMBoOhEFjyq2+f4OBgbN++HfPnz8fEiRO544cOHUKnTp1AVUQ7HDLmPmydMvD4oR42LXPhjltYZ2PkxDvgAVi7yBXJibpo1CINnfs+BoiHvdttcPm8kdRyhk5Jhp1rDhLvaWHjXKuPcuzy8POcJwAPWDPdCskPtTBsahJsnHOhqkb4NdwC92N1pZYzbMYz2NfORcJdPjbMMPsoxyEfo+angscDVk82Q1I8H71+TkOH/m9wck91bF9sIrUMrk1TU2BfOxeJd7WwYbbFR1n2eRg1N1nUpmmWSHrAx6h5SbCwzwcIWDNddExahvx0E3b27/E4sRo2rvPgjvfofR/tOybi1Akr/L7NDQAQMvo6LK0yQcTD2lWeSE7Sl17OqLuwdczE40d62LTC9WN7rLMwclwceDxg7eLaSH6sC/f66eg35AEKC5SxdokbnqXofHXtGTr0Juzs3yExsRo2bvDkjvfseR/tOyTg77+t8ft2kZxhP8XCxjoDqmoC/LrJHffv15BeTiX17VGBl+Bolo6Hzwyx8qAvd3xc9/OwNnoHAg9L9zXC47TqUFMpRmjXCzAxyEbSy2pYHtlI+vZUUr8GKq/PfY5hM5/Dvk4+Eu5oYsN003KXx5AfFqgJQENDAwsXLsT79++/dFXkwsYhExqaxZgwzAcqKkLYOWVw5/oOe4hFUz2wYIon+g17BAAI7PUEk4Y3xMQRDRDYK0l6OS450OALMK6XK1RVCfZuOdy5oF9SseAXO8wfZYegX54CADYvsMD43q6YP8oePYY/l1qOrWseNLUEGNvFQSSnTi53rv+4F1gw0grzhluhf1gaAOCvCEMsHGUpdfkSslxyoaklRFh3Z6ioEuxrl2hT6HPMH22D8BBbBIU+AwDsWW+Csd2csXS8NfqMkr5NNrbvoalZjPGhLUTfkf3H5GInj1tj8fwGEtfv2+OIsDEtsXxJffTpd096OfYZ0OALMGGEb+m+MOQhFs2oiwVT66Lf0AcAgF4DHmHyqIZYNNMTfQY9+vraY/sOGprFGBfWEqoqQtjbv+XOnThhjUULJeVs/tUd48e3wPxwH/ToGS+9nErq2/a10qGpXoQRqwOgqiKEo9lr7twfp90xfFUgwnc1w8A2NwAAXZvcxakbthi1roNMCkVl9Wug8vrcZ9vqlgdNLSHGdrL9Z7zIK3eZFQWRsFyfqgBTKgD4+fnByMgI8+fP/+w1Bw4cgIuLC9TV1WFpaYmlS5dKnLe0tER4eDgGDhwIHR0dmJubY9OmTRLXPH36FN27d4e+vj4MDAwQEBCA5OTkctff0fU9bl41BADcumYIR7ePypG2ThHevNbE23QNaGkXAQDSnmtBXbMYGprFyMuV3ljl6J6Dmxf1AAA3L+nB0SP7oxw9Ad6kqePtK3Vo6xYDAATFou6loSXAkwda0svxzEXsedGb380LOnCq+1Gp0NYTID1NDW9fqkFLT5QRL+ONqtzuRkePHMRe+EfWRV04eX4cfHX0iv9pkxq0dEWyXj0TZTIVFPEgFEqfAdLR6S1u3hBZhG7F1oST8xvuXEaGRqn6v3qpDQAoLlaSTY5rBm5eFb2d37puCEfXj5M91xfeaHJ9AQAKPqjg/VsNGJvmlirvi7fH8S1uxtYEANy8WROOTh+ViowMDRAkyxII/ulzmsV48kRfejmV1LddLF7j2sNaAIDrD03havWKO5f2TtQPi4VKEPzzjDxtX6CRawpWhxxBI5dk6dtTSf0aqLw+91n5nnmIPS+ydtyM1oZTvfKXWWEQidwY8nyqiNWcKRUAlJWVER4ejtWrV+PZs2elzt+4cQPdu3dHz549cefOHcycORPTpk3Dtm3bJK5bunQp6tWrh5s3b2LEiBEYPnw4Hj58CAAoKiqCv78/dHR0EB0djYsXL0JbWxtt2rRBYWFhueqvpV2M/H+Ug7wcVWjrFHPnlEp8w7x/xoqYqJpYveMCVu+Ixp/7LKWWo61bjLwcZQBAbrYyN8CKyi67w09b9wDztt7HrX8GbOnkCJCXI6p4bpYytHU/ptNVKjHeKSKps5auAHnZojblZStDS+ejLF4Zz07MgPFPcXhbTenlaBciL0/0HeXmqkoMsP9G8KA4HD5oJ4OcIsm+oF2yL3z8jkq2R79aAWpZZMPM8uPE899yKqc92lpFyMtTFcnJU4W21n/LmTbtAubNO4dbN6X/fiqrb+toFiD3g6g9OR/UoKNZ+rf/U/sr2H9e5EIwNcxCzH1zjNv0I4L9Y6GsJN3bamX1a6Dy+tzn0NYVIC/7n/EiW3K8+OoQB2rK+6kCMKXiHzp16gR3d3fMmDGj1Llly5ahZcuWmDZtGuzt7REcHIyQkBAsXrxY4rq2bdtixIgRsLW1xYQJE2BoaIizZ88CAPbs2QOhUIjNmzfDzc0NTk5O2Lp1K1JTUxEVFVVmnQoKCpCVlSXxKYvcXBVoaol+yHytIuRkf7Q+lOyH4twpvQYl4qeeTfBTz6boNShB2keE3GwV8LVFP1i+tgA5WWVbOYg+jh5zRjjil65uCA6TPpd/brYy+NqiyvJ1BMjJUv5YdonrFBG3lJetDL7OxzblZpeQVaL8kpbHwAEvkZqoiXvXpfcF5+Wqgs//+B3l5qj+5z0BnR7haYou7t+TPi4gN6dkXyhGTs7n+oLoO9q6zgkTZt9At76JuH+nmtRyKq09earg80WKBJ9fjJzc/5YzZ04j/DLGD8HBcdLLqaS+nfNBDVoaovZoaRQiO19N4nz3pnFIflkNcUnGouvz1XAz0QQfClXx7I0uqulIt99LZfVroPL63GflZyuDr/PPeKEtOV4wKh+mVJRg4cKF2L59O+LjJX2x8fHx8PX1lTjm6+uLhIQECAQfteLatT9uIMTj8WBkZITXr0U+09u3byMxMRE6OjrQ1taGtrY2DAwM8OHDBzx+/LjM+syfPx96enrcx8zMrMzrHtypBvf6IrOwe/03eHj34w81O0sV1X/Ih4HhB+5toqhQCQUflFGQrwIVFen9dPE3teHeMBMA4OGbiQe3tD/KyVCBoVEBDH4o5N74VNVEZefnKuNDnvRdLf6GFtwbiczPHo2y8SD2o3k5O0MZhsaFMKhZyL2JlYf4WG14+IiUNXffLMTf/LRNhRJt8mycCee6Odi1WraA0Pj7hqjjITJ1u3u8woP46v96vUfdl3B2eYOInc4yyXlwtxrc66WL5NRP/6QvqKF6Dcm+8OCuASb97IM92+3wNFn6yaSy2hMfXx3u/8jxcH/5n3JUVUW/x/x8FXz4IL1rr7L69t3kmqhrL4pZqGf/HPeSP1oFvByewtXyFbb97SlxvY3JWyjxhDA2yEZGjoZ07amkfg1UXp/7HPE3+B/Hi8Y5eHBDendUpSMUlu9TBfjuV3+UpEmTJvD398ekSZMQHBws8/2qqpJvUTweD8J/OkJOTg7q1q2LnTt3lrqvRo2y39wmTZqE0NBQ7u+srKwyFYvHD/VQWKiEhRsvIemRLtJfaqBHcAL2bLPDzl/tMXGuaBfD9YtFq0KOR5pjyaYYAMCJQ+ZSt+/xPW0UFqRjccRdPInXQvoLdfQc/gy719fCjpVmmLhSZPVYN1MUOT9x5SNo6wqgpETYtkR6OYl3+Sgs4GHpgYd4fJ+P18/V0OvnNESsNsaOpcaYvE4UXLpmiuhZ+Pd8gw5B6dDRF0Bbrxhrp8og654WCguUsGTvfTy+z0f6czX0HPkCu9ea4I8Vppi0OhEAsHa6KHp+xMwU5GUrY1HEAzx7ooFVU6z+rXiOx4nVUFSkjEXL/ocnj/WR/pqPHr3vY88uZ7Ru8wTtOjyGjk4htHUKsW51XQwfeRN5eSpYsCQKz57qYM3KetLJeaSPwsJnWLjuIpISdJH+ShM9+j/Cnu322LnZARPniAIA1y8VrZbo0f8R3Ou9QVaWGtYslH5XzUprT6IBCguTsXjJGZGcdD569ryP3bud0dr/Cdq3TxTJ0S7EurV1MXFSDLS1C0V9bqsM7amkvv3oWQ0UFj3Cup8PI+F5dbx6r42gVrH4/ZQnfulyEbkf1LA65E+kvtbH4r1N8McZd0ztHQUtjUIciXFCsUA6Rbqy+jVQeX3us229w0dhwXssPZiIx/c08PCWbCtXKhUqx5LSKuL+4FFVWTNZQQQHByMjIwOHDh0CANy5cwfu7u4ICwvDokWLQETo06cP0tPT8ffff3P3jR8/HsePH8fdu3cBiAI1x4wZgzFjxnDXuLu7IzAwEDNnzsSvv/6KCRMmIDk5Gbq60i8/K0lWVhb09PTgV2s42/pcRtjW5/LDtj6Xj29x63NlY9niLeSlOLniv6NiKkIUDiMzM1PuMVlaxGN3C35PqPDU/vuGMiimQvwvb3el1Lc8MPfHJ7i5uaFPnz5YtWoVd2zs2LE4c+YM5syZg0ePHmH79u1Ys2YNwsLCpC63T58+MDQ0REBAAKKjo5GUlISoqCiMGjWqzOBQBoPBYDCqGkypKIPZs2dzbgsA8PT0xN69e7F79264urpi+vTpmD17tkwuEj6fj/Pnz8Pc3BydO3eGk5MTBg0ahA8fPnzVWieDwWAwFMR3sPrju4+p+HRZKCByZRQUSJrlu3Tpgi5duny2nLLyTdy6dUvibyMjI2zfvl2eajIYDAajqiMk4DNLlP8TplQwGAwGg8HgIAIg5yqOKqJUMPcHg8FgMBgMhcCUCgaDwWAwKgESUrk+8rB27VpYWlpCQ0MD3t7euHr16r9ev2/fPjg6OkJDQwNubm44fvy4TPKYUsFgMBgMRmVAwvJ9ZGTPnj0IDQ3FjBkzEBsbizp16sDf359Lyvgply5dQq9evTBo0CDcvHkTgYGBCAwM5FInSANTKhgMBoPBqAQq21KxbNkyDBkyBAMGDICzszM2bNgAPp+PLVu2lHn9ypUr0aZNG4wbNw5OTk6YM2cOPD09sWbNGqllMqWCwWAwGIxvjMLCQty4cQN+fn7cMSUlJfj5+SEmJqbMe2JiYiSuBwB/f//PXl8WbPVHFUKc/LRYWL5dTaVBSBUvQyRHut0tywuvEiOnlQSVlCVUWDlySFA57x6fbmNecYIqp28XF32oHDmV9BsCAKqkPlcZbSqGSEZlJpUupgK53BjAx/p+urGkuro61NVLZ1h+8+YNBAIBataUzIJas2ZNPHjwoEwZL1++LPP6ly9fSl1PplRUIbKzRZvmRL347QvXpApSOWOhiPj/voTxHRD5pStQAaR86QoonuzsbOjpSb99vTyoqanByMgIF17KFvT4Kdra2qX2f5oxYwZmzpxZrnIVCVMqqhAmJiZ4+vQpdHR0wONJ91Yn3oTs6dOnlZLfvjJkMTlMzrcopzJlMTkiC0V2djZMTGTfmVVWNDQ0kJSUhMLC8lnJiKjU2F+WlQIADA0NoaysjFevXkkcf/XqFYyMjMq8x8jISKbry4IpFVUIJSUl1KpVS657dXV1Ky0deGXJYnKYnG9RTmXK+t7lVLSFoiQaGhrQ0JBu63pFoKamhrp16+LMmTMIDAwEAAiFQpw5cwYhISFl3tOwYUOcOXNGYmPMU6dOoWHDhlLLZUoFg8FgMBjfIKGhoejfvz/q1asHLy8vrFixArm5uRgwYAAAICgoCKamppg/fz4AYPTo0WjatCmWLl2Kdu3aYffu3bh+/To2bdoktUymVDAYDAaD8Q3So0cPpKenY/r06Xj58iXc3d1x4sQJLhgzNTUVSkofA7F9fHywa9cuTJ06FZMnT4adnR0OHToEV1dXqWUypeIbR11dHTNmzPis360qymJymJxvUU5lymJyvh9CQkI+6+6Iiooqdaxbt27o1q2b3PJ4VJnraRgMBoPBYHyzsORXDAaDwWAwFAJTKhgMBoPBYCgEplQwGAwGg8FQCEypYCgEFprDYDAYDKZUMBRCWloaAFFyFYZ0REZG4vTp01+6GgwGg6EwmFLxnfDw4cMKK/vQoUMwMzPD5cuXoaSkxBQLKUhOTsaUKVOwdu1aREdHf+nqMP4DsSXu9evXX7gm5YdZFRkVCVMqvgN27tyJn3/+GUDFDCg2Njbo3LkzOnfujCtXrlSYYlGyzE/LV7Q88XPKyspCUZHid0y0tLTEypUrkZ6ejlWrVuHs2bMKl/GlED+758+fV8iz+xLweDzs27cPQ4YMQVJSUoXLq6iJXygUcntHPH36tEJkAJL1Zy8Z3xdMqfgOMDc3x+nTp/HXX39JvRGZLLi5uWH27Nlo0qQJOnToUCGKhVAo5DK/bdiwAUOHDkWvXr2wePFiCAQCiaxw5UW8ac+xY8cwdOhQREdHo6BAcducCgQCCIVCtG7dGuPHj8fLly+xbt06XLp0SWEySiIe4O/evYvo6GhERkZW6EDP4/GwZ88eNG/eHElJSVX6zVhc9/T0dMydOxdt2rSBlZVVhckrLi4GgAr5nZb8DYWHhyMkJASXL19WuBzx7+fUqVMYO3Ys/Pz8sGXLFty4cUPhssTyGF8PTKn4RiEiEBEEAgEaN26MIUOGYOfOncjJyamQH6GTkxOmT5+OFi1aVIhiIR4MJ0yYgBkzZsDS0hKWlpZYsWJFubK/lQWPx8Phw4fRvXt3ODs7w8zMTKGZ+pSUlKCkpIQjR47g/PnzePfuHQ4ePIg5c+bgwoULCpMDfBzgIyMj0bZtW4SFhWHkyJHw9fXFn3/+qdC+IC7rw4cPiIyMxIgRI2Bvb6/wCVIs59GjR3jw4AEePXpU6pyi4PF4OHnyJJYsWYLatWujZ8+eCi2/JMuWLcPgwYPRq1cvPHjwQOFWHvFvaPz48VixYgUGDBgg0+6T0sLj8XDo0CF06tQJQqEQnp6eWLt2LcaMGYOUFMXunS7u31FRUZg2bRr69OmD3bt3Iz09XaFyGDJAjG+S169fS/y9adMmMjExodTUVCIiEgqFFSI3Li6OevToQTVq1KDLly8TEZFAIFBI2ZcuXSJ7e3u6dOkSERFFRkaStrY2/frrrxLXlbdtz549Izc3N1qxYoVCyy3J2bNnSVlZmdavX0//+9//6Pfffyc7Ozvq3LkzRUdHK0wOkei5VatWjbZt20ZERA8ePCAej0cbN25UqBwiUbt8fHyoffv2dP/+fYWXL2b//v1kZGRE5ubmZG9vT+vXr+fOKbpvr1u3jng8HhkaGtKTJ08UWraYefPmka6uLg0fPpzs7OzI1NSU9u3bR3l5eQqV89dff5GlpSVdv36diIiKi4vp/fv3Culz4uf+9OlTcnd3576TvLw80tHRoQkTJpRbRlkcOHCA9PX1qVevXvTLL7+QsrIyDRw4kNLS0ipEHuPfYUrFN8iRI0fI0NCQVqxYQbdu3eKON2vWjHr06KGQQVdcRkpKCiUlJVF8fDx3rizFori4uNwyDx48SK6urkQkUih0dHS4gSsnJ4cOHz4sc5lLly6lO3fuSBxLSkoia2trTnkhkpyoyjPQi8sJCwujli1bSpw7fvw4WVlZUZs2bSRkl5c1a9ZQ586diUikUNjY2NDgwYO584qcuKKjo8nKyorU1NS456oopVL87NLT08nGxoZ+++03On78OE2fPp2UlZVp6dKlpa5VFL///jspKSnR1KlTFdKXS5KSkkIDBgygCxcucMe6du1KFhYWtHfvXoV+P/v37yc7OzsiIrp37x7NnDmTbG1tic/nU0BAgMzlRURE0J49eySOpaamkqurK719+5YSEhKoVq1aNGTIEO58dHR0qZceeXny5AnZ29tLKMh8Pp8mTpyokPIZssOUim+MqVOn0oQJE2j58uVkZ2dHXl5eFBwcTI8ePaLly5dT586dubcteQde8X2HDh0id3d3srKyIhcXF5o2bRp3zZ07d6hHjx5kYmIiMVhKS1kT0fnz5ykgIIC2b99O2tratGHDBu7cmTNnaOjQoVK/SQqFQvrw4QO5ubnRw4cPJc7dunWLlJSU6OzZs0QkqRDdunWLTp06RUVFRTK3SSyXiGjGjBnUqFEjKigoIKFQyB3ftGkTaWpqUuvWren8+fPlkiFWKMeOHUt9+/YlgUBAtWrVoqFDh3LX7Nixg1atWiWXnLIoKCigixcvkoWFBTVv3pyToyjF4vTp0zR79mwaM2YMV2ZmZiYtXLiQeDyehGIhD+L6vnv3jp49e0ZEH+u+Zs0aUlJSogULFihMadmyZQtpamqSm5sbxcXFSZzr1q0bWVhY0L59+yg3N1fmsq9du8b9f/ny5fS///2Prly5Qg4ODlSvXj0yNTWlAQMG0IYNG+jq1avE4/Ho1KlTUpf/+vVrqlu3Lvn5+Uko9HFxceTs7EwxMTFkbW1NgwcP5p7h7du3acCAAZylpLw8ePCAvL29iYjo0aNHZGpqKqHA3L17VyFyGNLDlIpviH379pGRkRFFRUUREVFCQgIdOHCAateuTc2aNaN69eoRj8ej5cuXl1vWsWPHSEtLi1avXk137tyhpUuXEo/Ho7CwMO6au3fv0o8//kh2dnaUn58v9UBccgLatm0bnThxgj58+EAvXrygWrVqEY/Hk3BN5OfnU5s2bahXr14yyxD/e/HiRbp58yb3d0BAADVq1KiUFWP48OE0YMAAys/Pl0rO54iIiCAVFRU6efKkxPHIyEiqXbs2tW/fnpvU5OHo0aPE4/EoLi6OoqOjycbGhrS1tWnkyJES140YMYJ69+5NOTk5Mssoae5+8OABvXjxgjt38eJFMjY2Jn9/f+5YeRWL/Px8Cg0NJR6PRz4+PhLnxIqFmpoazZ07V67ySyrL4knX29ubpkyZQu/evSMiotWrV5OSkhItWrRIYYqFn58f8Xg82rt3bykrSI8ePUhdXZ3OnDkjU5kPHjwge3t7CgkJ4VwCjx8/pqKiIjp58iSNHTuW9u7dy1kMnj9/Tt7e3nT16lWZ5Ny6dYtat25N/v7+dOjQIe54x44dicfj0cCBAyWunzhxItWrV0+ir5SHK1euUK1atejChQtkY2NDQ4YM4Z7hlStXqFOnTqVeGhgVC1MqvhGOHTtGISEhtGbNmjLP79+/nyZMmEDa2tpUp04dSkhIkFtWWloaBQQE0LJly4iI6MWLF2RpaUnNmzcndXV1Gj16NHft/fv35Z4cx40bR0ZGRrRixQpu8IuNjSVtbW3q0aMHbdu2jfbv308tW7YkV1dXznogy2AvEAiouLiYLC0tydHRkW7fvk1EIheSn58feXt7059//klHjx6l0NBQ0tfXL/VG+W+I6/L48WOKjY2VcEcNGTKEdHV16fjx45SRkUFERJMnT6Zp06bR+/fvpZbxKampqTRmzBjONfTixQsaNmwYWVtb0x9//EFERC9fvqTJkydTjRo15Ip9ELfrwIEDZG1tTdbW1sTn82nYsGEUExNDRB8Vi3bt2sndlk9JTEykiRMnEo/Hox07dkicy8zMpJkzZ1K1atXo7du3ck36f//9N6mrq9O8efPozz//pJCQEGrQoAF1796d+07Wr19fSrEtLz4+PmRpaUnR0dGllC95XC6ZmZm0fv160tfXJ21t7c++sRcWFtKbN2+offv25OPjI7UcoVAoYX1o2bIl+fv704EDB4hI9D01bdqULC0t6e+//6aIiAgaM2YM6ejocL8xWRF/n59+r127diVlZWXq3r27xPFJkyaRj48PvXz5Ui55DPlgSsU3wPXr18nT05P09PRo7dq1RPTxrfDTQeKvv/4iCwsLOn78uNzycnNzafHixfTkyRN6+fIlubi40LBhwygvL4/Gjh1LPB6PfvrpJ/kbRES//vor/fDDD3Tz5k1OWShpVfD29iYrKyvy8fGhnj17UmFhIRHJH7uRkZFBDg4O5OnpSffu3SMikUulb9++pKmpSY6OjuTl5UU3b96Uukzx4Ld//36ysbEhExMTsrS0pAYNGtDLly/pw4cPNGzYMFJVVSV3d3eqX78+aWpqyj3oEhHdvHmT/P39qXbt2lw8C5HIFN6vXz+qVq0a2dnZUf369cnCwoJiY2PllnX+/Hni8/m0cuVKiouLoy1btlCjRo2oY8eOdOXKFSISfVcaGhrUpUsXmcsXP783b95Qamoq1w8yMzPp559/Jm1tbdq5c6fEPVlZWfTmzRu5ZBUWFtLAgQNp+PDhEue2bt1KXl5eNG/ePK5OW7ZskTsQ9dixY7R27Vo6ePCghIvCy8uLrK2ty1QsiKTr2yXvO336NNWoUYNsbW1p1KhR3HHxc8zPz6fff/+dmjZtSvXr1+d+Q9JYlMTPQWzhKqlYHDlyhIiI4uPjKSAggMzMzMjFxYX8/f3LrVCcO3eOZs2aRYsWLaKUlBQiEo1pDRo0oObNm9OVK1fo9OnTNHbsWNLV1S3Xb4khH0yp+EbYuHEjOTk5kaenZ5kxEyX/36tXLwoMDCxXwJk4eGzZsmXk5+dHr169IiKR77Z27dpUq1atcpk4f/75Zy6YUFzPkoNdXl4evX79mt69e8e1Tdo4B/H1GRkZVFxcLDFZWVtbk6enp8Sb3ZMnT+j169dyWQ+io6OJz+fTpk2b6Pr163Tq1CmqV68eOTo6Unp6OhGJAlBXrFhB4eHh5TbVHj16lJo2bUoaGhq0e/duiXNpaWkUExNDCxYsoMOHD3ODsqyIn9/EiROpffv2EudOnDhBDRo04KxVRUVFdPnyZXr06JFcMsSuCLEyNm3aNHr79i29fv2aQkNDSUdHhyIiIuRqR1l069aNOnXqVOr4gAEDqEmTJuUuPywsjGrWrEmenp5kbm5Ozs7O3IsAEVGDBg3Izs6OTp8+XS73yogRI2jYsGF08+ZNWrt2Lbm6upZS9PPz82nnzp20bNky7jcgzW9IXK+//vqL+vbtywVpixWLVq1a0Z9//sld/+jRI8rMzKSsrCy520MkUsaUlZXJ39+f1NXVydfXl4vliIyMpLZt25Kqqiq5urqSr6+vhFWQUXkwpaKKU1Ix2LJlC3l7e1Pv3r0pOTmZiCSVCfGk3KVLF+rfv79MA8idO3fozz//pJSUFC6eQCgU0sCBA6lp06bc9WFhYbR06VK5AstKtsnX15d69OhRqu4FBQV08+ZN+vDhQ5n1lJbDhw9Ty5YtqW7durRixQrOOpGRkUHW1tZUt25dunXrVrnjAJYtW0Zt27aVqN/r16/Jw8ND4rmVl5IumbNnz3Jt+/vvv7njil4RMXHiRGratCkVFRVJlL127VrS1dWVy2JQkpMnT5KWlhYtWbKEXr58ST///DNpaWnRwYMHiUjk5gkLCyMej0f79u0rlyyBQEACgYDGjRtH9erVo+TkZIk2/f777+Ts7MzFVsjD3r17qUaNGnThwgUSCoUUFxdH48ePJ1NTU9q8eTN3na2tLXXr1k1uOY8fPyYXFxcu0DczM5OWL19Obm5uEjE106dPp//973/c37K8ZIiXc0+YMIFu3LjBHS9psRB/T+VB/B28fPmSgoODueXjb968oVatWpGPj49ELEdcXBy9efOmXO5DRvlgSkUVZc2aNdS7d2/q1q0bzZ8/nzv+66+/UqNGjahPnz7cm2jJCPzk5GRSUVGRKfo6MjKS9PX1ydTUlExMTGj+/PlcnMSBAwdIVVWV+vTpQz179iR9fX2J5aX/xecm7aVLl5KDgwOdPn1a4nhCQgJ17dpVJjfEp1y5coW0tLRo6tSp1Lt3b6pTpw7169ePeyYZGRlkb29Ptra2pQI1ZSU0NJRsbGy4v8WKXGRkJNnZ2VFiYmK5yicS5dWwtbXllo0SiSbk9u3bk5+fn8QzVKRisWHDBtLQ0OBM+OKyo6KiyNnZWW5LlUAgoMLCQgoKCqJx48YRkWgZqYWFRalA0+fPn9PkyZPpwYMHMskQ1/X169eUmZnJ+d1fv35NJiYm1K5dO3ry5Al33U8//UQtWrQo1/LOWbNmlVpGnJycTMOGDaM2bdpwlisi+d148+bNo/79+9PgwYMlXhoyMjJoxYoV5OLiQk2bNqU2bdqQiYmJ1HJK/k6TkpLIxsamVExJyRgLf39/atCgAR07dkyudpTkwoUL1LZtW2rUqJGEAvPq1Svy9/cnHx8f2rNnj8JWGDHKB1MqqiATJkygGjVq0E8//UTBwcGkoaFBbdu25VwQ69evp6ZNm9KPP/5YZpCStGZIgUBAGRkZ1KpVK9q8eTOlp6fThAkTyN3dncaNG0fPnz8noVBImzZtosaNG1Pnzp1l8mGWHAQuX75Mp06d4uoWGxtLjRo1oi5dunADU3JyMnXs2JF8fX3lHnSfPHlCs2bNooULF3LHduzYQY0aNaLevXtzisX79+/J3d293MmOLl68SLa2thLLX4lEE6+FhYXMboGyyM7OpnXr1pGLiwv17duXO/7XX39R+/btyd/fv1wxNOKJNTk5mR48eCChNHbq1ImMjY0pJiaGsrOziUikSNWpU6fcb4udO3emgwcP0suXL8nExISGDh3KnTt06BCdO3eOiKR3e33aHrFrxcHBgRwdHblVUQkJCWRqakoeHh7UvHlz6tatG+no6JTbnL569Wpydnam58+fSxzfu3cv8fl8evz4scRxWft4UVERTZs2jXg8Hnl7e5eKq8rKyqL9+/dTnz59aODAgVLFIa1Zs6aUInr9+nVydHSUqO+nE/qNGzcoICBAbhdbSRITE8nR0ZGUlJS4BG5i0tPTqV27duTq6soFiTK+LEypqGLExsZSrVq1JMyW8fHxZGRkJBEMt3TpUho+fHiZ2vt/va2Kz+fm5lJxcTENHjyYnj59yp2fO3cup1iIlZYPHz7Ivcxy3LhxZGBgQDVq1CAjIyNucIiKiqKOHTuSoaEhmZmZkbOzM9WtW1emgLKSPHnyhOrXr08mJia0YMECiXM7duwgX19f6tevHxfgKO1bfck8E8nJyXT37l1KSkoiItGE379/f2rZsiXnO8/Ly6PJkydTnTp15A4q/JTs7GzavHkz2dvbSygWJ0+epMaNG1NgYKBcLqmSqzwcHR3J2NiYbGxsqF27dpSbm0sZGRnUpUsX4vP55OHhQU2aNCF9ff1yWZLE32vnzp2pVatWZG1tTcOHD+eUh6ysLOrRowctWbJE7rfTkydPkrq6Oi1btoy2bNlCc+fOJR6PxwU0vnnzhubOnUtDhw6lsLAwuYMyT506xWV2PHPmDJmZmdGKFSsk3Cg3btygOnXqyBxPU1Y/eP/+PS1ZsoR4PB6tXLmSO/655/RvCllycjI5OTmVWil28eJFUldXl/idiOty/vx5Tun81EVZHpKSksjd3Z2aNWvG5Y8R8+rVK+ratSv3m2N8WZhSUcU4f/48mZqacm874kHh6tWrxOfzJfyY5Uk8dOjQIfLx8aHatWuTs7NzqTeOuXPnUr169WjEiBEyLxktORiePn2aateuTWfOnKGUlBTq168f/fDDD9wbyatXr+jy5cu0evVqOnLkCPdWJW/yqYULF5KZmRn5+/uXatPOnTvJxcWFhgwZQh8+fPhPpUJsVSk58VpYWJCNjQ2pqalRUFAQ3bx5k96+fUsDBgwga2trMjY2pkaNGpGBgUG5V158mvY4OzubfvvtN7KyspLID3D69GkuPbs8REVFkaamJq1fv57Onj1LkZGRZGNjQw0bNqSCggIiEillixcvpkWLFsm0XFm8pJdI5DfPysriLB737t0ja2trCfcREdGUKVPIyspKatdRyeyN4u9q8ODBFBQUJHHdkSNHiMfjccpfeRN3TZ48mczNzemPP/7gntP06dOpWrVqNGvWLIqKiqKEhARq3bo1NWnSRCY5Ja99/vx5KYvXrFmzSqViLzn5l2zfvyFWRK9cucLJTEpKovr169OIESNKWVcGDhxIw4YNKxVnIy3iex48eECnTp2ia9eucS80Dx8+JDc3N2rdunUpxYK5Pr4emFJRRRC/nScmJpK6urpExLtQKKTXr1+TnZ0d/f777xL3yfLDFl8bFxdHGhoaNHnyZOrZsyfVqlWLOnfuXGoSnjx5MjVp0oRzu8jKxo0bafbs2TR9+nSJ44MGDaIffviBtm/fXqarRpa19GWxdOlScnNzo9DQUC6gVcyePXukeuMZMmQIDRw4kFNuzp8/zyUDi4+Pp71793K+61u3blFubi7dvn2b5s6dS9u2bZN6QvxcG+bMmUOmpqY0depUieO5ubk0cuRI4vF4EoGu0lKWu2fOnDmlVkQkJSWRlZWVRByHLOzZs4fLZ0EkUsjc3d3J1taWfvrpJy7IcPv27aSlpUWNGzemPn36ULdu3ahatWpSK2Rr164le3t7CddFYWEhtWjRgltdJI7hIBL16bp169K7d++4fibP5DhjxgyqWbMmRUdHczlIxCxdupQ8PT1JQ0OD3NzcyNvbW67lnESiHBaurq6kr69PHh4etGTJEs7tNHv2bFJSUqJNmzbJXP+SZGRkUK1atcjLy4s7tmLFCrK1taWhQ4fSmTNnKDY2lkJDQ8nAwEDuLJYll2CbmpqSpaUlWVhYkIODA+fqEisWbdu2LZU4jvF1wJSKKsDWrVtpy5Yt9ObNGyouLqaffvqJGjRoQEePHuWuyc3NJVdX11IJgWTl+vXrtHbtWomshBs2bKAmTZpQnz59Sr3xlifC38fHh3g8HnXt2rWU5WHw4MFkampK69evlys4TjxARUdH09SpU2nGjBkSEfaLFi0id3d3GjNmjMx+34iICKpRo4aEiX/evHnUqlUrieuioqLI19dXIhZAHtLS0riA0T/++IO2b99OmZmZFB4eTk5OTjRp0iSJ6zdt2kSenp7UpEkTmaxI4iycn8ZfDBw4kNzd3bm/xd+VeEVEyT4hzQT84MEDql+/PrVp04bu3LlDT58+JQMDA1qyZAlNmzaN2rRpQ76+vtzbaFxcHPXr14/69etHU6ZMkclN8PbtW6pVqxb5+PjQ7du3ufrNnTuXatWqxa36EU/my5Ytk3CxycOrV6+oQYMGXA6Nly9f0rVr12jMmDG0f/9+KiwspPT0dLp69aqEBUBW69v8+fOpevXqtHv3brp48SINGjSIGjRoQKGhoZSVlUUCgYDCw8OJx+NJrJCQFaFQyGWsLLliacOGDdSyZUtSUVEhJycncnZ2ltvtJW77lStXSEdHhzZs2EDPnj2jqKgo6tu3L2loaHCKZkJCApmZmVHnzp3LtcqMUTEwpeIrR5xVctu2bZzL49KlS9SjRw+ys7OjGTNm0K+//kp+fn5Uu3ZtmYK7xo8fT1u2bOH+TktLIz8/P9LS0uKi7sWsW7eOGjVqRP379y/1di8NZS1tJSLq3r076erq0rFjx0oNql26dKEOHTrIvWLhwIEDxOfzqV27dtSwYUPS1tamwMBATv78+fOpfv36NGTIEJncA4sWLSJHR0ciErmJli9fTuHh4Zw7oGR9t2/fTpqamnLvmJiZmUl16tShoKAgLhW62KT96tUrmjt3Lrm4uEhsoDR16lSaOXOmXHkB+vfvT9WqVaO//vqLO3bixAmysbEplWjqzz//JEtLS4l4G2nZt28f+fv7U6dOnWjevHk0ZcoU7ty5c+eoa9eu1KBBg3K9jYpdDllZWWRlZUW+vr7c6oGbN29S69atKSAgQCJe4pdffiE/Pz/OBSMr169fp7S0NKpRowZt3ryZTp48SUFBQVS/fn2ys7MjOzu7UkG7RLKZ74VCIWVkZFDjxo1p9erVEufmzZtHbm5unBKRlZVF27dvlymHi7guhYWFEsrV5cuXyczMTEKxePv2Ld2/f58ePHgg1wtGyaW7xcXFtHnzZmrevLnE80hLS6PevXuTh4cH9ztKSkoq5XphfB0wpeIrZvXq1WRsbCyRdU/Ms2fPaObMmWRiYsKtvJAlq2RmZibNmjWr1GqNnTt3kq+vL1lZWZVaErhp0yZydXWloUOHyvRWVXKAEAqF3GAvpnXr1mRsbEwnT54sVa74XlkVi+TkZLKysuKC1fLy8ig6OppMTEwkTPkzZ86kJk2ayJTK9+rVq+Tg4EAtWrTg3gL37NlDKioq3L4rYi5dukROTk4yxzScO3eOe06XLl0iY2Nj4vF4NG/ePInrXr16RQsWLCAzMzNydHSkdu3akba2ttxLLImIhg0bRrq6utzmUikpKdS1a1dq164dZwkrLCzk9nGQJXdDyb65f/9+atOmDZmbm9OIESNKtb9r167UqFEjic2q5HHnvXr1ig4fPkw8Ho/atm3LmecjIyOpdevWVLNmTerSpQu1bdu2XKs8fvnlF6pWrRoVFRVRWFgY6evrk5aWFoWFhXH5Qvz8/OiXX36Rq/ySFBQUUP369TmLYsnfTePGjcvMYPpvv9nY2FgJRero0aPUu3dvat26NR05coSzCJRULMq7PPnDhw/UoEEDsrS05MpatmwZVatWjXPhiI8fPXqUzMzM5A6YZVQeTKn4igkKCqKff/6ZiEQmv127dlGTJk2oZcuW3NLH7OxsiaBCWSZ78bUnT56U2DMkMjKSfH19qUWLFqXeQrds2SKTpaKkQrF8+XLq1asX1atXj37//XeJibZ169ZkYmJS5g6g0r7FlRzkEhISyNzcvNQgFBUVRbq6uhIxKW/fvpW6PWJGjBhBPB6PGjRowB3r3bs3Va9enc6cOcP50cPCwrhtoKVl165d1Lx5c3r16hUJhUJ6+/Yt1axZk6pXr05Dhw4tNellZmbSxYsXKTg4mH755RfOpC8L4md84cIF2rdvH6moqJCpqSlnsbh9+zZ1796dLC0tyc7Ojpo3by5TbIOYTyeiI0eOkLe3N1lbW5fKnRIdHU2tW7emVq1ayW3mjoyMJC0tLZowYQK1a9eODA0NycvLi1uhcO/ePVqxYgX16NGDxo0bJ/ek9eLFC/r5558lNv66evVqqfiCli1b0uzZs2Uq+3Mpu3/88Udq3LhxqYyzEyZMoC5dukg16QuFQoqKipIIUD137hzx+XwKDg6mtm3bkrKyMs2cOZMLeL1y5QrZ2NiQh4dHuQIkhUIhRUdHk6urK7m7u5NQKKTHjx+Ts7MzLVu2TGJJ8sOHD8na2ppL/874emFKxVeI+A11+PDh1LJlS5o1axY1bdqUOnToQP3796fAwEBycXEptWmSPG8OBQUFNHnyZOLxeBJm2b1791KzZs2oRYsWcm0I9ulgM2nSJKpZsya3YZaOjg6NHz9eYtBt06YN8Xg8mXdKLMnBgwdp9erVlJ6eTrq6uqXWtb9//55cXFzKtRlUXl4eF+jn7OxMvXr1IiLRQN+vXz9SV1cnV1dXatiwoVyrPHJzc7k4D/G/GRkZdPbsWTI3N6f+/ft/9m1a3lUxRCJXDp/PpxkzZtCIESOoSZMmpKOjw8VYPHv2jC5evEjjxo2jtWvXyp16+++//6Zp06Zx/erIkSPUvHlz6tChQynF4tKlS3K5V4hEE721tTUtXryYO/bkyROysLAgb29vunPnzmc3qZKFHTt2EJ/PJzc3N0pMTCzV97Oysig2NpbLpyCvle/+/fv09OlTThl//PgxGRoaUo8ePSgzM5MKCgqoqKiIfH19S1l+/osJEyaQuro6bdmyhcLDw2nVqlXcuTVr1pCuri5Nnz6dUywuXLhAbm5ucrlCP21fTEwMOTg4UP369YlItLrHzc2NFi1aRC9fvqTs7GyaMGEC2drayh0Uzqg8mFLxlbF9+3Y6cOAAFRcX0//+9z/q3bs32djY0MKFC7kgqE2bNlHbtm3LFUxWkpSUFJo+fTrp6OjQunXruON79+4lPz8/8vT0LJWwRxb27NlD1tbWnBvnxo0bxOPxqHr16jR8+HAJU/2YMWPkTmx18+ZNqlGjBm3cuJFycnIoODiYWrduXSorZ5MmTbgdVuVF/Ob822+/kYODg0RuiH379tGqVatoxYoVMmfMLDmJxMXFkYeHBy1evJgLVj127BiZm5vTwIEDuf4wefJkif0j5CE7O5u8vb0lYmkyMjKoX79+pKOjQydOnChX+WIOHDhAOjo6NHbsWAmLSmRkJPn5+VG7du1kyvYqRrxcsuTzS09PJxsbGy55mngyT0hIIAMDAwoMDFTIm+///vc/atOmDWlpaXF9ueRv86+//iJfX19q1aqV3BvfjR8/niwtLcnY2JgcHBwkrAo1atQgFxcXatSoETVs2JCcnZ2lVlxK1mPSpEmkpqZGtra2EkHNRCJXrI6ODs2cOZNzFcqTl0a8/0xJCgsL6cqVK2RlZcXtrzJt2jRydXUlDQ0NatCgAdWoUaNcS7AZlQdTKr4ixo8fTzVr1qStW7dyP9ycnBwJ07lQKKS2bdtSz549y7UO/PXr1xIxEy9evKDJkyeXUix27NhBHTp0kPqNpF+/fhIrR4qKijjrAZHorVRPT4927dpFf/zxB/F4PAoNDS01YMg66D58+JCmT59OYWFh3LHz589Tq1atqEWLFrRu3Tq6dOkShYaGUrVq1RSSHptINBlv2bKFHBwcOIuFosjNzaXu3btTo0aNaNmyZRKKha2tLbVo0YI6duxIqqqqEjuSykNmZiY5OjpyQaDiyfnt27fcjrDlTbl87949qlWrFrd/w6dERkZSmzZtqHHjxlKvIhD355JBqTdu3KBHjx5Rfn4+1apVS2LZbXFxMRUWFlKTJk2Ix+ORv79/uZM0CYVCunLlCtWtW5esrKy4t3lxH/7w4QOdP39ephwrJX/bhw8fJiMjIzp+/Djt37+fZs6cSUpKSjRnzhwiEn1Hs2fPpokTJ9K8efNk2hyMSFIBEicBCw0NLRWsum7dOuLxeBQeHi6X2yM1NZWqV69OPB6PmjVrRpMmTaIzZ85QZmYmEYncRW5ubuTr60tEIgXkt99+o8jIyHJbRBiVB1MqvhKWL19ORkZGpd7SxBPJ+/fv6ejRo+Tv709ubm7cQCCPYhEZGUn29vbk4OBAzZs35/IyvHr1ilMsSrpCpF1FkJmZSb///nspC0pqaiq9ePGCXr58SfXr1+fM0ZmZmWRiYkLKysoyuyNKtvvNmzdUt25dMjAwKLV888KFC/TTTz+Rvr4+OTo6kpubW7myPZZFTk4ObdmyhVxdXalDhw5yl1PWd5mTk0P9+/cnb29vCcXif//7H40ZM4aCg4PlzgvwKR07dqRmzZpxk5G4PkFBQaSiokJmZmbcVtfycObMGapTpw69ePGizJ1niURWrcDAQJkCW9PS0qhBgwZ04sQJOnbsGCkpKdGFCxeISDQRGhsbl1px8csvv1BUVJTcymVkZCStWbOGVq1axcVnxMbGko+PDzk7O3Nm+k8ndlmV5SNHjtDgwYNLBehu3bqVeDxeqZ1oZZHzubFj8uTJpKSkRBs2bCj1ff/6668yBwGLSU5OJnd3d3JwcKB69epR//79SUNDg9zd3alfv360Z88e2rt3L9nY2FCrVq0UvgEeo3JgSsVXgFAopD59+nBv2U+ePKH9+/eTn58f9e7dm86fP08vXrygoKAg6tu3r8xvImIZRES3bt2iH374gebOnUtbtmyhevXqSbgmXr16xe0f8Ntvv0ldvjhpkngw27hxI/Xp00fimvj4eHJycuLcESkpKRQSEkK7d++WahAsuVOpmOvXr1Nubi4dPnyY3NzcyMnJiS5dulSq7W/evKGUlJRy7TL5b+Tk5NC6devIy8tLLldRyTTH06dPp/Xr13PLH8WpvsWKhdjsXFhYKJerSCzr7du3EptYHT58mOrWrUujRo2SmOx//vln+uuvv6TyZ5e1WkdsCdi+fTupq6tzE1XJul+/fp2LsZB1KWxcXBwNHjyYLCwsSF1dXWLH0qdPn3IWwLFjx9KOHTsoJCSE9PT0ZFrxU5Jx48aRsbExde3aldzd3cnDw4P7rVy8eJEaN25Mrq6uci0jLvncHz58SPXr1yc9PT2aNm0aEX1c8ikQCKh3797Uu3dvLpZCFsTfz7lz52j8+PEUEhIisTHhxIkTSUVFhdavX6/QXBAJCQnUqVMnCggIoMuXL1NKSgpFRESQr68veXl5cbEpPB6PAgMDJerKqBowpeIr4MOHD9StWzfq2LEjLVq0iFq1akVt27alLl26UMeOHbmdDVNTU+Va5SHm+vXrdOjQIW6AIhJNTI0bNyYrKyvOSpKWlkZz5syRerfRBQsWEI/H45an5uTk0Ny5c8nJyUliV8mYmBgyNDSkefPm0YkTJ6hdu3bk7+/PnZdmgkxNTSUXFxdOkdDX1+d8tIcPHyZPT0/q27evhMWnPMGLsiDeC0NeDh06RJqamtSgQQOyt7cnd3d3+vPPP4noo2Lh6+tL4eHhpZblykpkZCQ1aNCALCwsuPgGgUDAZXts2LAhzZ8/n/r06UO6uroypd5OSUnhXBy7d+8mf39/KigooMTERHJ1daXx48dzz0n8nQcHB1N4eLjcE8iOHTuIx+ORsbFxKTfN8+fP6bfffiMbGxtyc3Mjd3d3ua1Vu3btolq1anFK+JYtW0hNTU1iM6srV66Qg4NDKaX6vyipUBw+fJjevHnDbXpW8vcpZuTIkdS6dWu52kH0Mb5l8ODBFBISQrVq1aLmzZtz5ydPnkyampq0fPlyhSoWDx48IH9/f2rVqpVEUPb79+/p999/p8mTJ5OHhweLoaiiMKXiC1IyZ8P58+epZcuWZG5uTuHh4dyPbcmSJdS2bdtyr/L48OED2dvbE4/HkwgqJPqoWNjb23MTtCxvwDdu3KDOnTuTqakptyrhzZs3tGLFCnJzc6OffvqJuzY8PJxq1KhBNjY25OPjI7MbJyUlhZo1a0ZGRkakrKxcyvy7b98+qlevHvXt21dim+SvnZcvX9LUqVO5N95Lly7RgAEDyNzcnI4cOUJEIsWic+fO5OfnJ7PFpeTzvXbtGtWoUYOmTZtG8+bNIwsLCwoICKCrV6+SUCikv//+m7p160YNGjSg1q1by5S3oaioiIYNG0bu7u40dOhQUlZW5tpUXFxMY8eOJR8fHxozZgylp6fTgwcPaMqUKVSjRg2Zl3OWbNPt27dp48aNNGLECHJ0dKS9e/eWWbfc3FzOhy8Ps2fPpt69exORKJBZV1eX1q9fT0Si70eckOnOnTsy/YZKtmXSpElkZGTEBWMeOHCAmjRpQm3atOEm2pycHGrSpEmp/UukJSUlhRwdHblYpydPnlCNGjVoyJAhEnUJCQkhQ0PDcu84+ymPHj0if39/8vf3L5XbhajyXgQYiocpFV+IJUuWUL9+/cjZ2ZlWrlzJBSJ9uvlR27ZtqV+/fgoxAaakpJCvry/Z2tpyvuSSlg/xW5w8gWtxcXEUGBhIxsbG3FvgmzdvaNmyZeTm5kZDhgzhrr1z5w49fPhQ7vTE4rdSAwMDznxfMo5j37591LBhQ+rYsaPC4ycqgrt371Lt2rWpbt26EonO4uLiaODAgWRmZsYpFjk5OTK5V3bv3i1hcUpMTKTFixdzQX5EIiWjbt261KFDB7p48SJ3PDc3V2qLyObNm7lU4kSifAw8Ho/69+8vcV1BQQHNmDGD6tatS0pKSuTi4kLW1tZyv5WePXtWwtp19epVGjRoEDk6OtL+/fu540ePHpV5F9CymDBhAk2ePJliYmJIW1ubUyiEQiFt2bKFlixZItEXZXVPzZ49mwwNDenq1asSVq9Dhw6Rr68v6ejoUJMmTahHjx7k7u7OfT/S5qQQk5CQQA4ODkQksv7VqlWLhg0bxp0vmcm05JikSB49ekRt2rQhf39/iX7HqNowpeILMHHiRKpRowatXr2a5s+fT9bW1tSuXTtulUdGRgYdOXKE2rZtS66urnIFZZbc7e/atWtc3vynT5+Sq6sr1a9fnwuGK6lYyBpl/enb4ucUi9q1a0tYLMTImtgqLy+P7t27R1u3bqUff/yRTExMOAWp5AS4f/9+atq0abmWwlYk4vbExsbSunXrKCAggLS0tCS2tCcSKWBDhgwhLS2tUnty/BdPnz6lRo0acd/zu3fvyNTUlDQ1NbmkamKuXLlCnp6e1KVLF5nliHMwiONqhEIhdezYkXx9falx48a0Zs0aCcVRIBDQu3fv6OjRo3T16tVSmVtl4dSpU6StrS3hBrh27RoNHjyYHBwcaNWqVTRjxgzS0NCQe6fWxMREev78ORUWFtLFixeJx+MRj8eTsIbk5ORQ69atKTQ0VO62vH37lvz8/OiPP/4gIlFekP/97380ePBg2r17Ny1btox8fX2pbt26EitoZFlaHhMTQ6tWraKkpCTy9fWlP//8k8zNzbmdRYlE+TD69u3LLbetyJiGR48eUfv27alBgwallpoyqiZMqahkrly5Qo6OjtwSwOjoaFJVVZXYXfTx48cUEBBAPXr0KFdQ5sGDB8nS0pKcnJxIU1OTgoOD6cWLF1xcQv369bnEQrIOHJ9TBu7cuUMdO3YspVgsX76catasKZGISNb2nDhxgkaNGkXR0dFEJMr/7+fnR8bGxhI7ix49epRycnK++s2Gjh07RkZGRnTu3DmKioqiVq1akaOjY6nB9ebNmxQSEiJzsimij6uH4uLi6N27dxQTE0Pm5ubUqFGjUlaca9eukZWVFfXp00fmZyc2j9+4cYNTLj58+EC9e/emhg0b0urVqyX6sDw5DsqiqKiIzpw5Q6amptSiRQvueGxsLP3yyy9kbm5OtWvXliv3BZHIMuHo6EjVq1enJk2a0Pr16+m3334jdXV12rlzJyUnJ1NcXBz5+/uTh4dHucz27969IxMTE5oyZQqdO3eOevToQV5eXlSvXj0yMjKijRs30r59+7g9S6SNeRJTVFREwcHB1LRpU8rIyCAfHx9SVlamfv36SVw3duxYatSoUaUlmoqPj6euXbvKvLEf4+uEKRWVTExMDLfj4549eyRMqDk5OVyQ2fPnz+V2DxCJzJf6+vq0ceNGKigooOPHj3PbYYuz8om3mpY1Y2ZJhSIyMpK2bt1Kv//+O7eu/dGjR6UUi9evX0u9yqMsIiMjSV1dncLDwykuLo47npKSQq1atSJjY2M6fvw4hYWF0Q8//PDVD1Dv3r2jUaNG0aJFi7hj586do06dOpGHh0eppEzlCczMzMwkNzc36tWrF719+5ZiYmLIzMyMgoODJZ4lkaRSIA0lv0+xkufn58fFs7x794569+5Nvr6+tGrVKhIIBDR16lRq37693H2hpJtFXIfTp0+TqakpF9RMJIpxeP36tdzm+4iICDIyMqJDhw7Rtm3baNy4caSurk4//fQTrVy5kjQ0NMjY2Jjc3d2pefPmcie2KsnmzZupWrVqpKurS+PHj+f2X+nduzcNGjSIiEQurdatW1Pz5s1lXk4cHx9PfD6fjh8/TvHx8aStrU09evSgAwcOUHR0NI0aNYr09PRK7QlU0ZQ38Jjx9cCUikrm1KlT5OjoSBEREaSnpyex58bff/9NvXv3lngjlSfJTGZmJg0dOpRmzZpFRKIgLBsbG+ratSvp6elRx44dKTk5mZKTk6lhw4YyTSIlLRpjx44lHR0dcnd3J3V1dfL19eX82A8fPqTAwECqVatWqQlS1kE3ISGB7OzsOOXrU54/f06dOnUiMzMzcnZ2lvuttLK4cuUKGRsbU506dbjVHWLOnj1LgYGB5OXlxeVaUATXrl2jevXq0cCBA+ndu3d04cIFTrH4dJKWh6NHj9L69etp27Zt5OfnRwEBARKKRXBwMLm4uJCrqytVr15dblP3ixcv6IcffqDu3btLHC8sLKQjR46Qmpoa9ejRo9ztOXv2LA0ePFgi82pmZiatXbuWdHR06OjRo/T48WOKioqi2NjYcr0AfEpKSkqpMaBly5YSO9Fu376dOnbs+K8pzD+1PorrOHr0aG655unTp8nHx4eMjY3JxcWFfH195d5QjcEgYkpFpbB+/XqJCbF169bE4/EkFIr8/Hxq164dde3atVyb9BCJtP69e/dSYmIivX37ljw8PLi3nF27dhGPx6Mff/yRnj17JvcgKLZ0XLt2jfLy8uj169fcBkfilM63b9/m9iwhkt83e/nyZbKyspKY/Moq686dOxJ5F75mxH1g0aJFpXzi586doxYtWlDTpk0pPz9fYT7t2NhYcnd3l1AsrK2tqUuXLjJtQnbs2DHuTVZct86dO3MrCXbt2kUtWrSQUCwyMzNp7969tHr1arncOGLy8/Ppt99+IwsLi1Jm+8zMTKpbty7xeDzq2LGj3DLS0tLIxsaGdHR0JLLDEolceQEBARQSElLqvvL+bj8lOzuboqOjqX379uTm5lbqtypNPo+oqCjasWOHRN0OHDhA1apV41ZdpKenU0pKCj179qxcK2MYDCKmVFQ4YWFhZGZmRlOnTuXeKq5fv05eXl5ka2tLf/zxB61evZpat25NLi4u3MBR3gFK7LPesWMHNWzYkJMdERFBzZo1IwsLC7ldBOHh4dShQwfq1q0b5eXlSWwx7ePjQ23btuWuffz4sdxtEZd7+PBhqlGjBuemKWkqvXz5ssTOkF8zd+/elViX37ZtWzI0NKSTJ0+Wst5ER0fLvZHWv1FSsXj//j2dPXuWXF1dpQ5offnyJVlZWdGAAQMkFJHGjRtLxMvs2bOHUyzKswJH3Adu375Nx48fp2PHjlFycjL9/vvvZGNjI7E8WiAQ0E8//UQHDhzglnbKy+3bt8nGxoY8PT1LrUwZNGgQ/fjjj+Uq/78QCoV09uxZat++Pfn7+0u4VqRVMgsKCmjMmDHE4/Goc+fOEt/PkCFDqGHDhjInGmMw/gumVFQgO3bsoBo1apQyxxcXF9O9e/eoe/fu5OjoSE2aNKGBAwdyA4ci12jPnj2bXF1dubwGEydOpNWrV8u9GZlAIKCVK1cSn88nOzs7blASlxcdHU1qamqlfPXybF8uJicnh0xNTalbt26lzo0ZM4YmT55c7v0bKhKhUEivXr0ie3t76tWrl0R/8PPz47Z8L48vXhZiY2OpXr161L17d8rIyOCCOaXlxo0bVL9+fRo8eDBnPWrdujW3akHMzp07qUWLFtS8efNS/UEW9u3bR9WrVyd3d3du34jw8HD6/fffycrKijp06EB//fUXjRkzhpycnOTKZFkWt2/fpjp16lBQUBCnGGVlZZGPj4/EEumK4sOHDwpxrdy/f5+GDx9Ojo6O5OjoSFu2bKGVK1dSx44duVVhDIaiYEpFBTJp0iQuOc3nNhN6+fKlxDFFJ32JjY3l4h1atmxJurq6MgVhlaUMZGVl0W+//Uaqqqo0adIkiXNRUVFkY2Mj15uiWKG4dOkSzZs3j6ZOnUoRERFEJDLZVq9enTp16kT379+nmJgYmjhxIunp6clkuq8MPvf2FxERQW5ubjRw4ECJfBQtW7YkCwsLOn78eKUpFlevXqUmTZrIvZwzNjaWPD09aeDAgXTnzh3q0aNHmRajtWvXUp8+feS2usTGxpKhoSFt3ryZ3r17R2lpaRQUFEStWrWiRYsW0YkTJ8jBwYFsbW3JwcFB4VkYY2NjydnZmYyMjKh9+/bUuXNn8vDwkCk/hCJQhOUyPT2dBg0aRK1btyZTU1Pi8Xg0atQoBdWQwRDBlIoKpF+/ftS4cWPub/EAlJ+fz0V1l6SiBqhLly5R3759aeTIkTJFi5ccyOLj4+n69esS5te1a9eSsrIyjRkzhi5cuEB3796lH3/8kRo0aCD3IChWHgICAmjgwIHE4/Fo6tSp9P79ezp9+jTZ29uTiYkJWVlZkZub21eXynfIkCE0YMAAbtL51Aqwf/9+cnJyokGDBklYLOrVq0dOTk6Vugy2vMs6xRaP/v37k7a2NllbW5Ofnx+1atWKmjZtSn5+fjR8+PByWQ527txJzs7OlJmZyfW7tLQ06tWrFzVv3pyEQiEVFxfT48ePK2xflzt37pCVlRU1btxYIjZKXmvfl+b27du0Zs0asrW1ZUGZDIXDlAoFU3JjpJUrV5KDgwP973//k4gDePXqFTVq1EjmJEPlQSAQyK20TJgwgYyNjUlPT49sbGxoxowZnA9+3bp1pKmpSTwej3755RcKCAjgXBHSKBYlr3n06BGZm5tzAazPnj0jTU1NGj16NHdNQUEBxcTE0N27dyss05+8REREUI0aNThT+cWLF2nq1KmlrDb79u2jWrVqUd++fSWUoq99GWxZ3Lhxg9zc3KhOnTrUu3dv2r59O61cuZJmzJhBc+fOLbcVKSIigmxsbDjFRGzJS0pKIh6PxwUFVzQ3b94kb29vGjJkiEz7oHxNfPr7/5pdhoyqC1MqFMikSZPIzc2N9u7dSwKBgPLz86lOnTpUv3592r9/P6WlpVFCQgK1a9eOfHx8Ks3ULSslJ3rxBHjkyBG6f/8+jR8/nho0aEBDhw7lkuNs3bqV+Hw+TZ8+nbvvv9adl9yzQyzv8uXL5OvrS0SiScPU1FQiC+fXnnJ70aJF5OjoSESiRF0mJiZUvXp1mjx5cqlMpatXryYdHR3q2bPnV78E9r+4efMmF2NRMgmZIkhMTCR1dXWaOnWqxPHk5GRyc3PjkshVBrGxseTl5UU9e/aUOfHU1wjb/ZNRETClQkHMnTuXfvjhBzp9+rTE5ju5ubnk5+dHLi4upK6uTh4eHuTl5aWQRDkVza5du2jp0qW0cOFCieOrVq0iV1dXLgtoTk4OrV+/npSVlWnevHn/We7Tp09JXV291A6Lly5dImdnZzp79ixZWlrS0KFDuedz9epV6tKlC5eS+2vk6tWr5ODgoA3HIgAADsJJREFUQM2bNyclJSU6f/48bdy4kUxNTWnixIkSE+6ePXuodu3a1KhRo3Klqf5aiI2Npfr161OPHj1k3hjsv/jjjz9ITU2NJk6cSAkJCfTq1SuaMmUKmZmZVXoa9qtXr1LTpk2/ie+MwagImFJRToRCIb1584a8vb1p8+bNEufEb+uFhYV09+5d2r17N0VFRX02aPNrIisri0xMTIjH49HgwYNLnQ8MDJSIFykoKKCNGzcSj8eTKhX3uXPnyNzcXGJpXkpKCvn5+ZGuri63E6SYcePGkZ+fH71586Ycrap4RowYQTwej7y9vbljK1as4BQL8SqIKVOm0Lp168q1VfrXRkVNuEKhkCIiIkhHR4fMzc3J3t6eatWq9cV2oVVUinEG41uEKRUKIDU1lWrUqMFFv5d0H+Tl5ZX5NvW1WSjKin9ITU0lHx8fsrKyKuUbX7x4MTVr1kxigC0oKKAtW7ZI9aYqFAopOjqajI2NqU2bNtzxjRs3Us2aNSkkJIRiYmLo5s2bFBoaSvr6+uVallgZ5OXlUYsWLWjw4MHk7OxMPXv25M6tXr2aXFxcyNbWlnx8fEhbW1shmSy/Nipywk1OTqYTJ07QsWPHKiSHB4PBKD88IiIwykVxcTHs7e3RoUMHrFy5EgAgEAigrKyMS5cu4caNG+jfvz90dXW/cE3LRigUQklJCQBw+vRp5OTkQElJCR07dsSzZ8/Qtm1bqKioYMOGDbCzs4OqqiratGmDmjVr4sCBAzLJIiLweDzu7wsXLqBv376wtbXF6dOnAQCLFy/GkSNHcPXqVTg7O4PH42HLli1wd3dXWJsriry8PPD5fGzZsgWLFi2Ch4cHIiIiAACnTp3C/fv3kZ6ejn79+sHBweEL15bBYDAUC1Mq5EQ8+RIROnXqhPnz52Pfvn3o3bs3wsLCAIiUjfbt20NHRwd79+6VmEy/FkpO8pMmTcKOHTvwww8/ID4+Hj169MDcuXNBROjQoQMSExPh4OAAOzs7PH78GBcvXoSamlopReG/ZF2+fBm3bt3C+/fv4e3tDRUVFQwdOhS1atXiFIu0tDSkpaXBwMAAurq6MDAwqNDnoGhycnKwb98+TrHYtWvXl64Sg8FgVDhMqZCDTyffQYMGISAgAEePHsXJkydhYWEBc3Nz3Lt3D9nZ2YiNjYWqqqrUk++XYNGiRVixYgUOHToELy8vrFmzBqNGjUKnTp2wYsUKAEBQUBBiY2Nx4sQJNGzYEABQVFQEVVVVqeUcOHAAgwYNwo8//oiUlBQIhUK4ubkhKCgIPXv2hJubG06cOFERTax0cnNzsXfvXixbtgxWVlY4cuTIl64Sg8FgVCxfxOlShVm4cCEZGxtzO2+uXr2aeDweDRw4kKKjo+nQoUPUqVMn6tWrF40bN44LxvyagzKfP39O/fv355Z5ijccmjZtGunp6VHnzp3p8ePHlJqaSk5OTuTt7S1X1P39+/fJ3NycNmzYwP2tqanJLReMjo4mGxsbatCggeIa94XJycmhdevWkZeXV6WvVGAwGIzKhikVMvC5yXfq1Kmkq6tLPXv2pNTU1FL3fW1BmZ+Sn59PkZGR9P79e7p27RpZWlrSypUriYho6dKlxOPxqHnz5pSenk5Pnz4lNzc3sre355J8ScvJkyfJw8ODiETbsVtYWEjsoXDt2jU6c+YMubi4lPkcqyq5ubnf1CoPBoPB+BxKX9pSUpUwMDBAQEAA/P39cf36dYwdOxYzZ87EnDlzMH36dOzZswdBQUF4+vSpxH3KyspfqMbSoaGhgfbt20NfXx+nT5+Gi4sL+vfvDwBQU1ND3759oa6uDn19fdSqVQt//vknqlWrhqKiIpnk8Hg8GBsbIzk5GU2aNIG/vz/Wr18PALh48SIOHjwIGxsbXLt2DWZmZgpv55eCz+dDT0/vS1eDwWAwKhymVMjAv02+6urq6Nu3LzQ0NGBqavqFayo7KioqAIBHjx4hMzMTPB4PHz58wMmTJ9GuXTv89ddfUFFRQXFxMSwsLHDhwgVYWlrKJMPOzg5RUVGwtrZG586dsXHjRk7h2rNnD65fvw49PT1oamoqunkMBoPBqARUvnQFqhr/Nvn27dsXPXr0ACC5TLMqIA4gHTp0KJo0aQJfX18UFBRAQ0MDXbp04a4Tt1/8ryxYWlpi165d6NOnDzQ1NZGQkICCggJs374dO3bsQHR0NPT19RXSHgaDwWBUPmz1h5xcvnwZTZo0gYODAzf5xsbGyjXZfm3ExsYiMjISurq6CA0N5SwUimibQCDAjh07MHr0aOjq6kJHRwdqamrYunUrPDw8FFB7BoPBYHwpmFJRDipy8v2aqIg2PXv2DMnJydDW1katWrVgaGio0PIZDAaDUfkwpUKBfIsKBYPBYDAY0sKUCgaDwWAwGAqh6kQSMhgMBoPB+KphSgWDwWAwGAyFwJQKBoPBYDAYCoEpFQwGg8FgMBQCUyoYDAaDwWAoBKZUMBgMBoPBUAhMqWAwGAwGg6EQmFLBYHxnBAcHIzAwkPu7WbNmGDNmTLnKVEQZ/0VUVBR4PB4yMjKkvkcR9dq2bRvbk4bBkBKmVDAYXwHBwcHg8Xjg8XhQU1ODra0tZs+ejeLi4gqXHRkZiTlz5kh17ecmdlnKYDAY3y4spzSD8ZXQpk0bbN26FQUFBTh+/DhGjhwJVVVVTJo0qdS1hYWFUFNTU4hcAwODr6IMBoNR9WGWCgbjK0FdXR1GRkawsLDA8OHD4efnhyNHjgD46LKYN28eTExM4ODgAAB4+vQpunfvDn19fRgYGCAgIADJyclcmQKBAKGhodDX10f16tUxfvx4fJqZ/1MXQUFBASZMmAAzMzOoq6vD1tYWv/32G5KTk9G8eXMAQLVq1cDj8RAcHFxmGe/fv0dQUBCqVasGPp+PH3/8EQkJCdx5sUvh5MmTcHJygra2Ntq0aYO0tDSpn9fbt2/Rq1cvmJqags/nw83NDREREaWuKy4uRkhICPT09GBoaIhp06ZJPIOCggKEhYXB1NQUWlpa8Pb2RlRUlNT1YDAYH2FKBYPxlaKpqYnCwkLu7zNnzuDhw4c4deoUjh49iqKiIvj7+0NHRwfR0dG4ePEiNzmL71u6dCm2bduGLVu24MKFC3j37h0OHjz4r3KDgoIQERGBVatWIT4+Hhs3boS2tjbMzMxw4MABAMDDhw+RlpaGlStXlllGcHAwrl+/jiNHjiAmJgZEhLZt26KoqIi7Ji8vD0uWLMGOHTtw/vx5pKamIiwsTOrn8+HDB9StWxfHjh3D3bt3MXToUPTr1w9Xr16VuG779u1QUVHB1atXsXLlSixbtgybN2/mzoeEhCAmJga7d+9GXFwcunXrhjZt2kgoQQwGQ0qIwWB8cfr3708BAQFERCQUCunUqVOkrq5OYWFh3PmaNWtSQUEBd8+OHTvIwcGBhEIhd6ygoIA0NTXp5MmTRERkbGxMixYt4s4XFRVRrVq1OFlERE2bNqXRo0cTEdHDhw8JAJ06darMep49e5YA0Pv37yWOlyzj0aNHBIAuXrzInX/z5g1pamrS3r17iYho69atBIASExO5a9auXUs1a9b87DP6nOyStGvXjsaOHStRLycnJ4lnNGHCBHJyciIiopSUFFJWVqbnz59LlNOyZUuaNGkSV1c9Pb3PymQwGB9hMRUMxlfC0aNHoa2tjaKiIgiFQvTu3RszZ87kzru5uUnEUdy+fRuJiYnQ0dGRKOfDhw94/PgxMjMzkZaWBm9vb+6ciooK6tWrV8oFIubWrVtQVlZG06ZN5W5HfHw8VFRUJORWr14dDg4OiI+P547x+XzY2NhwfxsbG+P169dSyxEIBAgPD8fevXvx/PlzFBYWoqCgAHw+X+K6Bg0agMfjcX83bNgQS5cuhUAgwJ07dyAQCGBvby9xT0FBAapXry51XRgMhgimVDAYXwnNmzfH+vXroaamBhMTE6ioSP48tbS0JP7OyclB3bp1sXPnzlJl1ahRQ646aGpqynWfPKiqqkr8zePxPqvslMXixYuxcuVKrFixAm5ubtDS0sKYMWMkXEb/RU5ODpSVlXHjxg0oKytLnNPW1pa6HAaDIYIpFQzGV4KWlhZsbW2lvt7T0xN79uzBDz/8AF1d3TKvMTY2xpUrV9CkSRMAoqDFGzduwNPTs8zr3dzcIBQKce7cOfj5+ZU6L7aUCASCz9bLyckJxcXFuHLlCnx8fACIgiofPnwIZ2dnqdv3X1y8eBEBAQHo27cvAEAoFOLRo0elZFy5ckXi78uXL8POzg7Kysrw8PCAQCDA69ev0bhxY4XVjcH4XmGBmgxGFaVPnz4wNDREQEAAoqOjkZSUhKioKIwaNQrPnj0DAIwePRoLFizAoUOH8ODBA4wYMeJfk0dZWlqif//+GDhwIA4dOsSVuXfvXgCAhYUFeDwejh49ivT0dOTk5JQqw87ODgEBARgyZAguXLiA27dvo2/fvjA1NUVAQIDC2m9nZ4dTp07h0qVLiI+Px7Bhw/Dq1atS16WmpiI0NBQPHz5EREQEVq9ejdGjRwMA7O3t0adPHwQFBSEyMhJJSUm4evUq5s+fj2PHjimsrgzG9wJTKhiMKgqfz8f58+dhbm6Ozp07w8nJCYMGDcKHDx84y8XYsWPRr18/9O/fHw0bNoSOjg46der0r+WuX78eXbt2xYgRI+Do6IghQ4YgNzcXAGBqaopZs2Zh4sSJqFmzJkJCQsosY+vWrahbty7at2+Phg0bgohw/PjxUi6P8jB16lR4enrC398fzZo1g5GRkUSmUDFBQUHIz8+Hl5cXRo4cidGjR2Po0KESdQ0KCsLYsWPh4OCAwMBAXLt2Debm5gqrK4PxvcAjWZyYDAaDwWAwGJ+BWSoYDAaDwWAoBKZUMBgMBoPBUAhMqWAwGAwGg6EQmFLBYDAYDAZDITClgsFgMBgMhkJgSgWDwWAwGAyFwJQKBoPBYDAYCoEpFQwGg8FgMBQCUyoYDAaDwWAoBKZUMBgMBoPBUAhMqWAwGAwGg6EQmFLBYDAYDAZDIfwfRsFvUMAzbPoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAHWCAYAAADAcHv5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeVxU1fvHPzMDMzALA4isIqDsooCaZkiaS5ppaVZq/hQ1zVQkF8Bd0VTcc8EtN0xzqUzzm6aluWtmLK6AgCCKqKCyDIMDzJzfHyMXRrbZGBbP+/W6L5hzz3me55x777nPPSuLEEJAoVAoFAqFoiPs+jaAQqFQKBRK04A6FRQKhUKhUPQCdSooFAqFQqHoBepUUCgUCoVC0QvUqaBQKBQKhaIXqFNBoVAoFApFL1CngkKhUCgUil6gTgWFQqFQKBS9QJ0KCoVCoVAoeoE6FXVMcnIy3n//fYjFYrBYLBw5ckSv8tPT08FisRAdHa1XueqyZ88eeHp6wtjYGObm5nWqa9SoURAKhWrFZbFYiIiI0Jvu7t27w8fHR2/yDElV90hERARYLFa92NOYy7I2JBIJrK2t8eOPP9a3KZQ3hJkzZ6Jz5871bQbDG+FUpKamYvz48WjVqhVMTExgZmaGgIAArFu3DkVFRXWqOygoCDdv3sSSJUuwZ88edOzYsU71GZLExESMGjUKrVu3xrZt2/D999/Xt0kUSr2ybt06iEQiDB06lAnr3r07WCxWlYexsTET79mzZ1i5ciXeffddNG/eHObm5nj77bdx8OBBjWx48uQJxo8fDwcHB5iYmMDZ2Rlffvml3vKoLlKpFBERETh79qxe5UZHR1dbniwWS8Whc3Z2rjaem5tbtTouXrzIxMvJyVHLLplMhhkzZsDe3h6mpqbo3Lkz/vrrL53zWxtTpkzB9evXcfTo0TrXpQ5G9W1AXXPs2DF89tln4PF4GDlyJHx8fFBcXIyLFy8iLCwMt2/frrOXYVFREa5cuYI5c+YgODi4TnQ4OTmhqKhIpXIyFGfPnoVCocC6devg6upqcP01UVRUBCOjJn97a83cuXMxc+bM+jajSVFSUoJ169Zh6tSp4HA4TPicOXMwduxYlbiFhYX4+uuv8f777zNhZXVFv379MHfuXBgZGeHQoUMYOnQo7ty5g4ULF9Zqw4MHDxAQEAAA+Prrr+Hg4IBHjx7h33//1VMu1UcqlTI2d+/eXW9y3333XezZs6dS+HfffYfr16+jZ8+eTNjatWshkUhU4t2/fx9z585VKfuKKBQKTJ48GQKBAIWFhWrbNWrUKPzyyy+YMmUK3NzcEB0djX79+uHMmTPo2rWr2nI0xdbWFh9//DFWrVqFjz76qM70qA1pwty7d48IhULi6elJHj16VOl8cnIyWbt2bZ3pv3//PgFAVq5cWWc66pOFCxcSACQ7O1tvMgsLC6s9FxQURAQCgd50aUK3bt1ImzZt6kW3rqSlpREAZNeuXfVtCiGkcZdlTfz6668EAElJSak17p49ewgA8uOPPzJh9+7dI+np6SrxFAoF6dGjB+HxeEQikdQq94MPPiAuLi4kJydH8wzomezsbAKALFiwoM51SaVSIhKJSO/evWuN++233xIA5NKlS1We37x5M2nWrBn55ptv1K7frl69WqmuLyoqIq1btyZdunRRPyNa8ssvvxAWi0VSU1PrXFdtNGmn4uuvv67x5nmdkpISsmjRItKqVSvC5XKJk5MTmTVrFnn58qVKPCcnJ/Lhhx+SCxcukLfeeovweDzi4uJCdu/ezcRZsGABAaByODk5EUKUL8ey/ytSlqYif/75JwkICCBisZgIBALi7u5OZs2axZyv7oVx+vRp0rVrV8Ln84lYLCYfffQRuXPnTpX6kpOTSVBQEBGLxcTMzIyMGjWqxpd7WRm8nr+KlcfGjRuJt7c34XK5xM7OjkycOJG8ePFCRUbZy+W///4jgYGBxNTUlHzzzTfV6ixzKlJTU8n7779P+Hw+sbOzIwsXLiQKhUIlblWV2ZkzZ0iHDh0Ij8cjrVq1Ilu2bKmyzKuioq1dunQhJiYmxNnZmWzevLlS3CdPnpAxY8YQa2trwuPxSLt27Uh0dHQlWwCQM2fOqIRXdT3L8v3w4UPy8ccfE4FAQKysrMj06dNJaWmpSvoXL16QoKAgYmZmRsRiMRk5ciSJi4urJLOqfAMgkyZNIocPHyZt2rQhXC6XeHt7kz/++KNSHhtKWT558oRYWVmRbt26qdwDycnJhM/nk88//5wJe/nyJZk/fz5p3bo14XK5pEWLFiQsLKzS813bM1cdI0eOJM7OzrXGI0T58hcIBGo5CuvXrycAyI0bN2qMl5CQQACQTZs2EUKUL7Xi4uIq46p7DUaOHEl4PF6luuP9998n5ubmJDMzs0r5ZfdxTXWEOnWUuhw8eJAAqPScVYWXlxdxcXGp8tyzZ89Is2bNyMaNG5n7WR2nIiwsjHA4HJKXl6cSvnTpUgKAZGRkMGFlz9nevXuJu7s74fF4pH379uTcuXNMHKlUSjw8PIiHhweRSqUq9tna2pIuXbqoPPu5ubmExWKRNWvW1GprXdOknQoHBwfSqlUrteMHBQURAOTTTz8lGzduJCNHjiQAyMCBA1XiOTk5EQ8PD2JjY0Nmz55NoqKiSPv27QmLxSK3bt0ihBBy/fp18t133xEAZNiwYWTPnj3k8OHDjB51nIpbt24RLpdLOnbsSNatW0e2bNlCQkNDybvvvsvEqeol9NdffxEjIyPi7u5OVqxYQRYuXEisrKyIhYUFSUtLq6TP39+ffPLJJ2TTpk1k7NixBAAJDw+vsawOHz5MBg0aRACQzZs3kz179pDr16+ryO3VqxfZsGEDCQ4OJhwOh7z11lsqlVy3bt2Ira0tad68OZk8eTLZunUrOXLkSI3Xx8TEhLi5uZERI0aQqKgo0r9/fwKAzJs3TyXu6xVYbGws4fF4xNnZmSxbtowsWbKE2NvbE19fX7VfhPb29sTa2poEBweT9evXk65duxIAZMeOHUw8qVRKvLy8iLGxMZk6dSpZv349CQwMJABUWsU0dSpMTExImzZtyJgxY8jmzZvJ4MGDVV4ghCi/at99913CZrPJxIkTyYYNG0iPHj1Iu3bt1HYqfH19iZ2dHfn222/J2rVrSatWrQifz1f58m1oZfnzzz8TAGTdunWEEELkcjkJCAggNjY2jN1yuZxxRKdMmUK2bt1KgoODiZGREfn4448ZWeo8c9Xh6upKPvnkk1rjPX36lBgZGZHhw4fXGpcQQmbPnk0AVNnaWpENGzYQAOTQoUOkR48eBADhcDikb9++Ks89IepfgxcvXpAWLVqQt956i3mJbdmyhQAge/bsqdYWiURCNm/eTACQQYMGkT179qjUEerWUery0UcfEVNTU5Kfn19jvNjYWAKAzJkzp8rzEydOJG3atCGlpaUaORW9evUiXl5elcJPnTpFAJCjR48yYQCIj48PsbKyIosWLSLLly8nTk5OxNTUlNy8eZOJ988//xAOh0OmTp3KhA0dOpSYmpqSpKSkSrpcXV3J4MGDa7W1rmmyTkVeXh4BoFJh1ER8fDwBQMaOHasSHhoaSgCQv//+mwkr+0o/f/48E/b06VPC4/HI9OnTmbCyF8Tr3R/qOhVlTklNN3VVLyE/Pz9ibW1Nnj17xoRdv36dsNlsMnLkyEr6xowZoyJz0KBBpFmzZtXqfD19RfuePn1KuFwuef/994lcLmfCo6KiCACyc+dOJqxbt24EANmyZUutuggpd/omT57MhCkUCvLhhx8SLperYsfrTsWAAQMIn89X+bJKTk4mRkZGar8IAZDVq1czYTKZjCnrMmdp7dq1BADZu3cvE6+4uJh06dKFCIVCptLT1KkAQBYtWqQS19/fn3To0IH5feTIEQKArFixggkrLS1lXsTqOBVcLlel+f769esEANmwYQMT1tDKkhBChg0bRvh8Prl79y5ZuXIlAaDioO7Zs4ew2Wxy4cIFFVvKXpBlrZnqPHNVUVJSQlgslsrzXx1lL//jx4/XGvfZs2fE2tqaBAYG1ho3JCSEACDNmjUjffv2JQcPHiQrV64kQqGQtG7dWqX1Ud1rQAghJ0+eJADI4sWLmS7l1z+0qqKm7g916yh1ePbsGeFyuSqtUtUxffp0AqDKFpHr168TDodDTp48SQipun6rjjZt2pAePXpUCr99+3alOq6s1ea///5jwu7fv09MTEzIoEGDVNLPmjWLsNlscv78ecZ5rq7L/v3336/SsTE0TXb2R35+PgBAJBKpFf/48eMAgGnTpqmET58+HYBywGdFvL29ERgYyPxu3rw5PDw8cO/ePa1tfp2yKZq//fYbFAqFWmmysrIQHx+PUaNGwdLSkglv164devfuzeSzIl9//bXK78DAQDx79owpQ004deoUiouLMWXKFLDZ5bfXuHHjYGZmVqkceTweRo8erZGOioNeWSwWgoODUVxcjFOnTlUZXy6X49SpUxg4cCDs7e2ZcFdXV3zwwQdq6zUyMsL48eOZ31wuF+PHj8fTp08RExMDQHkf2draYtiwYUw8Y2NjhISEQCKR4Ny5c2rre52qrlPF++348eMwMjLChAkTmDAOh4PJkyerraNXr15o3bo187tdu3YwMzNj9DTUsoyKioJYLMann36KefPmYcSIEfj444+Z8z///DO8vLzg6emJnJwc5ujRowcA4MyZMwC0e+YA4Pnz5yCEwMLCota4+/btQ/PmzdG7d+8a4ykUCgwfPhy5ubnYsGFDrXLLBiTa2tri2LFj+PzzzxEaGopt27YhNTUV+/btU4mvzjUAgPfffx/jx4/HokWL8Mknn8DExARbt26t1Z7q0KaOqolffvkFxcXFGD58eI3xFAoFDhw4AH9/f3h5eVU6HxISgg8++KDaAZw1UVRUBB6PVyncxMSEOV+RLl26oEOHDszvli1b4uOPP8bJkychl8uZ8IiICLRp0wZBQUGYOHEiunXrhpCQkCptsLCwUHumSl3SZJ0KMzMzAEBBQYFa8e/fvw82m11pFoOtrS3Mzc1x//59lfCWLVtWkmFhYYEXL15oaXFlhgwZgoCAAIwdOxY2NjYYOnQofvrppxoruzI7PTw8Kp3z8vJCTk5OpRHNr+elrGLUJi/V6edyuWjVqlWlcnRwcACXy1VbPpvNRqtWrVTC3N3dASjXY6iKp0+foqioqMoZKprMWrG3t4dAIKhR9/379+Hm5qbiUAFgKrHX868uJiYmaN68uUrY6/fb/fv3YWdnV2ktj6ruheqo7b5uqGVpaWmJ9evX48aNGxCLxVi/fr1KmuTkZNy+fRvNmzdXOcp0Pn36FIB2z1xFCCE1nr937x6uXLmCIUOG1Do7afLkyThx4gS2b98OX1/fWnWbmpoCAD7//HOVMvvss89gZGSEy5cvq8RX5xqUsWrVKlhaWiI+Ph7r16+HtbV1rfZUhzZ1VE38+OOPsLS0rNWpPXfuHDIzM6t0Pg4ePIjLly9j9erVauutiKmpKWQyWaXwly9fMucrUtV0Vnd3d0ilUmRnZzNhXC4XO3fuRFpaGgoKCrBr165q15chhNTb2jMVabJz7szMzGBvb49bt25plE7di1JxylhFaqtUatJR0UMFlDfi+fPncebMGRw7dgwnTpzAwYMH0aNHD/z555/V2qApuuRFV15/2N4U1L0HytDXta6N+rwXdOXkyZMAlM7ww4cPVRZjUygUaNu2LdasWVNlWkdHRwDaP3OWlpZgsVi1OuJlrQW1fVUvXLgQmzZtwrJlyzBixIga45ZR1nJkY2OjEs7hcNCsWTOdPnji4uIYx+vmzZsqrUf1SUZGBi5cuICvvvqq1mn1P/74I9hsdpW2h4WF4bPPPgOXy2UcqtzcXADKabrFxcUqLXOvY2dnh8zMzErhWVlZAFBj2toou69fvnyJ5ORkuLi4VBnvxYsXsLKy0lqPvmiyLRUA0L9/f6SmpuLKlSu1xnVycoJCoUBycrJK+JMnT5CbmwsnJye92WVhYcHcsBWp6iuWzWajZ8+eWLNmDe7cuYMlS5bg77//ZpprX6fMzqSkpErnEhMTYWVlVenrRJ9Up7+4uBhpaWk6l6NCoajUxXT37l0AyoVuqsLa2homJiZISUmpdK6qsOp49OhRpS+o13U7OTkhOTm50pdtYmIicx4obw16/T7QtiWjTHZWVlaleflV3Qva0hDLEgDzRR8eHo7mzZsjKCgIpaWlzPnWrVvj+fPn6NmzJ3r16lXpqPjVrOkzByi7Elq3bo20tLQa871v3z60bt0ab7/9drVxNm7ciIiICEyZMgUzZsyoUV5FyprTX3+5FRcXIycnp1JLlzrXAFCuqTF69Gh4e3vjq6++wooVK3Dt2rVa7anOcdZnHbV//34QQmp10mQyGQ4dOoTu3btX+YJ/8OAB9u3bBxcXF+ZYt24dAKB9+/bo169fjfL9/Pxw9+7dSl3GV69eZc5X5PX3DKAsez6fr3Kdbty4gUWLFmH06NHw9/fH2LFjkZeXV6UNaWlpVXbrGJom7VSEh4dDIBBg7NixePLkSaXzqampzI1TdtOsXbtWJU7Zl82HH36oN7tat26NvLw83LhxgwnLysrC4cOHVeI9f/68Utqym7OqpjZA6TH7+flh9+7dKi+sW7du4c8//6z14dCVXr16gcvlYv369Spftzt27EBeXp5eyjEqKor5nxCCqKgoGBsbqyx6UxEOh4NevXrhyJEjePToEROekpKCP/74Q229paWlKn3JxcXF2Lp1K5o3b85U6P369cPjx49VVkEsLS3Fhg0bIBQK0a1bNwDKipXD4eD8+fMqOjZt2qS2Pa/Tr18/lJaWYvPmzUyYXC5Xqz9eXRpiWebm5mLs2LHo1KkTli5diu3btyM2NhZLly5l0n3++efIzMzEtm3bKtlSVFTEvFy1eebK6NKlC/77779qz8fFxSEhIQFffPFFtXEOHjyIkJAQDB8+vNpWFUC5sFRiYqJKH3r37t2ZJcLLmt0B5QqUcrm80hgOda4BAMyYMQMZGRnYvXs31qxZA2dnZwQFBdVaHnw+H0Blx1mfddS+ffvQsmXLWheXOn78OHJzc6t1Pg4fPlzpGDJkCADghx9+wHfffcfEzcnJQWJiIqRSKRP26aefQi6XqyykKJPJsGvXLnTu3JlpCSvjypUriI2NZX4/ePAAv/32G95//32mNaykpASjRo2Cvb091q1bh+joaDx58gRTp06tZH9eXh5SU1Pxzjvv1FgOBqHehogaiN9++42YmJgQCwsL8s0335Bt27aRjRs3kuHDhxMul0u++uorJm7ZKPvPP/+cbNy4kfld1ZTSDz/8sJKubt26kW7dujG/q5v9kZOTQwQCAWnVqhVZu3YtWbp0KXF0dCTt27dXGT3/zTffEH9/fzJ37lyybds2smTJEuLg4EBatGhBcnNzVXRUNaXU09OTrFy5kixatIg0b96cWFhYkHv37jHxqhvdvGvXLgKg1qld1aUvC3///fdJVFQUmTx5crVTSjVZBKnilNKRI0eSjRs3MlNKZ8+erRIXr406/++//wiXyyXOzs5k+fLlZOnSpcTe3p74+flpPA1y8uTJZMOGDcwUvO+//56JVzYNksvlkunTp5MNGzYwI+1fH7U9dOhQYmRkRKZNm0Y2btxIPvjgA9KhQ4cqZ39UtejX6zM4yqZSlk0pjYqK0nhK6aRJkyrpcXJyIkFBQQ22LEeOHElMTExIQkICEzZ27FhibGxM4uPjmbLp168fYbFYZOjQoWTDhg1k7dq15OuvvyaWlpbk2rVrhBD1nrnq+OWXXwiAKqf7EVI+8yAxMbHK81evXiVcLpc0b96c7Ny5k5mGWXZUXNiobPbQ6zMrdu/eTQCQt956i6xfv56EhoYSY2NjEhgYqLKugbrX4PTp04TFYpGIiAgm7Pz584TNZpOwsLAay4MQQry9vYmtrS3ZuHEj2b9/PzNlUt06qiZu3rxJAJCZM2fWGnfw4MGEx+PVeg0rUlv99vrMrc8++4wYGRmRsLAwsnXrVvLOO+8QIyMjlfUnCKl+SqmJiQkz5ZYQQubPn09YLJbKzMPFixcTAOTYsWMqMsvuPXUWXqtrmrxTQQghd+/eJePGjSPOzs6Ey+USkUhEAgICyIYNG1QWvikpKSELFy4kLi4uxNjYmDg6Ota4+NXrqOtUEKJcYMfHx4dwuVzi4eFB9u7dW6miP336NPn444+Jvb094XK5xN7engwbNozcvXu3ko7XF786deoUCQgIIKampsTMzIwMGDCg2sWv9O1UEKKcQurp6UmMjY2JjY0NmTBhQrWLX6lLVYtf2djYkAULFqhMXyWk6sWvTp8+Tfz9/QmXyyWtW7cm27dvJ9OnTycmJia16q5qsSAnJycSFRVVKe6TJ0/I6NGjiZWVFeFyuaRt27ZVrmaZnZ1NBg8eTPh8PrGwsCDjx48nt27d0tqpIEQ5vW7EiBHM4lcjRozQePGr13ndqSCk4ZTlb7/9VmlqJCGE5OfnEycnJ+Lr68s4ssXFxWT58uWkTZs2hMfjEQsLC9KhQweycOFCZtEidZ656pDJZMTKyop8++23lc7J5XLi4OBA2rdvX236sueuuqNivqtzKgghZP/+/cTX15fweDxiY2NDgoODK63foM41KCvD9u3bk5KSEpX0U6dOJWw2m1y5cqXGMrl8+TLp0KED4XK5lexVp46qiZkzZxKg9kXB8vLyiImJiVpriFREU6eiqKiIhIaGEltbW8Lj8chbb71FTpw4UUlu2XO2d+9e4ubmRng8HvH391eRFxMTQ4yMjFSmzxOinCL+1ltvEXt7e5X6dMiQIaRr164a5a+uYBHSCEZgUSh1xMCBA3H79u0q+zgpmkHLEvj222+xa9cuJCcnG2xwrTZ0794dOTk5Gg9kp+gOi8XCpEmTVLpxdeHx48dwcXHBgQMHVKZR1xdNekwFhVKR1+eKJycn4/jx43rd7OhNgZZl1UydOhUSiQQHDhyob1Mobwhr165F27ZtG4RDATThKaUUyuu0atUKo0aNYtbL2Lx5M7hcLsLDw+vbtEYHLcuqEQqFzNRLCsUQLFu2rL5NUIE6FZQ3hr59+2L//v14/PgxeDweunTpgqVLl1a5EA2lZmhZUiiUqqBjKigUCoVCoegFOqaCQqFQKBSKXqBOBYVCoVAoFL1Ax1Q0IhQKBR49egSRSNQgNo6hUCiUxgohBAUFBbC3t6+0aV1d8PLlSxQXF+skg8vlMjufNlSoU9GIePToUaXlXikUCoWiPQ8ePECLFi3qVMfLly/h4iTE46dVbxioLra2tkhLS2vQjgV1KhoRIpEIAPDL5ZYQCOvWs17ervatlin1DLvhLq5EATjmZgbRI8/Nrz0SpRKlpAQXyf+YerUuKS4uxuOnctyPcYaZSLu6O79AAacO6SguLqZOBUU/lHV5CIRsCLS8MdXFiFXzNsKUBgCLOhUNGQ6baxA9LPqsag+pfjfVukAoYkEo0k6fAo2jy5s6FRQKhUKhGAA5UUCu5SIOcqLQrzF1BHUqKBQKhUIxAAoQKKCdV6FtOkNDp5RSKBQKhULRC7SlgkKhUCgUA6CAAtp2Ymif0rBQp4JCoVAoFAMgJwRyLXfG0DadoaFOBYVCoVAoBoCOqaA0Gk5+64Bdn7vjxCLVRVzuHDfH9oEe2D7IA0l/iasN0wfjIzKx+nAKvl6UqTeZVI8W8hY8xOpDSfh64QOVcCePIqz+NQlrDifBxUsKABg2OQv7/ruJoLBHVI+B9IwLT8aK6FiMn5GsqsdVgpW7Y7Hqhxg4u0sAAFMXJ+C7H//Dsp1x6N7vSYPMjyF1GTJPFO2gToUB0HVp1trIumWKYikHo3+6C3kxC5nX+cy5f3ZaI2j/XQTtv4srO6yrDdMV17ZSmAoUmD7IFcbGBO6+Ur3IpXo0lOcjhalAjumDPV7JK2TOBYU9wrJJLlgywQVBoVkAgD/2W2F5iDPVYyA9rb0KYGoqR/io9jAyVsCtTfnCVSOC07A83BuRoT4YEZzGhK+Y6Y2ZY/xx9rhNg8uPIXUZMk91hQIEci0P2lKhBidOnEDXrl1hbm6OZs2aoX///khNTWXOP3z4EMOGDYOlpSUEAgE6duyIq1evMuf/97//4a233oKJiQmsrKwwaNAg5pxMJkNoaCgcHBwgEAjQuXNnnD17ljl///59DBgwABYWFhAIBGjTpg2OHz8OAHjx4gWGDx+O5s2bw9TUFG5ubti1axeT9ubNm+jRowdMTU3RrFkzfPXVV5BIJMz5UaNGYeDAgViyZAns7e3h4eGBRYsWwcfHp1IZ+Pn5Yd68eTqV48M4AVp1VVZOrQIK8DBOwJyzaClDsZSD4kIOeEJFtWG64tleitjzypXp4i4I4dWxsJYUVE9d6PFsX4jY88qVHOMuiuDVoVyeUCxHdhYXzx5zIRArlwvOzTGGNl21VI+WetrlI+4fSwBA/D8W8PItdyqEZqXIeWKCZ095EIpKlIEEmL40AQs23IC13csGlx9D6jJknuqKsu4PbY/GQL06FYWFhZg2bRr+++8/nD59Gmw2G4MGDYJCoYBEIkG3bt2QmZmJo0eP4vr16wgPD4dCoXwJHjt2DIMGDUK/fv0QFxeH06dPo1OnTozs4OBgXLlyBQcOHMCNGzfw2WefoW/fvkhOVjY5Tpo0CTKZDOfPn8fNmzexfPlyCIVCAMC8efNw584d/PHHH0hISMDmzZthZWXF2NynTx9YWFjg2rVr+Pnnn3Hq1CkEBwer5O306dNISkrCX3/9hd9//x1jxoxBQkICrl27xsSJi4vDjRs3MHr06CrLRyaTIT8/X+Woipf55c4BTyTHy/zylRY938/D9wM88X1/T3QKelptmK4IzeSQFihvp8ICDoRmuq1xT/XoIE/ySl6+qjx2hQX5dF2bj+rRDoGoBFKJ8vkslBhBYFZSrodd/tIoW+Rx20pXhI7ogJ93tsTY0BS19RgqP4bUZcg81RVlAzW1PRoD9TpQc/DgwSq/d+7ciebNm+POnTu4fPkysrOzce3aNVhaKj17V1dXJu6SJUswdOhQLFy4kAnz9VXuV5GRkYFdu3YhIyMD9vb2AIDQ0FCcOHECu3btwtKlS5GRkYHBgwejbdu2AIBWrVoxcjIyMuDv74+OHTsCAJydnZlz+/btw8uXL/HDDz9AIFC2CERFRWHAgAFYvnw5bGyUTZQCgQDbt28Hl1u+VG+fPn2wa9cuvPXWWwCAXbt2oVu3biq6KxIZGamSv+owEckhe/WwySQcmFR42M5vsMXEk3eUto9xRevAgirDdKWwgAO+SOnY8IVySPLrZglpqkcNea8cTL5IVV7FKkmhY/1E9WiHVGIEvlD5fPIFchTmly+xXfGdoVAoX42SV+fvxJlj9JR7ausxVH4MqcuQeaJoT722VCQnJ2PYsGFo1aoVzMzMmJd3RkYG4uPj4e/vzzgUrxMfH4+ePXtWee7mzZuQy+Vwd3eHUChkjnPnzjHdKyEhIVi8eDECAgKwYMEC3Lhxg0k/YcIEHDhwAH5+fggPD8fly5eZcwkJCfD19WUcCgAICAiAQqFAUlISE9a2bVsVhwIAxo0bh/379zNb4O7btw9jxoyptnxmzZqFvLw85njw4EGV8Vq0L0TaZWUTetolEVr4lzcLcrgExqYKGPMVkJewqg3TlYQYPvy6Kp0T/0AJEmMEtaSgeupCT0KMoFxe1wIkxpbLK8jlwMquGJY2xZAW6Oa8UD1a6rkuhm/nFwAAv7efI/FG+aZjBXnGaGbzEpbNZUxrhqmgFADg4CxFYYH634CGyo8hdRkyT3WFQsejMVCvLRUDBgyAk5MTtm3bBnt7eygUCvj4+KC4uBimpqY1pq3pvEQiAYfDQUxMDDgc1RusrItj7Nix6NOnD44dO4Y///wTkZGRWL16NSZPnowPPvgA9+/fx/Hjx/HXX3+hZ8+emDRpElatWqV23io6HRXzy+PxcPjwYXC5XJSUlODTTz+tVgaPxwOPx6tVl51PEYx4BLs+d4ettxRi+2Jc2GiLwEmP0XF4NnZ+5gEAaD8sBwCqDNOVlJt8FMteYPXhFKTeNkFSPL/2RFSP3vWk3OKjWMbC6kNJSL3Dx9NMLoZNzsL+DXbYs9oOszcpBwBGzXEEAPQZmoMBI7MhMpdDKC7FxrktqZ461JOaIEKJjI0V0bG4lyREdhYPQ8al4+A2Z+zd5IJZK28DADYtcQcAhC+7A6FZKQgBNi52V0uHIfNjSF2GzFNdUTboUtu0jQEWIfXTUfPs2TNYWVnh/PnzCAwMBABcvHgRgYGBOHz4MPLy8hASEoK0tLQqWyvee+89ODg4YO/evZXO3b17Fx4eHiqya2PWrFk4duyYSotFGVu3bkVYWBjy8/Oxbds2zJgxAw8ePGAch+PHj2PAgAF49OgRbGxsMGrUKOTm5uLIkSOVZM2YMQNxcXHgcrlwcHDA1q1b1bIPAPLz8yEWi/HHDec636V0Uav2dSqfogfo1ucNGo6F/qZr14T8RZ5B9DQ1SkkJzip+RV5eHszM6nab+rK6+8Yda4i0rLsLChRo5/3UIPbqQr11f1hYWKBZs2b4/vvvkZKSgr///hvTpk1jzg8bNgy2trYYOHAgLl26hHv37uHQoUO4cuUKAGDBggXYv38/FixYgISEBGawJQC4u7tj+PDhGDlyJH799VekpaXh33//RWRkJI4dOwYAmDJlCk6ePIm0tDTExsbizJkz8PLyAgDMnz8fv/32G1JSUnD79m38/vvvzLnhw4fDxMQEQUFBuHXrFs6cOYPJkydjxIgRzHiKmhg7diz+/vtvnDhxosauDwqFQqFQGhv15lSw2WwcOHAAMTEx8PHxwdSpU7Fy5UrmPJfLxZ9//glra2v069cPbdu2xbJly5jujO7du+Pnn3/G0aNH4efnhx49euDff/9l0u/atQsjR47E9OnT4eHhgYEDB+LatWto2VLZBCaXyzFp0iR4eXmhb9++cHd3x6ZNmxjds2bNQrt27fDuu++Cw+HgwIEDAAA+n4+TJ0/i+fPneOutt/Dpp5+iZ8+eiIqKUivfbm5ueOedd+Dp6YnOnTvrpSwpFAqF0vB5E8ZU1Fv3x5sKIQRubm6YOHGiSsuMOtDuD4oKtPujQUO7Pxo29dH9EXvHBkIt625JgQLtvZ80+O4PuveHAcnOzsaBAwfw+PHjatemoFAoFErTREG0n/LaWKbKUqfCgFhbW8PKygrff/89LCws6tscCoVCoVD0CnUqDAjtaaJQKJQ3FzlYkGu55qe26QwNdSooFAqFQjEA1KmgUCgUCoWiFxSEBQXRzjnQNp2hoVufUygUCoVC0Qu0paIRsrydL4xYxrVH1IGTj+LrVH4Zfez9DKKnSaKom51TKfrBYFM9m+J90ESnS9PuDwqFQqFQKHpBDjbkWnYQNBbXkToVFAqFQqEYAKLDmApCx1RQKBQKhUJ5k6AtFRQKhUKhGAA6poJCoVAoFIpekBM25ETLMRWNZO1E6lRQKBQKhWIAFGBBoeWoAwUah1dBnQoKhUKhUAzAm9D9QQdqVkF0dDTMzc2bjB4KhUKhUAwBbamogiFDhqBfv371bYZeGB+RCXffIiTfNMWW+Q46y9uywB53r/Ph1rYIE77NZMJjzgnxw0o7cE0UmBz5EC3dZNg83wH3bpsCAO7dMcGhhFs66wf0nyeqh+oxpJ7xCx7CvV0hkm/xsWWBIxPu5FGEkMgMsFjAhtmOSEvgY9jkLAwIysHJg82we6W9zroZG2jZ1Qu6jaloHN0ftKWiCkxNTWFtbV3fZuiMa1spTAUKTB/kCmNjAndfqU7ykm+YoqiQgzVHUlBSwkJSvClz7sfvbLH8p1TM3Hgfe1bZAgAmLMrEykMpGB+RiU4983XSXYa+80T1UD2G1OPqI4WpQI7pgz1eyStkzgWFPcKySS5YMsEFQaFZAIA/9ltheYizTjor2UDLrt5QjqnQ/mgMNEmn4sSJE+jatSvMzc3RrFkz9O/fH6mpqQCA9PR0sFgs/Prrr3jvvffA5/Ph6+uLK1euMOlf75aIiIiAn58fdu7ciZYtW0IoFGLixImQy+VYsWIFbG1tYW1tjSVLlqjYsWbNGrRt2xYCgQCOjo6YOHEiJBKJQcoAADzbSxF7XgQAiLsghFfHwlpS1ExiLB/t3y0AAPgHFiDhP4HKeRO+As1sSpF1n6cSfukPMQL66WfJYn3nieqhegypx7N9IWLPmynlXRTBq0O5PKFYjuwsLp495kIgVq6fmJtjDH1/oNKyqz8Ur1bU1ObQdoCnoWkcVmpIYWEhpk2bhv/++w+nT58Gm83GoEGDoFAomDhz5sxBaGgo4uPj4e7ujmHDhqG0tLRamampqfjjjz9w4sQJ7N+/Hzt27MCHH36Ihw8f4ty5c1i+fDnmzp2Lq1evMmnYbDbWr1+P27dvY/fu3fj7778RHh5ep3mviNBMDmmB8hIXFnAgNNNtoVdJPgd8kVKGQCSHJF91ff4X2UbISOYhI1nVqfjvrAgdu+unpULfeaJ6qB5D6hGaySGVvJKXryqPXeFDtC6/SWnZUeqSJjmmYvDgwSq/d+7ciebNm+POnTsQCoUAgNDQUHz44YcAgIULF6JNmzZISUmBp6dnlTIVCgV27twJkUgEb29vvPfee0hKSsLx48fBZrPh4eGB5cuX48yZM+jcuTMAYMqUKUx6Z2dnLF68GF9//TU2bdqkVj5kMhlkMhnzOz9fsxdzYQEHfJHSkeILKzsBmiIQKSAtUMqQSlQf6rFzH2HpBCfYtChBm7fKvyAy73FhZVsCE75+Phn0nSeqh+oxpJ7CAg74wlfyXnPMKz4hijr8wqZlV3/QMRWNlOTkZAwbNgytWrWCmZkZnJ2dAQAZGRlMnHbt2jH/29nZAQCePn1arUxnZ2eIRCLmt42NDby9vcFms1XCKso4deoUevbsCQcHB4hEIowYMQLPnj2DVKpe32JkZCTEYjFzODo61p6oAgkxfPh1LeuukCAxRlBLiprx6lCI+ItKpyzuggieHcrz4d1RipW/pGJYyGO0dCt3hC79YY53PtDfbo36zhPVQ/UYUk9CjKBcXtcCJMaWyyvI5cDKrhiWNsWM814X0LKrPxSvujG0PRoDjcNKDRkwYACeP3+Obdu24erVq0yXRHFxMRPH2Lh863AWS9lgVrF75HUqxi9LU1VYmYz09HT0798f7dq1w6FDhxATE4ONGzdWsqMmZs2ahby8POZ48OCBWunKSLnJR7GMjdWHU6BQAEnxfI3Sv45buyJweQTTBrqCzSawdijGvnU2AIB962wQ9mlr7Iy0x/Cpj5k0V0+Z4e3e+un6APSfJ6qH6jGknpRbfBTLWFh9KAkKBQtPM7kYNlk5sHDPajvM3pSGuVvS8MMq5YdOn6E5+GreQ/QY9ByTFmfUJFp9G2jZ1RtywtLpaAw0ue6PZ8+eISkpCdu2bUNgYCAA4OLFiwa3IyYmBgqFAqtXr2ZaM3766SeNZPB4PPB4vNoj1oC+p4tVnEYKAF9884T5W/Z/RVYfTtGrfkD/eaJ6qB5D6qk4FRIA9m9QvgTTEviYNshD5dzJA1Y4ecBKr/oBWnaUuqPJORUWFhZo1qwZvv/+e9jZ2SEjIwMzZ840uB2urq4oKSnBhg0bMGDAAFy6dAlbtmwxuB0UCoVCaRiUzeTQLi0dU1EvsNlsHDhwADExMfDx8cHUqVOxcuVKg9vh6+uLNWvWYPny5fDx8cGPP/6IyMhIg9tBoVAolIaBgrB1OhoDLEIayZBSCvLz8yEWi9EdH8OIZVx7Ah04+Si+TuWX0cfezyB6KBSDwzbQgEFF3UwJrVcMUHalpARnFb8iLy8PZmZmdaqrrO7eFtsBfJF2eZMWyDGufYxB7NWFxuH6UCgUCoVCafA0uTEVFAqFQqE0RBSA1rM4qp+b2LCgTgWFQqFQKAZAl/UmGss6FdSpoFAoFArFAOi2ombjcCoah5UUCoVCoVAaPLSlgkKhUCgUA6DLFuaNZetz6lRQqsRQUz3n34s1iJ5Frm8ZRA8AsIwN81iRkup31dUrBpqyyGne3CB65NnZBtFDobzOm9D9QZ0KCoVCoVAMgG4rajYOp6JxWEmhUCgUCqXBQ50KCoVCoVAMgIKwdDq0YePGjXB2doaJiQk6d+6Mf//9t8b4a9euhYeHB0xNTeHo6IipU6fi5cuXauuj3R8UCoVCoRgAhQ7dH9qsU3Hw4EFMmzYNW7ZsQefOnbF27Vr06dMHSUlJsLa2rhR/3759mDlzJnbu3Il33nkHd+/exahRo8BisbBmzRq1dNKWCgqFQqFQDIChNxRbs2YNxo0bh9GjR8Pb2xtbtmwBn8/Hzp07q4x/+fJlBAQE4IsvvoCzszPef/99DBs2rNbWjYpQp4JCoVAolCZGcXExYmJi0KtXLyaMzWajV69euHLlSpVp3nnnHcTExDBOxL1793D8+HH069dPbb20+4NCoVAoFAMgBwtyLdebKEuXn5+vEs7j8cDj8SrFz8nJgVwuh42NjUq4jY0NEhMTq9TxxRdfICcnB127dgUhBKWlpfj6668xe/Zste18Y1oqoqOjYW5uzvyOiIiAn59fvdlDoVAolDcLfXR/ODo6QiwWM0dkZKTe7Dt79iyWLl2KTZs2ITY2Fr/++iuOHTuGb7/9Vm0Zb2xLRWhoKCZPnlzfZtQ54yMy4e5bhOSbptgy36HR6Dr5rQMe3RTAzkeKvvMfMuF3jpvj8vc2AAsInPgYHr3zqgzTyO4FD+HerhDJt/jYssCRCXfyKEJIZAZYLGDDbEekJfAxbHIWBgTl4OTBZti90l4jPV/NvQ/3doVIuSXAlkVO5XrcpQhZnA6wgKh5zkhL5CNkSRqc3IsAAkTNV4Y1tPxUq1/P99y40CS4tSlAaoIIW1d4MOFOrhIEz00AC0DUEk+kJ4sgNCvB5LkJMLMoQfxVSxzc7qKzfn3np76vD2C4eqEplp0uyAEdWiqUPHjwAGZmZkx4Va0UAGBlZQUOh4MnT56ohD958gS2trZVppk3bx5GjBiBsWPHAgDatm2LwsJCfPXVV5gzZw7Y7NrbId6YlorXEQqFaNasWX2bUae4tpXCVKDA9EGuMDYmcPeVNgpdWbdMUSzlYPRPdyEvZiHzevkL9Z+d1gjafxdB++/iyg7rasPUtttHClOBHNMHe7yyu5A5FxT2CMsmuWDJBBcEhWYBAP7Yb4XlIc4a58m1TSFMBQqEfu4NI2MC93YS5tzIaZmI/KY1lga7YuQ0pQN1cLM9pn/mjdXhrTA8JLPB5ada/Xq+51p75sOUL0f46I4wMlbArU25wzhiUiqWz2iLyPC2GDEpFQAw/Ot72LOpNWaN66AXh0Lf+anv6wMYrl5oimXXEDAzM1M5qnMquFwuOnTogNOnTzNhCoUCp0+fRpcuXapMI5VKKzkOHA4HAEAIUcu+BuFUnDhxAl27doW5uTmaNWuG/v37IzVVWUmkp6eDxWLhwIEDeOedd2BiYgIfHx+cO3eOSX/27FmwWCwcO3YM7dq1g4mJCd5++23cunWrWp2vd39cu3YNvXv3hpWVFcRiMbp164bYWNUlpFksFrZv345BgwaBz+fDzc0NR48eVYlz+/Zt9O/fH2ZmZhCJRAgMDGTyAgDbt2+Hl5cXTExM4OnpiU2bNulSdDXi2V6K2PMiAEDcBSG8OhbWkqJh6HoYJ0Crrsp+w1YBBXgYJ2DOWbSUoVjKQXEhBzyhotow9e0uROx5pdcfd1EErw7ldgvFcmRncfHsMRcCsfI7ITfHGGo+W6p6/CWIvfhKzyUzeLUvdypE4lLkZPHw7AkXAjOlnicPlRWFvIQFhUL9LxtD5ad6/fq95zzb5SHuH6XzH/+PJbx8y50KoagEOU9M8OypCYQi5ZLlTq4SDBmbhsjtMfBsl6uTbqAO8lPP10dpg2HqhaZYdrpi6Nkf06ZNw7Zt27B7924kJCRgwoQJKCwsxOjRowEAI0eOxKxZs5j4AwYMwObNm3HgwAGkpaXhr7/+wrx58zBgwADGuaiNBuFUFBYWYtq0afjvv/9w+vRpsNlsDBo0CApF+QsiLCwM06dPR1xcHLp06YIBAwbg2bNnKnLCwsKwevVqXLt2Dc2bN8eAAQNQUlKilg0FBQUICgrCxYsX8c8//8DNzQ39+vVDQUGBSryFCxfi888/x40bN9CvXz8MHz4cz58/BwBkZmbi3XffBY/Hw99//42YmBiMGTMGpaXKCu/HH3/E/PnzsWTJEiQkJGDp0qWYN28edu/erUvxVYvQTA5pgfISFxZwIDSruz0c9KnrZX65c8ATyfEyv/xm9nw/D98P8MT3/T3RKehptWEa2S15ZXe+qt3sCu9yXbfyEZjJIS1Q5kNawIFAVK6HVeEpZL2maHT4A/wWrTrQqiYMlZ8a9evxnhOISiGVKMutUGIEgah8vxN2FeXm5ZuHn3a4YHm4D76clqyTbkD/+anv68PYYIB6oSmWna6U7f2h7aEpQ4YMwapVqzB//nz4+fkhPj4eJ06cYAZvZmRkICsri4k/d+5cTJ8+HXPnzoW3tze+/PJL9OnTB1u3blVbZ4MYUzF48GCV3zt37kTz5s1x584dCIVCAEBwcDATb/PmzThx4gR27NiB8PBwJt2CBQvQu3dvAMDu3bvRokULHD58GJ9//nmtNvTo0UPl9/fffw9zc3OcO3cO/fv3Z8JHjRqFYcOGAQCWLl2K9evX499//0Xfvn2xceNGiMViHDhwAMbGxgAAd3d3FftWr16NTz75BADg4uKCO3fuYOvWrQgKCqpkk0wmg0wmY36/Puq3NgoLOOCLlC9nvlAOSb56nqY26FOXiUgO2avKQybhwKRC5XF+gy0mnrwDANg3xhWtAwuqDNPI7lcODF+kanfFjxyFjl880gIO+K8cCb5QjsKCCnoqyCYVGloGjn6MjBRT3P5PpLYeQ+WnRv16vOekEiPwhRXLrbzKqlhuZd8fmff5eJCmbNkiGrTwVIe+81Pf14exwQD1QlMsO10hOuxSSrRMFxwcjODg4CrPnT17VuW3kZERFixYgAULFmilC2ggLRXJyckYNmwYWrVqBTMzMzg7OwNQelFlVOwDMjIyQseOHZGQkKAip2IcS0tLeHh4VIpTHU+ePMG4cePg5uYGsVgMMzMzSCQSFRsAoF27dsz/AoEAZmZmePpU+XUcHx+PwMBAxqGoSGFhIVJTU/Hll19CKBQyx+LFi1W6RyoSGRmpMsrX0dGxynjVkRDDh19X5QvWP1CCxBhBLSm0R5+6WrQvRNpl5Ys07ZIILfzLmzk5XAJjUwWM+QrIS1jVhqlvt6Dc7q4FSIwtt7sglwMru2JY2hQzrQzakhArhP87SqfQLyAfCXHCCnqMYGVbDEvrYuarvH1gHrw7SLBvg2YDzAyVn+r16/eeS7guhm9nZUugX+fnSLwhZs4V5BujmfVLWDaXQVqodDYy7/NhYSUDz1QONkf3t4ve81PP10dpg2HqhaZYdpTaaRAtFQMGDICTkxO2bdsGe3t7KBQK+Pj4oLi42GA2BAUF4dmzZ1i3bh2cnJzA4/HQpUuXSja87jCwWCymm8bU1LRa+RKJsg9927Zt6Ny5s8q56vqqZs2ahWnTpjG/8/PzNXIsUm7yUSx7gdWHU5B62wRJ8erPINAUfeqy8ymCEY9g1+fusPWWQmxfjAsbbRE46TE6Ds/Gzs+UMwDaD8sBgCrD1Lb7Fh/FMhZWH0pC6h0+nmZyMWxyFvZvsMOe1XaYvSkNABA1R1nufYbmYMDIbIjM5RCKS7Fxbkv19NwWoFjGxqqf7iD1Dh/ZmVwMnfQIBzbaY+9aB8zakAIA2DhfOStkYsR9SAs4WLE/EQ/vmWD9HPUGHRoqP9Xq1/M9l5pohhJZFlbs+g/3koTIzjLBkLFpOLjdBXs3tcKsFTcBAJsiPQEAeze3woxlN8EzUeDHLa100l0X+anv61MXeTKUnoZQdrryJmx9ziLqDumsI549ewYrKyucP38egYGBAICLFy8iMDAQhw8fhp+fH1xcXLB8+XKmq6O0tBStWrVCcHAwwsPDcfbsWbz33ns4ePAg09Xx4sULtGjRArt27cLnn3+O6OhoTJkyBbm5uQCUAzWPHDmC+Ph4AIBIJMKmTZswYsQIAMppOy1btsR3332HKVOmAFA6EIcPH8bAgQMZ+83NzbF27VqMGjUKCxcuxO7du5GUlFRla4WDgwO+/vprzJs3T6uyys/Ph1gsRnd8DCNWZfmNkfn3YmuPpAcWub5lED0AwDI2jK9OSkprj6QPFHU3FqcinObNDaJHnp1tED1gG+iL2UDXx6AYoOxKSQnOKn5FXl6eyhTNuqCs7p5+qT94Qu3qbpmkBKsDfjeIvbpQ7y0VFhYWaNasGb7//nvY2dkhIyMDM2fOrBRv48aNcHNzg5eXF7777ju8ePECY8aMUYmzaNEiNGvWDDY2NpgzZw6srKxUHICacHNzw549e9CxY0fk5+cjLCysxpaHqggODsaGDRswdOhQzJo1C2KxGP/88w86deoEDw8PLFy4ECEhIRCLxejbty9kMhn+++8/vHjxQqVFgkKhUChND7kOG4ppm87Q1LuVbDYbBw4cQExMDHx8fDB16lSsXLmyUrxly5Zh2bJl8PX1xcWLF3H06FFYWVlVivPNN9+gQ4cOePz4Mf73v/+By+WqZceOHTvw4sULtG/fHiNGjEBISEiVu7jVRLNmzfD3339DIpGgW7du6NChA7Zt28a0WowdOxbbt2/Hrl270LZtW3Tr1g3R0dFwcdF9Pj2FQqFQKPVNvXd/1EZ6ejpcXFwQFxdX7bLaZd0fL168UFmKu6lBuz+0h3Z/6ADt/tAO2v2hPU20+yPk4sc6dX+s7/ob7f6gUCgUCoUCKMCGQssOAm3TGRrqVFAoFAqFYgDkhAU50XLvDy3TGZoG71Q4OzvXuuZ49+7d1V6XnEKhUCgUSt3Q4J0KCoVCoVCaAgrCgkLLFgdt0xka6lRQKBQKhWIAiJYbg5WlbQxQp4JCoVAoFAMgBwtyLffw0DadoaFOBaVqDDQdblGr9gbRc+DBBYPoAYChju8YRA+LxzOIHiIzzJRF+bPnBtFDoVDqDupUUCgUCoViABRE+7ERDXn31YpQp4JCoVAoFAOg0GFMhbbpDA11KigUCoVCMQAKsKDQcmyEtukMTeNwfSgUCoVCoTR4aEsFhUKhUCgGgK6oSaFQKBQKRS/QMRUUCoVCoVD0ggI6rKhJx1ToztmzZ8FisZCbm1vfpmgNi8XCkSNH6tsMCoVCoVDqnAbtVOib+nBSsrKy8MEHHxhM3+uMj8jE6sMp+HpRpn7kLXiI1YeS8PXCByrhTh5FWP1rEtYcToKLlxQAMGxyFvb9dxNBYY/0opuxQc952h3hjAWf+CB6gbNK+I3zYsz9qC0Wfd4GmSmmTDghwIw+vvh7v7Ve9Os7P1/NvY9VP93B1/Pvq4Q7uUux+qc7WP3zHbh4Kq9RyJI0rP75Dlb/VB6mK03tnmtq+QH0nydD6WkIZacL5NXsD20OQlsqGi/FxcV6k2VrawuegVY+fB3XtlKYChSYPsgVxsYE7r66vTRcfaQwFcgxfbDHK3mFzLmgsEdYNskFSya4ICg0CwDwx34rLA9x1klnJRv0nKe0mwLIpBws/PUWSovZSI0XMucOrXXE3AO3MXnDXfy82pEJj/nLAmbNSnTSW4ber1GbQpgKFAj93BtGxgTu7STMuZHTMhH5TWssDXbFyGkPAQAHN9tj+mfeWB3eCsNDdK/4m9o919TyA+g/T4bS0xDKTlfKNhTT9mgM1LtToVAoEBkZCRcXF5iamsLX1xe//PJLtfEvXryIwMBAmJqawtHRESEhISgsLL+5ZDIZZsyYAUdHR/B4PLi6umLHjh1IT0/He++9BwCwsLAAi8XCqFGjACi3Tg8ODsaUKVNgZWWFPn36AADOnTuHTp06gcfjwc7ODjNnzkRpaSmjq3v37ggJCUF4eDgsLS1ha2uLiIgIFXtf7/54+PAhhg0bBktLSwgEAnTs2BFXr17VsRSrxrO9FLHnRQCAuAtCeHUsrCVFbfIKEXveTCnvogheHcrlCcVyZGdx8ewxFwKxclnn3Bxj6HtHen3nKTlWhLaBuQCAtoG5uBsrVDlvwlfAwqYET++bMGGXjjRHl49ydNJbht6vkb8EsRdfXaNLZvBqX+5UiMSlyMni4dkTLgRmymv05KHS4ZWXsKBQ6F5pNbV7rqnlR2mDfvNkKD0Noex0pWygprZHY6DerYyMjMQPP/yALVu24Pbt25g6dSr+7//+D+fOnasUNzU1FX379sXgwYNx48YNHDx4EBcvXkRwcDATZ+TIkdi/fz/Wr1+PhIQEbN26FUKhEI6Ojjh06BAAICkpCVlZWVi3bh2Tbvfu3eByubh06RK2bNmCzMxM9OvXD2+99RauX7+OzZs3Y8eOHVi8eLGKTbt374ZAIMDVq1exYsUKLFq0CH/99VeVeZVIJOjWrRsyMzNx9OhRXL9+HeHh4VAoFPooykoIzeSQFigvcWEBB0Iz3fZwEJrJIZW8kpevKo9d4X1Ul/60vvNUmM+BqVApgy+SQ5qvOnY5N9sYmSmmTPfH9XNieL2dBzZbP7WVvvMjMJNDWqDct0VawIFAVC6PVeFpZ712kUaHP8Bv0TY66Qaa3j3X1PLD2KDHPBlKT0MoO0rt1OvsD5lMhqVLl+LUqVPo0qULAKBVq1a4ePEitm7diq+++kolfmRkJIYPH44pU6YAANzc3LB+/Xp069YNmzdvRkZGBn766Sf89ddf6NWrFyOvDEtLSwCAtbU1zM3NVWS7ublhxYoVzO85c+bA0dERUVFRYLFY8PT0xKNHjzBjxgzMnz8fbLby5m7Xrh0WLFjAyIiKisLp06fRu3fvSvndt28fsrOzce3aNcYWV1fXGstHJpMxv/Pz86svzCooLOCAL1I6LHyhHJJ83TYJKyzggC98JU+kKq/iK7Yu16jXd574IjmKJEoZRRIO+GblLVHD56Rj/SR3WDnI4N6xAABw5oANJn6XjMtHrXTSW4a+8yMt4ID/ypHgC+UoLKhwjSpcF1LBjx04+jEyUkxx+z+RTrqBpnfPNbX8MDboMU+G0tMQyk5XdOnGoN0fapCSkgKpVIrevXtDKBQyxw8//IDU1NRK8a9fv47o6GiVuH369IFCoUBaWhri4+PB4XDQrVs3jW3p0KGDyu+EhAR06dIFrAqfdAEBAZBIJHj48CET1q5dO5V0dnZ2ePr0aZU64uPj4e/vzzgUtREZGQmxWMwcjo6OtSeqmIcYPvy6Kl+G/oESJMYINEpfWZ6gXF7XAiTGlssryOXAyq4YljbFzJdyXaDvPLl3KMCtS2IAwM0L5nDzl1Q4J8H8n25jUMhDOLgp+4Oz7pli9VhPHPveHse326sM4NQGvV+jWCH831E6n34B+UiIK+/OKcg1gpVtMSytiyF95Ui1D8yDdwcJ9m2w10kvo7+J3XNNLT9KG/SbJ0PpaQhlpyvaDtLUZXlvQ1OvLRUSibICP3bsGBwcHFTO8Xi8So6FRCLB+PHjERISUklWy5YtkZKSorUtAoF2N7yxsbHKbxaLVW13hqmpZi+gWbNmYdq0aczv/Px8jRyLlJt8FMteYPXhFKTeNkFSPF8j/ZXk3eKjWMbC6kNJSL3Dx9NMLoZNzsL+DXbYs9oOszelAQCi5iht7DM0BwNGZkNkLodQXIqNc1vqpL8u8uTSthDGPAUWfOID5zaFsHKQ4fB6BwwKycTh9Q64edEcQotSjFumvBeXn7wOADj7U3Mo5Cw4uBY1qPyk3BagWMbGqp/uIPUOH9mZXAyd9AgHNtpj71oHzNqgfEY2zncCAEyMuA9pAQcr9ifi4T0TrJ/j0rDyU8/3XFPLT13kyVB6GkLZ6cqb0FLBIqT+hrIUFBSgefPm2LZtG0aMGFHp/NmzZ/Hee+/hxYsXMDc3x/Dhw/HkyROcOnWqSnnp6elo1aoV/vzzT6b7oyKXL19GQEAAcnJy0KxZMya8e/fu8PPzw9q1a5mwOXPm4NChQ0hISGBaKzZt2oSZM2ciNzcXbDa7ynQDBw6Eubk5oqOjASidjMOHD2PgwIHYvXs3QkJCkJaWpnZrRUXy8/MhFovRHR/DiGVcewJdYBvI21fUTX/u6xx4cNkgegBgqOM7BtHDMtCsIlKhC65OaWL3XJPLjyExQNmVkhKcVfyKvLw8mJmZ1amusrr7w5NjYSzgaiWjpLAYx/psN4i9ulCv3R8ikQihoaGYOnUqdu/ejdTUVMTGxmLDhg3YvXt3pfgzZszA5cuXERwcjPj4eCQnJ+O3335jBmo6OzsjKCgIY8aMwZEjR5CWloazZ8/ip59+AgA4OTmBxWLh999/R3Z2NtNSUhUTJ07EgwcPMHnyZCQmJuK3337DggULMG3aNGY8haYMGzYMtra2GDhwIC5duoR79+7h0KFDuHLlilbyKBQKhdJ4oFNKDcC3336LefPmITIyEl5eXujbty+OHTsGF5fKzbDt2rXDuXPncPfuXQQGBsLf3x/z58+HvX15f/DmzZvx6aefYuLEifD09MS4ceOYKacODg5YuHAhZs6cCRsbG5VZI6/j4OCA48eP499//4Wvry++/vprfPnll5g7d67WeeVyufjzzz9hbW2Nfv36oW3btli2bBk4nIbbB0ihUCgU/fAmOBX12v1B0Qza/aE9tPtDe2j3h5Y0tfwYkiba/dH7+Hiduj/+6reVdn9QKBQKhUJ5M6C7lFIoFAqFYgAItN9ttLF0KVCngkKhUCgUA/AmTCmlTgWFQqFQKAaAOhUUCoVCoVD0wpvgVNCBmhQKhUKhUPQCbamgUCgUCsUAvAktFdSpoFRNE5v7bqi1IwBgy/2LBtEz0et9g+gx1Khztolh1t1QSKUG0UOhvA4hLBAtnQNt0xka6lRQKBQKhWIAdNlttLHsUkrHVFAoFAqFQtELtKWCQqFQKBQDQMdUUCgUCoVC0Qt0TMUr8vPz1RbYkDc6oVAoFAqlvqAtFa8wNzcHi1VzhgghYLFYkMub1qwBCoVCoVAo6qGWU3HmzJm6tqNBQQjB+PHj8csvv+DFixeIi4uDn5+f3vV0794dfn5+WLt2rd5lUygUCqVhQbs/XtGtW7e6tqNBceLECURHR+Ps2bNo1aoVrKys6tskrRkfkQl33yIk3zTFlvkOTUJXY9Xz0yIXZNwQwtGnEEMi7jHhdy6Y43+rW8KYp8AXS1Jh61qE39c64vZZCwDAx6H34dk1T209X81Jh5uPBCm3Bdi62IUJd3KTYvK39wAWEDXfBelJAoyfm4bW3oUw5hJsW+qEO7G6d1/qu9yaWn7GL3gI93aFSL7Fx5YFjky4k0cRQiIzwGIBG2Y7Ii2Bj2GTszAgKAcnDzbD7pX2OutmbGikz1BDKDtdIDp0fzQWp0KrKaUXLlzA//3f/+Gdd95BZmYmAGDPnj24eNEwi/7UNampqbCzs8M777wDW1tbGBk1zvGsrm2lMBUoMH2QK4yNCdx9627RH0Ppaqx6Mm4KICvkIPSXm5CXsJB+XcicO77OEVP23cKX65Pwv+9aAgDe/uQpZhy5gcm7b+P3dS3V1tO6jQQmfDnChvko7W4rYc6NnJqBZVPdEBnihpFTHwAAti9zQvgXPogMcceQCZk65RHQf7k1tfy4+khhKpBj+mCPV/IKmXNBYY+wbJILlkxwQVBoFgDgj/1WWB7irJPOSjY00meoIZSdrhAAhGh51LfxaqKxU3Ho0CH06dMHpqamiI2NhUwmAwDk5eVh6dKlejfQ0IwaNQqTJ09GRkYGWCwWnJ2dIZPJEBISAmtra5iYmKBr1664du2aSrpz586hU6dO4PF4sLOzw8yZM1FaWsqcLywsxMiRIyEUCmFnZ4fVq1fXeV4820sRe14EAIi7IIRXx8JaUjR8XY1Vz704EbwCc5WyA3JxL1akcp7HV0BsU4Ls+yYAAKuWyufKiEdQy3AmVbv9JIi7JFbafVkMT/8C5pxQLEdOFg/PnvAgNFPem/JSZRVgIpDjXqJAq7yp6NdzuTW5/LQvROx5ZetJ3EURvDqUyxOK5cjO4uLZYy4EYuXYtNwcYxA9v00a6zPUEMqOUjsaOxWLFy/Gli1bsG3bNhgbGzPhAQEBiI2N1atx9cG6deuwaNEitGjRAllZWbh27RrCw8Nx6NAh7N69G7GxsXB1dUWfPn3w/PlzAEBmZib69euHt956C9evX8fmzZuxY8cOLF68mJEbFhaGc+fO4bfffsOff/6Js2fP1nl5Cc3kkBYoL3FhAQdCs7obRGsoXY1VT1G+EUyFyhefqVkpivJVW7/ys43xOMUUj1P4KuG/f9cSgV881sDuUkglnAp2lzu2LFbVNey8TYlYsusO4l+9vHVB3+XW9PIjh1TySl6+qjx2BeexLhu6G+sz1BDKTlfKVtTU9mgMaNyun5SUhHfffbdSuFgsRm5urj5sqlfEYjFEIhE4HA5sbW1RWFiIzZs3Izo6Gh988AEAYNu2bfjrr7+wY8cOhIWFYdOmTXB0dERUVBRYLBY8PT3x6NEjzJgxA/Pnz4dUKsWOHTuwd+9e9OzZEwCwe/dutGjRokZbZDIZ0xIEaDa1F1A+yHyRAgDAF8ohyedolL4h6mqsekxFchRJlI/bywIjmFZ4OX4yKx3bgz1g2UKG1h3Lr3HciWYofGGETgOzNbDbCHyhvILdVT/iFftnv53oCStbGeZE3cXUT9tqlK/K+vVbbk0vPxzwha/kiVTlVXSRFHX4hd1Yn6GGUHa68iYM1NS4pcLW1hYpKSmVwi9evIhWrVrpxaiGRGpqKkpKShAQEMCEGRsbo1OnTkhISAAAJCQkoEuXLirTbgMCAiCRSPDw4UOkpqaiuLgYnTt3Zs5bWlrCw8OjRt2RkZEQi8XM4ejoWGP810mI4cOvq7K52D9QgsQY3ZuD61tXY9XTqn0+kl59OSdcNIdLhWb8Vh0KMO3gLXwQ/AC2rkUAgIcJfJz7wQ5Dv03VzO44Ify6KAd1+gfkITG+fOxGQa4RrGxlsLQuZr7+jbnKSrqokIOXUt1X7dd3uTW5/MQIyuV1LUBibLm8glwOrOyKYWlTDGlB3X0ANNZnqCGUna6UrVOh7dEY0PipGzduHL755htcvXoVLBYLjx49wo8//ojQ0FBMmDChLmx8Y5k1axby8vKY48GDBxqlT7nJR7GMjdWHU6BQAEnx/NoTaYmhdDVWPS3bFsKIR7Dq07Zgcwgs7WU4vkHZUnV8QwusGeKDI8ud8eE3GQCAX5e6ID/HGOtH+mDTWC+19aTeFqJYxsbK/begkLOQ/YiHoRMeAgD2rHPEzHXJmL3hLvasVTqoM9fdxfIfbyPi+0TsXaeZ01oV+i63ppaflFt8FMtYWH0oCQoFC08zuRg2WTmwcM9qO8zelIa5W9Lwwyo7AECfoTn4at5D9Bj0HJMWZ+icH6DxPkMNoewotcMiRLOhLIQQLF26FJGRkZC+2kKYx+MhNDQU3377bZ0YaWjWrl2LtWvXIj09HYWFhbC0tMSuXbvwxRdfAABKSkrg4uKCKVOmIDQ0FHPmzMGhQ4eQkJDAtFZs2rQJM2fORG5uLqRSKSwtLfHjjz/is88+AwC8ePECLVq0wLhx49RepyI/Px9isRjd8TGMWMa1J6DUC01t63NDbRXO5ted01sRg219zjbQF7OiCS44aICyKyUlOKv4FXl5eXW+EnRZ3d3mYBg4fJ5WMuRSGW4PWWkQe3VB4zEVLBYLc+bMQVhYGFJSUiCRSODt7Q2hUFh74kaIQCDAhAkTEBYWBktLS7Rs2RIrVqyAVCrFl19+CQCYOHEi1q5di8mTJyM4OBhJSUlYsGABpk2bBjabDaFQiC+//BJhYWFo1qwZrK2tMWfOHLDZdJNYCoVCeVN4E8ZUaL0AA5fLhUgkgkgkarIORRnLli2DQqHAiBEjUFBQgI4dO+LkyZOwsFAuTuTg4IDjx48jLCwMvr6+sLS0xJdffom5c+cyMlauXAmJRIIBAwZAJBJh+vTpyMtTf0EjCoVCoTRu3gSnQuPuj9LSUixcuBDr16+HRKJciEYoFGLy5MlYsGCByjRTin6h3R+NA9r9oR20+0NLaPeHVtRH94fX/hk6dX8kDFve9Lo/Jk+ejF9//RUrVqxAly5dAABXrlxBREQEnj17hs2bN+vdSAqFQqFQGjsKwgKrie9SqnGn/r59+xAdHY3x48ejXbt2aNeuHcaPH48dO3Zg3759dWEjhUKhUCiNHq2X6H51aMPGjRvh7OwMExMTdO7cGf/++2+N8XNzczFp0iTY2dmBx+PB3d0dx48fV1ufxi0VPB4Pzs7OlcJdXFzA5XI1FUehUCgUyhuB0jnQdkyF5mkOHjyIadOmYcuWLejcuTPWrl2LPn36ICkpCdbW1pXiFxcXo3fv3rC2tsYvv/wCBwcH3L9/H+bm5mrr1LilIjg4GN9++63KSo8ymQxLlixBcHCwpuIoFAqFQqHUAWvWrMG4ceMwevRoeHt7Y8uWLeDz+di5c2eV8Xfu3Innz5/jyJEjCAgIgLOzM7p16wZfX1+1darVUvHJJ5+o/D516hRatGjBKLp+/TqKi4uZJagpFAqFQqGoYsjZH8XFxYiJicGsWbOYMDabjV69euHKlStVpjl69Ci6dOmCSZMm4bfffkPz5s3xxRdfYMaMGeBw1Bs8q5ZTIRarbswzePBgld+aLh9NoVAoFMqbBoH2W5iXpXt9Dygejwcer/KMkpycHMjlctjY2KiE29jYIDExsUod9+7dw99//43hw4fj+PHjSElJwcSJE1FSUoIFCxaoZadaTsWuXbvUEkahUCgUCqVq9NFS8fpH/IIFCxAREaGraQAAhUIBa2trfP/99+BwOOjQoQMyMzOxcuVK/ToVlAYGmwOw6nged1Ob+26oNQNguPUjBsWkG0TPr36GaYlkGRmoOjLQvcA20W49Ak0x2LobBoRlXPf3AosQQFZ7vIbGgwcPVNapqKqVAgCsrKzA4XDw5MkTlfAnT57A1ta2yjR2dnYwNjZW6erw8vLC48ePUVxcrNZkDK2u3C+//IKffvoJGRkZKC4uVjkXGxurjUgKhUKhUJo2euj/MDMzU2vxKy6Xiw4dOuD06dMYOHAgAGVLxOnTp6udVBEQEIB9+/ZBoVAw20jcvXsXdnZ2as/u1Hj2x/r16zF69GjY2NggLi4OnTp1QrNmzXDv3j188MEHmoqjUCgUCuXN4FX3hzYHtOg2mTZtGrZt24bdu3cjISEBEyZMQGFhIUaPHg0AGDlypMpAzgkTJuD58+f45ptvcPfuXRw7dgxLly7FpEmT1NapcUvFpk2b8P3332PYsGGIjo5GeHg4WrVqhfnz5+P58+eaiqNQKBQK5Y1Al0WstEk3ZMgQZGdnY/78+Xj8+DH8/Pxw4sQJZvBmRkaGysaWjo6OOHnyJKZOnYp27drBwcEB33zzDWbMmKG2To2dioyMDLzzzjsAAFNTUxQUFAAARowYgbfffhtRUVGaiqRQKBQKhVIHBAcHV9vdcfbs2UphXbp0wT///KO1Po27P2xtbZkWiZYtWzLK09LSoOHeZBQKhUKhvDFo2/Why6wRQ6OxU9GjRw8cPXoUADB69GhMnToVvXv3xpAhQzBo0CC9G0ihUCgUSpOgbGyEtkcjQOPuj++//x4KhQIAMGnSJDRr1gyXL1/GRx99hPHjx+vdQAqFQqFQmgKGHlNRH2jcUsFms2FUYT750KFDsX79ekyePLlONhQjhOCrr76CpaUlWCwW4uPj9a6jjO7du2PKlCl1Jp9CoVAolKaMWi0VN27cUFtgu3bttDamKk6cOIHo6GicPXsWrVq1gpWVlV7lV+TXX3+FsbEx89vZ2RlTpkxpFI7G+AUP4d6uEMm3+NiyoHyxIiePIoREZoDFAjbMdkRaAh/DJmdhQFAOTh5sht0r7fVnQ0Qm3H2LkHzTFFvmO+hNbl3rMVTZfTUnHW4+EqTcFmDrYpdyPW5STP72HsACoua7ID1JgPFz09DauxDGXIJtS51wJ7b2eellXI8U4sVtI5h7l8JvtoQJf3iCh7s7+QAL8PyqEPY9ixG7QIT8ZA7AAvznF0Dsof6iZ1/NvQ/3doVIuSXAlkVO5flxlyJkcboyP/OckZbIR8iSNDi5FwEEiJqvDFOXcTNT4eYjQeodIbYubV2ux60QwREpYLGAqAhXpN8VAAC4PDl2nrqGVeEeiL9iobaepnYf1JjXRvqsGuqeqzP0sU53A0etlgo/Pz/4+/vDz8+vxsPf31/vBqampsLOzg7vvPMObG1tVVpJ1KWkpESteJaWlhCJRBrLr43XFwjTN64+UpgK5Jg+2APGxgTuvoXMuaCwR1g2yQVLJrggKDQLAPDHfissD3HWrw1tpTAVKDB9kOsrG+pmlT996zFU2bVuI4EJX46wYT5KPW3LX/Yjp2Zg2VQ3RIa4YeTUBwCA7cucEP6FDyJD3DFkQqbael7cNkKplIXue3OhKAae3yx/XpJ38/Hu7hfotvsFkqOVFazHuEJ035eLDksKcGejQG09rm0KYSpQIPRzbxgZE7i3q5CfaZmI/KY1lga7YuS0hwCAg5vtMf0zb6wOb4XhIernp7W3BKZ8BcL/zxdGxgq4+RQw50aE3Mfy6Z6InOKJEd+kM+F9PnuM+3fVzwvQ9O6Dmmi0z6qB7rm6hA7UfEVaWhru3buHtLS0Go979+7p1bhRo0Zh8uTJyMjIAIvFgrOzM5ydnbF27VqVeH5+fiprn7NYLGzevBkfffQRBAIBlixZgoiICPj5+WHPnj1wdnaGWCzG0KFDmSmxgGr3R/fu3XH//n1MnToVLBYLLJbygpbJqcjatWvh7OysYvfAgQOxZMkS2Nvbw8PDA4ByedXPP/8c5ubmsLS0xMcff4z09HSdy8mzfSFizyu/YOIuiuDVobxCFIrlyM7i4tljLgRi5Vdobo6x3vvnPNtLEXte6ZDFXRDCq2NhLSkahh5DlZ2nnwRxl5Qb88VdFsPTv/y+E4rlyMni4dkTHoRmpQAAeany0TQRyHEvUf0X5PPrxrB5R+nE2rxTgufx5S1vQkc55EUslEpZMBIqMyFooRwfxTYmGq387ukvQezFV+V2yQxe7csreJG49FV+uBCYKcvtyUPlUsLyEhYUCvUrR0/ffMRdNgcAxF+xgJd/+WZKQnEpch7z8OxpebkZGSvg6VuAO3GafdE3tfugRhsa67NqoHuuziFaHo0EtZwKJycntQ99sm7dOixatAgtWrRAVlYWrl27pnbaiIgIDBo0CDdv3sSYMWMAKFs9jhw5gt9//x2///47zp07h2XLllWZ/tdff0WLFi2waNEiZGVlISsrSyPbT58+jaSkJPz111/4/fffUVJSgj59+kAkEuHChQu4dOkShEIh+vbtW21LhkwmQ35+vspRFUIzOaQS5aUszOdAaFbehM2u8CzV5WMlNJNDWvDKhgJVGxqyHkOVndCsFFKJ8q2ttLu0XDar6hpj3qZELNl1B/GXxFWer4qSgnKHwUioQEl+ueX2vWQ4/YklTg2yhOv/Famku7VGWCmsJgRmckgLlPmRFnAgEJWXG6tCrcJ6reBGhz/Ab9GquybWrEe13ASi8nJjVyi3MjW9Bj3BmaPWassvo6ndBzXb0DifVUPdcxTdaNAbionFYohEInA4nGo3QKmOL774glmKtAyFQoHo6Gimi2PEiBE4ffo0lixZUim9paUlOBwORCKRxroBQCAQYPv27czg1b1790KhUGD79u1Mq8euXbtgbm6Os2fP4v33K29CFRkZiYULF9aqq7CAA75Q+cXJF8khyS//5KxYTSnq0NstLOCAL3plg1DVhoasx1BlV1hgBL5QWQkq7a760avYxPntRE9Y2cowJ+oupn7aVi09xkKCUolSRqmEDWOzcsMTNvPR+3flGjOXxothE6B0ZpN3m8KsdSmsOqjXTQgoK3W+qDw/hQUVyq1CWRFF+f8DRz9GRoopbv+nfhej9LVyKywoLzfV68MCm0PQoesLLAnxhodvATShqd0HNdvQOJ9VQ91zdYk+dilt6Gg8+6Ox0LFjx0phzs7OKmMm7Ozs8PTp0zrR37ZtW5XZMNevX0dKSgpEIhGEQiGEQiEsLS3x8uVLpKamVilj1qxZyMvLY44HDx5UGS8hRgC/rspK1L9rARJjy5tJC3I5sLIrhqVNMePl1wUJMfxyGwIlSIzRT1NtXesxVNklxAnh1yVPqScgD4nxwgp6jGBlK4OldTHzFWvMVdaMRYUcvJSq/5ha+pXg6T/K++7pFWNY+pY7CmwuwDEhMDIlUJQoK6gnl7h4Fm8Mzwma9XcnxArh/46y5cwvIB8Jca/np1glP+0D8+DdQYJ9GzQb1JgQbwbfLrlKPV1ykRhf3q1RkGuMZjYyWFrLIJVwYNGsGM3tZFi07RbeG/AUo6alQ2imnqPU1O6DGm1orM+qge65OkXbro9G1AXSoFsqqoLNZldaubOqgZgCQeUbuOLMDkA59qJszY261i+RSNChQwf8+OOPleI2b968Sl08Hq/abW0rknKLj2IZC6sPJSH1Dh9PM7kYNjkL+zfYYc9qO8zelAYAiJqjHNHeZ2gOBozMhshcDqG4FBvntqxVR6023OSjWPYCqw+nIPW2CZLi62aktb71GKrsUm8LUSzLxsr9t3AvQYDsRzwMnfAQBza3wJ51jpi5LhkAsClCORtg5rq7EJrJwWYTRK9S//pYtCnFfR7B2f8zh7lnKfh2CiRu4cPzaylaDS3C2eHK2RAunym7OuIXC2EsJDgfZA6RixztF6r3hZ9yW4BiGRurfrqD1Dt8ZGdyMXTSIxzYaI+9ax0wa0MKAGDjfGWX6MSI+5AWcLBifyIe3jPB+jkuNYkvL7c7QpTI2Fix9zruJQqQncXDkPEZOLi1JfZucMKs7xKV5baoNZ495WHKZ8rB4sOD7+N2jBkk+cY1iS/PTxO7D2rMa2N9Vg10z9UtLGjfidY4WipYpIGvrb127VqsXbuWGdDYuXNndOvWDStWrAAA5Ofnw9bWFuHh4cxgTRaLhcOHDzPbvQLKMRZHjhxRWefiddndu3eHn58fMxDU3d0d48ePx/Tp05k0mzdvRkREBB4/fsx0YwwfPhyXLl1i5IwaNQq5ubk4cuQIk27btm2YMWMG0tPT1dq2tiry8/MhFovRnf0JjFjqVZZao6ibftZ6g113rTSVVJnU7gjqg0Ex6QbR86ufY+2R9ABbDQdaH8gldTMw8XUMdR8opHUze6M+YRngXiglJTgj+wl5eXla18nqUlZ3O26JANvURCsZiqKXePB1hEHs1QWt29OKi4vx8OFDZGRkqBx1TY8ePbBnzx5cuHABN2/eRFBQEDicunlhODs74/z588jMzEROTg4ApeORnZ2NFStWIDU1FRs3bsQff/xRq6zhw4fDysoKH3/8MS5cuIC0tDScPXsWISEhePjwYZ3YT6FQKJQGxBvQ/aGxU5GcnIzAwECYmprCyckJLi4ucHFxgbOzM1xc6r55adasWejWrRv69++PDz/8EAMHDkTr1q1rT6gFixYtQnp6Olq3bs10UXh5eWHTpk3YuHEjfH198e+//yI0NLRWWXw+H+fPn0fLli3xySefwMvLC19++SVevnzZoL1OCoVCoeiJN8Cp0Lj7IyAgAEZGRpg5cybs7OyYLoAyfH199WogpRza/aEDtPtDa2j3h3bQ7g/tabLdHxsX6tb9MWlBg+/+0HigZnx8PGJiYuDp6VkX9lAoFAqFQmmkaOxUeHt7M+MLKBQKhUKhqAfdpfQVFVd0XL58OcLDw3H27Fk8e/ZMrRUfKRQKhUJ543kDxlSo1VJhbm6uMnaCEIKePXuqxCGEgMViQS5vYn3xFAqFQqHoA8JSHtqmbQSo5VScOXOmru2gUCgUCoXSyFHLqejWrRvzf0ZGBhwdHSvN+iCEVLuMNIVCoVAobzosojy0TdsY0HigpouLC7KysmBtrboT4PPnz+Hi4kK7PwyBQq66LR+lQWGoKX6Gmuq5/u7fBtET4t7DIHoMNV1a8VJmED1NEVJSWnskXXWQutdRWSm0HxvRVJ2KsrETryORSGBiot38WwqFQqFQmjx0TEU506ZNA6DcV2PevHng88s3h5HL5bh69Sr8/Pz0biCFQqFQKJTGgdpORVxcHABlS8XNmzdVtvXmcrnw9fVVa7lqCoVCoVDeSGj3RzllM0BGjx6NdevWNehlQikUCoVCaXBQp6Iyu3btqgs7KBQKhUJp2lCnojI9etQ8Qvvvvw0zUpxCoVAoFErDQmOn4vVdSEtKShAfH49bt24hKChIb4ZRKBQKhdKkoLM/KvPdd99VGR4REQGJRKKzQfqme/fu8PPzw9q1a7VKn56eDhcXF8TFxdHZLRQKhULRGrr4lQb83//9Hzp16oRVq1bpS6Re+PXXX2FsbFzfZtQb4yMy4e5bhOSbptgy36FJ6NK3nvELHsK9XSGSb/GxZUH5glJOHkUIicwAiwVsmO2ItAQ+hk3OwoCgHJw82Ay7V9rrrBvQf36+mnsf7u0KkXJLgC2LnJhwJ3cpQhanAywgap4z0hL5CFmSBif3IoAAUfOVYepyaJELMm4I4OhTiE8j0pjwxAtiHFvtBGOeAp8vSYWtaxGuHLTGifWOaNUxH0Hrkhtkfqqjqd1vAH1W6403YEyF3pZlvHLlSoNc/MrS0hIikai+zagRQghKS/W/uptrWylMBQpMH+QKY2MCd9+6W+nRULr0rcfVRwpTgRzTB3u8klfInAsKe4Rlk1ywZIILgkKzAAB/7LfC8hBnnXSq6Nd3ftoUwlSgQOjn3jAyJnBvV956OHJaJiK/aY2lwa4YOe0hAODgZntM/8wbq8NbYXhIptp6HtwUQFbIxtRfbkFewsL960Lm3B/rHBG87xaC1ifh+HctAQBtez9H8I+3G2x+qtXfxO43gD6rlLpFY6fik08+UTkGDRqEt99+G6NHj8b48ePrwkad6N69O6ZMmQIAcHZ2xtKlSzFmzBiIRCK0bNkS33//vUr8f//9F/7+/jAxMUHHjh2Z9Tkqcu7cOXTq1Ak8Hg92dnaYOXOmilMgk8kQEhICa2trmJiYoGvXrrh27Rpz/uzZs2CxWPjjjz/QoUMH8Hg8XLx4Ue9592wvRex5pUMVd0EIr46FtaRo+Lr0rcezfSFizyunR8ddFMGrQ7k8oViO7Cwunj3mQiBWLu2cm2MMoscvBr3nx1+C2Iuv8nPJDF7ty1/CInEpcrJ4ePaEC4GZMj9PHvIAAPISFhQK9fts0+JE8AzMBQB4BOQhLVbVcefxFRDblCDnvvJDQ2hZCjZH84IzVH6q1d/E7jelDfRZpdQdGjsVYrFY5bC0tET37t1x/PhxLFiwoC5s1CurV69mnIWJEydiwoQJSEpKAqBcarx///7w9vZGTEwMIiIiKi3olZmZiX79+uGtt97C9evXsXnzZuzYsQOLFy9m4oSHh+PQoUPYvXs3YmNj4erqij59+uD58+cqsmbOnIlly5YhISEB7dq1q2SrTCZDfn6+yqEJQjM5pAXKS1xYwIHQrO72PDCULn3rEZrJIZW8kpevKo9d4Z1UV0Ok9J0fgZkc0gIOAEBawIFAVC6v4nYxr6+0Pzr8AX6LtlFbT1G+EUyEStkmZqUoylftSc3PNsbjFFM8STHVMAeqGCo/1dHU7jfGBvqs1gsslI+r0Piob+PVRKMxFXK5HKNHj0bbtm1hYWFRVzbVKf369cPEiRMBADNmzMB3332HM2fOwMPDA/v27YNCocCOHTtgYmKCNm3a4OHDh5gwYQKTftOmTXB0dERUVBRYLBY8PT3x6NEjzJgxA/Pnz0dRURE2b96M6OhofPDBBwCAbdu24a+//sKOHTsQFhbGyFq0aBF69+5dra2RkZFYuHCh1nktLOCAL1IAAPhCOST5HK1lNRRd+tZTWMABX/hKnkhVXsWPHEUdffHoOz/SAg74r168fKEchQUV8lMhD0RR/v/A0Y+RkWKK2/+p301oKirFS4lS9ssCDkzNylvqBs66j+hgD1i0eIlWHTVzhF/HUPmpjqZ2vzE20Ge1fngDZn9o1FLB4XDw/vvvIzc3t47MqXsqtgiwWCzY2tri6dOnAMC0GFQcG9KlSxeV9AkJCejSpYvKpmoBAQGQSCR4+PAhUlNTUVJSgoCAAOa8sbExOnXqhISEBBVZHTt2rNHWWbNmIS8vjzk03Vo+IYYPv64FAAD/QAkSYwQapW+IuvStJyFGUC6vawESY8vlFeRyYGVXDEubYuZrWd/oPT+xQvi/o3yR+wXkIyGufKxDQa4RrGyLYWldDOkrh6B9YB68O0iwb4NmA9lc2hfg7iVzAEDSRXM4+xeUn+tQgJCDt9An+CFsXIsaRX6q1d/E7jelDfRZrTeIjkcjQOPuDx8fH9y7d68ubDEIr88EYbFYUCgU1cSuWwSCmh8yHo8HMzMzlUMTUm7yUSxjY/XhFCgUQFK87iPh61uXvvWk3OKjWMbC6kNJUChYeJrJxbDJyoFee1bbYfamNMzdkoYfVtkBAPoMzcFX8x6ix6DnmLQ4o+Hl57YAxTI2Vv10BwoFkJ3JxdBJjwAAe9c6YNaGFMzZmIIf1ihH4k+MuA/bFjKs2J+IkCVpNYlWwbFtIYx4Cnz3qQ/YHAJLexlObmgBADi5oQXWD/HB/5Y74YNvlI7wrdMW+GGKO+5eMsf28R4NLj/V6m9i9xtAn1VK3cIiRLOhLCdOnMCsWbPw7bffokOHDpVejA1tT5CK61Q4OztjypQpzMBNAPDz88PAgQMRERGB77//HrNnz8bDhw+Z1oqtW7fi66+/ZtapmDNnDg4dOoSEhASmtWLTpk2YOXMmcnNzUVRUBEtLS+zatQtffPEFAOUCYS4uLpgyZQpCQ0Nx9uxZvPfee3jx4gXMzc3Vzkt+fj7EYjG642MYsd7cabJawTbg14ui7sauVITF4xlEz/q7hlklN8S95tV69QWRyQyix2D3nIHuN4NigLIrJSU4q/gVeXl5df7eKqu7nZYuAVvLWZKKly9xf/Ycg9irCxq3VPTr1w/Xr1/HRx99hBYtWsDCwgIWFhYwNzdvtOMsyvjiiy/AYrEwbtw43LlzB8ePH6+07sbEiRPx4MEDTJ48GYmJifjtt9+wYMECTJs2DWw2GwKBABMmTEBYWBhOnDiBO3fuYNy4cZBKpfjyyy/rKWcUCoVCqW+0HqSpw6JZhkbjxa/KdittigiFQvzvf//D119/DX9/f3h7e2P58uUYPHgwE8fBwQHHjx9HWFgYfH19YWlpiS+//BJz585l4ixbtgwKhQIjRoxAQUEBOnbsiJMnTzZ6p4tCoVAoOvAGLH6lcfcHpf6g3R86QLs/tIZ2f2gJ7f7Qniba/eG8WLfuj/S5Db/7Q6tlunNzc/Hvv//i6dOnlQY5jhw5Ui+GUSgUCoXSpHgDWio0dir+97//Yfjw4ZBIJDAzM1OZWslisahTQaFQKBRKFbwJG4ppPFBz+vTpGDNmDCQSCXJzc/HixQvmeH3FSAqFQqFQKK8oW/xK26MRoLFTkZmZiZCQEPD5dbfmAYVCoVAolMaHxk5Fnz598N9//9WFLRQKhUKhNF3egBU11RpTcfToUeb/Dz/8EGFhYbhz5w7atm1baYXKjz76SL8WUigUCoXSBHgTxlSo5VQMHDiwUtiiRYsqhbFYLMjlTXB6E6XuaILT7jgGmu5FSktrj6QHJru8axA9K++dM4ieMOe3DaKnSU71pOgGnf2hpL72xqBQKBQKhdJ40HhMxQ8//ABZFYvHFBcX44cfftCLURQKhUKhNDl0WaK7kbRUaOxUjB49Gnl5eZXCCwoKMHr0aL0YRaFQKBRKk4MO1KwMIURlwasyHj58CLFYrBejKBQKhUJpctAxFeX4+/uDxWKBxWKhZ8+eMDIqTyqXy5GWloa+ffvWiZEUCoVCoVAaPmo7FWUzQOLj49GnTx8IhULmHJfLhbOzs8punhQKhUKhUMqhU0orsGDBAgCAs7MzhgwZAhMtd1qjUCgUCoXSNNF4TEVQUBAA5WyPqnYpbdmypX4s04Du3bvDz88Pa9eurXRu1KhRyM3NxZEjR7SWrw8ZFAqFQnnDoWMqKpOcnIwxY8bg8uXLKuFlAzgb2uJX69atAyHlV6MmB6QpMj4iE+6+RUi+aYot8x0aja7xCx7CvV0hkm/xsWWBIxPu5FGEkMgMsFjAhtmOSEvgY9jkLAwIysHJg82we6W9rtkot0HPZTduZircfCRIvSPE1qWtmXAnt0IER6SAxQKiIlyRflcAAODy5Nh56hpWhXsg/oqF2nq+mpMONx8JUm4LsHWxSwU9Ukz+9h7AAqLmuyA9SYDxc9PQ2rsQxlyCbUudcCdW/YW76uMaHV3khIc3BXBoU4iPI+4z4XcviHFydQsYmyjwyeI0WLu+1FrH6zTWZ6gp6mkI9QKlZjSeUjpq1Ciw2Wz8/vvviImJQWxsLGJjYxEXF4fY2Ni6sFEnxGIxzM3N69uMesG1rRSmAgWmD3KFsTGBu6+0Uehy9ZHCVCDH9MEer2QVMueCwh5h2SQXLJnggqDQLADAH/utsDzEWdcsqNqg57Jr7S2BKV+B8P/zhZGxAm4+Bcy5ESH3sXy6JyKneGLEN+lMeJ/PHuP+KwdDbT1tJDDhyxE2zEdpd1sJc27k1Awsm+qGyBA3jJz6AACwfZkTwr/wQWSIO4ZMyFRbT31co4e3+JBJ2Zj48x2UlrDx4Hp52Zxa74Dx+xLwxfoU/PmdYw1SNKOxPkNNUU9DqBd0Rds1KnQZi2FoNHYq4uPjsXXrVnzwwQfw8/ODr6+vytEQOHbsGMRiMX788UeMGjWKGWQ6atQonDt3DuvWrWNmsqSnpwMAbt++jf79+8PMzAwikQiBgYFITU1Vkbtq1SrY2dmhWbNmmDRpEkpKSphzMpkMoaGhcHBwgEAgQOfOnXH27FnmfHR0NMzNzXHy5El4eXlBKBSib9++yMrKqrNy8GwvRex5EQAg7oIQXh0La0nRMHR5ti9E7HnlF3PcRRG8OpTLEorlyM7i4tljLgRiZatYbo4xiJ4fOH2XnadvPuIumwMA4q9YwMs/nzknFJci5zEPz57yIDRTLr1tZKyAp28B7sRptuS3p58EcZeUU7vjLovh6V/uvAjFcuRk8fDsSbkeeamyCjARyHEvUX0Hpj6uUUacCO5dlWvkuHXNw/1Ykcp5Ll8BM+sSPMvg6aaoAo31GWqKehpCvaAXmvAaFYAWToW3tzdycnLqwha9sG/fPgwbNgw//vgjhg8frnJu3bp16NKlC8aNG4esrCxkZWXB0dERmZmZePfdd8Hj8fD3338jJiYGY8aMQWmFvRXOnDmD1NRUnDlzBrt370Z0dDSio6OZ88HBwbhy5QoOHDiAGzdu4LPPPkPfvn2RnJzMxJFKpVi1ahX27NmD8+fPIyMjA6GhodXmRSaTIT8/X+XQBKGZHNIC5SUuLOBAaFZ3XVP61CU0k0MqeSUrX1UWu8ISKZVXS9Ef+i47gVkppBIOI08gKr+32BU+Qcry1GvQE5w5aq2xHuFresqcBwBgVfOpM29TIpbsuoP4S+qvM1Mf16gonwOeUKnHRFSKonzVfWMKso3xNMUET1JM9aazsT5DTVFPQ6gXdKYeFr/auHEjnJ2dYWJigs6dO+Pff/9VK92BAwfAYrGq3PurJjR2KpYvX47w8HCcPXsWz5490+mlp282btyIiRMn4n//+x/69+9f6bxYLAaXywWfz4etrS1sbW3B4XCwceNGiMViHDhwAB07doS7uztGjx4NDw8PJq2FhQWioqLg6emJ/v3748MPP8Tp06cBABkZGdi1axd+/vlnBAYGonXr1ggNDUXXrl2xa9cuRkZJSQm2bNmCjh07on379ggODmZkVEVkZCTEYjFzODpq1qxbWMABX6QcSMsXyiHJr7vNu/Spq7CAA77wlSyRqqyKz5WiDr13fZedtMAI/FcvRL5QjsKC8uFMqnligc0h6ND1Bf67YKmF3ap6JPlVD5sipLzq/XaiJ6Z+2hajQjM00GP4a2QikkP2ymGSSTgwrfBS6TczAz9OdsXfmx3g3LGgOhEa01ifoaaopyHUC42NgwcPYtq0aViwYAFiY2Ph6+uLPn364OnTpzWmS09PR2hoKAIDAzXWqbFT0atXL/zzzz/o2bMnrK2tYWFhAQsLC5ibm8PCQv3BZPrml19+wdSpU/HXX3+hW7duGqWNj49HYGBgpW3cK9KmTRtwOOU3sZ2dHXNhbt68CblcDnd3dwiFQuY4d+6cShcKn89H69atq5RRFbNmzUJeXh5zPHjwQKN8JcTw4ddVWcH6B0qQGKNZ/3x96UqIEZTL6lqAxNhyWQW5HFjZFcPSphjSgrqr4PVddgnxZvDtkgsA8OuSi8T48m6NglxjNLORwdJaBqmEA4tmxWhuJ8Oibbfw3oCnGDUtHUKzkmokv6YnTgi/LsouAv+APCTGl68nU5BrBCtbGSyti5nWDGOuspIuKuTgpVT96qA+rpFT+wIkv2pNSb4oRssKXTvOHST4+kACegZnwqZ1kd50NtZnqCnqaQj1gq4YekzFmjVrMG7cOIwePRre3t7YsmUL+Hw+du7cWW0auVyO4cOHY+HChWjVqpXGOjWe/XHmzBmNlRgCf39/xMbGYufOnejYsWOVS4lXh6lp7c2lrzscLBaLmU4rkUjA4XAQExOj4ngAUFkkrCoZpIZOPx6PBx5P+/7hlJt8FMteYPXhFKTeNkFSPF9rWYbUlXKLj2IZC6sPJSH1Dh9PM7kYNjkL+zfYYc9qO8zelAYAiJqjbLnpMzQHA0ZmQ2Quh1Bcio1zdZ/WrO+yS70jRImMjRV7r+NeogDZWTwMGZ+Bg1tbYu8GJ8z6LhEAsGlRazx7ysOUz/wBAMOD7+N2jBkk+dU7vCp6bgtRLMvGyv23cC9BgOxHPAyd8BAHNrfAnnWOmLlO2R23KUI5K2TmursQmsnBZhNEr1K/3OrjGrXwkcKYp8Cmz7xh7y2FuX0xTkfZo2fwI5yOskfyRTH4FqUYvDRNY9nV5rORPkNNUU9DqBd0xoBTSouLixETE4NZs2YxYWw2G7169cKVK1eqTbdo0SJYW1vjyy+/xIULFzQ2k0Vqeqs1EsqmiU6cOBHdu3fHJ598gqioKACV15h4//334eHhgQ0bNjDpFy5ciN27dyMpKanK1oqq1qmYMmUK4uPjcfbsWdy9exceHh44f/58tc1F0dHRmDJlCnJzc5mwI0eOYNCgQTU6FhXJz8+HWCxGd3wMI5Z6L5kGD9tAXxUKw0115phpNrhSW0iFMT91ieJl5V2J64KV9y4ZRE+Y89sG0UPRAQPUC6WkBGcVvyIvLw9mdfzMltXd7qFLweFpt3CkXPYSd1fNxoMHD1Tsre7j89GjR3BwcMDly5fRpUsXJjw8PBznzp3D1atXK6W5ePEihg4divj4eFhZWWm1RpPGLRXnz5+v8fy7776rqUi94e7ujjNnzqB79+4wMjKqci0KZ2dnXL16Fenp6RAKhbC0tERwcDA2bNiAoUOHYtasWRCLxfjnn3/QqVMnlXEVNekdPnw4Ro4cidWrV8Pf3x/Z2dk4ffo02rVrhw8//LAOckuhUCiUN43Xx9YtWLAAEREROsstKCjAiBEjsG3bNlhZWWktR2Ononv37pXCKnY11PfiVx4eHvj777/RvXv3Sl0RABAaGoqgoCB4e3ujqKgIaWlpcHZ2xt9//42wsDB069YNHA4Hfn5+CAgIUFvvrl27sHjxYkyfPh2ZmZmwsrLC22+/XeWAUQqFQqG8geih+6OqloqqsLKyAofDwZMnT1TCnzx5Altb20rxU1NTkZ6ejgEDBjBhZV38RkZGSEpKUhkTWB0ad3/k5eWp/C4pKUFcXBzmzZuHJUuWoGfPnpqIo2gA7f7QAdr9oTW0+4NicJpq98c0Hbs/1szWyN7OnTujU6dOTHe/QqFAy5YtERwcjJkzZ6rEffnyJVJSUlTC5s6di4KCAqxbtw7u7u7gcrm16tS4pUIsrjyXvXfv3uByuZg2bRpiYmI0FUmhUCgUSpPH0LuUTps2DUFBQejYsSM6deqEtWvXorCwEKNHjwYAjBw5Eg4ODoiMjISJiQl8fHxU0petRv16eE1o7FRUh42NDZKSkvQljkKhUCgUig4MGTIE2dnZmD9/Ph4/fgw/Pz+cOHECNjY2AJRrLLHZGq8sUSMaOxU3btxQ+U0IQVZWFpYtWwY/Pz992UWhUCgUStOiHnYpDQ4ORnBwcJXnKm4lURUVV41WF42dCj8/vyrXV3j77bdrXFCDQqFQKJQ3Grr1eWXS0lQXlmGz2WjevDlMTLQbfEKhUCgUypuAocdU1AcaOxVOTk51YQeFQqFQKJRGjlYDNc+dO4dVq1YhISEBgHLn0rCwMK02H6FoAZsDsOp4ypWhpmAacKqnoZAbaGM9Nr/uloxWwUDXyFBTPcNTbxpEz2p/9de50QVD3W8AwNJh2wBNICWGmS5tcN6A7g+Nh33u3bsXvXr1Ap/PR0hICEJCQmBqaoqePXti3759dWEjhUKhUCiNHkNvKFYfaNxSsWTJEqxYsQJTp05lwkJCQrBmzRp8++23+OKLL/RqIIVCoVAoTQLaUlGZe/fuqSzjWcZHH31UaRAnhUKhUCiUNweNnQpHR0ecPn26UvipU6cqbXRCoVAoFArlFUTHoxGgcffH9OnTERISgvj4eLzzzjsAgEuXLiE6Ohrr1q3Tu4EUCoVCoTQFWK8ObdM2BjR2KiZMmABbW1usXr0aP/30EwDAy8sLBw8exMcff6x3AykUCoVCaRK8AWMqNHIqSktLsXTpUowZMwYXL16sK5soFAqFQqE0QjQaU2FkZIQVK1ag1EBbLjcUWCwWjhw5Ut9mUCgUCqURQ6eUVkHPnj1x7tw5ODs714E5hiMiIgJHjhxBfHx8fZuiF8YveAj3doVIvsXHlgXlA2adPIoQEpkBFgvYMNsRaQl8DJuchQFBOTh5sBl2r7TXnw0RmXD3LULyTVNsme+gN7lUj2Z8NScdbj4SpNwWYOtiFybcyU2Kyd/eA1hA1HwXpCcJMH5uGlp7F8KYS7BtqRPuxJrprL+xltvpxXZ4ctMUNm2K0HN+FhOeeNwM/25rDhYLeHvCU7j1LsDREEcU5hhBXsxG6UsWRv2eoraecTNT4eYjQeodIbYubc2EO7kVIjgiBSwWEBXhivS7AgAAlyfHzlPXsCrcA/FXLHTOJ1AH99zc+3BvV4iUWwJsWVS+6rKTuxQhi9OV99w8Z6Ql8hGyJA1O7kUAAaLmK8PUtrsB1HM68QZ0f2g8++ODDz7AzJkzERoaiv379+Po0aMqB0U7SkpKtE7r6iOFqUCO6YM9YGxM4O5byJwLCnuEZZNcsGSCC4JClRXlH/utsDzEWVeTVW1oK4WpQIHpg1xf2SDVq3yqRz1at5HAhC9H2DAfpby2EubcyKkZWDbVDZEhbhg59QEAYPsyJ4R/4YPIEHcMmZCpk26g8Zbb41smKClk44uD9yAvYSHrhilz7r+dVhi27x6G7ruHazutAAAfrX+AYfvS0GlcNlq/V6C2ntbeEpjyFQj/P18YGSvg5lOedkTIfSyf7onIKZ4Y8U06E97ns8e4/8rB0Af6LjvXNoUwFSgQ+rk3jIwJ3NtVuOemZSLym9ZYGuyKkdMeAgAObrbH9M+8sTq8FYaHqH/PNYR6Ti804ZkfgBZOxcSJE/HkyROsWbMGw4cPx8CBA5lj0KBBdWFjlchkMoSEhMDa2homJibo2rUrrl27BkC5Xau5ublK/CNHjoDFYjHnFy5ciOvXr4PFYoHFYjFbvCYnJ+Pdd9+FiYkJvL298ddff1XSffPmTfTo0QOmpqZo1qwZvvrqK0gk5Q+SQqHAokWL0KJFC/B4PGYP+zLS09PBYrFw8OBBdOvWDSYmJvjxxx+1LgvP9oWIPa/8woy7KIJXh/KHTSiWIzuLi2ePuRCIlcst5+YYg+j5JvVsL0XseZHShgtCeHUsrCUF1VMXejz9JIi7JFbKuyyGp3/5S0soliMni4dnT3gQmim7MOWlyirARCDHvUTdX1yNtdyy4vlw7qp8hp0CJHgUW/71bO5UjBIpGyWFbPCECpV0yX+awa1Pnvp2++Yj7rI5ACD+igW8/MuX2BaKS5HzmIdnT8uvj5GxAp6+BbgTp3sLEmODvu85fwliL76qfy6Zwat9eV0oEpe+uue4EJgp658nD5VLfctLWFAo1J/T0BDqOUrtaOxUKBSKag+53HD7OISHh+PQoUPYvXs3YmNj4erqij59+uD58+e1ph0yZAimT5+ONm3aICsrC1lZWRgyZAgUCgU++eQTcLlcXL16FVu2bMGMGTNU0hYWFqJPnz6wsLDAtWvX8PPPP+PUqVMq+9WvW7cOq1evxqpVq3Djxg306dMHH330EZKTk1VkzZw5E9988w0SEhLQp0+fSnbKZDLk5+erHFUhNJNDKlFeysJ8DoRm5deBXeGZrcspSUIzOaQFr2woULWB6jGcHqFZKaQSTgV55eOfWNV0ys7blIglu+4g/pUzopv+xlluL/M54AqVMngiOV4WlO+t4/5+PqI/ckP0ADe0H/mMCZeXANl3TWDr81JtPYLXro9AVH592BWuT9mz2mvQE5w5aq1NlqpF32UnMJND+qq8pAUcCETl8lgV3jCs1yqg0eEP8Fu0jdp6GkI9pytvwpgKjZ2KhkBhYSE2b96MlStX4oMPPoC3tze2bdsGU1NT7Nixo9b0pqamEAqFMDIygq2tLWxtbWFqaopTp04hMTERP/zwA3x9ffHuu+9i6dKlKmn37duHly9f4ocffoCPjw969OiBqKgo7NmzB0+ePAEArFq1CjNmzMDQoUPh4eGB5cuXw8/PD2vXrlWRNWXKFHzyySdwcXGBnZ1dJTsjIyMhFouZo7rFxQoLOOC/+oLii+SQ5JdXiBXvQ0Ud3pSFBRzwRa9sEKraQPUYTk9hgRH4r16OSnlVD5sipLzq/XaiJ6Z+2hajQjN00q3U3zjLjSeSo/jVy75YwoFJhRfj5Q3W+PLEXXx58i4ubyh/wT+4KoRjZ82+8qWvXZ/CgvLro/qsssDmEHTo+gL/XbDUIkfVo++ykxZwwBdVzFOF+qdCpkiFRp6Box8jI8UUt/8TaWZ3PddzOvMGLH6ltlNRVFSE33//nfk9a9YsTJs2jTnCwsLw8qX6HrsupKamoqSkBAEB5bsAGhsbo1OnTszOqdqQkJAAR0dH2NuXD+rp0qVLpTi+vr4QCMqbigMCAqBQKJCUlIT8/Hw8evRIxbayOK/b1rFjxxrtmTVrFvLy8pjjwYMHVdsdI4BfV2Uzt3/XAiTGlttWkMuBlV0xLG2Kma+JuiAhhl9uQ6AEiTH66wOmejSQFyeEXxdlc7x/QB4S44XMuYJcI1jZymBpXcx8LRtzlZV0USEHL6W6f2M01nKz95fi/mWljPRLQtj7l48z4HAJjE0VMOYrIC8pd8bu/mkG9/fV7/oAgIR4M/h2yQUA+HXJRWJ8ebdGQa4xmtnIYGktg1TCgUWzYjS3k2HRtlt4b8BTjJqWDqGZ9mOvGBv0fc/FCuH/jrIV1S8gHwlxr99zxSr3XPvAPHh3kGDfBs0GTzaEek5X3oSWCrVnf+zevRvHjh1D//79AQBRUVFo06YNTE2VA5oSExNhb2+vstFYfcFms0Fe60zTZSBkXVHRMakKHo8HnhpbDafc4qNYxsLqQ0lIvcPH00wuhk3Owv4Ndtiz2g6zNyn3ZImao2zp6DM0BwNGZkNkLodQXIqNc1vqnJeUm3wUy15g9eEUpN42QVJ83WzLTfXUTOptIYpl2Vi5/xbuJQiQ/YiHoRMe4sDmFtizzhEz1ym74DZFKGeFzFx3F0IzOdhsguhVb+59YOvzErd5BPuGtIK1VxFE9iW4srE5ukzKht8Xz/Dj58pZGr5Dld2rhACP4vjoHfFIIz2pd4QokbGxYu913EsUIDuLhyHjM3Bwa0vs3eCEWd8lAgA2LWqNZ095mPKZPwBgePB93I4xgyTfWKd8Avovu5TbAhTL2Fj10x2k3uEjO5OLoZMe4cBGe+xd64BZG5QzYzbOV84KmRhxH9ICDlbsT8TDeyZYP8elJvHlehpAPUepHRZ5/e1bDYGBgQgPD2c2ExOJRLh+/TpatWoFQLkl+saNG3HlypW6s/YVhYWFsLS0xK5du5hdUUtKSuDi4oIpU6agTZs2+PDDD1FQUMC8uOfMmYOlS5cyzsbSpUuxf/9+3Lx5k5H7559/4sMPP0RGRgbTHXHy5En07dsXhw8fxsCBA7Ft2zbMmDEDDx48YGQfP34cAwYMwKNHj2BjYwMHBwdMmjQJs2fPZmR36tQJnTp1QlRUFNLT0+Hi4oK4uDj4+fmpne/8/HyIxWJ0Z38CI5bulUuNKAw3PoaiHWx+3bywX0chrZsZHPVFeOrN2iPpgdX+AbVH0gPyasZa1QUsNT5y9AEpqfu1kEpJCc4qfkVeXh7MzPQ3ELYqyurutl8uBYdropUMefFL3Nwx2yD26oLa7Z0pKSlo27Yt89vExARsdnnyTp064c6dO/q1rhoEAgEmTJiAsLAwnDhxAnfu3MG4ceMglUrx5ZdfonPnzuDz+Zg9ezZSU1Oxb98+ZnZHGc7OzkhLS0N8fDxycnIgk8nQq1cvuLu7IygoCNevX8eFCxcwZ84clXTDhw+HiYkJgoKCcOvWLZw5cwaTJ0/GiBEjYGOjHHQUFhaG5cuX4+DBg0hKSsLMmTMRHx+Pb775xiDlQ6FQKJSGx5vQ/aG2U5GbmwuZTMb8zs7OVlkAS6FQqJyva5YtW4bBgwdjxIgRaN++PVJSUnDy5ElYWFjA0tISe/fuxfHjx9G2bVvs378fERERKukHDx6Mvn374r333kPz5s2xf/9+sNlsHD58GEVFRejUqRPGjh2LJUuWqKTj8/k4efIknj9/jrfeeguffvopevbsiaioKCZOSEgIpk2bhunTp6Nt27Y4ceIEjh49Cjc3N0MUDYVCoVAaIm/AQE21uz/c3NyYF3lV/PTTT5g9ezZSUtRfWY6iGbT7g1IR2v2hHbT7Q3to94d2lNXd7Ubr1v1xY1cT6v7o168f5s+fX+UMj6KiIixcuBAffvihXo2jUCgUCqXJ8Aa0VKg9+2P27Nn46aef4OHhgeDgYLi7uwMAkpKSEBUVhdLSUpWBiRQKhUKhUMrRZWxEYxlTobZTYWNjg8uXL2PChAmYOXMmM4uCxWKhd+/e2LRpEzNQkUKhUCgUymvo0uLQ1JwKAHBxccGJEyfw/PlzZuyEq6srLC31u+IbhUKhUChNDRYhYGm5IYm26QyNxlufA4ClpSU6deqkb1soFAqFQqE0YrRyKigUCoVCoWgI7f6gUCgNFcVLw60L05RY0bpt7ZH0wO+ZZwyip79DB4PoAQwz1ROAYaa0E8NPm6cDNSkUCoVCoeiHN6ClolFufU6hUCgUCqXhQVsqKBQKhUIxALT7g0KhUCgUin54A7o/qFNBoVAoFIoBeBNaKuiYCgqFQqFQKHqBtlRQKBQKhWIIaPcHhUKhUCgUfdFYujG0hToVTYTxCx7CvV0hkm/xsWWBIxPu5FGEkMgMsFjAhtmOSEvgY9jkLAwIysHJg82we6W9/myIyIS7bxGSb5piy3wHvcmlejSUV8/3QmMtN0Pp2bagBZJv8NG6rRTjFz1kwuPOi7B3hT24JgQTl92Ho6sMxS9Z2DynJZ5kcNHS4yW+XvxAZ/0AvefqDUKUh7ZpGwF0TEUtyOVyKBSK+jajRlx9pDAVyDF9sAeMjQncfQuZc0Fhj7BskguWTHBBUGgWAOCP/VZYHuKsXxvaSmEqUGD6INdXNkj1Kp/qUVNePd8LjbXcDKUn5aYpiqRsrDh8F6XFbNyN5zPn9n9nhyU/JSNs4z3sW6V82R7daY1uA59j6c/JenMo6D1HqUuanFPRvXt3BAcHIzg4GGKxGFZWVpg3bx6zVbtMJkNoaCgcHBwgEAjQuXNnnD17lkkfHR0Nc3NzHD16FN7e3uDxeMjIyMDZs2fRqVMnCAQCmJubIyAgAPfv32fSbd68Ga1btwaXy4WHhwf27NmjYheLxcL27dsxaNAg8Pl8uLm54ejRo3rJs2f7QsSeNwMAxF0UwatD+UMtFMuRncXFs8dcCMTKZWlzc4z17vR6tpci9rxIacMFIbw6FtaSguqpCz31fS801nIzlJ6kGCH8AwsAAH6B+UiMEaicN+ErYGlTiqz7PADAzSsiXP1LjJmfuuPqn2KddJdB77n6o2z2h7ZHY6DJORUAsHv3bhgZGeHff//FunXrsGbNGmzfvh0AEBwcjCtXruDAgQO4ceMGPvvsM/Tt2xfJyclMeqlUiuXLl2P79u24ffs2LC0tMXDgQHTr1g03bvx/e+cdXmPyxfHvTaQ3nSTSeyN6iC7EatG7iL6sxRJ19b5W76xV1lo9ymJZ/IToJbogStQgSjpp9/v74+595UrsJjc30ebzPPchb5kzb5s5c86ZM5dx8uRJ9OnTBzKZDACwfft2DBo0CEOHDsXVq1fRt29fdO/eHYcPq+b+nzhxItq1a4fLly+jcePG6Ny5M169epXn6zU2zUByouJRJsVrw9j0XU57Ldm742Tvn6hBjE0zkJzwTx0SVOsg5BScnI/9Lnyu962g5CTFa8PQRFGGkUkGkuJVPdCvYwrh4W09PIzUBwA8jdJD5fpxmPDbbWycZ44MDSy9Id65jwjz+PsM+CJjKqysrDB37lzIZDK4uLjgypUrmDt3Lvz9/bF69Wo8ePAAFhYK82JwcDD27duH1atXY9q0aQCAtLQ0LFmyBOXKlQMAvHr1CnFxcWjatCkcHBwAAG5ubpK8WbNmISgoCP379wcADBkyBKdOncKsWbNQt25d6bigoCB07NgRADBt2jQsWLAAZ86cQaNGjbK9jpSUFKSkvFs0Kj4+PtvjkhK0YWiscNEYmmQgMV5b2pf5PZTn40uZlKANQ5N/6mCsWgchp+DkfOx34XO9bwUlx9A0A8kJijKSE7VhZPpOS+j+42PM7GePkmVS4F45STreyycROnqEuW0KXsfooLh5Wp7qIN65j4dMrvipe+7nwBdpqfDx8ZGsCABQrVo1REZG4sqVK8jIyICzszOMjY2l35EjR3Dnzh3peF1dXZQtW1b6u2jRoggKCoK/vz+aNWuG+fPnIzo6WtofEREBX19flTr4+voiIiJCZVvmMo2MjGBqaornz59/8DqmT58OMzMz6WdlZZXtcRHnjeBdQ2FSLV8jATfC35lUE2K1Udw8FUVLpUqNWX4Qcd7wXR1qJmYx6wo5BSPnY78Ln+t9Kyg5rhUTcemYwlR/McwELhXemerdKiVh+tZbaDfwKco4vVFsq5iIexEGyMgAnj3UhVmxvJsqxDsnyE++SKXiQyQmJkJbWxvnz5/HxYsXpV9ERATmz58vHWdgYKCilADA6tWrcfLkSVSvXh2bNm2Cs7MzTp06lSv5Ojo6Kn/LZLJ/DQIdNWoU4uLipN/Dh9kHat2+aojUFBlmb7sJuVyG54910fF7hdKzbrY5Ri+5hzHL7uG3WeYAAP8OL9Bn7CPUa/kK3015kKtr+BC3rxgiNUULs7ffhlwO3MwUgKZJhJz/KO8jvwuf630rKDmOXm+goy/H8JbO0NIGSlqmYtP80gCATfNLY1QbZ6ydbomOgxXPrM13T7HuJ0sMD3CBf6cX0NHN+3BfvHMfka/A/SEjP5N5KjmkTp06iImJwbVr16Rto0aNws6dO7Fjxw64uLjg6NGjqFmzZrbnr1mzBoMHD0ZsbOy/yqlWrRoqV66MBQsWwNfXFx4eHlixYoW0v127dkhOTsbu3bsBKBSI7du3o0WLFtIxhQsXxrx58xAUFJSja4uPj4eZmRnqaLVCIZnOf5+QF+SfsF9SoECrgMy84l1Qi92PzxeInKaWFQtEDoAv6p1LZxpCsRNxcXEwNTXNV1nKtrtKwBQU0tFXq4z0tLc4s3NMgdQ3L3yRMRUPHjzAkCFD0LdvX4SHh2PhwoWYPXs2nJ2d0blzZwQGBmL27NkoX748YmJicOjQIZQtWxZNmjTJtrx79+5hxYoVaN68OSwsLHDz5k1ERkYiMDAQADBs2DC0a9cO5cuXh5+fH/7880+EhITg4MGDBXnZAoFAIPiU+QryVHyRSkVgYCDevHmDKlWqQFtbG4MGDUKfPn0AKNwYU6ZMwdChQ/H48WMUL14cPj4+aNq06QfLMzQ0xI0bN7B27Vq8fPkS5ubm+O6779C3b18AQIsWLTB//nzMmjULgwYNgp2dHVavXo06deoUxOUKBAKBQPBJ8EW6P7y9vTFv3ryPXRWNI9wfAhW+IFP0l4hwf+SBL9T9UbXZ5Dy5P07/OVa4PwQCgUAgEEAsKCYQCAQCgUAz5CUz5ueSUfOLUyoyp9wWCAQCgUBQcHxxSoVAIBAIBJ8kYvaHQCAQCAQCTSDcHwKBQCAQCDSDCNQUCASfLGKq5ydNM/vqBSJn26MjBSIHAFqX8SkYQQUxdZVy4DNZpOtzQigVAoFAIBAUAML9IRAIBAKBQDPIqf4a8Pm1dryGEUqFQCAQCAQFwVcQU/FVLX0uEAgEAsHXxOLFi2Frawt9fX1UrVoVZ86c+eCxv/zyC2rWrIkiRYqgSJEi8PPz+9fjs0MoFQKBQCAQFAAyvIuryPVPDXmbNm3CkCFDMH78eISHh6NcuXLw9/fH8+fPsz0+NDQUHTt2xOHDh3Hy5ElYWVmhYcOGePz4cY5lCqVCIBAIBIKCQJn8St1fLpkzZw569+6N7t27w93dHcuWLYOhoSFWrVqV7fHr169H//794e3tDVdXV6xcuRJyuRyHDh3KsUyhVAgEAoFAUACobaVQY9ZIamoqzp8/Dz8/P2mblpYW/Pz8cPLkyRyVkZycjLS0NBQtWjTHckWgpkAgEAgEnwnx8fEqf+vp6UFPTy/LcS9evEBGRgZKlSqlsr1UqVK4ceNGjmSNGDECFhYWKorJfyEsFfnIhAkT4O3tXSCy+o5/hNnbbuLbiQ9Vttu4vMHskJuYs/0m7NySAQAdv4/GH+euoNuwJ5qtw4THmL39Nr6dlHP/m5Aj5HxtcvqMuY9Zm6/j23H3VbbbOCdj9ubrmL3lOuxcFd/qwKn3MHvLdcze/G5bTlk9wQZjWrnj13E2KtsvHTXDyGYeGNfWDY9u6wMANs0ugyENvDCujTt2rSidh6tTRdP37lNo5/IE8/gDYGVlBTMzM+k3ffr0fKnqjBkzsHHjRmzfvh36+vo5Pk8oFfkASaSnpxeYPEfPZBgYZWBoaxfo6BDO5ZKkfd2GPcGM7+wwtZ8dugVHAwD+2lAcPw201WwdvJJhYCTH0JaO/9Qhdw2gkCPkfA1yHD2SYGAkR3A7dxTSIZzLJkr7Aoc8xvRBDpg2wBGBQx4BADYttcDQtu6YPdwenQfmvGO+e8UQb5O0MCXkOtLTtHD7opG0b8s8S0zYFIEfFt3GptlW0vZu4+5j0tbraN7naZ6uUYnG790n0M7lFRmZpx8APHz4EHFxcdJv1KhR2coqXrw4tLW18ezZM5Xtz549Q+nS/644zpo1CzNmzMDff/+NsmXL5uoavxqlYuvWrfDy8oKBgQGKFSsGPz8/JCUlISgoCC1atMDEiRNRokQJmJqa4ttvv0Vqaqp0bkpKCgYOHIiSJUtCX18fNWrUwNmzZ6X9oaGhkMlk+Ouvv1CxYkXo6enh999/x8SJE3Hp0iXIZDLIZDKsWbMGJDFhwgRYW1tDT08PFhYWGDhwYJ6uzbVCEsKPmgIALhwzgVvFdx+bsVkGYqJ18fKpLozMFGmdY1/oaHzBO9cKyQg/aqKoQ5gx3Col/ccZQo6Q8/XJcS2fiPBj/3yrx03hVuGdUmFilo4X0Xp4+UwXRqaKb/XZI4VZOyNNBrk85/H/t8JNULZWHACgbI043DxvorJf31COIqXS8Oz+O7P579OsMaGDG+5dM1Tv4t5D4/fuE2jn8ow8jz8ApqamKr/sXB8AoKuri4oVK6oEWSqDLqtVq/bBKs6cOROTJ0/Gvn37UKlSpVxf4lehVERHR6Njx47o0aMHIiIiEBoailatWoH/vHGHDh2Stm/YsAEhISGYOHGidP7w4cOxbds2rF27FuHh4XB0dIS/vz9evXqlImfkyJGYMWMGIiIi0KBBAwwdOhQeHh6Ijo5GdHQ02rdvj23btmHu3LlYvnw5IiMjsWPHDnh5eeXp+oxNM5CcqHiUSfHaMDZ9tyaEVqZ2SJ0pSbmqQ8I/dUhQrYOQI+QIOQqMTDOQnKBY1yI5QRtGJu/Kk2VqjWXvfazdhz/EzjWqvvF/IyleG4bGirINTdORFK+6lkZsjA4e3dbHo0gDAEDjHtH4+a+r6DPtHn4da5uLK/owmr53n0I797kxZMgQ/PLLL1i7di0iIiLQr18/JCUloXv37gCAwMBAFUvHTz/9hLFjx2LVqlWwtbXF06dP8fTpUyQmJn5IRBa+ikDN6OhopKeno1WrVrCxUfgXM3fkurq6WLVqFQwNDeHh4YFJkyZh2LBhmDx5Mt68eYOlS5dizZo1+OabbwAoEoQcOHAAv/76K4YNGyaVM2nSJDRo0ED629jYGIUKFVIxNT148AClS5eGn58fdHR0YG1tjSpVqmRb75SUFKSkpEh/vx+goyQpQRuGxgo11tAkA4mZGpDMinp+ZnlNStCGock/dTBWrYOQI+QIOQqSE7Rh+I8iYWicgaSETN9qpu+TmRa6atH9KR7cNsC1c6rWhn/D0CQDyYmKst8kaEuWDwDo+uMDzOnviBJlUuFaOQEAYFJEsd/C/m2ur+lDaPrefQrtXF7J7MZQ59zc0r59e8TExGDcuHF4+vQpvL29sW/fPil488GDB9DSeqfNLl26FKmpqWjTpo1KOePHj8eECRNyJPOrsFSUK1cO9evXh5eXF9q2bYtffvkFr1+/VtlvaPjO5FetWjUkJibi4cOHuHPnDtLS0uDr6yvt19HRQZUqVRAREaEiJyemorZt2+LNmzewt7dH7969sX379g/GX0yfPl0lIMfKyirb4yLOG8G7hqJxKF8jATfC3/lPE2K1Udw8FUVLpUojpPwg4rzhuzrUTMSN80b/cYaQI+R8fXIiwo1RvrpicODtG4+IC8bSvoTYQiheOhVFS6ZKCkGFmnFwr5iIPxZa5EqOS8UEXDlmBgC4fMwMzhUSMu1LxKQtEWj9/WNYOr4BAKltiH9VCBnpmhnra/zefQLtXJ7RQKBmbhkwYADu37+PlJQUnD59GlWrVpX2hYaGYs2aNdLfUVFRIJnll1OFAvhKlAptbW0cOHAAf/31F9zd3bFw4UK4uLjg3r17GpVjZPTfH42VlRVu3ryJJUuWwMDAAP3790etWrWQlpaW5dhRo0apBOQ8fPgwmxKB21cNkZoiw+xtNyGXy/D8sS46fq8IVlo32xyjl9zDmGX38NsscwCAf4cX6DP2Eeq1fIXvpjzIwxVnqsMVQ6SmaGH29tuQy4GbFzXjlxVyhJwvSc7ta0ZITdHCrM3XIZcDMY910eE7xeyE3+dZYtTC2/hx8W38NscSANB/wn2ULpOCmRtuYODUnLdX9l7J0NGTY0wrd2hpAcUtU7F1gUIx2brAAuPaumH9DCu0+0ER/PnbFGuMbuGB6UEu6DLq02wTPoV2Ls8UcPKrj4GM/ExqqkEyMjJgY2ODIUOG4PLly/jzzz/x6NEjGBgo/IvLly9HcHAw4uLi8ObNGxQtWhSrV69Gp06dAABpaWmws7PD4MGDERwcjNDQUNStWxevX79G4cKFJTnTpk3Dhg0bcOXKlQ/W5ebNm3B1dcX58+dRoUKFf613fHw8zMzMUEerFQrJdPJ+I/4Nef74qAWCrwXZBwLoNM3WO0cKRA4AtC7jUzCCtPLf2pDONITKQxAXFwdTU9N8laVsu2v5jkWhQjmfnpmZ9PS3OHp8coHUNy98FTEVp0+fxqFDh9CwYUOULFkSp0+fRkxMDNzc3HD58mWkpqaiZ8+eGDNmDKKiojB+/HgMGDAAWlpaMDIyQr9+/TBs2DAULVoU1tbWmDlzJpKTk9GzZ89/lWtra4t79+7h4sWLKFOmDExMTLBhwwZkZGSgatWqMDQ0xO+//w4DAwMp1kMgEAgEXybqZMbMfO7nwFehVJiamuLo0aOYN28e4uPjYWNjg9mzZ+Obb77Bpk2bUL9+fTg5OaFWrVpISUlBx44dVXxIM2bMgFwuR9euXZGQkIBKlSph//79KFKkyL/Kbd26NUJCQlC3bl3ExsZi9erVKFy4MGbMmIEhQ4YgIyMDXl5e+PPPP1GsWLF8vgsCgUAg+KjkxY3xmTgVvkr3R2aCgoIQGxuLHTt2fOyq/CfC/SEQfD4I90ce+ELdH3WqjsmT+yP09JRP3v3xVQRqCgQCgUAgyH++CveHQCAQCAQfna/A/fHVKxWZ5+gKBAKBQJBv5CHfhNrnFTBfvVIhEAgEAkFBUNAZNT8GIqZCIBAIBAKBRhCWCoFAIBAICgIRUyEQCAQCgUAjENIS5mqd+xkglAqBQCDIB2TaBbOwVYHljgCw8eGJApHTwaZmgcgpaERMhUAgEAgEAkEOEZYKgUAgEAgKAiIPMRUarUm+IZQKgUAgEAgKAhGoKRAIBAKBQCPIAcjycO5ngIipEAgEAoFAoBGEpUIgEAgEggJAzP74ypDJZP+6BHpoaChkMhliY2NzVF6dOnUwePBgjdRNIBAIBJ85ypgKdX+fAcJSkQuqV6+O6OhomJmZfeyqZKHv+EdwLpuEyKuGWDbeStpu4/IGA6c/gEwGLBxthXsRhuj4fTSadXuB/ZuKYe3PFpqrw4THcC73BpFXDLBsnKXGyhVyhJwvSU6fH6Pg5JmI29eMsHyKnbTdxikZ30++C8iARePsEHXTCH3H3IODexJ0dIlfptngerhpnuUDmr+mtRNscfeyMey8EhE0MUrafvmoGTbPsoauvhw9p92FpeMbAIr+cWSjcvAPika9js9zXu9PoJ3LE19BoKawVOQCXV1dlC5dGjKZupE2+YOjZzIMjDIwtLULdHQI53JJ0r5uw55gxnd2mNrPDt2CowEAf20ojp8G2mq2Dl7JMDCSY2hLx3/qkKzR8oUcIedLkOPgkQh9wwwM6+ipKM8rUdoX+MMDzPjBCdMHOiHwh4cAgJUzbDC8kyemD3RG+36P8yRbiaav6d4VI6Qka2NiyFWkp2rhzkVjad+2eVYYs/Eavl94C1tmv1MCzh8oAtNiabmr9yfQzuWZr8BS8cUoFStWrICFhQXkctUQ2YCAAPTo0QMAsHPnTlSoUAH6+vqwt7fHxIkTkZ6ernL8ixcv0LJlSxgaGsLJyQm7du2S9mXn/jh+/Djq1KkDQ0NDFClSBP7+/nj9+nW2dUxJSUFwcDAsLS1hZGSEqlWrIjQ0NM/X7lohCeFHFSOYC8dM4Fbx3cdmbJaBmGhdvHyqCyOzDABA7Asdjb+frhWSEX7URFGHMGO4VUr6jzOEHCHn65Pj6p2IC8cVls4LJ8zgWj5B2mdsloEX0Xp4+UwPxqaKdikjXdFE6xtl4O4NozzJluqg4WuKDDeBV81YAIBXzVjcCjdW2a9vKEeRUml4fl9f2nZ8RwlUa/4il/X++O2c4L/5YpSKtm3b4uXLlzh8+LC07dWrV9i3bx86d+6MsLAwBAYGYtCgQbh+/TqWL1+ONWvWYOrUqSrlTJw4Ee3atcPly5fRuHFjdO7cGa9evcpW5sWLF1G/fn24u7vj5MmTOHbsGJo1a4aMjIxsjx8wYABOnjyJjRs34vLly2jbti0aNWqEyMjIPF27sWkGkhMVjzIpXhvGpu/ka2UyquSnfcXYNAPJCf/UIUG1DkKOkCPkKMtLR3Kidqby3g1qZLLse8CxS25g6urruHhcM25XTV9TUrw2DIwVZRiaZCA5XtWrHhujg8e3DfD4tgEA4NIRM7j5xEFLK3c9/qfQzuUZeR5/nwFfjFJRpEgRfPPNN/jjjz+kbVu3bkXx4sVRt25dTJw4ESNHjkS3bt1gb2+PBg0aYPLkyVi+fLlKOUFBQejYsSMcHR0xbdo0JCYm4syZM9nKnDlzJipVqoQlS5agXLly8PDwwIABA1C8ePEsxz548ACrV6/Gli1bULNmTTg4OCA4OBg1atTA6tWrsy0/JSUF8fHxKr/sSErQhqGx4o0zNMlAYvy7NQcyf7byfNTakxK0YWjyTx2MVesg5Ag5Qo6yvEIwVHbAxhlIjM8+rI181zVO7u+KH9p4ISj4QZ5kv6uDZq/J0CQDb/5RlN4kasMwk6LU+ccoLPjOGTsXW8K5ksIqc3hjKdRpl/M4CpV6f+R2Lq8oZ3+o+/sc+GKUCgDo3Lkztm3bhpSUFADA+vXr0aFDB2hpaeHSpUuYNGkSjI2NpV/v3r0RHR2N5OR3PsWyZctK/zcyMoKpqSmeP8/+A1BaKnLClStXkJGRAWdnZ5U6HDlyBHfu3Mn2nOnTp8PMzEz6WVlZZXtcxHkjeNdQfLDlayTgRvg7M2lCrDaKm6eiaKlUJCfk3wJHEecN39WhZiJunNeMqVbIEXK+JDkRF4zhXS1OUZ5vHG5kij9IiC2E4qVTULRkqmTN0NFVdKJvkrTxNlkzzbWmr8m5YgKu/mNFuRJWGE7lEzPtS8S4zdfQcuAjWDop2tnouwaY3csVe1ZYYO9KC8mC8d/1/vjtXJ75CmIqvqjZH82aNQNJ7NmzB5UrV0ZYWBjmzp0LAEhMTMTEiRPRqlWrLOfp67/z9eno6Kjsk8lkWeI0lBgY5OxjUMrX1tbG+fPnof3e6oXGxsbZnjNq1CgMGTJE+js+Pj5bxeL2VUOkpsgwe9tN3LluiOePddHx+2hsWGiOdbPNMXrJPQDAoh8V5/p3eIFmgTEwKZwBY7N0LB5jnePr+BC3rxgiNeU1Zm+/jTvX9HHzomGeyxRyhJwvTc6da8ZITYnBzxuu4m6EEWKe6KFDv0fYuLQM1s23wsj5ClfokgmKWSEj59+CsWkGtLSINbPy/p0Cmr8mO68k6OjJMb6VJ2w9klDcMgXbF1ii5cDH2L7AEleOFYZxkXT0nqEYPP20/xIAIHRzCcgzZNKMkP+s9yfQzgn+Gxn5mag/OaR79+6Ij49H1apVsXr1akRERAAAfH194erqil9//fWD58pkMmzfvh0tWrSQthUuXBjz5s1DUFAQQkNDUbduXbx+/RqFCxdG9+7dERkZiWPHjmVbXp06deDt7Y158+bh1q1bcHFxwdGjR1GzpnrL+sbHx8PMzAx1tFqhkEznv0/IC/L88VELBF8LWob5o+i8jzw5f2a+ZMeXtPR5OtMQKg9BXFwcTE01M1X3Qyjbbj+HwSikradWGekZKTh4Z16B1DcvfFGWCkDhAmnatCmuXbuGLl26SNvHjRuHpk2bwtraGm3atJFcIlevXsWUKVPUkjVq1Ch4eXmhf//++Pbbb6Grq4vDhw+jbdu2WeIqnJ2d0blzZwQGBmL27NkoX748YmJicOjQIZQtWxZNmjTJ03ULBAKB4BNH5Kn4/KhXrx6KFi2KmzdvolOnTtJ2f39/7N69G3///TcqV64MHx8fzJ07FzY2NmrLcnZ2xt9//41Lly6hSpUqqFatGnbu3IlChbLX1VavXo3AwEAMHToULi4uaNGiBc6ePQtra2GWEwgEgi+fvMRTfB5KxRfn/viSEe4PgeDzQbg/1OeLdX/YD0QhLTXdH/IUHLy7QLg/BAKBQCAQ4KtwfwilQiAQCASCgkCeBzfGp5yAIxNCqRAIBAKBoCCgXPFT99zPgC8uUFMgEAgEAsHHQVgqBAKBQCAoCERMhUAgEAgEAo0gYioEAoFAIBBoBGGpEHyKFLIyV3uuc05hQuJ/H6QJOW/eFoicgkRmW6ZA5KSWyn7NGE2je/VhgciRGeV8LZ28IH/+okDkvK3pXiBy9MOuF4gcAOhSvV3BCJI/yn8ZFLl48gOhVAgEAoFAUBAQebBUaLQm+YZQKgQCgUAgKAiE+0MgEAgEAoFGkMsBqJlvQi7yVAgEAoFAIPiKEJYKgUAgEAgKAuH+EAgEAoFAoBGEUiEQCAQCgUAjiORXXz5BQUFYu3Ytpk+fjpEjR0rbd+zYgZYtW4KfiXbYe+BVOLrG4c4tM6yY5yltt7GPx3fDLkMmAxb/XBZRd0zhXTkGXXvfQGqKNhbP8sKj+yY5lzM8Ek7uCbgTYYLlPzm9k+OYiAFjb0EmIxZNcUHULWP8MCUC1nZJSEnRxr6tFgjdWyrHcvr8GAUnz0TcvmaE5VPs3slxSsb3k+8CMmDRODtE3TRC3zH34OCeBB1d4pdpNrgebppjOQUpq3e/i3Byfo07kYWxfEl5aXv7ThFo2vw2Duy3w2+rFc9uwODzsLWNAwEsnl8BUfcK51hOvy6n4Wz3EpFRRbFknY+0vVPAJTRvEIH9R5ywektFAEAFz8fo3vYCUlK1MX9VNTyMzrmc3sE34eTxz7sw00XabuOYiAFjIiADsGiqK6IiTWBsmobvx0TAtEgaLp4uik0r7T5c8PtyCujdLqj3oH+HU3Cxe4HI+8Ww6I9q0vYh3Y7BzvI1SBnmrauOu4+K4puat9C12QVcvV0K01bUybGMgrweAOg9+Doc3WJx56YZVszxeCfLPgHfjbwCGYDFMz0RddsUNepFo1WXOwBl2LzWAaeOls6VrOzoO+ExnMu9QeQVAywbZ5nn8gTqIwI1Aejr6+Onn37C69evP3ZV1MLBORb6hhkY0d8XhQrJ4eQWK+3r0vsmZo6viBljKqJrnxsAgI7db2H0wGqYOaECOve8lXM5bgkwMMjA8KAKKKQjh5NHvLSv64B7+Gm4O6YHe6LrgHvS9pkj3TGyR/lcKRQOHonQN8zAsI6e0NEhnL3eJeIK/OEBZvzghOkDnRD4gyIp08oZNhjeyRPTBzqjfb/HOZZTkLIcHF/DwCAdw3+oq7h3Lq+kffv32uHn6VVVjt+y0RXBg+th7s+V0Tkw58mNHG1fwEA/HT9MbgydQnK42MdI+/Yedsb0JbVVju/a8hKGTfPHtMW10a3NhZxfj2s8DAwzMLx7pX/ehbh3ZX53Bz+N8ML04V7o+t0dAEDnb+9i3RIHjOpdMVcKRYG92wX0HjjZvICBfhoGTW+KQtpyuNi9ez5/7CmH76c1w0+raqJbgOJZHL9gjeBZ3+S4/IK+HgBwcImDvkE6RvStnvUZ9b2JmWPKY8aPFdC1r+J5tOh4F6P6VcPI/j5o0fHeB0rNOY5eyTAwkmNoS0fFtZZLznOZ+QUpz9Pvc0AoFQD8/PxQunRpTJ8+/YPHbNu2DR4eHtDT04OtrS1mz56tst/W1hbTpk1Djx49YGJiAmtra6xYsULlmIcPH6Jdu3YoXLgwihYtioCAAERFReW5/q6esbhwpgQA4OK54nD1fNdhGZuk4cVzA7x8YQAj4zRpe8rbQnj9Uh/mlkk5l1M2HhdOFVXIOVUEbuXeKRXGpul48UwfL5/rwdjkHzkEhk6LwPiFl1HSPOeZM129E3HhuBkA4MIJM7iWT3gnxywDL6L18PKZHoxN0wEAGemK11jfKAN3bxjlWE5BynJ1f4kL5xWK1cXwUnBzeynti43Vz2IQffZUUXZ6uhbkclmO5bg7xuD8FQsAQPhVC7g5veu0YuMNsrW8vk3RwatYQ5iXTMi68wO4lo3DhVPFAAAXTxWFW7l3SoWxSdo/74I+jE0U983GMRHte93D9JXn4Vo2NudyCurdLqD3wN3+Oc5fU4ykw69bwMPhubTv6QuFVSXzM49P1EdGRs6ff0FfDwC4er7GhTPFAQAXzxaHq9e7wZn0jGL0pWcU/dgIegbp0DdIR3JS3o3lrhWSEX5Uce8uhBnDrVLOn3uBQyrcGOr8PhOruVAqAGhra2PatGlYuHAhHj3Kmh72/PnzaNeuHTp06IArV65gwoQJGDt2LNasWaNy3OzZs1GpUiVcuHAB/fv3R79+/XDz5k0AQFpaGvz9/WFiYoKwsDAcP34cxsbGaNSoEVJTU/NUfyPjNLz55+NMTtSBsXG6tE9L692LKMvUNhUukoIyNgmwss15Om4jkzQkJ2oDAJISC8HI9F1Dnp2cX352RHDXitiyyhq9gm/nWI6xafo7OQnaUsOnKDv7D2vskhuYuvo6Lv7TkH5qsoyM0pCcrKOQk6Sj0gn+G0E9r2Dndqf/PlApxzAVyW/+kZOsC2PD/363Cpu+gZV5LKwt4v7zWEmOSbrqu2CS+Z17d5zyXXArF4fNv9rhp+Ge6DkkMudyCujdLqj3wNgwFUlvdAEAiW+yfz6925zDtoN5S/FdkN+QkXG66jP6j3fhZGgpLFx3DAvXheHPLba5kpUdxqYZSE5QCFJc6yecflsZqKnu7zNAKBX/0LJlS3h7e2P8+PFZ9s2ZMwf169fH2LFj4ezsjKCgIAwYMAA///yzynGNGzdG//794ejoiBEjRqB48eI4fPgwAGDTpk2Qy+VYuXIlvLy84ObmhtWrV+PBgwcIDQ3Ntk4pKSmIj49X+WVHUmIhGBgpPmRDo3QkJr7T/jO/h8rRz+olbhgx6TzadrmN61eK5PgeJScWgqFxxj9yMpAUr/OvchL/2X/9QmEUKZ5zxSkpIZMc4wwkxmc/miHf9SST+7vihzZeCAp+kGM5BSkrOUkHhoYKRcLQMA1JiTr/cQYQ0OoWHt43xfWrxXMsJ+mNLgwN/pFjkIrEZN1/PX7FhkoY830oOjS/gmuRJXMsR+VdMM5AUsKH3jnFv4/vG+LhPSPEvtIDc2F5Kah3u6Deg6Q3ujAyUHwLRgZpWZ5P6wZXcf9JYVyNzFucQYF+Q0mZn1EaEv/jXejY8za+7VAL33aojY49c65gflB+gjYMTRSFK65VO89lCtRHKBWZ+Omnn7B27VpERESobI+IiICvr6/KNl9fX0RGRiIj451WXLZsWen/MpkMpUuXxvPnCvPmpUuXcPv2bZiYmMDY2BjGxsYoWrQo3r59izt37mRbn+nTp8PMzEz6WVlZZXvcjatF4F1JYeb2rhyDm1ffNaYJ8booVuINihZ/K40mblwtilHfV8emtU54GJXzQLaIS2YoV1Vh2vT2eYUbl98FcyXE6aBYqbcoWiJFGiEpGxpL22SVTuc/5Vwwhnc1xai5vG8cblx8t3BWQmwhFC+dgqIlUyU5OrqKBuVNkjbeJufulS4oWRHXi6FcecW74F3hOW5EFPvX48tXfAp3j5fYsN4tV9dzPbIEyns8AQBU8IxGRGSJf6/X7ZIInvoN/thRFg8e53yEqngXFK4I76qvcOPyu3MT4nVQrOQ/78I/79zj+4YoUjwFegYZ0NLO+YirwN7tAnoPrt0piQruiudT0f0xrt95p8hV8ngET8fnWPend47L+xAF+Q3duFIE3pUV7jzvyi/ee0Y6KFZS9RmlpWoh5a02Ut4UQqFCeY8TiDhvCO8aCvdO+ZqJuHE+d+6bAkUuz9vvM+Crn/2RmVq1asHf3x+jRo1CUFBQrs/X0VEdfcpkMsj/eRESExNRsWJFrF+/Pst5JUpk3/CPGjUKQ4YMkf6Oj4/PVrG4c6swUlMf4aclx3Ev0hQxzwzQvtstbFrrjPUrXTBy8nkAwNLZXgCA9t1uwbvSC8TH62LRT2WzlPch7kSYIC1FCzPXhOPuTWPEROuhfe8obPrFFr8vscOon68BAJZMdQYADJ9xHcam6SCBxVOccy7nmjFSU2Lw84aruBthhJgneujQ7xE2Li2DdfOtMHK+YnSzZIIi4G/k/FswNs2AlhaxZpZ1juUUpKw7t4sgLVULM+cext07hRHz3BDtO0Vg0x9uaNjoHpo0vw0Tk1QYG6diycIK6DfgApKTdTBj9hE8emiCRfMq5kjO7ajiSE27jblj9+LO/aJ4/tIInQIu4Y+d5dCo9i00b3ADJkYpMDZKxcI11dAp4BIqeD5BfKIe5v1aPefXc8MUaSnRmLn63D/vgj7a97qHTSvt8PsSe4yaeUVx36a7AgB+X2qPETOuQE9fjvXL7HMup6De7QJ6DyLvF0dqmjbmj9qN2w+K4dlLI3RuehHrd3vj+86nkPxWB3NH7MXDp2aYs7YGfMo9QKfGl2FRMh4TvzuE8Yvrf1LXAwB3bpohNVULPy0/gXu3TBHzVB/tgyKxaY0T1v/ijJFTFEGnS39WzArZG2KNWStOAgD27cidrOy4fcUQqSmvMXv7bdy5po+bFw3zXGa+wTxMKf1M3B8yfi5zJvOJoKAgxMbGYseOHQCAK1euwNvbG8HBwZg5cyZIonPnzoiJicHff/8tnTd8+HDs3bsXV69eBaAI1Bw8eDAGDx4sHePt7Y0WLVpgwoQJ+OWXXzBixAhERUXB1DR307WUxMfHw8zMDH4234mlzz9hxNLn6iGWPlePglz6XKtY0QKRk/4w/5c+T2caQrETcXFxarfJOUXZdtcz7IBCsn93SX6IdKbif8kbC6S+eUG4P97Dy8sLnTt3xoIFC6RtQ4cOxaFDhzB58mTcunULa9euxaJFixAcHJzjcjt37ozixYsjICAAYWFhuHfvHkJDQzFw4MBsg0MFAoFAIPjcEEpFNkyaNElyWwBAhQoVsHnzZmzcuBGenp4YN24cJk2alCsXiaGhIY4ePQpra2u0atUKbm5u6NmzJ96+fftJa50CgUAg0BBfweyPrz6m4v1poYDClZGSkqKyrXXr1mjduvUHy8ku38TFixdV/i5dujTWrl2rTjUFAoFA8LkjJ/CBKb3/iVAqBAKBQCAQSJAA1JzF8ZkoFcL9IRAIBAKBQCMIpUIgEAgEggKAcubppw6LFy+Gra0t9PX1UbVqVZw5c+Zfj9+yZQtcXV2hr68PLy8v7N27N1fyhFIhEAgEAkFBQHnefrlk06ZNGDJkCMaPH4/w8HCUK1cO/v7+UlLG9zlx4gQ6duyInj174sKFC2jRogVatGghpU7ICUKpEAgEAoGgAChoS8WcOXPQu3dvdO/eHe7u7li2bBkMDQ2xatWqbI+fP38+GjVqhGHDhsHNzQ2TJ09GhQoVsGjRohzLFEqFQCAQCARfGKmpqTh//jz8/PykbVpaWvDz88PJkyezPefkyZMqxwOAv7//B4/PDjH74zNCmfw0XZ63VU1zJKsAZAAAWTByChJZRsp/H6QB0tML5vPVKqB3QSYvmDGOvIDeufT0gskWm16A35CWvIDebeZsFd88yYBCRkEmlU5nilpuDOBdfd9fWFJPTw96elkzLL948QIZGRkoVaqUyvZSpUrhxo0b2cp4+vRptsc/ffo0x/UUSsVnREKCYtGc0Ie/fOSaCP6V7L/Xz1dOQVEw2bMLjoMfuwL5QPLHroDmSUhIgJlZ7pZ7zy26urooXbo0jj3NXdDj+xgbG2dZ/2n8+PGYMGFCnsrVJEKp+IywsLDAw4cPYWJiApksZ8tHKxche/jwYYHkty8IWUKOkPMlyilIWUKOwkKRkJAACwuLfKuXEn19fdy7dw+pqXmzKpHM0vZnZ6UAgOLFi0NbWxvPnj1T2f7s2TOULl0623NKly6dq+OzQygVnxFaWlooU0a9xapMTU0LLB14QckScoScL1FOQcr62uXkt4UiM/r6+tDX1y8webq6uqhYsSIOHTqEFi1aAADkcjkOHTqEAQMGZHtOtWrVcOjQIZWFMQ8cOIBq1arlWK5QKgQCgUAg+AIZMmQIunXrhkqVKqFKlSqYN28ekpKS0L17dwBAYGAgLC0tMX36dADAoEGDULt2bcyePRtNmjTBxo0bce7cOaxYsSLHMoVSIRAIBALBF0j79u0RExODcePG4enTp/D29sa+ffukYMwHDx5AS+tdgHT16tXxxx9/YMyYMRg9ejScnJywY8cOeHp65limUCq+cPT09DB+/PgP+t0+R1lCjpDzJcopSFlCztfDgAEDPujuCA0NzbKtbdu2aNu2rdryZCzI+TQCgUAgEAi+WETyK4FAIBAIBBpBKBUCgUAgEAg0glAqBAKBQCAQaAShVAg0ggjNEQgEAoFQKgQaITo6GoAiuYogZ4SEhODgwS8xl7NAIPhaEUrFV8LNmzfzrewdO3bAysoKp06dgpaWllAsckBUVBR+/PFHLF68GGFhYR+7OoL/QGmJe/78+UeuSd4RVkVBfiKUiq+A9evX4/vvvweQPw2Kg4MDWrVqhVatWuH06dP5plhkLvP98jUtT3mf4uPjkZam+RUTbW1tMX/+fMTExGDBggU4fPiwxmV8LJT37vHjx/ly7z4GMpkMW7ZsQe/evXHv3r18l5dfHb9cLpfWjnj48GG+yABU6y8GGV8XQqn4CrC2tsbBgwfx119/5Xghstzg5eWFSZMmoVatWmjWrFm+KBZyuVzK/LZs2TL06dMHHTt2xM8//4yMjAyVrHB5Rbloz549e9CnTx+EhYUhJUVzSz5nZGRALpejYcOGGD58OJ4+fYolS5bgxIkTGpORGWUDf/XqVYSFhSEkJCRfG3qZTIZNmzahbt26uHfv3mc9MlbWPSYmBlOmTEGjRo1gZ2eXb/LS09MBIF++08zf0LRp0zBgwACcOnVK43KU38+BAwcwdOhQ+Pn5YdWqVTh//rzGZSnlCT4dhFLxhUISJJGRkYGaNWuid+/eWL9+PRITE/PlI3Rzc8O4ceNQr169fFEslI3hiBEjMH78eNja2sLW1hbz5s3LU/a37JDJZNi5cyfatWsHd3d3WFlZaTRTn5aWFrS0tLBr1y4cPXoUr169wvbt2zF58mQcO3ZMY3KAdw18SEgIGjdujODgYHz33Xfw9fXFn3/+qdF3QVnW27dvERISgv79+8PZ2VnjHaRSzq1bt3Djxg3cunUryz5NIZPJsH//fsyaNQtly5ZFhw4dNFp+ZubMmYNevXqhY8eOuHHjhsatPMpvaPjw4Zg3bx66d++eq9Unc4pMJsOOHTvQsmVLyOVyVKhQAYsXL8bgwYNx//59jcpSvt+hoaEYO3YsOnfujI0bNyImJkajcgS5gIIvkufPn6v8vWLFClpYWPDBgwckSblcni9yL1++zPbt27NEiRI8deoUSTIjI0MjZZ84cYLOzs48ceIESTIkJITGxsb85ZdfVI7L67U9evSIXl5enDdvnkbLzczhw4epra3NpUuX8n//+x9/++03Ojk5sVWrVgwLC9OYHFJx34oUKcI1a9aQJG/cuEGZTMbly5drVA6puK7q1auzadOmvH79usbLV7J161aWLl2a1tbWdHZ25tKlS6V9mn63lyxZQplMxuLFi/Pu3bsaLVvJ1KlTaWpqyn79+tHJyYmWlpbcsmULk5OTNSrnr7/+oq2tLc+dO0eSTE9P5+vXrzXyzinv+8OHD+nt7S09k+TkZJqYmHDEiBF5lpEd27ZtY+HChdmxY0f+8MMP1NbWZo8ePRgdHZ0v8gT/jlAqvkB27drF4sWLc968ebx48aK0vU6dOmzfvr1GGl1lGffv3+e9e/cYEREh7ctOsUhPT8+zzO3bt9PT05OkQqEwMTGRGq7ExETu3Lkz12XOnj2bV65cUdl279492tvbS8oLqdpR5aWhV5YTHBzM+vXrq+zbu3cv7ezs2KhRIxXZeWXRokVs1aoVSYVC4eDgwF69ekn7NdlxhYWF0c7Ojrq6utJ91ZRSqbx3MTExdHBw4K+//sq9e/dy3Lhx1NbW5uzZs7Mcqyl+++03amlpccyYMRp5lzNz//59du/enceOHZO2tWnThjY2Nty8ebNGn8/WrVvp5OREkrx27RonTJhAR0dHGhoaMiAgINflbdiwgZs2bVLZ9uDBA3p6evLly5eMjIxkmTJl2Lt3b2l/WFhYlkGPuty9e5fOzs4qCrKhoSFHjhypkfIFuUcoFV8YY8aM4YgRIzh37lw6OTmxSpUqDAoK4q1btzh37ly2atVKGm2p2/Aqz9uxYwe9vb1pZ2dHDw8Pjh07VjrmypUrbN++PS0sLFQay5ySXUd09OhRBgQEcO3atTQ2NuayZcukfYcOHWKfPn1yPJKUy+V8+/Ytvby8ePPmTZV9Fy9epJaWFg8fPkxSVSG6ePEiDxw4wLS0tFxfk1IuSY4fP541atRgSkoK5XK5tH3FihU0MDBgw4YNefTo0TzJUCqUQ4cOZZcuXZiRkcEyZcqwT58+0jHr1q3jggUL1JKTHSkpKTx+/DhtbGxYt25dSY6mFIuDBw9y0qRJHDx4sFRmXFwcf/rpJ8pkMhXFQh2U9X316hUfPXpE8l3dFy1aRC0tLc6YMUNjSsuqVatoYGBALy8vXr58WWVf27ZtaWNjwy1btjApKSnXZZ89e1b6/9y5c/m///2Pp0+fpouLCytVqkRLS0t2796dy5Yt45kzZyiTyXjgwIEcl//8+XNWrFiRfn5+Kgr95cuX6e7uzpMnT9Le3p69evWS7uGlS5fYvXt3yVKSV27cuMGqVauSJG/dukVLS0sVBebq1asakSPIOUKp+ILYsmULS5cuzdDQUJJkZGQkt23bxrJly7JOnTqsVKkSZTIZ586dm2dZe/bsoZGRERcuXMgrV65w9uzZlMlkDA4Olo65evUqv/nmGzo5OfHNmzc5bogzd0Br1qzhvn37+PbtWz558oRlypShTCZTcU28efOGjRo1YseOHXMtQ/nv8ePHeeHCBenvgIAA1qhRI4sVo1+/fuzevTvfvHmTIzkfYsOGDSxUqBD379+vsj0kJIRly5Zl06ZNpU5NHXbv3k2ZTMbLly8zLCyMDg4ONDY25nfffadyXP/+/dmpUycmJibmWkZmc/eNGzf45MkTad/x48dpbm5Of39/aVteFYs3b95wyJAhlMlkrF69uso+pWKhq6vLKVOmqFV+ZmVZ2elWrVqVP/74I1+9ekWSXLhwIbW0tDhz5kyNKRZ+fn6UyWTcvHlzFitI+/btqaenx0OHDuWqzBs3btDZ2ZkDBgyQXAJ37txhWloa9+/fz6FDh3Lz5s2SxeDx48esWrUqz5w5kys5Fy9eZMOGDenv788dO3ZI25s3b06ZTMYePXqoHD9y5EhWqlRJ5V3JC6dPn2aZMmV47NgxOjg4sHfv3tI9PH36NFu2bJll0CDIX4RS8YWwZ88eDhgwgIsWLcp2/9atWzlixAgaGxuzXLlyjIyMVFtWdHQ0AwICOGfOHJLkkydPaGtry7p161JPT4+DBg2Sjr1+/braneOwYcNYunRpzps3T2r8wsPDaWxszPbt23PNmjXcunUr69evT09PT8l6kJvGPiMjg+np6bS1taWrqysvXbpEUuFC8vPzY9WqVfnnn39y9+7dHDJkCAsXLpxlRPlvKOty584dhoeHq7ijevfuTVNTU+7du5exsbEkydGjR3Ps2LF8/fp1jmW8z4MHDzh48GDJNfTkyRP27duX9vb2/P3330mST58+5ejRo1miRAm1Yh+U17Vt2zba29vT3t6ehoaG7Nu3L0+ePEnynWLRpEkTta/lfW7fvs2RI0dSJpNx3bp1Kvvi4uI4YcIEFilShC9fvlSr0//777+pp6fHqVOn8s8//+SAAQPo4+PDdu3aSc9k6dKlWRTbvFK9enXa2toyLCwsi/KljsslLi6OS5cuZeHChWlsbPzBEXtqaipfvHjBpk2bsnr16jmWI5fLVawP9evXp7+/P7dt20ZS8Zxq165NW1tb/v3339ywYQMHDx5MExMT6RvLLcrn+f5zbdOmDbW1tdmuXTuV7aNGjWL16tX59OlTteQJ1EMoFV8A586dY4UKFWhmZsbFixeTfDcqfL+R+Ouvv2hjY8O9e/eqLS8pKYk///wz7969y6dPn9LDw4N9+/ZlcnIyhw4dSplMxm+//Vb9CyL5yy+/sGTJkrxw4YKkLGS2KlStWpV2dnasXr06O3TowNTUVJLqx27ExsbSxcWFFSpU4LVr10gqXCpdunShgYEBXV1dWaVKFV64cCHHZSobv61bt9LBwYEWFha0tbWlj48Pnz59yrdv37Jv377U0dGht7c3K1euTAMDA7UbXZK8cOEC/f39WbZsWSmehVSYwrt27coiRYrQycmJlStXpo2NDcPDw9WWdfToURoaGnL+/Pm8fPkyV61axRo1arB58+Y8ffo0ScWz0tfXZ+vWrXNdvvL+vXjxgg8ePJDeg7i4OH7//fc0Njbm+vXrVc6Jj4/nixcv1JKVmprKHj16sF+/fir7Vq9ezSpVqnDq1KlSnVatWqV2IOqePXu4ePFibt++XcVFUaVKFdrb22erWJA5e7czn3fw4EGWKFGCjo6OHDhwoLRdeR/fvHnD3377jbVr12blypWlbygnFiXlfVBauDIrFrt27SJJRkREMCAggFZWVvTw8KC/v3+eFYojR45w4sSJnDlzJu/fv09S0ab5+Piwbt26PH36NA8ePMihQ4fS1NQ0T9+SQD2EUvGFsHz5crq5ubFChQrZxkxk/n/Hjh3ZokWLPAWcKYPH5syZQz8/Pz579oykwndbtmxZlilTJk8mzu+//14KJlTWM3Njl5yczOfPn/PVq1fSteU0zkF5fGxsLNPT01U6K3t7e1aoUEFlZHf37l0+f/5cLetBWFgYDQ0NuWLFCp47d44HDhxgpUqV6OrqypiYGJKKANR58+Zx2rRpeTbV7t69m7Vr16a+vj43btyosi86OponT57kjBkzuHPnTqlRzi3K+zdy5Eg2bdpUZd++ffvo4+MjWavS0tJ46tQp3rp1Sy0ZSleEUhkbO3YsX758yefPn3PIkCE0MTHhhg0b1LqO7Gjbti1btmyZZXv37t1Zq1atPJcfHBzMUqVKsUKFCrS2tqa7u7s0ECBJHx8fOjk58eDBg3lyr/Tv3599+/blhQsXuHjxYnp6emZR9N+8ecP169dzzpw50jeQk29IWa+//vqLXbp0kYK0lYpFgwYN+Oeff0rH37p1i3FxcYyPj1f7ekiFMqatrU1/f3/q6enR19dXiuUICQlh48aNqaOjQ09PT/r6+qpYBQUFh1AqPnMyKwarVq1i1apV2alTJ0ZFRZFUVSaUnXLr1q3ZrVu3XDUgV65c4Z9//sn79+9L8QRyuZw9evRg7dq1peODg4M5e/ZstQLLMl+Tr68v27dvn6XuKSkpvHDhAt++fZttPXPKzp07Wb9+fVasWJHz5s2TrBOxsbG0t7dnxYoVefHixTzHAcyZM4eNGzdWqd/z589Zvnx5lfuWVzK7ZA4fPixd299//y1t1/SMiJEjR7J27dpMS0tTKXvx4sU0NTVVy2KQmf3799PIyIizZs3i06dP+f3339PIyIjbt28nqXDzBAcHUyaTccuWLXmSlZGRwYyMDA4bNoyVKlViVFSUyjX99ttvdHd3l2Ir1GHz5s0sUaIEjx07RrlczsuXL3P48OG0tLTkypUrpeMcHR3Ztm1bteXcuXOHHh4eUqBvXFwc586dSy8vL5WYmnHjxvF///uf9HduBhnK6dwjRozg+fPnpe2ZLRbK55QXlM/g6dOnDAoKkqaPv3jxgg0aNGD16tVVYjkuX77MFy9e5Ml9KMgbQqn4TFm0aBE7derEtm3bcvr06dL2X375hTVq1GDnzp2lkWjmCPyoqCgWKlQoV9HXISEhLFy4MC0tLWlhYcHp06dLcRLbtm2jjo4OO3fuzA4dOrBw4cIq00v/iw912rNnz6aLiwsPHjyosj0yMpJt2rTJlRvifU6fPk0jIyOOGTOGnTp1Yrly5di1a1fpnsTGxtLZ2ZmOjo5ZAjVzy5AhQ+jg4CD9rVTkQkJC6OTkxNu3b+epfFKRV8PR0VGaNkoqOuSmTZvSz89P5R5qUrFYtmwZ9fX1JRO+suzQ0FC6u7urbanKyMhgamoqAwMDOWzYMJKKaaQ2NjZZAk0fP37M0aNH88aNG7mSoazr8+fPGRcXJ/ndnz9/TgsLCzZp0oR3796Vjvv2229Zr169PE3vnDhxYpZpxFFRUezbty8bNWokWa5I9d14U6dOZbdu3dirVy+VQUNsbCznzZtHDw8P1q5dm40aNaKFhUWO5WT+Tu/du0cHB4csMSWZYyz8/f3p4+PDPXv2qHUdmTl27BgbN27MGjVqqCgwz549o7+/P6tXr85NmzZpbIaRIG8IpeIzZMSIESxRogS//fZbBgUFUV9fn40bN5ZcEEuXLmXt2rX5zTffZBuklFMzZEZGBmNjY9mgQQOuXLmSMTExHDFiBL29vTls2DA+fvyYcrmcK1asYM2aNdmqVatc+TAzNwKnTp3igQMHpLqFh4ezRo0abN26tdQwRUVFsXnz5vT19VW70b179y4nTpzIn376Sdq2bt061qhRg506dZIUi9evX9Pb2zvPyY6OHz9OR0dHlemvpKLjtbGxybVbIDsSEhK4ZMkSenh4sEuXLtL2v/76i02bNqW/v3+eYmiUHWtUVBRv3LihojS2bNmS5ubmPHnyJBMSEkgqFKly5crlebTYqlUrbt++nU+fPqWFhQX79Okj7duxYwePHDlCMudur/evR+lacXFxoaurqzQrKjIykpaWlixfvjzr1q3Ltm3b0sTEJM/m9IULF9Ld3Z2PHz9W2b5582YaGhryzp07Kttz+46npaVx7NixlMlkrFq1apa4qvj4eG7dupWdO3dmjx49chSHtGjRoiyK6Llz5+jq6qpS3/c79PPnzzMgIEBtF1tmbt++TVdXV2ppaUkJ3JTExMSwSZMm9PT0lIJEBR8XoVR8ZoSHh7NMmTIqZsuIiAiWLl1aJRhu9uzZ7NevX7ba+3+NVpX7k5KSmJ6ezl69evHhw4fS/ilTpkiKhVJpefv2rdrTLIcNG8aiRYuyRIkSLF26tNQ4hIaGsnnz5ixevDitrKzo7u7OihUr5iqgLDN3795l5cqVaWFhwRkzZqjsW7duHX19fdm1a1cpwDGno/rMeSaioqJ49epV3rt3j6Siw+/WrRvr168v+c6Tk5M5evRolitXTu2gwvdJSEjgypUr6ezsrKJY7N+/nzVr1mSLFi3UckllnuXh6upKc3NzOjg4sEmTJkxKSmJsbCxbt25NQ0NDli9fnrVq1WLhwoXzZElSPtdWrVqxQYMGtLe3Z79+/STlIT4+nu3bt+esWbPUHp3u37+fenp6nDNnDletWsUpU6ZQJpNJAY0vXrzglClT2KdPHwYHB6sdlHngwAEps+OhQ4doZWXFefPmqbhRzp8/z3LlyuU6nia79+D169ecNWsWZTIZ58+fL23/0H36N4UsKiqKbm5uWWaKHT9+nHp6eirfibIuR48elZTO912UeeHevXv09vZmnTp1pPwxSp49e8Y2bdpI35zg4yKUis+Mo0eP0tLSUhrtKBuFM2fO0NDQUMWPmZfEQzt27GD16tVZtmxZuru7ZxlxTJkyhZUqVWL//v1zPWU0c2N48OBBli1blocOHeL9+/fZtWtXlixZUhqRPHv2jKdOneLChQu5a9cuaVSlbvKpn376iVZWVvT3989yTevXr6eHhwd79+7Nt2/f/qdSobSqZO54bWxs6ODgQF1dXQYGBvLChQt8+fIlu3fvTnt7e5qbm7NGjRosWrRonmdevJ/2OCEhgb/++ivt7OxU8gMcPHhQSs+uDqGhoTQwMODSpUt5+PBhhoSE0MHBgdWqVWNKSgpJhVL2888/c+bMmbmarqyc0ksq/Obx8fGSxePatWu0t7dXcR+R5I8//kg7O7scu44yZ29UPqtevXoxMDBQ5bhdu3ZRJpNJyl9eE3eNHj2a1tbW/P3336X7NG7cOBYpUoQTJ05kaGgoIyMj2bBhQ9aqVStXcjIf+/jx4ywWr4kTJ2ZJxZ658898ff+GUhE9ffq0JPPevXusXLky+/fvn8W60qNHD/bt2zdLnE1OUZ5z48YNHjhwgGfPnpUGNDdv3qSXlxcbNmyYRbEQro9PB6FUfCYoR+e3b9+mnp6eSsS7XC7n8+fP6eTkxN9++03lvNx82MpjL1++TH19fY4ePZodOnRgmTJl2KpVqyyd8OjRo1mrVi3J7ZJbli9fzkmTJnHcuHEq23v27MmSJUty7dq12bpqcjOXPjtmz55NLy8vDhkyRApoVbJp06YcjXh69+7NHj16SMrN0aNHpWRgERER3Lx5s+S7vnjxIpOSknjp0iVOmTKFa9asyXGH+KFrmDx5Mi0tLTlmzBiV7UlJSfzuu+8ok8lUAl1zSnbunsmTJ2eZEXHv3j3a2dmpxHHkhk2bNkn5LEiFQubt7U1HR0d+++23UpDh2rVraWRkxJo1a7Jz585s27YtixQpkmOFbPHixXR2dlZxXaSmprJevXrS7CJlDAepeKcrVqzIV69eSe+ZOp3j+PHjWapUKYaFhUk5SJTMnj2bFSpUoL6+Pr28vFi1alW1pnOSihwWnp6eLFy4MMuXL89Zs2ZJbqdJkyZRS0uLK1asyHX9MxMbG8syZcqwSpUq0rZ58+bR0dGRffr04aFDhxgeHs4hQ4awaNGiamexzDwF29LSkra2trSxsaGLi4vk6lIqFo0bN86SOE7waSCUis+A1atXc9WqVXzx4gXT09P57bff0sfHh7t375aOSUpKoqenZ5aEQLnl3LlzXLx4sUpWwmXLlrFWrVrs3LlzlhFvXiL8q1evTplMxjZt2mSxPPTq1YuWlpZcunSpWsFxygYqLCyMY8aM4fjx41Ui7GfOnElvb28OHjw4137fDRs2sESJEiom/qlTp7JBgwYqx4WGhtLX11clFkAdoqOjpYDR33//nWvXrmVcXBynTZtGNzc3jho1SuX4FStWsEKFCqxVq1aurEjKLJzvx1/06NGD3t7e0t/KZ6WcEZH5nchJB3zjxg1WrlyZjRo14pUrV/jw4UMWLVqUs2bN4tixY9moUSP6+vpKo9HLly+za9eu7Nq1K3/88cdcuQlevnzJMmXKsHr16rx06ZJUvylTprBMmTLSrB9lZz5nzhwVF5s6PHv2jD4+PlIOjadPn/Ls2bMcPHgwt27dytTUVMbExPDMmTMqFoDcWt+mT5/OYsWKcePGjTx+/Dh79uxJHx8fDhkyhPHx8czIyOC0adMok8lUZkjkFrlcLmWszDxjadmyZaxfvz4LFSpENzc3uru7q+32Ul776dOnaWJiwmXLlvHRo0cMDQ1lly5dqK+vLymakZGRtLKyYqtWrfI0y0yQPwil4hNHmVVyzZo1ksvjxIkTbN++PZ2cnDh+/Hj+8ssv9PPzY9myZXMV3DV8+HCuWrVK+js6Opp+fn40MjKSou6VLFmyhDVq1GC3bt2yjO5zQnZTW0myXbt2NDU15Z49e7I0qq1bt2azZs3UnrGwbds2GhoaskmTJqxWrRqNjY3ZokULSf706dNZuXJl9u7dO1fugZkzZ9LV1ZWkwk00d+5cTps2TXIHZK7v2rVraWBgoPaKiXFxcSxXrhwDAwOlVOhKk/azZ884ZcoUenh4qCygNGbMGE6YMEGtvADdunVjkSJF+Ndff0nb9u3bRwcHhyyJpv7880/a2tqqxNvklC1bttDf358tW7bk1KlT+eOPP0r7jhw5wjZt2tDHxydPo1GlyyE+Pp52dnb09fWVZg9cuHCBDRs2ZEBAgEq8xA8//EA/Pz/JBZNbzp07x+joaJYoUYIrV67k/v37GRgYyMqVK9PJyYlOTk5ZgnbJ3Jnv5XI5Y2NjWbNmTS5cuFBl39SpU+nl5SUpEfHx8Vy7dm2ucrgo65KamqqiXJ06dYpWVlYqisXLly95/fp13rhxQ60BRuapu+np6Vy5ciXr1q2rcj+io6PZqVMnli9fXvqO7t27l8X1Ivg0EErFJ8zChQtpbm6uknVPyaNHjzhhwgRaWFhIMy9yk1UyLi6OEydOzDJbY/369fT19aWdnV2WKYErVqygp6cn+/Tpk6tRVeYGQi6XS429koYNG9Lc3Jz79+/PUq7y3NwqFlFRUbSzs5OC1ZKTkxkWFkYLCwsVU/6ECRNYq1atXKXyPXPmDF1cXFivXj1pFLhp0yYWKlRIWndFyYkTJ+jm5pbrmIYjR45I9+nEiRM0NzenTCbj1KlTVY579uwZZ8yYQSsrK7q6urJJkyY0NjZWe4olSfbt25empqbS4lL3799nmzZt2KRJE8kSlpqaKq3jkJvcDZnfza1bt7JRo0a0trZm//79s1x/mzZtWKNGDZXFqtRx5z179ow7d+6kTCZj48aNJfN8SEgIGzZsyFKlSrF169Zs3LhxnmZ5/PDDDyxSpAjT0tIYHBzMwoUL08jIiMHBwVK+ED8/P/7www9qlZ+ZlJQUVq5cWbIoZv5uatasmW0G03/7ZsPDw1UUqd27d7NTp05s2LAhd+3aJVkEMisWeZ2e/PbtW/r4+NDW1lYqa86cOSxSpIjkwlFu3717N62srNQOmBUUHEKp+IQJDAzk999/T1Jh8vvjjz9Yq1Yt1q9fX5r6mJCQoBJUmJvOXnns/v37VdYMCQkJoa+vL+vVq5dlFLpq1apcWSoyKxRz585lx44dWalSJf72228qHW3Dhg1pYWGR7QqgOR3FZW7kIiMjaW1tnaURCg0NpampqUpMysuXL3N8PUr69+9PmUxGHx8faVunTp1YrFgxHjp0SPKjBwcHS8tA55Q//viDdevW5bNnzyiXy/ny5UuWKlWKxYoVY58+fbJ0enFxcTx+/DiDgoL4ww8/SCb93KC8x8eOHeOWLVtYqFAhWlpaShaLS5cusV27drS1taWTkxPr1q2bq9gGJe93RLt27WLVqlVpb2+fJXdKWFgYGzZsyAYNGqht5g4JCaGRkRFHjBjBJk2asHjx4qxSpYo0Q+HatWucN28e27dvz2HDhqndaT158oTff/+9ysJfZ86cyRJfUL9+fU6aNClXZX8oZfc333zDmjVrZsk4O2LECLZu3TpHnb5cLmdoaKhKgOqRI0doaGjIoKAgNm7cmNra2pwwYYIU8Hr69Gk6ODiwfPnyeQqQlMvlDAsLo6enJ729vSmXy3nnzh26u7tzzpw5KlOSb968SXt7eyn9u+DTRSgVnyDKEWq/fv1Yv359Tpw4kbVr12azZs3YrVs3tmjRgh4eHlkWTVJn5JCSksLRo0dTJpOpmGU3b97MOnXqsF69emotCPZ+YzNq1CiWKlVKWjDLxMSEw4cPV2l0GzVqRJlMluuVEjOzfft2Lly4kDExMTQ1Nc0yr/3169f08PDI02JQycnJUqCfu7s7O3bsSFLR0Hft2pV6enr09PRktWrV1JrlkZSUJMV5KP+NjY3l4cOHaW1tzW7dun1wNK3urBhS4coxNDTk+PHj2b9/f9aqVYsmJiZSjMWjR494/PhxDhs2jIsXL1Y79fbff//NsWPHSu/Vrl27WLduXTZr1iyLYnHixAm13CukoqO3t7fnzz//LG27e/cubWxsWLVqVV65cuWDi1TlhnXr1tHQ0JBeXl68fft2lnc/Pj6e4eHhUj4Fda18169f58OHDyVl/M6dOyxevDjbt2/PuLg4pqSkMC0tjb6+vlksP//FiBEjqKenx1WrVnHatGlcsGCBtG/RokU0NTXluHHjJMXi2LFj9PLyUssV+v71nTx5ki4uLqxcuTJJxeweLy8vzpw5k0+fPmVCQgJHjBhBR0dHtYPCBQWHUCo+MdauXctt27YxPT2d//vf/9ipUyc6ODjwp59+koKgVqxYwcaNG+cpmCwz9+/f57hx42hiYsIlS5ZI2zdv3kw/Pz9WqFAhS8Ke3LBp0yba29tLbpzz589TJpOxWLFi7Nevn4qpfvDgwWontrpw4QJLlCjB5cuXMzExkUFBQWzYsGGWrJy1atWSVlhVF+XI+ddff6WLi4tKbogtW7ZwwYIFnDdvXq4zZmbuRC5fvszy5cvz559/loJV9+zZQ2tra/bo0UN6H0aPHq2yfoQ6JCQksGrVqiqxNLGxsezatStNTEy4b9++PJWvZNu2bTQxMeHQoUNVLCohISH08/NjkyZNcpXtVYlyumTm+xcTE0MHBwcpeZqyM4+MjGTRokXZokULjYx8//e//7FRo0Y0MjKS3uXM3+Zff/1FX19fNmjQQO2F74YPH05bW1uam5vTxcVFxapQokQJenh4sEaNGqxWrRrd3d1zrLhkrseoUaOoq6tLR0dHlaBmUuGKNTEx4YQJEyRXoTp5aZTrz2QmNTWVp0+fpp2dnbS+ytixY+np6Ul9fX36+PiwRIkSeZqCLSg4hFLxCTF8+HCWKlWKq1evlj7cxMREFdO5XC5n48aN2aFDhzzNA3/+/LlKzMSTJ084evToLIrFunXr2KxZsxyPSLp27aoycyQtLU2yHpCKUamZmRn/+OMP/v7775TJZBwyZEiWBiO3je7Nmzc5btw4BgcHS9uOHj3KBg0asF69elyyZAlPnDjBIUOGsEiRIhpJj00qOuNVq1bRxcVFslhoiqSkJLZr1441atTgnDlzVBQLR0dH1qtXj82bN6eOjo7KiqTqEBcXR1dXVykIVNk5v3z5UloRNq8pl69du8YyZcpI6ze8T0hICBs1asSaNWvmeBaB8n3OHJR6/vx53rp1i2/evGGZMmVUpt2mp6czNTWVtWrVokwmo7+/f56TNMnlcp4+fZoVK1aknZ2dNJpXvsNv377l0aNHc5VjJfO3vXPnTpYuXZp79+7l1q1bOWHCBGppaXHy5MkkFc9o0qRJHDlyJKdOnZqrxcFIVQVImQRsyJAhWYJVlyxZQplMxmnTpqnl9njw4AGLFStGmUzGOnXqcNSoUTx06BDj4uJIKtxFXl5e9PX1JalQQH799VeGhITk2SIiKDiEUvGJMHfuXJYuXTrLKE3Zkbx+/Zq7d++mv78/vby8pIZAHcUiJCSEzs7OdHFxYd26daW8DM+ePZMUi8yukJzOIoiLi+Nvv/2WxYLy4MEDPnnyhE+fPmXlypUlc3RcXBwtLCyora2da3dE5ut+8eIFK1asyKJFi2aZvnns2DF+++23LFy4MF1dXenl5ZWnbI/ZkZiYyFWrVtHT05PNmjVTu5zsnmViYiK7devGqlWrqigW//vf/zh48GAGBQWpnRfgfZo3b846depInZGyPoGBgSxUqBCtrKykpa7V4dChQyxXrhyfPHmS7cqzpMKq1aJFi1wFtkZHR9PHx4f79u3jnj17qKWlxWPHjpFUdITm5uZZZlz88MMPDA0NVVu5DAkJ4aJFi7hgwQIpPiM8PJzVq1enu7u7ZKZ/v2PPrbK8a9cu9urVK0uA7urVqymTybKsRJsbOR9qO0aPHk0tLS0uW7Ysy/P+5Zdfch0ErCQqKore3t50cXFhpUqV2K1bN+rr69Pb25tdu3blpk2buHnzZjo4OLBBgwYaXwBPUDAIpeITQC6Xs3PnztIo++7du9y6dSv9/PzYqVMnHj16lE+ePGFgYCC7dOmS65GIUgZJXrx4kSVLluSUKVO4atUqVqpUScU18ezZM2n9gF9//TXH5SuTJikbs+XLl7Nz584qx0RERNDNzU1yR9y/f58DBgzgxo0bc9QIZl6pVMm5c+eYlJTEnTt30svLi25ubjxx4kSWa3/x4gXv37+fp1Um/43ExEQuWbKEVapUUctVlDnN8bhx47h06VJp+qMy1bdSsVCanVNTU9VyFSllvXz5UmURq507d7JixYocOHCgSmf//fff86+//sqRPzu72TpKS8DatWupp6cndVSZ637u3DkpxiK3U2EvX77MXr160cbGhnp6eiorlj58+FCyAA4dOpTr1q3jgAEDaGZmlqsZP5kZNmwYzc3N2aZNG3p7e7N8+fLSt3L8+HHWrFmTnp6eak0jznzfb968ycqVK9PMzIxjx44l+W7KZ0ZGBjt16sROnTpJsRS5Qfl8jhw5wuHDh3PAgAEqCxOOHDmShQoV4tKlSzWaCyIyMpItW7ZkQEAAT506xfv373PDhg309fVllSpVpNgUmUzGFi1aqNRV8HkglIpPgLdv37Jt27Zs3rw5Z86cyQYNGrBx48Zs3bo1mzdvLq1s+ODBA7VmeSg5d+4cd+zYITVQpKJjqlmzJu3s7CQrSXR0NCdPnpzj1UZnzJhBmUwmTU9NTEzklClT6ObmprKq5MmTJ1m8eHFOnTqV+/btY5MmTejv7y/tz0kH+eDBA3p4eEiKROHChSUf7c6dO1mhQgV26dJFxeKTl+DF3KBcC0NdduzYQQMDA/r4+NDZ2Zne3t78888/Sb5TLHx9fTlt2rQs03JzS0hICH18fGhjYyPFN2RkZEjZHqtVq8bp06ezc+fONDU1zVXq7fv370sujo0bN9Lf358pKSm8ffs2PT09OXz4cOk+KZ95UFAQp02bpnYHsm7dOspkMpqbm2dx0zx+/Ji//vorHRwc6OXlRW9vb7WtVX/88QfLlCkjKeGrVq2irq6uymJWp0+fpouLSxal+r/IrFDs3LmTL168kBY9y/x9Kvnuu+/YsGFDta6DfBff0qtXLw4YMIBlypRh3bp1pf2jR4+mgYEB586dq1HF4saNG/T392eDBg1UgrJfv37N3377jaNHj2b58uVFDMVnilAqPiKZczYcPXqU9evXp7W1NadNmyZ9bLNmzWLjxo3zPMvj7du3dHZ2pkwmUwkqJN8pFs7OzlIHnZsR8Pnz59mqVStaWlpKsxJevHjBefPm0cvLi99++6107LRp01iiRAk6ODiwevXquXbj3L9/n3Xq1GHp0qWpra2dxfy7ZcsWVqpUiV26dFFZJvlT5+nTpxwzZow04j1x4gS7d+9Oa2tr7tq1i6RCsWjVqhX9/PxybXHJfH/Pnj3LEiVKcOzYsZw6dSptbGwYEBDAM2fOUC6X8++//2bbtm3p4+PDhg0b5ipvQ1paGvv27Utvb2/26dOH2tra0jWlp6dz6NChrF69OgcPHsyYmBjeuHGDP/74I0uUKJHr6ZyZr+nSpUtcvnw5+/fvT1dXV27evDnbuiUlJUk+fHWYNGkSO3XqRFIRyGxqasqlS5eSVDwfZUKmK1eu5Oobynwto0aNYunSpaVgzG3btrFWrVps1KiR1NEmJiayVq1aWdYvySn379+nq6urFOt09+5dlihRgr1791apy4ABA1i8ePE8rzj7Prdu3aK/vz/9/f2z5HYhC24gINA8Qqn4SMyaNYtdu3alu7s758+fLwUivb/4UePGjdm1a1eNmADv379PX19fOjo6Sr7kzJYP5ShOncC1y5cvs0WLFjQ3N5dGgS9evOCcOXPo5eXF3r17S8deuXKFN2/eVDs9sXJUWrRoUcl8nzmOY8uWLaxWrRqbN2+u8fiJ/ODq1assW7YsK1asqJLo7PLly+zRowetrKwkxSIxMTFX7pWNGzeqWJxu377Nn3/+WQryIxVKRsWKFdmsWTMeP35c2p6UlJRji8jKlSulVOKkIh+DTCZjt27dVI5LSUnh+PHjWbFiRWppadHDw4P29vZqj0oPHz6sYu06c+YMe/bsSVdXV27dulXavnv37lyvApodI0aM4OjRo3ny5EkaGxtLCoVcLueqVas4a9YslXcxt+6pSZMmsXjx4jxz5oyK1WvHjh309fWliYkJa9Wqxfbt29Pb21t6PjnNSaEkMjKSLi4uJBXWvzJlyrBv377S/syZTDO3SZrk1q1bbNSoEf39/VXeO8HnjVAqPgIjR45kiRIluHDhQk6fPp329vZs0qSJNMsjNjaWu3btYuPGjenp6alWUGbm1f7Onj0r5c1/+PAhPT09WblyZSkYLrNikdso6/dHix9SLMqWLatisVCS28RWycnJvHbtGlevXs1vvvmGFhYWkoKUuQPcunUra9eunaepsPmJ8nrCw8O5ZMkSBgQE0MjISGVJe1KhgPXu3ZtGRkZZ1uT4Lx4+fMgaNWpIz/nVq1e0tLSkgYGBlFRNyenTp1mhQgW2bt0613KUORiUcTVyuZzNmzenr68va9asyUWLFqkojhkZGXz16hV3797NM2fOZMncmhsOHDhAY2NjFTfA2bNn2atXL7q4uHDBggUcP3489fX11V6p9fbt23z8+DFTU1N5/PhxymQyymQyFWtIYmIiGzZsyCFDhqh9LS9fvqSfnx9///13koq8IP/73//Yq1cvbty4kXPmzKGvry8rVqyoMoMmN1PLT548yQULFvDevXv09fXln3/+SWtra2llUVKRD6NLly7SdNv8jGm4desWmzZtSh8fnyxTTQWfJ0KpKGBOnz5NV1dXaQpgWFgYdXR0VFYXvXPnDgMCAti+ffs8BWVu376dtra2dHNzo4GBAYOCgvjkyRMpLqFy5cpSYqHcNhwfUgauXLnC5s2bZ1Es5s6dy1KlSqkkIsrt9ezbt48DBw5kWFgYSUX+fz8/P5qbm6usLLp7924mJiZ+8osN7dmzh6VLl+aRI0cYGhrKBg0a0NXVNUvjeuHCBQ4YMCDXyabId7OHLl++zFevXvHkyZO0trZmjRo1slhxzp49Szs7O3bu3DnX905pHj9//rykXLx9+5adOnVitWrVuHDhQpV3WJ0cB9mRlpbGQ4cO0dLSkvXq1ZO2h4eH84cffqC1tTXLli2rVu4LUmGZcHV1ZbFixVirVi0uXbqUv/76K/X09Lh+/XpGRUXx8uXL9Pf3Z/ny5fNktn/16hUtLCz4448/8siRI2zfvj2rVKnCSpUqsXTp0ly+fDm3bNkirVmS05gnJWlpaQwKCmLt2rUZGxvL6tWrU1tbm127dlU5bujQoaxRo0aBJZqKiIhgmzZtcr2wn+DTRCgVBczJkyelFR83bdqkYkJNTEyUgsweP36stnuAVJgvCxcuzOXLlzMlJYV79+6VlsNWZuVTLjWd24yZmRWKkJAQrl69mr/99ps0r/3WrVtZFIvnz5/neJZHdoSEhFBPT4/Tpk3j5cuXpe33799ngwYNaG5uzr179zI4OJglS5b85BuoV69eceDAgZw5c6a07ciRI2zZsiXLly+fJSlTXgIz4+Li6OXlxY4dO/Lly5c8efIkraysGBQUpHIvSVWlICdkfp5KJc/Pz0+KZ3n16hU7depEX19fLliwgBkZGRwzZgybNm2q9ruQ2c2irMPBgwdpaWkpBTWTihiH58+fq22+37BhA0uXLs0dO3ZwzZo1HDZsGPX09Pjtt99y/vz51NfXp7m5Ob29vVm3bl21E1tlZuXKlSxSpAhNTU05fPhwaf2VTp06sWfPniQVLq2GDRuybt26uZ5OHBERQUNDQ+7du5cRERE0NjZm+/btuW3bNoaFhXHgwIE0MzPLsiZQfpPXwGPBp4NQKgqYAwcO0NXVlRs2bKCZmZnKmht///03O3XqpDIiVSfJTFxcHPv06cOJEyeSVARhOTg4sE2bNjQzM2Pz5s0ZFRXFqKgoVqtWLVedSGaLxtChQ2liYkJvb2/q6enR19dX8mPfvHmTLVq0YJkyZbJ0kLltdCMjI+nk5CQpX+/z+PFjtmzZklZWVnR3d1d7VFpQnD59mubm5ixXrpw0u0PJ4cOH2aJFC1apUkXKtaAJzp49y0qVKrFHjx589eoVjx07JikW73fS6rB7924uXbqUa9asoZ+fHwMCAlQUi6CgIHp4eNDT05PFihVT29T95MkTlixZku3atVPZnpqayl27dlFXV5ft27fP8/UcPnyYvXr1Usm8GhcXx8WLF9PExIS7d+/mnTt3GBoayvDw8DwNAN7n/v37WdqA+vXrq6xEu3btWjZv3vxfU5i/b31U1nHQoEHSdM2DBw+yevXqNDc3p4eHB319fdVeUE0gIIVSUSAsXbpUpUNs2LAhZTKZikLx5s0bNmnShG3atMnTIj2kQuvfvHkzb9++zZcvX7J8+fLSKOePP/6gTCbjN998w0ePHqndCCotHWfPnmVycjKfP38uLXCkTOl86dIlac0SUn3f7KlTp2hnZ6fS+WVX1pUrV1TyLnzKKN+BmTNnZvGJHzlyhPXq1WPt2rX55s0bjfm0w8PD6e3traJY2Nvbs3Xr1rlahGzPnj3SSFZZt1atWkkzCf744w/Wq1dPRbGIi4vj5s2buXDhQrXcOErevHnDX3/9lTY2NlnM9nFxcaxYsSJlMhmbN2+utozo6Gg6ODjQxMREJTssqXDlBQQEcMCAAVnOy+t3+z4JCQkMCwtj06ZN6eXlleVbzUk+j9DQUK5bt06lbtu2bWORIkWkWRcxMTG8f/8+Hz16lKeZMQIBKZSKfCc4OJhWVlYcM2aMNKo4d+4cq1SpQkdHR/7+++9cuHAhGzZsSA8PD6nhyGsDpfRZr1u3jtWqVZNkb9iwgXXq1KGNjY3aLoJp06axWbNmbNu2LZOTk1WWmK5evTobN24sHXvnzh21r0VZ7s6dO1miRAnJTZPZVHrq1CmVlSE/Za5evaoyL79x48YsXrw49+/fn8V6ExYWpvZCWv9GZsXi9evXPHz4MD09PXMc0Pr06VPa2dmxe/fuKopIzZo1VeJlNm3aJCkWeZmBo3wHLl26xL1793LPnj2Miorib7/9RgcHB5Xp0RkZGfz222+5bds2aWqnuly6dIkODg6sUKFClpkpPXv25DfffJOn8v8LuVzOw4cPs2nTpvT391dxreRUyUxJSeHgwYMpk8nYqlUrlefTu3dvVqtWLdeJxgSC/0IoFfnIunXrWKJEiSzm+PT0dF67do3t2rWjq6sra9WqxR49ekgNhybnaE+aNImenp5SXoORI0dy4cKFai9GlpGRwfnz59PQ0JBOTk5So6QsLywsjLq6ull89eosX64kMTGRlpaWbNu2bZZ9gwcP5ujRo/O8fkN+IpfL+ezZMzo7O7Njx44q74Ofn5+05HtefPG5ITw8nJUqVWK7du0YGxsrBXPmlPPnz7Ny5crs1auXZD1q2LChNGtByfr161mvXj3WrVs3y/uQG7Zs2cJixYrR29tbWjdi2rRp/O2332hnZ8dmzZrxr7/+4uDBg+nm5qZWJsvsuHTpEsuVK8fAwEBJMYqPj2f16tVVpkjnF2/fvtWIa+X69evs168fXV1d6erqylWrVnH+/Pls3ry5NCtMINAUQqnIR0aNGiUlp/nQYkJPnz5V2abppC/h4eFSvEP9+vVpamqaqyCs7JSB+Ph4/vrrr9TR0eGoUaNU9oWGhtLBwUGtkaJSoThx4gSnTp3KMWPGcMOGDSQVJttixYqxZcuWvH79Ok+ePMmRI0fSzMwsV6b7guBDo78NGzbQy8uLPXr0UMlHUb9+fdrY2HDv3r0FplicOXOGtWrVUns6Z3h4OCtUqMAePXrwypUrbN++fbYWo8WLF7Nz585qW13Cw8NZvHhxrly5kq9evWJ0dDQDAwPZoEEDzpw5k/v27aOLiwsdHR3p4uKi8SyM4eHhdHd3Z+nSpdm0aVO2atWK5cuXz1V+CE2gCctlTEwMe/bsyYYNG9LS0pIymYwDBw7UUA0FAgVCqchHunbtypo1a0p/KxugN2/eSFHdmcmvBurEiRPs0qULv/vuu1xFi2duyCIiInju3DkV8+vixYupra3NwYMH89ixY7x69Sq/+eYb+vj4qN0IKpWHgIAA9ujRgzKZjGPGjOHr16958OBBOjs708LCgnZ2dvTy8vrkUvn27t2b3bt3lzqd960AW7dupZubG3v27KlisahUqRLd3NwKdBpsXqd1Ki0e3bp1o7GxMe3t7enn58cGDRqwdu3a9PPzY79+/fJkOVi/fj3d3d0ZFxcnvXfR0dHs2LEj69atS7lczvT0dN65cyff1nW5cuUK7ezsWLNmTZXYKHWtfR+bS5cucdGiRXR0dBRBmQKNI5QKDZN5YaT58+fTxcWF//vf/1TiAJ49e8YaNWrkOslQXsjIyFBbaRkxYgTNzc1pZmZGBwcHjh8/XvLBL1myhAYGBpTJZPzhhx8YEBAguSJyolhkPubWrVu0traWAlgfPXpEAwMDDho0SDomJSWFJ0+e5NWrV/Mt05+6bNiwgSVKlJBM5cePH+eYMWOyWG22bNnCMmXKsEuXLipK0ac+DTY7zp8/Ty8vL5YrV46dOnXi2rVrOX/+fI4fP55TpkzJsxVpw4YNdHBwkBQTpSXv3r17lMlkUlBwfnPhwgVWrVqVvXv3ztU6KJ8S73//n7LLUPD5IpQKDTJq1Ch6eXlx8+bNzMjI4Js3b1iuXDlWrlyZW7duZXR0NCMjI9mkSRNWr169wEzduSVzR6/sAHft2sXr169z+PDh9PHxYZ8+faTkOKtXr6ahoSHHjRsnnfdf884zr9mhlHfq1Cn6+vqSVHQalpaWKlk4P/WU2zNnzqSrqytJRaIuCwsLFitWjKNHj86SqXThwoU0MTFhhw4dPvkpsP/FhQsXpBiLzEnINMHt27epp6fHMWPGqGyPioqil5eXlESuIAgPD2eVKlXYoUOHXCee+hQRq38K8gOhVGiIKVOmsGTJkjx48KDK4jtJSUn08/Ojh4cH9fT0WL58eVapUkUjiXLymz/++IOzZ8/mTz/9pLJ9wYIF9PT0lLKAJiYmcunSpdTW1ubUqVP/s9yHDx9ST08vywqLJ06coLu7Ow8fPkxbW1v26dNHuj9nzpxh69atpZTcnyJnzpyhi4sL69atSy0tLR49epTLly+npaUlR44cqdLhbtq0iWXLlmWNGjXylKb6UyE8PJyVK1dm+/btc70w2H/x+++/U1dXlyNHjmRkZCSfPXvGH3/8kVZWVgWehv3MmTOsXbv2F/HMBIL8QCgVeUQul/PFixesWrUqV65cqbJPOVpPTU3l1atXuXHjRoaGhn4waPNTIj4+nhYWFpTJZOzVq1eW/S1atFCJF0lJSeHy5cspk8lylIr7yJEjtLa2Vpmad//+ffr5+dHU1FRaCVLJsGHD6OfnxxcvXuThqvKf/v37UyaTsWrVqtK2efPmSYqFchbEjz/+yCVLluRpqfRPjfzqcOVyOTds2EATExNaW1vT2dmZZcqU+Wir0GoqxbhA8CUilAoN8ODBA5YoUUKKfs/sPkhOTs52NPWpWSiyi3948OABq1evTjs7uyy+8Z9//pl16tRRaWBTUlK4atWqHI1U5XI5w8LCaG5uzkaNGknbly9fzlKlSnHAgAE8efIkL1y4wCFDhrBw4cJ5mpZYECQnJ7NevXrs1asX3d3d2aFDB2nfwoUL6eHhQUdHR1avXp3GxsYayWT5qZGfHW5UVBT37dvHPXv25EsOD4FAkHdkJAlBnkhPT4ezszOaNWuG+fPnAwAyMjKgra2NEydO4Pz58+jWrRtMTU0/ck2zRy6XQ0tLCwBw8OBBJCYmQktLC82bN8ejR4/QuHFjFCpUCMuWLYOTkxN0dHTQqFEjlCpVCtu2bcuVLJKQyWTS38eOHUOXLl3g6OiIgwcPAgB+/vln7Nq1C2fOnIG7uztkMhlWrVoFb29vjV1zfpGcnAxDQ0OsWrUKM2fORPny5bFhwwYAwIEDB3D9+nXExMSga9eucHFx+ci1FQgEAs0ilAo1UXa+JNGyZUtMnz4dW7ZsQadOnRAcHAxAoWw0bdoUJiYm2Lx5s0pn+qmQuZMfNWoU1q1bh5IlSyIiIgLt27fHlClTQBLNmjXD7du34eLiAicnJ9y5cwfHjx+Hrq5uFkXhv2SdOnUKFy9exOvXr1G1alUUKlQIffr0QZkyZSTFIjo6GtHR0ShatChMTU1RtGjRfL0PmiYxMRFbtmyRFIs//vjjY1dJIBAI8h2hVKjB+51vz549ERAQgN27d2P//v2wsbGBtbU1rl27hoSEBISHh0NHRyfHne/HYObMmZg3bx527NiBKlWqYNGiRRg4cCBatmyJefPmAQACAwMRHh6Offv2oVq1agCAtLQ06Ojo5FjOtm3b0LNnT3zzzTe4f/8+5HI5vLy8EBgYiA4dOsDLywv79u3Lj0sscJKSkrB582bMmTMHdnZ22LVr18eukkAgEOQvH8Xp8hnz008/0dzcXFp5c+HChZTJZOzRowfDwsK4Y8cOtmzZkh07duSwYcOkYMxPOSjz8ePH7NatmzTNU7ng0NixY2lmZsZWrVrxzp07fPDgAd3c3Fi1alW1ou6vX79Oa2trLlu2TPrbwMBAmi4YFhZGBwcH+vj4aO7iPjKJiYlcsmQJq1SpUuAzFQQCgaCgEUpFLvhQ5ztmzBiampqyQ4cOfPDgQZbzPrWgzPd58+YNQ0JC+Pr1a549e5a2tracP38+SXL27NmUyWSsW7cuY2Ji+PDhQ3p5edHZ2VlK8pVT9u/fz/Lly5NULMduY2OjsobC2bNneejQIXp4eGR7Hz9XkpKSvqhZHgKBQPAhtD62peRzomjRoggICIC/vz/OnTuHoUOHYsKECZg8eTLGjRuHTZs2ITAwEA8fPlQ5T1tb+yPVOGfo6+ujadOmKFy4MA4ePAgPDw9069YNAKCrq4suXbpAT08PhQsXRpkyZfDnn3+iSJEiSEtLy5UcmUwGc3NzREVFoVatWvD398fSpUsBAMePH8f27dvh4OCAs2fPwsrKSuPX+bEwNDSEmZnZx66GQCAQ5DtCqcgF/9b56unpoUuXLtDX14elpeVHrmnuKVSoEADg1q1biIuLg0wmw9u3b7F//340adIEf/31FwoVKoT09HTY2Njg2LFjsLW1zZUMJycnhIaGwt7eHq1atcLy5cslhWvTpk04d+4czMzMYGBgoOnLEwgEAkEBUOhjV+Bz49863y5duqB9+/YAVKdpfg4oA0j79OmDWrVqwdfXFykpKdDX10fr1q2l45TXr/w3N9ja2uKPP/5A586dYWBggMjISKSkpGDt2rVYt24dwsLCULhwYY1cj0AgEAgKHjH7Q01OnTqFWrVqwcXFRep8w8PD1epsPzXCw8MREhICU1NTDBkyRLJQaOLaMjIysG7dOgwaNAimpqYwMTGBrq4uVq9ejfLly2ug9gKBQCD4WAilIg/kZ+f7KZEf1/To0SNERUXB2NgYZcqUQfHixTVavkAgEAgKHqFUaJAvUaEQCAQCgSCnCKVCIBAIBAKBRvh8IgkFAoFAIBB80gilQiAQCAQCgUYQSoVAIBAIBAKNIJQKgUAgEAgEGkEoFQKBQCAQCDSCUCoEAoFAIBBoBKFUCAQCgUAg0AhCqRAIvjKCgoLQokUL6e86depg8ODBeSpTE2X8F6GhoZDJZIiNjc3xOZqo15o1a8SaNAJBDhFKhUDwCRAUFASZTAaZTAZdXV04Ojpi0qRJSE9Pz3fZISEhmDx5co6O/VDHnpsyBALBl4vIKS0QfCI0atQIq1evRkpKCvbu3YvvvvsOOjo6GDVqVJZjU1NToaurqxG5RYsW/STKEAgEnz/CUiEQfCLo6emhdOnSsLGxQb9+/eDn54ddu3YBeOeymDp1KiwsLODi4gIAePjwIdq1a4fChQujaNGiCAgIQFRUlFRmRkYGhgwZgsKFC6NYsWIYPnw43s/M/76LICUlBSNGjICVlRX09PTg6OiIX3/993SCcgAABm5JREFUFVFRUahbty4AoEiRIpDJZAgKCsq2jNevXyMwMBBFihSBoaEhvvnmG0RGRkr7lS6F/fv3w83NDcbGxmjUqBGio6NzfL9evnyJjh07wtLSEoaGhvDy8sKGDRuyHJeeno4BAwbAzMwMxYsXx9ixY1XuQUpKCoKDg2FpaQkjIyNUrVoVoaGhOa6HQCB4h1AqBIJPFAMDA6Smpkp/Hzp0CDdv3sSBAwewe/dupKWlwd/fHyYmJggLC8Px48elzll53uzZs7FmzRqsWrUKx44dw6tXr7B9+/Z/lRsYGIgNGzZgwYIFiIiIwPLly2FsbAwrKyts27YNAHDz5k1ER0dj/vz52ZYRFBSEc+fOYdeuXTh58iRIonHjxkhLS5OOSU5OxqxZs7Bu3TocPXoUDx48QHBwcI7vz9u3b1GxYkXs2bMHV69eRZ8+fdC1a1ecOXNG5bi1a9eiUKFCOHPmDObPn485c+Zg5cqV0v4BAwbg5MmT2LhxIy5fvoy2bduiUaNGKkqQQCDIIRQIBB+dbt26MSAggCQpl8t54MAB6unpMTg4WNpfqlQppqSkSOesW7eOLi4ulMvl0raUlBQaGBhw//79JElzc3POnDlT2p+WlsYyZcpIskiydu3aHDRoEEny5s2bBMADBw5kW8/Dhw8TAF+/fq2yPXMZt27dIgAeP35c2v/ixQsaGBhw8+bNJMnVq1cTAG/fvi0ds3jxYpYqVeqD9+hDsjPTpEkTDh06VKVebm5uKvdoxIgRdHNzI0nev3+f2trafPz4sUo59evX56hRo6S6mpmZfVCmQCB4h4ipEAg+EXbv3g1jY2OkpaVBLpejU6dOmDBhgrTfy8tLJY7i0qVLuH37NkxMTFTKefv2Le7cuYO4uDhER0ejatWq0r5ChQqhUqVKWVwgSi5evAhtbW3Url1b7euIiIhAoUKFVOQWK1YMLi4uiIiIkLYZGhrCwcFB+tvc3BzPnz/PsZyMjAxMmzYNmzdvxuPHj5GamoqUlBQYGhqqHOfj4wOZTCb9Xa1aNcyePRsZGRm4cuUKMjIy4OzsrHJOSkoKihUrluO6CAQCBUKpEAg+EerWrYulS5dCV1cXFhYWKFRI9fM0MjJS+TsxMREVK1bE+vXrs5RVokQJtepgYGCg1nnqoKOjo/K3TCb7oLKTHT///DPmz5+PefPmwcvLC0ZGRhg8eLCKy+i/SExMhLa2Ns6fPw9tbW2VfcbGxjkuRyAQKBBKhUDwiWBkZARHR8ccH1+hQgVs2rQJJUuWhKmpabbHmJub4/Tp06hVqxYARdDi+fPnUaFChWyP9/Lyglwux5EjR+Dn55dlv9JSkpGR8cF6ubm5IT09HadPn0b16tUBKIIqb968CXd39xxf339x/PhxBAQEoEuXLgAAuVyOW7duZZFx+vRplb9PnToFJycnaGtro3z58sjIyMDz589Rs2ZNjdVNIPhaEYGaAsFnSufOnVG8eHEEBAQgLCwM9+7dQ2hoKAYOHIhHjx4BAAYNGoQZM2Zgx44duHHjBvr37/+vyaNsbW3RrVs39OjRAzt27JDK3Lx5MwDAxsYGMpkMu3fvRkxMDBITE7OU4eTkhICAAPTu3RvHjh3DpUuX0KVLF1haWiIgIEBj1+/k5IQDBw7gxIkTiIiIQN++ffHs2bMsxz148ABDhgzBzZs3sWHDBixcuBCDBg0CADg7O6Nz584IDAxESEgI7t27hzNnzmD69OnYs2ePxuoqEHwtCKVCIPhMMTQ0xNGjR2FtbY1WrVrBzc0NPXv2xNu3byXLxdChQ9G1a1d069YN1apVg4mJCVq2bPmv5S5duhRt2rRB//794erqit69eyMpKQkAYGlpiYkTJ2LkyJEoVaoUBgwYkG0Zq1evRsWKFdG0aVNUq1YNJLF3794sLo+8MGbMGFSoUAH+/v6oU6cOSpcurZIpVElgYCDevHmDKlWq4LvvvsOgQYPQp08flboGBgZi6NChcHFxQYsWLXD27FlYW1trrK4CwdeCjLlxYgoEAoFAIBB8AGGpEAgEAoFAoBGEUiEQCAQCgUAjCKVCIBAIBAKBRhBKhUAgEAgEAo0glAqBQCAQCAQaQSgVAoFAIBAINIJQKgQCgUAgEGgEoVQIBAKBQCDQCEKpEAgEAoFAoBGEUiEQCAQCgUAjCKVCIBAIBAKBRhBKhUAgEAgEAo3wf/JAdbvgzPIJAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "box_height_group = ContinuousGroup(name=\"box_height\", bins=3, qcut=True)\n", "confusion_data = evaluator.compute_confusion_matrix(\n", @@ -1297,7 +470,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "bf261559", "metadata": { "ExecuteTime": { @@ -1305,293 +478,7 @@ "start_time": "2023-06-22T09:38:45.452156Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing PR curves for 10 IoU values and 1 prediction set\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1572506bcd244977ab43d2cf18360f51", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/10 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
category_idiou_thresholdmodelAPcategory_str
030.50predictions0.597134outdoor
160.50predictions0.721360sports
2100.50predictions0.764937electronic
310.50predictions0.753037person
420.50predictions0.705385vehicle
..................
11570.95predictions0.007749kitchen
11680.95predictions0.008157food
11750.95predictions0.004675accessory
11890.95predictions0.010017furniture
119120.95predictions0.005585indoor
\n", - "

120 rows × 5 columns

\n", - "" - ], - "text/plain": [ - " category_id iou_threshold model AP category_str\n", - "0 3 0.50 predictions 0.597134 outdoor\n", - "1 6 0.50 predictions 0.721360 sports\n", - "2 10 0.50 predictions 0.764937 electronic\n", - "3 1 0.50 predictions 0.753037 person\n", - "4 2 0.50 predictions 0.705385 vehicle\n", - ".. ... ... ... ... ...\n", - "115 7 0.95 predictions 0.007749 kitchen\n", - "116 8 0.95 predictions 0.008157 food\n", - "117 5 0.95 predictions 0.004675 accessory\n", - "118 9 0.95 predictions 0.010017 furniture\n", - "119 12 0.95 predictions 0.005585 indoor\n", - "\n", - "[120 rows x 5 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
APmean
iou_threshold0.50.550.60.650.70.750.80.850.90.95
category_id
10.7530370.7331410.7061420.6750500.6330080.5725550.4801460.3472910.1662310.0161670.508277
20.7053850.6844990.6544280.6178520.5681290.5090320.4303590.3002380.1457960.0163600.463208
30.5971340.5732980.5427120.5054650.4609460.4021810.3213570.2278300.1124980.0141790.375760
40.8091200.7920820.7710950.7526840.7102660.6618580.5875140.4724460.2794670.0282710.586480
50.5458830.5227240.4961120.4512500.4014320.3511530.2738070.1639240.0589870.0046750.326995
60.7213600.6984120.6754660.6317360.5852440.5118000.3975100.2759710.1144130.0087720.462068
70.6337950.6086580.5897050.5536730.5133850.4591150.3784720.2656220.1156700.0077490.412584
80.5345680.5151360.4979750.4752050.4439990.4041730.3390610.2433770.1198670.0081570.358152
90.5591380.5351210.5099760.4787270.4387170.3811150.3152710.2151130.0942180.0100170.353741
100.7649370.7410440.7223450.6995770.6622660.6079440.5243560.3872440.1762620.0124710.529845
110.7086080.6859990.6696770.6373190.6113450.5454550.4583790.3540140.1800220.0207590.487158
120.4657970.4411330.4091000.3777200.3470160.3076480.2428340.1599990.0708170.0055850.282765
\n", - "
" - ], - "text/plain": [ - " AP \\\n", - "iou_threshold 0.5 0.55 0.6 0.65 0.7 0.75 \n", - "category_id \n", - "1 0.753037 0.733141 0.706142 0.675050 0.633008 0.572555 \n", - "2 0.705385 0.684499 0.654428 0.617852 0.568129 0.509032 \n", - "3 0.597134 0.573298 0.542712 0.505465 0.460946 0.402181 \n", - "4 0.809120 0.792082 0.771095 0.752684 0.710266 0.661858 \n", - "5 0.545883 0.522724 0.496112 0.451250 0.401432 0.351153 \n", - "6 0.721360 0.698412 0.675466 0.631736 0.585244 0.511800 \n", - "7 0.633795 0.608658 0.589705 0.553673 0.513385 0.459115 \n", - "8 0.534568 0.515136 0.497975 0.475205 0.443999 0.404173 \n", - "9 0.559138 0.535121 0.509976 0.478727 0.438717 0.381115 \n", - "10 0.764937 0.741044 0.722345 0.699577 0.662266 0.607944 \n", - "11 0.708608 0.685999 0.669677 0.637319 0.611345 0.545455 \n", - "12 0.465797 0.441133 0.409100 0.377720 0.347016 0.307648 \n", - "\n", - " mean \n", - "iou_threshold 0.8 0.85 0.9 0.95 \n", - "category_id \n", - "1 0.480146 0.347291 0.166231 0.016167 0.508277 \n", - "2 0.430359 0.300238 0.145796 0.016360 0.463208 \n", - "3 0.321357 0.227830 0.112498 0.014179 0.375760 \n", - "4 0.587514 0.472446 0.279467 0.028271 0.586480 \n", - "5 0.273807 0.163924 0.058987 0.004675 0.326995 \n", - "6 0.397510 0.275971 0.114413 0.008772 0.462068 \n", - "7 0.378472 0.265622 0.115670 0.007749 0.412584 \n", - "8 0.339061 0.243377 0.119867 0.008157 0.358152 \n", - "9 0.315271 0.215113 0.094218 0.010017 0.353741 \n", - "10 0.524356 0.387244 0.176262 0.012471 0.529845 \n", - "11 0.458379 0.354014 0.180022 0.020759 0.487158 \n", - "12 0.242834 0.159999 0.070817 0.005585 0.282765 " - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "display(ap)\n", "ap_consolidated = pd.pivot_table(\n", @@ -2062,7 +538,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "5a120d86", "metadata": { "ExecuteTime": { @@ -2070,30 +546,7 @@ "start_time": "2023-06-22T09:38:45.869049Z" } }, - "outputs": [ - { - "data": { - "text/plain": [ - " iou_threshold\n", - "AP 0.5 0.649897\n", - " 0.55 0.627604\n", - " 0.6 0.603728\n", - " 0.65 0.571355\n", - " 0.7 0.531313\n", - " 0.75 0.476169\n", - " 0.8 0.395755\n", - " 0.85 0.284422\n", - " 0.9 0.136187\n", - " 0.95 0.012763\n", - "mean 0.428919\n", - "dtype: float64" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "mAP = ap_consolidated.mean(axis=0)\n", "mAP" @@ -2122,7 +575,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "c6fe8904", "metadata": { "ExecuteTime": { @@ -2130,18 +583,7 @@ "start_time": "2023-06-22T09:38:45.869103Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAHpCAYAAABwXWMDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9vUlEQVR4nOydd3xTZRfHfzc76d4t0FJWSwtl7yUoAoIoDkRQEVReRVAUJ8hQQXAg4gBRBMGBIog42CJVkd1SZtm0Bbr3yB7vHze5NyFps24z2uf7efP63PXck5AmJ+c553cog8FgAIFAIBAIBAKhXnjeNoBAIBAIBALB1yEOE4FAIBAIBIIdiMNEIBAIBAKBYAfiMBEIBAKBQCDYgThMBAKBQCAQCHYgDhOBQCAQCASCHYjDRCAQCAQCgWCHZucwGQwGVFdXg8hPEQgEAoFAcJRm5zDV1NQgJCQENTU13jaFQCAQCASCn9DsHCYCgUAgEAgEZyEOE4FAIBAIBIIdiMNEIBAIBAKBYAfiMBEIBAKBQCDYgThMBAKBQCAQCHYgDhOBQCAQCASCHYjDRCAQCAQCgWAH4jARCAQCgUAg2IE4TAQCgUAgEAh2IA4TgUAgEAgEgh2Iw0QgEAgEAoFgB+IwEQgEAoFAINiBOEwEAoFAIBAIdiAOE4FAIBAIBIIdiMNEIBAIBAKBYAevOkz//PMPxo4dixYtWoCiKGzbts3uNenp6ejRowfEYjHat2+P9evXN7qdBAKBQCAQmjdedZjq6urQtWtXrFy50qHzr127hjFjxmDYsGHIysrCCy+8gKeeegq7d+9uZEutMRgMkMsVkMsVMBgMHr8/gUAgEAgEz0EZfOTbnqIo/PLLLxg3bly957z22mvYvn07zpw5w+x7+OGHUVlZiV27dtm8RqVSQaVSMdvV1dWIj49HVVUVgoODXbZXLlegX8ooAEBKdBvwKT4iA4IQKpMhIkBmdT5FAWFBUoiEfLtzUxQQGROA8MgAl+3zNgHhMkR2T4EwMAB8scjmOcLgYAjEEg9bRiAQCASC8wi8bYAzHDp0CMOHD7fYN3LkSLzwwgv1XrN06VK89dZbjWpXlVIBHsWDRqeHUqODADzweNbBO61Wj9AAxxyE2lo1qssUAAABnwcej+LUZkeRBQgttikeBbGYD4pq2B5VjQpV+YdB8SiIpALwRdaOIl/AgyhYAgq25zIAEIiFCO/SCdK4FjZfUwKBQCAQPIFfOUyFhYWIiYmx2BcTE4Pq6mooFApIpVKra+bMmYPZs2cz26YIE5eEyQJQpVDAADpYFxsdDJGAdRBq6lSoqlFCKBYgJIKOPgn4PAhtRJuqKxWQ16kBAOWVSmY/j1efW9EwOr0BErH9qJY5fD4PgTIhKIqCvE5jdbyuBhAHiBDbPtLqmLpaCVWNAhRFQafRAwC0Kl39N8uvtWtP+ZVSyMKlEAWb/fsaDKD4PEgiwwEAFJ8HigKEQcEQmL0PhMEhELkRSSQQCAQCAfAzh8kVxGIxxGJxo97j7qlj8P2qLUyk5OEPn0FwOPslffiX//Dnut2oqlGiqoZ1gnrc1RutOydazKVRqXFu13HwdHrweBRqS6sBAHq96yunyoYcFpvoUCenHaWQmBB2nopaUBQQKBPBUKtC7sn8emdI6NsRlEYNTXUNqFsiQwadHqrqOsftr1VDWasGqCrAAPD4FPgCHvgiPsRF1TB5khRFQSARgOLzAAPAF9ORLYqiIDAukxr0evCEQogjIxHUrj2JWhEIBALBIfzKYYqNjUVRUZHFvqKiIgQHB9uMLvkKbbu3R1jcMShr6SU2RQ3938ydx5C585jNawY/PBS3PXI7NAoVKm6UunTf0muF0Omcc5aO/ZBusV1VVGV1jlJF2x8eKgGfR4HPt3Y68o6cZ8atB6ZZHRdE6xHXtR14wnreggagrqAYN//JtNgHAHqdAXqdDhqVDsoaNXOYx6cgkhqXEClAKOaDJ+CBoijwRbSDZtAbwBcJoCguR+3Va6D4fMaZ0ms1EEdE2LbnFtsoPh/i0FCII6PAE/jVnxGBQCAQXMCvPun79++PHTt2WOzbu3cv+vfv7yWLHCM6MQYzvnyB2b6enYcDm/6GTqO1Ojfn1DUAwL8/pqNFh5bo0CcZ0R1aunZfF65Lu6sPVLUKXD95FTq1pX0ntv0HeQW7hGZaMgxPiMboeZMgEApQdOYqTnxjWbWY+99pm/fKO3TWIZva39kLoQnRkAbLUHuzBBq5AgVHzlidp9cZ6EiUEWUN/V8enwJfyIc4QAi+kAe9Vg+NHAAUtEPFo6N4FI8HdVUd42TZoy43jxnzREIIAgMR1buPQ8+JQCAQCP6FV6vkamtrcfnyZQBA9+7dsXz5cgwbNgzh4eFISEjAnDlzcPPmTXzzzTcAaFmBzp07Y8aMGXjiiSfw119/4fnnn8f27dsxcuRIh+5ZXV2NkJAQTqvkXpvzPL5ftQUBQgnCpIFY9ts7FktyznDx6Hn8tGgjsy2WNe5yIgCo5CoMHD8Etz0yDDx+w/lOWrUG2+atBwwGVBdVWhzj8XnQ6/RI7JOMgVNG4NLuoxDZSHIvyLoMVY0cvAYqBtXGKNytdLy7P4JbRiG0dQx4PB70ej1UFdUoOnEBAF1hWHzyEtDA21og5kMWIgGPX79TZG6bwWAAXyCAMID+t9Cp1Maxwcqxovg8UEIBREFBMOj1EATIwBNLIAwOgiQi2iFHjEAgEAi+h1cdpvT0dAwbNsxq/+OPP47169djypQpyMnJQXp6usU1L774Is6dO4dWrVph/vz5mDJlisP39HWHCQCy/szEHx9vc/l6d7jvlfFIHdzZoS92RVUdfn7tK6jlKpvHh864B237dnTJDo1Chav7M3F1/wnwBHyraBcAxHXvgPA2cRBIRIjp3BYCsWVFn7ykAtU5+ZCXVqLk5EWr63lCPigeHU3SKtUIjJSC72B0yQQl4EMSFgweT2v3OkGQDOKIMIS0TwFlxzElEAgEgm/hMzpMnsIfHCYAqK2ohVph2xHhktLrJfhp8UaLfeEtIjB99fMOOw4apRpquQqKqjr8tvAbi2P3v/skgmPCwLOR5+QMeYfPIvu3/8AXCeqNPsV2bQe+UIjOD94Gvo3cqJqbxTj33Y4Go08AIA4NBM9Y5ahTaRAQFYyglnRFYPWVHCaX6lYiuydBW1MDis+Htq4OAAWD1trR40tE4AfIaMmF4CAIAoNh0OkgjYkDTyC0nphAIBAIXoc4TC7S2A6TJ9FpdTj08wGkf7fPYn9wVAh63tUbAaGB6Ng/BZJA+4n1GpUa5/dl4diP6Rb7A8KDkHRbF3S/b6Db9tYWlePirqMAgMJTV2yeIw0LQlBcBGK7toM4UIrI5ATGAdSq1NApVNDr9TDo9Li68z/U5Zc0eE+T+KZORedIpTw8AsrSMlScvWB975goCAMDENgqFtKYKChLilGVnV3v3MwyXmggYyNPLAHF5yOgZWsIpNZCqAQCgUDwLMRhcpGGHKaU3h0hFAqQkByPe54czZXpjY6yVoFlE5fWe7zbiJ64+7l7HZrrv69348L+k1b7g6JD0fH2bkgbzV1ydHV+KYqzc3Fxx+EGz+swojfa39kbVD0ioBqF0sJxUpRWIW+/7SpGc0ITIgBNw9HAuCF9IQoJRPmJE+BLpdDW1NR/MkUBFMDj8yGKCAZfLIYwKAQAZfwfBYNeD0oggDQ6zkq2gUAgEAjcQxwmF7HpMEmlCBNatjN5b+vbCIsOc8tmT2IwGHDzwnVk7T0BvU6PU/tOWBwf+NAQDH3kdoe+pHVaHVS1ChRdvIH9n/1mcaz3hNsgDpQiICIYLW/RonKHquvFKLt8A3mHzkIaFoSyyzetzglrG4eojq3BE/AR0ioKofHR4ItsL4VpVWpo6+glQL1Wh9PrfrV5Xo+ZE6AoKUPdzQJoauqgKLYtBZEw+g6Iw4JBURQUxcXQq1SoumAdpTJHEERHmCjT/xkASiRgbaYoBHdIBV8sIUnlBAKB0EgQh8lFbDlMAPDivP9BKpNg44c/QavR4p1NCxHV0loR258ovV6C1c9+ymw/sfxptHBSskBRVYdrRy/g8Ld/2jzed9LtiE5qiYjEGE7FJA16PcqvFeDIqm0Nnjfk1UkIjHHcsdXUKVB4/BzyD52y2J9we2+EtG0FWWQoAKDw4HFUXbpmdT1fLEJEt07gi0UISowHDAboVCroVSpoampQee6cQ3bwJSIIzZfyRGJIY1pAIAsATyQmDhSBQCBwBHGYXMTcYfp55zrMengeAGDVz+8jsUM8nrvzZagUKrz57VxEtoiAQCBwO/HZm+Scuorv3ljPbPMFfOi0OoyYNhrRbeh2NREtIxEUHtTgPBfST+LGyasw6A3IO3HZ5jmxHeORemcPJPZO5sx+ACi9eB1X/sqEQadH1Y1iALCovovt0g4xaW0RGh+NgKhQh+Y8+80fqG0g/6nT43cjMC4KFdmXUHw0q97z+GIRKAEf4Z2SIYuLgTg0GFUXLkCv0QAGY9MdgwF6rRaqEtv3E4UGgi+1lqEITe1KkskJBALBTYjD5CLmDtPh7F148q4XUFVRbeUwmQiOCMaC9a8jOKxhh8KX+WXZFpz9+1SD50gCJHhyxXSExToWrTn5+2FkbP6n3uM97h+Eznf1tpIM4Irz2w/h6l+ZNo91un+ITZXyW9EolLj8y35oVRrIi8qsjkvCg5H2xDjwBHwY9AYUH8+CXq1B9ZXceucMaBmLVsMH13tcVVaG0uPH6z1OCfgQBEghMNPxEgaHIjChDSgekTQgEAgEZyEOk4vYc5hWzVmDrH8tnYtn3/0fug2y/wXsyyhq5FDWKZG58xgydh5DcCTda670umXUo9fdfTHq6TEOz6vX6ZFz7AIuHTiDm6esl7DumvMwxIFShLWK5HyZqba4Ahd2HEZdcQVqiyosjklCAqGsqoUoQIKWvToi5Z6Gq/wMBgPkRWUozrqA4ixL7aeE2/sgIDYCwQmxzD51TR1qr99E5YUr4AkEUJVXMsf4UgnEIUEAxQPFo0DxeFCWVyK6Vxd6GQ+Atq4OFWfOQF1ZifoQBErBEwst8rSC2nWEQBZAluwIBALBQYjD5CL2HCaDwcBEmN59ZjnyrxYAAFbsfA+yoKZXJq5Va/DBhCXQadnedcMmD0fn27ogJDrUqbkMBgPO7jqOoz/stzqWPKwrBk51TNXdVQpOXcGJDbtsHoto3xJ9nr7HoaR3jVyJzE9+sNrfanB3tBzYzeY1WrkCVzb/4ZCd7SeOY5wgg8EAbW0tNDU1UBQXQ3lLz0UTlIAPcWQI4yiJI6IhiYoBX9T4ivIEAoHgzxCHyUXsOUzm7PhmN7Z9SX8Jzv/6NcR3aOX6E/Bx6ipr8dFj71vsC4oIxlMrnkFAaKBTcxn0Bmx/ZyPUchUqb7JVZ3cveBTBMWGQBDVew2W1XAlFeQ20SjWq80uR/esBi+MUj8Ko955xyHEqOX0JNdeLUHLqksV+UXAg2t41AJKwYIhC2MRtvUYDeWEJDHq98WEA9HpUXc6xWX3XasRtCIiLttovz89HbW4uNNXVVsfEUaGMOKeJ4A6pRPOJQCAQ6oE4TC7ijMMEAK+Om4fK0iqMemQ4knskoVPfFJfv7esc++MIMncdQ0luscX++NQEPP7eUy7NWVNShc0vfWG1f9w7UxEeH+XSnM5QW1SBf963VEQPiA7Dba9NcniOisvXcXGL7SpBgG7g22pQN8T16VzvOQa9Hjm/7YW6ytIJEsikEMikCGgVB1l0JGRmDpRBr4eiqAgVpyyXiCkeDxSfB1FEMOOsUXwBgtslgxIIQfH5ZMmOQCAQjBCHyUWcdZjmjn8TpQVsQvDiHxcgulXjf9F7k4rCCqx/ZQ3qKmuZfVM+mIZWHa1fH0fY9d4m1JRUoaa40mK/UCLCfUueQGBk46ura1Vq7Jm7xmLfoJcfRkBUKPgC+8nUep0O5edzcOX3fyCNCoOipMLqnLg+nRHTKwUCqcRmixeAljXI//sQlCXWSeYmYgf2RlDrVuAZ5zAYDKg4cwaK/Hyrc/kSEYTBAaBuqeQUh0VCHBkNvkRKnCcCgdCsIQ6TizjrMJ345ySO/ZmBUwfPQq1Uo++IXrj3KTYpOiAkANKAxlti8ibVpVX4ZOqHAOjluefXzXZLnVqr1uDwt3/i4t+nLfZLgmTo8cBAdLy9u1v22kOn0WL369bRLgAIb9cC0Smt0XZYD4fn06rUqM7Jx6VfrHO2AEAaGQpFaSWCW8eh44QRFq+dTq1G7fV8KEvKYdDrbWo+xQ7qg5B2rZltg04HVXk5yjKtqwMFQTLwxULGyWKgKISn9XT4OREIBEJTgzhMLuKsw2Ri1qhXoai1bh4rFAvx1ndvIDIuwmWbfJlPpn6I6tIqZnvEtNHoPbavW1ELjUKFX95Yj1qzeU0k3ZaGQU/e5fLc9jAYDNj31tf1NgKOSmmN3k/d7dSclVdv4sJPe0AJ+DCYJc/fSu9XJoPHrz+aVXH+MkqOn4RBp7fYnzD6dkijLN9fqooKlJ04AYNGYzWPMCQAfKml+KUkMgbCoBAIg/ynVyKBQCBwAXGYXMRVh+nGlXy8/fhSiKUiZp9KQTd0nTDrAdwxfqjLNvky8qo6LH/0Pav98Z1a44HXHkKgG/pU1UUVuHk6B4e+2WuxPyIxBv0fvxNRbeMadTlJp9WhIPMiVLUKXNh+yOLYXcuedeneBoMBitJKaORK1N4owo1/LVvU8ERCtBs9COEdE+udo/zsBZQct8xbann7QATGt7A6V56fj9q8PGiqrJ1PQZAMQhuNlyk+HxSPj+CkVPD4tpcOCQQCoalAHCYXcdVhssUr976BqrJqDBrbH5OdSCL2NwwGA65kXMKPb31ndex/n85AdGKM2/cozyvGtnnrrfYPf/F+JHRv7/b89qjOL8WBDzdZ7BMFSTHsjcn15iM5gl6nx4lPf4RWabvJb+qjoxHUyvbrV3goA1UXrzLbAqkEbe67y3rZzYiytBRlGRkW+yiBANIWMTBolLYN5PEQ3DYJAplzlZAEAoHgLxCHyUW4dJi+X7YJf287gMH3DMRjrz7ssk3+xI3z17H+Fcvk6ceWTEXrtDZuz62qU+LEL//h3J4Mq2NJt6Wh270DGz1BfMdLK632dbxnIOL7pkIoEdm4wjE0CiUKDp9GwZEzVsfCkhKQdP8dNq+rvHgVRYcsXw9JVASie3WFNNr2MnB9auLSmBgYKECvVoB/iwK7ODIasrh4kiBOIBCaHMRhchEuHabdG//Ez6t+BQCs3LccwkZqA+KLfPfG18i5RdnbnUq6Wzm9/QiObfrbav+EFdMRYKfvnTvodTqUX8nH0S9+szoW3CISep0O0Z3aIDQhBrFpbV2YXw95cRnyD51GxUXLFivR3ZKROKKfVWK9XqvD9T1/W1XWhXRog+je3WxGnPQaDcpPnoSqzHY1XvTAAVCVl0BdWW6xXxIdB1mscw2aCQQCwZchDpOLcOkwHduXgTUL1wMAoltFYfGPC1y2y99QK1T4dflWXDicbbF/yKRhGDJxGCf30Ov0uHkmB6f/OIzCCzeY/S06tcbtz4+DyEbDWi45t+1f3Dh2Hlql2ubxoBYRGPyS65HFuqIynPna2jELaBGF1EfuskoQV1fXoiTjFGrzblpdE9KhDWL69QTFs44QqcrKoKmthUGnQ/UlSxHOqP79UJtjuS8goS3EoeGuPCUCgUDwOYjD5CJcOkwALJr1PvLyBNw2bpDLtvkrh7YewL6v9zDbrTrGY+ys+xDeMoKzJZ4Da3fhYj0NhO9bMhVhjaiNVZ1fioprBagrqQQA5Jj1GgyKi0D3x0YiMMaxpsW3YjAYUHnlhk1hzL6vT7V5jaqiCjf2/QttnXWlnzgiDIl3D6/3fpXZ2ajLy7PYF9KxI0ShwajNvWKxXxgcCr5IDGlcK7JURyAQ/BbiMLkI1w6TRqXBjDtmM9ur0ldA4IAQYlOjvKAcq/63wmJfcv8UjJ87kbN71JXX4KeXvrAquweA8IRoxCS1QvKwro2uIK5VqrHnjTVW+29fOAWS4ACX562+Xojs73cy2wm390Fcn071nq/X6VCbexMF/x6xOtZh0n31JocbDAaUZ2VBWWyp6B6Q0Ap6jW25BUl0HABAGtOCOE8EAsGvIA6Ti3DtMAHAqYNn8NmrtCAixaPwye4PIG7k5SJfpKKwAiunfWSx741f33RL7NIWer0edWXV2PXeT1bq4SambnilUb/YawrLcOLbPagtLLc6NvDFhxDiYsTLYDDg6Hvrme2YnilIvLOf3evUNXW4tnWHxT5pdCRaDBsAgcT2e1FZVoayW5LDQ1JSIA4LhbqyHKoK6/53AMCXyiAOi4Qk0roPHoFAIPgaxGFykfocpoWfvIy+Q11XRJ599xzUGluJdB2choAgthmqSCzCiIm3I7JFpMvz+xMquRIfTFjCbI96Zgx6jenL+X0MBgNunLqGgnO5uHzgDJQ2xCgnfjYT0uDGa0xr0Buw89VVwC1/jX2euReRLjZrvjXSBAC9X3qs3oiRuS0Xv/8Z0Ft/NATGt0DL2wfavK7uxg1Unj1rsS+gdWsEJyVBWXQTAAVlSaHVddKYFpDGWGtDEQgEgi9BHCYXudVherDfEwCAqS9MxPgn7nHLxiXTPkBOdp7NY7c/eBsefuFBt+b3J76Y+ZlFE995v7/d6Pc06A34esoHVvunfP0yeHxuo1y3otfpcGn3MVzZx0oAxHRqgy6ThrskR6CqqkXW55ut9vd5bYrdyJmiuBR5O63btUT37Y6QDm1sqo3XXL2Kuhs3oFNYOp2hnTtDGBgIUUgIdGoVVKXFUJYWMcfD0nqSJToCgeDTEIfJRW51mN5/9TMc/ScTT738KO6fPMbO1Q1TmFeEkwdOw2D2C//yqas4dfAMWrVrgZ7DuqPvyN5Nto3KrRze9h/+XLsbAJDYtS0eXTzFI/dVy1X4beEGVBdVMvvufftxhLQIh0DUuNIPF3YexpU/rXWkksf0B0/AR5shXR2eS6fS4PhHlmKhDWk22UKrUOLKT79b7Ivp3xOhSbYlERTFxSg/ccLmMUlUFEJSUmDQa1Fz5QKznycUIbB1OwhkrudvEQgEQmNBHCYXudVhWrl4Hfb/cYATh8kWB3cewfp32C+9HkO74ZnFT3J+H1/EoNfjnXvfZLYff+9JxKe2rv8Cjtn0wueoK6+x2h8cG4aIhGgM/t/oRnGgbKmGM/duGYlBsyc4NZ+6Vo4Tn1nO133mBIgCHVtqrL1RgJt//Qfc8pHRbvzdEMhsN46uvnQJ8sJC6ORyq2ORffpAWZIPndJ6CZREnAgEgq9BHCYX8bTDpJSrsOeHfcjJzsWZw+cAAKv2fwSBG+02/Inqsmp8MmUZsx0QGoA7n7wLnYZ05jwZ3BZ/r/4DVw6eq/f4lPUvg9dIdug0Wpze9BcoPg83j7MRmbA2ceg/836n5pKXVOD02m0W+8I7JiK2V2q9rVWs5igqxfVdlkt1EV1TEdmt/ko8g8EARWEhKk7d0ttu5EjoNWrI869DXVVhcSw0tSsovoA4TgQCwScgDpOLeNphMlFaUIa5499ktkdMugM9buuGFm1iIZFJGu2+vsDR3w5jz5odVvsfW/oEWndO9IgNBr0BlfmlKLp4AwfXWzb7ffiTZyENDrAp+sgVyuo6/PXWemZbFCjF0LmPQeCEOry6Vo4z63+HptYy6tPhvtsRnuxY5M5gMODS97/AoNMx+/gSMeKG9EVAXMOOV/Xly6i5Qms1iSMjEZ6WBp5IRGtJnc2CQa+zOJ9EmwgEgi9AHCYXqc9hGvXA7Xh+4TSuzLXJ/EmLUJRXbPOYI1/WBr0Bg8cOwCOvTGi0qEhjUV1ahW3LtiDvrGU7kJFPj0Hvu7mvoGsIrVqLb55abrX/9ufGIbF3UqPdV15WjfQl31rsG/XeM+A5qdslLy5HwbGzKD19mdkX1CoGHSeOcji5vfZGAW7uO2CxTxQWgph+PSCLtl3NaTAYkL9nj8U+aWwsQjt1Ak8gQPnpDItlP0FAIILbdXT0aREIBEKj4F/flj5MbXUdAODK+ZxGv9eijfPx0PP0UkxgqGV3eIPeYPcBAP/+fhAHd1gLFfo6wZEhmPzuk5i7bSF6jOrF7N/9xXZU1qOl1FgIRAI88c2riO9qmfj816fbcGr7EciN8hBcI4sIxrB5ky0a3+56bTWqrtt2ouudJzoc7cYMRvt7b2P21dwowrEPNuD6P5koPnkRBr21uKc5ga3i0PaB0QjrlMzsU1dU4frO/ai9ng9bv8coikLM4MHgiVldJ0VhIQr27YNeo0F4Wk+Ed+kFnpiOmGrrGud1JBAIBGcgESYXuTXC9McPe7D+4x/RY0AXLF49hytzHUKv06PGwS/niuIKLJnG5gL1vqMHnnrTfom5r3I6/SR+/fBnZnvUM3ej15g+HrdDr9Xh+smr2PfxLxb741ISIAsPQo/7ByEoKoTz++6d9xU0xpY6AHDXB8+6tCRoKyEcoCNOqY+OdmgOvU6H0ozTqMi27CkniQxHwl2327RLUViI8pMnLfaFpaVBGhsLg16HynP0saC2yRAGNl6zZAKBQLAHiTBxRGSM95qM8vg8hEQEO/RITGmNme8/zVx7bF8mnh78PNPHzt9IG9oVkWYtTHat/gPnG0jObix4Aj5a9+yALmP7WeglFWTn4cp/Z7H5pS+wbd56zu97+4LHEd6WFX38b8VPLs0jCpSh7+tT0WbUAIR3TGT219wowrU9h6BV2n9/8Ph8RPfphrBUy+VIZWk5Ln67BVqF0uoaaWwsWowYAUrIRssqTp9G/p9/guKzBQ01Vy9AQyJNBALBixCHqRnSZUBnvLhipsU+f1yeM/HMqucw+OGhzPaWpT9i8dgFyDl9zeO29Bo/BI99+QJGvzERSbd1sThWnleM8npyz1yFLxKi34z7mO3qm6U4vSXd5fmiuyWjw7hh6PnCJGZfceZ5ZKzYiPKLuQ1caTZH765Ifnw8Eu8dabH/2rZdNs+nKAotbr8dQe3asTsNBijy8xHQKpHZVXPlPPRajeNPhkAgEDiELMm5yK1Lcof/Oo5lc1d5ZUnOHf436DkA9JeWQCSARqXBx7vfhzTAtq6OL3P239P45X1LVWtPVtDVh16vx3ozSYQeDwxC8rCukLrRYPdWNEo19t7SyNeVRHBzam4U4eLP+6C9JfrY4/mJEDpRkVl05AQqz9OJ5a3H3glJeGi95xr0euTvpasPRWFhiOrTB6qKMtRdZ51fSVQspLEtQFHk9x6BQPAc5BOnmTPtrSng8XkwGAzQqOhf77NGvopNH/9s50rfo9PgNLzx65tIHdyZ2fftnHV2E5cbGx6Phw5D0pjtzJ8P4IeZK1FVUMbZPYQSEYa/9YTFvl2vrUbJBdstdhwhqFUMes6ahLZ3D7bYn/nJD1DXWgtR1kd0727MOPf3vVCWV9Z7LsXjIbBNGwCAuqICBr0e4rAIiELCmHOUJYWoOJ1pIWlAIBAIjQ1xmJo5ve/oiRU738P72xZDEsBGDfZtTsfrDyzwomWuQfF4uHf2A+h7b39m3zv3vmmzWsuTDH7qLnQbNwDhCdHMvp9fW4vdyzZzZpsoUIpR7z9jocl07Mvf3Z4/qnN79H19KvhmuVknPtsEeUlFA1exUDwKsQN7M9u5v++1Sgw3R9aCzcnK37sXOpUKga3bISC+jcV5FWdPeP3flUAgNB+Iw0SARCZBaGQIPtn9AV7/4iVmf3lRBZRy/0sG5wv4GP7kKIt9uWdyvGOMGT3uH4Rxi6egx/2DmH03T13D+b+yOLsHj8/HiCX/Q7s7ejL7zmxOh56DaEyvFx5BaLt4Zvv02m2oyi1w6NqQ9omI7tOd2S4+moVrv+62ea4wMBCi0FBmuzA9HQAgDotAeJde4EvZVi7VV8478QwIBALBdYjDRLCgbadErNzHijH+sX4n/li/C3s27kPxjRIvWuYcFEXh9a1shOy7uV+jJJfbhGtX6TZuAO5fyvYBPLRhLypvcrc8BwDJo/sx4+tHzmHXq6uhrHK/yix5/HDE9mFboJz/YRcu/Zru0LVhKe3R9gFWokBdWY3c7fssmkybiOrbF8IgVkbg5u7dUFdXA4CFiKVOXkcSwQkEgkcgDhPBCh6fB6Gxmeyejfvw21fbsWXVNsx7+G1UllZ52TrHEQgFSBnIfrl/MfMzLB67AFq1979gQ1tG4K65DzPbW+esxcnfD0PPYb7V0LmPWSh2//X2Bux4aSUUFdaNhJ2h9e19kPzQncx2efY1nFr7i0O5YsLAALQbfzezbZIc0NRZ50RF9etnsV1y6BBqcnJA8XgITenK7K88d5IszREIhEaHOEwEK/gCPp5550mMmHgHbn/wNiSmJDDHXh03D5dPXfWidc5x7+z7EdM21mLfuw8swqGtB+q5wnPEdUxArwmsynbG5n+wfsoy5J243MBVjiOLCMbId59Bqz4pFvv3L/4GpRevuzV3aNtW6PPq48y2oqQSR9/fgOMffW/XeRHIpGj30FiLpslXt2y3ijRRPB5a3HknAhLY91/1hQvQa7XgCYUQyFiVe/MqOgKBQGgMiKyAi9QnK9CldyreXTufK3N9AoPBgPkTF1ksyc1a/iw63fJF7MvoNFosvf9ti32tu7TBo4u9r3J+5dA5/P35H1b7+00ejtThPTi5h0ahwr8f/ABlVR2zLywxFv1m3u/W89cqVMj45AeL3m8A0POFSRBIxPVcxVJ+5gJKMk4BANo+OAbCAJnN8zQ1NSg+eJDZbjmS1niqzD4FvUYNAAhN6QKeUGTzegKBQHAXEmHiCNP3xaljnleZbmwoisLiHxfg0VfYJaSPZ69CKYdl8Y0NXyjA3G1v4sE57HPIPXUN79yz0ItW0bTrn4onvnkV3cYNsNh/+Js/UXGjlJN7CKViDJv/ONrfyfbfq8gpxM6XVyF9ybeocfHfUiAVo+9rUyyELgHg4s9/OXR9eOdkUEatqLJT2fWeJwwKgqxlS2a77jodIQvpyMo11ORwE5kjEAgEWxCHiSMS2rEf5jpt09SHGXLvQIx/jlWVnjv+TahVai9a5Bw8Pg8dB6Tif5/OsNi//bNfvWSRJT3uH4QnvnkVd770ALPvl7nrOMtroigKSaP6Yti8yRb75WXV+O/jLW7lAQkkYvR9fSpC2tJ/BzXXC6F38O/AFOGqungVhQeP13teWGdWX6vy3DkY9HpacNW4NKdTyFFB8pkIBEIjQRwmjohtxerrpO/4z4uWNC53jB+Kjj3ZXmHrFn3rRWtcIzoxBvN+Z5fnTuzOwOJ7FvrMF21813ZIHsYmNa+fsgxFF29wNr80LAijP5xh0YdOr9Fi58urUH3TvUrINqPYKNmxZd9A5UBlXvzIocy46tK1BoUtI/uwjZWLDtB5aEFtOgBGp8ug1aDmygUnrSYQCAT7EIeJI4KC2QTUMgcF/fwRHo+H2R8/x2xnpmf5bePex5ZMZTcMBnw7Z533jLmFgVNHIjAyhNnevngjpxV0ACAJCUSfZ+612Hdg+U+ockM+QhwcaNG8N+vzzbh56FTDdkSEoc19rG5W7u97cTP9kE0HVhwWBnFEBABAp1BAVVYGis9HWGc210srr4VWXmd1LYFAILgDcZg4ZOT9wwAAep13W3F4grc3zmPGX7/znRctcZ3WaW3wxq9vMtt5Z3Nx4VD9eTSe5qHlT6PLWLa0fv2UZSi+dJPTe/D4PIz+cAY63jOQ2fffRz+htqjc5Tk7jBuG2F6pzPaNvzNQcanhFi2i4CBE9WKbFdfm3sDlH3+16TRF9uoFvpTudVh6/DgMBgMoikJop27MOfIC96oACQQC4VaIw8QhPGOZtN5HlnYak9iEGGacmZ6F8iL/jKpRPB5e/O41Znvzkh98ymnqNX6IRTuVPxbZL9t3hba3dUOn+4cw2/+8/wOu7Mtweb7Ww/ui+8wJzPbFn/eh8NjZBq8J75RsEWnSqzUoOXbS5rnSWFYqIn/PHhgMBvD4Akii6P3aulrotVqX7ScQCIRbIQ4Th/B4dB5Fc4gwAcBb37/BjDcu/8mLlrhHQEgAHlnMagptXvIDzqSf8pmcpnGLp6BNP1bd+oeZKxvlPq0Hplm0VLmw47BbLVVEgTJ0njKW2c7ddxTnN+1p+JrgICQ/Pp7Zrsi+ZNPxCW7fHoKAAGY7fw89rySSdeSrLpxx2XYCgUC4FeIwcYhJVdlXvmgbm7jWsWidTPcWO/Wff385tenaDuPfmMhsb/twC965ZyEOb/ONBP5hz97DjJU1cmT+/G+jvM+SR/dD7/+xTs6u175wa76A2Eh0mcZWVlZduwlVtf38ojb3sy1U8tMPWR2neDzEDBpksa82Nxc8oRDSGDqR3aDTojbvarP5eyQQCI0LcZg4hKKMS3LNJMIEAHc+fDsznvfw2w2c6fsk90vBhAWPWOz7c+1unP3ntJcssuTxdWxj5KxfD2H9lGWNcp+o5ATITAnnBgNO/rDPrfmkEaHo+SL7utrLZwIAUVAA+FIJAKDuZmG9lXMtRoxgxlXn6Ua8kug4Zp+6shwVpzOgrvLPJWMCgeA7EIeJQ0wRJr2h+ThM3W9jy9+Lb5Tg+L5ML1rjPh16J2POLwstok2/fLAZGTuPedEqGr6Aj9FzWbsMBgO2zVvfKPcaOudRZnzz+HnseWONW/MJxCIEJdD5RTcPnHDomsR7WGco9/e9NnvVURSF0FQ2wVyrUICiKAS372hxXm3uFeiUCldMJxAIBADEYeIUnlELpshNLRt/QigS4p1NrFr2fzsOe9EabuAL+Ejul4L7XmFzaXau+h0Xj573olU0sR3jMXX9K8x2eV4x5G42062Pwa+wzplWqcZfiza4tbwljQyl51Ko7EoNALQYZnSfbsx2SabtSJ+5AnjJYfr9J5AFIrxLLwQmtmeOVV08C3kBd3pWBAKheUEcJg5RKWk9ohwHlhyaElEtI9FlAK3CfPZINva4uYTjK3QakoaHF7KRlp8WbcSx373vEFI8ClPWv8xs/zjrc8gr7QtEOktQbDhGvvs0s62srMXOl1fh6n7HIkS3Ej+E1Uq68XcGlJX2Hb2wlA4IbtcaAFBx9qLNcygeD4GJiQAAvVptEYkSBYciIKEts60sKSQ5TQQCwSWIw8QhccYlh9DwEDtnNj1GPz6SGW9ZuQ0VJZXeM4ZD2vdKwn2vspGmrL2+seTI4/EQ370ds/3j86saxRHgCwUY/eEM8IQCZt/5Pw6i5ILzOkcCiRg9nmN7+Z1cvcWh64LbtmbG9eUyBXfowIwL9u+Hway6TxwajtAUdum44nQGdGr/FFslEAjegzhMHBIZEw6g+VTJmdO2UyKmv/MUs/3BjI+9aA23dBqchl539wUAFF0rxMl9rkVYuGbI/8YgLpV1Jv769NdG62M46t2n0Xf6OGb73LZ/XZpHGCBFbO9OzPaRd7+2e40sNooZ5/6+F1qltbND8XgQhYYCAAxaLfL//BPKEnZpnCcUQhAQxGxXnfeNRH4CgeA/EIeJQ3imKjl983OYADoBvFOfFABAaX4pSvNLvWwRdwx4gC1h/33FL1g8dgG2fbgFOo33xBHFARLc9TorDpl7/CI2zvi00e4X0b4lOo8fCgCoK66AVqVxaZ6E23tbbF/8ueElXIrHQ3Tvbsz2lU2/2Twvsk8fC22mssxMix8vQW2TIAwJY7bLT2dAK+d+KZNAIDRNiMPEIZRRuLI5RphMPLt0GjOe+9BbTUZiITgyBA/Nn2Sx70z6KSy9/21o1a45Dlwx9s3HmLFGocbvbzVeQ+SEfmx06Fq6a5E2iqLQ57UpzHbFpTwoyqsavCYstQOk0RHMtrzI2hmnKAoxgwZZLM/l79kDvUbDHA9q3Q6CQGOkyWBA9eXzFst3BAKBUB/EYeIQxmHiuEmqPyEUC9G5P1vmffRP19tr+BpJfTpi3u9vY/K7T1rsf/eBRV6yiCaqbRye+OZVZrvkSgG+eeojnPz9MFS13JfSB8XRjsulPcfwzwc/QONC82WKotD7JdbRO/XlVrvXJNzFan5VXrxS73mBiYmg+HxmW1VhqcEU1CYJshYJzHbF2RPQqZQO2U0gEJovxGHiEJOsQHNdkjPx/AfTmfG6Rd940ZLGIaFTa7zx21uQBsmYfSW5xV60iMZc2FKr1iBj8z/4/tlP8c3/PuL0Pp0euI0Z1xaW498PfnQpqsoTChDXpzOzraqyvzwmiaLzBGuu5tX7w4Ti8dBi+HAIAgMBAOUnTkCnVrPHKQqSyGhQfDaRverCGeI0EQiEBiEOE4dQvObVGqUhxphVzf297YAXLWkcKIrCi9+yUZ0vZn6GbR86VvXVWPAFfEzd8AoGT7vLYr9WqcGZXcc4e1+Gt4nDnYufQng7Wv9IWVWLkxv/dGmu+KFs77qszzfbPT+yexozLjx4vMFzZWYNegv377dwmgAgrFM3iMMjme26m7l2708gEJovxGHiEB7JYWK456kxzPj7ZZtQXV7tRWsaBx6fh2GThzPbZ9JP4b/N/3jRItqR6zA4DU9886qFwOXRjfvx6/wNnN1HKBWj37PjIA6mk6zzMy+i6rrzUTaKx0NsHzYv6oYdFfCAuGhmrCwtb/DcoHbtIIlmzy/cv5/JZ2Lma5UIYRAtA6KtrYG6puFcKgKB0HwhDhOHUJQph4k4TBRF4YWPZjDbL9/zBuSNkE/jbQaOH4KZa2cz2/u/+RO7v9zhRYtYKB6Fu+ayukflecUovMCt0vXAF1mNqv9WbHYpnylhGFs1d/NAlt0fHNF9ugMA1FU1KMk83eD5Ed27QxjEygkU/PWX1VKerCWbz6SuJD3nCASCbYjDxCE8XvPrJdcQqb07outgdgnlzUff8aI1jUdodKhFBd2x3w/j3L9nvGgRS1zHBItI0453NqIyv4yz+SXBAejy8B3M9tlfnI+wURRl0ZxXXV3X4PlBbeKZcfnp88jb8VeD50f26QNxJLv0VpZpKT7KF4khjWlB37uiFKoK7l4fAoHQdCAOE4eYquSaSik9F8xY+j9EtqC/rCpLq6BxUbvH10nq0xFTPmCFO7e+/xMuHb3gRYtYKB6FIU+zS6RbX1+LQheUuuujVW+20W3Vddf6KArEIkZNvDq3oOFzJWIkjGadNGVpOXQqdb3n8wQCRPZkc6VUZWUoy8qyOEcYHMqM665fg17bNN+nBALBdYjDxCEUaIcp59J1ksdkxvPLnmHGJ/6133TVX2nVMQGT332C2d606Hv8sNA3qgTbD+yEfo+yTsaOd36Aqo67qrDUcbSwp6pG7vIcJj2kqzsOQK9tWBBUGhWODpPuY7Yv//grlGUNL6fF3sZW9ymLiiyUwAVSmUWj3srspvs+JRAIrkEcJg6JimOF9RqrRYU/EpsQw0TfNi7b5GVrGpeETom4/7WHmO0rmZfx3bz13jPIjNQRPTH4f6OZ7T3LuKvqi2jfCgCgVaiQd8i15ci2dw9hxseWfWv3RwdPKEB4Ghvdqr2e3+D5fIkEMYNYxfZblcBFwaEWopYVZ7OcsJ5AIDR1iMPEIWERbNNdfTMWr7RF79vpTvXyWgUWNtFcJhOpgzpbJILnnLyKfV/v9qJFLB0GdUZMEu3clFzJxx6OpBCCzH4snNnyt0vL0pGpbS22FSX2E7CjeqQhJIm+ruzkObvnCwICENSObVqsqbas3gwyizIZdFq7kS4CgdB88LrDtHLlSiQmJkIikaBv3744evRog+evWLECycnJkEqliI+Px4svvgil0jcE53hm6sIkj8mSCS88yIwLcgpxIfOSF61pfEKjQ/Hid68x24e2/oedq373okUsI15h/y1unLyKy/+d5WTe2+Y8yoyLzlx1aY6+r09lxhWXHcuzEoWwVXAXNmyG3k50N6gt65jV5uRYHKN4fIR17sFsV2afdMgGAoHQ9PGqw7Rp0ybMnj0bCxcuRGZmJrp27YqRI0eiuNi2nsvGjRvx+uuvY+HChcjOzsbatWuxadMmzJ0718OW24bPZ19OHXGYLAgKDcT72xYz298t+9GL1niGgJAAPL1yJrOdsfMYrp647EWLaIRiESZ+yko+/PPFdlQXuV9OHxDJRlhPfLPb5R8N0qhQAMCNfzIbPtFIWEoHi+1r23Y2uJxH8XhM1ZyisNCG02T2sWgwQFla5JAdBAKhaeNVh2n58uWYNm0apk6ditTUVKxevRoymQzr1q2zef7BgwcxcOBATJo0CYmJiRgxYgQmTpxoNyrlKXhmH7RkSc6a0MgQJCTRJeFFecXIyW76yspRCdF4ZRPr0G9c8I1P9BqUhgRg9NyJzPaWV9bg4Ia9bs8b3SmRGR/40LWWKbG9WCHLqpyG85IAWpYg+fHxgFEHTVunwOUftjV4TUhyMnuPCxeslt7COnVnxvL866RBL4FA8J7DpFarkZGRgeHDWaVkHo+H4cOH49ChQzavGTBgADIyMhgH6erVq9ixYwdGjx5t83wAUKlUqK6utng0FjzzCBNJ+rbJs0unMeM/vt7lRUs8h1gmwaRFjzPb79z7pveMMSO2Yzx6jmcTrc/vOwFNA+X5jtBzKvu3WFtUgSsuNF+O7poEobFPX6WDy3IA0PYBVjpBr9FCVVn/37owMBAxgwcz2wX79lmogFN8PoLasQnlFWdPQK9x77UhEAj+jdccptLSUuh0OsTExFjsj4mJQWFhoc1rJk2ahLfffhuDBg2CUChEu3btMHTo0AaX5JYuXYqQkBDmER8fX++57kJRFNMeZfKdM3BPz8eYx4MDnsDfOw822r39hfCYMPQdSSs7nzp4ptlE4tp2a4eO/VOZ7aw/HVtuamy6ju2Hh5Y/zWwrKhsWjbQHRVG44y1WWuHiriMuzSMKpB2mohPnHb5GGCClI01Gcn7dDU1d/TIHApkMfBnbQLnshGVbFmFAIFs1ByI1QCA0d7ye9O0M6enpWLJkCVatWoXMzExs3boV27dvx6JFi+q9Zs6cOaiqqmIe169zJ9hni5SuSQAArVYHrUbLPOS1Chza33Cz0OZC9yFdmPFPn2z1oiWe5UGzNiV/fLzNZ0Q8AyNDIAsLBABk/9lwLzdHEAdK0X0y23xZWVXr9Byh7egfNgadHidWbXZqaS80ma2Cu7plO/Sa+ivdzGUG1BUVVvcJbpvM9JoDSJ9IAqE54zWHKTIyEnw+H0VFlgmVRUVFiDXrMm7O/Pnz8dhjj+Gpp55CWloa7rvvPixZsgRLly6tN1IhFosRHBxs8WhM3l23AN/s+czi8eRsuu3DP7tsLzU2N7oP6cqMfcVp8BRDH2PFI1c9/bEXLbHEFFkqvWY7uusssV1Yp6XkfJ7T17foz7bUUVfXouraTYevjenXA7IWbOS6+Gj9TiBFURZLc4Xp6VbnmAtaKku4eX0IBIL/4TWHSSQSoWfPnti3bx+zT6/XY9++fejfv7/Na+RyuUViNQDwjaX8vvLLj8/nITI2wuLRrmMic3zl4rVY+c46rHxnHbZu+MNn7PYkFEVh/Exapfnf35vXMuXABweDb2wBUlNWjTPpvrHM09foyBVdvAFFtetq3SYoikJQC1qb6fRP+52+nsfnW/SXu/DT3gYjRbcSf+cQCIPpqFnV5ZwGrxWYLcvp1Wro1Za5Sqam2gCgKLzZLP9mCQSCl5fkZs+ejTVr1mDDhg3Izs7G9OnTUVdXh6lTaS2WyZMnY86cOcz5Y8eOxeeff44ff/wR165dw969ezF//nyMHTuWcZx8keQu7C/U7T/9ie2b9mL7pr346sPvcfHMFS9a5j1kQeyX1PVLN5pNkjzF41lUzW37cItPfAG3H8hWpv0w8zNO5hQFSJlx2RXHI0QmBGIRguLZSNHZb7c7dX38nWxCu7q6psFzW9x5JzMu2L/f6t8kMIHVblJXuS/BQCAQ/A+vOkwTJkzAsmXLsGDBAnTr1g1ZWVnYtWsXkwiel5eHggK2Eee8efPw0ksvYd68eUhNTcWTTz6JkSNH4osvvvDWU3AIqUyCt1a+hknPPMA8IqLDAAClReVets479B/Vhxkvmvoepg99AXV2utQ3FQRCAR5eyIo8HvvdtcRoLhFJxeh4ezdm+9Qf7tvU6wm2Yu7o6t9cmqPDfbczY53aueVbYWAAhIEBAIDcP/5ssGqOuiVyXX3xosW2KDScGdfluSbKSSAQ/BuvJ33PnDkTubm5UKlUOHLkCPr27cscS09Px/r165ltgUCAhQsX4vLly1AoFMjLy8PKlSsRGhrqecOdpPfgbnj02QeZR3AoXX1z45p9nZmmCI/Pw/AJwyz2vTj6ddRUOp8g7I+075XEjPes2QGVXOVFa2j6P85GWY7/9LfbFYx8kZBJ/jbo9dC7oGUklEnQecpYAICqsgZapXOvU1BiK2bcUC4TAMQOY9+Pt4pZAoAkis2t1NQ1HLEiEAhND687TM0VkwqyNEDiZUu8x0PP3Y8vD3yKzmbl9i/dPccnlqg8wbRPnmXGW5Z6X/mcoiiMmTeJ2T7122G354xOac2MtQrXdIzEoWxpf8aKjU4Jf0b17ILgdrQN8oJiqGvqd8j5IhHCu7OClbc6eNLYlsxYp3A/z4tAIPgXxGHyEq070GXT+7f/52VLvM+Mpf9DpFnz1qcHP4/zGRe8aJFniGkTixYd6C/ha1lXIOcg2dpdTI15ASBz6wG3hSx5Aja38NKeYy7NIZCIEdWVjchd+f0fp66P7sM6Qde27mzwXElUFDNW5FtGfymKgiiMfp/K8xtXnoRAIPgexGHyEmol/UWkcnKJoSnCF/CxZPObFvuWz/oMxTdLvGOQB3n0nSnM+Ny/Z7xniBlDnmYVs39b8I1bc1E8HqRhdIQo97/TLkcP2941EJRRSb8s+xpy/3Q8x4ovEiK8M9sKpe5m/dIAFEUx+UyV585Z2SuQssUKvtDihkAgeA7iMHmJex4ZBYA06TXni38/sUgG/+2rHV60xjOIpGKExtAFALtW/4HS6953Es0r5qoKyt2OMnV/fBQzvrjT9WW+bs+wKt6Fx62dmYaI6smKpd7481/oG6jKDO3EPn/5LVEmcUQ0M667kePw/QkEgv9DHCYvIZGIAQDXr95ERVmld43xESiKwtR5j6FVe3qZ6uje41Apm37/rn73DWDGq5/91IuWsDzy+fPMuPJmmVtzhcazTsbNzIsNnNkwoiAZus+cwGwffW+9U5VzYanssl7BgfobdstatGDGlWcso37mmkxaefOo6iQQCDTEYfISsa3YL5Ev33Nv2aOpMePd/zHjWSNf8aIlnqHXmL4YMomt0PpgwjteT3wXmxUj5B533ckx0fnBoQAAZYV7VZCiQBl4IiGzfXz5dw5fG92bVZivzb3R4LnB7c3UvUtLLY7JWtJJ5JQPa78RCATuIQ6TlwiNCEFwKK1EXFFW5WVrfIuI2HCkDaCXRfQ6Pf75teknxg9+eCgzVslV2LHSNd0iLglPoJ36U38cgcJNjayojgnMuDKvqIEz7dPrxUcgMEZoAeD6P443Mm413KwNyqGMes8LbGsuVGn598kX0/fWKeRed2wJBILnIA6TF3niRbqE+9Sxc1DIlV62xreY+d7TzHiri6KH/gRFUZj93WvM9ondGfj1o62M/IQ3GGCmy3TyV/f6IJoSvwHg+tFst+aiKAo9X2DlD/IPnnT4WvMec1UXr9abuE1RFALi6UrWmsuXLY7xxWz0zeCCthSBQPBPiMPkRVK6sTkVN3MKGjiz+UFRFCbMegAAIK+RN4smvbKQAEz5YBqzffqvLCwZ9yb2fb0b1056voVOdIeWCImjFa65aMob3SkRAFB9g5vE9pSJbDK5sqJ+FW9zKIpC+4n3Mtuqivqju6KwMGasM+svxxOKmLGmutKh+xIIBP+HOExeJL5NS8S2pJc9Duz1fnsMX2PQWDYZ+tCu+pN0mxKtOsbjqRXTLfYd2vofvp+3wStl7O2MFXPFl/OhqHJvWS64Ja1xVHW92G27ACCwJauZdPKLn6Eod2xpmy8SgS+mnZ7avPp73EljWWXvW1ulmFCWuO9IEggE/4A4TF5GFkQ3KP1p7a9ut6Joaogl7C/5ssLm03Mvtl0c5v3+Nkb+bzQ69GajkJm768+5aSziOsYz4x+eW+lWzk6r3h2Zcd4h9zWneAIB4of2ZLZz9jguWcAzOkxlp+pfHqQoCnwJvfx2q7MqjqCdNZ1KSZrxEgjNBOIweZmnXmKbsJ7NPO9FS3yTQXf3BwDs/HYPSgvcK2/3N3qP7YeH5j/CbO9c9TtKcrmJzjiKufI3AJS7oRMlCw9mxq6qft9Ki35dmKq52nzHbQvtwCZ1axX15w8GJiYCsK6Uk0az0gO1uZ5fLiUQCJ6HOExeJsWs5cO8Z971oiW+SWxrNkl37vg3cSHzkhet8TwURWHS25OZ7fWvrvG4DY+unsWM3ZUY6DpxOABAVS2HQc9NhVn7sUMAAHq1Buoax9rLWGgy/Vv/cq9J9dugscyh4wmFkMawTpNeq3XYXgKB4J8Qh8nLiCUijJ04AoClNhOB5s6Hb0envinM9vJZviHs6Enadm+P9r3oL3iVXIU/1+7y6P1FMjGCY+kE6KxtB92ay1xe4K+317s1l4nQdmwULG+/Y5ErikeBJxQAAOQF9cscmCd+37osJ4mOY8aV2accui+BQPBfiMPkAwy6sy8AoKSgFCsWfgmlgvSXM0FRFGZ9+CyemE9HWQwGAzZ98rOXrfI8D82byIwPbzuIs/+c9uj9O97ejRm7k8ckCpQyY1WNHDqN+5EZiseDLJqu5is7d9Xh6xLuup21pdJ2lZ1AxvaOUxZbLodSFMVKDBj0qDx/iugyEQhNGOIw+QChESEAAKVChT2/7Me7r3ziZYt8j74jejHjfT+l43+DnsPpQ2e9aJFn4fH5FtVzv3ywGXI3q9acwdxhOvGLe0Kio95nn4eSo+fQ+g62B2H5+RyHrhGHhTDjmmt5Ns8xLckBQG2e9TnBSanMWK9WQ13ZfIoTCITmBnGYfID4Ni3x3rr5TFXY0X8y8cHcldj7698oLyEVOAD9a37uV5ZtUj59ZTXq3FSg9idi28XhvlfZBrR71+322L0FZu1ISq66pxnG47MfO38vdby1SUMEJbASAJe27Xf4OkkEveRWd7N+eQBZS7q3obqiwkKPCQAoioewzj2Y7brr1xy+N4FA8C+Iw+QjpPVKxVd/fMRs7//jAD6avxrL56/2olW+RWLHBKxKX4EHnmWFB18c/TrKi5qPU9lpcBrCjGKSp//K8ui9u91LVyzePHXN7aWnyCRWrqAy130tI4qiEJbcmtmuuelYNWFIhzYAAGVZBQz1qKoHtmbnrTp3zvrePB4C4tsw2+oa0uqIQGiKEIfJh4iIDsfbq15DavdkJKfRzT8rSiu9a5SPIRDwMXLScAy9n+0J9sGMFd4zyAvc/+pDzPjS0Qseu2+7Aezyk6rWvVY+fZ6+hxkf/ORnTirm4m9jNZnOfbvdoWsCE1oy4/qiTMKgIPBEdPRXUWQ7QVwcFsGMa681r0pOAqG5QBwmH6PXoG5YtuFNPDaTXnq5djEPOi/2E/NVJs1+CN2HdAFAi1reuFy/YnNTI649W86+56udHrtvSFwEKB4FANAo1XbOtk/bod2Zce5B95PYpeEhFrlMOgfa6QikEoCin5OyorLe8yJ6ss5YWVaWzXPMo0xapcLuvQkEgn9BHCYfpU0SW369e+tfXrTEd3l8Liv6+faUd1FR3HyW5kbPoCM0FQWeTTKmjM5FzlH3RVY7jh0AcTBdhZbHUQJ/bO9OzFjZQJ84c8ShtKCmqqz+948wiG0erCwqQmmGteq6eZRJfjPXoXsTCAT/gThMPkpYRCgz/mzRWuz77R9cPkcSSs2RBUox7n93M9sfPt98NJqS+rJtRuo8WC0nDQkAAGT8fICT+RIGdAYA1BaW42ame6KYJkxRsJw/HevPKAwKBACoa2rrn5OiEHfHHcy2qrQUmjrr150vpR1AbV0tkRggEJoYxGHyYSbPZHNVPpz3OWY/Oh81VfV/qDdHRk8eiS7GL93iGyWQO6j07O8EhgUy4+2f/uqx+3YeTS956bU6qDnQC0sc1IUZn/x+LzRy93KjACCwJa0OX3vDscTvgJZ0hZ26Hi0mEzyBAC2GD2e2y2xEmcyX5VTlrreRIRAIvgdxmHyYCdPGoVu/zug5oAsEQgG0Wh1Ki5pXPzVHeOrNx5nxC3e95kVLPEt0Iu0YXDxyHhoH8nW4IPVOtoS+psT9ajChVIzuk0cy2zeOub/U13b0QGZcc6N+FW8T0uhIZqwobXiJk+LzGfVvnUIBvU5ncVwgkQIU/bEqL7jhsM0EAsH3IQ6TD0NRFJZ8+QYWrZ6DkDA6h+KPH/d62SrfQyKTICSCbez6zbsbvWiN53hwLqv+XekhaQWKohAUHQoAqCtrOCLjKHFd2zMK4Nm/uSeKCQCSMPa9cG2X/VYuphwmALi+O93u+WGdOzPjssxMq+OyOGOrFr0eWnnz0QkjEJo6xGHyE0Riuqx555Z9XrbEN1m65S1mfOCPQ1BysLTj64THhSMglF6aK8l1bPmJCxRGsdArh6w1iVwldRwrE6HnoCo0vGMiADZJ3R4mAUuDVlevHpMJgUwGQQCdy6Uut45IiSOimHH15WyH7k8gEHwf4jD5CeOfYHVrigtKvWiJbyIQCvDx7veZ7Z3f7vGiNZ5Dp6WXhIpy3Bd/dJSYJDqCcj3rCmdzRqey4pD7Fq5jnperxPWho0Dykgqrprm2SBjN9pWTF9v/+zKXGVBVVlocoyjKwmkiyd8EQtOAOEx+wsj7hzHjy9mkWs4W0gApwqLpSMHOb/c2iy+qtt3aAQAO/2J/6YkrkoakAQD4AgFncwrEIkSl0E6TRqFCfoZ7gpzSyFBmXH7Rfok/xeMBxmDUjT1/2z1fIDVrIlxindwti2OVzHWK5lGIQCA0dYjD5CeYLy2oFO6LBjZVHnmJrSx8evDznCzv+DKx7eMAADqNFjfOX/fIPSPb0PdU1So4Ueg20fspViKi9JJ7CdN8s953VdfyHbqGZ+YAFh48bvd8UWgoAEBZah2RMm/aW33Vc2rsBAKh8SAOkx/RewitjLzjp704+NcxHNp/HIeND6LRRJM2oBPad2nLbGcfb9pfVv3vH8SM17+yxiP3lIbImHExxwrrcd06AADqOEhiD21PR3lqHewr1/b+0cy46tI1lJ1qOP9IGkc7jprqamjl1lEkvozOc4Je3yyinQRCU4c4TH6EKa/j7IkLWPzCciya9SHeNj6ef3guLpy+7GULvQ9FUXh11YvM9q9fOdZTzF+hKAqpg9mqrbyzja8wLTCL3pz8/TCnc0el0Ar31fnu5+kFtqDziARSsUPn8yVitJ/INnYuPXGmwfMD4tllN1s95oJat2PGBp17OVkEAsH7EIfJjxg9fjjadmyNlK4d0LFLBySntWea9ALAn7/az71oLvQY2g0AkJOdi7+3caNK7auMe+kBZrzp7e88cs+odnQ/u/I8bqvzwtuwffKqC9zTHJNFhwMAVE6IvfJFIsTfxeYLahX1V1tSFMUsy1VftFYppwSsY6mtq3HYBgKB4JsQh8mPGHBHb3z207v48Nu3sfy7t/HR94vw0feLcMdYuiQ785D7DUybCg8+y0YKvl+2Cc/d+bIXrWlceHw+Bj88FACgkqsg90CrlG7j+gMA5BW10DtQheYoMjM9reNrfndrLopPf7ypq517PWRmQpYF/x5t8FxJdDQz1mu1lvc3yztUFBc4ZQOBQPA9iMPUBBhx31AAQMH1Iig5aFfRFIhsEWmxNKdSqDDj9tnIveCZxGhPM2jCbcz4rw2NL24a1TaOGaev/I3TuSPatwQAKKvq3JIXkISyDXOdTf4XGcUs5QUNK4UHtWFboWht9JYTBoUAoCvl1NWVTtlAIBB8C+IwNQES2rZixvf3nQKtRtvA2c2H9l3aYvXfHzPbGrUGGX9ZKzM3BfgCPuI70WX55w6cbfT7SYJkTCNerpflejw+ihmf3Oi68ycOYfvtVVzKc+rauEF9mLFWrnDomspz1kKegQlsAUJtDskxJBD8GeIwNQFCwoMRZqY7s+27nd4zxsfg8Xn48sCnGDimHwBg1/d/QuumKKKv0vOu3gDASVNcRxjx8oMAgOqiSsgruMvREcokzLjw5BWXK8zMS/vLsq86da04PJQZ1+Q2XAnIl9D2aqqrrWyl+HzIWrKinFqiyUQg+C3EYWoifP/X58w48+ApL1rim3QdlMaMnx36gvcMaUQSOrFfzHUeyGMy9ZQDgPRV7uUb3crgVx5mxlXXXY9gmVqkVFxwrnqQoiiIw+jlNHvLchG9erEbNvK5JGaq3xqyLEcg+C3EYWpCjJ04AgCQdeQMKsvc7yTflOg6KM0iCXf5rE+9aE3jEGSWML35nR8a/X4iqRjhCXTSc+GFG5xqDQXFRjDj/BOXXJ6nRT/WUVbXOhfdMUWZaq83LHwpkLG6VJoa25E2UQitQK8ockxEk0Ag+B7EYWpCjBg3lBlPGvYMDu475j1jfAyKorBy/0fM9vmMi9CoNF60iHsoikKLJDphWlHjmaWfbvf2Z8aHv+W2MXRIPO2MFZ1xbjnNHFkM63gVHneuWXBYSgdmrKmr//U0d8RtqX4DgDA4lBkb9E1zSZhAaOoQh6kJ0S6lDfoM6cFsL35xOa6cz/GeQT6GQMDHh78vYbb3b/3Hi9Y0DsOfGAkAKLvhmQbNrXslMePsPzOh5zA/rGXPZACAorzG5Wo5c2em4PBpaJ3I75JEhDHjygsNNxoWhtDLdzVXrkCrsE4SF4WGM2NNLdFkIhD8EeIwNTEWfPISZsx7gtl+7qE52LMt3XsG+RhBYUEQS0UAgC0rt0FR51gFlL8gCw5gxiUcV6/ZgqIoTPxsJrNdft26Ea2rxPdLZcalF12Xg+j48EhmnPHxRuidqCIVBtLLbTXXGr5/SAc2GlVy5IjVcXPHre46aWNEIPgjxGFqYvB4PIx56E7c/fAIZt+KBV9g189/edEq32LCrAeZ8ayRr2LLym3eM4ZjIlqxoou/r/jFI/eUBrM5PL8t/IazeflCAXhCuiHuhT8OujxPSGILtLlrILNdes7xJb6wVDqCZitqZI44IgLiSPq116tsR7EEAbQulEGnI8tyBIIfQhymJsrTrz2O6XOnMtufvLUGCnn9bR6aE4Pu7g+xWX+xPT/sQzkHzV59AfPecvmXbkLloX/zvo/czozLchuuKnOG0IQYAADfrH+dK0R3TQJfTM9Reqbh5TVzpDF0hZtBp2+wTQoAhKWxCea3qn4DQGBrVpOp4swJh20gEAi+AXGYmih8Pg9jHx6BuR++wOx7oN9UHEnP8J5RPsSne5dhyU8Lme3XH1jgRWu4ZfSzY5lx3pnGb8YLAJ1GsqX1GZv/5WzepFG0gGTV9WIY9O5V4UV2ovsu1lwvdLiizyQtAAAFBxpuk8ITsk6dPN+6Go4nEAJm2lCkIS+B4F8Qh6mJ039YL0REswmnbz2/DIU3Gj+3xR+IbBGJmAS2F1j+1abR70sSKEVwJP1Ff3xHw1/yXJLQg3ZIuIwwBcWxVW6qGve0paJ7dGTGRZnnHbqGoihQAj4A+w6OZZ6S7ZynsE7dmbFOo3bIBgKB4BsQh6mJwxfw8e2fK/HGcravWu7lptlPzRXe/n4eM970yc9etIRbYtrQS1nFHDov9ug6lpYYUFTVuR0NMiGUipmlNHlZtVtzyczU8CsvO94qJbp3NwCAosh+5WFwe9pp1NbW2jxOURR4QrroQK8mfR8JBH+COEzNhIHD+6BLb7rqKIMogTNQFIXkHnSFU/bxC1Crmsav/q7DaXmJmtJqaNWe0ZuShbG927J+dT1J+1Z0Rr0sLQf/Ni36dwEAVF1zXEBSFBxo/yQjkmg2YmkrjwkADAZaDVxT654DSCAQPAtxmJoR+XmFAIA/ftyDBc++52VrfIeJL4xnxru//9OLlnBHm27tmPGNCzc8ck9ZWCBEAXRftbO7j3M2b1ibOACAstJ21MYZQhJbMGNH85hEIayCul09pqAgZqwstr30LZDRDphO2bQkLQiEpg5xmJoRzy+cxoyPH8iC3MlWEU2VFm3jIAuUAgDOHM72sjXcIJaJQfHonJria55ZlqMoCv0evQMAoJZzt9ykVdKRJVW1++/XgBZsX7ca4w8Ie/AlbEVl0eFMu+fzRPSSW8Xp0zDY6C0nDKSdKm1tDdQ1pIURgeAvEIepGdFrUDf88PcXzPaSlz/2ojW+xYhJ9Bf9tXM53jWEQ+JT6Wa8eg9q/kS3ZyM4VQVlnMwpC6cjPDq144KT9cE36joBQLWDDhNFUYjp35PZ1tlZGgxo1YoZ1+bkWB0Xh7NOW+011/vkEQgEz0IcpmZGSFgwWramlzhqqxu/o72/0K4zq5HTVPKYwuPo6sib5z2zJAcAwTFsO5FL/57hZM6A6FAAQN7hs5zMF9mZTszOP3TS4WuC27VmxorihpO/g81Uv23lMVE8HiTRccw2l02LCQRC40EcpmbI9LlTAAA5lxyvFGrqtEtrw4ybSh6TxhiRqfSwKKc0hG7Pcno7N5IGIa3oiIxWqeakV500gpZcMOgNDjsrPD6fUR3Xyu3nHgUkJACoX/VbGsNG4kguE4HgHxCHqRkiMuZYqFWeqZ7yBwRCAeISYwEA+35K964xHNG2O534XXA5H8paz30pd7yjGwA6csKFgxOTxiawF2e7L8QZ0zOFGStKKx2+ThZLV8BVnL9s91yTiKUtAUvAUrNJUXjTYRsIBIL3IA5TM6RtcgIzLi3kJs+kKdD/rr4AAHmtAiql/y/LdeiVxIwLrjheRu8uaaP7MOMrh9xPoufxeRAH0f3qcv877fZ85m1WSs863ibFlPytrrQvByAMDrZ7Dl9GR+L0RMCSQPALiMPUDJEFss1S33zuAy9a4lvc/uAQZnzxhP8n48pCAhBnTMLOv+i5KIbAzCH5d80OTuaM7kwvmdZytLwokNHyBwWHHXfAghLjmbG9pTyRmcNUee6czXMCWtDz6ZQKksdEIPgBxGFqpgQYf7FfvZBLPqyNiMQiphT/m3c3etkablAZy/tLr5d49L69J9zGjGvdVOgGgFijw6SqroOag4bCJgFLADZL/20hiWQT2lUVDcsB8MRiUAI656m+NimUgHUsdSrSGJtA8HWIw9RMWbmFFa78b6/n+o35OkPvGwwAqCqrhl7n2BepL9MqhV5+Pb3f8YowLkgb05cZ15a67zCFt2dL9f+cvxYaN52mmB5sHpPawWpRvjH3DwCqL+c0eC5FUYju35/ZVpVZL33zRay+k05OKlYJBF+HOEzNlOi4SGZ8LuuCFy3xLcbPvI8Zb/7sFy9awg0dB9COAcXjeTySGJFI97PL2vaf23PxBXy0Hco2rj2z9R+35uPx2Y8+eYnjy3yyWLpiryL7kl09JoFMBvDo+yiKbIuHUny6sa9W7r6KOYFAaFyIw9SM6TWoGwCAxyNvAxMCM2HD4pueXcZqDFobl7IMej2zPOcpTGrfXDlqHccOYEr7CzjIMZMYBTHzDzveWzGiayozrsi2b4M4jF7GU5ba1m4SBtESB1oiLUAg+Dzkm7IZk9SZLtfe+s126Dgo/24qPPT8/QCA0wfP+n1+l0jC5smc/cf9CjNn6DNxGABu26R0f2wEM1a6KbwqCaMdplonHGNZbLRFqxS794ikI7k6pdLme0kUSouL6uR19TbrJRAIvgFxmJox7VMSmXH2Sf+vCuOKboPSmPGLo1/3oiXuQ/F4TNXartV/ePTeQimd81OWw10vu6iOrOL28TXuPZ+E21n5A3WN433qTKrfNbn2FdRlLVvSA4MBBp31jxJTI14A0JC+cgSCT0McpmZMv2G9GAG9jIOeTQr2ZSJbRDIilvIaud9rMnUf0QMArWztSQIj2NL66uJKTubk8XkIiacFJHkCvltzmZbkAEDpgLaSCdPfjF5tX/jVVCkHAMoS60gWTyAAz5j8ra7yrCI7gUBwDuIwNXNaG6uPDv5JKuXMmb+ejSxt8fPk79seuZ0ZF+dyF+2xh3lfOS6jTEl39QMA6DTuLWFRFAVZNL0kpnWi6i4woZXxGvv6SRRFAUYHy1alHADGYdKrPZtjRiAQnIM4TM2cYWMGAQCuX8uHvNbxZYmmjkDAh0hCLyn9ve0Aaqv8t+xbEihlxsf/OOLRe8cm085F0UXuGgDzhXRkqaaAA5V6Y4eS8ouOt1wRBrCvZ/HRLLvni8Npp0yvth2pFIXQjiURsCQQfBviMDVzRtw3lBlfv+a59hn+wIsrZjLj2WNexy4/bsqb0InOuynP92wrHI2xX6FQIrJzpuNIQs3yftwVsTT6J/KicocvEchYh6ny/GW7To44IgIAoKmz7XQLg8zaqDgookkgEDwPcZiaOSFhwUhoRyemLpu7ysvW+BbtOrdB535sGfnWz3/Fxy+tgkrhf0snHfokAwByTl3z6H1jk+n2H1yKgMrMco8Ule7pF4Un046kM014ASDxHrZaT1PdsA2iEFo6QCeXQ6eyfu/whKwzSfrKEQi+C3GYCIiKpUufhSKBnTObH88vm44XPprBbJ89ko0zh233BvNlWnRoyYwdbQXCBabEbH0jyVaUX3UvKhoUTyf3U05qkYnDQkAZxS8VxbY1lkyYN+JVFBZaHTclkQOAvIC7pUsCgcAtXneYVq5cicTEREgkEvTt2xdHjzacfFxZWYkZM2YgLi4OYrEYSUlJ2LGDmwafzZVHnnkAAJBz6Tp0TaAdCNek9u6Id39+m9n+Yv46L1rjGqYWKQCQsfO4x+5rUtTOP+d4jpAjBLeiFbcv7XKvWEEaGQqAdiKddSQFUrqBb+WlhqN2PIEAgkB6GVGeb9vBM0WZtHVE8ZtA8FW86jBt2rQJs2fPxsKFC5GZmYmuXbti5MiRKC4utnm+Wq3GnXfeiZycHGzZsgUXLlzAmjVr0LJlS5vnExwjPJqtZlo060MvWuK7hMeEoetgVp+pxs2lIE/DNyvBP7Ap3WP3NVWyBYYHcTpvlHGpT+Pm8ijfLKpalu3ccqUsjm79YnBAcFJkjDLpFLYVvaWx9GeYQa+DwUB+tBAIvohXHably5dj2rRpmDp1KlJTU7F69WrIZDKsW2f7F/y6detQXl6Obdu2YeDAgUhMTMRtt92Grl27etjyW/DzypbouEi0SaIjEEf/yfSyNb7L9HeeYsZ7f/zLi5a4xuiZ9wAAais85+xFtqGXvK6fvMrpvPH9OjFjtRuJ3zwznaSbTmqRBbdPBACoKqrsJn5LY+nXQa/R2Fb8DgllxnobeU4EAsH7eM1hUqvVyMjIwPDhw1ljeDwMHz4chw4dsnnNb7/9hv79+2PGjBmIiYlB586dsWTJEuhsKOiaUKlUqK6utnhwzZQHn/P7cuBpLz/GjE8ePetFS3wX8557u77bi5KbDeeu+BqtOycy4ysZnlF2D2vFNnmu5LBCzzzx+8q+DLfmiuqaBAAQiJ2r5BMHs1EznaJhp80kLQDQyd+3QvH4TCNeT+aYEQgEx/Gaw1RaWgqdToeYmBiL/TExMSi0kRgJAFevXsWWLVug0+mwY8cOzJ8/Hx9++CEWL15c732WLl2KkJAQ5hEfH8+J/VKpBB1T2wMAzp+7DIWdD0xfp1u/zsz41+92etES3+a1z19kxm9MeMuLljhPeIsIZrx5yY8euWeYMdcIAM7/lcXp3KIAOodIXeNe49qw9vRnQm2+c82WzXvKqewohVN8PqP6rampqecc+riqwrPSDwQCwTG8nvTtDHq9HtHR0fjyyy/Rs2dPTJgwAW+88QZWr15d7zVz5sxBVVUV87h+/TontlAUhfVbPuVkLl9h5P10s9S8aze9bInv0i6tLYLN8nHUKv8pA6coCve+RCf4ax1o68EVMUm0eGVNSSWn87Yd1h0AcDPjglvz8ITsspyz6uEmJ0heYDvv0hxTrlPVxYu2j+vo4+pK4jARCL6I1xymyMhI8Pl8FBVZtkwoKipCrHG9/1bi4uKQlJQEPp9NYE1JSUFhYSHU9ajoisViBAcHWzw4w6wcuCmQ0rUDACA/txBV5dwvXTYVFv+4gBlnpvtXD772vZKYcWWRZ3qXJQ+jcww1cm5zc6Th3Pwtm6QFAEDnpAMsjaKjdvIC+61fJNF0D7z6Er8lUXHGUdP6XCE4ztChQ/HCCy947f45OTmgKApZWVkevW96ejooikJlZaVb81AUhW3bttV73N3n5zWHSSQSoWfPnti3bx+zT6/XY9++fejfv7/NawYOHIjLly9Db7bGf/HiRcTFxUEk4k5JuLnSZ0gPZvz1x55ZsvFHJDIJMz518IwXLXEeqVmblKqSKo/cUyAWAgAKL9zgtAFwWGIcM67Odz2fjMfnMVEmeZFz0R1ZHL3kqCyz73wGt2/PjG0JWJoSvw06rd/nRBJcY+vWrVi0aJFH7jVlyhSMGzfOI/dqKnh1SW727NlYs2YNNmzYgOzsbEyfPh11dXWYOnUqAGDy5MmYM2cOc/706dNRXl6OWbNm4eLFi9i+fTuWLFmCGTNm1HcLghOERoQw4z2/7PeiJb5P35G9AQDH9/lfVWFMWzqicmK3Z/SYotqyjs1Ps+tfPncWcbCMGV9Lz3JrLr1xKS7/0GmnrgtqzeZE6hsoPgHAaDEBgNZGmxSe2Y8+dZVnon8E3yI8PBxBQdxKcDQ2Op3OIojRlPGqwzRhwgQsW7YMCxYsQLdu3ZCVlYVdu3YxieB5eXkoKChgzo+Pj8fu3btx7NgxdOnSBc8//zxmzZqF119/vb5bEJzk7VWvMeNyJ9tFNCe6DGDL2pXu9jPzMIpqeknoTPopj9wvIDwIAhEdZaorr0EFR9WFFEUhuCVdhadzQAupISJS2wIAaguds00YGMCMFYUNJ41TFMWoftuKMFEU+3Fcl8etDAPBPzBfkquoqMDkyZMRFhYGmUyGu+66C5cusdWtb775Jrp162Zx/YoVK5CYmGj3Pm+++SY2bNiAX3/9FRRFgaIopKenM8evXr2KYcOGQSaToWvXrhaV6+vXr0doaCh+++03pKamQiwWIy8vDyqVCi+//DJatmyJgIAA9O3b12LO3NxcjB07FmFhYQgICECnTp2sRKczMjLQq1cvyGQyDBgwABcuWOYnfv7552jXrh1EIhGSk5Px7bffNvg8jx49iu7du0MikaBXr144ceKE3demIbye9D1z5kzk5uZCpVLhyJEj6Nu3L3MsPT0d69evtzi/f//+OHz4MJRKJa5cuYK5c+da5DQR3KPXoG7MeNU7/qdo7Sl63c4uX9ZVW5eJ+zJjnruXGesaqWXJrUz4eDozPrPzGGfzxnall7ncXeqL7kb32jNodU6V9VM8Nt+ozoHEb1Peo6LIds6TJJqNxuk1nkvMJ/geU6ZMwfHjx/Hbb7/h0KFDMBgMGD16NDQcvC9efvllPPTQQxg1ahQKCgpQUFCAAQMGMMffeOMNvPzyy8jKykJSUhImTpwIrdmPErlcjvfeew9fffUVzp49i+joaMycOROHDh3Cjz/+iFOnTmH8+PEYNWoU4+TNmDEDKpUK//zzD06fPo333nsPgWZRV9N9P/zwQxw/fhwCgQBPPPEEc+yXX37BrFmz8NJLL+HMmTN4+umnMXXqVOzfb3s1pLa2FnfffTdSU1ORkZGBN998Ey+//LJbr5vXHSaC7xERTWvGHNx3DPI690q2myqmX2UAcI3jth+NTUKn1sz4RnaeR+4pDpBAGkpHYy7949yyV0NIguk5i864F5EJahXNjCsuO1dJGxjfAgCgldv/WzH1rFOV2o5kSWNaMGNNLSm8aK5cunQJv/32G7766isMHjwYXbt2xffff4+bN282mNTsKIGBgZBKpRCLxYiNjUVsbKxFHvDLL7+MMWPGICkpCW+99RZyc3Nx+fJl5rhGo8GqVaswYMAAJCcno7S0FF9//TU2b96MwYMHo127dnj55ZcxaNAgfP311wDoFaOBAwciLS0Nbdu2xd13340hQ4ZY2PXOO+/gtttuQ2pqKl5//XUcPHgQSiUdwV+2bBmmTJmCZ599FklJSZg9ezbuv/9+LFu2zOZz3LhxI/R6PdauXYtOnTrh7rvvxiuvvOLW60YcJoIV81fMZsZExLJ+QqPonK/8awV2zvQthMYkbADIO+s5Z6//Y6xIraqWG0fc1NpEaKaJ5ArmzXed1WOSxhgTv0vsL+fJWtAOkaGefCeKoiAIpHNY1JXlTtlBaDpkZ2dDIBBYrLhEREQgOTkZ2dnZjX7/Ll26MOO4ODrqad6yTCQSWZxz+vRp6HQ6JCUlITAwkHn8/fffuHLlCgDg+eefx+LFizFw4EAsXLgQp05ZpwQ0dN/s7GwMHDjQ4vyBAwfW+3pkZ2ejS5cukEjYIp36CsochThMBCuSOrdjxnu2kuTv+ggOo7/YtE5q9/gCbbrR/8YluQ4sI3FEYu9kZlzDUYWezFiooFGo3K4si+1N56VV59hukFsfpgo7jQMRJpO0AADo6pFC4YvoD3ii+E1oCB6PZ/We52K5DgCEQvZHlSmSbp7YLZVKmf0AvfzF5/ORkZGBrKws5pGdnY2PP/4YAPDUU0/h6tWreOyxx3D69Gn06tULn35qqWVo777ehjhMBJuYJAaO/O1/VWCeonVHuv+eL/1BO0qLJLrZ67kDnpVFCIoOBcBd7pQsgtVikpe654SZ8pH4zrZICQ+lB3qDXaeNZ/aFIL9xw+Y5wiDaCdTW2VYEJzR9UlJSoNVqceTIEWZfWVkZLly4gNTUVABAVFQUCgsLLd5zzugLiUSiBtuKOUP37t2h0+lQXFyM9u3bWzzMdRXj4+PxzDPPYOvWrXjppZewZs0ah++RkpKC//77z2Lff//9x7wets4/deoUs6QHAIcPH3bymVlCHCaCTSY+fR8zzj5pW5m4uRNgzJ/xt55yABDdmm1JpKjxXNI6X0gXaFTe4OY1E0rN2pO4ucwXEEdX3Bl0zjnAkrBQZlx3veHlWYqiGPmA6ku2+/lRAraIhUSZmicdOnTAvffei2nTpuHAgQM4efIkHn30UbRs2RL33ksXbQwdOhQlJSV4//33ceXKFaxcuRI7dzre1ioxMRGnTp3ChQsXUFpa6lZ0KikpCY888ggmT56MrVu34tq1azh69CiWLl2K7du3AwBeeOEF7N69G9euXUNmZib279+PlJQUh+/xyiuvYP369fj8889x6dIlLF++HFu3bq03kXvSpEmgKArTpk3DuXPnsGPHjnrznRzFZYfp0qVL+PLLL7F48WK8/fbbFg+C/2O+LPfdqi1etMR3kRp7mZ34+yS0Hqo244rUQawswpczV3rsvqZqtroK7qInQXG02na1m44rz9jmpOZGkXOVcnz2Y1RVZT9RO6RjR2asU1pLUghkbOUQSfxuvnz99dfo2bMn7r77bvTv3x8GgwE7duxglq1SUlKwatUqrFy5El27dsXRo0edqgKbNm0akpOT0atXL0RFRVlFb1yxd/LkyXjppZeQnJyMcePG4dixY0hIoCPxOp0OM2bMQEpKCkaNGoWkpCSsWrXK4fnHjRuHjz/+GMuWLUOnTp3wxRdf4Ouvv8bQoUNtnh8YGIjff/8dp0+fRvfu3fHGG2/gvffec+s5UgYXFv7XrFmD6dOnIzIyErGxsRZrmRRFITPTd5dxqqurERISgqqqKrfbpMjlCvRLGQUAOJy9CzKZ1M4V/sXKd9Zh+6a9CAiSYfN/a71tjs9RWVqFV8fNAwBMmj0eQ+8fYucK3+Lz6Z+gzBjpmfe7Z37oHPpmL7L/PIGY5FYY88YkTubc/843UJTXQBoWhGHzJrs8j7pGjhMrNwEAuj7zICShjgsIFvx7BNVX8xDRNRWR3To1eK7BYED+nj0AgPDu3SE1y2syUXE2CwadFsLgUAQltrc6TiAQPI9LEabFixfjnXfeQWFhIbKysnDixAnm4cvOEsE5+gyhm5vW1chJqwYbhEayyugatf8lfk988zFmbE+lmit4xuWmiuvOVaI1RER7urmvu70dRUEyiIJo9fDizPNOXcs3VukpS+1XtlEUBWGIMVm92nYESRAQyJxLIBB8A5ccpoqKCowfP55rWwg+RnIa+8s2P6/Qi5b4Lr3voJPj//nVvXC2NwgyS5jOOZ3jkXua2qSo5e5XtZlo1Zte4lJVW7cbcRZRMO2o1Dmp+K1T0/kflKMiusbnXp+8gCjYmPitcP85EZon5uX9tz7+/fdfb5vnl7jkMI0fPx57jCFlQtMl2GxJglTL2SYsJgwAUHS9GCqFdbsLX4Yv4ENizMPKv2C7YotrWpiJZiqquHEGhDI6uqN3UqXbFuFJdL5FtZM/EKRRdB5VXb5j14nC6PdNbU5OPWcYS6rrkR4gEOxhXt5/66NXr17eNs8vEbhyUfv27TF//nwcPnwYaWlpFtoJAC1QRWgaiMRCqFUafLXsO4ydOBJCoUtvmSbL3VNGYc/GfQCAkwdOo8+d/vVBFJUYg+tnc1FVUumR+4kD2Ty/nGMXkXpnjwbOdgyZWdNorVoLocQ5WQBzAlpEuXQdj6lsc2wJzVxewGAwWC298aWyBo8TCPZo357kvnGNSxGmL7/8klHx/Oyzz/DRRx8xjxUrVnBsIsGbvPnpq8x45+Y/vWiJbyKRSRAaFQoA+H2d4yW9vkJMG1oj5fzBcx65H0VRCI4JBQBcP3mFkzl5Aj7jp9QVuaeOHRgbyYzVTsgtiI3SAgat1qEoV2BrNtKmra21Os43Uyc2aElPOQLBF3DJYbp27Vq9j6tXSZftpkS3fp2Z8ep3N6CqnJQ534opj6nouudUs7ki2JjHpFF5Lmk9wuiklV7lJi+OoijAmA6V/cdBt+bimUVQTXlJjiAKYZevS7PstxMySRgAgLLY+n1DUexHs15DluUIBF/AbeFKg8G+ui3Bv3nq5UeZ8cShT2PL17970RrfY+CYfsxYrfKvL7fErm0BAFonnAN3ad2jAwBAo+TutYpOTQQAVN9wv/rOpPStKKt0+BrzXnTlpx2rsBMYO7XX9/nJE9J2mLSrCASCd3HZYfrmm2+QlpYGqVQKqVSKLl264Ntvv+XSNoKPcP/kMRZClus+2uhFa3yPWDPV7D++3uVFS5wnxNiqBPCcqnRMEi0DoNfqUFvKTcSyzW1dAQA6tZYDiQTaQam6dtOpq+IG9wFg6Tw1hDiCThRXldteRjRV3OlU3DQqJhAI7uGSw7R8+XJMnz4do0ePxk8//YSffvoJo0aNwjPPPIOPPvqIaxsJPsCKjYsxfe5UAEBUbISXrfEteGZfkBoPRmq4gG+mUq13siWIq0hDA5hxxpZ/OJkzvG0LZlznZmNfURBtX/GJC05dJ2tBLzUa9HroHWnIbHRQNTW2Vc/1OnoOrZxICxAIvoBLDtOnn36Kzz//HO+99x7uuece3HPPPXj//fexatUqfPLJJ1zbSPARuvammxyWFJZ52RLfY8TEOwAAGpV/OUw8LzhMPB4PkcY8JrWcGykG86hOxbWG+7nZI7xjGwCAJMy5TgDmTXu1cvtRIVFoKAA6UdwWAmlAg8cJBIJncclhKigowIABA6z2DxgwAAUF7n1YEXyXkHD2C+S7lZu9aInvERhCf7n98+t/fpXTZ+EwebDRa2LvZM7nNNdjcocwo3K4RmHd560hKIqCwNgeSV5sX/hSGMQmitt6z5jUvjU17kXMCARvsXLlSiQmJkIikaBv3744evRoveeuX78eFEVZPCRm1aImsrOzcc899yAkJAQBAQHo3bs38vLyGvNpMLjkMLVv3x4//fST1f5NmzahQ4cObhtF8E1CzH5x79/hf8rWjUnbzm2YsVLu3BetN/FGhAkAAsJpZ6A8j7vKwuhO9L9Bdb57TXiZ3CGl2mnnV2/s+F5z7brdc/lSVpPKVv6YQMIe1yoclzggEHyBTZs2Yfbs2Vi4cCEyMzPRtWtXjBw5EsU2qkJNBAcHo6CggHnk5uZaHL9y5QoGDRqEjh07Ij09HadOncL8+fNtOlaNgUsqhG+99RYmTJiAf/75BwMHDgQA/Pfff9i3b59NR4rQdHj13Zl4//XPUHC9iAjqmdGhK5sUX3y9BK07JnjRGsexqO7KL0PLZFkDZ3N6ZwDcVsrpjMuhigrbOUGOIg4JZOdUayAQOy6EGdAiFjW5N6Aosl+tZ/7aG3Q64Ja2KoJA9geKurIcAqmn/m0IvozBYKi3pU5jQvH5Tn3eL1++HNOmTcPUqXTu6+rVq7F9+3asW7cOr7/+uu17UBRiY2PrnfONN97A6NGj8f777zP72rVrV+/5XOOSw/TAAw/gyJEj+Oijj7Bt2zYAQEpKCo4ePYru3btzaR/Bx+gxoAszPvTXcQy4o7cXrfEdKIqCUCSERq2Bzs0lIU9i/gF46dhFtEyO98h9Q2Lp1iCmnnJcON5BLSJQeOoKFG5qhZlrMakqayCIcbzIISA+DjW5N2DQ62HQ6xusmDM/pq6shDQ62vI4RYEnFEGvUcOg95/3FKFxMeh0uLnL863JWo4aAUrgmMugVquRkZGBOXPmMPt4PB6GDx+OQ4cO1XtdbW0tWrduDb1ejx49emDJkiXo1KkTADplYPv27Xj11VcxcuRInDhxAm3atMGcOXMwbtw4t56bo7gsK9CzZ0989913yMjIQEZGBr777jviLDUDzPvLFd4o8qIlvke4sa+c1o8cJgCINTbEzTuT47F7BpnJGdSVcSMtEBhNv/5yN+czd97qnCxwCEpoyYwdqpQznauynfwuCjM6a36UF0cglJaWQqfTISYmxmJ/TEwMCgttC9YmJydj3bp1+PXXX/Hdd99Br9djwIABuHGD7nNZXFyM2tpavPvuuxg1ahT27NmD++67D/fffz/+/vvvRn9OgBMRpurqagQHBzPjhjCdR2iajLx/GHZv3Y+vPvwevQZ1Q0K7Vt42ySfgC+kllcpS/0rS7TysCwqvFni0ws+8p5yWI5Xx0Hg2QqOuVUBkdg9nEQZIoalT4NrO/xDdNcnh6yiBgF5tNDimayWJjoayuBjK0lIExFtH90xRKH8qJCA0LhSfj5ajRnjlvo1J//790b9/f2Z7wIABSElJwRdffIFFixYxRSn33nsvXnzxRQBAt27dcPDgQaxevRq33XZbo9oHOBFhCgsLY5K1QkNDERYWZvUw7W+WNKMPtBYJ7BrzM/e94kVLfAutmv7i/++P+kPOvkhUAu1oFFzO96jTJDVWFuo4yseQmlVx1rgpfRHShtV1ciZSRFf30B+rmjr7idomyQBb7VGMExpPdNgEQhOHoijwBAKPP5xZNo+MjASfz0dRkeUqRFFRUYM5SuYIhUJ0794dly9fZuYUCARITU21OC8lJcX3quT++usvhIeHAwD279+Pv/76y+ph2t8cmfLgc83mV+C4x0Zj5P3DmO31H//oRWt8B9OSnNrPtJhaJrERwj8+/dVj9zVF5Oo4jMhRxqo/RYV1Q1tnaDt6EDOuynVOKsUUWdI70CZH2oJ1zGx9fpi+pEgOE8GfEIlE6NmzJ/bt28fs0+v12Ldvn0UUqSF0Oh1Onz6NuLg4Zs7evXvjwgVLQdmLFy+itVkz68bE4SU583CXJ0Jf/oBUKkHH1PY4f+4yzp+7DIVCCZnM9WUAf0EoFOD5hdOwe+t+AMBPa3+FNECCCU+N865hXmbgmH44n3HR7xxnSaAU4S0jUH6zDGf/PoX7Xn7QI/c1tUXhUs4gtHUMKq4WoDK3EK16d3R5HorHA8XnwaBzULXbDHF4KFTllVBWVCKgZcO/pqXR0ag0bej1VpVypgiTproSBII/MXv2bDz++OPo1asX+vTpgxUrVqCuro6pmps8eTJatmyJpUuXAgDefvtt9OvXD+3bt0dlZSU++OAD5Obm4qmnnmLmfOWVVzBhwgQMGTIEw4YNw65du/D7778jPT3dI8/JpaTvXbt24cCBA8z2ypUr0a1bN0yaNAkVFRWcGefrUBSF9Vs+9bYZXoGiKHyz5zNme8Mnm3Ds3xNetMj7yILosm9Frf/1/ho76z5mXHrd/Qa2jhCbQufscOkw8Y1VPOaVbq4SFE87O872ptMbl9lMS3MNYSEtYCPniccXmE50ygYCwdtMmDABy5Ytw4IFC9CtWzdkZWVh165dTCJ4Xl6ehdB1RUUFpk2bhpSUFIwePRrV1dU4ePCgxRLcfffdh9WrV+P9999HWloavvrqK/z8888YNGiQ1f0bA5f+Cl955RUm8fv06dOYPXs2Ro8ejWvXrmH27NmcGujzNGMdosjYCAunaeGM9xs4u+kjFNFfbgU5hSgt8K/2Ma06sgnHGxd845F78ozRFE4jTIm0k1Ny3v2cBpN9lZfsi1CaI4uOBACoKioduImZw2RT7dtYlWrQ+13kkkCYOXMmcnNzoVKpcOTIEfTt25c5lp6ejvXr1zPbH330EXNuYWEhtm/fbrPy/oknnsClS5egUCiQlZWFe++91xNPBYCLDtO1a9cYr+/nn3/G2LFjsWTJEqxcuRI7d+7k1ECCbxMZG4HxT97DbCsV3PQG80cSklmxygO/+1fiN0VRaNOtLQBAJHVcqNEdTCrjXDpMppyfumL3I92mvKHKazedvI5+PvJCB8QrzX9w2cphMlNiN2j8KzeOQGhquOQwiUQiyOV0Bciff/6JESPoEsfw8HC7kgOEpsfjz01gxtu+3eFFS7yLLFCKFGPeTFlRuZetcZ6hj3q2gbDJYTr5G3fOZUQ7VgdJWV3n1lymJrx6tXOvhyiErtajeM5Fn3UK66VcisfmNGnl7iWyEwgE93DJYRo0aBBmz56NRYsW4ejRoxgzZgwAOlu9VSuiydPc4JktK3zzWfNujRPfnv7CvpB5ycuWOA/fmPfjKaXyypt0zzd5JXeOQJhRhBMAagvdc1rNpQWUFY7/EJQal+Q0Nc45bFobDhPAOk16HTd6VQQCwTVccpg+++wzCAQCbNmyBZ9//jlatqS/JHbu3IlRo0ZxaiDBP3hv3XxmXF5a6T1DvExYVCgAVmLAn+AL6C/m2nL3erE5Sv/HjeJ7HObmUBSFEKOApU7tnoMhDmZ7yqmciFYJgwKYsaLUvtPGE9FLoPp6ltz4MqNeldJ/mjoTCE0Rl0pJEhIS8Mcff1jt/+ijj9w2iOCfpPViKxlOHjmLYWMGetEa7xEdHwWAFbH0J0QSNndJq9ZAIBI26v0iE+lqGZ1GB41SDaGEm9wp01Jf1c0SxHRu49ZcsphwyIvKYXAi6iYMYJvkyguLIY0Mb/j8oCCoysrqdRxNlXR6DXeNigkEgvM4HGEyz02qrq5u8EFo3hTne6Ys3RcxVcrlXXSussoXCI5klbJrK93L/3EEoVTMjMtyuOtLqDXmYCk4iJSZKuUUTkZN2Twm+x+xfIkEAGinyZYNIvp1IuKVBIJ3Ia1RCJzRY0AXAMCGTzdB46TYX1NBJGGdAH8rAzf/cvdEI14en4fQFnRz2eoi7vTbgmLpiI5JD8kdTLlL5tVqjiCJNH4O6u2/B0xVdZoa2w4eX0w7VNpazyyVEggE2zi8JHdraxQC4VbGTLgTmQdPAQDOZp5Ht76dvWyR50kwazNSml+GqJaRXrTGeSgeBYPeALXCM8s/GiV9H7WcOzmKoBaRwIlLKD6X4/ZcoW1bofTsFRic7XdnamnigNMsCgmBoqDAQpPJHFOOE4FA8C6kNQqX+FlEgWv6D+uFwKAA1NbUQeOHOTxcIBAKGKdD7oeK36mD03D271PQOllK7yqRbeNQV14DhZsSAOZIgo1J0motNAqVxdKfs1AuakUx+koOfCYIA+nkcp3cdrNegYTNiTLodI3eNZ5AINjGpSq5r7/+Gps3b7bav3nzZmzYsMFto/yV5tSAtz7ijTo4/+72L+FGLgmJCAEAXDlz1cuWOI9QTCd655y65pH7iQNoZ6Yynztl9NgubZlxZZ57uVEm56Qo87xz1xmjRToHGvDypWz/SZsNeAXs71pb7VMIBIJncMlhWrp0KSIjrZcaoqOjsWTJEreN8idMDXgBMA14mzMGY87Gn7/942VLvEdgMB0RMDiQv+JrmKr7rme731rEEUQyOj/n+okrnM3JFwmZXnKqKvciV6bqOGGAxLnrjI6PqqLK7rnmS256tbWDRVEU00tOryVq3wT/YeXKlUhMTIREIkHfvn1x9OjRBs+vrKzEjBkzEBcXB7FYjKSkJOzYYVsM+d133wVFUXjhhRcawXLbuOQw5eXloU0b63Ld1q1bIy/PMx+0vkJzbsBri/+9OpkZ65vpr+F4Yx5TtYf0jLgk3tgQV1XnGcc/wigtwDXBLegfdO46reEp9Oec3Enldp5R08qRfnI8swiStrYeEU8D/bekrfO/9xShebJp0ybMnj0bCxcuRGZmJrp27YqRI0cyxWO3olarceeddyInJwdbtmzBhQsXsGbNGkbn0Zxjx47hiy++QJcuXRr7aVjgksMUHR2NU6dOWe0/efIkIiIi3DbK72jGDXhvJbED28T1/dc/85hqtC+h09Jfbju/3eNlS5wnrgP74eSJPKZWaewPLw2HfQglIXQek6LKPRVxocys6tGJHwCiYLpprkDqXGRKU4/DRAnopdLmvuRPoN8DOo3G4w9n33vLly/HtGnTMHXqVKSmpmL16tWQyWRYt26dzfPXrVuH8vJybNu2DQMHDkRiYiJuu+02dO3a1eK82tpaPPLII1izZo3Hq/JdEq6cOHEinn/+eQQFBWHIkCEAgL///huzZs3Cww8/zKmBBP9CbCY++M+uQwiPCsP/XnnMixZ5HnP/ubyowq9Uv2PNWosU5RShZVLjtjoSmS111ZZVI6xVFCfzmsQrL+85hqSRfVyeRxoRyoyr8woRktii/pPNEIfReWyOLMkBgDA4GJrq6nrVvEXBIVCVl0Kn9L9CAgK36LVaZH36g8fv2+25ieALHROzVavVyMjIwJw5c5h9PB4Pw4cPx6FDtvNbf/vtN/Tv3x8zZszAr7/+iqioKEyaNAmvvfYa+GaFDjNmzMCYMWMwfPhwLF682L0n5SQuRZgWLVqEvn374o477oBUKoVUKsWIESNw++23N7scJoIlFEXho+8XMdvbvt0BHYfd6P2BqW+wDuKZw+e8aInz8Mz0hjzRhJeiKEhDjVVtGu6ikWJjpZyzDXBvxZQLBQBauePLlAKZWSK3A5EpgUzW4HHTHIZ62qcQCL5EaWkpdDodYmIsl9xjYmJQWFho85qrV69iy5Yt0Ol02LFjB+bPn48PP/zQwin68ccfkZmZiaVLlzaq/fXhUoRJJBJh06ZNWLRoEU6ePAmpVIq0tDS0bt2aa/sIfkhyWnt8vfMTTL3reQC00/TAlLu9bJXn4PF5aNWuBW5cycd3H/yIIff6V5uY6MQYFOcUQe+h5VShWAgFgLryGkS2ieVkzja3dcW1v7Ng0BugKK+GNDzY/kX1ENQqBjU3ipzKhzJ3gNRVNUzEyd75ypIShCQnWx3nS2gHTFNLOik0d3gCAbo9N9Er921M9Ho9oqOj8eWXX4LP56Nnz564efMmPvjgAyxcuBDXr1/HrFmzsHfvXkgkzi11c4VLESYTiYmJ6NKlC0aNGkWcJYIFMS2jIA2gP+R/+Xa7l63xPHc+fDszvnk134uWOI+pCa+z2kOuIq+gK9mKLt7gbE5ThAkAapxM2L4VnrHdjTM5TOaRLWccT209WkzCwCBmTFqkNG8oigJfKPT4g3IiVzcyMhJ8Ph9FRZayHkVFRYiNtf2jKC4uDklJSRbLbykpKSgsLGSW+IqLi9GjRw8IBAIIBAL8/fff+OSTTyAQCKBzVlzWBVxymORyOZ588knIZDJ06tSJqYx77rnn8O6773JqIMF/GT3+DgBAeUlls0v+7n9XX2Z87qhzGj7ehmleW+JY/o27RLajP0DP7jrO2ZwURSEskZ5X7+ZSn0lTydmkV2EwLUiprrT/OoqMXRTqU/XmS1kH0GnVcQLBw4hEIvTs2RP79u1j9un1euzbtw/9+/e3ec3AgQNx+fJli+rqixcvIi4uDiKRCHfccQdOnz6NrKws5tGrVy888sgjyMrKsnC0GguXHKY5c+bg5MmTSE9PtwiNDR8+HJs2beLMOIJ/M/qh4cw468gZL1riHSKMPc3Ki7nrk+YJFEaF8rIbpR65X7xRaFIS3HAej7OY8o+q8917HqZokbOikXpjP8WavJt2z+WL6Wo8vcp2pSBFUUzrFD3JYyL4AbNnz8aaNWuwYcMGZGdnY/r06airq8PUqVMBAJMnT7ZICp8+fTrKy8sxa9YsXLx4Edu3b8eSJUswY8YMAEBQUBA6d+5s8QgICEBERAQ6d/ZMGy6XHKZt27bhs88+w6BBgyzCdJ06dcKVK9wJ0BH8m7hWbMLfob+4ix74C3HGfJx9P6V71xAniW1DV8rxnGw46yoJPWjhVzWHsgIAoCin833ME7ddwRRhkpc45/hKwkMB2BajvBUL8cr6mgabEr91zbPtEMG/mDBhApYtW4YFCxagW7duyMrKwq5du5hE8Ly8PBQUFDDnx8fHY/fu3Th27Bi6dOmC559/HrNmzcLrr7/uradghUufJCUlJYiOjrbaX1dX59Q6J6Hp07lnR5zJOI/dv+zHzPlPetscj9KxRxLOHDqHoLAg+yf7EGEt6MhYjYeEN/kiulRZp9ZCr9Uxoo/uEpmcgLyDZxi1bldRGbWcnLUroGUs6m4WguLZv848oVYnl4MXbJ2kLpAFQCuvg06lhDCo4SRyAsEXmDlzJmbOnGnzWHp6utW+/v374/Dhww7Pb2uOxsSln5C9evXC9u1sIq/JSfrqq6/qXZ8kNE+G30s3atZpddBqmtcv464D0wDA7563KVen/KZnluQCzBxKJYcNi00RMmWN7URqRzFpLynLnMvpMkkLOJKkbYpiAfUvuZn21xuBIhAIjYpLDtOSJUswd+5cTJ8+HVqtFh9//DFGjBiBr7/+Gu+88w7XNhL8mKF3DWDG509d9qIlnkdgrK5S1Cr8qk2MWErn08g4zimqD4pHgW9cNuNSi8mUe1R8xr1GwiZnpuqa/Vwki+uMSaiKYscaCwuNUaX6cqVMUSVlqXsNhQkEgmu45DANGjQIJ0+ehFarRVpaGvbs2YPo6GgcOnQIPXv25NpGgh8jEovAM35xvfda8+q5FxjCVjbduOzcl603CYkKBQCPCo7yhcbea3XcRZhMqsQ8oXtLfOIQutqNL7ZdwVbv/c3OdyRh3OSYaWpsL4UyeU5+5HwTCE0Jpx0mjUaDJ554AhRFYc2aNTh69CjOnTuH7777DmlpaY1hI8HPefx5ul1OWXE5lBwn9voypkgNABzcccSLljgHT0B/LHhSCkItp98XBee4a94dmUT3NVS4mYsVFE8nqWoVKqekBSQR4cxY68D7nmmLwrP9sSwOi2TG6ir/qrwkEJoCTjtMQqEQP//8c2PYQmiimKt8b/2m+YlYAkD6L/962wSHMemZXD+b67Fmr7IwOopTcrXAzpmOIzTrU+dOY19RELs0qXEiAkbxKKZCT1ePXIA54kjaIVKX2xba5Jn18dKpm88PDwLBV3BpSW7cuHHYtm0bx6YQmio8Hg8hYXR+xncrN3vZGs8y5Y1HAdCq2f4i3hnRio1kKKrdS5h2lBhjk19ePdEVVwg0a3pcmet63g9PIGA6KisrnGtNYtJi0tTW2T3XYEzmrq8BLwCIQozPyUOOLIFAYHFJVqBDhw54++238d9//6Fnz54ICAiwOP78889zYhyh6TBj3hNY8tIKAEBxQSmi4yIbvqCJ0OfOXlj/zncAgJzsXLRLa+tli+wTGR/FjLUecvJiOrTEtSPnoedQxdpc4sTteY0Oiry4HMHxjve744tF0KnUUJVVICihZYPnikJDoSgsrLc9CgBQAufbtBAIBG5wyWFau3YtQkNDkZGRgYyMDItjFEURh4lgxaA72VYhleVVzcZhEphp9xTkFvmFwwQAIqkYaoUK5fllCI5wvXGtowjE9HJTbia3lZRhiXGoyCmAwc0EdmGQDJoaudMNiQUBMuhUaqZiriFEYXT0yKDTQa/V2m52anQCtXL7ESsCgcAtLjlM166xZbqmHAciWEmwR1x8DAquFyH38g0kdWrnbXM8Rud+qThz+BxuXvGfJrwaFa35U1Pm3BKUq5gcJoNOD4PBwNnnCcV3ra3JrQQnxKHs7BWnHS9pVARU5ZXQqeyrfQvNIvWqsjJIY2KszjEYtZh4/MbtHE8gEKxxOWFg7dq16Ny5MyQSCSQSCTp37oyvvvqKS9sITYzaavpXceGNYi9b4llMeTkXs/xHh6ptd9qh5VIXqSHiUhOYsVbNXa80U6m+Xu9ezg/fzKFzCqOkhrLMdiK3ORSfD76xN2d94pSCgEDjiOQwEQiexiWHacGCBZg1axbGjh2LzZs3Y/PmzRg7dixefPFFLFiwgGsbCU2EtsmtAQA/fLHVy5Z4lsgWEQCAAA8JQXKB0Ogg3Mjmrsy/ISRmlWjVhdyVzJscprqSSrfmMTm91bnOVfFRFM/iv/YwiVfq6stjMkbePFW9SCC4w8qVK5GYmAiJRIK+ffvi6NGj9Z47dOhQUBRl9RgzZgwAWtLotddeQ1paGgICAtCiRQtMnjwZ+fmei9y75DB9/vnnWLNmDZYuXYp77rkH99xzD5YuXYovv/wSq1at4tpGQhOhjdFhAoByJxuZ+jPtuxijNR4UgnQXtZJeQirksMy/IcyX4LiMaikrjRpMbjoYOmO1myg4wM6ZlohDaQdIUeqY2rf99ifG14k4TAQfZ9OmTZg9ezYWLlyIzMxMdO3aFSNHjkRxse0Vhq1bt6KgoIB5nDlzBnw+H+PHjwcAyOVyZGZmYv78+cjMzMTWrVtx4cIF3HPPPR57Ti45TBqNBr169bLa37NnT2hJnyNCPUx9YSIz/m7VFi9a4ln4xp5mXFaANTYtjWX+VcXO9U9zh1BjJE5VV39ZvbOEt6X7wNUU2l8Sa4iAWKNtlc6JYPKl9BKbQatzKCokkNL956h65BVMjqWm1jO5ZQTfw2AwQKvSePzhbFRz+fLlmDZtGqZOnYrU1FSsXr0aMpkM69ats3l+eHg4YmNjmcfevXshk8kYhykkJAR79+7FQw89hOTkZPTr1w+fffYZMjIykJfnmUi4S5mDjz32GD7//HMsX77cYv+XX36JRx55hBPDCE0PoVAAaYAUijoF/t1zGM8vnOZtkzyCqQmsTus/Eaa49rSjYUr+9gRqo7hkbQl3ThrPWKVYdumGW/OYHBhFuXO2SaMimLG2Tg5hYMMRKp6YVoe39+XEEzrXpoXQdNCptdj2oudXcsZ99CxTnGEPtVqNjIwMzJkzh9nH4/EwfPhwHDp0yKE51q5di4cffthKtsicqqoqUBSF0NBQh+Z0F5dLLdauXYs9e/agX79+AIAjR44gLy8PkydPxuzZs5nzbnWqCM2bR599EGs++BbhUWH2T24i8JgIk/84TJEJ0QDoBGy9TgeeA2Xx7iIOkEBeUcs0zeUCWSTdsFYUKHVrHpPat06pdqqKjy8WgRLwYdDqUHU5B5HdOjV4PjNvPVV9fAn9PPRqFafVhAQCl5SWlkKn0yHmlkrPmJgYnD9/3u71R48exZkzZ7B27dp6z1EqlXjttdcwceJEBAc3vvQJ4KLDdObMGfTo0QMAcOXKFQBAZGQkIiMjcebMGeY88sdMuJXUbkkAgOtX/acZrbvwjVGOvIvXvWyJ44RGhzBjebUCgWGBDZzN0T1bRKDiRik0DpTgOzxnAv2B7e5yaGALVsxTU6eAKNDxBH6KomAAHJIWMPWRM+UyWR0WmUWWDAYmCZzQfOCLBBj30bNeua+nWLt2LdLS0tCnTx+bxzUaDR566CEYDAZ8/vnnHrPLpVdg//79XNtBaCYEBLHhVZ1WxzgTTRmB0P80c3h8PngCPvRanedyr4yRpdIr3CWam3q5KStq3ZpHIGEbKRucFK8M79wRpSfOMG1SGsS4FKepsZ0rRZnpL+m1GvBFYpvnEZouFEU5vDTmLSIjI8Hn81FUZNmSqKioCLGxDSvl19XV4ccff8Tbb79t87jJWcrNzcVff/3lsegS4IYOE4HgCnGtopnxpXPXGjiz6RBippRdXuQ/1YEmZ9ZTPfBM1XESDuUXRDLWodA54rA0AF9MR3f0TopgmvKf5PmF9s81Ln3yxbYdIfOovYEU2BB8FJFIhJ49e2Lfvn3MPr1ej3379qF///4NXrt582aoVCo8+uijVsdMztKlS5fw559/IiIiwsYMjYdPOEzOaDWY8+OPP4KiKIwbN65xDSRwhnlEqblIC0S3YpdzKtzUA/Ikpuq+Cg51kRoiMpFePuNSVkBsJgOgKHevsowyvh7qatfakgiD7S9rCmS0s6iuqj+5nCcyJYb7T04cofkxe/ZsrFmzBhs2bEB2djamT5+Ouro6TJ06FQAwefJki6RwE2vXrsW4ceOsnCGNRoMHH3wQx48fx/fffw+dTofCwkIUFhZCreZuGb8hvO4wOavVYCInJwcvv/wyBg8e7CFLCVyR1isFALD4xeZREEBRFCJb0L3zNn74k5etcRylsby/NM8zyuwmZ/rmae4ij+YRGY1c5dZcWjn9ejjbT87kKBkcURun7OssmSJWOqXCKTsIBE8yYcIELFu2DAsWLEC3bt2QlZWFXbt2MYngeXl5KCiwXH6/cOECDhw4gCeffNJqvps3b+K3337DjRs30K1bN8TFxTGPgwcPeuQ5ed1hclarAQB0Oh0eeeQRvPXWW2jbtuFmpiqVCtXV1RYPgnfhmWnMrH53vfcM8SDBxqTp65duQKX0zK8hd4ltGwfAg0tyxvsERYdyOm9gDF2R6W4uVlA8/UGvqnDuM4TRVHJgKU9gLKFuqPedXmN6/5CEb4JvM3PmTOTm5kKlUuHIkSPo25dtwp6eno7169dbnJ+cnAyDwYA777zTaq7ExEQYDAabj6FDhzbyM6HxqsNk0moYPnw4s88RrYa3334b0dHRNr3QW1m6dClCQkKYR3x8PCe2E1xn8Wo2DPvbxt24dO6qF63xDC98NJMZb1+/y4uWOE5MO9ph8pQcQmjLyEa5n0kSQeumo2rqIycvdm6J0hTlcsRh45tVwdVXKScMpCsYSYSJQPAsXnWYGtJqKCy0nSB54MABrF27FmvWrHHoHnPmzEFVVRXzuH7df0q7myp8AR8/HWAbNS+ft9qL1ngGiVny8fG/TnjREscxRQI95TCZluScXfKyh8lRqSt1TxBTFh0OACg5fcm5C42vo7rSfmSKJ2Srnwz1OFgGPb1fp6yn3xyBQGgUvL4k5ww1NTV47LHHsGbNGkRGRjp0jVgsRnBwsMWD4H0CgwNw2yi6WiL3cvNwYu96jA4zB4cHedkSx/C04KbpfqXX7FeTOYNpScw0v6sEtqQrPAVS50r5+SLaCeI5KC9hsrc+tW9GvLKeCBSBQGgcvOowOavVcOXKFeTk5GDs2LEQCAQQCAT45ptv8Ntvv0EgEDAimgT/4KGnxjHj5tB93dSEV6v2j3JwHs+0lOShCJPRoeBaYybEWKVY7mYj4WBjDpOzS3smiQCDo6+jyWGqJ49JEGCstiOilQSCR/Gqw+SsVkPHjh1x+vRpZGVlMY977rkHw4YNQ1ZWFslP8jNatmad4jMZ2V60xDMIjUq51y+719fMU5giMjmnPJNjFmhsY6LluH+d2ljtJ5S5J/LIRIgMBqeWDU1yBAa93qEfBqalOJ3c9pKbSaupoUo6AoHAPV6XIJ49ezYef/xx9OrVC3369MGKFSustBpatmyJpUuXQiKRoHPnzhbXm5ru3bqf4PuIxCLweBT0egPenPkBfj78tbdNalSYpRZHyst9ALWSdlyEEs80ehVK2fuo5SoL0Ul3CG/XAsXnclB13T15BIFMwow1cgXEDugqAZZLcTqlCgKppIGzQUeOjNU/Ng8z1XH+8T4iEJoKXs9hckWrgdB0eOLFSQAAjbrp52NEGMvbhT7e1sBEXIcWAIDCy/keuZ84gHUkqjlURDdFg9xd9qUoinF+nHF6eQKzdiYOqI2LQuhIm6qsrD5D6P8Sf4lA8ChejzABtFbDzJkzbR5LT09v8NpbdRwI/sWI+4bhqw+/h1arg0atgVDkH86EK5hydDyla+QuASG0JhDfg73wKIqCwWBAQXYeIts03HPKUQKiQgGw8gLuwEQJnczr4olF0KvUDeormTC1PKF4Df+eNRCPiUDwKF6PMBGaN9IAKTO+eiHXi5Y0PkzZvM6xXBZvE2zMKaqrrPWYveJA+v2g4zAxXmBcUuSiibB5PpJT15nUuVX21cbFxgrgel9zEmEiELwCcZgIXoVvVuqdn1fUwJn+j/lz9VTlmTuExoQyY3cb1zpKQo/29P04jMKZIks1+fUscbmAqqrWqfN1CjrxXKdyoMLOgfYoAGDQNv1lbIJ/42yf2BUrViA5ORlSqRTx8fF48cUXoVQq3ZqTS4jDRPA68W1bAgB0Tbz7usBsaauUwy/vxkJsluRcU17jmXsa85gKL3CnzUWZOarORoZuxdRPztl5RKG0/hvlQDsT5oz6kr7N5AT8IVJJaJ442yd248aNeP3117Fw4UJkZ2dj7dq12LRpE+bOnevynFxDHCaC12mVSLfgaOpLcmIzwcOKEu6SmhsLc6FHZa2ygTO5Q1lDt/uQBMk4mzO4BStyW1fintp3UDydV+V0DpNRwduhvCOjQ1SfM8QTm1Xr1bj3fAiExsLZPrEHDx7EwIEDMWnSJCQmJmLEiBGYOHGiRQTJld6zXEIcJoLXKTP25uJzkJTr67ROprXC8i74hxZTiLERrt7NyIyjRLenK/OcdUgaQiAWMnlMJefdc8p5AvojU15S7tR1TFDIkYiQnSU5iqIYcUui9t38MBgMUCvVHn84E810pU/sgAEDkJGRwThIV69exY4dOzB69GiX5+Qan6iSIzRvuvdPw8UzV7Bjyz48+dIj3janUakw9jMTSfyjGtDj7VGMifE6DhK0zTGpc2vk9pOuG0JZSS9NOl9x53iiNuWAgrcoKATqqgoiXtkM0ag0eH/8Yo/f99XN8yByUJOtoT6x58+ft3nNpEmTUFpaikGDBsFgMECr1eKZZ55hluRcmZNrSISJ4HXEYvqPUFHX9LuvJ3czJjX7QdI3YOYweUgKwRTBuXnqGqfzxhlfd3dL8UPb0Pl2TkfAKCfEJo3nKktK7M9n8I/3EYFgj/T0dCxZsgSrVq1CZmYmtm7diu3bt2PRokXeNo2BRJgIXmf4vbfhm89+AkA7Enw3m6T6MjwzaQF/wCSFUOVm7o+jmBy0YLMKPS4QB9OaUgadm+KVxsiSRulcpMrBwjeLk/XqBirqjOeoKsogieJGr4rgHwjFQry6eZ5X7usozvaJBYD58+fjsccew1NPPQUASEtLQ11dHf73v//hjTfecGlOrmm630wEvyHQ+GUGANWV1V60pPExNbT1lwhT6Y1SAJ4T2wwyaj/pNNzej2cSnHQ3ImP0eOTFzuUwOeMxiYLpijpTorgtdMZSa1Il1/ygKAoiicjjD0eWik042ycWAORyOfN3asKU12owGFyak2uIw8QxCrmSfIg5idhsXfxMhmfWor0F8wHgoSRqd2nfswMADy7JGaUX6jiWMaD4xsozd/v4Gb80RIGuVvHZvz9fTFdTNvQ5IomIos1pBoUSBP9k9uzZWLNmDTZs2IDs7GxMnz7dqk/snDlzmPPHjh2Lzz//HD/++COuXbuGvXv3Yv78+Rg7dizzuWlvzsaGLMlxzLCe49C9VxrWb/nUKY+8OUNRFKQyCRRyZZPvKWdacso5n+dlSxzD1Hj3enYeeo7u44H7sVEVnVbHLAm6C0W51tLkViRhQfTAWb+LkQpw4FzTr+wGnGpT9EnvgHI4geANJkyYgJKSEixYsACFhYXo1q2bVZ9Y84jSvHnzQFEU5s2bh5s3byIqKgpjx47FO++84/CcjQ1xmDhAKpWge680nDh+GgBw4vhpKBRKyGRSO1cSTKR2T0bGfyf9JrfHVUoLaMFK82VIX6a2go70yIK500VqCFloIDPWqbWcOUwwLoWWXnRTENOORlL9lzm+JMf0q9PTLXRs/vAy2aFr2mKvBP/GmT6xAoEACxcuxMKFC12es7EhS3IcQFEU1m/5FPsztnnbFL+Fqcbyk6UqV2nXuQ0AgOL5R/SxdedEAICW45yi+uCZOUhcKr/rjb3pTI14XcUZx8cWBgfkEsxzl9TltnOleELjMjZFPsIJBE9B/to4wrSsRHANPs+zej/ewvSFq3RTD8hTmCI88qo6j9zPPJoiL3euX1tDBMVFAODg/eVihImRCii1nyxO8cx7Dtp2sJhziKwAgeAxiMNE8AlMESZ/qR5zFVME7cyhs162xDFMDkzhlQKP31uj4i6fjeJaT8pJf4knMkaNeI595IrCwujb1BdlI/3kCASPQxwmgk9gSv5r6ktyQaF00nB4bLiXLXEMkZRe+hF6UJk8tCXd+43LyjyTQ15+5aZb81DOCFCaITY2320okdsWmhrb1YIUj126NGibdqEEgeArEIeJ4BMw1WOXuetS74u0bEf3Srtx2b0vbk8RFkc7diW5nukGDgB8Ie0MFHJYSUgZlxalpio3lydyMenb+INAUyd36HxTjzieyHYrCvNlOxJhIhA8A3GYCD5B4Q36C1kqbdp5YEHGKjCB0D8KVEPcTJJ2BWU17VSoOczzEgfRVX7uOhemCJOzek6m8+UFjjmeJvHKho0hH98Egichf3EEnyCtVwoAQN/Efy0HGMvzdVqdX0QGgqNCmLFJYqCxSeydBIBb8Up3q9vYieDSPMIgWkaCCE0SCP4LcZgIPoHQmBTLZSm5L2KqOjMYDH5REWjenVzloco+WTi9bFZ6rZCzOVl/iZsIk6rKuQo+WTSdl2XQe0aegUAgcA9xmAg+gcDoSOi0vu9EuANfwC7FqVUNNFf1IWQhdHSksrDCI/cTimknLSDczXwjc1yVA6gHTa1juUjM7U2RJYPn2swQCARuIQ5TY+EHyy2+hKlX0IXTl71sSeMiMqs2qyyt8qIljmPSYPJUREwWRud56d3t+2YGuyTn3jwBcZGmCZ26jpEVANs41yHI5wiB4DMQh6mRmPLgc36Ro+Ir6Izl1lfO5zTp143H40FmTED2hyU5AGiVEg/Ac/aaVNA5bVDsYrL2rfCMEUJHFLstb08xWlAOXuDU/ASCL7Jy5UokJiZCIpGgb9++OHr0aIPnr1ixAsnJyZBKpYiPj8eLL74IpdkPDJ1Oh/nz56NNmzaQSqVo164dFi1a5LHvDOIwcYhUKkHH1PYAgPPnLkOhcOKXZDNnyMj+zLiizD8iL64iFNFfujo/WZqhPKyRxTTKbZQIk5s5THzWNlfVvgmE5sCmTZswe/ZsLFy4EJmZmejatStGjhyJ4mLblaIbN27E66+/joULFyI7Oxtr167Fpk2bMHfuXOac9957D59//jk+++wzZGdn47333sP777+PTz/91CPPiThMHGLqKUdwnlaJccxYq2keid/+4jB5us9fY0SYmDnddJj4YnZprSon3625CISmzPLlyzFt2jRMnToVqampWL16NWQyGdatW2fz/IMHD2LgwIGYNGkSEhMTMWLECEycONEiKnXw4EHce++9GDNmDBITE/Hggw9ixIgRdiNXXEEcJq4hvyJdxtSLz18cCVcxOUxlBfb7ivkCPA/3+ePxuFk+s4CjCBPPTBZA38Qde4JvYjAYoFSoPP5w5seGWq1GRkYGhg8fzuzj8XgYPnw4Dh06ZPOaAQMGICMjg3F+rl69ih07dmD06NEW5+zbtw8XL14EAJw8eRIHDhzAXXfd5cpL6TT+oZ5HaBaYxBwV8qa9lFlys9TbJjiFyYEpySnyyP1MS4CVBWXczWl0mLQc9KcLio9BzfUilyNgTThFj+ABVEo1Hh30jMfv+92B1ZBIxQ6dW1paCp1Oh5iYGIv9MTExOH/+vM1rJk2ahNLSUgwaNAgGgwFarRbPPPOMxZLc66+/jurqanTs2BF8Ph86nQ7vvPMOHnnkEdefmBOQCBPBZ6gxatuUFPiXQ+EsKb2SAdAJjP5AVQmdUyYQe66fHAC3K9rMEcrYD3qNwj09KZNDx2kEjEBo5qSnp2PJkiVYtWoVMjMzsXXrVmzfvh2LFi1izvnpp5/w/fffY+PGjcjMzMSGDRuwbNkybNiwwSM2kghTY0J+SjpFi4RY5OcVoriJO0xMDpOfVMm179kBpddLcPXEFQyZOKzR72cSrhSIuHPQhGa/jLVKtcW2szAOk5/8+xGaFmKJCN8dWO2V+zpKZGQk+Hw+iooso9JFRUWIjf1/e/ceXFV5/3v8s3dw5wLhYoFcNJIfouIFG4WKaB0vzTG/arF0pmOqDiJTLxXSqaZHASHE1guRQUtFKmOUQs9oQ7XC6QgTtalMK8RjufVoQTwG5CImkCoEcr+s80eyN0QS9t5J9nrWWvv9mslM2KydfNezb588z7OeJ73H+xQVFWn69Om69957JUkTJkxQfX297r//fs2fP19+v1+PPPKI5s6dq5/85CehY/bt26dFixZpxowZfTyzyBGYYij/1vv0v//2v0JzQBBG1zSThhONZuuIseAkarfM1WrqWuE7dSAXkjyD4OslVpcKN/znWL824Q1OIG+stWchT+BUPp8v4qExUwKBgCZOnKiKigpNmzZNUudFIxUVFSooKOjxPg0NDad9VgbX5wu+F/R2jF0XpPBJPsBOXVpg396D+smt93l6XaGBlD3uPNMl2CLYw3Roz5eGK4lMxrhMSQbWYRrg182grr+QO9r793Mbu5a9SBjAHjDAawoLC1VaWqrVq1dr165devDBB1VfX6+ZM2dKku6++27NmzcvdPzUqVP14osvqqysTHv37tW7776roqIiTZ06NRScpk6dqqeeekrr16/X559/rrVr1+q5557Tj370I1vOiR6mAebz+VS2vlQ/vGm69u09GFqPKSUl2XRpjjesqwfDLXN7+ip4dVxwkrvT2b0MQuiCtgH+q3HwqOE6duCwOvr5/Bo6JkNHjvZnY2D+gIL35efn68iRI1q4cKGqq6uVk5Oj8vLy0ETw/fv3d+stWrBggXw+nxYsWKAvvvhCo0aNCgWkoGXLlqmoqEizZs3S4cOHlZmZqQceeEALFy605Zzc8Y7tMn6/X2vWl+rqS+y51NErgvvJtblkqKqvLrryAu3/9IBrgmFoHSa76h3gfd9CP7ar5+r4oVqlXZLd95/T55VDWHIE8aWgoKDXIbiNGzd2+/egQYNUXFys4uLiXn9eamqqli5dqqVLlw5glZFjSC5WWI8pasFu1x0ffGy4kthK7Jp/sGvLbsOVRCbYw7Rne5Utvy84qVrWwIamxq86e4UGRTF5FQCCCExwjGNf10mSPvm//89wJbHVWN85qX3E6OFmC4nQ6DEn11JpPN4Q89/nO+WPjYEMTGePzRywnwUg/hCY4Bg33PLd0PetHl5F+bwLzpUkWf2cfGyXUWNGh75vqu/fGkaRCA6dSZJY6wiAQxCY4BhXXnN56PsvD9izqrQJwe013DKHSZICXcOIAz0Ruyex6mECgP4gMNmgsaFJDQ2NvPmHkZBw8ul4oq7eYCWxlZBg795sAyEm+7v14tTpfwOxlclpTL8MTf9+AH1CYLLBjROn6eqL/1v3/PjnhKYwsi/IkiR9tGWn4Upixz+oa+FKFwWm4ERsOxaIO3VSdsOxAQzOhq/D4DoQwN0ITDGSnJykKyZN6Hbb9i0fqbHR2xvL9texrzuvZGpt8e4cpuCQXNVHewxXEjl/gp09TD6ljBgiSTrWtWYVAJhGYIoRn8+nVW8s0we7yvXe1nWmy3GNG2+5VpJU8Ze/G64kdgJdm9gOtWmrkYEQXGDOrmHEhq87N2Jmg1sATkFgiiGfz6eUlGQlpySZLsU1UoZ0rohec+iI4Upi51vpZ0uS6r7qz2rR9goOyTXV27PPX/r4zqFZOyaZA0AkCExwlEtyLpIkx28u2R/DvjU09H29Sya319V27p/WeNyewBSr/eQ60WsFIHoEJjjK6MyRkk5Z7dmDkk7pcXTLXK3gBry27SfX9fgP7JAcs64B9J13P5XgSsHtUWzbt8yQs7p2urcrgPRXyrDBkqRDnx605ff5bFzGwNG4qhZwDAKT3XgDPKOEONmAN+GszvM8fvSE4UoiExySS+qaYxZr/uAGvPE6h4k1CADHITDZjLWYziwhuEZRW7un26mpvnN5ifqBXGcohs67NFuSjT0+Mexh8vDTCkAMEZhskJycpPGXjJMkfbLzM9ZiOoPgkJwkNTe1GKwktsZe9l+SpP2fHjBcSWSCQ2R2LFzZ+fs635q+OuDdqyUBuAuByQbBNZkQXuqwIaHvv/7PUXOFxNiRL2olSWd1rcnkdHZujSJJdV0LViYOHsCrJR0zykUXF+BGBCa7MCchIj6fT0OHd4amFg/3MF1y1XhJ7pnUHLpqzabxrPSLz+v6xV563UR/Lu54dgDxgcAEx0kZnCJJ+tPKvxiuJHaCH51uCUyhHiYX7X8HAAOJwATHSezafHXTu//HcCWxE5oT5JIZyD5fLBeSBADnIzCZwIfOGd3z0B2SpBHfGm62kBjy+bpeei55LgSH5I7WHDVbSD94aXAPgP0ITAawtMCZjUr/liRv7yfnj+nWHwMvuMDm0ZqvDVfiAe54yAF8A4HJJiwtELlAYiD0vVtWwo5WcIirwyVzmEZkdG4YHEgOhDkSvaKLC3A1ApNNTltawCU9CyacPXJY6Huvrvgd281lB97grq1RACBeEZjsdMol0gzLnYGnLiXvmS/et/4widcdgD4gMNmIYbnoNXm0jdzWwxTksnK7i4MgDiB2CEw2YsXvyCQln1zd+dD+aoOVxI4/uBCkS+YwMf8GQLwjMNmNv3LD8vv9GpUxUpLLezTOIDgkt2fnPsOVAAAiQWCCIwUCnXuseXWOz/Gvj0uShgxNMVwJACASBCaTvNp9MgCC6xS55bL7aF14xQWSpH9t+thwJdFy/+PhqjPgPQJwDAKTQVwp1zu3ToqOVPD8Rp87ynAlkfF5YRKTi07Bx9A94DgEJptxpVxkgluHdHh0SG5UZudq5l5dmBMAvIbAZDOulIuM27YOiVbCoARJUke7NwMheme5a1AQQBcCkwl0t4cVGpLz6BymhITOwOS6HiYvPBymQjive8DVHBGYli9fruzsbCUlJWny5Mn68MMPez22tLRU1113nUaMGKERI0YoNzf3jMfDnfweH5Lzd/Uw1X75H8OVRIjPegBxznhgWrNmjQoLC1VcXKxt27bp29/+tvLy8nT48OEej9+4caPuuOMOvffee6qsrFRWVpZuvvlmffHFFzZXjljyha6S82ZgSh6cZLqEuOOJiesAjDEemJ577jndd999mjlzpi655BKtWLFCKSkpWrlyZY/Hv/rqq5o1a5ZycnI0fvx4vfzyy+ro6FBFRYXNlSOWTu615oUxoNOlpJ5cf8mroRAAvMRoYGppadHWrVuVm5sbus3v9ys3N1eVlZUR/YyGhga1trbq7LPP7vH/m5ubVVdX1+0LzhfcOuQLj2+NIrlrrSmvTsIHgHCMBqba2lq1t7crLS2t2+1paWmqro7sg3LOnDnKzMzsFrpOtWjRIg0bNiz0lZWV1e+6EXv7qg5KkhKTAoYriQ1/wsnhIcsFV8p5al0g05nP9O8H0CfGh+T6o6SkRGVlZVq7dq2SknqeEzJv3jwdO3Ys9HXgwAGbqwyDv9h7dMXVEzq/8Wjz+LuukpOkdhcEJk8wnPk8FDmBuGQ0MI0cOVIJCQmqqanpdntNTY3S09PPeN8lS5aopKRE77zzji6//PJej0tMTNTQoUO7fTkJq333LLQ1ikfbJnh+EnOYAMANjAamQCCgiRMndpuwHZzAPWXKlF7vt3jxYj3xxBMqLy/XpEmT7Ch1QLHadwSCecKzgenkS6+5gccfAJzO+JBcYWGhSktLtXr1au3atUsPPvig6uvrNXPmTEnS3XffrXnz5oWOf+aZZ1RUVKSVK1cqOztb1dXVqq6u1okTJ0ydQtRY7Tu8YKBw04ToaPgTTr70Du11wcR2xpMAxLlBpgvIz8/XkSNHtHDhQlVXVysnJ0fl5eWhieD79+/v9tf4iy++qJaWFv34xz/u9nOKi4v1+OOP21l6/3hpEm0MnOxg8mZg8vl88vl8sixLx4+6J+x7gzefUwBiy3hgkqSCggIVFBT0+H8bN27s9u/PP/889gXBOF9XSPZqYJKkMeOz9Pmu/a7Kzu5+PFzU0AAcx/iQHOTZeTr9EQwR7v6APrPkISnhDwIAOAKByQG4Uu50vq695Ly60vep3PDQs60IgHhHYDKEK+XOLB56mNw0FAcA8Y7AZMhpV8p5OBj0RTzMYXIlDzwcxp9SxgsA0BcEJpNO6WLIv/U+FjA8RbBp4qFNXBEKvdAb5oVzAGAMgcmgU4fl9u09qJ/cep87PjxtEJzD5IUejd4wLyjOMAYLuBqBySCfz6ey9aUa81/nSmIu06lCPUyW93uYgF7xBxTgGAQmw/x+v9asLzVdhuMEFys98uV/DFdiAxd9KNIDCiBeEZicgK760xw/1rn6daOX91lz0cPu4zlqL9obcBwCExxpZNrZkqSk5ETDlcAriCAA+oPABEcaMXK4JKm93ftzmBjkAgDnIzDBkRIGJUiS2tvaDFcSOwxzAYB7EJichkm1kqSEhM7A1Fjv4TlMMIPXGIA+IDA5DPvKdQp2vny87ROzhdiBxxsAHI/A5ADsK3e64LIC52ZnGq4khhiRsxdDoAD6gcDkAKftKweNSv+WpPjYGsVN6P0EEK8ITE7BX7/d+Pyd7REPH9BuOEUmqAOIdwQmJ3LDJ2iMBfeSszq82xaEEDO8+4wCEEsEJgdi4rfk7+phioe95OL9sQYANyAwOQQTv7sLDcl5uIfJlXg4AMQpApNDMPG7O3/XkFyHhwOTz02XybmoVKejRxFwJwKTkzCnJeTkpG/vD8khTvD6BlyNwORUcf5XqD8UmAwXgm4sL4zJ8aQC0AcEJoeK94nf8XCVHMNc9nLjVYkefvYDrkNgchAmfp8UHJI7dKDacCWx545g7L6wAQADicDkIEz8PinYG9DRzhwmAIB5BCanceGwQSyknzMq9L1Xt0dx4xARY0QA4hWBCY40OHVw6Puvjhw1V4gdXDEkBwDxjcAER0pMCoS+b2luMVgJJI90fHrhHAAYQ2CCY6UMSTZdQmzxAY5w6H0EHIPA5GS8WcYFNz3M7riiDwAGHoHJweJ9LSYgJtzwkvLEGCjgLQQmh2Etpvjhrr3kXFSrQ9GCgLsRmByGtZjiD72IAOB8BCYn4q95AAAchcAEGEIuBgD3IDABCMtL4c4yPeubIVjAlQhMAOKDl1IfANsRmABTXPgBzgT1fnDh4w3gJAITYBghBACcj8AEIAIe6h0hnwLoAwITYIiPIRoAcA0CE2Cam4bkXFTqN7kpnrqpViBeEJgAhEVnGIB4R2ACAAAIg8AEGOamETlPoMEB9AGBCUDEWALBZrQ34BgEJsAQV10l56Zae+OFcwBgDIEJMMz43mZwHsId4DgEJgCwAxkIcDUCE2AInQhm0J8HoC8ITIBpLvgEJ9sBiHcEJgCwE1e+Aa5EYAJMceGYHMsKAIhXBCbAMEJIvHBfQAZwEoEJQHgu7A3rFQEVQB8QmABDPBRBAMDzCEyAaW7q8HBTrd/gqpXVATgOgQkAbOTizAnENQITYIibejxcVCoAxASBCTCMveQAwPkITAAiRrgDEK8ITIApjHMBgGsQmADD3LFwJeFuwLjh4QZwGgITgPhCYAHQBwQmwBBXjsgRNvrMlY83gBACE2AaIcQeBBYA/eCIwLR8+XJlZ2crKSlJkydP1ocffnjG419//XWNHz9eSUlJmjBhgjZs2GBTpUB8oncEQLwbZLqANWvWqLCwUCtWrNDkyZO1dOlS5eXlaffu3Ro9evRpx2/evFl33HGHFi1apB/84Ad67bXXNG3aNG3btk2XXXaZgTOIrcaGJtMlGNPR0aEOq0NNjU1qaGg0Xc6Aa21rU3tHh5pbWhx/fk1NzWrraFdrW5sttTa3tKi1vU3NzQPXNk3NLWppa1NTP39mU3OLmltb1dTUHNXPaWpuUWtLqxobm2SFuV9jY7OamluU0Niss3o5trGpWbI6FGholL+tI6pzQOSSk5NctcgsYsdnGb5EZ/LkyfrOd76jF154QVLnh2RWVpZ+/vOfa+7cuacdn5+fr/r6er311luh266++mrl5ORoxYoVpx3f3Nys5ubm0L/r6uqUlZWlY8eOaejQoTE4o/5raGjU1Rf/t+kyACDu3f29m/U/V843XQYcwOiQXEtLi7Zu3arc3NzQbX6/X7m5uaqsrOzxPpWVld2Ol6S8vLxej1+0aJGGDRsW+srKyhq4E4iR5OQkXTFpgukyACDu1dYeM10CHMLokFxtba3a29uVlpbW7fa0tDR98sknPd6nurq6x+Orq6t7PH7evHkqLCwM/TvYw+RkPp9Pq95YpsbG+B2Ok6TDh2q1c/tu02XETGtLmw7t+UJtbe2mS4nIiWP1am1oDn/gALA6LDXXNw3sGlWW1NbcOiA/s6OtrU8FRPW7IzmWCwZi7rr/Mcl0CXAI43OYYi0xMVGJiYmmy4iaz+dTSkqy6TKMyh6Xpexxzg63AID4YHRIbuTIkUpISFBNTU2322tqapSent7jfdLT06M6HgAAoL+MBqZAIKCJEyeqoqIidFtHR4cqKio0ZcqUHu8zZcqUbsdL0rvvvtvr8QAAAP1lfEiusLBQM2bM0KRJk3TVVVdp6dKlqq+v18yZMyVJd999t8455xwtWrRIkvSLX/xC119/vZ599lndeuutKisr05YtW/TSSy+ZPA0AAOBhxgNTfn6+jhw5ooULF6q6ulo5OTkqLy8PTezev3+//P6THWHXXHONXnvtNS1YsECPPfaYLrjgAq1bt86TazABAABnML4Ok93q6uo0bNgwR6/DBAAAnMURW6MAAAA4GYEJAAAgDAITAABAGAQmAACAMAhMAAAAYRCYAAAAwiAwAQAAhEFgAgAACIPABAAAEAaBCQAAIAwCEwAAQBjGN9+1W3DrvLq6OsOVAADiSWpqqnw+n+ky0EdxF5iOHz8uScrKyjJcCQAgnrDpu7v5rGCXS5zo6OjQoUOHBiTp19XVKSsrSwcOHOBFEAZtFR3aK3K0VeRoq8jFoq3oYXK3uOth8vv9Ovfccwf0Zw4dOpQ3nwjRVtGhvSJHW0WOtoocbYUgJn0DAACEQWACAAAIg8DUD4mJiSouLlZiYqLpUhyPtooO7RU52ipytFXkaCt8U9xN+gYAAIgWPUwAAABhEJgAAADCIDABAACEQWACAAAIg8AUxvLly5Wdna2kpCRNnjxZH3744RmPf/311zV+/HglJSVpwoQJ2rBhg02VmhdNW5WWluq6667TiBEjNGLECOXm5oZtW6+J9rkVVFZWJp/Pp2nTpsW2QAeJtq2OHj2q2bNnKyMjQ4mJibrwwgvj5rUYbVstXbpUF110kZKTk5WVlaWHH35YTU1NNlVrzt///ndNnTpVmZmZ8vl8WrduXdj7bNy4UVdeeaUSExM1btw4rVq1KuZ1wkEs9KqsrMwKBALWypUrrX//+9/WfffdZw0fPtyqqanp8fhNmzZZCQkJ1uLFi62dO3daCxYssM466yzro48+srly+0XbVnfeeae1fPlya/v27dauXbuse+65xxo2bJh18OBBmys3I9r2Ctq7d691zjnnWNddd531wx/+0J5iDYu2rZqbm61JkyZZt9xyi/X+++9be/futTZu3Gjt2LHD5srtF21bvfrqq1ZiYqL16quvWnv37rXefvttKyMjw3r44Ydtrtx+GzZssObPn2+9+eabliRr7dq1Zzx+z549VkpKilVYWGjt3LnTWrZsmZWQkGCVl5fbUzCMIzCdwVVXXWXNnj079O/29nYrMzPTWrRoUY/H33777datt97a7bbJkydbDzzwQEzrdIJo2+qb2trarNTUVGv16tWxKtFR+tJebW1t1jXXXGO9/PLL1owZM+ImMEXbVi+++KI1duxYq6Wlxa4SHSPatpo9e7Z10003dbutsLDQuvbaa2Nap9NEEpgeffRR69JLL+12W35+vpWXlxfDyuAkDMn1oqWlRVu3blVubm7oNr/fr9zcXFVWVvZ4n8rKym7HS1JeXl6vx3tFX9rqmxoaGtTa2qqzzz47VmU6Rl/b69e//rVGjx6tn/70p3aU6Qh9aau//OUvmjJlimbPnq20tDRddtllevrpp9Xe3m5X2Ub0pa2uueYabd26NTRst2fPHm3YsEG33HKLLTW7Sby+v+OkuNt8N1K1tbVqb29XWlpat9vT0tL0ySef9Hif6urqHo+vrq6OWZ1O0Je2+qY5c+YoMzPztDckL+pLe73//vt65ZVXtGPHDhsqdI6+tNWePXv0t7/9TXfddZc2bNigzz77TLNmzVJra6uKi4vtKNuIvrTVnXfeqdraWn33u9+VZVlqa2vTz372Mz322GN2lOwqvb2/19XVqbGxUcnJyYYqg13oYYJxJSUlKisr09q1a5WUlGS6HMc5fvy4pk+frtLSUo0cOdJ0OY7X0dGh0aNH66WXXtLEiROVn5+v+fPna8WKFaZLc5yNGzfq6aef1u9+9ztt27ZNb775ptavX68nnnjCdGmA49DD1IuRI0cqISFBNTU13W6vqalRenp6j/dJT0+P6niv6EtbBS1ZskQlJSX661//qssvvzyWZTpGtO1VVVWlzz//XFOnTg3d1tHRIUkaNGiQdu/erfPPPz+2RRvSl+dWRkaGzjrrLCUkJIRuu/jii1VdXa2WlhYFAoGY1mxKX9qqqKhI06dP17333itJmjBhgurr63X//fdr/vz58vv5mzqot/f3oUOH0rsUJ3g19CIQCGjixImqqKgI3dbR0aGKigpNmTKlx/tMmTKl2/GS9O677/Z6vFf0pa0kafHixXriiSdUXl6uSZMm2VGqI0TbXuPHj9dHH32kHTt2hL5uu+023XjjjdqxY4eysrLsLN9WfXluXXvttfrss89CoVKSPv30U2VkZHg2LEl9a6uGhobTQlEwaFpsM9pNvL6/4xSmZ507WVlZmZWYmGitWrXK2rlzp3X//fdbw4cPt6qrqy3Lsqzp06dbc+fODR2/adMma9CgQdaSJUusXbt2WcXFxXG1rEA0bVVSUmIFAgHrjTfesL788svQ1/Hjx02dgq2iba9viqer5KJtq/3791upqalWQUGBtXv3buutt96yRo8ebT355JOmTsE20bZVcXGxlZqaav3xj3+09uzZY73zzjvW+eefb91+++2mTsE2x48ft7Zv325t377dkmQ999xz1vbt2619+/ZZlmVZc+fOtaZPnx46PriswCOPPGLt2rXLWr58OcsKxBkCUxjLli2zzjvvPCsQCFhXXXWV9cEHH4T+7/rrr7dmzJjR7fg//elP1oUXXmgFAgHr0ksvtdavX29zxeZE01ZjxoyxJJ32VVxcbH/hhkT73DpVPAUmy4q+rTZv3mxNnjzZSkxMtMaOHWs99dRTVltbm81VmxFNW7W2tlqPP/64df7551tJSUlWVlaWNWvWLOvrr7+2v3Cbvffeez2+BwXbZ8aMGdb1119/2n1ycnKsQCBgjR071vr9739ve90wx2dZ9LsCAACcCXOYAAAAwiAwAQAAhEFgAgAACIPABAAAEAaBCQAAIAwCEwAAQBgEJgAAgDAITAAAAGEQmADExOOPP66cnJzQv++55x5NmzbNWD0A0B8EJgAAgDAITEAcamlpMV0CALgKgQmIAzfccIMKCgr00EMPaeTIkcrLy9PHH3+s73//+xoyZIjS0tI0ffp01dbWhu7T0dGhxYsXa9y4cUpMTNR5552np556KvT/c+bM0YUXXqiUlBSNHTtWRUVFam1tNXF6ABBzBCYgTqxevVqBQECbNm1SSUmJbrrpJl1xxRXasmWLysvLVVNTo9tvvz10/Lx581RSUqKioiLt3LlTr732mtLS0kL/n5qaqlWrVmnnzp367W9/q9LSUv3mN78xcWoAEHM+y7Is00UAiK0bbrhBdXV12rZtmyTpySef1D/+8Q+9/fbboWMOHjyorKws7d69WxkZGRo1apReeOEF3XvvvRH9jiVLlqisrExbtmyR1Dnpe926ddqxY4ekzknfR48e1bp16wb03ADADoNMFwDAHhMnTgx9/69//UvvvfeehgwZctpxVVVVOnr0qJqbm/W9732v15+3Zs0aPf/886qqqtKJEyfU1tamoUOHxqR2ADCNwATEicGDB4e+P3HihKZOnapnnnnmtOMyMjK0Z8+eM/6syspK3XXXXfrVr36lvLw8DRs2TGVlZXr22WcHvG4AcAICExCHrrzySv35z39Wdna2Bg06/W3gggsuUHJysioqKnocktu8ebPGjBmj+fPnh27bt29fTGsGAJOY9A3EodmzZ+urr77SHXfcoX/+85+qqqrS22+/rZkzZ6q9vV1JSUmaM2eOHn30Uf3hD39QVVWVPvjgA73yyiuSOgPV/v37VVZWpqqqKj3//PNau3at4bMCgNghMAFxKDMzU5s2bVJ7e7tuvvlmTZgwQQ899JCGDx8uv7/zbaGoqEi//OUvtXDhQl188cXKz8/X4cOHJUm33XabHn74YRUUFCgnJ0ebN29WUVGRyVMCgJjiKjkAAIAw6GECAAAIg8AEAAAQBoEJAAAgDAITAABAGAQmAACAMAhMAAAAYRCYAAAAwiAwAQAAhEFgAgAACIPABAAAEAaBCQAAIIz/D1fEvhR2wjXfAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pr_persons = pr[pr[\"category_id\"] == 2]\n", "sns.relplot(\n", @@ -2168,7 +610,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "54d2fac9", "metadata": { "ExecuteTime": { @@ -2176,18 +618,7 @@ "start_time": "2023-06-22T09:38:46.094287Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAHqCAYAAAD2yRGtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gd1bW339OrdNS7ZBXLkm3Zcu8VML2XEKoJaUBCSAg3ISH3ptybEC7JdwkhCUkgkEDovZhqcMe9F0mWZPVejo5OLzPfH2Mf+SDJkmXZkuz9Po8fa+/Zs2ePypnfrLX2WipZlmUEAoFAIBAIBP2iHukFCAQCgUAgEIx2hGASCAQCgUAgGAAhmAQCgUAgEAgGQAgmgUAgEAgEggEQgkkgEAgEAoFgAIRgEggEAoFAIBgAIZgEAoFAIBAIBkAIJoFAIBAIBIIBOOcEkyzLOBwORL5OgUAgEAgEg+WcE0zd3d3YbDa6u7tHeikCgUAgEAjGCOecYBIIBAKBQCA4WYRgEggEAoFAIBgAIZgEAoFAIBAIBkAIJoFAIBAIBIIBEIJJIBAIBAKBYACEYBIIBAKBQCAYACGYBAKBQCAQCAZACCaBQCAQCASCARCCSSAQCAQCgWAAhGASCAQCgUAgGAAhmAQCgUAgEAgGQAgmgUAgEAgEggEQgkkgEAgEAoFgAIRgEggEAoFAIBgAIZgEAoFAIBAIBkAIJoFAIBAIBIIBEIJJIBAIBAKBYAC0I70AgWCsI8sy7vpqfB1tAOhj45ElCa3ZgsZoQoUKb0cryDI6azQ6axRyKETI70MfE4sUCOC3d2CIjcfv6EIfZUOt14/wXQkEAoHgeFSyLMsjvYgzicPhwGaz0dXVRXR09EgvRzCGkCWJgNOB396BSq3G32VHDgVP3wXVavS2WFQaDZa0rNN3HYFAIBAMiLAwCQQDIAX8OKsrCLpdZ/jCEv7OdgB8bS1ordFoDEZMSSmodcICJRAIBGcSIZgEgj6Q/H7sJXv7Pa7SaNFZowl6nGhNFszp41BrlT8nWZZQqdTIsowshVCp1KjUSrigFAqiQgVqNf6uTly1RzClpGNMSCbk9aBSqwl5PTirK3pdM+h0EHQ68LW3oDGZlfkCAfS2WMwp6ag0mtPwnRAIBAIBCJfcSC9HMMqQZRlPcwPelsZexzRGE1F5Bag1Z/Y9I+j14KqtIuQZnIVLa4nCmpWLWqc7zSsTCASCcwchmAQClPikYxaf49FF2TClZqA1mkZoZZHIoRA+ewdBVzchnxetyUyg24EU8Pcaq4uKxpiYisZoRK1VxJMsy8jBACqtDpVKdaaXLxAIBGMW4ZITnFOE/D68rc3orFEgy6h1epx1VUg+b8Q4jclCVG7+GbcmDYRKo8EYnwjxieE+WQopAejBAO6mejj6DhTodhDodpxwPrXBiD46BkNcAhqD8bSuXSAQCMYywsIkOKsJetx425rDwdODwZKRjSEu4aSvFfL5cDc0oLfZAPA0NxN0u5F8PgLd3ah1OnQ2G4bYWIIuF56mJpIWLCDgdNJdWYnGYMDb2opap8M2aRKm5GRCXi9qrfak3GuyLOHraMPb1tJLCJ4MKo0GU0q68r2QZFCrhVVKIBCcswjBJDjrkGWZkNeD4/DBQZ+jMVkwJiRhiI0f9DlSMIivvR2/3Y6zqmoIKx08ar2e6PHjQaXCnJoaDvCWJSkcUN4XIZ8XKeBHliRCHjdqvQGNwYij/BC66BgCDvtJrUMXFY0sy2iNZvQxsWjN1lO5LYFAIBgzCMEkOCuQQyG87S14mur7HaO3xaKPjUcXZUOlUiFLElLAj1pvGJTlxNvWhru+Hk9T05DWqNJokEOhow1V2HU2FHRRUag0Gvx2OwCJ8+cjB4P4OjqwZmeHd+wNlpDfR1fZAVQqNbpo26AtcoaEJJEjSiAQnBMIwSQY04R8XrqPHEby+/odEztl5pBcSYHubrqPHEEOBvG2tg44PmbyZMzp6QRdLtR6PZoBsnXLoRD+7m40ej1asznimLe9HTkQwBAfT/uuXfg7O09q7cakJCxZWeijowk4nQS6u9FFRaHWaOiurESWZWImTUKt15/weyMFg4R8XjQGAyGfj4DDjrc1UjCqDUYMsfHoo2NQG4zCbScQCM5KRoVg+tOf/sSjjz5KU1MTxcXF/PGPf2TOnDl9jl22bBlr167t1X/ppZfy/vvvD3gtIZjODnyd7b12tB3DlJyG1mxBa40e8sPbXlKCq7q6V7/WagVZVgRJRgYak+mMCQRZkgh5vbgbGgi63ciShD46Gkd5+SlZq9Q6HZZx45SYKY8HtcGAzmI5YV6nkN9HV8m+3nPpDeisUWjNFnTRsYR8HkJuF/qYOJFsUyAQjGlGXDC9/PLL3H777Tz55JPMnTuXxx57jFdffZXS0lKSkpJ6je/o6MDv79lC3d7eTnFxMU899RR33HHHgNcTgmlsI8sy3tamCNebxmjCmJSKzmxFpTu17fJBj4e2rVsJeXuCpfWxsciSRExhIfqYmFNZ/mkj5Pej1umQQyHc9fV0V1Yi+XunGhgqxuRkNHo9lqwsdFbr0aScEr62ZjzNDYOex5KRjT42XlihBALBmGPEBdPcuXOZPXs2TzzxBACSJJGZmcm9997Lgw8+OOD5jz32GP/1X/9FY2MjFotlwPFCMI1N5FAIf1cHrrpIq48hIQlzauYpP4C9ra2079wZ0WdOTydm8uQx+3CXJQlfZyd6mw21VquInFAo/LXk8+Gsrlbq4tnt+Do6TvoaKcuWoTEYwoH23rZmAo6uAWvsReXko4uyDfXWBAKB4IwzooLJ7/djNpt57bXXuPrqq8P9K1euxG638/bbbw84x5QpU5g/fz5/+9vf+jzu8/nw+XriWxwOB5mZmUIwjRGCbifdVeXIwcgHsN4WiyUzG5V68OVA/A4HjrIyfO3t6Gw2At3dGOLj8fURnxQ7dSrm1NRTXv9YIuBwoDYYUOt0uGprcdfXE+juBpSYKG9LS5/nRRcUYB03LkJYBj1uQHH3qdQaPC2NBBx2Ql5PxLmWrFzUWi1aS9SYFaYCgeDcYESz8rW1tREKhUhOTo7oT05OpqSkZMDzt27dyv79+3n66af7HfPwww/zy1/+8pTXKjiznCiY25KZM+jt/50HDuCur+8V4xPo6gLoUyylrVhxwq36Zyu6414grOPGYR03rtcYye/H29aG327HVVsLgKO0FEdpKQCG+HgM8fHobTYMcXHh1AvGhGTMKen4HV04qw6H53PVVCrnxSVgycg+jXcnEAgEp8boSmN8kjz99NNMmTKl3wBxgJ/85Cfcf//94fYxC5Ng9BJwOuiuLIvoM6WkY0xMGbQVwtfRQdu2bYMaq4uKwpqbiyk5WVg5BkCt12NOS8OclkZUbi5tO3YQdDrDx33t7fja+09JEFtUREzRDAJfKkPj62hDCgTQRUVjiE8SPweBQDDqGFHBlJCQgEajobm5OaK/ubmZlJSUE57rcrl46aWX+NWvfnXCcQaDAYPBcMprFZxeZFkm4LDjrKmMsAYZE5IxpaQPyuIT9Hjo3LePkNdLyBPp+tFFRWGbOBFDbOywr/14ZFkOr9/f7STQ7UIfZcVxpAZveyeGmGgMsTG4m1oI+QPETZ6As6aBzpLDaI0GAk7FlRVXVEDclEI6DyrWmPjiSaNORGiMRpIXLiTodofddZ7m5nBuqL7o3L8f9u/Hmp1N7JSZADjKDhDyeQl0dxHo7sLX0U50/sRRd78CgeDcZlQEfc+ZM4c//vGPgBL0nZWVxXe/+90TBn0/++yz3HXXXdTX1xMfP/jszCLoe/QhyxKd+yIDrlVaHdHjC9HoBxa7PrudrpKSsJvteGKLijCnpw/bWvvDVd9E3afrT/t1dFFWEmdNxZqRhr/Lgb2sEo1BHxZUIX8AtU47omJDlmU8jY0EPR60JhPGhAS6ysrw2+0EXa6IsVG5uaj1erTRVvyd7QSdX659p8KcnokhNuGcdJMKBILRw4gLppdffpmVK1fy17/+lTlz5vDYY4/xyiuvUFJSQnJyMrfffjvp6ek8/PDDEectXryY9PR0XnrppZO6nhBMowtZCuGsrogoEqu1RhGVM2HAh74UCPSZ1NGcno4hIQHzAFbKUyHk8+NuaqVp4zakQOCU59NFWVHrdfjaTy5BZX/EFI4noXgSUjCIs6YBZ10DpqQEtBYzHftLCDicqNRqEmdPI2pcOhqDHlmS6Tx0GEOsDWN8LFrT8BfjDXR307JpU69+Y1IS8dOn426qx9vS2Ou4LjoG67g8YXUSCAQjxogLJoAnnnginLhy2rRpPP7448ydOxdQElVmZ2fz7LPPhseXlpZSWFjIxx9/zIoVK07qWkIwjR6kgB/7ob3htik5DWNS6oAPRVmWafj44179+rg44qdNO6lCtYNFlmWcNQ04Kqtx1vRffiV2Yj6etnZUag1pS+eFy6EcEx/H/txUKpWyzT8Y7HO9AZfimtNZzAQ9Xlq378FRWTPs9zVYLBmpaIwGDDHRSMEQ+ugoTIlx6KwDp/Loi6DHQ/O6dRF9ar0etU5HzJQi/PZ2gs5uNEYjQdfRGCmVCnNqhohxEggEI8KoEExnEiGYRh5/VyfO6oqIvqi8AnSWqAHPDTidtG7ZEpFmIKaoCMtpcLv5u7qxHz5CyOPFUdk76zcAahUqlYqUBbOJyjn1fFADIUsyQbcbT0s75tQktCYjQbcHR2UNKrUaXbQVT3MrHftLB5xLY9AT8p1acsuYgjyS5kxHpR7afcuyTMeuXb1Kzxji4zGnpSklY1TgrC6PvO7kaag1Y3rPikAgGGMIwSQ4Y8iyTPeRMoLO7oj+6PGFJ6x6H+jupuvw4V4pANQ6HSnLlw+7SJFlmZYtu7CXVvQ6ZkpJxBgXS3TeOAyxtlFr6ZBlmaDbS8DRjTEhDrWub3ERHtftJOjxYklPQaPX4axtoLOkHHeDsiEjOjcLZ20juigLvg57r3k0JiPROVnEFRUMyZUXdLnwtrXR1U86EUtWFlKgJ/5JpdFgSR+HPibupK8lEAgEQ0EIJsEZIeTz0lW6P6JPY7ZgychGazT1e567qYnOvXt75VGKnzEDY2LisK/T295J7UdrI+KSrFnpaE1GYidPQB/Vv7A7l/C2d1L93qd9HtPHRKM1mzAnJxL0egl0uzCnJBKdk4XW3P/PGiDk9dLUR61IAGNiIob4GPxdPRnJDQlJmFMyREC4QCA47QjBJDjtfFksGZNSMaec2IXWV6mSYxwrxzFcyLJM86btdJVXRfTHFOSRNHf6qLUijQZOdnegNSud2In5mFMGJ3ZDXi+t27YRcrvDfabUFAxxMfg6jrM4qtVE5044oaVSIBAITgUhmASnlZDfT1dJT2C3NTsffXT/NcRkWaa7vJzuyspwnyUrC1th4SkLFykQpONgGfaScmz5OWhNJpBlWrbt7jU244LFWNJP3y67sxHF5VqLs7aB7qraAcdb0lNIP3/RoIL8nVVVOMp6kpkaEhKwZmXibjwuEF6tJjqvEK3JPOR7EAgEgv4Qgklw2pBlmc59O8LtqLxCdJb+LQBSIEDzhg1I/p5A5Ljp0zElJZ3SGlz1TTSu34LkH3j7vzExnnGXnjfk6wn6RgoE8HZ0Ufvh530eT54/k5gJuSeew++neePG8O+HLjqa2KlTkfzeiKzh+th4LOlZJ1VnUCAQCAZCCCbBaUGWZToP7AJJAsCaldtvgK4syzR88klkhu+kJOKKi08pNqV+zSac1f2nADiezAuXYk4dujATDJ7OkgpatvR2t5qSE9HodSTOnoY+qv90Be6GBjr37YvoMyQmotapQA4BoDYYlfg4s0W4VAUCwbAgBJNg2JGCQewHd4fbWrOF6PET+xwrSxKd+/bhaWoK99kKCrBmZw/5+iG/n8rXV/WyKMUU5JE4uxi1RrE8yLJMyOdHaxSlc0YCb4cdf1c3jes29z6oUmFMiEWlVpMwbTKm5MQI4RPo7qZz/34CjsjM4DqbDa3VAFKoZyqtDjkYIDp/knDXCQSCISMEk2BYkSUJ+6E9yCHlgWWIS8SS0bvqPUDI56NpzZpwWx8bS/z06UNKPCnLMq3b99J5sKzXsdzrLkNnFQ/K0Yosy7gbW3DVN/X58ztG8rwZxBTkRZznt9vxtbfjbWsLl8ZR63SY0lOQfO5ec+hj4zGnZqLWihxOAoHg5BCCSTBsyJJEV+l+pIASY2JKSceUlNprnN9up3XLloi++JkzMSYkDOmardv30nnocK9j6ecvwprR+/ojjdfeTcMXe/F3u8hYNB1HdSPNu0rQWUy4GtvQWUzkXraYmNx0/N0utEZDv3mUAh4vWoP+pFyXsiQR9PnR9ZEvyWfvJuQPYIiJQqMf/ozpAyEFgzR/sbP/RKEqFdlXrMAQa+t1XuPq1RHjLBkZqLQq1AY9fntH2EKl0mgwJiRjiEtArdOfrlsRCARnGUIwCYYFWZbprigl6FbKWFjH5aG3xfYa07lnD57m5oj+hNmzMcSdXALCoNtD9furCbo9Ef2G+FiS583AEGsLu95GAlmWCXp8uFs66K5roX7DLnRWEwGnZ+CTT4A+2kJ8YQ5asxFXUxsdJVUAjDt/DlJIomHzXnRmI+MumIctJw1nXQuN2/bTWVaD1mRAazbibe8pUqzWa7GmJqKPttB1pIGAs7dVBkBnMaGPtmBOiEVj1KMx6IjJzcCaNvy5sL5Md3UdDWu+iOiLm1JI/JSJvYSk4g4+iKexdz06c0YaUtAb4dobbDkegUAgEIJJcMpIwQBdpfvDbri+UgdIgQBt27YR6O7J8q2PiyNm4kR01pPLnSMFAhx+4a2IPmNiPGlL56GzjIzrzdXUzv5n3xny+booM5I/eMqlSkaC5JkTMSfFYUqIUQSV4fRYprpr6mn4PLJwb/y0yZgS4zElxUe42TwtLTgOHybodEaMV+v1WLIyCDjtYZGk1umxFU4RokkgEJwQIZgEp4QcCmEv2YccUmq7WbJyMXxpN1zI76fp857t5MbkZGUH3BAeUF0V1TRt2Bpuq3U6xl1+AfroM5uwUJZlvB0Oyt9Zg7u544RjtSYDQY+PcSvmojUaMMXbsKQkIEsSIV8AjVHf63vRuEXZBZYwJZ+2feU4G1rpKK2KGBOTl0HS9EKatu7H7/TgczgxxdkIeLwEuntbimLyMtBZTBhiojDF25CCIao+3owlVXGFavRaUmcXYU1PpGVPGd11LbQfqMCcFEf85FwcVQ3oo6207uk/zghQrD4qFda0RHQmA74uJ87GNuImjCNt/lQsKfEDfXv7RQqFaN22p8+yNYmzi4mdmB/xvfQ7HMiBAJ6WFlx1deFdmyqtFo1Rhy5KEdhasxVLRjYa48mXdREIBOcGQjAJhowsy9gP7UUOKrvRzKkZGBMjkz1+ObA7bto0TMnJJ3UdKRCg81A5bbsiS6ukn7cQa2ba0BY/BPzdLpp3ldCwaW+/Y2y56XTXNROdmULagmKi0k9PqgJZlk8oOAMuDyF/AFQqDDbr8NfbkyQq3t+Au6UdT6v9pM+3piWSuWwW0VlDSw7qaW2nacM2/I7uXsfSli8gKqt3JvmA04nj8GGl0O/Rjz2N2YQuyhiOAdMYzVjH5aIxCOEkEAgiEYJJMGQ8LY14mpQ8R1G5BeisURHHZVmm8bPPkIOK9Wkogd3etg5qPlqDHOzZJm5KSSTjvEX9BkIPJ0GfH3t5LRXvrjvhuKzzZpMya9I5W9NMlmXkYAhnYxvddc00bN6L5Fd+7taMJDytnYR8vROHxozPJOQLMO6CuViSh1ZIV8n5VUbrjh4hGzspn4QZU/qMYwt6PDSvi/x5GpJiUWuO/uxUasyp6Rjik4SbTiAQhBGCSTAkfPYOXDVK+RJDQhKWtKxeY1o2bw5v9Y6ZNAlLZuag5w96fTR8vglPS1u4zxgfS/y0yWdk51soEOTgc+/jbol0t2mMeqypicQVZpMwOQ+1VmSTPhk6yqo5/MZnvfpVavVRi1witpwT1xnsj9Yde3HWNIStTjqrBWNiPKaEOFQaNbYJuWEBpGxSqKC7ose1p1Kr0UZZ0Bh1qNTKuL5eBAQCwbmJEEyCkybo9eAoOwCAPiYOS2ZOxJu4FAzSvH59uISFKTWVuKlTT2J+HxUv9wRQm1OTSVs2/4xtc3c1tbH/2XfDbV2UGUOUhZRZk4ifdOLyHYLBIQWDHHhuFQDu5vZex6OyUrAkx6OzmEicMh6dxTToubtr6mn+Ygchry+i35KRSsqCWWiPS6fgdzho3bw5Isu8Wq9DazGiMSopBwzxSZjTMoW1SSA4xxGCSXBSyFKIzv27wu2YSdMidifJkkTzhg2EPMr2eX1MDIlz5w56/vY9B2nbfSDctuXnkDx3BirN6Xd1hQJBalZvpWV3abhv3Iq5pMycdNqvfS4TcHlo2n4Qe2XdCQPoJ916KVEZg4t/kwIBOg4ohZa/vPMwKjuT+KkTw7mcZEnCWV2Np6mJoMsV3u2p0mrQx0ah1mowxCdiSe87AatAIDg3EIJJMGikYAD7wT3htm3CZDTGnjd/ORSieePGsFgyp6cTW1Q0qLm7q2ppWBtZIiNl4Wxs47NPfeEDIAWD7PrzqwTd3oj+ybdffkbyDAl6aDtQccJ4MY1BT9HXrsQYc3JuMl9nF43rt+Dr7IroH//Vq9AYepJXSsEgjvJyXNVHE2eq1eiizWhNBqLHT0Rr7r/GnUAgOLsRgkkwKEI+L12lPbvUrNnj0UfHhNuyJNG6dWs4Zil26lTMqYOLNfqyWDLEx5J10bLTEtTdXddM2euriSvMxhgThae9i9a9kVnCU+dNIWPxjJ4gYMGIIcsyFe+spf3QkYj++Em5ZCyejjF28H/DsiThrG3EUVmNs6anKHPS3OnEFo6PGOvv6lJcdUfR2SxoLSZMSaki0aVAcI4iBJNgQL7shrNkZmOI7dntFnS5aN6wIdwe7G44WZKofu/TiLf+hBlFxE/pu1DvUJFCIdr2lXPkw00Djp36zWswxccM6/UFw0Pr3sNUrtoQ0WdJiUel1ZC1fPZJpXDoOFBG6/Yea2nCjCnEFOSh1mrDAd9SMEjzunVIAWV3nyHBFs4xpdYbMMYnYYhPFOJJIDhHEIJJcEJkWaarZG/4oWHJyMYQ1yOGQn6/kmfp6K/RYPMseVraqf98YzgwN6Ygj6Q504Z1W77P3s2hlz7CZ++dq+d4rBlJ5F6yCFO87YTjBCNP0OfnwLPv4u109Dqm0qiZePMlWFMTBvV7JIVC1K/eiLuxp1SPSqslaXYxtvHZqNTqyDxiahU6qxmN2RAWSfqYOCwZ41CpxW5JgeBsRwgmwQkJOB10VyqZnb9c8kSWJBo+/TQslgaTOsDd1ErtR2si+qLzxpGycPawvanLskz1J5tp3lkS0a9Sq8m5eAGJU/Mj7uFczZ00lgn5AtRt3EXT1gO9jpkSYkhbUEz8xJwBf6dkWaarrJLmzTsj+vW2aBJnTcWSnoIcDNK6ZQtBlwtQiveqNCo0ZiNakwFQEZUzHl2UENwCwdmMEEyCfpElic79yoNEa7YSPb4w4njngQO46+pQqdUkzpuHLurEgbiuhmbqPokM6E1dMpfonN45nIaCt6OLfc++i+SPTJCYsXg6yTMnojUahuU6gtFHZ3ktZa99GtFniInClp2GfLQcyrgV89D0ExcnyzKeljY8Le10HChFOrqzzpyWTNrS+YBMd3m5Ul7luI9MjdmILtqMSqXCEJeIOT1LuOgEgrMUIZgE/eKsOYLfruTIsRVOQaPvERz2Q4dw1dQcPVaIdVz/W65lWaZh7Wac1XXhvqxLz8OUOPSaYsfjbrOz7+m3Ih5kACmzJ5OxePoZy98kGFlC/gC+LidN2w/SfrASKRCMOK41GUiaVkD6wmknTDga8vtp31tC54Hj0ktcsQJjXAxBt5vuykrc9fUR5+hirGhNBrTWaKJy8oVoEgjOQoRgEvRJwNVNd4XywDDEJ2FJ77EC+To7aduqFMC15uRgmzCh33lkWabi1fcIeZQt+1HjMkhZPKfPkhUngyzLuFs6qPl8O46qhohj2RfOw5aTflI7qARnFyF/gNZ9h+k8XIu3w4Hf4Qwf01lMpMyaRMKU8eit5n7n8LZ3Uv1ej9Uq++qLMNh6fqd87e2079oVztukNurRx1gxp2ViShxajTyBQDB6EYJJ0AtZlugq2Y8U8KPWG7AVFIXfmINuN83r14fHpq1YccIYoJatu+k8pGzbN6clk7liyamvT5LY/eRr+B2uiP6EojxyLlkk0gGcAn6XF3ebHXO8Db1VybHlsTvpqm1Ba9CBSkXDzjLMCTaSJ2cTlTI8VsLTTSgQ5MgHG2k/WBnRn3/1cmILxvVrEequqqNh7RfhdvT4bJJmTwtbLaVgkMbVq8PHVVoNhgQbpuQ0zClDK/EiEAhGJ0IwCXrRXV1BoKsTgJiJxah1ysPB195O2/bt4XEpy5ahMfQfF+SorKZxvWKJMibEMe6y8095bV1VDZS89FFEX97lS0goyjvluc8FpJBE094Kyj/dTlRKHHG5aWgMOgJuH837j9BRUT/wJMeh0WuxZSQhBUPYMpNQqVVIIQlDtJnEgiw6Khto2luJvboJS2IMGXMmEj8+nZiswWXsHm6kUIjWPYep+rhHBFlS4pl4y6X9xjf5u7o58taHEX0qrQbb+BySZheDShVZl06twpgQg0qnxZSchjEhWbjoBIKzACGYBBEEXE66K5TdZcenEPC2tdG+Y0d4XOK8eeht/e8K+nKem/xbrz0lN5yn3c7ev78Z0Zc6t4is5bOHPOfZjhSS6KhsoPaLAzTuKT+luYwxVrx2JzqzgYDbN/AJg0Ct05J/4Ww8nd3knT8TU4x1WOYdDH6nm5rVW8MJMQ02K6bEWExxNlJmT0IfFZnRW5Yk7KWVdBwoIejyhPtNSfGkLJyDPtqKq64O+4Gju/bUKvQxUWgMOnTRMVgysiNKCAkEgrGHEEyCMFIwiP3gbgA0BiO2AqWsSUQuGiBx/nz0J/jedZZU0LKlZ5v2qYglKRik8v0NEZme1Totk2+7DHNS3JDmHM3Ya5oxxVgxRFuQQiFaDlTRWdVE2vR89FFmWg9VY02OJSoljsY95ZR9uBW/08O4hVOQgiGaDxzB7/QMfCFAH2VCDknojxa2NURbyJw7kbTpE2jeX0l7eT06s4HU4vFEpUa63oK+AOWfbKe9vI6u2hYAUqbm4XO4cbZ0hEWVWqfFmhgDgNakp6MiMt7sGGqNmqKvLCcmKxlrUuxQvnVDor2kivK3Pu/VnzRtAlnL56Ax9N4w4KxrpH3PQXz2LuSgEr8UnTuOlEWzcVZV4SgrC49VqdXo46NRazW9cpgJBIKxhRBMgjCu+mp87a2oNFpshUWoNVplh9vHH4fHJM6diz4mpt85Og8dpmXrbgD0tijGXX7BkN+s/d1uSl/7JKIgqzk5jsm3X37KQeMjhSzJtJbWcOCNtXjtTrIXF9NV19KvkBgO1FoNyUU5JEzIJDY7BUtibDib9elCCoZQadS9XFGyLNO4u5zuxjZcbV34nZ4+7z0+P4OQL4Cz1Y7BaiJp0jgKr1h4WlxbPoeL6tVb6Cyt7nUs5+IFJBZP6PO6/m4n9Z9txG9XkmjqbVFkXrQMWQrRvmNHuKYigNZqQhdlxpKZjT4mXrjoBIIxiBBMAiCyVpw5fRzGeKXorKelhY5dSlmUpIUL0Vn7d5u07ztE286jc6QmkbFiyZAfDBXvraNtf0W4nbV8NilzJo+5B40sy7ha7FRv3EfzwSN4O50DnzRIDNEWYjKTaD5whLi8dMxxUcTmpKIzGXC12kkuykFnMaG3GEf1983VaufwJ9toPVRD4EsFkL9MclEOxTevUALQTwOyLNN+6Aj163dFZBOf86OVfW5ukGWZ8pfeDuf+0ppNZF91IRq9Hl97O/aDBwm63QCodFoM8dEYE5Mxp2aO6p+JQCDojRBMAmRZpnOfEp+ki4omKkdJExDy+2n6XHFXmNPTiS0q6ncOR2UNjeu3KA2Vigm3XjckK4YUDHH4zc+wV/TkbJq88gqsqaPblSFLMm1ltTQfOELNpv0Yosz4ut2DOjc+P4PUaePxOz3E5aYR9PlpK6vDHG8ja94k1FoN3i4XAY8Xa3Icckiiu7GdqLT4MWtp64+Kz3ZyZN1uQv4gGq0GS3IsnZWNvcalzy4kfcYE4vMzTovwkEISFe+to+M4V/Cs+2/tN6fXlzPYZ12yHFNSgiLAduzA167kM1PptBhio5S/s9wJIsu8QDCGEIJJgK+jDVddFQDR4yeiNSsBr80bNoTLQaQsX45Gr+/zfHtpRbi0hDExnqxLlg/pISaFJPY99WbEm/3s/7h9VIsCb5eLI2t3c2Tt7gHHphTnkTVvMtHpiegtRkARq8LSMDCOhjZ2PvsB7vbIGnLm+GiC/gCFl84neWoeOmPfv6NDpez11XQergm3sy+aT9K0gj5/Zq76Juo+7Um5YZuQS8K0yWhNRjr27sXTqAg/lUaNPjYKfWwsUTl9u/sEAsHoQwimcxxZCtG5X3G5oVITN2UGAO6GBjr37QMgpqgIS3rfOWW+nGcp4/zFQ7IsOWqbOPTvD8LttAXFZCyePuoeJkFfgPbyOqo37MPT2Y2r1d7v2LTp+URnJpFYkDlm8hWNduzVTZR/uoOWg1V9Hs+cN4ms+UVYEm1oDcMjnhq37qfms229+tMXTSN94bSI39HumnoaPt8UMS5l4WyicrPwNDbiKC0NF7LWx0WjMRqIKSxCrRteoScQCIYfIZjOcTr29uRVii2ajkqtUVxxa9aALGOIjydh1qw+zz0+E3LUuAxSl84bksCxH6mn9OWewPL8a5YTV5B90vOcTup3lNK0p4LWstpeJTcAbFlJTL/1QszxogDrmUCWZZr3VbL735+gMxvwOb7k/lSBIcqMMcZKXG4aKpWaCZcMPcO83+mmctUGuo40RJTgic5OI+/yxREZw6VgiNbte7CX9sTgqbQacq+9FJVGTcumTUg+ZRehzmZBazb2Kj0kEAhGH0IwncP4uzpxVisf6sakFMwpGcqDaMMGQm43GpOJ5EWL+oyz8He7OPLGqnB7/FevQnOSb/SyJFH+bmScSOGNF2LLGR0ZkgNeP427DlO/vZTOqsg4GktSLIWXzSMqNQFTXNSos4SdawTcXj79+TPhQrt9YYqLJmveJJKn5oVTHZwsPoeLpu0H6Cyrwd/tQg4p18u+cD5J0yNddVIoROf+Utr2HARZRqXVkHfDFYAcjg08hiUnA1teIapR7H4WCM51hGA6R5FlGUfZAUI+ZVdS3FTFiuSsqaHr0CHgxCkESv/5KqDkmcm78cqTLnArhSQOvfABznolh09cYTZ5ly85YVHUM4mrzc6Of6zC2dwZ7tOZjcy84xJic1OFQBrFBH0Bajbto+NIIy0HqtAa9QS9/ogxOrORpEnZFN809OzznjY7Za+vDsfcqbQaJlxzHjF5GRHjnHWN1K/eEG7bJuQSVzSB1k09rjuNUY9O1KETCEY1QjCdo/jsHbhqlLpaMZOKUWt1+Lu6aN28GQBbQQHW7Ow+zz1+R1zGBYuxpJ/cB3z7wUrK31kbbscWjCP/qmWjYseQLEnsfekz6ncohYd1JgOZ8yaTvXgKRtuZy0QtGF4CHh87//kh7YfrIvqNNgsTr1pEavH4Ic0rhULse/otvB1HRZNGw+TbLsWSErmrs7u6noa1m+C4T9ucay7B29xId6Xyd3gsyaUtfyK6qHP3s0kgGK0IwXQOIssyXaX7kfw+TMlpmJLTkGWZ1s2bCTgciitu8eK+dwI1NlP38ToATMkJZF28fNDXlYJBKj/YSPuBngKo469cSvyk3FO/qVNECkms+fW/8Hb1FPQ1J9iYe9dVmGKjRnBlguHG2dLJ+kdfRJZ6PvqSi3JInZaP1qAjoSDrpAs4d9e3cOiFD5FDoXCfxqBn8u2XYzoa1xby+2nbuT8itinzomXIQV9PSRXAlJZI7ORpo+IFQiAQ9CAE0zmIp6URT5NSZDVm8jTUGi2Ow4fDb7rJS5agNZl6ndexv5TWHXsBsGamkbZswaB3xHVVN1LyYk8BU5VazZSvX4UpPuYU7+bUkCWJso+2UvHpjoj+nKXTKLx88PcnGHu4OxyUf7Kdum0lEYHcprho8i+cTcbswpOaz+90s/epNwl9yf2Xdf4cUmZNCr+AOGsaqP98Y8/1UhKJn1qAfa/yt6XWa9HHRWPJGIchLlG4fwWCUYIQTOcYUiCA/ZBSFNeQkIQlLSuiVlxUbi7R+fm9zmvfV0Lbzn3hdv7NV6PWDS5uyV5RS+mrym46tV7H+CuWEJufdYp3cvJ01bVy+KOttBysQm819VlzTWc2sOj+G4VV6Ryi80gje15ajbutK6I/Oi2B/Itmk1w0eAuoFArRXdtMyUsf9To28eZLiM5S3Neetg5q3l8dPqaLspK2dC7t23vSFxgSY9BH24jK6zvvk0AgOLMIwXSO0VV2gJDXg8ZkJnr8RFQqVURSvdTzzuslhHydXVS907PtP/e6y9Adt436RHja7ez9+5vhdvG3r8MYe+a+7x2VDWx98m2kUP+7p0Bxv82681KsyWdfQV/B4Aj5A4QCIco+3ELtloPhHXAAFz38rZPe2CDLMi27Sqn+bGu4SG/OJQuJn5iDRq9TssPv2k/H/pLwObGF2QTsPbUTdTFWTCkpWLNyUKmEi04gGElGxV/gn/70J7KzszEajcydO5etW7eecLzdbuc73/kOqampGAwGJkyYwKpVq054jgAC3V2EvIpVxZKRjUqlwllTExZLcdOn9xJLckiKEEvjb7pq0GIp5AtEiKVZ9996RsVS1Ya9bP7Tm/2KJWOsleQpucy952qW/eRWIZbOcTR6HXqLkaLrlrLkRzeRUpwXPvbRT/42YJ27L6NSqUieUcjEmy4O9x35YCM7HnuBtgMVqNQqEmdOIf38ReHjnSVVqI2WcDtgd+JpaKD7SDnn2LutQDDqGHEL08svv8ztt9/Ok08+ydy5c3nsscd49dVXKS0tJSkpqdd4v9/PwoULSUpK4qc//Snp6elUV1cTExNDcXHxgNc7ly1MjvISgm4nar2BmMIpyLJMw8eKGFJptaSd33uLddvuA7TvOQhA3leuQGsyDupaQa+fHY/9O9ye8vWrMSfGDsNdDIzH7mT9oy/22ko+7ZYVpE7PF+4NwaDZ8cwqmvcrecLUGjUZcydRcOk8tEb9Sf0euZraKXnlY4LHia7Y/CxyL1+M1qDH3dRKw5pNhHzK72zutZfQtm1rOCu4NsqMIS6G6LwCkRVcIBghRlwwzZ07l9mzZ/PEE08AIEkSmZmZ3HvvvTz44IO9xj/55JM8+uijlJSUoBtkDM3xnKuCKehx4zisCB9bQREagzEi0Dtx/nz0X/p+HJ/JO2nudGILB7f12tXUxv5n3w23J1x/AbHjM4fjNk6Ip7ObTX94LaLobXJRDtNvv/ikdz0JBMeo317KwbfWE/D4IvqTp+RS/NXz0Z5E/bqgz8/Ox1+K2E0Xm59F/jXLkUMhDr/wVrg/Om8cpjgrrtpaADQmA4bEOKLzCkRWcIFgBBhRweT3+zGbzbz22mtcffXV4f6VK1dit9t5++23e51z6aWXEhcXh9ls5u233yYxMZGbb76ZH//4x2gGkSX3XBVM3dUVBLqUJIxxU2chBYM0rlaCTo3JycRPmxYxXpYkyp57PdyecOt1qAYhOrprmzn47x73aP615xE3Ydww3EH/dFQ2sPlPb/bqn3fPNcTlpZ3WawvODaSQRP2OUkpXfYG/u2ezgCkuisLL5pMyNW/QaQBkWaZ27Q4aN/dsotBHW5h062V4W9to2nBcSIJKRdLsybhrlALAaoMefawVc2oGpqTU4bk5gUAwKLQjefG2tjZCoRDJyckR/cnJyZSUlPR5TmVlJZ999hm33HILq1atory8nHvuuYdAIMDPf/7zXuN9Ph8+X8+bocPh6DXmbEcKBgg47ABE5RUA4Dr6AawxmYibOrXXOa07ej7Mc6+7bFBiqaOsmsNvfBZuF991PcaY07PbLBQIUrVuD9Wb9uO1OyOOFVw6j9zlM0RKgFNElmVkWcbd0U17dQsGqxG1RkPjoRrs9W14HW4mXTSL9CnZ1O89QuOhGsWSp1JhS40jMTeV2j0V1O2pJOD1Y7ZZyZlbSOa0PFyd3ZhtFgzW3ukrRiNqjZrMORPJmFVAx5FGarccpKOiAU9HN7ue+5iYcSlMv3UFpriBX8JUKhVZy2aRNncKRz7aREdJFX6Hi91/foXJKy8n/9Zrad12tBadLNNVUU/cxHy6K8qRfH68TR3IgRAqlRpDQpJwMQsEZ4gRFUxDQZIkkpKS+Nvf/oZGo2HmzJnU19fz6KOP9imYHn74YX75y1+OwEpHD772VpBlNCYzWrOVkM+H4/BhAKLHj+/1Zuxp7aDzYBkAcVMKBxXk7enoihBL07/zFfRRlhOcMXQCHh+f/OypiD691UTa9HwKr1gw5AKr5zqhQJCtL64h6A/g7XLRWFJL0Bc44Tn1+6tO6ho1u8oj2taEaJxtykvM1Mvn0niolsLzp5ExJQdXRzeooOFANU2Hagn4/Cz+5qVEJ8Wc1DWHE5VaTXxeOvF56QS9fg68uZ767SXYq5v4/NfPkTV/MpOvWzooEaM1Gci/ejmO6kYOHc1RduCf71H41YtInjcDY2I8TRu24mvvpG1PKUlzptJ16CBIEr4OB7JcSdDtwpIxTtSgEwjOAGPOJbd06VJ0Oh2ffvppuO+DDz7g0ksvxefzoddHxhP0ZWHKzMw8Z1xysiTRuX8nAJbMHAyx8bTv3o23uRm1wUDK0sgPdykQ5PALinsrKjeLtMVzB7yGu7WTfU+/FW7P/P7NaI3DH2MhyzIVq3dQ9sGWcJ/ObGTW1y8jNlvU3xoskiRRtmYvjSU1mKItIMt0t3VRu6ui33OsCTacbV1oDbo+RZTebCAxLw2fy0NHdUt4Z6LBYiQ2IwG91YS700lbZWOvc0+WwvOnk16UTfKEDIxRI2+hqt9eyp4Xez6PUIFGp6Xo+mWkTZ8wKEuns6GVsjdWEziaG2z6d29EbzXj6+yi9qM1hHx+NAY9yfOm4yg9FD5PbdChj4kitmg6au2Ye/8VCMYUoyLoe86cOfzxj38ElA/zrKwsvvvd7/YZ9P3Tn/6UF154gcrKStRHLSN/+MMfeOSRR2hoaBjweudaDJOnuQFPcwMqnY6Ywim46+qxH1SCv2OLizGnRAqNutUbcNUpD7XxX70KjeHEAa32yjpKX/kEUOIwilZegc4yvA8xWZKo2XyQA6+vjegvvmUF6TMmDOu1zka83W7q91XhdbjxOj3seeeLE45Pyk9Ha9CRMTUHY5SZ5AkZRCXaeo2TZZn2qmY8DjepEzPRHpenyN3ZjdaoR2+KFM6hQBBHcyeW+GgczZ0EvQG2vvQ5QW8Ao81M06Ha3usZn4ajxY7X4e51LCophu4WO1OvmMf4BZOJSY8f7LdlWAkFgux54VOa9vYWnTNWXkzylNwBrU4hf4Dt/+/5cDtuYg7ZF84j6HJT+9Ea5GAItUFP+vIF+Ntbw8HgKq0GQ4IN24TJaE2DS/khEAhOnhEXTC+//DIrV67kr3/9K3PmzOGxxx7jlVdeoaSkhOTkZG6//XbS09N5+OGHAaitrWXy5MmsXLmSe++9l8OHD3PnnXfyve99j4ceemjA651LgkkOhbCX7EMOBTEmpWJKTgunETAmJhI/Y0bE+O6qWhrWKsV305bOIyr7xDvbfA4nu//8arhd/K1rMcb1frCeCt4uJ1v/9i7Opp5kfuMvnM34C2aJnW/9IEsyfreXxpJatr+yFkdTZ5/jii6Zjc/lRa1Ro9VrsSbGkL+oCL155HZgybKMq72bUCBIdEpspPVTktj+8lr2f7Ct3/MNFiOJeWmKW684N/xSdSaQZZnm/UfY+ewHfR4vvHIhuUunnXCO9kNHKH97TURf8bevQ2c2Uvfperxtyt+BNSud+KkFtG/fHh5nSIwhZtJUtMaRt7oJBGcjIy6YAJ544gkeffRRmpqamDZtGo8//jhz5yquoGXLlpGdnc2zzz4bHv/FF1/wgx/8gN27d5Oens7Xv/51sUuuD47VjFPrDdgKinDV1NB1NJg+9fzzI0z4UjBI5RsfEPJ4saSnkHHB4hPOHfB42fPka4SOumeKvnYlluThfbtv2HWYvS+tRjqaJdloszLpmsWkTBn5Yr0jhSzLBDx+dCY9zaV1HPxkB92tXSTnp+NzeWkuq8f5pRIfxzDHWtHqdWQU5zLl0jlY4sZu+RePw0XJ6t1KDJUs01Lev3U5LisJWZZZ/p0riUk7cxao7sZ2Ktfspn57zwaWhIIsJl21CGty/znJpGCQhi/2Ub9xd7jPkppAwfXn07B2M97WdkApfm3Lz8ZZXhYeZ0iMIa5oOmq9yNUkEAw3o0IwnUnOFcEkSyHshxTrkiUjG31sfNi6ZM3JwTYh0pVV+q9XQQatxUzO1RcNGA+x5bfPhL+edvcNGGzW4Vu7LPPFH1/HXt2srDc5lllfvxxz/Fn885JlZElm3/tbsDd2EPIH6KhtBRkczYqFyBIfTcDjw+/2DTCbgslmISrRxtQr5pE1fXA5tMYqUkhizZ/fofFgDVFJMbQdaepznEqtIm3SOBZ/8xJMMdYzssOs5WAV259+P6LPnGBj8QNfRaPr/++sq6ohoiad1mSg6I4r6DxYRldZZbg/dnI+gXblb0Wl1WBKTcSWP1EkuBQIhhkhmM5S7CX7kPw+VFotMROL8TQ307lHKbqbsmwZGkOP28Xd1ErtR2sASF08l+jcExfGbdtfQcV764Dhz7PkaGxnw+9eCrcTJmQy/faL0JnOrkR9nfVt1Owsx2AxcPCTXdjr2056Do1OS3RKLF6HG73ZQEJOCskT0olOjiM6ORZLfNQ5u+Xc2+2hdnc5h1bvJirJRuOBarzdvYstZ07PY+4t55/2nXfeLid7XviU9vL6iP6ECZlMvm4ploS+XdmyJFHy8sc4qpW4QlNCjFJqRZZo3rIrHG8YVzQBX2tj+OdtSIonrqh40AWyBQLBwAjBdBZy/M44Q3wS5rRMWrdsIdDVhSE+noRZs3rGyjKVr68i6FICaifcfv0JH7JtByqoeFcRS1GZyUy65dJhW7ezpZN1j7wQbucsm8bEKxYO2/wjiRSSqNh0gOodh2kpb+gzgPkYWqOOoFdxdU68YDpqjRqv04uztYvC86aRlJ9Ow/4qxs2aMCp2iY0VyjceYNebG1GpVGGr3TEKlhdTdPEsDFbzaf2eSqEQW//6Dh0VkS7E6SsvJnVqXj9ngbfTwcEXPiBwNIt9ziULSSqeQP1nG3HWKnPpbVHojIT/fo3J8cQWFaPWCtEkEAwHQjCdhXjbW3DXK4kpY4tm4O/qom3rVlCrSVmyJMK6VPrPnqDtgWrFHfz3B3TXKq6OuMJsxl+1bNgsGJVrd1PyzsZwe+bXLiG5aOzGKjla7DSX1nLgox101LSccGza5HFMuWwuQV+ApPw0Zau/4LTS1djO7re/oGLTwV7HEnJSKDxvGvlLppw2C52z1c663/47os8QbWbePddgSYzp8xxvRxcHX/iQgFMRTUnTCkhfOI2usnI69pcCYE5JRGfWEHK7QaXCEB9N3NSZwtIkEAwDQjCdZciyRFfJfqSAH3NaFsaEJOo/UuIgzOnpxBYVhcf6u10ceUMpYxKVk0naknn9zlv+zlraD/bETcx+4LZhyfsiSxJlH26hYvXOcN/SB2/p96ExWgkFghz8ZCc7XlsfDlLvi5i0eFInZTF+YREJOSkEfP5eW+8FZ45QIMjO1zdQ8tluAl8q1pyUn870axaSXpR92q4f8PjY9rd3sdc0h/vGr5hF/kVz+hRr/m4XZa+vxtWkBH5rTQbGX7mUoKubtqPZ+dV6HdbUWCSfUujXkpWGrbDonHXPCgTDhRBMZxm+zjZctVVK7FLhVHydneGtx18usNuwbgvdRxRL1Ilcce2HKil/uycH0uz/WDksW/oDHh+rf/FMhMA4/+d3YBgjFpagP8jhdfsoW7eX9qrmXse1Rh1ySCZv4STMMVamXj43IleRYPQgyzKO5k40Wg173t3M4fX7w7+XGVNzWXH/daet1E4oEKR01Waq1u0J9yVMyGTmnZf2GxTeVdVA9adb8LTZUWs1FNx4ISopSMMaJceWWqfFnBIDAT8qrYaYyRMxp6SflvULBOcKQjCdRciyTFfJPqSAH1NKOqakVNq2bcPX0YHGZCJlyZLwWG97J9XvKdmJx11+Acb4vrc5S8Eg2373XLg958d3DMubalddKxv/75Vwu/jmC0ifWXDK854JnG1d7Fu1laptZXi6XOF+tVZD1vQ8ohJjyJyeR0rBifNYCUYvjuZOtr28lurtPVv2b3/qB6dV8MqSzGe/ehZfd098mz7KxHn/ubLPcj9SKMTB51fhalQ2DMTkZZA6YwKNG7eBLCsxTQZlZ6DWaiJ++ky05rHxMiIQjEaEYDqLCMcuqVTETCom0OWgbZuS5C958WK05p4swLUfr8Xd2EJUThZpS/ovf1Ly8sd0HVF29sy6/1Y0p/jA8HQ4WP/7lwke5/6Y/a0rSRzl4sLjcHNkawklq3dhr28P9xssRqyJNsbNyGfyJbPQDZAZXTC22LdqK9teWhNu5y+ZwvhFk4nLTMJg6T/eb6i4Wu2s/VJsEyg5yJb/7LZedR/9TjdHPtiIvaIOgNj8LHIumkf1+6sJeX2YUxNRSV5UKhXG5ATipk5DpRZ15wSCoSAE01mEo6KEoMuJ3haHJSuHtm3b8Hd2YsnMJGbSpPC4rsNHaNqkuOlyrr203yK5HaXVHH5TKaibd8USEib3v4tnMLSW1rL7+Y8IHM0jpDMbmP/da7Emx53SvKeTUDDE/g+2sfutjYQCPa5DS3w0M65dSO78SWi04gF0NrPzjQ3sfmtTr36TzcKib1xMZvGp/V30RdDn57Nf/TPixcIcH83C+29EZ4wU5bIsU7tmO41b9gOgNRvJPm8WbTv3gCxjzUyGgAeVWo0h0Ubc1Fm9hJdAIBgYIZjOEkJ+H10lStCnrXAq7vp6HGVloFIpO+OMyttwyOen8vX3kQJBovPGkbpoTp/zeTsd7Pnr64DyATzj3q8O2RUnyzLbn3qP1pKacN+8e64hLi9tSPOdKRoOVvPFPz+hq1EpR6E3G5hy2Vxy5xUSNcaC0gWnRtuRJsrW7qW1ooH26shdjyq1ivm3ryAhO5m47ORhLcfy5bxksdkpzP7mFWiNvS2Z7SVVlL/1OQBqvZb0uZPoLq8EtQpLUgwqQqBWYc3JIjqvQASBCwQniRBMZwnO6gr8XZ3hRJXHsnob4uJImD07PK7qvU/xtXeitZjIueaSPmMjZEli/z/fw93cjtZkYPp3bkQ9RCuKLMms/e3zuNsdAKTPKqDo+mUnzHA80lRuPsSWf38Wjk8yRpuZc9Ny8hZMEg8ZAQGPj+42B4fX7ePgJzuQpZ6P0PjsZC772c3DHutkr2lm69/eJejxobcYKb7lwj7d2G0HKqj6eDMhnx+tyUD8hDR8La1ojAYMUTrUGjVqnRZrbjbWrBxhaRIITgIhmM4Cjk9UaUrNQK3Rh2OXkhYtQmdRXG6uhmbqPlGSTmZdch6mpL7rajVs3kftGsVlN+mWS4nKTB7y2va/toaaLw4AkD67kOKvnj/kuU4nsiSz9/0t7H5rE6FAEFASABaeP50Z1y06LfEqgrFP48FqPvjty/0en3b1AqZdvWBYrE5dtS1s+es7BD0+1FoNk65eRObcSb1ET8gX4NCLH+JqUoLB47ITkHxeDLHRaPUyKpUKlUaNOSMFW/4kVIOowSkQCIRgGunlDAvhIrs6PbbCKWHr0pdjl468/RF+uwN9dBQ511zc51yOmiYOvaBUWz+WTXiolH+ynbIPtwCQWJjF7G9eMeS5TicNB6r58JHIh54pxsKK719LQm7qCK1KMJaQJImaneV89vhbvY4Zo82oNWqWf/cqkvNPbWu/q83Otr+/h/togeWo1HiKb76A6LSEiHEBt5d9/3iLgNODMS4ao1kFoRC6aCtGmwE5EFBcdZlp2AomC8upQDAIhGAa48iyTOe+HQCYktNQ601KVm8geckStCalzIO7uY3aD5X4hpxrL0Ef1btYbsgXYO/Tb+J3uIjKTGHizRcP+YP0eMuSWqvhwl9/c8huveEk4POz7/2tJOen09XYQenavXTWtoaPx2YmMuem5ac1WaHg7KW9qpkN//iQ9qpmEvPSaP1SCZQLvn8NmdPGn1JOJykUonrjfso/3kbAo2ygmPn1y0ielB0xztPexd6/vwFA/MRsQvaeeoXWjAQI+lFp1ETl52LNyhWiSSAYACGYxjiB7i66jxwGIGZiMZ379+NtaUGlVpO2YkV4XN2n63HVN6GPiSbnqov6nOvIhxtp2V2GSqNhxve+inaIW+QrP99JyXtKAj2tycCKX905orESsiSz973N7Hhtfb9jbKlxnHfv1cRmJPQ7RiA4WZztDjY+/SH1+6si+i3x0Vz9P3eckqvX7/TwxZ/exNWi1MVLmpTNjDsujohL7Cit4vCbnyubP6bl4W1SShuhVmOKt6LRKEkuY6dOwZiQNOS1CATnAkIwjXE69iqxRmqdHnPaOFo3bwYgacECdFFRAHg77FS/+wmoIOfqS9BH97Yu2SvrKH3lEwAKb7oY27iTd0XJsszhj7ZS/omyJmtKHIt/+NXTliF5IJxtDtb8+R1ayhv6HaNSqZQ4k6sWjNg6BWc/HoebN3/yD7zdkUWXM4tzWXLX5UMWTp4OB2se/jeyJAGKaJp264qIl52K99bRtr8CncVEzoVzaNmsWKRRqTAnWFBr1GijzCTOnotaJ/KICQT9IQTTGCbk89JVquResRVOobu8AldtLbroaJLmzw+PO1ZgNyo7k7SlvevFBVwedv5R2bqcPHMi2Sv6rynXH7Iss/vfn9C4S7F2Tbh0HuPPn3nS8wwXDQeq+fyJt/G5vOG+6ORYplw6hwlLpxIKhtDqR+9OPcHZiafLxce/e7VXaoK5t5zHpAtnDsktJssype9/QeXnu8J9qdPzmXbzClRqFUGvnwPPvYe3XYl7mnD9+bhr63DW1CvZwI3Ki4M+PpqEmfOEa04g6AchmMYw4WBvgxHb+Ik0rlmDHAwSW1yMOSUFAHdjC7UfK3Xgsi49D1Ni751xRz7aRMuuUlQaNTO/f8tJb/mXJZnNf3qDzirF3D/p6kVkLy4+xbs7eWRZpm7vEba/sjYcl6TRa1nyrcvInj1BPAgEowZnm4N3fvEvvI5Ii1PB8mIW3HHhkH5Xmw8cYcc/VoXbOUunUXj5fFRqNb4uJ7v/8mr4WNr8qbhrqyAkodZpMdoMaIx64qYVY4xPHPJ9CQRnM0IwjWG6Dh8i5HFhTh+Hv7OL7ooKANIuVD5wZVmm4pV3CXl9qLRaJtxyTa85WvcepnLVBgDGX7WU+Im5J7WGoM/Phv/3SnjXTuHl88ldPuMU7+zkaatq4sNHXsF/nEUpd/5EFt15MVqDKHgrGJ34nB4+fOTlCItTQk4Kl/70piH93vpdXmo3H6B01eZw39Kf3IIlIQZvRxf7//kuIV8AAGt6InqdhOTzodFrMMaaUWnUpCxZisZgOPWbEwjOMoRgGqNEuuOm0rxuHXIohDk9ndiiIgAcR2ppXKd8cOZedyk6a2QJFCkkse3RfwKgizIz4zs3ntwaAkE+evCv4XbhFQvIXTZ9yPc0FCo2HWTfqq101PQ8cGypcSz82kWkFI7u+nQCASiW0UOrd7HtxTXhHGAAhedPZ/JFM7GlnHzpoNrNB9n3qrIr1mizMH3lxcSOS0GWJOo37KZhy37kUIjUuUV462uRQyH0VgN6qwFDQjwJM2cN2/0JBGcLQjCNUdyNdXhbm1BptZhTx4VTCaQsW4bGYECWZY68sYqA0405JZHMi5b1mqNp2wGqVyvnTfnGNZgTYgZ9fSkUYsc/VoXLnUy79ULSpuef8n0NlsPr97H+7x9Edqrg2t98nZj0vhNyCgSjnfV//4DD6/dF9KVNHseM6xeTdJKlhDqrm/jicaW8kVqnZdlPbsVoU16a2g5UUPHuOtR6LQmFWfhampVklnFm1FoNcTOnYxK75gSCCIRgGqN0le4n5PNiTEimc99BAExpacRNmQJAd009DZ9vQq3TknvdZWi+lCIg4PGy58nXCfn8pC8oJmPJybnR1v/uJbob2wGYcsNyMudNGuCM4cHR3MkXz31K/d4j4b7ceROZdNFMEnNSxU43wZhGlmRKPt+Nvb6NQ5/uijiWv7iIxd+89KTmc7baWffbfwMQMy6FuXdfhUanVaxa//6A7rpmAKLS4tDISqFfc4IFtVZD0sIF6KxRw3BXAsHZgRBMY5CQ10tX2X5AhTVnAq2blErqifPno4+ORpZlqt/7FF+HnbgphSTOmNJrjqqPv6B5ZwnmxFiKvnblSeVJatxbwa5/fghA0fXLyJo/eVju60R0NXbw/v+80Gtb9lX/cwfxWeJNWHD24Xf72PjMRxzZUhLuS5s8juXfuRKD1TToeZzNnWz64+sEjya5PO+/VmK0WQkFgtSt30nTViXBbFSiGY1WjcagxRRrRms1kzR/oag3JxAcRfwljEH8XR0A6KKi6Srp+TDVHxWArvomfB12VFoNsZN6lzZxVDfSvFM5L+uCuSf1gdheXsee55XSK7bMpNNuWQr6g6z72ype//FTEWJp4dcu4mvP/ocQS4KzFr3ZwPLvXMkdzz5A6qQsQEmX8e97/sjONzYMeh5rciwzVvaUQvrsV/+k7KOtqLUaspbNwpysxEjJeiuyLBPyBQkFQgSdbhxlJf1NKxCccwjBNMaQZRmfXRFM2igb/g7l6/gZM8LH2/coLrqYgjy0xsjdLlIwROUHGwGIHpd6Ugkqyz/dzpa/vI0UkkieksuC7113Wrfqt1U18dZD/6B8w/5wX8rETG5/6n4KlhcL95vgnECtVnPJg1/lwgduCPftfmsT/77nj1RuKWEwToKE/Axyz+txu5d/vI29L65GCknkXLQAAGd9C163jCzLeNpdSCEJZ3UtnraW/qYVCM4phEtujBH0uHEcPggqFYa4FOz7FTFxLJWAq6GZuk/WodKoyb3uMrSmyAzC1Z9tDZvgp91zA4Y+sn73RemqL6hYvROAuNw0Zn/ripPO13QybHzmI0o/3wMotegWfu0i8hcXnbbrCQRjAY/Dxfq/fUDd3spw3+SLZjLn5vMG9fLi6exm178+wl6jxC6NXzGLCRfPpWn7Qao/VQplW+It6PQqUKmwJFpQaTSkLFuKRi9SDQjObYSFaYzhtx9zx9nwtihvflG5ueG8S2Hr0oS8XmLJ1dQWFkvjr14+aLHUdrguLJaMsdZw4OjpwOf08OZDz4TFkjXBxjW/vkOIJYEAMEVbuPCB67n4wRuZeIGSwuPARzv48JGX8XwpCWaf58dGseC+65lwyVwAKtfspmbzAZJnTiR+kpKDzdXuQgpKIMv4HF6QZVq+2ETQ5zt9NyYQjAFEbYgxhCzL+DqViuP6KBuOUiVRpTE5GYDu6jo8Lcrx2MkFvc4/lkJAazQQX5g9qGuGgiH2vfxZuL3sJ7edtiBQj8PNR//7SjhLd/qUHC584HqRoXsMI8sy9aV1NJTV01bbgjHKhCzJdLd3kzdzPIlZSXQ128mfMwGVWo0syag1yu+X3+unZn8VTRWNNByux9HaRXSijayicdgSY6gvqaWpspHWmhZiU+OQJZnc6eOxxkXRVtPCghuWEBV3du7ySps0jrRJ44hJT+CLf35C48EaXvzuEyz6+sXkL5ky4N9M3vkz6ahspK20hv2vriHoC5B3+WKc9S34upw4Wt1YYpUXroDbjw5o2/oFyYuWir9HwTmLcMmNIQLdDrqPlAGgi47HUap8fcwdV/vxOtyNzVjSU8i4YHHEuc6GVg786z3g5HIurfvfF3A2K9XQL/jlnehPYnfOyeBo7uSt/3yWoFfJQrz07svJm39mUhUIBo8sSXhdXmoP1VC+/TCJWUlMXlzEkb2VlG46hLOzG5/bh6PNgSnKRFdrV0QyxhOh0WnDY21JMXS12E95vYnjktBoNbTXt7P0luXMvHg2OuPZVWC24UA1nz72BsGjGbwBYtITuPq/V6LWavo9TwqGKP90e7hY9pIf34xKltn/zNvhMcd2zhmijejMeqy52djye7+MCQTnAkIwjSFcDTX42lpApSLkDuK32zHExZEwezYBp4vK15U6UjnXXoI+KtLdVvLKx3RV1mOMt1H8zWsHdb3qTfs58LpSh276bReSOu30JKZsKq1j1a9fAEBr0HHVr27HliqST44UoWCIzsYOGg7XY2/uxN5sp/ZgNY7WLkLB0JDmtMRYSc5JpnJXRU+nSgUDfPyo1Gqyp2ZzZHdlr/6EjAR8Hh8JGQnheaMSonF1OpFC0gnnHTc1B7/bx0XfvpT0CRljfuu82+5k64ufU/nFoXBfVFIMS759Gcn56f2eJ0sym/74Gl01LcTnZzDn21fiabOz7+m3ANDo1FjjTahUKgw2IzqTnpTzzkOjE+WGBOceQjCNIbrKDhLyujGlZNCxey/IMsmLFqG1WKj/fBPOmno0JiPjv3JFxHnd9S0cfO59UKko/vZ1GGMGdlO0l9ex5S/Km2Z0RiILv3/DsJviZVnm0Ke72PLCZ8hHH3DXP/pNopNjh/U6goEJBYJ0tXax7sU17F+z56TPtyXFULR0Kil5qXidXurL6ohJiiE5J4WsomwM5t4Bw1JIEV9uh5v2+naMFiMtVc00VTYSnRBNWn46GROzhvR7J4Uk2mpbqTlQhaPdQUddOyVfHOxzrM6gI7s4F7PNQmpeKqn56STnpKA9jZsaThf2hnZK1+zh4Cc7w39TxVfOZ/rVC/q1NnXVtrDxMaUwb3RGIvPvvY6gy8Pep99C8gfQmfVYbIpVzpxoJTovG1vBxDNzQwLBKEIIpjGCFAhgP6Q8yHRR8TjKytBFR5M0fz4hn5/ylxRxkzx/JjETegroyrLM1keeBSBhynjyLlvca+4v43O4WP/7l/E7PVhT4lj8w68O+xb+oC/Axmc/pmKjEoSeM6eARd+45Kxzl4xGWmtaWP/SGjoa2rElxeB1eWkoqyfg9UeMM0ebScpJIW1COlmTxmFLikGr1+FzeUnOSUalVuP3+vG5fVhjLKPeSiPLMp2NHVTvq+L9J97GaDXhdXr6HBsVH83F376MgvljUxh01Lbyye9fw9XRDYAlPpqr/3tlvwkvj689l3/xHPJXzKZldylHPlSS4hosOkzRBlRqFda0GFKWLkOtHXuCUiA4FYRgGiP4Ottx1R5BYzTj7+zGb7djKyjAmp0djl3Sx9rIvmJFxBt528FKKt5R3GpTv3ENpgFil6SQxEcPPoksyRhtFpb8+JYhVU0/EU0ltaz6zYsAqFQqZn11KUUXzxbBpKcBj9NDyaaDlGw6SFNFI6YoE21Hg+r7ImdaLou+spSMwkzUWs1Z/zNpq21l3+d72PjqOgAyJmbRWN4QjqXKnZ7HstsuIO0Ebq3RTNnavWx4WsnKn1mcywU/uK7fl5/jXfBz776auLy08MsWgN6kxRxjxJxgwToug9iiqad9/QLBaEIIpjGCs6YSv70DnS0OR8lhQCm0q9JqOfz8GwAkz5tBTEFe+BwpFGLbo/8CIGZ8JgXXXzDgdQ68sY7qjftQazUsuv9GrMPoHgv6A3zxr085vE4pLmqMMrHsO1eSNmncsF3jXESWJPzeAI0VDdTsr6JyVzl1h2pJyUulqaKxz3MSMhOZd+1Culrs6Aw6siZnk5SdjF5Y+Aj4Aqx/eQ2bXl0f7jPbLPzguR+NSQHZUtHAB795kVAgRMbUXFb8sO+Es7Iss/Wv79B+uA6A/IvmMP6CmZS/s5aOkioALLFGTLEmjDYTKUuXojEae80jEJytCME0BpBlmc59OwBQ6y24qmvCwd6dJeW0bFGKdE647boIt0jDF3upXaucN/MHt6A1nPhh2Fpaw7a/vQtA0fVLyZo/fLmPGg5W8+FvXw63NXot1z3yDazxY+NnMFqQZZmOhnbaalqpL6tj/5q9ONq6TnjOsR1nk5dMIXfGeFLHp5E0LvkMrXjsUrW3kucfejaib9mt5zPnqvnoDLoxJZ6OtzQBzLxhCVMvm9vL2uTtcvHZr54Nt+d/7zpix6Ww5bfPAEqcfnSyBXO8BXNqEgmzZp+R9QsEowEhmMYAAaeD7kolhUCg20fQ6SRm8mTMaWmUPfc6ALb8HFIWzAqfEwoE2fXEy4R8fhKKxpN3+Yljl/xOD+t/9xK+bjfjFk5h8rVLhm39VdvL+Ozxt8LtJd++jPELT3/B3rGOLEkc3lbGhlfW0tnYic6oQ6vT0tHQ3ud4vUlPfHoCKpUKnVHHpEVFWGKs5M0YL2LDhogsy/z+pofxury9jsWnJ5BdnMviry7FGjv68z198n+vU3v8LkXgqv9eSfyXxHPA7eWT/3waAEtiDIt+eCO+Lif7nnoTAJPNgCnagCneQvzM6ZgShfgWnBsIwTQGcFZX4O/qRGO04DxSA0Dqeefhae2g7hMl9iL/lmsigjAbt+yj5vPtGGxWpn7rWtSa/vOxyLLMzmc/oHn/EazJsSz8wVeGLZN3U2ktq36txCuZY61c8fPbsJylyQRPha7WLsq3l/HBn98d9Dk50/IoXDAJW6KN9IIMjFbTmLJ6jBVkWWbr21+w6+MduLtcuPvIqJ2cm0JyTirzrlkwqq13VdvKOPjJDppKasN9N//pXoxRkcHgAbeXdY++iO/ovZ7/i6/RfrCC2s+VnE22FAtGmwmd1UDqeeeh1ogAcMHZjxBMo5zj3XGoDHgaGgBIv+gimjZtp+vwEWwTckmZPzN8TsgXYPeTrxL0+Mi9dBGJU0+cP+nYDhmVRs3C+64nOj1xWNbeWtnIu794DlAqr9/0xHfRnCCR3rmE2+Hm0MYDSCGJ3Z/soLmyqd+xcenxqNVqjFYjU5ZPY/KSKRgtInZkJAgFQ9QdqqHmYDVRcdFsfecLWqqaI8ZkTMwiKTuZmKQYYpJjyZ9TgG6YN06cKvX7jvDRo0oqAWOUiYt+9JVelqbGPeXs+tdH4facu67kyLtrkPxBZdeczYgl0Yo5I424KSIAXHD2IwTTKCdcbBcIuoMEuroUd1xqGmXPK+64zAuXYk5NCp9Tv2kPdet2YoyNZuo3rznhdu/Oqia++KMyT+Hl88ldPqPfsSdD+cYDrPvr++H2Vx+/B3PM4GrXnY34PT5KvjhEQ1kd5TsOY2/q7DVGZ9AR8AW45j9uoLvDgd5oYOr508ZkPqBzhaA/wKf/+Ij60joayxtOOHb+tQuZe/VCTFGmUfHiULungk3PfoKr3YHJZuHG/7urV66mbU+9R+uh6nB76vWLqT8aF2lNMGGMMmKMNRE/ezbG2Lgzun6B4EwjBNMox9PahKexDo3ZirNC+eBKWboUZ20jTZsU8/iE264PB28GvT52/+U1Qj4/eVcsIWFyXr9zy5LMB//xZwAMUWbO+687hiXfUvnGA6z/2ypkWUZn0nPNb+4854K7ZVmmu6Obw1tK2PvZbpoqGvvNkn3sQWqNPXcF5dlAKBDkgyffZ/fHOwY1/vbffp2sySO7Q9TjcPHGj5/G5/JSeN40FtxxYa8xrjY7ax/+d7g9ftFEOkurw1nAjTFmdCYdifPnoY+2ncnlCwRnFPHqOsoJOpXEc3JI0bVaqxWN0YjjaCyTMTE+QuQ0bTtIyOfHlBBD/MScE85du+VA+OspX1l+ymJJlmX2vruZHa8p27FjMxO54r9uHfY8TqORUDDE/rV72f7eFhorGlGpVMhSZHmO2NQ4DGYDaRMyyJsxnglzC5El6YTxZYKxg0an5fJ7r+Lye68K93ldXja9tp5Nr63vNf5fDyqB1TMvmc2y287HFGU+Y2s9hinawpybz2P931dR8tluvE4Py+65AvVxVmlLQgzpMwuo31EKQMyEHLqONBDyB/B0+VCpVWh0Gjr37SV54cCJcQWCsYoQTKMYWZYIuBTBFHIru3SMCQkEvT7cTUryweNjl3xdTuo37gYgfdH0E7rifN1uSt7fDEDm3EkkTco+tbVKMlte+IyDR9+uJyydysKvXTTsGcJHEz63jwPr91Gy8UBkjTQU8XiMKedNY/qFM8mc1LvMh0qIpbMao8XIeStXcN7KFQQDQfxuHzs/2s6a51aHx+z4YBs7PthGVHw0U5ZNZd61izBHnznxlL+4iPbqZg5+vIOqraWUFmYx8YLpEWOKb74Ab5eT9vJ6Kj7fRc7SmVR/shm/J4jOFMTdptTvc9ZWY80UedUEZydCMI1igm43SBKoNXgbWwBFMHVX1YIsY4iLwRDbYwJv2qZYjEyJMcQVnPhD69C7Gwl6fERnJDL5uqWntM5QIMiGpz+kYpMSazXrK0uZevncU5pztOJ1eTmwbh97V++itaYFv6ennIjRaqJw/kT0Jj0JmUlMmFso3GyCMFqdFq1Ny6KvLGXhDUvY9dEOqvZUcnDDfgC62x1sen0Dm17fwMIbljD7irlnLF3B3FvOA+Dgxzv44l+fkDktF2tCpHtt0jWLWf/oS3QeaSR7cU+Qt9vuIypBg7fTjX3/Icyp6aJsiuCsRMQwjWI8zQ14mhtQaQ24a5WA0rQVK6j54HO8bR0kzi4mbtIEAKRgiF1PvEzQ62PcBXNJmTWp33nrd5ax59+fALDgvuuJyRr6NmhHcyev/+gpZFlGpVGz5JuXkLfg7MqxJMsyh7eV8t7jb+P3+An6A+Fj8ekJJOekkDM9j6IlU0S+I8FJE/D6Wf3sx9QerKH5SO/dkhd9+zImL5ly2q1OkiTx/F1/IOhVfr9n37iUKZdFvvgcCwI3RJuZ/Y3LKX35QyS/UkYmKsGE0WbElp9F/LTh2TwiEIwmRkW1zD/96U9kZ2djNBqZO3cuW7du7Xfss88+i0qlivhnPEvT8weOxi8FXUqBUHN6Ot4OO962DgCic7LCYxs27yXo9QGQPKOw3zm9XS72vaIU2Uydnn9KYsltd/Laf/xdCe426lnxg+vOOrHUWN7A8z97llf++wXcXa6wWCqcP4lbf30Hd/3lXq798VeYfuFMIZYEQ0Jn1HPxXZfzzcfv4baH7+x1/KO/vs9fv/MEVfuOnNZ1qNVqLvzhDeH2tpfXUr3jcMSYGSsvxpxgw+dwU7ethMm3XhY+1t3mwef046ptQgoFT+taBYKRYMTtpi+//DL3338/Tz75JHPnzuWxxx7joosuorS0lKSkpD7PiY6OprS0NNw+G5P1yZJE0O1ElmX8HcoWdFNyMt3VSp0ntU6L1qQIRVmWqd+wG4Ck6YX9xi7JkhQue2CKjWLqV88f8vo8Dhfv/88L4fYVP7+NmPT4Ic832uhq7WLNc5+y7/M94b70ggxWfOMS0gsyzsrfOcHIM64om5+9+ytkWWbtvz9jw8tKMVyX3cnzP30Gg9mAz+3ju0/9gJhhrPN4jJSCDG77+/d59xfPYa9vZ/Pzq0krGofuaFkljU7L5GuXsO1v71K1fi9Jk7LJXDozXILJ6/Ch0apxN9SLWCbBWceIu+Tmzp3L7NmzeeKJJwDFLJyZmcm9997Lgw8+2Gv8s88+y/e//33sdvuQrjdWXHKBbgfdR8qQZfA2KaUwUs8/n6q3PybgdJG6dB7R2ZkAdJRVc/iNzwCY+f2b0RoNfc5Z88V+9r+2FrVOy6L7v4I1aWgfuEF/gH994/8AMMVYuOxntxCdFDOkuUYbboebd//wJoe39gjyyUunsvy280/LA0ogGAiv08Pnz61mxwfb4LiP6/w5BWRNHsfMS+cMe9HkoC/AGz95GmebA4DL/+tWksanhY/v+tdHNO4pB2D5z27H1dBCxbtK1QFrvImEyeNIXjB/WNckEIw0I+qS8/v97NixgwsuuCDcp1arueCCC/jiiy/6Pc/pdDJu3DgyMzO56qqrOHDgQL9jfT4fDocj4t9YIOA8uk5Z+REZEhLwd3UTcLpQaTRY01OVw7JMwxd7AUidN6VfsRT0+tn/mvK2mjRx3JDFUigY4rM/vh1uX/jADWeFWKrYeZg/fO13/L9bfhsWS5mTx3Hn77/NNQ9cL8SSYMQwWk1ccvflfOP/7iLuOCvu4a2lrH7mY174z38S8PpPMMPJozXoWHDHReH2e796nrq9leH28RtFNv/5LWy5GeiPpkVwtntwNbQgBYVbTnB2MaKCqa2tjVAoRHJyZBxNcnIyTU19l4ooKCjgH//4B2+//TbPP/88kiSxYMEC6urq+hz/8MMPY7PZwv8yMzOH/T5OB95W5f5DRz8IDXFxtGzdDYAxIRb10ezPjupGXI1tqLUaUmf3Hz90ZJ3iWlLrtBTffEG/406EJEmse/I96vYoH5yLv3Up8Vl9u03HCsFAkA/+/C4v/vw5utt6xPSKr1/M7Q/fSdqE9BFcnUDQQ0peKvc8eR8Pvv6fzL58LgXzJgJQV1LLIzf8D2888gpSSBpglsGTMTWH+bevCLc//t1rdNa1AaC3GJn9rStQqdV4Ohx88rOnSFvcE+jt7fJiLzk4bGsRCEYDI+qSa2hoID09nU2bNjF/fo/59kc/+hFr165ly5YtA84RCASYOHEiN910E//93//d67jP58Pn84XbDoeDzMzMUe2Sk4IB7Af3IMsyvtYu5FCIxPnzOfKmUtcpcdZU4iYXALDlt88AkDxzItkr5vU5n9/tZc2vnyPo9Q+5/IkUDPH+r1+gtaIRtUbNBT+4joypJ06MOdqQQiEqd1VwYP1+ZEmi8XAD7fVtEWMWf3UZi25cOipKVwgEA1FzoDqcABOUOLsF1y0mb1b+sJXU8ThcvPjdP4Xbtz91P1q9Mre9toVNj70aPhaXoBSA1uo1JOQnkLZ8CTqrSK0hODsY0aDvhIQENBoNzc2RxSubm5tJSUkZ1Bw6nY7p06dTXl7e53GDwYDB0LebarQSdDmPfqVGDoVQ6XRwXDVw23hFqLhbOsJ9qXOL+p2v8vNdBL1+otLiyVk6vd9x/SFLMu/9zwu0VTYCsPTuK8aMWPJ0u/n0Hx+x59Nd/Y7RGfVc+6MbGD9rggjmFowpsiaP43vP/JDHv/Z7AOpL63j1Ny8CcOfvvz0sFlJTtIWFd17Exn8oL2ybn/+URXdeDEBMZhJ558+gYvVOAPQpyQSaWwj6Q3g7XbTv2U3KwkWnvAaBYDQwoi45vV7PzJkzWb26J+utJEmsXr06wuJ0IkKhEPv27SM1NfV0LfOMcyy7N0et64a4OOwHygBQadRoju5YaTugZJe2pMRjiO77Lc5e20LlZ8qH2YSL5w4p8/bWFz8Li6W5t55PzpyCk55jJDi08QBP3vNEL7GUOj6NWZfN4bw7VnD1D6/nvmd+SP7sAiGWBGOS6AQbP3v3V9zx6DcxRZnC/f/44V954ef/or2u7QRnD46CZcXMu1XZVVu2Zi8eh7vn2KXzmbFSEVBN+6sI+JWaiT6nH2dNC+6mxlO+vkAwGhjxtAL3338/K1euZNasWcyZM4fHHnsMl8vF1772NQBuv/120tPTefjhhwH41a9+xbx58xg/fjx2u51HH32U6upqvvGNb4zkbQwrQadiYQodzatkiIujYb1SaFcfo2TflSUpLJjS5hf3OY8sy+x9SRGj5gTbkMqf1O6u4MBHypbhuTefx+QLZw5wxshTe6iG137zEi678n00WowkZiez4NpFjJuaM+w7igSC0UBGYSY/fOEndLXYefZHT9Hd7qByZzl/uftxilfM4LLvXIlaM/R35MILprP5eeXzZPsra1n8jUvCx1Km5hGVGk93YzsuT4gYvQaPw49Gr6Fly06yrrgkoj6dQDAWGXHBdOONN9La2sp//dd/0dTUxLRp0/jwww/DgeA1NTURf2idnZ1885vfpKmpidjYWGbOnMmmTZuYNKn/zNZjCSkUJOR1I8syAacLAH1sLKBYP5JmKeKovaSKgFNJaBmTl9HnXK2HqnE2KW674q+ef9IWlI7aVj75f68DMGHpFCZfPOuk7+dMIcsye1bv4r0/vBXuU6nVLLxhMYtuXDps8RwCwWjHlhTDvU/fT+Wucja9tp6aA9Xs+WQnoUCIK79/9ZCLPavVahZ/81LW/30Vh9fvo2DpVJLye1x+02+/iHWPvEDIH0QTnUDI4cDd6UWjUdO+azeJM0X2b8HYZsTzMJ1pRnseJr/DjrOqHDkE3pZ21AYDtomTqf1wDWq9jvE3XoVKraLk5Y/oOtKAJSWBojuu6DWPLEms//3LOJs6yF02ncIrFpzcOjw+nv/2H8Lt2/56HzrT6IsFCwVD7F+zlw2vrKWzsSemKyEzkWt/9BWSsoeeyVwgGOtIIYnXH3mZ0i8OhfvOW7mCyUunYku0neDM/lEE035sqXFc9d93hAPAATb8/mUcDYoLMDUvEb/Dhc6oxRxjIPuKCzDGx53aDQkEI4iwkY4ygkfjl+SQomMN8fG4G5SgeEtaCiq1ioDLg6NaiQvIvazvgMr67aU4mzrQmgzknX9yb3ayLLPh6Q/D7Rt+/61RKZZqDlTz1H1/4d0/vBkWS+NnTeD+53/MXX++V4glwTmPWqPmhp/exA0P3RTu++yfn/DkPX9k+/tbGMr78pyblmOyWehq7GD9U6sijk09LmVJyrxiUKsIeIP43UEa1vafW08gGAsIwTTKCLh6xy+56pWcTJZ0Zedg2/4KZEnGkpqAObF3QsVQIEjZh0o9vvHnz0BnPrlae3vf3UzV0eSNS+++nKjEmCHdy+miu6Ob9x5/i389+DStNS3oDDrmXDmfe/56H1/9+a2YbZaRXqJAMKoomDeRFd+4ONwOeP18+OT7PPPDv9FxnGV2MBisJhbccSEARzaX8Pmf3wkLr+jUePRWJfC8evMhMpYoL2seh4+uuk7sZRXDcTsCwYggAjtGEXIoRMjtUurIuZT4JY3ZgrddqSVnSUtWMntvVjJ7JxVP6HOe6g178XY5McZYGbdo6kmtoWZXOTteXw/Awq9dRN780RMbFgwE+fAv77H7k53hvmkXzuS8lStOeyV3gWCsM/eqBcy5cj5Bf5BVf3qHfZ/voeFwPU/e/Tg3/PQm8k9i9+u4mfnhr49sLqGzto1rjxYOXnjf9ax95AU6KuqJzUklOjsVR1UjfneAxg07sI3PHdJuXYFgpBEWplGEv7sLAMmvlBTQmM34OpQ+Q1wMWrOJriP1BD2K9SmusHcuJL/bS/nqnjQCmpMIdm6vaubT/3sDZCg8bxoFy/vefXem6Wjs4OO/f8Bvr/1VWCwlZCay8pGvc/m9VwmxJBAMEpVKhc6g46r7rwtbnKSQxMv//W/Kt5ed1Fw3PnY3mmMJLOvbWPVrpRi3KS6aydcuAaDi0+1Yc8eFy6a4Oj00b9s+XLcjEJxRhGAaRQTdR91xvgAAxvh4XA1H3XFpijuu41AVAIaYKLR9bI+vXL2ToMdHVGo86TP7tkD1eW1/kE//8CYA0cmxzD2ac2Wk2fvZbv5+75/Y+k5P/MMV37+Gbz/xHTIniWroAsFQmXvVAn786s/CqQZe+uXz1JXUDPp8S1wUt//tB+F2U2kdNbuUBMKZcyeFYyf3v7aG1CWzUKlVhAISbXsrCPq8w3gnAsGZQQimUYR07EPkaMJKfWws7uPil6RgiI6yagByL+0d7O1oaKNyjZKkseCyeagGmfdElmX+fc/juNqVWmqX/ectI14aJOD1897jb/HO/71BwBcgvSCDZbedz3+8/FOKz58+6HsTCAT9ozPqufP33w63n/2Pp2iqHHyiSZVaxR3PPBBuf/p/b+A8+jky4eJ5pBaPRw5J7Hz2Q7RHd8h5unw0rt00THcgEJw5xFNnlCDLMkG3GzkkEfIqwklGTcjnR63TYkqKp73kCCGfH12UmajM3jvAjqxVCuxGpcaTWDh460vZmr2EjroBz7/vGkwj7OI6sH4fj618VHG/qVQsuXk5Kx/5Bou+shTDSQawCwSCE5OSl8rdT34v3H7qvr/wl7sfp7WmZVDnqzVqVj59f7i97cXPAUVMTb3pfKLS4gFoOlhLSJKRghL2yiY8HScXbC4QjDRCMI0SJL8PORQk5FfccbqoKDwt7QCYU5NRqdU0fKEEe9uyUnslofR1u6nfXgJA4RULBp2k0m13svUl5QMuf/GUiGDOM40sy6x/aQ1v/u+r+Nw+LDFWbvnvlSy5afkpZSgWCAQnJj49gfuf/3G43V7Xxl+/8wSt1YMTTRqdlkVfV2Kijmwtxd7QHu5f8L3rw+Ps7R68ngDebj+1H64ZvhsQCM4A4ik0Sgg4FTO2dDR+yRAfj6teMY1b0lOQQhLediUAPK4wu9f5B9/eAIBGryWxIGtQ15RlmZe+92cCHj8JOSks/PpFp3obQyYYCPLGI6+w9t+fAZCcm8I3H7+bnOLcEVuTQHAuYbZZWPm/kSWm/vrdJzh8NMXIQIxfXBQOAn/7P58N92t0Wi745Z3EZClWcbc7SCgo4WpzYT/cd9F0gWA0IgTTKEEOKQUrj+2Q01qj8LYpJmtLegqOGkU8aQw6YsZnRpzrc3po3HUYgMIrFg76muUbDyhfqJQUAiNV66m+tJY/3vl7Dm08gEqt5pJ7ruCbf7gHa2zUiKxHIDhXyZyYxc/e/RXf+fv3w3GML//3v3npl88jhaQTnqtWq1l0p2JlCgVCBHz+8DG91cS8716L1qhHlmT8vhB+d5DW7XuRpBPPKxCMFoRgGiXIUggpGAoLp6DHDzLoY6LRWcxUf7oFAJVK3cvdduRzJdA7OiORrPmTB3U9V0c3W44W0kwtzCJ+BLJihwJBPn/uU5790VO47Ereqa/+1y3MvGT2GV+LQCDoITYljrv/el+4Xb69jN9c/QvkAcRNznG5nHa8uj7imFqjJnf5dAC8HuXF0N3hoWPX7mFatUBwehGCaZQgB0OEvD1vZO4mJXbgWHbvY+645JkTI87zOVxUbdwHwISL5wwqdkmWZT7631fwu30k5KZy0Y++Miz3cDK0VDXzjwf+xsZX1iFLMpOXTuWHLzxI3gjGUAkEgh5ikmJ46O1fMOfK+eG+X1/1ixNamtRaDSt+eB0ABz/ewe53IsuhZM6ZiEqjJhiU8PmCeLv92A/XCCuTYEwgBNMoQQoFw9YlY2pqRDkUb6cS36RSq0iZHWlB2v6PVUiBIDFZyYPeGbfjtfXhoMwl37r0jAZU+9w+3vm/N/jbvX+iubIJU5SZ6x68kWseuB5TlEhAKRCMJlRqNRd+8xKiEnoKlX9yXJ3JvsgszmPmDUriyp2vrWfPcaLJEG0haaLyOeV0+JFlGXeHG1f1kdOweoFgeBGCaZQgBwM98UsmCyGvD5VWgykpgc7yWgCiMlMiklX6nB66ahVLVP4grUu1eyrZ++5mAGbesISYo1t+zwSN5Q08/YMn2fvZbgDy5xTw7T99h4kLB+dGFAgEI8N9zzzAwq8oImjbu5vpbDpxSoDiK+aFRdOO19az9/0t4WP5F/a43N2uAD6Xn/Z9gwssFwhGEiGYRgmS348cVCxM/m43AOaUJNQaDfajgikmLzLYu+LTnhIDCRMij/WFo7mTT37/GgAFy4spvmLesKx9IGRZZv3La3j6B0/S0dBOdIKNGx66iRv/8xYR2C0QjBEWf3VZ+Os/ffMxnJ3dJxxffMU8Zl6/GIDtL69l28trAIhOTyRzrlKj0utRdsw5m7rwtA4uhYFAMFIIwTRKCPl84a+dNfUAWNJTCXr9dNcq7rnY8RnhMbIkU7Veycs06erFg7IurfrNiwBo9TrmnaHSJ6Fj6QKeV9IFTJhbyDcfv5uCeRMHOFMgEIwmtDot1z14Y7j9zx8/PWAQePGV88mclgfAvve3UrVNsSRNumZxeIzPF8Lb7ad99/7TsGqBYPgQgmkUIMsyUkBxx6kNRvxdypubJT2Zrqp6ZEnGGGfDGGcLn9NeXhf+On3WwFXGq7aV4e5UatVd8YvbTqoo71AJBoI89YMnObTxAKhULLxhCTc8dJOIVRIIxigTF05m0pIpAHQ2dvDrq36B56hFvD8u+P614a8/++Pb7H5rExqdloLLlGByrydI0B/CUdeK3+k8fYsXCE4RIZhGAbIUCr+pBX3BcL8+ytrjjjvOugRQ84WSQ2ncwinoTIYTzh/0B8PZvDOLc4nNSBi2tfdHe30bzzzwt3Cm4Gv+43qW337BoDOQCwSC0cm1/3EDy2+/INz+/c2/PWFMk0qt4vanfkDW0R2w+z/aTtAfJHPORNRaDaGghN8fwmv30bRm3Wlfv0AwVIRgGgXIwSAcFUwhr5LpW2sxIUsS9grFkhQ7vid7t6/bTfN+ZVdJ5rxJA85/8OMdOFu7MMdaWfbdK4d7+b3Y9/ke/nLX4zRXKq7Epbecx+TFU077dQUCwZlh4Q1LmH9dTwHwP33zMT579uN+x2v1Os679yrMsVb8Li81Ow+jt5pImpQNgNcdxO8N4mzuJujxnO7lCwRDQgimUYAcCiKHZACCR7PjJs2ejrOhlaDHh8agx5qeFB5ft60EWZKIGZdMdNqJrUXNh+vZ/spaAGZ9ZSk6g/6E408FWZbZ/NZG3v5/rwOQXpDBfc8+EBEsKhAIzg7Ov+NCvvb7b4Xbm17fQNW+/tMDqNVq8o++OJV+rhQKn3iVIrqCQYlgQMLn8tNx4OBpXLVAMHSEYBoFSMEgsiwhSxIhjxL8bUpOCFuXYnLTw7mSZEmmdrPijsucd+Lt+LIks/EfHwEQnRxL3vyBrVFDRQqF+PDJ9/n0aeV6RcuKueN/v0FUfPQAZwoEgrFK+oQMHnjxJ+H28z99hvrS2n7H5y8uAqDxUA2f/t8bmGKsZC1Q+jzuAH53kK7D1SKRpWBUIgTTKOCYhSnkV9IK6G1RaI0GOstrACJqx7WX1+Fud6A16kktHn/Cecs37sde3wbAsu9cgUp9euKHfG4fr/zPC+xYtRVUKi74+kVcdf+1qEaoNp1AIDhzGK0mfvzaf4bbzzzwd/zHVS04nujkWPIWKC9uNbvKcbY5yF02HZVaRSCgWJlc7W5cdf2LLoFgpBBPtFGAFAyCLIUFkyk5EZ+9G0+rHVQqYnJ7Ar6PBXunzZiA1qDrd06/x8f2V5QAytlfXUZCdsppWXtXi51//vgpyrcfRqvXcf2DNzLv6oUiuFsgOIfQGXTc+ftvh9tPf//Jfscu+fZl4a83/ONDzPHRpE5TAsK77F58zgCdB8pO32IFgiEiBNMoQA4eszApO+TMyYl0VhzN7p2ehPboLjh3h4OmvRUAAxbZ3fP2F3i6XESnxDLpwpmnZd31pbX844d/o6WqGWusldse/hqFC06f208gEIxe0iakU7SsGFB2yXa1dvU5TqVSseyeKwBo2F9FW1UTGXN68rIFgxLd9R3Ki6RAMIoQgmkUIIeCSKEQUlDx25uSE7AfzbMUk9/jjmvY0fPWdaJg767GDg58pGQBn3vLeWi0mmFf866PdvDMA3/HZXeSlJ3M1373LdInZAx8okAgOGu5/HtXhb/+452/p/lIU5/jcudNxBhlAmDzc6tJyM9Af7Td1enFbffQdfjw6V+wQHASCME0CggFAkiBULit1ulw1DQCEHtcOZSWQ9UA5F8054TzbXnhM6SQREZxLpnFecO+3pIvDvL+E28DkF2cy8pHvoEtKWbYryMQCMYWWp2Wr//fXeH237/3Z3Z9vKPPsefdezUALYfrqd1TSfFXe3I7BXwhWvcKt5xgdCEE0yhACvjDiSv1sTa6jjQghyQMMVEY45Xs3t4uJ/Zq5W0tc27/ZUVq91RQt6cStUbN3JvPG/a1HtlTyZv/+yoA0Qk2bv7lbRjMJ06cKRAIzh1Sx6dx62++Fm6v+tO7VOzobS1KLshAa1TiMHe8ui6iHqbfF8LV0k3QK3IyCUYPQjCNAmSfH1lS8jBpTUbsR+OXYsdnhoOnm/ZVAhAzLgWjzdrnPKFgiE9+r+RAmnThTGypccO6zoayel799QuEgiEK5k/ku099H7Vm+N19AoFgbJM9JYcfvvgTMidlIUsSL/7iOda9+HnEGJVKxXW//QYAHTUt7HpzA4WXLwDA7Qoo9eX27DvjaxcI+kMIplFAKBgICya1QU/rXuVt7Ph0Ak17FcGUcgIX2553vgDAZLMw7eoFw7rGupJa/vHDv+L3+MmemsM1D1wvxJJAIOgXk9XErf9zBxkTlSoF6174nE+e/hB3lys8xhIXxfRrFwJQumYvqdPzw8f8vhCte/tPhCkQnGlOfwVWwQmRZRnZ3yOY/N2+8LGozGRAKYXSUdkAQMqU3D7nCfj87P9wGwATL5iOfoD6cidDw+F6nv2PvwOQlp/ODQ/djFbff0oDgeB0IYUkJFnG7XBRvq+Syv1VqFQqZGQ2vr8ZV5cLi81CXlEOLoeb2EQb1hgrjo5uJkwbT96UXOKSY7HaLCL1xRlAo9Oy8rd38uurfgHAlrc2cWjDAb73zA/DY4oumc2uNzbi6XKx9m+rKLh0HqWrNuPzBXG1u/HZOzHExI7QHZxZli1bxrRp03jsscdG5PpVVVXk5OSwa9cupk2bdsauu2bNGpYvX05nZycxMTFDnkelUvHmm29y9dVX93n8VO9PCKYRRpZCimg6Kph8x1X+PmbBad5/BGSZ6IxEzHF9Z87e9uIagkfr0E29fN6wrc/Z2c3Lv3o+3P7qz28VMUuCM0YwEKTyQBUlO0op2VFG+VFL64lwdbnYu3F/r/6da3aHvzZbTbidHkxWE7b4aFQqVfj//OI8pi8tJj03bThv5ZxFpVbz07d+zkd/+4Adq7biaOui+UgTyTlKbjidQc+US+ewb9VWGvZXseC28yldtZlgQCIUkmjduY+M85aM8F2cGd544w10ujPzMnrHHXdgt9t56623zsj1zgaEYBphlBxM0nEWJkUwZV80PzzmWO6llKl9u+O83R5KPtsNwOwbl4bLqJwqfo+PJ77xfwSP5of6/r/+A7PNMixzC84dHB0OnF0u2hrbiY6LRpYkGqubsUSZCYVCdHc6ATi4rYRD20vxurwUzMgnGAhRe7iu36zRabmpZBeOw9Xtoqa0js6WTibOLiSvKJuYhBg0Wg0tda1UHjhCcmYSJTvKaKlrBcDtVIKJPU4PnqNfN1YpmyoObS/lnadXUThzAqnZKcxYNo2C41xFgpNHrdFwyd2Xc2DdPrxOD+te/JwbfnpT+Pj0axexb9VWAA59thtbZhJdtS34vEHslY2kLZNQnwOVA+Lihjfu9EwQCoVQqVTnxM9HCKYRRg4Gj1qYJGRZxtvZDYAtW3m7Dbi9tJfXA/0Lpj3vKrFLcVlJFF1y4pQDg16XJPGXe/4YFkt3P/k9rLFRwzK34OxBlmVCwRBlu8sp2V5KR3MnqFRUl9YgSzKdrXYCvsBJz1u6s2dXVVRsFIUz8imcVUBKVhJRsVFExURhiTaf9LzBYIiuti7WvrUBq81CYnoCLXWtvP7nt5k0p5Bpi6ZwYGsJezfup2RHGSU7yvj89XUkZyXx078/gMliOulrCnpYfvsFfPDndyn94hC/ve6/eeDFB9HqdWj1WmZcu4idb2zgwEc7mP+VhXTVtuD3h/B2efE0NWFJO/stfse75Do7O7nvvvt499138fl8LF26lMcff5z8fEW8/+IXv+Ctt95i9+7d4fMfe+wxHnvsMaqqqk54nV/84hf885//BAi7pj///HOys7MBqKys5Ac/+AFbtmwhPz+fJ598kvnzlZf4Z599lu9///v861//4sEHH6SsrIzy8nJSU1N56KGHePHFF7Hb7RQVFfHII4+wbNkyAKqrq/nud7/Lhg0b8Pv9ZGdn8+ijj3LppZeG17Vjxw5+/OMfc/DgQaZNm8YzzzxDQUFB+Phf/vIXfve731FbW0tOTg4/+9nPuO222/q9z61bt/Ltb3+bQ4cOUVRUxEMPPTSon0N/CME0wkihIBy1MAX9IWRJRh9twRCjiJPmA1XIkoQ1JQ5rYkyv87tbuzj06S4AZn1l6bDUi5NlmVV/fo/uNgcAt/zPHcSn958oU3BuIMsyzbUtHNxWQtmu8ggX12CIjovC0aG8EMSnxCFJElabFXtbF4npCRTNnYjfF8DlcKM36EhMT2DC9HzSc1OHLd5Iq9UQnxLHtXddGdF/0c09OYCWXbuExuom3vrru5TvO0J3ZzfNNS3cd9GPsMVHM2lOIWq1muyJ44hPiWNcQSY6gx4Ao3BXn5BpK2ZQtqWEih2HCfoDvP/EO1x1/3UATFwxg51vbADAnJKISq0iFJTxe4O07NhHzjkgmI7njjvu4PDhw7zzzjtER0fz4x//mEsvvZSDBw+estvugQce4NChQzgcDp555hlAsW41NCixsg899BC/+93vyM/P56GHHuKmm26ivLwcrVaRDG63m0ceeYSnnnqK+Ph4kpKS+O53v8vBgwd56aWXSEtL48033+Tiiy9m37595Ofn853vfAe/38+6deuwWCwcPHgQqzVyx/dDDz3E73//exITE7nrrru488472bhxIwBvvvkm9913H4899hgXXHAB7733Hl/72tfIyMhg+fLlve7R6XRy+eWXs2LFCp5//nmOHDnCfffdd0rfNyGYRpgeC5MimACiM1N60gkM4I5748GnkYIhUieNI31K9rCs6cO/vMeuo5nCL77rcnKK+w40F5zdBIMhpFCIin1H2LtpP/s2HQi7tL5MdFwUhTMmkJyVhNflpbG6mfziPFKzU8grysEaY0WlUuH3+VGhQneCOoijgdRxKdz9m28C8Nlra3npsdcA6Gp38MUHiuto4/ube52XP208hTPyiU2KJSbBRmernbzJOZijzUTHRZ0TbosTodFquOkXt/HPB5+m9kA1+z7fQ+akccy4eBYGi5GcuYUc2VLC6sffYvL8CbSX1+N2BeiubUeSzg23HBAWShs3bmTBAmXH87///W8yMzN56623uOGGG05pfqvVislkwufzkZLSu87oAw88wGWXKTX/fvnLXzJ58mTKy8spLCwEIBAI8Oc//5niYqUUTk1NDc888ww1NTWkHRW2DzzwAB9++CHPPPMMv/nNb6ipqeG6665jypQpAOTm9n6u/PrXv2bp0qUAPPjgg1x22WV4vV6MRiO/+93vuOOOO7jnnnsAuP/++9m8eTO/+93v+hRML7zwApIk8fTTT2M0Gpk8eTJ1dXXcfffdQ/6+CcE0wkihoJLlW4agTxFMUVnKL3DQ66etTMnJ1Jdgsje0EwooLrPZNy4dlrfwDS+vZccHym67S+6+nJmXDo+LTzD6kUISJTvL2L56J4e2l9Le1NFrjFanZVxhFj6Pj9zJ2aSOSyF70jhyJo0b1MNMf9QSM5Y47/qlzL1wFg1HmijfW8GRg9VU7FcsT1/m8O5yDu8u73eupIxEzFFm3N1uWupaSctJJb84D41WQ3xqHC21raRkJTNxVgFJmYlodWfnR/TtD9/Jr6/8OQCf/uNDpl80E5VKRcGyYo5sKQEgOjuV9vJ6/L4Q3Z0eHOXlxEyYMJLLPmMcOnQIrVbL3Llzw33x8fEUFBRw6NCh0379qVOnhr9OTU0FoKWlJSyY9Hp9xJh9+/YRCoWY8KWfj8/nIz4+HoDvfe973H333Xz88cdccMEFXHfddRFznOi6WVlZHDp0iG9961sR4xcuXMgf/vCHPu/h0KFDTJ06FaPRGO475lYcKmfnX+MYQg4GkYOKKy4UULJ9R487+otyqBopGMKcYCMqpXcw4MFPdgKgM+lJyOn9lnCy7F+7lzXPrwZgwfWLhVg6y5Blmdb6NrZ+sp1Nq7ZgtBjJmpCJ3qCjubaFQ9tL+zwvOi6KKfMnM3VBERNnF2A0G/scdzZjibaQX5xH/pfyoPl9fpprWtBoNFQerGL3+r0RO/RiEmOwt9rD7S9b6BqONNJwpPGE1566sAivy0velBwuv+MSNDrNmLe0qFQq7vnrffz523/A7/Hzzx8/zcpHvk7a5HEk5KbSVtlIyfoDHHNwelwBGjfuPmcE02BQq9XIshzRFwicfLxgXxzv8jv2Ii4drUYBYDKZIl7QnU4nGo2GHTt2oPlSfr5jbrdvfOMbXHTRRbz//vt8/PHHPPzww/z+97/n3nvvHfR1RxohmEYYpfCuRCjY80thOJrJ+3h33JetRz6Xl/INygfz+fddc8rrqD1YzbuPvQnAvKsXcN7KFac8p2B00FDZyPr3NrHl4+047c6IY3VHNxQcwxJtZsay6YyfkkN6Xhq2eBtRsdYx/4A+XegNejLzlaLTabmpLLq85w1WlmUlR5Qs43F6OLSjDI/TQ3VJDWvf2jDoaxwTYGW7y/nguU8AyJuSy0U3n8/E2YUYjGPPagcQlxbPslvPZ83zq6k7VMOR3RXkTh/PzOsW8dGjr9JZ18ailRdQvuoL/L4QjlbXOZOTaeLEiQSDQbZs2RJ2ybW3t1NaWsqkSZMASExMpKmpKfx7BkQEgA+EXq8nFAoNPHAQTJ8+nVAoREtLC4sXL+53XGZmJnfddRd33XUXP/nJT/j73/8eIZhOxMSJE9m4cSMrV64M923cuDH8/ehr/HPPPRd26QFs3tzbjX4yCME0woT8Sh25Y2kFTIkxqFQqQv4ArSVKsd2+3HGH1+0j6AsQm5FA6tFMukOlrbaVf/74aQAK5k/k/K9deErzCUYOn9fPgS0H2fbpTmISbJTvraC6tLbXuAWXziV3cg7NtS0E/AGSMhJJykhk0uzCs9YNdKY59hBTqVSYo8zMXDYNgEWXz+eWB27s97xQUNmmvfH9L9i/5RBtDe3UHq6LGFOxr5I//0TJSXXlNy7jspUXjclEnItuXErNgSr+P3v3Hd5U/T1w/J2kbdI9KC0tFMreewmIOFBcCE5UFETFBYriAETEDSoiDhQX6M8vCg6cICoIKAKyUfamhW7oTJp17/39kTRtaIG2tE2h5/U8fWhv7r05CdCefsY5B7cc4M8vVtC0S3PiOyR6Hj9+7Dh+pgCcVjsOq8KRX/6k1W1DfBdwDWnZsiVDhgxh9OjRfPDBB4SGhjJx4kQaNmzIkCGu13/xxReTmZnJa6+9xk033cTSpUv55ZdfCAsru1bfyRITE/n111/Zs2cP9erVIzw8vNLxtmrViuHDhzNixAjeeOMNunbtSmZmJsuXL6dTp05cc801PProo1x11VW0atWK7OxsVqxYQdu2p+6LerInn3ySW265ha5duzJw4EB++uknFi1axLJly8o8//bbb2fy5MmMHj2aSZMmcfjwYWbMmFHp1whnkTA5nU5WrlzJgQMHuP322wkNDSUlJYWwsLBSK9/Fqak2O5qioboTpoBQV52jzN1JKHYngZGhhDeq732Nqnqm49pd3v2svlE6bA6+nb4QgJCoUIaOvxGdjCacE1RV5ej+Yxw7mErSnmT2/3eQ5H1HURXvIWy9QU/nfh24cHBf2vZsg5+ftLSpzQzuv5/+1/Wj/3X9PMcVp8KujXtY/NlSDm4/7JmO+fHjxWxesYV7n7uLuMQG51ziNPjRG5g9+k2O7k7m76/+5MJhA7j04SH88c4PHFq/h3YXtCZly17y82wEJGdjzy8gIPT8/xkzb948xo0bx7XXXovdbueiiy5iyZIlnmmrtm3b8t577/HKK6/w4osvcuONN/LEE0/w4Ycfluv+o0ePZuXKlfTo0YOCggKvsgKVjfell17i8ccf59ixY0RHR3PBBRdw7bXXAq56TWPGjOHo0aOEhYVx5ZVX8uabb5b7/kOHDuWtt95ixowZjBs3jqZNmzJv3jxP2YKThYSE8NNPP/HAAw/QtWtX2rVrx6uvvsqNN95Y6deo006eBC2HI0eOcOWVV5KUlITNZmPv3r00a9aMcePGYbPZmDNnTqUDqm55eXmEh4eTm5tb7ky8Oh3/dzN5+4+Sl5qPNd9OdIcWNL+2P79N/gin1U7iRZ1pN+RCr2uObNrH8re+wxhsYtisB/Gr5I4jTdN4+64Z5J/IR6fX8ci8JwiNklpLtZnD7mDzym1sXrWV/f8eLHPhcVBIIH4BfnTs055GzRvS47JuhNfz/b91UbVURWXp/N/58ZMlXklyUfmG8W8/TGKbxufEmrPF7/7All83AXDfu2OIbhjNl4+8h62gkN63XsSR5a7HwiNMxHdpQtPBA093OyGqRaVGmMaNG0ePHj3Ytm2bZwU8wPXXX8/o0aOrLLi6QHM40JTi1ij+wSYUhxPV6ZpbbtCh9NbLnb+5vnm0urhzpZMlgC2/biLfXRfn1ql3SLLkQ5qm4bA7WPzprzjsDkIjQggMCWTP5n0c3HEIu9WOwd+PvON5XtfpDXoaNW9Isw6JtOjYzNMr7VwbZRAVpzfouXrEIDr2ac+0+97A6d4xW1TrauYj7wCuRePDHrmR+rW4llr/Wy/2JEwfjp3NMz+9QGLPVuxZsY3k/44QHBuJOT2b/Dwb2QdTSSyxbkeImlKphOmvv/5izZo1BAR4LzZMTEzk2LFjp7jq1GbPns3rr79OWloanTt35p133qFXrzPv0FqwYAG33XYbQ4YMOSf74WiahupwoqkaquJOmIICOb7/qCdhimwW53XNieRMUnclodPraHtZ10o/d8reY/z6wWIAmndvSfNu0vqhJtkKbRzYfgiDn4HdG/ew7tcNZW7jL0tE/Qi6DehMxz7tadW1Bf7SCLlOS2jZiLd/n8HRfUfZvHIrS+d7r+n49+/t/Pv3di67+WKGjav8dER1CosO59pHhvLz298DkJOeTesBndizYhspO47Q9rIumNOzUVWNwjwbWVv+o363Tqe/aR13uqUxv/zyy2kXZ4uyVSphUlW1zNX1R48eJTS0YqMUCxcuZPz48cyZM4fevXsza9YsBg0axJ49e4iJiTnldYcPH+aJJ544p//SNUUBd0uUohEmv2AT6Ttdi70b9+1Q6reootGlJt1bERJduWmWnPRs5j7+AQCtL2jLTU/fWtmXICpA0zT2/3uQtb/8w8Y/tmC1WMs8L6xeGJqi0iCxAYmtEwiPDic0IgQNCAkPpn2vtp51LkKAq4J5YtsmJLZtwg0PuhYF2212XrzrVdKTMwBY/vVKln+9EoBuF3fhrqeH16rpus6XdfEkTB+Pe58nFjxNqwGd2LvqX3Yt30rXQV1I3byPwkInSX9uk4TpDE63Y65hw4Y1F8h5pFIJ0xVXXMGsWbM8i8t0Oh0FBQVMnTrVqy9MecycOZPRo0czatQoAObMmcPixYuZO3cuEydOLPMaRVEYPnw4zz//PH/99Rc5OTmVeRk+pymu0SVNUT2Lvv2CTCStcW0jjmnXxOt8a76FA2t2AtDuiu6Ves7CfAsLX5gPuLb1Dn70ehnariaqopKVepw1S/4h9XAq2/7eXmpBNkCHPu24YFAvmrVPJCI6XHapiSoRYAzgxS+nYMm3MPHGqV4J+uaVWzm08zDjZjxE/Emj2L6i0+u5dtxQfn7re1e1+P0p9L7jUg6s3YlidxLRPIHUzfuw2xTsZgcFKWmExJ99/bnzVYsWLXwdwnmnUt+ZZ8yYwZVXXkm7du2wWq3cfvvt7Nu3j+joaL788sty38dut7Np0yYmTZrkOabX6xk4cCBr16495XUvvPACMTEx3HPPPfz111+VeQm1gup0ekoKFI0w2fKLv6nVa9HI6/y1n/2O4nASEh1GbKuK/4ZgL7Txxu3TPV/f8NQtmIJrz2+Y5zJVUdm7dR9rf1lP8v5jZGfmYM41lzovwBRAj0u70u+aC2jesRkOu/OcraMjzg1BoUG8/dvrHNmdxPw3FpLYpgnrfttAdkYOz414hWYdmnLL2Otp1qGpr0Ol82Vd+fmt7wH45LE5PPPTCyR0bsbhDXtZ98UfNGkRS86RdAoK7KT+vZGWN1/r24BFnVKphCkhIYFt27axcOFCtm3bRkFBAffccw/Dhw8nMLD83byzsrJQFIXY2Fiv47GxsezevbvMa1avXs0nn3xS7gJdNpsNm83m+TovL+80Z9cs1wiTiqoU12HKPVZcCdhQYqRB0zQOrXdVYm5zWddKjQotfvdHAPR+Bu6d9QAxTWLPcIU4FU3TOLr/GFv+/Jfdm/aQlpRRqihkkZZdWpDYpjGtu7akdbeWGAOLG7RKsiRqSpM2jXn6oycBuGhIP1665zVUReXg9kNMf2AmD75yL10v6uzTGHU6Hbe/MIIvnv0/AI78d4gWF3bg8Ia9FOaYiWrdhJwj6TjsCgXpOT6NVdQ9FU6YHA4Hbdq04eeff2b48OEMHz68OuIqU35+PnfeeScfffQR0dHl2/Exbdo0nn/++WqOrHJcbVFUtBKzNDlH0gFoN9S7lEDWoTTP55VZ7H3434Ps+PM/AAaNvkqSpUrQNI1DO4/w5w+rWbPkn1KPB4UE0qJzc/z8/QiLCqXrRZ1p2q5JrVonIgRAoxYNee+PN9n+z07efcq1nvH9pz8mvlkcE+c8jinIeIY7VJ9mXYunkuZP+Yynv3+OiPh65KQcZ838FcRGB6HT6cg/Xog1NwdTeITPYhV1S4UTJn9/f6zWsherVlR0dDQGg4H09HSv4+np6WV2UD5w4ACHDx9m8ODBnmNFfWb8/PzYs2cPzZt7V8WeNGkS48eP93ydl5dHQkJClcR/tlSn0zMtB2AwBpB12JUYRbfyjnHDgpUAhMVG4F/BUQm71c7Pb/8AQKO2CdIjroJsVjsblm1i1Xd/eVXN9jf6075XW1p0akaT1o1p3rGprD8S5wy9QU+nvh14/n+Tmf7ATAoLCkk5mMojVzwBwJDR13L1iCt8ssZx1IzRzHviI1RFJTcjh76jrmDJy67lHgH1InCcyMVuVUj/ZxtNrhhQ4/GJuqlS393HjBnDq6++yscff4yfX+V/QAQEBNC9e3eWL1/O0KFDAVcCtHz5csaOHVvq/DZt2vDff/95HXvmmWfIz8/nrbfeKjMRMhqNGI2++23pdDTFieosXvCt6vSoTgVTeDDBMcX9klRVJW236wd160u7VPh5Fr7wP3LSswmrH85tz42oktjrgvTkDFZ9v5o1i9dhKSgEwC/AjxYdm9Hnqt50u7iLTKmJc15cYgNm/PAyP3+6lF8+/81z/IePfiY7I5tbH72pxn8RaNg6AYOfAcWpsOHnfxh49yCCo0Ixn8hHFxwEJ3Kx2xWydibRRDo5iRpSqf8FGzZsYPny5fz222907NiR4OBgr8cXLVpU7nuNHz+ekSNH0qNHD3r16sWsWbMwm82eXXMjRoygYcOGTJs2DZPJRIcOHbyuj4iIACh1/FygOhxoJdYv2e2uUg31WiV4/VaX7k6WAoKMtBvYrULPsWfdLo78dxiAa8Zeh9GHQ+3nAofdwfZ1O1n1/Wp2ri9eRxcdV48B119I36svIDTi/G/LIOoWf6M/198/mMtuHsBXby/iyJ5k0pMz+POHv/nzh78BaN+rLeNmPlRjMd309K0sfGE+6777mx7X9KL/fVezdPpCMvalUC/UD8WhUJhvQ1VVaQ4takSlEqaIiIiz6sdS0rBhw8jMzOTZZ58lLS2NLl26sHTpUs9C8KSkpPP2P4Nit7mKVroTpsJc1yjGydNxB9a6Sgkk9mzttRD8TCx5FpbM/gmA9hd1lOKUp5FyKJVfv1jG+t83obiLhup0Ojr0acfF1/enfe+25+2/QyGKhEWFce9zdwGwacUWPpgy1/PYjvW7uO/Ch3nn9xleGxeqS4vuLfEL8Mdpd7Di/5Yx5LEb8A8MwJpvIdPhT1RoAHk5Nk5s30N0p/I3cRU1qyKFqT/99FPPYEkRo9FYahnQrl27mDBhAqtWrcLpdNKuXTu+/fZbGjc+u0b0Z1KpXnLnstrUSy5757/k7DpMbkoehfl2so+7EqbLnhuFMTQIAMXh5MuHZ2O32Lhq0q3EtS3/P4jv3/iG7Sv/JTqhPvfOegA/qQjtoWkaucfz2LdtP1tWbWPjH1s8jwWHBXHhtX0ZMLQf0fG1t52EENUtLSmdP3/4m2ULV3gdn/XLqwS5v0dVp01L1vPL+z8D8Mi8x9n/539s/X4NAPUiA/H309OsWyPaDB9S7bGIilu4cCEjRozwKkz99ddfn7Iw9aeffsq4cePYs2eP55hOp/PaSX/gwAF69erFPffcw2233UZYWBg7duzgggsuOG2x66pwVhPTmZmZnhfWunVr6tevXyVB1RWqw+GpwaSUKGhoLPGN6Oi/h7BbbARFhtCgdfkXq+9Zt4vtK/9Fp9cx+NHr63SyZCu0se7XDezbdoDc47ns3brfMw1akjEwgJETh9Pt4i7oDTKaJESDxrHc8vAN3PLwDcye9CHb/nKtIX30qgkEhQTy2g8vEWCsvnV8nQd29SRMX079nPtnj/UkTFarE/+QAE4cOV5tzy/OTmUKU+t0ujI3fRWZPHkyV199Na+99prn2MmbvapLpX4qmM1m7r77buLi4rjooou46KKLiI+P55577sFisVR1jOct1e7wTMkVTctFJnr/Qymq7N3sgrbo9OXbrVJyKq7P9f1o2KrRGa44P6UeSeOzafN5+PInmD9jIet/38iezftKJUuNWjTkiXfH8fZvM+hxWTdJloQow5hp9zH8iWGery0FhYy97HHW/76R6pqo8Avw57JRrlXdmUkZ7PjzPy59ZCgANqerrZTV4qAwq3x9GM8HmqZ5dljX9EdF/p6LClMPHDjQc6w8hakLCgpo0qQJCQkJDBkyhB07dngeU1WVxYsX06pVKwYNGkRMTAy9e/eusV6ylRphGj9+PKtWreKnn36iX79+gKug5COPPMLjjz/O+++/X6VBno80TXPVYXKPMBX9EA8oMbpkL7SRvHU/AM37tCv3vX/9cAnmnAKiE+pz0e2XVG3g54CD2w+xdP4ytq3+z+s/eGLbJtSPr0fnCzvSpHVjQiKCCQ4LPs2dhBAlDRh6IT0HdueNh98med9RAD5+/jM+f+1LZi6eXi2NoHtd14dV8//AaXfy3etfM/LVewgINmE3W7E7VPzsCukbt5F4Zd34XqcpCseW/nbmE6tBwyuvQFfOnfGVKUzdunVr5s6dS6dOncjNzWXGjBn07duXHTt20KhRIzIyMigoKGD69Om89NJLvPrqqyxdupQbbriBFStWMGBA9ZaYqFTC9O233/LNN99w8cUXe45dffXVBAYGcsstt0jCVA6aorjboqheI0wlp+OObNyH4lAIj4siqkn55mb3rN3FjlV1byou93gev32xjN9PWmvR+cKOXHLjRbTp1kpGjoSoAkEhgUyZN4GjB1J44+G3MOdZsBXaGXPpeMbNfIj2vap2AbbBz8AD7z/Cu/fMBOCHNxfRrV97dv+xlUKrA2OAgewDqSRW6bMKX+jTpw99+vTxfN23b1/atm3LBx98wIsvvuipuzhkyBAee+wxALp06cKaNWuYM2dO7UyYLBZLqawRICYmRqbkyqlodElVVDSlOGEylRjxKNod17xvu3IVj8vNyOHrV1zF3erKVFyhuZDfvvyD3xf8gd1qB1wF+S4Y1ItBt19GXKI05xSiOjRqHs8bP0/jgYvGeY69Nf49Hpp+H10u7FilzxURE0G/my/i76//JCctm4RuLdn9x1asNgVF1Sg4bkFRFAwGQ5U+b22kMxhoeKVvik/pKvD+VrQwdVn8/f3p2rUr+/fv99zTz8+Pdu28Z1zatm3L6tWryx1bZVXqV+4+ffowdepUr61+hYWFPP/8817ZoTg1VXG4RpkUd9HKk0aYLDkFpO44ArjWL5XH0g8WA1CvUfR5PxXnsDtY/tVKJg97gcWfLsVutdO4VQI3PTSUN36axl1PD5dkSYhqptfr+XD1O7zy9XN06d8JgPcmfsiWVduq/Lkuuu1iz+efTZ7nmW632ZxYC53k7NxziivPLzqdDr2fn08+KlL1vWRh6iJFhanLmycoisJ///1HXFyc5549e/b02kUHsHfvXpo0aVLu2CqrUiNMb731FoMGDaJRo0Z07uxq1rht2zZMJhO//vprlQZ4vtKcitfIUtFSm4AwV8J06J/daJpG/eZxhMVGnuo2Hvs37mWfuznvlQ9ce95OxaUeTmP1z2vZtGILJ9KzAYhtHMMN919Hl4s6+aSNgxB1XXRcPe6afAePXvkUAO9P/pgPV79Tpc9h8Pdj6BM38f2Mb1zP2T6R4zuPYLMrOBwKmf/uo17H8q/1FNWvIoWpAV544QUuuOACWrRoQU5ODq+//jpHjhzh3nvv9dzzySefZNiwYVx00UVccsklLF26lJ9++omVK1dW++upVMLUoUMH9u3bx/z58z2Lt2677TaGDx9OYGBglQZ4vnK1RXF6FnsXbdwqGmE6sHYXUL7F3orDyW8f/wJA76F9adq5WTVE7FtJe5NZOn8ZG5dv9hwLrxfGdfdcTd+rL8Dgd/4PxQtRmwWFBHLf86P4cOo8ANb88g99r+pdpc/RYUAndv61nb3/7CbnRD4AdoeCpmrkHMuu0ucSZ6+ihamzs7MZPXo0aWlpREZG0r17d9asWeM1BXf99dczZ84cpk2bxiOPPELr1q359ttvufDCC0s9f1WTwpU+UpiRStaGreQczcF8opATWa6ilZc+OxK71cE3T36ETqfj1rcfIjD89Du51i5azfJ5vxEcEcJDHzyCMchUEy+hRqQcSmXRnB/59+/tnmPxTePod+0FXDTkQunlJkQtM3/GQlZ971pP0qh5PGNfe4DImIgqG/3NSs5kzkOu0aumiTHYci1EhhuJiDDR94nbMIb7tiCxOH9VaoRp2rRpxMbGcvfdd3sdnzt3LpmZmUyYMKFKgjufqU4HqntarmTKGhASyK4Vrvn/+PZNzpgs5R3PY/k81xbTS0deft4kSzlZufz0yRJWL17rGYVr2aWFa1vzZd1k6k2IWuq2x27GYXeyZsk6jh5IYeKNz2IMNPLYrLE0a5941vePTqhPvUbRHD+ahWYyQq4Fm03BblNIX7+FxpdX704pUXdVatH3Bx98QJs2bUodb9++PXPmzDnroOoC1VFcg6loHVNAsAmdXs+WRa5ml836nnk67u27ZgAQEhVKp0s7V1/ANcRhc/DjJ0t45tYX+OunNWiqRteLOvHCF8/w5Lvj6DWwuyRLQtRieoOeu54ezg0PFrcrsRXamH7/G3z1ziLys/PP+jla9mgFwOHdyWiahsXqxOlUObE/5azvLcSpVCphSktL86xaL6l+/fqkpqaedVB1gVqi8a5aomjl8SPFWzCbdD99s9zD/x3yfH7jhFvQnePNYQ/uOMxL97zGz/N+wW6106xDU5567zEefGU0DRqXLmMhhKi9rhw+kDmr3qLHZd08x5YtXMFzI6addWXwi4Zf6vnc6nA1y3Y4VfIzzZ5aPUJUtUr9hE1ISODvv/8udfzvv/8mPj7+rIOqC1SbzT3CpHqmnExhwRzdehCA0JgIAs7QEfyvL11FGpt1bU5Cu+rfUlldzHkWFr79La8+OJPUw2mERYVy3wt3M+H9x2jR6fxbwC5EXaE36Lnv+VG88fM0WnV1/QKYn53Pb18uP8OVpxdgCqBVb9csh+re8FFodWIrdJKz98DZBS3EKVQqYRo9ejSPPvoo8+bN48iRIxw5coS5c+fy2GOPMXr06KqO8bykOEr3kTOGBpG8zfWfvdM1p99dcuS/Qxz57zB6PwPXPDy0usOtFopTYcW3f/LMbS+w/KuVaKpG70E9ef5/k+lxaVeZehPiPBEaEcIT7zxCYIhrF/W37/3AfRc+zJHdSZW+Z68hrlo+Voerx1mh1YnV6iBra9ltN4Q4W5Va9P3kk09y/PhxHnroIex2V3Vlk8nEhAkTmDRpUpUGeL7SHA7X6FKJWkz6AH8yD7qmNBudoTTAnwtWAtDl8m6E1w+v1lirmsPuYOV3f7H6p7WkHk4DIC6xAbc8fAPte1dtWwUhRO0xZvp9zBj7lufrl+99nevuuZprR11V4Xs1bteYwNAgCvMt2PU6jP5+FNoUspOPV2XIQnhUKmHS6XS8+uqrTJkyhV27dhEYGEjLli0xGk8/hSRcXN2mlVKLvvNzzKBBVOMYgqNCT3l90o7DHPn3EHo/A/1u6l9TYZ81VVH557cN/PDxYk/RyeDwYIbcew39B/eVWkpCnOdadWnBW7++xsK3vmXNkn8A+PGTJdSLq0efK3tV6F56g4FWvVuzbdkWghvVx5mejd2uYMmzYzcXEBAcUh0vQdRhZ7VKOCQkhJ49e9K4cWN++eUXdu3aVVVxndc0xQmq6uojpxW3RclJcyURZxxd+nIlAF0GdiU8JqI6Q60yh3Ye5qW7X2Xey//zJEuX33opLy94louv7y/JkhB1RGBwIHc9fQcT54z3HJv30ud898GPFb5X6z6uEenjaSfQNA2HQ8VmdZDxT9W3ZhGiUgnTLbfcwrvvvgu4esj16NGDW265hU6dOvHtt99WaYDnI83pRFVUVKdrN4emamiaRtreYwAkdGl+ymuTdx7h8LaD6P0M9L35ohqJ92z99dMaXh/zFkcPpBAYEsgNDw7h3eVvcPPY6wlyVzYXQtQtzTo05e3fZni+/uXz31n+1coK3aNp5+b4mwIw55hRAFXTsNtVju9LrtpghaCSCdOff/5J//6uqaDvvvsOTdPIycnh7bff5qWXXqrSAM9HquJEU1TPyJKqgVMp3gpbv3npkg1FikaXOl/WhYhaPrpUkGvmrfHv8fmrX+J0OOl6USde+WoqVw4fSIBRKnQLUdeZgoy88fM0z9dfvbOIYwfLX0vJ3+hP824tAMjIMbtrMjnIyyiQ8gKiylUqYcrNzSUqKgqApUuXcuONNxIUFMQ111zDvn37qjTA85HmdHqa72qaax2Torh3ygWbvHrrlLR3/W4ObT2ATq+nXy0eXVJVlRXf/snUO15mx/pd6HQ6ht53Lfe/dA/BYaevXC6EqFtCI0J47XvXL9qapvHGIxVr2tv2wvaez802B5ZCJzaLk/xDR6o0TlE5s2fPJjExEZPJRO/evVm/fv1pz8/JyWHMmDHExcVhNBpp1aoVS5YsKfPc6dOno9PpePTRR6sh8tIqXYdp7dq1mM1mli5dyhVXXAG4GueZTOdHa47q5Gq8q3iVFNDcW+hjWjY85XUrPlsGQOvebYiIjaz+QCshJyuXtx5/ny/f/Jr87Hx0Oh0Pv/4AV48YdMpEUAhRt0VEh/PsZ64d1gU5Bez4p/zrYdv37+j53OEeqS8sdJC+aUfVBikqbOHChYwfP56pU6eyefNmOnfuzKBBg8jIyCjzfLvdzuWXX87hw4f55ptv2LNnDx999BENG5b+ubhhwwY++OADOnXqVN0vw6NSP8EeffRRhg8fTqNGjYiPj+fiiy8GXFN1HTt2PP3FAtXpRHWqXjvkdAbXouegyLJ3duRm5JCZ5PpH1uem6u/KXBn//r2dF+6azq4Nrjool996KW//9jodLjhzixchRN3WqHk8Qe46TZ+/9iU2q73c197+wggA7A4FTdOw2RUy96Wf4SpR3WbOnMno0aMZNWoU7dq1Y86cOQQFBTF37twyz587dy4nTpzg+++/p1+/fiQmJjJgwAA6d/Zu+1VQUMDw4cP56KOPiIysucGDSiVMDz30EOvWrWPu3LmsXr3aM3LQrFkzWcNUDqrDgaaonrICAJr7PTxVwvTHZ78DYAwy0rBVo5oJtJzsNjtfzPyKdyd8QEFOAY1aNOT5/03m5rHXYzxDtXIhhCjy4pdTiIyJ5ER6NqsW/VXu6xLaNkbvZ0DRNBRVw+5QsBQ4cJgt1Ritb2iahuJw+OSjIi1t7HY7mzZtYuDAgZ5jer2egQMHsnbt2jKv+fHHH+nTpw9jxowhNjaWDh068Morr6Aoitd5Y8aM4ZprrvG6d02oVB0mgO7du9O9e3evY9dcc43X12FhYWzdupVmzaS9RUlKGX3kiv4Mjixdf0lxKuz48z8A+t1Su9YuHT2QwsfPfUrKIVfBzYHDLuH6+wfjH+Dv48iEEOea0MhQBt99Ff83/Qu+ee97WnVtQWLbM7d98jcF0LBVQ5J3JlFgcxDgb8Buc3Ji115ie3Sp/sBrkOp0svWdL33y3F0evg2Df/m+t2dlZaEoCrGx3n1AY2Nj2b277GrsBw8e5I8//mD48OEsWbKE/fv389BDD+FwOJg6dSoACxYsYPPmzWzYsOHsXkwlVOuikrNtsHi+Um121+hSiSrfirvEQFkjTHv/cf3jCo4Iofd1fWou0NPQNI2l85fxyujXSTmUSlhUKI/MeJBbHr5BkiUhRKX1ubIX0XH1AJg/Y2G5d7sV9dO02ByoqmukKXu/lBc4l6iqSkxMDB9++CHdu3dn2LBhTJ48mTlz5gCQnJzMuHHjmD9/vk/WS1d6hElUnuqwlxhhch2z2xwABEWUTpg2L3Vl0l0u74bB3/d/ZeY8C+8//RF7t+4HoEOfdtz19B2ElTE6JoQQFWHwMzBhznieHDKZI3uSWf/7Ji4Y1POM1/W8tjdrvnFN4zkUhdw8G/lpudUdbo3T+/nR5eHbfPbc5RUdHY3BYCA93XstWXp6Og0aNCjzmri4OPz9/TEYigsZt23blrS0NM8UX0ZGBt26dfM8rigKf/75J++++y42m83r2qom25Z8QLW7+8i5kyZN03AWJUwnJR0nUo5zaOtB0OnoOqh7WberUelJGUy//w1PsnTrozfx8GsPSLIkhKgy4fXCuP7+wQAsfPtbbIW2M14TWi8M3LuNC6wOHE4VS15htcbpCzqdDoO/v08+KtIQPSAggO7du7N8+XLPMVVVWb58OX36lD1T0q9fP/bv3+81qrh3717i4uIICAjgsssu47///mPr1q2ejx49ejB8+HC2bt1arckSSMLkE6rT4WqL4k6YFPe0nMHfgDHEe5hx89KNALTo3sLnpQR2btjNtPtmkJ6cQWRMJFPmTeDSmwZU6D+REEKUx2W3XExUbCTmXDMPX/4EDvcvladzwdC+QHEh4MICO077mZMtUT3Gjx/PRx99xGeffcauXbt48MEHMZvNjBo1CoARI0YwadIkz/kPPvggJ06cYNy4cezdu5fFixfzyiuvMGbMGABCQ0Pp0KGD10dwcDD16tWjQ4cO1f56qjVhkh+kpWmahuZUvNqiFK1jCowI8XrPnHYH25ZtAaDbVWcekq4umqbx7Xs/MOux2VgKCmnWoSmTP36ChJa1a7eeEOL8EWAM4IrbL/N8Peay8RSaTz9i1P1qVwNfh6KiahoWi5O8A4erM0xxGsOGDWPGjBk8++yzdOnSha1bt7J06VLPQvCkpCRSU1M95yckJPDrr7+yYcMGOnXqxCOPPMK4ceOYOHGir16Cl2pdECOLvkvTlOI+cprmvVPu5B1yu9bspDDfQlh0OC26t/JFuGiaxlfvLPL0eOpzZS/ueOpWWdgthKh2l944gAVvfuP5etygp3hm7lM0bpVQ5vkRsREYg03YzFaO5xcSHOhP9t4kotq2rqmQxUnGjh3L2LFjy3xs5cqVpY716dOHdevWlfv+Zd2julTrCNMvv/xSZoXOukxzOkFR3GuXXMeK2qKcvEOuaDquyxXd0BtqfvbU6XDy7oQPPMnShYP7cNfkOyRZEkLUmA9Xv8PDrz/g+XrG2LdPea5OpyMozNXQ26Go2O1O8o4dr/YYRd1QpT+Fk5OTufvuuz1fX3jhhRiNUriwJFVxojq8q3zjToZK7pDLPJJB8o4j6PR6ulxR84u9rRYb7074gP/WuNoL3DnhNkZMuF2mWYUQNa5jn/ZcecflAFgtVu678GEc9rLXNA1/caTnc5tDJf94QY3EKM5/VZownThxgs8++6wqb3ne0ZyuPnJeVb7dSUhQVHHCVFRKoFXv1oTVC6vRGPOz85k57m12rt9NgCmAB1++l/6D+9ZoDEIIUdL19w9mwNDitlA/z/ulzPMiYiNJaNcYAJtTIT/Xhuo484JxIc6kQmuYfvzxx9M+fvDgwbMKpi5Qne41TCWKVhYNNBWNMNmtdv5dsQ2AblfW7GLv42knmPXYbNKTMwgOD+bh1x6gWfvEGo1BCCFOptPpGP7EMLJSjrNj/S5++fx3Lr/1MkLCg0ud27hDIsk7k7A7FXJzbZhTUghtcuaK4UKcToUSpqFDh6LT6U67mFumbE5PdTrQ3CNMJ1f5Llr0vfOv7djMViIaRNKsS821lTl6IIW3H3+PnKxcImMiefTNh4hrUnaBMSGE8IUHp93L2MseB+CJ655mzqq3Sp3TpEMif3/1J3angqppZGzdIwmTOGsVmpKLi4tj0aJFqKpa5sfmzZurK87zhma3e/WR0zTNU1+kaNH3z29/D0C3K3ug09fMYu9/ftvACyOnkZOVS3zTOCbOeUySJSFErRNgDODmsdcDoCoqq75fXeqcRm0bo9PrUFQNq00WfouqUaGfxt27d2fTpk2nfPxMo0+iuPFucZVv1396cCVMeVnFpfw7X9a1RmJa/vVKPnnh/wBo3rEpT84eR2SMb4tkCiHEqVxy0wDP5/NnLCz1eIApgPCYCAAKrHZyM/JrKjRxHit3wvTvv//y5JNP0rfvqRf/tmjRghUrVlRJYOcrT+PdEkkTQECwCb8Af06knvCcG1xGX7mqtvR/v7PwrW8BaNWlBeNnPUxwWOk1AUIIUVv4+Rl49rPiCtFJe0s32S3qjOBUNHKyrTjt9hqLT5yfyp0wde3aldatW3PllVfSrFkzjh8vPcQZHBzMgAEDyrhaFFEcDlRF8Sz6VjxFK13JUU56NgDNujav9lhWfPsni+a4FvJfdvPFPP7OI/gbpcaSEKL2a9Q8nl4DXSVXli0s/Yt6p0u7AKCoKjabQubGbTUZnjgPlTthioiI4NChQwAcPnzYqzmeKD/V4UBzF6p0JUzu6Tj3aFJueg4A4dU8Jbb8q5V8+ebXALTq2pJbHrlBFuwLIc4pA2+9FIB1v27geNoJr8fimscDrgKWVpuTrD2lR6GEqIhyJ0w33ngjAwYMoGnTpuh0Onr06EGzZs3K/BCnpjmdKO62KK71S0VVvl075IpGmCJiI6rl+RWnwpxnPmHh265puCtuu4zH335YkiUhxDknsU1jYhvHADDppqlexSzrNarn+dxic5J1WBZ++8Ls2bNJTEzEZDLRu3dv1q9ff8pzL774YnQ6XamPa665BgCHw8GECRPo2LEjwcHBxMfHM2LECFJSUmrktZS7rMCHH37IDTfcwP79+3nkkUcYPXo0oaGhZ75QeGiaiupwoDrV4hpM7seCTpqSK5p/r0qKU+G9pz/yVO++4vbLuPHBIZIsCSHOWf0H9+Wb2d8DMP3+mUyZNwEAvcFASGQIBdkF2B0KFousYappCxcuZPz48cyZM4fevXsza9YsBg0axJ49e4iJiSl1/qJFi7CXWGt2/PhxOnfuzM033wyAxWJh8+bNTJkyhc6dO5Odnc24ceO47rrr2LhxY7W/ngrVYbryyisB2LRpE+PGjZOEqYI0p4KmqF4NdzWduy1KUcKUkQNU/QiTqqi8MnoGyfuOAnDPsyPofUXNFsUUQoiqdsVtl/HnD3+TcTST46nH0TTN80tgt6t68ucXK1wFLHNsPo607pk5cyajR49m1KhRAMyZM4fFixczd+5cJk6cWOr8qKgor68XLFhAUFCQJ2EKDw/n999/9zrn3XffpVevXiQlJdG4ceNqeiUulSryM2/evCpNlioyZLdo0SJ69OhBREQEwcHBdOnShc8//7zKYqlOmuJEdShoSom2KFrxom+nw0n+cdf216oeYfr2/R9I3ncUnU7Hgy/fK8mSEOK8MfEDVyFLS0EhG5YVl75p06cd4GqRoiiKT2Krapqm4bQ5fPJRkbJBdrudTZs2MXDgQM8xvV7PwIEDWbt2bbnu8cknn3DrrbcSHHzqndu5ubnodDoiIiLKHVtlVWiEqTpUdMguKiqKyZMn06ZNGwICAvj5558ZNWoUMTExDBo0yAevoPzUEn3kitbMO53Fi77zMnNB0/A3+hNURrn/yvrrx7/5fcEfAFx3z9V0HdC5yu4thBC+FhIeTFxiA1IPp/Hx85/R/ZKuGPwM1G9c33OO2ebEmmfGdI6XTVHsTr5/7D2fPPfQNx/Cr5w7qbOyslAUhdjYWK/jsbGx7N69+4zXr1+/nu3bt/PJJ5+c8hyr1cqECRO47bbbCAur/p6rNVNG+jRKDtm1a9eOOXPmEBQUxNy5c8s8/+KLL+b666+nbdu2NG/enHHjxtGpUydWry5d7bW20RQnmlP1qvLttDsBCIoK9axfCo+JqLJ1Rbs27mH+G18BMPjuq7jmriur5L5CCFGb3PDAdZ7P//ppDQA6vR6DvwGAQpuTEwdqZnGwOHuffPIJHTt2pFevXmU+7nA4uOWWW9A0jffff79GYvLpCFPRkN2kScUFyCoyZKdpGn/88Qd79uzh1VdfLfMcm82GzVY8d52Xl3f2gVdSUePdkq1RAHR6HaawoCpfv5R6JI0PnvkEVVHpdXkPrh11VZXcVwghapvOF3YksW1jDu9KYuWiv7j4+v4AdB3YhY2/bMLuVEjffYT4ri19HOnZMQT4MfTNh3z23OUVHR2NwWAgPT3d63h6ejoNGpy+7ZbZbGbBggW88MILZT5elCwdOXKEP/74o0ZGl8DHI0ynG7JLS0s75XW5ubmEhIQQEBDANddcwzvvvMPll19e5rnTpk0jPDzc85GQkFClr6EiVKfDvejbe+F3YHgwer2+SnfIFeSaefepD7AUFNKsQ1NGTrxddsMJIc5rwx65EYCUQ6lY8i0ANOnsKgKsahonDqef8tpzhU6nw8/o75OPivwMCQgIoHv37ixfvtxzTFVVli9fTp8+fU577ddff43NZuOOO+4o9VhRsrRv3z6WLVtGvXr1yrhD9fD5lFxlhIaGsnXrVjZs2MDLL7/M+PHjWblyZZnnTpo0idzcXM9HcrLvipepVncfOfei76Iq30U1mIqLVkac1fM4HU7en/wxmceyqBcXxUPTRksFbyHEea9Zh6aEur+fvvW4a5omvmUjABRVI+tols9iq4vGjx/PRx99xGeffcauXbt48MEHMZvNnl1zI0aM8JphKvLJJ58wdOjQUsmQw+HgpptuYuPGjcyfPx9FUUhLSyMtLc2rHEF18emUXGWH7PR6PS1atACgS5cu7Nq1i2nTpnHxxReXOtdoNGI0Gqs07so6ufGueoq2KGczwqSqKi+OepXUw2mYgk08/OoDhEVK+QchxPlPp9PRvENTtv71L6mH07BZ7YTWC0MHaICt0OFVdkBUr2HDhpGZmcmzzz5LWloaXbp0YenSpZ5ZpaSkJPR673GbPXv2sHr1an777bdS9zt27Bg//uhq59WlSxevx1asWFFmDlCVfDrCdDZDdiWpquq1Tqm2Uu12Vx851buPXFENplzPGqbKJ0y/zl9G6uE0dHod979wN/HN4s46biGEOFc88PI9RESHY7VY2frnNvQGPSaTa2zAanNgLyj0cYR1y9ixYzly5Ag2m41//vmH3r17ex5buXIln376qdf5rVu3RtO0MpfZJCYmurtklP6o7mQJasGUXEWH7KZNm8bvv//OwYMH2bVrF2+88Qaff/55mXOdtY1it6M6VIpKWZRsi+KwOSjILgAqv+h737YD/PDxYgAuueEi2vdue9YxCyHEuUSv19OxbwcAPnnh/wAICXHNMticKtlJGT6LTZzbfF6HqaJDdmazmYceeoijR48SGBhImzZt+N///sewYcN89RLKzdNHroy2KEWjSwGBRkwhgRW+d35OAR8996lnR9ywcTdWUdRCCHFuadO9JX/9+DcAh3cnERZuIjPLjM3hJH1XEg3aJ/o2QHFO8nnCBK4hu7Fjx5b52MmLuV966SVeeumlGoiq6qn2U/SRiwjxarpb0fl1VVWZ9/Ln5GTmEJsQwx1PDpM5eiFEndX9kq58NPVTAP78YTURoa5fQp2KRtbhVB9GJs5lPp+Sqys0TUV1Oj0LvgEUd5Xv4MhQctw75Cqzfun3BX+wfe1O/AL8uO+FUZiCTFUWtxBCnGv0er1nScLqn9bSoLGrR5miqeSmZvsyNHEOk4SphmhOBdWheFX5VhV3W5TIEHIzikeYKuLA9kN898FPgKsGSYJ7C60QQtRll940AIAAUwCRcZGunXIa5GUXVKgnmhBFJGGqIapSso9c8Q45P6M//oEBlRphKsg188GUuaiKSo/LunHRkH7VEboQQpxzOlzQDr1Bj91qJzk9j6BAVy06S6Eda67Zx9GJc5EkTDVEczpQncUjTMU75ELQ6XRefeTKdT9N45XRM8jJzKF+w2jufOpWWbckhJuiqKQmp7N9025Sk9M5sj8Zh93hfY5TYc9/+/l3w05yT+RxeF8yO7bsodBiJSvtOIUWq4+iF1VBp9PR45KuACyY9wdhIQEAOJwqGXuP+jI0cY6qFYu+6wJNUdCcahlVvouKVuYA5R9h+nvxOrJSXFVr73vhbgKDK76zTohzjaZpOOwOTmTmkHTwKEkHjrF3xwEACvLM5GXnk5udR35uAXabd4Jk8DMQVT8Sq8VKVP1IjuwvX9X/pq0ac+EVvel7aU/qx0UTVI7/a4pTITc7j9zsPA7sOsyqpWvxD/Cn/xUX4OdvwJxvIcDoT8/+XfEP8McUaCQjNYuUI2mkJKdhzrdQkGcmPCqMzj3bERwaTGzD+vJLUQX1HtST9cs2ARASFACYsTmdpO04TJNebXwbnDjnSMJUQxSHq49c6SrfodgsNgrdfY/Ks4YpJyuXr9/9DoAbHhxCk9a+648nRFXRNI20YxlYLVaCgoNQNZUTGdns23mIQ3uPkHY0g6QDx8jNLl8Dbf8Af6KiI8jKOIFOp8PpcJKZ6volIz/XVfPMaDJiNPmTl1OAKdCIKdBIzgnv+x/am8ShvUl8/u7X+PkZCAwORFEUmrRIoGHjBjjsDvbtOkTKkTRMgUZUVS2VrBVZt2LjWbxDEBgcSKG5kHoxUYSEBWMKNBIZHcGDk+4iNDyE3Ow8dDodRmMA4VE105C0NutwQTvP59lmV8FKu1Pl8Ma99B51pa/CEucoSZhqiOZui1Jc5bvkgu8cAAJDAzGWY4fbl29+TWFBIU3aNObyYZdUZ9hCVKkTWTkc2HWIpAPHyDmeS2hECIUWK8kHU9i1dQ/Zx3PLdR8/fz8aJcbh5+9H01aNadysEaqqEh1bj+jYSKJj6xETXx+DQe9Z4Jt8KIUdm3cTHBqE1WKlcbNGtOzQHINBj9Vixd8YgF6vIy8nn+CQIAoLrRw7nMY3835i9797OZGZg9OpeJKtXVv3smvrXq+4rIXeHQcCg0w0a5NIdlYOKUlptGjbFJvVRmpyOk6ncsrX1+uiboSEBXPsSCp7/tvvOV7o/qF/POMExzNOeI6XlYj5+RkIiwxFUzVyTuTRuHkjLhvcH6MpgMh6EXS/sDOB5/mO2pIjcnnW4l5jVrvTF+GIc5wkTDXEabO52qIorkrfRSNMJWswlWf90qaVW9myylXuf+TE2zH4GaozbCEqpWi06MCuwxzYfdjzZ3ZWTrnvodfriIyOpGW7psQ3bkBsoxhatmtGXKMYQsKCy/1vv+iHZuNmDWncrGGZ55QsxREe6RqZCfUPoU2nFjzz5mOe9gtHD6VgtdrIy87nRGY2h/YmYQo0kdiqMZH1wtHpwBhoJNo9AuQfcPoO79ZCV/JUkFdA87ZNTznddyIzm9zsfLKzcrDb7CiKisPuYNv6HRzam8Te7QdKXeN0KpzIzPF8fWR/MnPf/MLrnKatGhMeFUbTVo0Z/sCNBIUEnTLWc9Utj9zAV28vYn/ycRpHupY8WMxW6SlXQ2bPns3rr79OWloanTt35p133qFXr16nPH/WrFm8//77JCUlER0dzU033cS0adMwmUyVvmdVkYSphqh2u1fRyuI1TKFkppWv6W5BrpkPp8wF4Ko7LqdRi7K/+QtRkxSnwtHDKa7EyJ0cHdx9hIL80juR9HodDRPj0emgXkwUUdERADRu3oh2XVvTsl1TAowBqKqKTqerNT/QimJp3Lxqy3aYAo00bdX4jOdF1Y8kqn5kqXMvvrofmqaRmpyOwWAgMjocnU7H8YxsUpJdzWfzcwv4dt5PtGjXlGNH0lBVlYN7jqAqKof2JgGwdd12Vi5Zw4ixt3DF9RfXmve9KjRuVbxkIbZeEOnHLeQXOrCcyCe4nkxbVqeFCxcyfvx45syZQ+/evZk1axaDBg1iz549xMTElDr/iy++YOLEicydO5e+ffuyd+9e7rrrLnQ6HTNnzqzUPauSTqtjBSny8vIIDw8nNzeXsLCa+89y4r+tZGzay/HkfHJzrGRmF6I4Va6dMpytK/9l/Y9rueD6fgy8e9Ap7zFr/Gx2rt9NWFQo0755Hv8A/xqLXwgAq8XK4f1HObT3iGfU6PC+JGwlpjuK+Pn7kdgygeZtEmneJpEWbZuS2KoxpkCjDyIXJWmaxn8bd3H0cApJB47y4xe/ej0eFBKIpaCQvpf15OKr+rF9827+27iTZ94cT1xCrI+irhxboY2HL38CgF6tG5KWYcHfoGfYpGEkSr/NatW7d2969uzJu+++C7i6UiQkJPDwww8zceLEUuePHTuWXbt2sXz5cs+xxx9/nH/++YfVq1dX6p5VSUaYaojqsKO4R5hKF63MAU6/4PvgjsPsXL8bgJGThkuyJKqVpmlkpGZxaM8RDu5N4vDeJA7uPUJqUnqZRf8Cg0w0a92E5m0Tad62Kc3bJJLQrCH+/vItpjbS6XR06tmOTj1di6Jvu+8GPp/9NUu+XgaApcC1VmrN8g2sWb7Bc9091zyK0WTEZnWt1Zr6zpP0HtCthqOvGGOJBF1vcI2cORSVrAMp52TCpGkajlNsKqhu/sbTTzGXZLfb2bRpE5MmTfIc0+v1DBw4kLVr15Z5Td++ffnf//7H+vXr6dWrFwcPHmTJkiXceeedlb5nVZLvZjVEKdFHTtNcFWcBAr36yJ16Su7HTxYD0LpbSzr2aV/t8YrzV35eAfu2H8RcYKF+g2hCwoIx55s5tOcIh/YlcXBPEof3JWF279w8WWR0BE1bNXYnSK7kKL5xrFeTbHFuCY8KY+yUe2jdqQW7t+2jfoN6pCSns3vbPlRVpdBi9aw/K0qWAJ5/+HXAVbJhwJV9eWjyqHKVXahpXfp3Yutf/2KxOdDpXN9/0/an+DqsSnHYHLx2s2/6qT719TMEmALKdW5WVhaKohAb6z0iGRsby+7du8u85vbbbycrK4sLL7wQTdNwOp088MADPP3005W+Z1WShKmGqHZHiSrfrtElU2gQBj8DOe4RplMt+i45unTNyFNP2QlRlqz0E+zYvJvtm3ezfdPuctcf8vMzkNCsIU1bNaFZ68YktmpMs1ZNiKgXXs0RC1+5fMgALh8yoMzHCi1W/vfe12xdt53M1ONYC62enX6KU+GPn//ij5//YsCVfZjw2iM1GfYZtevZmq1//cuJvEKMen8cikrK4XRfhyVOsnLlSl555RXee+89evfuzf79+xk3bhwvvvgiU6ZM8XV4kjDVBE1VUR3OMqt8FxYUYjO7KgpHlJEwaZrGojk/AtD36gto0711jcUtzh2qqpKRksWR/ckc3p+MOd9CdlYOOzbvIe1YRqnz68dFEx4RStqxDOw2O0HBgTRt3YSmLRvTtLUrQWrUVKbURLHAIBOjn7jT69i29TuYN+tLjh5O8UzjrVq6llVL17Lk3y99EWaZEtwLv0/kFdIwPAAUsFpsZ7iqdvI3+vPU18/47LnLKzo6GoPBQHq6d2Kanp5OgwYNyrxmypQp3Hnnndx7770AdOzYEbPZzH333cfkyZMrdc+qJN8Na4CmOFEdSqkq38GRIeS6K3wHRwTjX8ZQ584Nu9m7ZR9+/n4Mvvuqmgxb1GIZqVns2LyHnVt2s2/nIZIOHC1VA6iIXq+jWetE2ndrTftubWjfrTWR9SJqNmBxXurcqz2zvnBND1ktVoZf+qCnpcwjtz5Npx7tuOfx4T7fddeouWtnpsXmICrCRGqmGYdDQVNVdOfYVLJOpyv3tJgvBQQE0L17d5YvX87QoUMB1y92y5cvZ+zYsWVeY7FYSk3tGwyu8iGaplXqnlVJEqYaoDqdnvVLJat8B0aefv2Sqqp8N+cnAC6+oT/1GkTVXNCi1shKP8HBPYdJP5bJzi172LFlD1npJ0qd5+fv56o11LwRwSGBhISH0KFbG9p2bnle1tcRtYspyMS36+YxZ/qn/PjFr+zfeYj9Ow+x6P8WExkdwaTXx9Ghu2/akRgDjUQ3iCQzNRsF15IIp6KSl55NeFw9n8RUF4wfP56RI0fSo0cPevXqxaxZszCbzYwaNQqAESNG0LBhQ6ZNmwbA4MGDmTlzJl27dvVMyU2ZMoXBgwd7Eqcz3bM6ScJUAzTF6eol51nDVNwWJSfj1EUrN6/YStLeZExBJq664/KaDFnUMIfdQVbGCY4eSgU0jmdkc2DXIbb+s4NjR1JLnW/wM9C8TSLturambeeWJLZMID6hgRQyFT73wMS7uODiHrzxzPueauTZWTk8Nep5QsKCufeJO7hi6MU1HldCy4ZkpmZjdbiqfDsUlfQdRyRhqkbDhg0jMzOTZ599lrS0NLp06cLSpUs9i7aTkpK8RpSeeeYZdDodzzzzDMeOHaN+/foMHjyYl19+udz3rE5Sh6kG2HNOcGz5ajIPHCcr3UJ2rhWbXaHf3YM4tOcoG3/+h7439efSkcVJkdOp8NwdL5NxNJPr7rmaa0fJdNz5QFFUDu89ws6tez1FA5MPHmPvjoM47GVvFdbrdTRoFEuDRjG069qa9l1b07pDc6/q1ELURpYCCy+Me4N/N+z0Oj7ohku46Mo+dL2gY43FsuT/fuX7D3+mSYNwNJvrh3T/Qd0YMHZojcUgzm0ywlQDFIfdtXZJObnKdwg5aWWPMP3981oyjmYSGhHCQOkXd87RNI20oxmkH8tk24YdFJqtJB08yp5/93vWeJSlfgPXb7uR0RG06dSCzr070LF7W0LCgmsqdCGqTFBIENM/meJplTN++LPkZufx66IV/LpoBQAvf/h0jSROTdq4qqQfScslISICnU5HtnsNqRDlIQlTDVBtNlSna9E3lOgjFxlaomhl8Romm9XOz/N+AeDqkYNkJKGWc9gdHM/IZseWPWzftIvU5HQyUrLK3J0GrirKbTu1JLZhDH7+fjRvm0i7Lq2Ib9zA54tjhagOOp2OuEaxvPzh07wwbgYZKVmexybf94rn8yenjeWSa/pVSwxNWpdoK2MAVMjJKl+zZyFAEqYaodhsKI4SVb49jXeDPYu+IxsUJ0y/L/iD3ON51GsQxUVDquebh6i8QouVXVv38t/GXfy7cSf7th8os/O8wc9AWEQo7bq0IjzS1eC0XddWNG6egMFwbu3MEaIqNGvdhE+XvgPA+j8389MXv7Jpzb+ex1+f9C4BRn/6Daz6Rqoh4cHUiwjieI4Fh6oSgIGcrLwqfx5x/pKEqQa4Gu8qXjvk9H4GFNVd4l6nI6y+qxigzWrnx49dVb2vu+dqaYFSC1gKLOzYsof/Nu7iv4272L/rEMpJCZLBz0DLds1o36010bH1iImPpkvvDgTK6KAQZep1UTd6XdSNf1Zt5rO3F3B4n6ug6vvT5tG1T8dqqRjeuU0cf6w7QFp2Ho0jIzHbHKhOBb1slhDlIAlTDVDtxX3kPOuXIop7yIVGheLnLhB4bP8xz3W9r+hZ47EKKMgzs2PzbleCtGkXB3Yd8iS6RWLio+nYvS0de7SlY492xMTXl1EjISqh94Bu9B7QDYfdwYM3PkXKkTRuG3A/X63+GGMV1xtqEFtcpV7TNAx6PZacAkKipXq9ODNJmGqA025HVbxrMAWVKFpZcsF3yuE0ANr2bINefgDXmIzULFb/to4/f13Hvh0HSzWYjUuIdSVH3dvSoUdbYuPr+yhSIc5P/gH+3PfknTw39nUcdgfX9xrJzfdcx6hxt1XZc9RvEOH5XFFVdDodeRk5kjCJcpGEqQaoNkdxle8SbVHKKlqZeshVcyc+sfrLvNc1mqaRkpTGwT1HcNgd6HR6MtOyWLdiE7v/3ed1bsMmce7RI1eSFN1AarUIUd16XdSNkY8M47O3FwLw9Sc/0igxnn6X9ayS4quBocX3sCsKfgYDKXuOEt+uyVnfW5z/JGGqAYrdXqrKd3BkCMc9O+QiPOcWjTDFN5WEqSqkJqfzz8pNrP9zC9vW7yg1clREp9PRoXsb+l9xAX0u7UG9GKmqLoQvDLt3KN36dmLcrZMBeHPKHN6cMgeA79Z/dlbTdP4hgTRvGMmBY9k4FNc6xLR9x85wlRAukjBVM01V0Rwlq3y7yvIHRYRwYK/rP2rJEaaUQ66EKS4xruaDPQ9kpGZxcPdhdmzZw/pVm0k+lFLqnIRmDQkJC8ZutRMRFUbPi7rSb2AvSZKEqCVatmvGBz/M4KEbJ3htsLi+10ien/0UPft3rdR9jeFhRIYGAtngruBxVBImUU6SMFUzTXG6d8ipJ61hCi21hqnQXEi2u1VKnEzJlVvSwWOsXb6Bv5evZ//OQ16PGfwMtO/amt4Xd6dL7w7EN25Q5QtJhRBVL6FpQ37c9DnJB4/x0mNvcvSw65efqWNeA2DhXx8RGh5SoXsaoyKICHHtXLW7R5is5rKbVgtxMllVXM08jXcVFU0rrvIdGBFMzklFK9OOpAMQXi+M4DBplloWTdPIzy1g7/YDfPrWAu4f8jgPDH2Cz95ZyP6dh9DrdcQ3acAl1/RjwmuP8OXKD5j+yRSuv/NqmrZqLMmSEOcQnU5H4+aN+PDHNxj/4gNejw3rPxrraarml8VUL5KIUFfCZHM40TSNgnxLlcUrSps9ezaJiYmYTCZ69+7N+vXrT3v+rFmzaN26NYGBgSQkJPDYY49htRb/PSuKwpQpU2jatCmBgYE0b96cF1988ZTLLaqSjDBVs6LGu6rDu2ilptehOJzo9DrCol097Yqn42R06WQZqVms+Hk1y3/6y/ObZhE/PwNd+3Skz6U9ueDi7kTUkx0vQpxvBg4ZwCXX9mfE5WPIzsoB4IYLRvHtunnlrnfmFxpCeKgJnQ5UTcOpqvgbpAZTdVm4cCHjx49nzpw59O7dm1mzZjFo0CD27NlDTExMqfO/+OILJk6cyNy5c+nbty979+7lrrvuQqfTMXPmTABeffVV3n//fT777DPat2/Pxo0bGTVqFOHh4TzyyCPV+nokYapmisOB6lRRFA1Ng6Ik2GFzdcwOiw73dJhP9Sz4lvVLABZzIX8vW8/yH/8s1bzTFGikR/8u9L20Jz37dyU4VEbkhDjfGQx65v/xPi+Me4N1KzYCcOMFo/h563yvrvenvt6AwU9PWJCRXLMNq9OJv8GAtaAQU0jVF8qs62bOnMno0aMZNWoUAHPmzGHx4sXMnTuXiRMnljp/zZo19OvXj9tvvx2AxMREbrvtNv755x+vc4YMGcI111zjOefLL78848hVVZCEqZqpNhuKw7vKd0CQkfzsfODkHXKukgJ1eYRJUVS2rvuPP37+izXLN2Cz2j2PderZjksH96f3gG4EhwR5in0KIeqWZ996nIdvmcSB3YcBuLbLcH7Y9Dn+5fieoDfoKSh0fV+x2O2EGo0cT86kYdvGZ7iydtA0zev7Yk0ymgLK3e/SbrezadMmJk2a5Dmm1+sZOHAga9euLfOavn378r///Y/169fTq1cvDh48yJIlS7jzzju9zvnwww/Zu3cvrVq1Ytu2baxevdozAlWd5CdONVPtNtcaJq1ElW+vopUlazDV3ZICh/Ym8cdPf7FiyWpOZOZ4jjdsEsdlg/tzybUXSrFIIYTHO19N4+pOxUUth3S/kwV/fkhYROhpr9Mb9DRvGMXe5OOo7iH/E8eyzpmEyWa1c8eFD5z5xGrwv9VzMAUay3VuVlYWiqIQGxvrdTw2Npbdu3eXec3tt99OVlYWF154IZqm4XQ6eeCBB3j66ac950ycOJG8vDzatGmDwWBAURRefvllhg8fXvkXVk6SMFUzT+NdRUMtKikQGVqiaGUEAFaLjeNpJ4C6U1LgRFYOq35Zw/Kf/uTg7iOe46HhIQy4qi+XDe5Pqw7Ny/0bjRCibvlpy3wGdy3+QXn7xffz89YvTnuN3t9Ah2Yx7E0+jlNR0DSN3NQT1R2qKIeVK1fyyiuv8N5779G7d2/279/PuHHjePHFF5kyZQoAX331FfPnz+eLL76gffv2bN26lUcffZT4+HhGjhxZrfFJwlTNVLvdvUPOu49cUlIGUGKHXJJrh1xYVCgh4cG+CbYG2Kx21q3YyPKf/mLz2n9RFVcS6ednoNeAblw6uD89+3ct19C6EKJuMxj0LPn3S15/ejYrfl6Nqmpc3ek2Fm/74pS/aBkC/IgIMeFn0ONUVJyqSm6JUe3azmgK4H+r5/jsucsrOjoag8FAenq61/H09HQaNCh7FmXKlCnceeed3HvvvQB07NgRs9nMfffdx+TJk9Hr9Tz55JNMnDiRW2+91XPOkSNHmDZtmiRM5zrFZndNyakaasm2KBv2AMUjTCmHzu/1Swf3HOHHL35l9e/rsBQUeo636dSSS6+9kIuu7HPGoXQhhCjLk6+MYc2yDdisrppKg7sOP+VIk597HU5kWCCZ2WbsikLBiYKaDPes6HS6ck+L+VJAQADdu3dn+fLlDB06FABVVVm+fDljx44t8xqLxVJq8b7BvYuxqGzAqc4pmsGpTpIwVTPFbi9R5dudMIWHkJeZCxSvYUo9T0sK7P53Pws/+o5/Vm32HIuJj+bSa/tz6bX9aVRHph+FENXr/35/l2H9RwOgqhpvTH6Px19+qNR5fkGuZCMy1JUwmW02zDnnTsJ0Lhk/fjwjR46kR48e9OrVi1mzZmE2mz275kaMGEHDhg2ZNm0aAIMHD2bmzJl07drVMyU3ZcoUBg8e7EmcBg8ezMsvv0zjxo1p3749W7ZsYebMmdx9993V/nokYapmqrV0HzkMelRFRe9nIDTKNariKSlwHiRMDruD1b+v59dFf3jKAeh0Oi68ojfXDruc9t3alGsLsBBClFdoeAjfb/iMoT1d0zLLf/qLW+4dQkLThl7nBbib+PoZiqfsCvOkeGV1GDZsGJmZmTz77LOkpaXRpUsXli5d6lkInpSU5PWz4JlnnkGn0/HMM89w7Ngx6tev70mQirzzzjtMmTKFhx56iIyMDOLj47n//vt59tlnq/316LSaKI9Zi+Tl5REeHk5ubi5hYWHV/nxHf/+d9O2ppB/LJyPLgqpqdL/jMn565wci46IY8+GjADx983NkpR7n8XceoXXXltUeV3VwOJws+2EVCz78jsy044CrNckl11zILXdfR6Om8T6OUAhxvjuRmc0dlxWPLP1v+XtE1S/ejZy+cSuHl23hcFoOyzcexE+vp0VsNI999YxsMBGnJSNM1UhTVVSHE8WheqblAOzuGhpF65dshcU75M7FESanw8kfP//Flx98R3pKJgAhYcFcNrg/Q++8WsoBCCFqTFT9SEY/eScfvf45AF/MWcTYKfd4Hg+sFwFAaKBrAbOqaShOFbvZilGKV4rTkISpGmnuPnKKe9E3uKamzO7h3+IdchlomkZIRAihkefOwmfFqbBi8Wq++GARaUddu/4i64Vz8z1DuOqmy6RvmxDCJ66/82pW/Lya/bsOseTrZYx+8k7P9yNjZCToILhkwqSqFBzPk4RJnJYkTNVIVZyoDgVFKU6YAiOCSyz4jgCKd8idK6NLiqLy59I1zJ/zLSlHXGuvwiPDuPme67j65oHnxA4OIcT5beLrj3DvtY8BcH2vkfy0ZT4Ggx6/0BD0eh1GfwN6vQ5V1bArCuYT+dRrEnuGu4q6rFasvK1IN+OPPvqI/v37ExkZSWRkJAMHDqyRHjKVoTldCZPXDrnIkBJFK9075A6fGzvkVFVl1S9reOiGJ3l90mxSjqQRFhHCqEdvY94vb3HDiGskWRJC1ArxjRvQKLF43eTfy1z9yAwGAzq9Dp1OR5B71MmhKJiP5/skTnHu8HnCVNTNeOrUqWzevJnOnTszaNAgMjIyyjx/5cqV3HbbbaxYsYK1a9eSkJDAFVdcwbFjx2o48jNTHPZSfeSCIkLIycgBitcweRKmWtoSRVVVVv/2D2NunMCrE94h+VAKIWHBjHxkGHN/eZub774OUzm7hQshRE358Mc3PJ9v+2eH53O9wfWjLzjIlTA5VY28c6h4pfANn0/JVbSb8fz5872+/vjjj/n2229Zvnw5I0aMqJGYy0uxWlGdrgXfRSNMpvBg8o/nAcUjTJ4puaa1qyaRpmms/WMj89//hkN7kwAICQ1m6IirGTr8SoLc23OFEKK2umf8cD6ZOd/TqBdA7+dKmEKCjKSTj6Kq5LpH/oU4FZ8mTJXpZnwyi8WCw+EgKiqqzMdtNhs2m83zdV5e3tkFXQGq3eZZ8O1Z9O3vh6Zq+AX4ERwRgt1mJyvFtQW/tqxh0jSN9as287/3vvF8kwkKCWToHVcz9I6rCAk7f1u3CCHOLwOu6ssnM+ezd/sBNv29je79OqP3dxVBLFr47VRVz9pSIU7FpwlTZboZn2zChAnEx8czcODAMh+fNm0azz///FnHWhkl26Io7rYoGq4/w2Mi0Ol0pLt3yAWHBdWKHXL/bdzFx2/8j307DgIQGGRiyB1Xcf2dVxMaHuLj6IQQomKiY4t/mf589td079cZQ4DrR1+wyR/AtUvuRM39Mi3OTT6fkjsb06dPZ8GCBaxcuRKTqew1NJMmTWL8+PGer/Py8khISKiR+BSbDVUpGmFy9blxOFx/Rpy8Q65pnE+LpmWmHWfuzPmsWuoa2TMFGhl8+yBuGHEN4ZHVX+BTCCGqy3W3D+LHL35l7/YDqKqKn9E1slQyYbLkWlBVVboQiFPyacJUmW7GRWbMmMH06dNZtmwZnTp1OuV5RqMRo9E3O7cUq9VdsBLPGiarxTU9WLx+ybc75Ow2O99+9jNfffwjNqsNnU7HVTddxh0P3UREvXCfxCSEEFVp+EM38eMXvwKwb8dB/IJdv2AHG10/AhVVRVFUrLlmgmrBSL+onXyaSpfsZlykqJtxnz59Tnnda6+9xosvvsjSpUvp0aNHTYRaKYrV7lrDpKgUNaCx5LuKVoafvEOuhhMmTdNYu2IjDwx9ks/f/Rqb1Ub7rq15e8HLjJ1yjyRLQojzRmhYCE1auGYWfvlmOQHuApWeESZNQ1FUCqS0gDgNn0/JVbSb8auvvsqzzz7LF198QWJiImlproQjJCSEkJDatcZGtTtclb7do0t+AX61Yodc0sFjfPja/7F5zb8A1IuJ4p7xtzPgqr7SS0kIcV666MoL+PzdZP7dsJPbBvcGwOTvhw7QALuikHkghZgW0vNSlM3nCVNFuxm///772O12brrpJq/7TJ06leeee64mQz8j1e5EcWqoSnHRyqOeGkyROGwOMlOygJoZYXLYHXwxZxHffPoTilPBz9+PG++6llvuGUKg1FESQpzH+lzSk8/f/Zq0oxlYda5dcjqdjoAAP2x2J3angt7P4OMoRW3m84QJYOzYsYwdO7bMx1auXOn19eHDh6s/oCqgqQqq04mzxAiTKTyYgt1HAdei7/TkDDRVIygkkPB61buw+sDuw8yYNJsjB1zPf8HF3Rn95J3EJUgrACHE+a9x84aez7/5ZiUXRoSABoHGAFfCpCjYLbbT3EHUdbIdoJqoTqVUlW+90TVfHhAYQGBYkGc6Lq4ad8ipqsq3n/7MY8OncOTAUSKiwnjmzfE8+/YTkiwJIeoMvV7PRVe61sbu3XkYvd71PTcosLg9iiRM4nQkYaommuJEsTvdVb5dpQRwTy0W1WAqWvBdXQUrs9KOM/m+V/hk5nycDicXXNKD9xe9Tt/LelbL8wkhRG027N4hABw7korNqQDFxSsdioKjUBImcWq1YkrufKQ67Ch27xEm9x/FC76rsYfcX7+t450XPqYgz4zRZOT+CSMYdMMlsqhbCFFnNW3VhNj4+qSnZLJhbxJ9WycSEuwqO+NUVWwWq48jFLWZJEzVRLGXrvJtdziBsotWVhVroY33XpnHsh9WAdCqQ3OenDaGhk1qV586IYTwhYh64aSnZHLcXeIltChhUlTsZhlhEqcmU3LVRLVaS/WRs5pdv71ExEbisDvIPFa1O+TSj2XyxMipLPthFXq9jmGjhzLjs+ckWRJCCLdb3NNyKe4SL2HuhElRVQrzzD6LS9R+MsJUTYraoihK8S45c15x0cqMo5moioop2ERE9NkXidyy7j9efept8nIKiIgKY9KMcXTs0e6s7yuEEOeTlm2bApBxIh+HUyHMvYZJ0TQs+YW+DE3UcpIwVRPFZkUtUYMJ8CpamXwoBTj7HnKapvHd/y1m7ptfoKoarTo0Z/LMx6jfoN7ZvQAhhDgP1YuNIjA4kEJzISkn8mgcX/y9Ml9GmMRpyJRcNVEKbahOFac7YfIPMmFxjzBFxERUyQ45xanwxuT3+fiN+aiqxsAhA3ht3rOSLAkhxCnodDoKza6RpK0Hj6HXNPzcO5gLCmSESZyaJEzVxOlZw+QqKeAf4ponNwWbMIUEnnXTXVVVeeu5D/nj578w+Bl48OlRPPbC/QS4u3ALIYQoW/tubQDYejAFNA1/g6vCd6HVjuouNyDEySRhqiaK1e6q8u0eYdL5u4pWFpUU8IwwVWKHnKZpfPDqZyz78U/0Bj2TZoxj8K1XSMkAIYQoh4eevsvz+fFcC8YA1+oUu1PBXmj3UVSitpOEqZqoDoen0jeA5q4qGx4bgdPhJD05A6jcCNNnby/kpy9/Q6fTMf7FB+h7qRSiFEKI8mraqonn891HMwh0d2FwtUeRWkyibJIwVRPF7nTVYHInTIrimpqLiI0s3iEXZCLSXZOpvBZ+/D1fffIDAGOeuZtLr+1fpXELIURd0LpjcwAOpGYRFORaMmGx2bFLtW9xCpIwVQNNVXDanF41mOw2B+Ba8F1y/VJFptF++vJXPnt7IQD3jB/O1TcPrOLIhRCibij6/nkw7QQmk2vtp1NVpZ+cOCVJmKqB6nSinjTCVFiiaGXqYXfT3QpMxy37YRXvT/sUgNvuv4Eb77q2aoMWQog6pPfF3T2f6wzupRMgCZM4JUmYqoHmdBb3kXMv+jbnuup7hMdWvKTA6t/+YdbUDwAYMvxK7njopmqIWggh6o6wiFDP5zaHawZAlREmcRqSMFUD1eHqI6coGqrm+rC5/xNGxERUqOnuhr+28trEd1BVjSuuv4T7nhohu+GEEKIKdGvVCACLzfX9WQMKc6V4pSibJEzVoKgGk+J0LfQuquoRFBaE3t+P9CTXDrkzlRT4b+NOXh4/E6dTof+gC3j42XslWRJCiCoSWy8MgDyLxXMsJyvXV+GIWk4Spmqg2lwJk8OdMBmMxTWYMo9lojgVjIEBp90ht3f7AZ57eAZ2m4OeF3XliVfGYDDIX5cQQlSVBu7vwdl5ZvTuX0YlYRKnIj+Bq4HTavOqwaT3dxVFcy34Lt4hp9eX/fZnpGYxdcxrFJoL6dSzHU/PeBR/f2n7J4QQVSmuQRQAWXlmzw/DvBN5vgtI1GryU7gaKBaLa0rOU7TS9V8xPDbijC1RnA4ndw16GIBmbZrw7NtPYDRJuxMhhKhqMQ2iMOh1OBWVojbp+TmyhkmUTUaYqoGz0IbiUD075Bzu3kQRsZGkHioqKVD2+qVd2/Z6Pn/2rScICg6s5miFEKJuCowIJSo0CADFvdq0IE8SJlE2SZiqgWKzufrIuUeYbFZXb6KImBIlBU6xQ27z2v8AuODi7sTERddAtEIIUTcFhIcQHRYMuIpWAhyXKTlxCpIwVQOn1Y6qaKiqiqZpFBYUAhAaHU5a0Q65U0zJbXEnTH0uk/5wQghRnUz1Ij0Jk01x1WIqkF5y4hQkYaoGis3hqfKtaeC0OwFwOB04HU4CTAFEuRcblpSfW8C+HQcB6HpBxxqNWQgh6prA6KgSI0yuKTk/2Y0sTkH+ZVQxTdNQrA5PH7miYd6QqFAyjmUBENcktswdclv/2Y6maTRu3pDo2NIJlRBCiKpjCAoiOiIEAJvT9Yutpmlomna6y0QdJQlTVVNVnHYFp1NF0/CsYzq56W5ZiqbjZHRJCCGqn8FgICbSlTDZnU5UTXX9omt3+DgyURtJwlTFVMWJ6nAlTACa3lUMLfykGkwn0zSNzWv/BaBb3041FK0QQtRtJlMAoYFGAByKgqppOKSfnCiDJExVTHU4UJ3FCRPu+XDvHXKlSwqkJKWRkZKFn5+Bjt3b1li8QghRlxn89F7rmEr2/hSiJEmYqphis+F0KCiKK2Fyp02E1Q8n7Ug6UHbT3aLpuHZdW2MKMtVIrEIIUdfp/Qzo3TMBFocNVdOwm2WnnChNEqYqplitOGzFNZiKilbip8dhd+Af4E90g3qlrtss65eEEKLGGQL8CA10/ZKquet9558o8GVIopaShKmKKbZCFLurj5ymadgKXUUrCwtdQ7wNEmPRn7RtVXEq/LthBwBd+0rCJIQQNcXPFEDzk8q85GRk+ygaUZtJwlTFnOZCVx85RUPVNFRFRafXkeuuHltWwco92w9gKSgkNDyE5m2a1nTIQghRZ/kFGQkNci36Vt3lBLLTTvgyJFFLScJUxZyWQhRF9RSuBAiNCiMt2VXhu6wdcpvXuHbHde7dHoMUTRNCiBoTEBLsmZJTVAVN0yRhEmWSn85VTLHaXCNMJYpWRsRGkHro1DvktqxzrV/q1kfKCQghRE0yRoR6ygpouNYxZbpbWAlRkiRMVcxZaHVNx6kaiuIaYQqLiSD1SNk1mMz5Fvb8tx+Arn1k/ZIQQtQkY70I/P0MmAL8AFBUFUUqfYsySMJUxRyFdk8NJsU9wuQXGIDD5sAvwI/68dFe52/bsANVUWnYJI7Y+Po1Hq8QQtRlgdGuXct+BgPgqsVks9p9GZKopSRhqmLOEgmTqnPV9ihKnBo0Lr1Dbot7/ZKMLgkhRM0zBAWi0+sILBph0lRJmESZJGGqQpqmodiLq3wX7biwFLqKoJW1Q27Luu2AJExCCOELBoMBvUFHM3d9PLPdisMhveREaZIwVSVVRbE73Y13NRwOV9HKvBxXEbST1y+lHc0gJSkNvUFP557tajxcIYQQoDPoPTMBep3e871biJIkYapCquLEaXeiqK4aTJqmoTfoyUo9DpTeIVe0O65Np5YEhQTVeLxCCCHAYNDTPM61vlTVVKx2p48jErWRJExVSLXZcNhcNZic7h1yodFhpJ6ih1xR/7huMh0nhBA+o/c3EGT0B1xLKWxOSZhEaZIwVSGnzepuvKt5hncDw4OwW+34+XvvkFMUla3/yPolIYTwNUOAH4EBxQmTv15+NIrSasW/itmzZ5OYmIjJZKJ3796sX7/+lOfu2LGDG2+8kcTERHQ6HbNmzaq5QM9AKSxEcaioanHzXZ1750Vs4xgMfgbPuft3HqQgz0xwaBCt2jf3SbxCCCFc/eSKEiaN4l94hSjJ5wnTwoULGT9+PFOnTmXz5s107tyZQYMGkZFRdqVVi8VCs2bNmD59Og0alN515ksOs6VUlW+H6lo8ePKC781r3e1QerX3SqSEEELULL8gI4HuKTnA8/1biJJ8njDNnDmT0aNHM2rUKNq1a8ecOXMICgpi7ty5ZZ7fs2dPXn/9dW699VaMRmMNR3t6TrPFvUMOzwhTocUGlC4pULR+qesFMh0nhBC+FBAahEGvx99dJ8+pKjhl4bc4iU8TJrvdzqZNmxg4cKDnmF6vZ+DAgaxdu9aHkVWO01KIw+4aUSoa0s3NzgcgrsQOOYu5kN3b9gHQra/0jxNCCF8yhoe6/vR3jTIpqorFXQ5GiCI+TZiysrJQFIXY2Fiv47GxsaSlpVXJc9hsNvLy8rw+qovdXIjT4ep2raiusgLH3V2vS44w/bdxF06nQoOGMcQlxJ7qdkIIIWpAQL1IAE+1b6eqYs6uvp8V4tzk8ym56jZt2jTCw8M9HwkJCdX2XE6LHYezeME3Bj02qx2Dn4H6jYr7xHmm4/rKdJwQQvhaUKxrB3OQMQAAFRVzlowwCW8+TZiio6MxGAykp6d7HU9PT6+yBd2TJk0iNzfX85GcnFwl9y2Ls9COs0RJAf8Q1xqr2IQY/Eos7N7iXvAt65eEEML3AoKC0el1BJmKSwvkZOX4NihR6/g0YQoICKB79+4sX77cc0xVVZYvX06fPn2q5DmMRiNhYWFeH9XFaXWgKCVKCvi7hndL7pDLTDtO8qEU9HodnXu3r7ZYhBBClJ/eoPOUFlBUlfzsXB9HJGobP18HMH78eEaOHEmPHj3o1asXs2bNwmw2M2rUKABGjBhBw4YNmTZtGuBaKL5z507P58eOHWPr1q2EhITQokULn70OTdNwWB2uKt+nKSlQNLrUsn1zQsNCaj5QIYQQpegMOkzuhMmuOMnLlDVMwpvPE6Zhw4aRmZnJs88+S1paGl26dGHp0qWeheBJSUnoS1RdTUlJoWvXrp6vZ8yYwYwZMxgwYAArV66s6fCLqSoOm4KiaqVLCpTYIedZvyTVvYUQotbQ+xmwu1uiGPR6zHkWH0ckahufJ0wAY8eOZezYsWU+dnISlJiYiKZpNRBVxSgOB067gupew6RpGrnuXRZFO+RUVWWLux1Ktz5STkAIIWoLg5+BBpGuJRuqpmG1WH0ckahtzvtdcjVFtRXisDtdVb4VDUXTsNsc6A16YhJcO+QO7j5CXnY+gUEm2nTy3fShEEIIb4YAP0zudac2pwNbod3HEYnaRhKmKuIoLMTpcI0sqZqGQ3GtX4pNiMHP/Z9wyzrXdFynnu08x4QQQviewRSAXq8DQKcDu1USJuFNEqYq4iwwY3evYQJQXf/vvBZ8b17jLicg65eEEKJW8Q8yEh4c6PnabnP4MBpRG0nCVEXs+WYcDrW4aaO/660tSpishTZ2bNkDyPolIYSobfxDgj2VvjVNw2GXhEl4k3mhKuIoMOMsUeXbqbgSp/imroRp+6ZdOB1O6jeoR8PEuFPeRwhxbtI0DavVhjnfTEGBhYL8AgryLZgLzBTkm/Hz86NBwxjiGzbAz8+PyHrh+Pn5lbo+P6+A8PBQFFWlIN9MQV4BBQUWAoNMxMRGExYeik7nGsK22+xYrTZCQoNx2B0UFFiIiAzD6XBiNBnRNA2LuRA/PwNGk6uQrqIo6HQ6r93HAowRoZ6yAhpgc0jCJLxJwlRFHPkWd8LkWsdkce+wiHMnR0Xrl7r26ej5ZieEqDxVVbGYCykoMGPOt7j+LLC4P1xJS1HyYi7xWNF5BflmLGYLRpOR6PpRmAJNOB1OQkKD0el0mM0WTCYjcQ1j0TSN0LBQLBaL67nyzZ775OcVeJ7T6VTKHb9/gD+RURGEhoWQn5tPTk4edtuZ180YjQGEhIVgzjdjtbpKlxgMBhTF+7kDgwKxWW2oqop/gD/1Y+qRn1dAfl4BRmMAjZs2AiAiMpxCSyFGk5GY2GjsdgfZJ3JwOJwEBPiTcyKX7OxcbFYbzVsmYrEUcjzzBKFhIXTv3YUWrZuSl5OHTq9Hdf+iaLfbyco8QVhYCA6nk+DgIAwGA1arjabNG9OsRRP8A/zJzysgLj6WsPBQCgsLSWjS0GffH03RkRhLJLCF5fi7EHWLJExVxG624lRUFPcOOYfDid6gJ9a9Q664/pJMx4nzl6Zp2Gx2CvIKyM93jawU5BeQn2f2jLR4jp90TtFj5nwzAcYAoupFEBEZTnhEGHa73ZMAFSU9FnNhlcWdlpJRZffS6XSEhAYTEhpMcEgQISGuz202O6nH0klLzcDpcOKwO8hIyyQjLbPU9UWlU/R6vedeFnMhOdm52Gx2bJknvK45OVkCKLQUvz8Ou4OUo8UNzW02O/t2H6zwa/t3y07P59knckk6fKzC9zid8Igwrhx8KXc/eDumQCMRkeE1lkAFxtTzLPoGcFQg+RV1gyRMVcRRaPdU+Xa6v3nVbxiNf4A/JzKzObwvGZ1ORxdphyJqgaKpmvz8As+oQ0Ge2fN5fn4Bfn5+6PV6V3JSYMFstmAxF7pGU8wWAgNN2O0Od8LjTozyzTgdzrOOz2azk59XwJFDR894rp+fgZDQEIKCA72SlOBQ958hwYSEBBEUEkRISJDra/d5wSFBFFqsZGUcx2q14efnR0G+q+lqcEgQ5gILqSkZrhGnfDPBocFe9/B8hAQRHBpMaGgwgUGBp/0hr7pHoVOPZZB9IoeC/ALCI8I8H8EhQeTnFeDnZyh1L5vVRlbmCQryzYSEBhMaFoLJZOTEiRyCg4MwBZrIy8nDP8Cf7BO5BAaZCA0LIS0lg7ycPMLCQwkLD8VstnDk0FEMBgPZx3MIDDKRl5tPZsZxQsNCiIwKx2F34h/gR0RkBJFR4TidTg4dSCIyKoLo+lGkp2WyYe0WUo6mER4ZhrXQhslkxGazu58nhIJ8C0ZjANkncjCajOTl5rPpn22oqorNaiMqOorUY2kUWqzodDpyc/JY+Pn3LPz8ewA6dG5Dh85tSU/LpH5MPYbechXtO7WpliSqqJ+c0c8Pm9OJVUaYxEkkYaoidrPNU+Xb7k6YigpWblnnKlbZvG0i4ZHV18tO1B1Op9OTqOTlFrhHcYqSneLEx3M8t/h40XVljUpUlZKjLEUfoaEhxZ+HhZR+LKwo+QjGWmglOzuX7OO55ObkYTIZT0p4gjyJUIAx4Jya5i5aO9SocRyNGpe9njEsPLTM40aTkYYJpa9pEBfj+bxe/ahS92javLHX+fXqR9E4sVHFAgfadWzt+bxV2+b0v+SCCt/jZKqqoigqDruddas38dlHC9mywTUiv33bbrZv2+0596v//UDLNs3o3a87F/TrTp+LeuJfhSVadHodBvffT+0rjyx8TRKmKuIodOJUVFRN84wwFa1f2rxWygnUVaqqkp9XgN3mwD/Aj7zcfPJy88nPK3B/XuA55nQ4iYgKx+BnKDXiU5BvJq9EElRV01F+/n6EhoUQ5k5gQsNC3MlMiGc9TVBIoGukJtg1ShMcHEhQcCAWs2vdiycRCitOioKCA2VRsSgXvV6PXq/H39+PSwf159JB/cnPK8BiKeSrz39A1VRiY+uzbfMOfv9lFft2H2Tf7oP875OvAWic2JC4hg1wOBxERIZx+1030r13Z9JTM1FV7ZRJaZmxGPT4uf/dKqpMyQlvkjBVAU3TcNicOJyuBY9O9+8m8U0boGkaW9dJO5TzhaZpZJ/I5VhyKkeTUjialELK0TT0ej1Wq43c7Dxysl2jIjnZeeTl5ldrK5/AoEBXkuOV7Lg/Dw8hNDSk9PHQYELDQgkND8F4jo3OiLqh6N/sw0/e6zl268jrmfj8Iyz5fhmrlq9hzZ8bAEg6fMxrLdUfv672uldQcCB9L+rFlFfGExkVcdrn1fvpMRhcCVOhlBUQJ5GEqQpoqoK10OnZIefwjDA14PC+ZLKzXPP37bq08nGkojysVhspyakcTXIlRceSUzmanOpJkiozulO0kDcwKJCw8BDPWpLQsOLP/fwM5GbnoaiqJ8EJKzHi4/ohUpwYBYcEV+l0hBC1XXhEGLfddQO33XUD5gILn7w3H1OgiYAAf0yBRlYuW8OaVeu9rrGYC1n2yyqW/bKKsY/fw32PjDjl/Q3+BvTuXyBUmZQTJ5HvtlVAtdmw2xUUxdUWRVFUdHodDRrH8tOCXwHo0L0N/u4aH8K3VFUlIz2Lo0mpHEtKcSVDSSkcS07jaFIKmRnHT3u9TqcjpkE0DRPiaNQ4nvhGrrVqJpOR8IgwIiLDCI8MJzwilIgI158GPwOqqkmCI0QVCQ4J4pGnRnsdu3XE9eTl5nPieA4NE+JYv2Yzy5f+yTdf/ATAu298wmcfLeSeh4Zz1/23lpo21gf4Eej+Pq1DRl6FN/nuXQWcFjMOm4JTVT2jS/Xjo/E3+nvKCXTrK9NxNSk/r8A9ZVY8MlQ0UpRyNO2MVXxDQoNplBBHw8bx7sTIlRw1TIgjvmGspwhgRRgMlX01QojyKhqxBeg3oBf9BvRi2J1DGX37eHKyc8nPK2DW9A/IyjzBU8+O9brWzxRAgJ/rP6omI0ziJJIwVQF7vhmHU0EpkTDFNW2A3Wbnv027AOh6gSz4rkoOu4PUlPTSCZF7Gi0vN/+01/v5GYhr2IBGjeM8I0UlPy9ZTVkIcW5r3a4Fq7b8wLJf/mTqU69SkG9m4effc8+Dt3t2FQL4B5kwukeBVU3DYXPgb5SZAeEiCVMVsOfle9qiOEqUFNi5ZS92m4Oo+hE0aVHxLbx1maZpnMjKdo0SJadyrERidDQ51b0DRj3tPaKiI12jRGUkRDENor3aUgghzm86nY7Lrx7AwKsu4rbB97Pzvz1c0uN6rhl6Oa/MmoxOp8M/JBBjQFHCpGLLt+BvDPdx5KK2kJ8YVcCek4+iuIpWOtSiHnJxxeUELpB2KGWxWAo55llMXSIhcn9uLbSe9nqTyeieMmvgmS7zJEaNGhAUHFRDr0QIca7Q6XRMev4R7rxhDACLv/+djf9s5be1X2OKCMMUUDzCZCsoJCRaEibhIglTFbDmmXE4FFTVe4fc/z5eBNTd+kuKopCemlliyizNsxX/2NE0jp/U3uFkOp2OBvExrkSojJGievWjJBEVQlRY5+4d+P2fb7i8900ApKdm8s/fm2nXMJpAf3cDXk3Dml917XfEuU8Spipgy7NgcyqommuXnE6nwxQayIHdhwHoch6vX8rLzfckQUVTZ0XriVKOpZ+xTUZoWEip6bKi0aK4+BgCjAE19EqEEHVJbIP6/HtkFffc+igb1m5h3OjJ/LXhWwJNroRJ1TTys3J8G6SoVSRhqgK2AhsOZ/GC7+j4euzcsgeApq0aExUd4cPozo7dZiflWHqpRdVFU2n5eQWnvd7P34+GjRoUT50lxJeYPos7ZQsIIYSoCc+9+iSDL76DQkshr0//kAbuRd4aGvnHT795RNQtkjBVAWuBFaeiek3HbVnnLidQy6t7a5pGVsaJEtvuvbfiZ6RlnbFSdXT9KK8kqORIUf3YehhkP70QopZKaNKQxk0bcfhAEls3beeGNm0B1/fGgpw8H0cnahNJmKqA1Wx37ZBzL/iOaxLL94t+B2rH+iVzgaXE4uoUr/VEKUfTsFptp70+MCjQs7C6UYlF1o0S4olPaEBgoKmGXokQQlS9eQvf4pIe17N31wG0tm0A15ScJcfi48hEbSIJUxUoaotSNMLkH2zkeMYJ/AP8ad+tTbU/v9PpJC0ls8S2+xSvnWfZx3NOe71ery9eXF1GocaoehGyuFoIcd6qVz+Kps0bc+hAEik5OYBrSs5SIIu+RTFJmM6Sq/GugrPEDrnjx7MBaN+tNUbT2S9a1jSNnOzcUmuIihKi1GPpKMrpO2uHR4R5JUElp84axMdKyw4hRJ3Wo08XDh1I4kimqzWSpmkUmk9f2kTULfJT8iypTid2uxO7w4nqXutzcF8ScHbVve02O2+/9hH/rNnM0aQUzAWnHxr2D/Avtf2+ZGIUGhZS6ViEEOJ81/OCrnz9vx9Z9e8uGoXHowFWSZhECZIwnSXFYsbuULC7R3giYyPZsXk3UPn+ceYCC4/e9wz//L3J63hMrKvha8PGpafO6sfUK9VIUgghRPn07NPV87lDceBv8MdyhuK5om6RhOks2XPzsdoUz4LvwMggrPtshEeG0bRV4wrfL/tEDg+NfIod/+4hKDiQyS89RvuOrYlPiMNUiYavQgghzqxedKTnc4fixN/gj7Xw9BtiRN0iQxJnqTA7B5tD8axfsjkdgGt3XEVHfFKPpTPypofZ8e8eIqPC+WTBLAbfMIhmLRMlWRJCiGp2423XAuBUXQV3rTaHL8MRtYyMMJ2lwsxsr6KVmRmuBYMVLSdwaP8R7rvjcdJTM2kQH8MHn8+gaYsmVR6vEEKIsrVs3QwAh+pKlGx2uy/DEbWMjDCdJUtWHg530UpVU0k9lgFUbMH39m27GHnTw6SnZtK0eWP+79vZkiwJIUQNa9W2OQCFDtfaJYfz9LuPRd0iCdNZKjhRgN3p2iFndTrQNI3GzRsSHRtVruvXrd7Evbc9Rk52Lh06t+HTb96hQXxMNUcthBDiZC3bNPN8rqgKjjP0whR1iyRMZ8mSW4jV7vpPpbo7gJR3dOn3JasYM2oCFnMhvft156Mv3iQyKqKaIhVCCHE64RFhns/tigOnezOPECAJ01krLLBhdTrRNA2rw7WjojzlBL758ieeHPMcDruDgVcNYPa86QSHBFV3uEIIIU7j2usvB6DQUUihQxZ9i2Ky6Pssmc0O7IqCU1Wx2uz4+Rno2L3tKc/XNI15c75k1vQPANeujGdeHi8NaoUQohZwutctWZ02OEPjcVG3yAjTWbJYbDgVBZvi2k3RrmtrTEFlN6PVNI03Xn7fkyzdM2Y4z057QpIlIYSoJTp3bw+AQW+gwC51mEQxGWE6S1abqwaTtaj+0inWLzmdTp6f+Do/fL0UgMcnP8TI+4bVWJxCCCHOrEv3DoBr0bdBJ2MKopgkTGdBVVXMVjtOVS0uWNm3dMJks9p46uEXWPHbagwGA8+99hRDbrqypsMVQghxBjGx9QFQNRVN01BVVdpOCUASprPitFoxWx3YFScaGqHhITRv09TrnPy8AsaNnszGdVsJMAbw+uznuOTyfj6KWAghxOlERUegAzTApjiwW6yYZEOOQNYwnZXCjONYbA6sTtf6pc6922MwFL+lx7OyuefWR9m4bivBIUHM+b/XJVkSQohazGAwEGh0taIqdNownyjwcUSitpCE6SzkJaVhdTqwKa7puG59issJHEtO5a6bxrJ7xz6ioiOZu/AtelzQxUeRCiGEKK+iJRYWuxXL8TwfRyNqC0mYzsKJpHQK7a4pOSjuH7d/7yFG3jiWI4eOEt+oAZ998y5tO7TyZahCCCHKqWViYwA0VPJP5Ps4GlFbSMJ0Fo4fO06B3dVzKKZBPWLj67Nt8w7uuulhMtKzaN6qKZ99+y5NmjbycaRCCCHKq3lLVy9PRVXJycj2cTSitpCE6SxkpeZicbjWL3Xr25m/V61n9O3jycvNp1PXdnz69dvENqjv4yiFEEJURJNWiQAomsLx5HTfBiNqjVqRMM2ePZvExERMJhO9e/dm/fr1pz3/66+/pk2bNphMJjp27MiSJUtqKFJvGcfzPQUrdSZ4+J5JWAut9B3Qiw+/mOnVl0gIIcS5oXFz15ScoqqkH8v0cTSitvB5wrRw4ULGjx/P1KlT2bx5M507d2bQoEFkZGSUef6aNWu47bbbuOeee9iyZQtDhw5l6NChbN++vYYjh/QT+ThVlQKbmY/nzMfpcHLl4Et55+NXCAoKrPF4hBBCnL1GTeIBcKpOsrJyfBuMqDV0mubbZjm9e/emZ8+evPvuu4CrGGRCQgIPP/wwEydOLHX+sGHDMJvN/Pzzz55jF1xwAV26dGHOnDlnfL68vDzCw8PJzc0lLOzsRoBGX/gQuzKSyLO5FgUOu3MoE59/RFqdCCHEOcxmtdGz9RUAXNa2K28uneXbgESt4NMRJrvdzqZNmxg4cKDnmF6vZ+DAgaxdu7bMa9auXet1PsCgQYNOeb7NZiMvL8/royqoqsrerGRPsnT/uJE8/eKjkiwJIcQ5zmgyYvJz1WJKyznh42hEbeHThCkrKwtFUYiNjfU6HhsbS1paWpnXpKWlVej8adOmER4e7vlISEioktgL8s0U2CwA9G7dhjHj70an01XJvYUQQvhWcICrifrxAilcKVx8voapuk2aNInc3FzPR3JycpXcNyw8lMfvvpXeLdsy8YWxVXJPIYQQtcMNgy5i8AV9mPjUPb4ORdQSPu0lFx0djcFgID3de9tmeno6DRo0KPOaBg0aVOh8o9GI0V3mvqrdPmU0t08ZXS33FkII4TsPz3rC1yGIWsanI0wBAQF0796d5cuXe46pqsry5cvp06dPmdf06dPH63yA33///ZTnCyGEEEKcLZ+OMAGMHz+ekSNH0qNHD3r16sWsWbMwm82MGjUKgBEjRtCwYUOmTZsGwLhx4xgwYABvvPEG11xzDQsWLGDjxo18+OGHvnwZQgghhDiP+TxhGjZsGJmZmTz77LOkpaXRpUsXli5d6lnYnZSUhF5fPBDWt29fvvjiC5555hmefvppWrZsyffff0+HDh189RKEEEIIcZ7zeR2mmlaVdZiEEEIIUTec97vkhBBCCCHOliRMQgghhBBnIAmTEEIIIcQZSMIkhBBCCHEGkjAJIYQQQpyBJExCCCGEEGcgCZMQQgghxBlIwiSEEEIIcQaSMAkhhBBCnIEkTEIIIYQQZyAJkxBCCCHEGUjCJIQQQghxBn6+DqCmFfUazsvL83EkQggh6pLQ0FB0Op2vwxCVVOcSpvz8fAASEhJ8HIkQQoi6JDc3l7CwMF+HISpJpxUNudQRqqqSkpJSJZl+Xl4eCQkJJCcny3+CM5D3qmLk/So/ea/KT96r8quO90pGmM5tdW6ESa/X06hRoyq9Z1hYmHzzKSd5rypG3q/yk/eq/OS9Kj95r0QRWfQthBBCCHEGkjAJIYQQQpyBJExnwWg0MnXqVIxGo69DqfXkvaoYeb/KT96r8pP3qvzkvRInq3OLvoUQQgghKkpGmIQQQgghzkASJiGEEEKIM5CESQghhBDiDCRhOoPZs2eTmJiIyWSid+/erF+//rTnf/3117Rp0waTyUTHjh1ZsmRJDUXqexV5rz766CP69+9PZGQkkZGRDBw48Izv7fmmov+2iixYsACdTsfQoUOrN8BapKLvVU5ODmPGjCEuLg6j0UirVq3qzP/Fir5Xs2bNonXr1gQGBpKQkMBjjz2G1WqtoWh9588//2Tw4MHEx8ej0+n4/vvvz3jNypUr6datG0ajkRYtWvDpp59We5yiFtHEKS1YsEALCAjQ5s6dq+3YsUMbPXq0FhERoaWnp5d5/t9//60ZDAbttdde03bu3Kk988wzmr+/v/bff//VcOQ1r6Lv1e23367Nnj1b27Jli7Zr1y7trrvu0sLDw7WjR4/WcOS+UdH3q8ihQ4e0hg0bav3799eGDBlSM8H6WEXfK5vNpvXo0UO7+uqrtdWrV2uHDh3SVq5cqW3durWGI695FX2v5s+frxmNRm3+/PnaoUOHtF9//VWLi4vTHnvssRqOvOYtWbJEmzx5srZo0SIN0L777rvTnn/w4EEtKChIGz9+vLZz507tnXfe0QwGg7Z06dKaCVj4nCRMp9GrVy9tzJgxnq8VRdHi4+O1adOmlXn+Lbfcol1zzTVex3r37q3df//91RpnbVDR9+pkTqdTCw0N1T777LPqCrFWqcz75XQ6tb59+2off/yxNnLkyDqTMFX0vXr//fe1Zs2aaXa7vaZCrDUq+l6NGTNGu/TSS72OjR8/XuvXr1+1xlnblCdheuqpp7T27dt7HRs2bJg2aNCgaoxM1CYyLaKZ5QAADqpJREFUJXcKdrudTZs2MXDgQM8xvV7PwIEDWbt2bZnXrF271ut8gEGDBp3y/PNFZd6rk1ksFhwOB1FRUdUVZq1R2ffrhRdeICYmhnvuuacmwqwVKvNe/fjjj/Tp04cxY8YQGxtLhw4deOWVV1AUpabC9onKvFd9+/Zl06ZNnmm7gwcPsmTJEq6++uoaiflcUle/v4tida6XXHllZWWhKAqxsbFex2NjY9m9e3eZ16SlpZV5flpaWrXFWRtU5r062YQJE4iPjy/1Del8VJn3a/Xq1XzyySds3bq1BiKsPSrzXh08eJA//viD4cOHs2TJEvbv389DDz2Ew+Fg6tSpNRG2T1Tmvbr99tvJysriwgsvRNM0nE4nDzzwAE8//XRNhHxOOdX397y8PAoLCwkMDPRRZKKmyAiT8Lnp06ezYMECvvvuO0wmk6/DqXXy8/O58847+eijj4iOjvZ1OLWeqqrExMTw4Ycf0r17d4YNG8bkyZOZM2eOr0OrdVauXMkrr7zCe++9x+bNm1m0aBGLFy/mxRdf9HVoQtQ6MsJ0CtHR0RgMBtLT072Op6en06BBgzKvadCgQYXOP19U5r0qMmPGDKZPn86yZcvo1KlTdYZZa1T0/Tpw4ACHDx9m8ODBnmOqqgLg5+fHnj17aN68efUG7SOV+bcVFxeHv78/BoPBc6xt27akpaVht9sJCAio1ph9pTLv1ZQpU7jzzju59957AejYsSNms5n77ruPyZMno9fL79RFTvX9PSwsTEaX6gj533AKAQEBdO/eneXLl3uOqarK8uXL6dOnT5nX9OnTx+t8gN9///2U558vKvNeAbz22mu8+OKLLF26lB49etREqLVCRd+vNm3a8N9//7F161bPx3XXXccll1zC1q1bSUhIqMnwa1Rl/m3169eP/fv3e5JKgL179xIXF3feJktQuffKYrGUSoqKEk1NumZ5qavf30UJvl51XpstWLBAMxqN2qeffqrt3LlTu++++7SIiAgtLS1N0zRNu/POO7WJEyd6zv/77781Pz8/bcaMGdquXbu0qVOn1qmyAhV5r6ZPn64FBARo33zzjZaamur5yM/P99VLqFEVfb9OVpd2yVX0vUpKStJCQ0O1sWPHanv27NF+/vlnLSYmRnvppZd89RJqTEXfq6lTp2qhoaHal19+qR08eFD77bfftObNm2u33HKLr15CjcnPz9e2bNmibdmyRQO0mTNnalu2bNGOHDmiaZqmTZw4Ubvzzjs95xeVFXjyySe1Xbt2abNnz5ayAnWMJExn8M4772iNGzfWAgICtF69emnr1q3zPDZgwABt5MiRXud/9dVXWqtWrbSAgACtffv22uLFi2s4Yt+pyHvVpEkTDSj1MXXq1JoP3Ecq+m+rpLqUMGlaxd+rNWvWaL1799aMRqPWrFkz7eWXX9acTmcNR+0bFXmvHA6H9txzz2nNmzfXTCaTlpCQoD300ENadnZ2zQdew1asWFHm96Ci92fkyJHagAEDSl3TpUsXLSAgQGvWrJk2b968Go9b+I5O02TcVQghhBDidGQNkxBCCCHEGUjCJIQQQghxBpIwCSGEEEKcgSRMQgghhBBnIAmTEEIIIcQZSMIkhBBCCHEGkjAJIYQQQpyBJExCCCGEEGcgCZMQNchisXDjjTcSFhaGTqcjJyeHxMREZs2addrrdDod33//fY3EWF1Wrlzpec016dNPPyUiIuKs7nH48GF0Oh1bt2495Tm+en1CiJrh5+sAhKhLPvvsM/766y/WrFlDdHQ04eHhbNiwgeDgYF+HVqUuvvhiunTpcsZEUAghzhWSMAlRgw4cOEDbtm3p0KGD51j9+vV9GFHtZrfbCQgI8HUYQgghU3JClKSqKq+99hotWrTAaDTSuHFjXn75ZQD+++8/Lr30UgIDA6lXrx733XcfBQUFnmvvuusuhg4dyowZM4iLi6NevXqMGTMGh8MBuEZd3njjDf788090Oh0XX3wxQKkpuX379nHRRRdhMplo164dv//+e6k4k5OTueWWW4iIiCAqKoohQ4Zw+PDhcscCYLPZmDBhAgkJCRiNRlq0aMEnn3zieXz79u1cddVVhISEEBsby5133klWVtYZ38O77rqLVatW8dZbb6HT6dDpdF6xbdq0iR49ehAUFETfvn3Zs2eP57HnnnuOLl268PHHH9O0aVNMJhMAOTk53HvvvdSvX5+wsDAuvfRStm3b5rlu27ZtXHLJJYSGhhIWFkb37t3ZuHGjV1y//vorbdu2JSQkhCuvvJLU1FTPY6qq8sILL9CoUSOMRiNdunRh6dKlp32dS5YsoVWrVgQGBnLJJZd4vUYhxPlHEiYhSpg0aRLTp09nypQp7Ny5ky+++ILY2FjMZjODBg0iMjKSDRs28PXXX7Ns2TLGjh3rdf2KFSs4cOAAK1as4LPPPuPTTz/l008/BWDRokWMHj2aPn36kJqayqJFi0o9v6qq3HDDDQQEBPDPP/8wZ84cJkyY4HWOw+Fg0KBBhIaG8tdff/H33397kgC73V6uWABGjBjBl19+ydtvv82uXbv44IMPCAkJAVwJyqWXXkrXrl3ZuHEjS5cuJT09nVtuueWM7+Fbb71Fnz59GD16NKmpqaSmppKQkOB5fPLkybzxxhts3LgRPz8/7r77bq/r9+/fz7fffsuiRYs8a4ZuvvlmMjIy+OWXX9i0aRPdunXjsssu48SJEwAMHz6cRo0asWHDBjZt2sTEiRPx9/f33NNisTBjxgw+//xz/vzzT5KSknjiiSe8Yn7jjTeYMWMG//77L4MGDeK6665j3759Zb7G5ORkbrjhBgYPHszWrVu59957mThx4hnfGyHEOUwTQmiapml5eXma0WjUPvroo1KPffjhh1pkZKRWUFDgObZ48WJNr9draWlpmqZp2siRI7UmTZpoTqfTc87NN9+sDRs2zPP1uHHjtAEDBnjdu0mTJtqbb76paZqm/frrr5qfn5927Ngxz+O//PKLBmjfffedpmma9vnnn2utW7fWVFX1nGOz2bTAwEDt119/LVcse/bs0QDt999/L/O9ePHFF7UrrrjC61hycrIGaHv27CnzmpIGDBigjRs3zuvYihUrNEBbtmyZ59jixYs1QCssLNQ0TdOmTp2q+fv7axkZGZ5z/vrrLy0sLEyzWq1e92vevLn2wQcfaJqmaaGhodqnn35aZizz5s3TAG3//v2eY7Nnz9ZiY2M9X8fHx2svv/yy13U9e/bUHnroIU3TNO3QoUMaoG3ZskXTNE2bNGmS1q5dO6/zJ0yYoAFadnb2qd4WIcQ5TEaYhHDbtWsXNpuNyy67rMzHOnfu7LU4u1+/fqiq6jWl1L59ewwGg+fruLg4MjIyKhRDQkIC8fHxnmN9+vTxOmfbtm3s37+f0NBQQkJCCAkJISoqCqvVyoEDB8oVy9atWzEYDAwYMKDMOLZt28aKFSs89w8JCaFNmzYAXs9RGZ06dfKKCfB6j5o0aeK1rmvbtm0UFBRQr149r3gOHTrkiWX8+PHce++9DBw4kOnTp5eKMSgoiObNm3s9b9Fz5uXlkZKSQr9+/byu6devH7t27SrzNezatYvevXt7HTv570kIcX6RRd9CuAUGBp71PUpOA4GrHICqqmd935IKCgro3r078+fPL/VYyUTjdLGc6bUWFBQwePBgXn311VKPFSU5lVUyLp1OB+D1Hp28Y7CgoIC4uDhWrlxZ6l5F5QKee+45br/9dhYvXswvv/zC1KlTWbBgAddff32p5yx6Xk3Tzup1CCHqFhlhEsKtZcuWBAYGsnz58lKPtW3blm3btmE2mz3H/v77b/R6Pa1bt66yGNq2bUtycrLXguR169Z5ndOtWzf27dtHTEwMLVq08PoIDw8v1/N07NgRVVVZtWpVmY9369aNHTt2kJiYWOo5ylMCISAgAEVRyhXLmXTr1o20tDT8/PxKxRIdHe05r1WrVjz22GP89ttv3HDDDcybN69c9w8LCyM+Pp6///7b6/jff/9Nu3btyrymbdu2rF+/3uvYyX9PQojziyRMQriZTCYmTJjAU089xf/93/9x4MAB1q1bxyeffMLw4cMxmUyMHDmS7du3s2LFCh5++GHuvPNOYmNjqyyGgQMH0qpVK0aOHMm2bdv+v737d0knjuM4/lKbHKKhcJNbki6QpgSXliJoKkL6QVBoCVJhkQmBGLQE7YH9BUFBJA2RTZIUiA2tEpGKU5SrDUXfKakv0dm37xDxfMBtH+7N3XC8eL/vPqdcLqdEIvFuzdTUlNrb2zU8PKxcLqfb21tls1lFo1FVq9Wm6hiGoZmZGYVCIaXT6cY59vf3JUkLCwuq1WqanJxUoVDQzc2NMpmMgsFgU0HIMAzl83mVSiXd399/q8s2MDAgv9+vkZERnZ6eqlQq6eLiQolEQpeXl6rX61pcXFQ2m1W5XNb5+bkKhYJM02y6Rjwe19bWlvb29lQsFrW2tqarqystLS19uD4Siej6+lrxeFzFYlG7u7vvXqgH8PsQmIA3ksmkYrGY1tfXZZqmxsfHdXd3J6fTqUwmo1qtpt7eXgUCAfX392t7e/u/1rfb7To8PFS9XpfP59Pc3FxjW4NXTqdTZ2dncrvdGh0dlWmamp2d1ePjo1pbW5uulUqlFAgEND8/r66uLoXD4UYH7bXj8vz8rMHBQXm9Xi0vL6utrU12u/VjY3V1VQ6HQ93d3ero6FClUvnajXjDZrPp+PhYfX19CgaD8ng8mpiYULlclsvlksPh0MPDg6anp+XxeDQ2NqahoSFtbGw0XSMajWplZUWxWExer1cnJyc6OjpSZ2fnh+vdbrcODg6UTqfV09OjnZ0dbW5u/vM1Avj5bC8M8gEAAD5FhwkAAMACgQnAl1QqlXef9/99fGf8BgA/FSM5AF/y9PT06W9ADMNQSws7lgD4XQhMAAAAFhjJAQAAWCAwAQAAWCAwAQAAWCAwAQAAWCAwAQAAWCAwAQAAWCAwAQAAWCAwAQAAWPgDF8p2MDLlQu0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "sns.relplot(\n", " data=pr_persons,\n", @@ -2220,7 +651,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "5bd1f10a", "metadata": { "ExecuteTime": { @@ -2228,18 +659,7 @@ "start_time": "2023-06-22T09:38:46.340194Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGxCAYAAACwbLZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACubklEQVR4nOzdd3yT1ffA8U/SvQctLaPQsvceAiJTwMFSvgwREAVFQUVQhgoKKsMBKCAoiMCPDYpMAWXJ3nuUVSjQAYXulTTJ748LpRWQjqTpOO/XKy/a5MnznBZITu4991yNyWQyIYQQQghhJVprByCEEEKIok2SESGEEEJYlSQjQgghhLAqSUaEEEIIYVWSjAghhBDCqiQZEUIIIYRVSTIihBBCCKuSZEQIIYQQVmVr7QCywmg0EhYWhpubGxqNxtrhCCGEECILTCYT8fHxlCxZEq328eMfBSIZCQsLIyAgwNphCCGEECIHrl+/TunSpR/7eIFIRtzc3AD1w7i7u1s5GiGEEEJkRVxcHAEBAenv449TIJKR+1Mz7u7ukowIIYQQBcyTSiykgFUIIYQQViXJiBBCCCGsSpIRIYQQQliVJCNCCCGEsCpJRoQQQghhVZKMCCGEEMKqJBkRQgghhFVJMiKEEEIIq5JkRAghhBBWle1k5J9//qFjx46ULFkSjUbDH3/88cTn7Nixg3r16uHg4ECFChWYP39+DkIVQgghRGGU7WQkMTGR2rVrM3PmzCwdHxISwgsvvECrVq04fvw4Q4cOZcCAAWzevDnbwQohhBCi8Mn23jTPPfcczz33XJaPnz17NkFBQXz33XcAVK1ald27dzN16lTat2+f3csLIYQQopCx+EZ5+/bto23btpnua9++PUOHDrX0pZ8s/CQk3oISdcDFx9rRCCGEENlmMJqISdJxJ1HHnQQdRpMpR+epWdoDd0c7M0eXNRZPRiIiIvDz88t0n5+fH3FxcSQnJ+Pk5PTQc1JTU0lNTU3/Pi4uzjLBrX0Xwo9Dr+VQuYNlriGEEEJkg8lk4mZMMqF3k4hJ0hOdpCM6UUd0kp7YZD0xSXpik3X3HtNzNzEVY87yj0x+f6cp9cp45f5EOWDxZCQnJk6cyLhx4yx/IUd39WdqvOWvJYQQoshL0RuIjEshOklPUmoaiToDialpxKXouRiZwPmIOM6HxxOfmpbtc3s62+HtbI+dTc4Wyjra2uToeeZg8WTE39+fyMjITPdFRkbi7u7+yFERgNGjRzNs2LD07+Pi4ggICDB/cA73k5FY859bCCFEkWQymYiMS+XkjRhO3YzlbFgcN2OSiYhLISZJn6Vz2NloCPB2xtvZHi8Xe7yc7fBytsfD2Q5PJ3s8ne3wdLLDw9kOX1cHvFxynoTkBxZPRpo0acLGjRsz3ffXX3/RpEmTxz7HwcEBBwcHS4f2IBlJsdA0kBBCiALBYDQRGZfCjehkbkQncSM6mfDYFIxPmP8wmkykpBlJ1hlI0RtI0qVxPTqZ2/Gpj32Oo52WYi4OuDjY4Gxvi4uDDS72tgT5ulDV350qJdwo7+taoJOL7Mp2MpKQkMClS5fSvw8JCeH48eN4e3tTpkwZRo8ezc2bN1m4cCEAgwYNYsaMGYwYMYLXX3+dbdu2sWLFCjZs2GC+nyKnZJpGCCGKBKPRRJLeQHyKnoSUNO4m6giOjOdceBxnw+O5EBFPst5gtuvZaDVULO5KrdIe1CzlQYC3M/4ejvi7O+LhZIdGozHbtQqDbCcjhw8fplWrVunf359O6devH/Pnzyc8PJzQ0ND0x4OCgtiwYQMffPAB33//PaVLl2bu3Ln5Y1lv+jSNjIwIIURhYjKZOBcez8ZT4fx5OpwrUYk8aZGJrVZDSU8nSnupWwkPJ+xt/3t0QqNRtRZO9jY42ak/fVztqVbCAyd769VgFDTZTkZatmyJ6T/+Rh/VXbVly5YcO3Ysu5eyPAc39adM0wghRIGTmmbg5r0pkfiUNOJT9cSnpHEzOpnNZyK4eifpoefYajW4Odri7mRHeV9XqpZwo2oJd6r4uxNYzBnbIjQ1kp/ky9U0eUamaYQQIt+KTdYTdq/wMyI2hfDYFCJi1ZLX0DtJhMel/Odoh4OtlpaVfXm+ZgkaBxXDw8kORzutTJHkQ0U7GZFpGiGEyDMmk4nb8akER8YTHBFPTJIeg8mE0WTCZIJUvYGw2AdFpPEpT17e6mxvg7+7I26Otrg52uHuZIuHkz1NyxejdZXiuDgU7be5gqJo/y3JahohhDC7+0nHxVsJXLqVwMVb8VyMTOBCZDzRWVzaep+3iz3+7o74ezji5+5ICQ9HArydKOPtQtlizhRzsZeRjkKgaCcjjjIyIoQQOZFmMHLtbhKXbyUQEpWYPppxMyaZm9HJJOoevTJFq4FAHxcq+7nh5+6IVqNBq1GrT2xtNPh7qOLRAC8nSnk6SxFoEVG0kxGZphFCiCcyGk1cvJXAwZA7HLwazbnwOK7dSURveHzBhlYDZYu5UKG4q7r5ulLZ340KxV1xtJMEQ2RWxJORDKtpTCa1RksIIYqw+/uinAuP53x4HCdvxnL46t1HTq842dlQvrgL5XxcCfB2orSXM6U8nSjl5UQpTydJOkSWFe1k5P40jckA+mSwd7ZuPEIIkYdMJhPX7yZz4l7b8hPXYzgXHkfcIwpHnexsqF/Wi0ZB3tQq7UGF4q6U9HBCq5UPcSL3inYyYu8KaACTmqqRZEQIUYjpDUZO34zlYMhdDl29y5Fr0Y8c8bCz0VDe15VqJdypWsKd+oFe1Cjp8cQGYELkVNFORjQaVTeSGqumatz8rR2REELkWorewLU7SYREJRASlcTVqERCohI5dTP2oZbn9jZaqpZwo2ZpD2qV9qRmKQ/K+7pK4iHyVNFORkBN1aTGSuMzIUSBYzKZuHoniUMhdwmOjOfy7QQu307gRnTyY5uBeTrb0TDQm0aB3jQM8qZqCTccrLh1vBAgyUiGFTWx1o1DCCGeIFln4FxEHCevx3DoajQHQu4SlfDo3WHdHG0p5+NCoI8LgcVcCPJxoVpJdyr4ukqdh8h3JBmR/WmEEPmALs3I6bBYLkTEk5pmRG8wojMY0aUZuRqVyOmwOK7cTuDfO9rb22ipHeBBzVKeVCjuSnlfF8oXd5VmYKJAkWRE9qcRQlhBapqBQyHRHAi5w8GQuxy/HkNqmvGJz/Nxtad6SQ8aBnrRMNCb2gGesoRWFHiSjEjjMyFEHrkVn8KO87fZej6SXRejSPpXl1IvZztqlvbEzcEWOxsNdjZa7Gy1lHB3pHopd6qX9KC4m4OMeIhCR5KR+9M0MjIihDCzxNQ0DobcZc+lKPZcvsO58MwfenzdHGhewYeGQd40DPSivK+rJBqiSJJkxFE2yxNC5I7JZCIqQceFyPj027nweE7fjCXtX0UetUp70LpKcdpU8aN6SXcpJhUCSUZkNY0Q4omMRhO34lO5Hp3E9btJXL+bzM2YJMJjU7gZk0x4TMpD/TvuK+3lRLPyPjStUIym5X3wdXPI4+iFyP8kGXGQAlYhxAOxSXrOhMdyNiyOc+HxnAuP49LtBHRPKC7VaKCstzOV/Nyo7O9GRT836pT2pEwx6ewsxJNIMiLTNEIUaalpBo5cjWbXpSh2X4zidFjsIxuG2Wg1lPR0JMDLmQAvZ0p7OVHC04mSHo6U9HTC38NRVrUIkUOSjMhqGiGKnGSdga3nI1l3IoydF26Tos886hHg7ZS+L0u1Eu5U9nejlKcTtjbSIl0IS5BkRFbTCFEkxCbrORhylw0nw/jrbCSJGZbV3l/V8nRFH56u4ENxd0crRipE0SPJiEzTCFEo3Y5P5WDIXQ6G3OHg1WjOR8Rlmn4p7eVEx9olebFWCaqVcJcltUJYkSQjMk0jRKFwN1HH/it32Hf5Dvuu3OHSrYSHjgnycaFFJV861SlJ3QBPSUCEyCckGbmfjOiTwJAGNvIrEaIgiUpIZca2Syw+cA29IXPlaRV/N54qV4yGgd40DPKiuJtMvwiRH8k77/1pGlCjI87e1otFCJFlCalpzN11hTn/XEmv/6jk50rT8j48Va4YjYO88XKxt3KUQoiskGTExg5snSAtWZIRIfI5k8nEmbA4/jobyeID14hK0AGqq+moDlVoWsHHyhEKIXJCkhFQK2rSkmVFjRD5UJrByP4rd9lyNoK/z0YSFpuS/lhgMWc+al+F52v6S/2HEAWYJCOgpmoSb8mKGiHyifsjIKuP3WTtiTBux6emP+ZkZ0Pzij50qOFPx9olsZPeH0IUeJKMQIZeI5KMCGFNt+NT+e3oDX47coOLGVbDeDnb0b66P89W86NZBR/pdCpEISPJCMj+NEJYkdFoYvelKJYeDOWvs5Hpu9za22p5tpofXeuU4plKvtjbygiIEIWVJCOQofGZ7NwrRF65GpXI78du8vvRG9yITk6/v06AJz0bBvB8rRK4O9pZMUIhRF6RZASk8ZkQeSQ+Rc+6E+H8fvQGh69Fp9/v7mjLS/VK07NRAFX83f/jDEKIwkiSEZBpGiEsLCI2hV/3hLD4QCgJqWkAaDXQvKIvL9UrRfvq/lIHIkQRJskIyP40QljIxch4fv7nCn8cv5neHbW8rwvdGwTQpW4p/GRDOiEEkowosppGCLPRG4z8dTaSRfuvsffynfT7GwV589Yz5WhVuTharfQEEUI8IMkIyDSNEGYQEZvCkgPXWHboOrfu9QXRauDZan681aI89cp4WTlCIUR+JckIyDSNELlw5XYCP+28wu/HbqRPxfi4OtCzYQC9GpehlKeTlSMUQuR3koxAhmkaGRkRIqtO34xl1o7LbDwdjuneZrmNAr3p27Qs7ar5S18QIUSWSTIC4OCh/kyVPiNCPMmN6CQmbwpm3Ymw9PvaVCnOO63KU7+sbDQphMg+SUZApmmEyIL4FD2zdlxm7u4QdGlGNBroWKsk77QqL71BhBC5IskIZJ6mMZlAdv8UIl3onSQ2nArnl91XiErQAdCkXDE+fbEq1Ut6WDk6IURhIMkIPFhNYzKAPgnsXawbjxBWFhKVyMZT4fx5OpzTNx+MGAb5uPDx81VpW7U4GknahRBmIskIqORDowWTUU3VSDIiiqBLtxL481Q4G06Fcz7iQTG3VgNPlStGp9olealeaSlMFUKYnbyqgJqWkRU1ogiKTdLz087LtJ/6D22n7OS7vy5wPiIeG62G5hV9mPhSTQ590pYlA5+iZ6MyBToRmTlzJoGBgTg6OtK4cWMOHjz42GPnz5+PRqPJdHN0fHy32EGDBqHRaJg2bZoFIhei8JORkfscPNSuvdKFVRQB1+4k8uueq6w4fJ0knQEAW62Gpyv68HyNEjxbzQ8vF3srR2k+y5cvZ9iwYcyePZvGjRszbdo02rdvT3BwMMWLF3/kc9zd3QkODk7//nHTUqtXr2b//v2ULFnSIrELURRIMnKfozvEohISIQqhNIORXRejWHYolC1nI9N7g1Txd+O1poE8V6MEHs521g3SQqZMmcLAgQPp378/ALNnz2bDhg3MmzePUaNGPfI5Go0Gf3///zzvzZs3effdd9m8eTMvvPCC2eMWoqiQZOQ+maYRhdTZsDh+O3qDNcfDiEpITb+/ZWVfBjxdjmYVihXqYlSdTseRI0cYPXp0+n1arZa2bduyb9++xz4vISGBsmXLYjQaqVevHhMmTKB69erpjxuNRvr06cNHH32U6X4hRPZJMnJf+v40Mk0jCj5dmpH1J8P4dc9VTt18MNpXzMWeTnVK8kqjMlT0c7NihHknKioKg8GAn59fpvv9/Pw4f/78I59TuXJl5s2bR61atYiNjeXbb7+ladOmnDlzhtKlSwMwefJkbG1tee+99yz+MwhR2Ekycp80PhOFQFRCKksOhPJ/+69x+95mdfY2WtpWK85LdUvTorIvdjYFtwg1rzRp0oQmTZqkf9+0aVOqVq3KTz/9xBdffMGRI0f4/vvvOXr0aKEeVRIir0gycp9M04gCLCI2hVk7LrH00HV0aUYA/Nwd6NskkF6NyuBdiIpRs8vHxwcbGxsiIyMz3R8ZGfnEmpD77OzsqFu3LpcuXQJg165d3Lp1izJlyqQfYzAYGD58ONOmTePq1atmi1+IokCSkftkmkYUQGExyczacZnlh66jM6gkpHZpD15/OojnapQo0EtxzcXe3p769euzdetWunTpAqh6j61btzJkyJAsncNgMHDq1Cmef/55APr06UPbtm0zHdO+fXv69OmTXiQrhMg6SUbuk2kaUYBEJaQyfetFlh58kIQ0CvJmaJuKNClfuAtSc2LYsGH069ePBg0a0KhRI6ZNm0ZiYmJ64tC3b19KlSrFxIkTARg/fjxPPfUUFSpUICYmhm+++YZr164xYMAAAIoVK0axYsUyXcPOzg5/f38qV66ctz+cEIWAJCP3yciIKACSdGnM3RXCTzsvk3ivP0jjIG+Gtq1Ek/LFnvDswitJl0a1sZsBODu+Pc72mV/aevTowe3btxk7diwRERHUqVOHTZs2pRe1hoaGotU+GEWKjo5m4MCBRERE4OXlRf369dm7dy/VqlXLux9KiCJEYzLd7zaQf8XFxeHh4UFsbCzu7hbaHfTEclj9JpRrCX3XWOYaQuSQLs3IqiM3mPr3hfTC1FqlPRjVoQpNK/hYOTrre1IyIoSwjqy+f8v/2PtkmkbkQ3cTdSw5cI2F+65x614SEuDtxEftq/BizRJotUV7OiZJl3bvT0OG+x58LUmJEAWD/E+9T1bTiHzk8u0E5u66wu9Hb5J6b3VMcTcH3mpRnlefKoODrY2VI8wf7o+GmEygi/DApLOl9vC9aJ10pMU48/dHzSlXDuzswPYxr3Ymk9qeSghhPZKM3Cc1IyIfuBWfwrS/L7L80HUMRjWDWqOUO288HcQLNUvK6hjAYACjEYKDIXZvBXRRrvh0PE7yFV+09gbsTGBr1JB8uTiLFsEbb8D69bBtG7i7w6JF8PLLoNdD+/bQuDGMH6/O/dlnsHcvbNkCjo6wciW8+SY4OUGbNtCkCZw/DwEB6mYjOaEQZpGjmpGZM2fyzTffEBERQe3atZk+fTqNGjV67PHTpk1j1qxZhIaG4uPjQ7du3Zg4ceJ/7oKZUZ7UjERfhe9rg60TfBphmWsI8RiJqWnM2XWFn/+5kj7N0KZKcd58phyNgrwL9eoYkwnu3gUHB7h6FQ4dgshIGDkSPv4Yrl2DmjVVAjF8OGi16jGNBhJT0qjfAAwaAw2+/BuAw5+2xdleZQnmmKaJj4dbt9T1bG1h6VK4fh0GDlQJzqFDULcufPQRrFmjRmHKlYPixeHCBfV9pUrqPMnJ4OUF3t65DkuIAsFiNSPZ3f1yyZIljBo1innz5tG0aVMuXLjAa6+9hkajYcqUKdm9vOXcHxlJSwaDHmwK54ZhIn8xGk38fuwmkzedTy9MrRPgycfPV6VRUOF5xzKZICIC/P3h55/h1CkoVepBglGsGLz7LqSlgYeHevM2meD998HFBVxdVTKwbt2/z6xewpJ0D+5xtrcxa62Im5u63Tdy5IOva9eG2FgICVHf37kDqang7KySpm3b1M/k5QWHD8O+ferxH3+E7t1VctK+PTz3HBw4ALVqQeXKKoERoijJ9shI48aNadiwITNmzABU86CAgADefffdR+5+OWTIEM6dO8fWrVvT7xs+fDgHDhxg9+7dWbpmnoyMGPTwxb1VCSNCwLnwvBGI/On0zVjGrjnN0dAYAMp4OzOiQ2VeqFmiQI+E6PVw7BicPg01aqjRjgULoEQJmD4dzpxRyUdAwOPrOLKroK+muXUL/vpLJWkDBsCKFWq6qFIl+PZbWLVKJSoVK8rUkChYLDIykpPdL5s2bcqiRYs4ePAgjRo14sqVK2zcuJE+ffo89jqpqamkpj7YXTQuLg/qOGzswM4Z9EmqbkSSEWEh0Yk6vtkSzNKDoZhM6pP8e20q8nqzoAJVE2IyqemK4sVh8WL480812jF+PGzcqKZWAgKgUSM1CnBfgwbmj8XZ3park14w/4nzSPHi0Lv3g+8//lj9fuPiVI1MSgrMmQMNG6q6l5UroXRp+OADuHhRJXVlyoCvr/V+BiFyI1vJSE52v3zllVeIiori6aefxmQykZaWxqBBg/j4448fe52JEycybty47IRmHg5uKhmR5b3CAkwmE6uP3eSL9WeJTtID0LlOSUY/VxV/j6zVT1lbYqKabomIgC++ULURY8ZA69bQs6eaUgH4/HOrhlkoaDRqygqgb98H95tMKim5eVNNB4WFwYkTamrn7bfVsRqNKrytUkX9ndWoYb5RKCEsweL/PHfs2MGECRP48ccfady4MZcuXeL999/niy++YMyYMY98zujRoxk2bFj693FxcQQEBFg6VFU3khApK2qE2V2/m8THq0+x62IUAJX93BjfuTqNy+W/rqkpKWq1SlgYHDmiikkHDYKhQ9V9/fpBly6waZO1Iy2aNBo1AnJ/FKRrV3W7b/16lbDo9XDunJryGTtWFd5OnQo+PmpVUO3a1olfiEfJVjKSk90vx4wZQ58+fdL3dKhZsyaJiYm8+eabfPLJJ5laMN/n4OCAg4NDdkIzj/uNz6TXiDATvcHI/D1XmfLXBZL1BuxttbzfpiJvPlMOOxvrTckYjepNbetWVThpZwevvKKSDkdHVTjq4KDe0KpWVcdOnaruE/mfRgP29irhyJh0vPoqnDypptfs7ODDD1Vx7ZgxD1b5SPGssIZsJSM52f0yKSnpoYTD5l4FVr7rRH+/8ZlM04hcMhpNrDsZxpS/LnDtThIAT5XzZkLXmpTzdc2zONLS1BD+xYtQvjzcvg0zZ6o3q19/VaMgrVpBtWrg6ak+VWf0Hyv2RQEUGKhu923cqJZV29vD77+rQtlixeCXX2DZMlXfU6GCWhkkhCVle5omu7tfduzYkSlTplC3bt30aZoxY8bQsWPH9KQk35DGZyKXTCYTf5+7xXdbgjkfoUbYirnYM6JDZbo3CLDYKpmUFDh6FKpXh7lzYft2VTw6ZYrqfVGpkhqer1cPnn/+wfNefNEi4YgC5H7Pk7591c1kUkmsyaSWIDdpopY2792rktP27WWETJhftpOR7O5++emnn6LRaPj000+5efMmvr6+dOzYka+++sp8P4W5OEoyInLu8u0ERv12kkNXowFwc7RlUIvyvNY0EBcH85ZnJSWphMNgAD8/mDQJ6tdXn2LffBOGDXvQ4vx+d1EhskKjUVM1vXs/WOGj16seMQcOqCm+t95SCUu3btChg7TTF7knu/ZmtGk07P8Rmg2FZ62wmkcUSAajibm7rjDlrwukphlxsrOhf7NA3nqmPB7O5pmAN5lUN8/Nm1Wy8cEHaqXEiy+q6Rch8tqNG2ra735H3OLF1SoqT09VfyIJigDZtTdnZJpGZNPFyHg+XHWSE9djAHimki8TX6pJKU+nXJ03LQ3++Ud17KxaVc3pb9kC7dqpplezZpkheCFyoXRpdQO1surWLbW0e/582LBBJcnffQc7d6rpnfvLlIV4FElGMpLVNCIbVh+7wchVp9AZjLg52jLmhWr8r0HpHNeFxMWpgsLt21WR6YkT0KKFmn5xcpL6DpG/3d8NZPBgdUtLU63vT52CefOgVy9o1kwVyArxb5KMZCSraUQWLTkQyid/nMJkgpaV1WhICY/sj4bcvg1r16oVDjExqkHVl1+qBlUffGD2sIXIM7a26pahZRTTp6uRkkmTVH2TEPdJMpLR/Wma2+dg59e5P5+LDxSrAN7lwa2ErI8rJObtDmH8+rMA9G1Sls87VkerzfpoSESEmnLp0UM1EnvxRbWEUoaxRWH37rtqNdfBg2q6sVgx1d5eCElGMnK519IwJhS2m3m1j62TSkz8qoFfDfCvAX41wVU2kyhIftxxia83BQPw1jPlGPVclSxNyxgMahpm3To1FdOrl6oDWbzY0hELkb+UL69ue/eq6ZzatWHCBCl4LepkNU1GRiPsngKx13N/LpMR4iPgziWIvgYmw6OPc/EF3yrgW/nBn341ZKO+fMZgNPHdlmB+3HEZgPfbVGRo24pPTERMJhg3DnbtUsPVzz9vnhfdmTNn8s033xAREUHt2rWZPn06jR7Toez3339nwoQJXLp0Cb1eT8WKFRk+fHimzSof93N8/fXXfPTRR7kPWIjHuHBBrcAZMUJ1AK5TR3UBFoVDVt+/JRnJCwa9Gm25fR4iz0DkaYg4DXevAI/59buVvDd6Uh1K1IGARuBeMi+jFvfcik9h2PIT7L6k9pUZ9VwVBrV4/HraS5dUwd6xY/DHH3D+vNr+3Vyf/JYvX07fvn2ZPXs2jRs3Ztq0aaxcuZLg4GCK368izGDHjh1ER0dTpUoV7O3tWb9+PcOHD2fDhg20b98egIiIiEzP+fPPP3njjTe4dOkS5cqVM0/gQvyHS5dgwQLVu2TvXrULtK0t/PYbnD6tNvuT0ZOCR5KRgkCXCFEX4HawSlRunYdbZyHm2qOPdy8FpRtAqQZQvJoaRfEoLf9DLWj3xSiGLj9OVEIqTnY2fNGlBt3ql37oOL0eli8HnU4tY0xOVnUglvirady4MQ0bNmTGjBmA2pIhICCAd999l1GjRmXpHPXq1eOFF17giy++eOTjXbp0IT4+nq1bt5otbiFyQq+HTz6B48dh1Cho2VLK7woS6TNSENi7QMm66pZRSpxKSiJPQ8QpuHlEjajE3YSzN+HsmgzncAWfSlC8aoZaFJnmya00g5Hvt15kxvZLmExql92ZvetSobhbpuPi41Xtx9ChavSjXz+1rbul6HQ6jhw5wujRo9Pv02q1tG3bln379j3x+SaTiW3bthEcHMzkyZMfeUxkZCQbNmxgwYIFZotbiJyys4Ovv1ZLhZOSYMYMVQT+ySeqr4koHCQZyY8c3aHMU+p2X2oChB+HG4cg7JgaTblzCXQJEHZU3TJyKwFeQeBVFjzLgGfZe8WzNcFG/tr/y6kbsYz6/SRnwtQS716NyvBZx2o42mXeS2nlSpg9W20qlldNyKKiojAYDOnbL9zn5+fH+fPnH/u82NhYSpUqRWpqKjY2Nvz44488++yzjzx2wYIFuLm58dJLL5k1diFyw9ZWrbx57z3VVO3rr1VCYmcng8OFgbwrFRQOrhD4tLrdZ9CrupNb59RISsRpNZoScw3iw9UtdG/m89i7QumGULapSnb8a4KTV97+LPlUYmoaU/+6wLw9IRhN4OFkxxddatCpduZandhY9cJ45Yqa17a3t1LA2eDm5sbx48dJSEhg69atDBs2jHLlytGyZcuHjp03bx69e/fGUaoIRT71wgvqtnGj2hjys8/UqhxRcEkyUpDZ2N1bhVMZqnd5cH9KLNy+oJKSmGtqNU/0VQg7DqmxcGW7ut3nEaCmdvyqQ9kmENQyX46eZGcFyZw5c1i4cCGnT58GoH79+kyYMCH9eL1ez6effsrGjRu5cuUKTi5uaEvXwr7Jq9i6FaNT7ZKM7VgNH9fM25Nu2KB2wl2yRO3Hkdd8fHywsbEhMjIy0/2RkZH4+/s/9nlarZYK97pM1alTh3PnzjFx4sSHkpFdu3YRHBzM8uXLzR67EOb2/PNqj6bFi6FiRVi6VPXvcXW1dmQiu/LfO47IPUcPCGiobhkZDWoUJXQfXNsLNw5DbKhayhx7HS78CbsA52JQrQvU7AYBT+WLarHly5czbNiwTCtI2rdv/58rSHr16kXTpk1xdHRk8uTJtGvXjjNnzlCqVCmSkpI4evQow0eOZtcdFzYevsTdrT9jt+Yr1m3dRavKmc95/rzah2PXLli/XrVntwZ7e3vq16/P1q1b6dKlC6AKWLdu3cqQIUOyfB6j0UhqaupD9//yyy/Ur1+f2vIxUxQQ5crBmDGqeNzBQfXwGTkSnn76yc8V+YespinqkmMeLDcOPwEXNkHSnQePu5WEwGZqaqd0A1VzYpv38xK5XUFiMBjw8vJixowZ9O3bF4DtwbcY/dspIuJS0GignW8CPw/vybVr1yhTpgwAZ87Ap59CQIDa9MvOPJvw5sry5cvp168fP/30E40aNWLatGmsWLGC8+fP4+fnR9++fSlVqhQTJ04EYOLEiTRo0IDy5cuTmprKxo0bGTVqFLNmzWLAgAHp542Li6NEiRJ89913DBo0yFo/nhC5ZjKpniXvvquWBAvrkdU0ImucPFWyEdhMfW/QQ8hOOPUbnF8P8WFwaqW6Adg4qNU/ZZtAmaaq/4mTp0VDzO0KEoCkpCT0ej3e3t7Ep+j5Yv1ZVhy+AUBgMWe++V9tYi8dZY5Gg4ODJ4sXq31junVTRar/qhe1qCRdGtXGbgbg7Pj2ONtn/m/ao0cPbt++zdixY4mIiKBOnTps2rQpvag1NDQUbYbRrMTERN555x1u3LiBk5MTVapUYdGiRfTo0SPTeZctW4bJZKJXr14W/gmFsCyNBsaPhwEDYOxYaNjwyc8R1iUjI+Lx9CmqAPbGYbWK58YhSI7+10EaVW9S5qkHCYp7CbOGERYWRqlSpdi7dy9NmjRJv3/EiBHs3LmTAwcOPPEc77zzDps3b2bNtv28t+oMV24notHAa00DGdG+Chqjnnr1mlGtWhUqVVpMuXJq7tnN7YmnNrsnJSNCiKxJS1NbMcyYoUZJCkKxeWEjIyMi9+wcoXxrdQM19nnnMlzfD9f2qUTl7hWIPKVuh+ao4zzLQtlmEPQMBDVXjdmsaNKkSSxbtozxP6+k+y9HSNIZKOHhyLQedWhcrhjXrulp1Kg7JpOJiRNnUbGideJM0qXd+9OQ4b4HX0tSIkT23N85uEIFtfrm558hKMjaUYlHkZERkTvxEaogNnS/KoqNPK325cnIu5xKTCq2h/KtwC571Z86nQ5nZ2dWrVqVXrQJ0K9fP2JiYlizZs1jn/vtt9/y5Zdf8srnP7MxQnVIalKuGBM71WXtCgcOH9YTF9edy5evsGPHNooVK5at2LLEZFLd0W7fBl9f1ff6wgVVbde1K2zbBgYDLyw+S6RbMdpcOoizPoV/gurhnpJIYHQYyXYOzP7tS9UnOy0NiheHsmXV+uLixcHHR22DKoR4pIgIVXi+YQN0766SFGF5MjIi8oabP1Tvqm6gusdePwhXd6lb2DE1enL3ChyZD3bOaqSlygtQrpV6/hM6FuV0BcnXX3/NF19+RYNB36QnIm80LUev6pXZv0OLj49KRC5dusj27dtzl4hcuwZ79sDZs/DFF9C7NyQkQKtW0KYNTJ6sEpG33lJl/waDSlAAQkMhPh6v5HjC3H256+zBDTs/op3csTEaSLW1x1WXrH5PFy5ATAwEBoKXl1rLeOsW9O0LISGwapVqS/l//6eW/gQFqaQlH6yIEsKa/P3V5wKdDjp2hB9/lFGS/ERGRoRlpcSqKZ3LW+H8Roi7kflxZx/V38S/JvjXgkrtHtmELbsrSMaM+5KJX47H+8UPcShVDWd7LS961+XwXwGMGOFKu3Z6unXrxtGjR1m/fn2mjqbe3t7YP2lyOS5OvZrt3g3Dh6tXuNu3oW5dqFYtRy0hM07TNPjybwAOf9oWZ3s14pHlaZqEBNVo4ddf4cgR9Yrbrh18/LHaDvWTT1Tntlu3oEwZaNxYvUpLG0tRRISGqvqRX39V/z06dpTW8pYiG+WJ/MdkgoiTcH4DBG9US4r/NaVjsnFAU7Uj1H0Vglpk+kQ/Y8aM9KZnderU4YcffqBx48YAtGzZksDAQGbP+YWf/7nChy8/jT721kMhfPzxZ3z11edcvXqVoMd8LNq+fXvmZmBxcWpK5dAhWLNGjWhMmQL79sEzz5h9va9FC1iTk9Xv9OJFOHpUjV2PGKGaMyQkqFGcli1h6lQ10d6vn0pgPDzU7+A+g0HdpCJQFGB376pdgaOi4JVX1GcKa9WMFVaSjIj8T5cEt8+RevMUS9Zu5CntWapqrz943KOMarxWqYPqcaL975qIM2GxDF12nIu3EjAk2lM70I2oP+rTsYMdAwY8YnmuyQTBwXDsmHo1GjIEXntNJR8dOqid7776Sm2I8cUXEBamltfUrm3RUQSrr6YxmeDOHVXbUr48bNoEf/yhJtwXLYKXXwajUbW/rFNHraE0mWDCBDh3TiU6fn4wcCBs3Qre3moExhL1OEKYyeXLqq38okXWjqRwkWRE5HsPT0uYODagOK5nl2J7ZhWa1LgHBzt5Q4W2ULGdmspx9Eh/yGA0MWfXFb7bEkxCqAfJhyrxdF0n1i52QaPRqLxBr1fTEgkJaroiJQUmTVK1HrGx6uNQo0aqHsPVVarbcsJkgvBwuHFD/Z5bt1Y7CIaHQ9WqKrH54gt17JdfwokTqgA3MPBBEij/v4UV/e9/MGcOeHpaO5LCQ5IRka8k6BIAcLZzRqtRUy+BozZgwgAY0GtuYNQkYWcsixZnHDEQ3NugpnQub1W1J/fZ2Kvi12qduenfig/WXuOfXSYMsQ482xgmVo6n7Mmtagpi5kzVYCAsTH2i79FDfaqXCWLri4qCq1chOlpND/Xtq75++WVo1kx9VH3qKTWyIkQeSE1Vi9Lks4j5SDIiLMZkMmHCRHh8OMF3golMiKRnjZ5M2z+N63HXqehdkVZBrfjor48AGNF0BDfjb7ImeA1J+iR+7/47b61/iyWHT+FgrIqLoQXxNpvR4oSToQE67WWSbHbTpqoff/T4g7fWDSQxJpSnNfZ0jbnJgrvB+KChrckGY4KWwUdH4XJDxwSnv3H99H/Y12iKT4oNmpIl1XSBFGYWLCaTGl354w/Yvx+++UaNnet0UL26mh46fVpN+/j4qLoVo1H9KauGRC6YTKqYdd06edkwF0lGhFnEpsRyPOI4yWnJlPMqxwebP0Cr0TKq2SjiUuM4H3UeP1c/etboyanIUzjbOePr4ouno+cTz53V1SMmk4nktGT0Bj22ujROnF/HhYUzObruaUpX2Ef808dJM5oYb+PABHRctbEhyKcKvRoNZmr4QWr41aJz5c4YTAYSdAl4OnpSwrUEGnm1KTgiI9WUWlqaWq00bZoaWenaVX2cnT9fTb398ovaUjkoSBUXy3i7yKZx49Q/nVatrB1J4SDJiMgyk8lEaGwotlpbLty5wPwT87mTdIfFLy1m8p7JeDh48EzZZ3iq9FMWeQN/YsFmfLy6vfcepKby9yvv0m1cVWwrRvH6iyF8US8eh1snIey4arqWlqJ+Lkxcd3TnVOl6VK/Rg2BHV7bf2EdMSgyzXpjFa2te407SHV6o+AJdq3blzK0zNA1oilM2m7KJfObcOdVIzmhU7yhbtqhigIAAa0cmCoCwMLh+Xa14F7knyYh4LJPJxInIExwOO0z36t3p9VsvyriXoX/d/pTzKocGDd5O3nk2cvBQMqJFjZf+/DOsXasKS8eORR+bxP9GGziQcg77EjG8VL8UX3erhZ1NhqF5gx5uHoXTv8GZ1ZCYYXmv1k7tPhzUXHWEDWiMSWtLoj6RRF0iC08sZN+NfYxrOY4r0Vdwc3Cjjn8dvJ2kZqHA0ung779h5Uq1Y9rZs2rP+SpVZBxePNbKlWqFu6+vtSMp+CQZEQ85H3UeFzsXVpxZQVh8GN2rd6dx6XyU/oeEwKefqiLGKVNUh1FfX9Bq0elN1GyWwF3/SzhXDWNg8yA+fr4qWu1/vKEYDaoL7Onf4NK2hxuuOXmrTrDVuqjkxPZBz4wTESfYcnkL0SnRjHp6FH1X96WKTxX+V+1/2NvYs/f6Xmy0NnSv3p0jYUeITY3Fx9mHp0o/RXBUMEFeQTjbOVvm9yRybssWtVTZ1VVt6fr779CihVquLfUm4p716+H8efjwQ2tHUvBJMiIASDOmkaBLoOeqnlTwrsDQp4ZSwbuCtcN6IDJSLf+MjVXLPZOSMn0cuXsXho8wEFfpFIejwtBoTYzsUIVBLcplb+TGZFIt6a/ugpBdcGU7JN158LijB1TtBI0HgX+Nh56uM+gIjgrGzUFt43vm1hkMJgNtgtqw9/peQmNDcbV3pVPlTozbqUZWulXrhrOdM6vOrqKqT1Xebvg2OoMObyfv9BVFwoqSk+Gff2DHDujWTfWbAXj2WdVCXxRZaWmqTc6vv1o7koJPkpEi7nzUeaYfmE5UchTLXl6GzqDDwdbhyU/MC0YjHDyounru368aYrVu/dCweVwcdOyaRlL1U9x2DsPRTst3/6vDC7VK5D4GQ5radfjsGji7NvN0TtAz8NQ7amO/XH5aNplMRCVFcS7qHI1KNeK7vd+x78Y+ahSvwcfNPyY0NpTqvtWlmDY/uHMHtm9XH4kHD4bPP4fnnlMjJ05SR1TU6PWq7ZBM1eSOJCNF1O7Q3dxNvou/qz/Ods7UKP7wp3yrSEtTyzErVFB9JBo2VMPkgYEPHRoeDh99BK99eJcP1xwmJlmPv7sjc/o2oGZpj4fPnVtGg9p5+NBclZiYDOp+73JQry/U7A4epcx6SZPJRERCBN/s/YYzt88wqc0kktOS0aChevHquDvIv3Orut+d988/oX59VdEYE6PWfZYpY+3oRB64cQM++EDtjODjoxZzgdpwT69XuSuolzTZMPvxJBkpQu7/FQ5cNxBvJ2+GNRmGv6u/laPKYN069T+6fXsYOfI/D42IUL2vOr51ix+OHkZvMFG7tAc/922An7uj5WONuQ6H5qgdhtMbrWlU0WvtXlDlRXA0/79Bk8nE3ut72XF1B5GJkXzb7lv6rO5D41KN6VS5U/6aWiuKEhNVIezu3Wo6ccIEtQ999erWjkxY0E8/qa2n2rdXq8lBLcyKjlb/HEDVRU+cCKNGSQPhR5FkpAgwmUxsuLiBGQdn8MNzP1Deqzw2T9i/Jc+YTLBxI9y8qXpBeHv/58eHqCi1X9vMmfB/B68w4c9zADxf058p3evgaJfHP5cuEU6tgpPL4dqeDA9owKcSlKwLJetAiTpQvCo4eZo9hPjUePbd2Ie3kzfXY68z/8R8GpVsxLAmw3CwdZC6E2sxGtWmiYsWqXep8uWhZEk17SiKpJ07VX+S2bOhUiVrR5O/SDJSiBlNRvZd30cF7wr8cuwXhjQakr+G9U0mNQLi6KgyDFfX/zw8IkLtmPnttyb+DD/HnF0hALzWNJCxL1b77xUzeSH6GpxcoRKTOxcffYxbCfCtDL5VVQFsYHPwMm8RZGpaKofCDtE0oCkD1w7kVtItetXoRY/qPdBqtFJ3Yi1bt8KMGarb748/woYNULOmKoKVv5MiIyFBtZGfOlXtQPGEl70iQ5KRQmr/jf2M2T6GZ8s9y0dNP8o/b0BGo5pfnz1bJSDNmj2x+NNkgnnz7m0Ci5Fxm06w5ngYAKOeq8Jbz2RzxUxeiI+E8OMQdkw1WQs/AfFhjz7WswwEPqMKYiu0ARcfs4aiN+i5nXSbqzFX+XzH59QvUZ8RzUbg5eRl1uuILEpJUcnH/Plw8qRq4+nuroq0mzVTDdjs7KwdpbCwv/9WI7y//SarxUGSkUJn3/V9nIg8QafKnXB3cMfVPp+k3Xq96tXQsaP6VPjGG6o/yBMkJ8Nbb0GNGvDuUAPvLD7C9uDb2Go1fN2tFi/VK50HwZtJSizcvgC3z6vbjUNw8wgY0x4co9FCwFOqr0mV51VxrBmZTCYOhx2mpl9N3vvzPer61+XVWq+mL0UWVqLTwfHjqtbk7bdh6FA1jt+jB5QuQP/GRbZs2aLyT9mPU5KRQsNkMjF+53iiU6L5pPkn+Lrko3VmBw+qqq1XXoH+/bNcUr5tm2qqGhwM1WoaGLjwMLsvReFop2X2q/VpWbm4hQPPA6kJELofQnaqniYRpzI/7l8TGr0FNf8HduYtzE1NS2X1+dXoDXpq+9cmWZ9Mg5IN8k89UVGm16uPzomJUKKEWmHWq5dUPhZCM2eq2bpnnrF2JNYlyUgBZjKZ+PvK38w6PIu36r9F23Jt888bidEIy5erTGL4cHBwULulZkFsrFoq5+mpFiQYbdJ4ff4hDobcxcXehnmvNaRxuWKWjd9aYkIh+E84vx6u7nmwfNjZBxq+AQ3eADc/s1/20t1LzD8+n2MRx/it+29surSJRqUaUdKtpNmvJbIpKUmtNFuyBJYtA4NBCg0Kkfh46NxZvVwW5V4lkowUQCaTiRVnVtC5Smd+OPAD/ev0z18jIQCTJqnC1LfeylYjqD//VJ8Qzp2DBg0gLkXPa/MOcjQ0BjcHW+a/3oj6ZYtIrUPSXTj2f3Dg5wct6rV2UK4lVGoPFduZvfj1vmWnl6UnJM9XfB6dQUelYlL+b3WpqWqpcIUKqsmOfz5ami9y7OxZ9eGrRImiW8ssyUgB9Nn2z7DR2jD66dHY2eSjQjeTSbVs1+vh/fez/fQJE1SDoEmTVP3erbgU3lhwmFM3Y/FwsuP/3mhErdKe5o87vzOkwfl1sH8WXD+Q+TGfylC5A9R4GfxrWeSV7HzUeWYcnMGFOxdY1X0VZ26doapvVTwdPc1+LZFF+/apJcLbt6vlw82bqzosUWDt2QO7dqkZ7aJIkpECRmfQMe/YPAY1GGTtUB72+eeqT8iQIdkqDzeZ1Ej0ggWqdk+jgdM3Yxm48DDhsSl4u9jzf280onpJ6c/ArXNwYTNc3KJqTe5P4wAUq6iSkprdwKei2S9tNBnRarTMOTKHrSFbqetfl141e3Hu9jlaBbXC3iZr03DCzCIi4NQplZB07QovvQSvviqt6QsYkwlef101S3v+eWtHk/ckGSlA1pxfQ2xqLH1r97V2KJktX642iBkwINufzE0mGDZMjTw3aaLu23Q6nA+WnyBZb6C8rwu/9GtIoI+Umz8kORoub1P75lzYDGkpDx4rWRdq9VTJiavlpvBuJd5i4YmFbAvZxsznZxKTEkOlYpVwsZe/L6tITVX/H8uXV0uIq1ZVjdZEgZCSAlevqtYzRS2XlGSkgNh7fS9f7/maFf9bkb8+gX72mcooxozJUW+EESPU6+Zbb6lamJnbL/HtlgsAPFPJlxmv1MXdMR9NReVXKXEQvFF1g7287cGIicYGKj77oEW9ja1Fw5h/fD4bLm6gcrHKvFX/LSbvmUzlYpXpWrUrpd1liWqe2rtXLdXw81NzoAkJavMUka/p9WpkZOFCVUNSVEgyUgAk6BKITIikuEvx/NMPYts2NTz88stqpUw2xcTAkSNqbzFPT3XfF+vP8svuB11VP32hKrY20g0o2xKj4PRvcGKparp2n3tpaPym2tQvDxqeGU1GQmNDOXv7LBW8K7D50mbOR52nY+WOdKjQweLXF/cYjWq7hQ8/VP1Mvv5abeKXg/+3Im+cP69GjNevLzoN0SQZyefC48N5dfWrbHhlA462ebABXFZ89ZXanfTbb3O0xPD4cfUfbeJEaNxY3bdo/zU+/eM0AF90qUGfpyyzSqTIuR2skpKj/wdJUeo+Oxeo8wo0HQJegXkazsU7Fzlw8wDdqnXj5RUvU8GrAn1q96G2X+38VYxdWMXHqz4/338P//wDHTrkqNhcWF58vPq8V7580UhIJBnJx0wmE52XdeabZ7+hsk9la4ej0nSTCZ5+OkvdUx8lPFxl/TVrPhgx3n0xin6/HsRgNPFhu0oMaW3+4ssiT58Cp1aqFTm3zqj7tHbQoD888xG45n0DOZPJxMW7F7HR2HD29llmHppJGY8yfN/he4wmo9SdWJrBoAoUQG2S8vrr0KWL2jhF5AsLFqgdA777ztqRWJ4kI/lUmjGNM7fOUKlYJZzs8kEl05AhahTks89yVFml06kPYOXKqfYI9126lUDXH/cQn5JG17qlmNK9dv7bZ6YwMZkg5B/YPVV1fAU1UvLU29DsPXC07oql0NhQAtwDeGv9W4TGhtKzRk+6VumKwWTA28nbqrEVanFxaq+czp3V/GnLlmplnLC6r76CFi3UZ8DCTJKRfMhkMvH2hrdpE9SG/1X/n3WD2b9flXjXq5erVtS//abqWzt1enDf3UQdXX/cw7U7SdQv68WSgY1xsM0nHWSLgis7Yes4tT8OgL0bVO+sil3LNLX62LDJZCIuNY7rcdeZsGsC0SnR/PTiT7jYuVDMuZB24M0PNmyAn3+GF19UvUuKwhxBPnfnjupB0qWLtSOxHElG8qF91/ex78Y+hjUZZt1AduxQdSFLluQ4ETl3Tg0xzp2b+f4kXRqvzTvEwat3Ke3lxB+Dm+HjKgV1ec5kUq3nt32pNu+7z6MM1OoOdV8F7yDrxZeB0WQE4PMdn7P/xn761e5H71q9rRxVIZaaqqZmFy1SDYCefbbotge1MoMB+vaF3r0Lbw8SSUbymc2XNlO9eHXrL4NMSYGdO1UjJWfnHJ3izBlVqLpgQeau1fEpel6ff4hDV6NxdbDl93eaUskvn6wSKqqMRgjdp4pdz66B1Lh7D2jU0uBGb0L5NvnmU7LeoCcsPozQ2FC+2/cdr9R8hS5VuuSvZe+Fxe3bak+c119Xq+hefFGSEitITVUNrocOtXYkliHJSD4SHBXM0M1DWdNzjXVfVH//HbZuVT0KcmjDBjXtrNVmLjGJTtTR79eDnLwRi5ujLfP7F6G9ZgoKfbLqWXJsMVze+uB+ryCo/xpU6wTe5awW3r9FJ0ez7PQy+tTuw/QD06ntX5tGpRrh4yw9NcwqKQmmT1e7Cc+cCZVkryJrGDcO3nmn8G2qJ8lIPjLj4Ay6VulKKfdS1gviyBG17O+XX3LUxAxUfcj69eoUGT9I34pPoc/cgwRHxuPtYs/C1xtRo5S0eM/X7lyGQ3NVYpIa++D+4tWgygtQ+XnV7TWffFI+GXmSf679g7eTN0GeQUw7MI16/vXoX7c/bvZu+aMYvKBLSlL/sT/6CIKC1IjJ/WZBwuIOHFCjzT/+aO1IzEuSkXzAZDLxzd5v+LDph2g1VhwGX7pUDcE6O6teBDlgMsEXX8Do0ZlzmbCYZF6de4ArUYkUd3Ng8YDGVJSpmYJDlwgnV8CZ3+Hqnof3xKn/mupd4py/VmDEpcZxNPwotf1qM+foHHZe20mgRyA/PPcDifpE3B0KzutEvmMwwLp1qrqyWTP1n79qVWtHVST8/LPafSOfzJqahSQj+cC0/dMwGA0MbzrcekFMnAh376rujDn8lLtnj6oTefPNzPdHxKbQ4+d9XLuTRClPJ5YMbEzZYtJDosBKugsX/1KFr5f+Bn2Sut/GHqp1VkWvAY0hn45CmEwmIhMjeXPdm/g4+/BZi88o6ylN9nLl0iW13XZSEvzf/+X4w4zIuunTVceFfDIomWuSjOTChgsb0Bl0lHIvRXmv8vxz7R8AGpZqSHRyNJfuXgKgc5XO/HX5L5L0Sfi7+lPVtyrbQ1SPh7ol6rLm/Brea/yedfprmEyqMmrlSrXTZw5jOH4cRo6EVavALcOAx634FHr+vJ8rtxMJ8HZi2ZtNKOWZP9+kRA6kxqv9cI78CuEnHtxvY6+mb8o0UbegZ8A+Z4XQlhQSHYK7gztT90+lUrFK9KrRSzrB5sbdu6ppWv/+6p2yZcvC826Zz0yapLqz/s/K3R/MJavv3zkaDJo5cyaBgYE4OjrSuHFjDh48+J/Hx8TEMHjwYEqUKIGDgwOVKlVi48aNObm0xYXFh3E3+S6xqbEk65NJM6YRmxpLbGoseoOelLSU9O8B4nXxxKbGkqhPxGA0ZDr2/afet04iYjSqzos7d0KfPjl+0UhKAhcXNcuTMRG5k5CqpmZuJ6oRkQFPSSJS2Di4qS6ub/0DA7dDvX7g6g8GHVw/AHumwdIe8G0lWPc+3DisEuB8IsgriGLOxfj0mU9J1iczbf80opKiSNYnWzu0gsnbW7UBmD1bFboeOqRaLhuN1o6s0Bk6FI4etXYUeS/bIyPLly+nb9++zJ49m8aNGzNt2jRWrlxJcHAwxYs/3Hpap9PRrFkzihcvzscff0ypUqW4du0anp6e1K5dO0vXzMuRkYFrB/Jl6y/xc/Wz6HUsatIkVXg2aFCOTxERoda+r1//8KqZXnP2cz4iHj93B1a81USmZooKkwmiQ+DaPrVc+MpOiA198LhvFdVYrfLz4FMx331y3nd9H2N3jKVRyUaMazUOW620R8+Vn36CFSvUSEnXrtaOplDR69VnybZtrR1J7llsmqZx48Y0bNiQGTNmAGA0GgkICODdd99l1KhRDx0/e/ZsvvnmG86fP49dDldx5GUy0u+PfkxtP7Xgtqg+dkwtzXPJeYJgMqmOqt98A1WqPLg/SZdGz5/3c/JGLD6uDix/6ynK+2Z/Qz1RSBiNcG0PHFukepikZRh18AqEiu2hYjsIag62+aPxnclk4ljEMWoWr0mv33rRsVJHulXrJvvl5FRqqtoH5/JltWLvzTfBrwB/kMsnTCbVlXX6dLURc0FmkWREp9Ph7OzMqlWr6JKhf22/fv2IiYlhzZo1Dz3n+eefx9vbG2dnZ9asWYOvry+vvPIKI0eOxOYxxVCpqamkpqZm+mECAgLyJBnZFrKNp8s8XTCbLC1bprqrzpqV40+lqalw9qxKQjKOiJhMJoYuP86a42F4u9iz/M2nZNWMeCAlFk7/rpKSa3vUdM59jh5QtSPUeBkCnwGb/DEikaBLYNXZVZRyU0vuvZy8qF+ivuyhlBMmk5q+WbgQ5s1TLZpr1bJ2VAXayZPqJX3CBGtHkjsWqRmJiorCYDDg96/M18/Pj4iIiEc+58qVK6xatQqDwcDGjRsZM2YM3333HV9++eVjrzNx4kQ8PDzSbwEBAdkJM1fuJN3BRlMAK8YTElQXxRkzcpyIGAyqtUB4+MN75v265yprjodhq9Uw+9X6koiIzBw9VI1J3z9gRAj0WAz1+qo6k5RYNXryf11hShXY8CFc2QEGvVVDdrV35bU6r/Fs+Wcp61mW5aeX039NfwxGA9HJ0VaNrcDRaFRb+f/7PzViNn8+dOigmmeIHKlVS+1fmpJi7UjyRrZGRsLCwihVqhR79+6lSZMm6fePGDGCnTt3cuAR//AqVapESkoKISEh6SMhU6ZM4ZtvviE8PPyR17HmyEjnZZ1Z3WO1dfuCZNfRoxAfr7aAzIW//oKwMOjXL/P9B67c4ZW5BzAYTYx9sRqvP50/9jQRBYDRANf2wunf1KhJ8t0Hjzl6qKmcKs+rP/PBqhyTycTtpNsMWj8IF3sXPm/xOeW9y1s7rIIpOVm9k/7yC1y/rvbByTjvK55o5UqIilK/uoIqqyMj2Rov9fHxwcbGhsjIyEz3R0ZG4p9xk5IMSpQogZ2dXaYpmapVqxIREYFOp8Pe/uHpEAcHBxwcrDPHbDKZClYiEhwMI0aof7U5pNPBxx+r4cB//3VExKYweMkxDEYTneuUpH+zwNzFK4oWrY2qGQlqDs9/A5e3w7k1ELwJkqLg1Ap1c/SAOq9CwzegmPXe/DUaDcVdivN7j9+5EXcDZztnxmwbg63Wlv51+1PGo4BP4OclJyd1+/BDVcu2aRNUrpzvCpvzs86d1QZ6gwYV/l9btt517e3tqV+/Plu3PtjXwmg0snXr1kwjJRk1a9aMS5cuYcywBOzChQuUKFHikYmItS16aZG1Q8ie4GA1NOqVs31gkpOhZ081qPLvv47UNANvLz5CVEIqVfzdmPhSTZlPFzlnYweV2kHnmfDhBei/CZq+C55l1FTO/pkwvR4sehkubLb6stHS7qXxdvJmXKtxtAhswYYLG7h09xKrzq5Cl7EmRjxZ3bpqzep338HixdaOpsCwt1d71hgMTz62oMv2EMCwYcOYM2cOCxYs4Ny5c7z99tskJibSv39/APr27cvo0aPTj3/77be5e/cu77//PhcuXGDDhg1MmDCBwYMHm++nMKOx28daO4SsiYpSa287doQSJXJ0ithYtYTs88/Vaf7tqw3nOBYag7ujLT/1qY+zff4oPBSFgNYGyjaBdl/CeyfglZVq5Q0a1f11SXf4sTEcXQh6606aazVaWga25O2Gb+Pr7EtkQiQvLnmRsPgwSUqy64MP1JrV336zdiQFRsOGamVjYZftd5cePXpw+/Ztxo4dS0REBHXq1GHTpk3pRa2hoaFoMzTWDwgIYPPmzXzwwQfUqlWLUqVK8f777zNy5Ejz/RRmdCX6irVDeLKkJJWIfPddjsfuEhNVh78pUx5d9L7uRBgL910DYFrPOtJLRFiOVqtGTCq1g7tX4NAvKgmJugBr34WtX0Djt6BOb3DPWeJtLh6OHgxuNJh3Gr4DQO/fe1PKrRTDmgyjhJt1YysQbGxUf5KEBFWk9uyz1o4o37O3h8OH4fbtwrejb0bSDv5fRv89moltJ1r0GrmSmqrmVmJiIDAwx6f54gu1B1br1g8/dvl2Ap2m7yZRZ+CdluUZ0UGKzkQeS4mDowtg/yyIu/ng/mIV79WgPAOBzcHFx3ox3rMndA96o54kfRKxKbG0CGxBSbeS1g4rf7u/8+aNG2rfLNkd+D/99ZeatWzf3tqRZJ/sTZNDkQmR+bf7qsmk1t727p2r1nzHjkH16g/XiAAk6wx0mbmH4Mh4Ggd5s3hAY2xtClBBryhcDHrVv+Tgz3DzCPCvl6vi1VVyEtgcApuBU85qp8zhZtxN/r7yNwdvHuSH535g6KahtC3XlvYV2uNo62i1uPK1XbugVCk1VFuzprWjyddOnoQaNQrejr6SjORQ52WdWdPz4eZt+cKvv6r/tEOG5PgUly7Be+/B2rVq36t/+2jlCVYeuYGPqwMb33ua4u7yIiryieRotUw4ZBeE/AO3zvzrAA2UawlPvQMV2lr9VftazDXWBK+hpFtJfJx9iE2JlcTkUUwm+OQTtfz3u+/gEduKCLXLR+3a8Nxz1o4keyQZyaFOSzuxttdai14jR/buVRXp/+5Glk0DB8KYMY9uMbzi8HVGrDqJVgOLBjSmaXnrD4EL8ViJUXB1t0pMru5SNSb3FasITw1Se+Xkg1bvEQkRrDyzkh3XdrC823ISdAl4OnpaO6z85ehR9Qlp2zYIDYVGjdRSP5Op8K9rzYJbt2Dw4Fx1cbAKSUZyaG3wWjpV7mTRa2Tbnj0wdSosX64KwHJo925VJ/Ko/9eHr96l99wDpKYZ+bBdJYa0rpiLgIWwguircHCOKn5NjVP3OXrC00Oh0Vv5oqkaQHxqPL1/7005r3KMenoU/q6P7tFUZBmNcPGiurVrp5b6jR4NLVtaOzKrCw/P8eJJq7FIO/iiwGjKZ1tim0ywdKmaoslFIrJ+vdpg81GJyLnwOF6ff4jUNCNtqxbnnZYVchGwEFbiFQjtv4JhZ+G5r8ErCFJi4O/P4Ye6apWOlVvQA7g5uLG211p61ehFSloKy04vI+5+8iTU9FrlyvDii6qwbflyWLcOTp1S09RF2K1bMG2ataOwDElG/mXesXnWDuGBCxdUQ7MZM8At53vBpKXBkiWqaP3frt1JpO+8g8SlpNEw0Ivpveqh1cqQqCjAHNzUUuB3j0CX2aqpWkIEbBgGMxrCscWQlvrk81hY49KNCfQMxNfZl67Lu7Ll8hZrh5Q/eXqqWpKaNVXB28cfqxe1IqhGDdiwQX1GLWwkGfmXfNNh9MQJtSFBLlbNgGpJsn27SkYc/1U3dysuhT6/HOR2vOqwOrdfQ5zsC+AmgUI8itYG6vSCIYfVSImzD0SHwJp3YGp12DEJEm5ZO0ralGvDn73/pLpvdRaeWMjxiOMUgNlz6/jlF5WU7Npl7UiswsYG+vSBuEI4kCY1I/9yO/E2vi5W7iwTGwtXrqgq02LFcnwakwlee01tfPfvfiKxSXp6/LyP8xHxlPF2ZtWgJrJyRhRuqQlwaA4c+Bniw9R9NvZQ83/w1Nvgb/2lpddjr/PN3m+w0dgwtsVY/rz0J62DWktdyb+lpak2B1On5uo1siAyGmHLFrUpckEgNSM5YDKZ+Hbvt9YNYutW6N8f6tTJ9X+y4GC1AOffiYjJZGL4yhOcj4jH182BRW80lkREFH4OrvD0BzD0JLz8C5SqDwYdHF8Ms5+G+S/C+Y1qp2ErCfAI4IfnfmBqh6nY2diRZkzjwy0fsid0D0n6JKvFle/Y2sLw4aqN9N27Tz6+ENFq4fvv1YbIhYmMjGSgM+jo9VsvfutupX0TYmKgb19VsJXLJbx794Kr66Nbva8/GcaQJcews9Gw+p1m1CjlkatrCVFgXT+ouryeXQOme0mIV5CqOandC5w8rRpeRiP+GkFMSgyftfiMUu6lrB1O/nD7tnp3Dg6Gpk2tHU2emTUL/PzgpZesHcmTydLeHEhJS2H8zvFMaDPBYtf4T7duqc0Hclm3EhUFPXrAH388XPcanajj2ak7iUrQ8V6bigx7tlKuriVEoRB7Qy0LPjJfrcABsHOGWj2g0UDwq27N6NIdCz/G1ZirlPcuj5ejFwEeAdYOyfqio9Vun7dvw48/FonW8jqdysEe1bgyv5FkJAeMJiPxqfF4OFphpCA0FD76SI2K5NJvv6lta+rXf/ixD1eeYNWRG1Qo7sqG957GwVYKVoVIp0uEE0vh4Fy4fe7B/WWaqqSkakewsbNefPccjzjO13u+xsnWibmd5uafwntrunQJSpeGyZPh/fcLfVIyaBB89ln+7zsiNSM5EJUUxfAtw61z8cmTwQw7GW/aBI0bPzoR2XXxNquO3ECjgckv15JERIh/s3eBhgPgnX3Qbz1U6wwaGwjdC6v6w9QaahVOfIRVw6zjX4clLy9haoepRCVF0X5Re346/BOxKbFWjcuqKlRQSwafeQa6dFHt5QuxTp1g8WJrR2E+koxkoDPosLd5xO5xeeHdd6FevVydIiICpkxRc4n/lqRLY/TvpwDo1ySQ+mWtt6GYEPmeRqM24Ou+EIaegmdGgEtx1a9kx0S1NPj3t+DOZauG6e7gjq+LL3/0+ANPR0/CE8KZdWgW64LXoc8HDd6solUr1eHRy0utTCyk2rWDgEI0SyfJSAZu9m50qdIl7y88ahSYYfppwwaVjNg9YhR5ypYL3IhOppSnEx+1r5zrawlRZHiUgtafwAdn1CqcgKfAmAYnl6kmamsGQ/Q1q4boZOdEjxo9qOJTha5Vu3Lp7iXGbB9Doi6RlLRCtuwiK4oXV+0R+vQBfeFMymxtoXx5OHvW2pGYhyQjGRhNRtzsc97pNEfCwlSn1ZIlc3WaTZvUyGSNGg8/dvjqXebtCQHgy641cHEoAFVPQuQ3tvZQsxu8sRkGboMKz6oVOMcWwfT6sPY9uLwd9NZ98/d39eeDJh8wqe0kLt69yAtLXuCnwz+RZixiXUtr1VJtEiZPtnYkFpOSAqtXWzsK85BkJIMbcTdYf2F93l40IkJto5sL16+rdecej6i7jU/R88GK4xhN8HK90rSqLNtzC5FrperDq6vgjb8gqAUY9XB0AfxfF5hcFv7vJdg7w+rTOHX867D51c24ObihN+hZdnoZBiv2UclzXbuqWrydO60diUW4u0NysrWjMA9JRjLQG/V5WzMSEQE3b6rOZLmwYoXaPOlRy7w+X3uW63eTKe3lxOedquXqOkKIfwloBP3WwmsboE5vcCsBaSlweSts+QSm14O5z8KhuZBkneZctlpbXqn5CrZaW+4k3aHdonacvV1IxvazwtYWli2DhQutHYnZ1agB48ZZOwrzkKW9GaSkpZCgS8DH2cdi18hk2DDo1i1XzXrWrIH27R/edwZgw8lwBi85ilYDy99qQsNA71wEK4R4IpMJbgfD5W1wcQuE7IT7O4Fr7aByB2j2AZR+xHK3PJKoUzvfjt85nvYV2tM6qPUTnlEIGAzw6acwerRZ6vPyixs3YN48GDvW2pE8niztzYHgqGC2h2zPm4vpdGo77FwkIocOqYTfweHhxyJiU/h4tVo9807LCpKICJEXNBooXgWavAN9/4Bh56H9BLXvjVEP59bB3NawpCeEn7RKiC72LrjYuzDq6VFsurSJn4/8XPg35rOxgYkTVT+nDz9UG7wUAhoNhIdbOwrzkGQkg9tJtwm7v4GWpQUHw08/5eoUq1fDzJkPN2w1Gk18uPIEscl6apX24P22FXN1HSFEDrn5QZPBMGg3vL0Xar8CGi1c+BN+ag7LX1UjKVbg5eTF189+zcB6A5l+cDrDNg8jOjnaKrHkmRo1oEoVtSN6IeDqqn6cwkCSkQwcbR0p7pIHBZ6hoTB+fK5OsXQpfPUVeD9iwGP+3qvsvhSFk50N03rUwc5G/pqFsDq/6tB1Fgw+qHYKRqNGSmY1g+0TIC3VKmFpNBrea/wenSt3ZvrB6cSmxBbuTfkGDIAvv4SDB+H8eWtHkytubtC5s7WjMA95l8qgcanGdKvWzfIXmjwZPv44x09fvhxOn370FjZhMcl8u0V90vrkhaqU83XN8XWEEBbgUxFenqu6vFbqoKZvdk5WOweH7rdaWC0CWzC2xViuRF+h09JOfLf3u8LbOM3XV+2KPnEiDB5s7WhyTK9Xu4gUBpKMZLAmeA1LTy+17EXS0tSQRg5X0JhMsG+f2hfqUcavO0uSzkCDsl680qhMzuMUQlhW8arQaxn8b4Hq7hp1Aea1h3Xvw80jYKUluHVL1GVLny1U8amCzqBj+oHphbNxWvnysGCBejG9cgXeeUdttleA2Nmp8sPCQJKRDPKkHfygQTluUWwywapVahnvo7qsbj9/i01nIrDRaviyaw20Wtk8S4h8TaOB6l1gyEGo20fdd2Q+zGkN35SHla/BkQWQkLdvklqNlhcqvYCTnRO+Lr48v/h5zmXcOLAw8fWFcuVUT5IC1iBNq4UhQ6wdhXlIMpJBVZ+q1Cj+iBam5nLxomqZV7Zsjp4+d+7j935K1hkYu/Y0AG88HUQV/8KzfE2IQs/JCzrPUJvzVe0IDh6QHA1nVsO69+D72vDPN6DP2w5XWo2WnjV68mfvPynnVY73/3yff679k6cx5Jm2beH1160dRbYVsMGcx5JkJANnO2c8HT0tdwGNJseFqwaDWsr7/vuPfnzm9ktcv5tMSQ9H3m8jq2eEKJCCmkOPRTDiiuru2mIU+NUEfSJs+1LthXNqlRomzUMOtg442DowtsVY/jj/B4tOLip89SQaDZw6BceOWTuSbFlq4cqCvCLJSAZ/X/mb07dOW+bkwcGwd68aDswmoxH++gt+/lktl/+3S7cS+Okf1XZ6bMfqsveMEAWdja3q7tpqNAzapTbocy8Nsdfhtzdgblu4sCXPk5JizsWY0n4Kr9Z6lZ+O/ESf1X24eOdinsZgUeXKqZbWIs9JMpKBRdvBT5wIjRvn6Kk//aT20nsUk8nE2DWn0RtMtK5SnPbV/XIRpBAi39Fo1AZ97x6G1p+CnQvcPAxL/gc/NoFji62yLHhIoyF82vxTNl/eTFh8GJfvWncfHrNo0MDaEWRbYRkZkXbwGdxKvIWTrRNuDmbeuVevh6+/hk8+yfZTU1PVsvgFC1Sx0r+tOHSdEb+dxNFOy18ftCDA29kMAQsh8q34CNg7XRW26uLVfa7+0HAA1HkFPErleUgh0SF8tuMzTJiY/cJsXOxd8jwGs4mKUsPRxQvGpqLvvgvTp1s7iseTdvA5sD1kO+EJFuit+/ffOeorkpgIe/bA//3foxORiNgUvtigNrz6oG0lSUSEKArc/KH9VzDsDDw7Xm3OlxAB27+EaTVgUTc480eejpYEeQWxsOtCvmr9FfY29vT7ox//XPunYLaZDw5Wra0LiGvXrB2BeUgyksHZ22fTN5Eym5AQlU08qkPZfzAYoH//R+/EC2p65uPVp4hPSaN2gCcDmme/FkUIUYA5ekCz9+H9k9D1JyjbTG3Kd+kvWNkPplSF3VNBl3fdVMt4lMHOxo5JbSbx58U/2Xx5MyHRIaQZ0/Ishlxr0kQ1cyogatWydgTmIclIBq72rjjbmXl0YdYsGDky2087fBg6dYJnnnn046uP3WTb+VvY22j5tlstbKSniBBFk6091O4J/TfCu0eh+XA1WpJ0B/7+HH6oC4d+gTxc/VLCrQQT206kQ4UO7Luxj/aL2jPv2Lw8u36uaLXw/fd5XhycU4Vkmx2pGcnIaDKiQYMmm6MYj5WQAPb26pYNv/6qlrwHBDz68VtxKTw79R9ik/V81L4yg1tVMEOwQohCw5AGp1fB9q8gJlTd5xWkCmCrv/ToeV8LSjOmcT7qPMWcilHCrUSeXjtHrlxR0+tvvmntSJ6oUydYu9baUTye1IzkwNBNQ7kWa8YJuFGj4OzZbD1l40bYsQNKl3704yaTiU//OE1ssp4apdx58xmZnhFC/IuNrRotGXIYnvsanH0gOuTesuDWELIrT8Ox1dpSo3gNFp1cxJf/fJmn186RMmXg99+tHUWRIslIBnqDHjvtI/qs58TNmxAeDnXqZOtpd++qpbyPG5xZfzKcLWcjsbPR8E232rIjrxDi8WwdoPFb8P4JaPUJ2LtC2DFY8CIs6QG38rbF+0fNPkJv0LPz6s48vW622dpC8+YQH2/tSJ6oAAzeZIlM02Sw4swKnovxwW3yNHXHmDGq7emmTeof5++/Q58+am+Z5s3hhRfU6AfAiBGqCnvNGvX9vHnqH3JQUJavv3w5tGgB/v6PfjwmSUfbKTuJStAxtG1FhratlPMfVghR9CTchp2T4PCvYDKARgv1+6vpG2fvPAnBZDKRoEtg+ZnlDKg3IE+umSN6PVy9ChXzd0fr1auhY8fHL3awtqy+f0syksGBGweod0uLXfVa4OBgses8isEA7drBli2P7rIKMPr3kyw9eJ0KxV3Z+F5z7G1lVEQIkQNRF1Vx6/n16ntHT5WQ1O+vpngszGQy8em2T0nSJzGp7SQcbPP29TZLdDpo3Vo1enrtNTVkbTRC9epqGufPP9VxL774+AK/PNCrl9q3zCWftnaRmpEcmLp/KvofpkFS3i2Fu+/0abVp5OMSkcNX77L0oNolb0LXmpKICCFyzqci9FysNuYrXh1SYmDjh/DTM3Blh8Uvr9Fo+KrNV3Sp0gW9Uc+hm4csfs1ss7dX/UbuJxply0JgIHh7g7Oz+jowEJyc1Mh4RITVwkzN+wa8ZicjIxm8tPwlVqy2xXbefPWPLQ9dvgzlyz/6MV2akRen7+JCZAI9GgQwuVshWVguhLA+Qxoc+VWtvEmOVvcFNlc1JmWbWPzycalxDN00FF9nX8a1GoejraPFr2l2587BkCGqFWq1anl66ZgYcHN7/AdZa5ORkRz4svWX2Hz8KTjm7X+G4GCYNOnxj8/ZdYULkQkUc7Fn9PNV8i4wIUThZ2MLjQaqHiWN3gIbe7i6C37tAP/XFW4ctujl3R3cmdd5Hq2DWmMymRi2eRgLTywkNDbUotc1q6pVVfFGQICqG8zDz/hz58KtW3l2OYuRZCSDDRc2oNm2Lc/X4P/4I7zzzqMfu3YnkR+2ql0xP32xKp7OFtrITwhRtDl7w/Nfq6Sk/mugtYXL22BuG1jeB+6GWPTy7Su0x9HWkfcbv4+DjQNnb59lW8g2hm4aSkxKjEWvbRbu7qpw48QJmDAhzy4bHq5aWhV0koxk8E/oP7BtW55fd/BgqFv34fvv9xRJTTPSrEIxutTJ+w2whBBFjGcAdPxe9Sip01utuDm3FmY2gr/GQkqsxS6t0Wgo61mWHjV60KFCB1oHtaZrla4MWj8Io8mI0WS02LXNQqtVqzANBnXLA+XL59+VNNkhyUgGHg4eeV4rMn++6i3yKL/sDmHXxSjsbbV82aWm+TrDCiHEk3gHQZcfYdBuKNcSDDrY8z38UA8Ozc2z9vItAluwrNsyrsVc44UlL3A0/GieXDfHNBoYOxYWLsyThOTVV6FkSYtfxuIkGclg0UuLYNmyPLueyQSLF0O9eg8/tvtiFBM2qoZEnzxflSCffLpuSwhRuPlVhz5/QK/lUKwiJEXBhuFqpOTUKrXcNQ8EeQXxa+dfmXFwBgm6AjAvodOpOXgLmzEDjh2z+GUsTpKRDF5a/hJ0755n14uOVlntv7euCb2TxJClRzGa4H/1S9O3Sdk8i0kIIR6i0UDlDvDOPnjuG3DxhbtXVHv5n56BC1vypGjT39WfeZ3nceHOBWYdmmXx6+XKwIFw8aLFk7XCsrRXkpEM0oxpkJycZ9fbvRv69ct8X5IujTf/7zAxSXpqB3jyRZcaMj0jhMgfbOyg8Zvw3nFo9Sk4uEPkKVjyP5jTCs6ty5ORkrr+dbkac5Wv/vnK4tfKMa0WfvgB1q+3aKLWsqVqd1LQSTKSQYcKHdR2uXng4sWH92EymUx8tPIk5yPi8XF1YPar9XC0y6eLx4UQRZeDK7T4SO150/RdsHVSe94sfxV+fAqOL7VoTYlGo2Hys5PpUqUL12Ku5e/C1tOnLTr97+SUZ7WyFiXJSAYNSzaEZ57Jk2vNmwcffJD5vl92h7DhVDh2Nhpmv1qPEh5OeRKLEELkiLM3tPsShp6C5sPBwQOiguGPQfBDXdj3I6Rarr6jevHq7L2+l45LO+bfwtaPPlKt4y00YnTwIBw/bpFT5ynpwJpBp6WdWLvEBOvWWewaoGaCtNrM29/oDUaaTNxGVEIqn3esxmvNsr7BnhBC5AspsXB4HuybCYm31X2OHtDgDbV7sNtjdgHNpfD4cPZe30tNv5q42rtS0i0fLi/ZtAnatAE7M+0Mf8+SJaqkp1cvs57WbKQDa07lQX3Gd9/BP/9kvu+vs5FEJaTi6+ZA76ekYFUIUQA5esDTH8DQ0/DiNChWQSUou6fAtJpwbJFFLlvCrQQvV3sZvUHPm+veZNLuSeS7z9kJCTBypNlP27Gj2quvoJNkJINxLcfBp59a9BopKbBjx8OlKYsPXAOgR4MA7Gzkr0UIUYDZOUKD/jD4EPRYDKUbqT4la4bA0f+z2GWrF6/Oul7raB3UGp1BZ7Hr5Ei3buDqCjdvmvW0p0+r95SCTt71MtgdskO18rUggwG++SbzAExIVCJ7Lt1Bo4Gejay3FbUQQpiVVgtVX4Q3tkCjNwETrH3XYiMkoIpbG5VqxPid41kbvNZi18mR8eMhNBTOnzfbKePi1CkLOklGMvjr8hbYudNi5zeZ1JYF/279vvSg+pfUspIvpb3ytgOsEEJYnEYDz339ICFZMwSOLbboJT9r+Rk/H/mZC3cuWPQ62Va2rNrh10wbynh7q21xCjpJRu4xmow4aRws2g5+06aHT5+iN7Dy8HUAejeWWhEhRCF1PyFpOBCVkAy26JSNvY09S15eQgnXEty+X0ybH5Qsqfav+XfhYA7VrQsvv2yWU1mVJCP3aDValr/6B/z8s8WucfEiDBqU+b7NZyKITtJTwsORlpV9LXZtIYSwOo0Gnv8GGg5ATdkMgZX9ITHKIpdzd3AnIiGCV1e/SrI+7xpaPlGLFtC0KXz7ba5PdeKEmvov6HKUjMycOZPAwEAcHR1p3LgxBw8ezNLzli1bhkajoUuXLjm5rEXFp8YzcHEPtcGRBVy+DF26QLFime9fvF9N0fRsWAZbKVwVQhR2Gg08/y08MwI0NnDmd7XPzenfLNKptGKxioxoOoIJuyaY/dy54ukJt2/D3Lm5Oo29vdoGp6DL9rvf8uXLGTZsGJ999hlHjx6ldu3atG/fnlu3bv3n865evcqHH35I8+bNcxysJekMOtL0qZCWZpHzjx8P+n81JLwYGc/Bq3ex0Wro0VAKV4UQRYRGA60/gYFbwa8GJN2BVa/Dst5wYTMk3jHr5dqUa8P4VuP58dCP3Ii7YdZz58rEiaqFai74+6uW8AVdtpORKVOmMHDgQPr370+1atWYPXs2zs7OzJs377HPMRgM9O7dm3HjxlGuXLlcBWwptlpbmpdq+nB1qRlERqqNjMqXz3z/4gNqVKRNleL4ezia/bpCCJGvlawLA7dDy9GgtYXgDbCkO3xTTnVw/f1Ns+0MrNFoaFe+HX1X9+X0rdNmCN4MtFro3RtGjICzZ3N0Cicni5Y65plsJSM6nY4jR47QNkOTDK1WS9u2bdm3b99jnzd+/HiKFy/OG2+8kaXrpKamEhcXl+lmafY29jxdsY2axzMzb2/49dfM9yXrDPx+VGXo0uRMCFFk2dpDy1Hw5k6o8yr4VFL3370CJ5ernYF/aQs3juT6UhW8K7C823IcbR25GWfefh+5Mny4WmGTmJjtp8bFwcKFFogpj2UrGYmKisJgMODn55fpfj8/PyIiIh75nN27d/PLL78wZ86cLF9n4sSJeHh4pN8CAiw/hXEz/iaz/p4IK1ea9bxxcdCz58MjcauP3SQuJY0AbyeaV/Ax6zWFEKLA8a8BXWbCkEMw8iq8+pvq5mrvCjePwNzW8MdgiI/M1WV8XXwp51WO8TvH039Nf67GXDVL+Lni56d2+M1BzYyDQxGtGcmO+Ph4+vTpw5w5c/Dxyfob7ujRo4mNjU2/Xb9+3YJRKnqDHnujJvOGMWbwyy9qFC4jk8nEvD0hAPRrEohWa/kW9EIIUWA4eUGFttD2c3j3CNR+Rd1/fBFMr6+KXXNBq9HyU8ef+LDJh8SlxrE2eC2hsVbuHFajhloWExaWrad5eqqaxIIuW8mIj48PNjY2REZmzkwjIyPx9394A6TLly9z9epVOnbsiK2tLba2tixcuJC1a9dia2vL5cuXH3kdBwcH3N3dM90srZR7Kfo1Gwzt25v1vNWrQ+fOme/beeE2l24l4OpgK4WrQgjxX9z8oesseONvVWOii1fFrvtm5vrU1YtXp5ZfLcp4lOHdP9/lj/N/5D7e3OjSJdsrOk0mWLDAMuHkpWwlI/b29tSvX5+tW7em32c0Gtm6dStNmjR56PgqVapw6tQpjh8/nn7r1KkTrVq14vjx43ky/ZJV0cnRXL9+GmJjzXbODRvU6JuNTeb7f9mtRkW6NwjAzdG8OzgKIUShFNAQBmy918UV2PwxbP7ELMWtdfzrsOSlJdQsXjPX58qVunWhWbNs/Uw2NnDokAVjyiPZnqYZNmwYc+bMYcGCBZw7d463336bxMRE+vfvD0Dfvn0ZPXo0AI6OjtSoUSPTzdPTEzc3N2rUqIG9vb15f5pcuBl/k2PBO1VDEDMwmeD776FChcz3X4iMZ9fFKLQa6N8s0CzXEkKIIkFro7q4tv1cfb9vBqx+E9JyXzThYu/CugvriEzIXU1KrvXvn636EY0GSpSwcEx5wDa7T+jRowe3b99m7NixREREUKdOHTZt2pRe1BoaGopWW/Cad+kNeuwNYLRz4OoVdZ+nJ9jZqb40AKVKQXQ0JCWBrS0EBECIGuTAw0OVm9xvt2I0qhkfF5fM15l3b1SkXTV/ArwLwXosIYTISxqNKmx1K6Fayp9aCbE3VWdX/xq5OnUZjzKsOruKwY0GmynYHIqNhXXroFOnLB3+ww8WjicPaEwmC7S8M7O4uDg8PDyIjY21bP2IyURKsolRH6tk6tlnwdcXlixRDw8fDps3qy2bvbzU9gLDhqnHWrSAoCCYP199/+67D/cVuZOQSpNJ29ClGVk5qAkNA70t97MIIURhd2krrOgLugRAA3V6Q6uPwaNUjk6XkpbCpN2T+Lzl52YNM9sSE2HSJPjiiywd3qkTrM1nGxTfl9X3b0lG7vn7yt9ErF3CmWNfMvL7knh6mv8aP2y9yJS/LlCrtAdrBjdDo5FVNEIIkSt3r8Df4+DsH+p7W0d46h145kOwd/nPpz5KWHwYDjYOFHMu9uSDLSkpCY4fz1Lvq8KQjBS8+RQLSdAloI+L4Wq4PXYWqClNTTOwcN81AN54OkgSESGEMAfvctB9gSpuLdME0lJg9xTVWt6gf/Lz/+VExAl+Pf7rkw+0NHt7NfyehWLWl17Kg3gsTJKRe/xc/ChXsjpVq2txtEBn9nUnwolKSMXf3ZHnaxaCaiMhhMhPSjeA/n9Cj8Vg5wJXtsO6odluJNa2XFv+vvK3ZWLMDltbaNMGMqxefZygoDyIx8IkGbmngncFarbsTr9Bzg8txc0tk8nE3F2qKrZv07LYye68QghhfhoNVH0R/jcfNFrVJO2fb7N1CjsbO6Y/N90y8WXXsGFZ2gXv2+z9iPmSvCves+7COnbOHsV7QwxmP/fuS1Gcj4jH2d6GVxqVMfv5hRBCZFCpHTx/7x16+5dwYnm2nq7VaJlxcIYFAssmR0e1cuLiRWtHYnGSjNyjN+ix1xnVOnYzm7PrQZMzT+f801tFCCEKrYZvQNP31NdrBkPIP1l+aqBnIGuD15Iv1ne89hrM/O9uszIyUoi0CmpF3S6DeGeIeX8l5yPi+OfCbbQaVbgqhBAij7QdB9W7glEPS1+BS1mrBbHR2vBCxReISYmxbHxZUa8etGr1n4esXp1HsViQJCP3RCREkHLjKtGx5v2VzL03KvJcjRLS5EwIIfKSVgtdZkNgc7WnzeL/wYGfs/TUwY0G548dfUG1if/998c+vHdvHsZiIZKM3LP3+l4iNv/GkuXm+5VExqWw5vhNAAY0l1ERIYTIc3aO8OpvqiGayQh/fgQbhj9x2a+Nxob3Nr1HtxXduJV4i0+3fUq3Fd34cMuHxKbE0m1FN7qt6Maqs6ssP51TooSaqnnMMt9ixbK9aCjfyXY7+MJKZ9BhZ0BVYJvJ/L1X0RtMNAz0om4ZL7OdVwghRDbYOkDnmeBbGf76DA7NhTuX4KW54Or7yKdoNBp29NuB0WTEVmvL5y0/T086bLW2LH15KaCKXcftHEdF74r0rtXbMvHb2cELL8CFC1ClykMP/5oP2qLklnRgvSfNmIY2OYUEgyvmuERiahpNJm4lLiWNn/vUp111/9yfVAghRO6c3wC/DQR9Itg5Q4PXVaGrm1+OT5lmTOPLf77Ez8WPtxu+bcZg/+XiRahY8aG7X30VZs0CNzfLXTqnpANrNk3ZN4VLowbx2WfmOd+Kw9eJS0kjyMeFtlVz/o9cCCGEGVV5Ad7YDCXrgj5J7fz7fS34cxTEhefolPdHTt5q8BaTd0/mzK0zZg76nq++gitXHrrbzg50ud+42KpkmuaeiIQIUm7eYV9cIhM3hub6fGuOhwFqBY1WK63fhRAi3/CvCQO3q9U1OybBzcNwYBacWQ1DDoKjR45Oq9Voeb3u6/T8rSdre67FJQd74/ynt9+Gn36CyZMz3d2uHRbZxiQvSTJyT6VilYj3NxJ85zo//fNw5pkT3i72vFyvtFnOJYQQwow0Gqj4LFRoq1rHr3kX4m7A2TVQr2+OT+vr4sukNpNI1CeaPxlp1EhVq/5L9epq4VBBJsnIPS9WepGzHeviahuKn7sDnevkbAvq+zRAu+p+ONmbv4maEEIIM9FooHxraDQA/v4cTizLVTIC0LBUQ5afXo6TnROdKncyT5ygYr1xAw4fhp490+9euBDefBMqVTLfpfKaJCP3fLrtU/73dSqxaV/RfOAtPn6+qrVDEkIIkVdqdoe/x8G1PRB9FbwCc3W6zlU68+KSF2lcqjF+rmasG2zUCF5+OVMyYm8Pqanmu4Q1FPCBHfPRG/Xo0xzR2BpwspPRDCGEKFI8SkG5FurrbO5l8yiOto583+F74nXxuT5XJs7O0LUrJCam3zVgAAQGmvcyeU2SkXveqPsGyc+1wbnCLRxlakUIIYqe2r3UnyeWmqWLWPXi1YlMiOTnI1nr+pplAwfCjh3p3549C+E5WwiUb0gycs+txFvoYvWgNcrIiBBCFEVVO4KdC0SHwPWDZjllk4Am/HnpTw6HHTbL+QBVOzJnDkRHA6oXWliY+U5vDZKM3LP01FL0my6gC/PCWUZGhBCi6LF3gWqd1dcnlprllFqNll87/4rRZMRgNJjlnIDazXfZMkA1O8v/7Uv/myQj95iMBhJxkpoRIYQoymrfKww98zvoU8xySk9HT+r416Hzss7EpsSa5Zx07Aivvw5GIwMHPnFj33xPkpF7Fr+8hKgR7XCuEo6jJCNCCFE0BTYH99KQEgsXNpnttPY29nzW4jP6/dHPPBvr2djA9OmwdStLlsDq1bk/pTVJMnLPJ5s+QvPLCXS33KU3iBBCFFVaLdTqrr4+scysp25YqiGzXphFREKEeRKSVq1g9240GkhOzv3prEmSkXuuRl8hJsoOk95GpmmEEKIou7+q5tJfkHDbrKcu4VaC1edX8/mOz3N/sjJl4JlnqFix4C/tlaZn99T0qkq0twNaJ50kI0IIUZT5VoJS9eHmEZjRAGwdHn+sjT3UfRWaDwebrG0Q807Dd/h8x+dsubyFduXb5TxOV1ewsyMwEJKScn6a/EBGRu4Z8sxwEjr5Y+8bL31GhBCiqGs4UP2ZEgMJkY+/xV6HHRNhTmuIzPpuvZ+1+IxmAc1YdHJRzmNMTYW5czl6FNasyflp8gMZGbnnrRV90cwdib6li4yMCCFEUVe7J5R5CnSJ/31cxCnYPBoiTsLPLaHlKGj6Ptj899urRqPB2c6ZY+HHiE6O5t3G72Y/RhcXSEzEwaHgt4OXZOQ+g4EkowMaO1naK/IHg8GAXq+3dhjCzOzt7dEW9C1WiwKNBryDnnycfw210d669+HCn7B1PFzYAn1+V31L/vMSGr5t9y2zD8/GYDRgo83me4+dHUydSk1XKF3AN4iXZOSegXXf4Mdaydg42eJkLy8UwnpMJhMRERHExMRYOxRhAVqtlqCgIOzt7a0dijAXNz/otVStvvlzJFzfD+s/gK4/qaTmP2g0Gt5u+DYzDs6gfon6NAlokr1r//ILiQPGceYMlC+fi5/ByiQZuUevSyEFDRpbI0528msR1nM/ESlevDjOzs5onvBiJgoOo9FIWFgY4eHhlClTRv5uCxONBur0As8ysKAjnFwOZZpAg/5Zenrvmr3ptrIbG1/ZiMN/Fcz+27FjxMbC/v3QqVMOY88H5F33nvnHfiXi0ByoGCZ9RoTVGAyG9ESkWLFi1g5HWICvry9hYWGkpaVhZ5e11ReiAAlsBm3GwN+fq1GSUvWgRO0nPs3LyYvPW3xOvC4+e8lI6dI4OoLBjJ3mrUHmI+4zGtEZbcFGNsoT1nO/RsTZ2dnKkQhLuT89Yyjo7x7i8Zq+D5U6gCEVVvRT3VyzoHnZ5vxx/g9ORJzI+rW++44KFWDy5BzGmk9IMnLPT71Xou0UgkaDJCPC6mT4vvCSv9siQKuFLrPAo4zaAfiPd7K8k92LlV7ko78+Is2YlrVr9ezJrVswbFgu4s0HJBkB0oxpfLdqONq9PgA4SgGrEEKI3HD2hv/NB60dnF8Pu6dk6Wn+rv4MfWootxOz2PnVZMLWFu7ezXmo+YG86wI6g46QmBASo73RasDeRn4tQhQEO3bsQKPRZGnlUXaOFcIsSteHDhPV11vHw+Ffs/S05ys+z7aQbQRHBT/54O7dcXIw0qBBLuLMB+RdF7WUspxDAHZuSTjZ2cgwqhAFRNOmTQkPD8fDw8OsxwphNo0GwtMfqK/XfwAnV2bpac3KNGPM9jFPPjAoCEetjtatcxFjPiDJCOBo60j3FyejaX9DVtIIkUd0Ol2uz2Fvb4+/v3+WPkBk51ghzKrNZ9BwAGCC1W/B+Q1PfEqgZyCNSjUiQZfw3wcuXAh37jBqlHlCtRZJRoDIxEimL+xJ4upqOErxqhA50rJlS4YMGcKQIUPw8PDAx8eHMWPGpG+VHhgYyBdffEHfvn1xd3fnzTffBGD37t00b94cJycnAgICeO+990hMfNCCOzU1lZEjRxIQEICDgwMVKlTgl19+AR6eerl27RodO3bEy8sLFxcXqlevzsaNGx95LMBvv/1G9erVcXBwIDAwkO+++y7TzxQYGMiECRN4/fXXcXNzo0yZMvz888+W+hWKwkqjgee+gVo9wWSAla/B5e1PfNqHTT9k59Wd/32Qiwua5AK+Sx6SjACqZsQ2DYwaraykEfmOyWQiSZeW5zdTFqv/M1qwYAG2trYcPHiQ77//nilTpjB37tz0x7/99ltq167NsWPHGDNmDJcvX6ZDhw68/PLLnDx5kuXLl7N7926GDBmS/py+ffuydOlSfvjhB86dO8dPP/2Eq6vrI68/ePBgUlNT+eeffzh16hSTJ09+7LFHjhyhe/fu9OzZk1OnTvH5558zZswY5s+fn+m47777jgYNGnDs2DHeeecd3n77bYKDszCXL0RGWi10nglVXgSDDpa9Ape3PfFpWy5vYf+N/Y8/YPhwKF2aESPMGKsVSNMzwMPBg0aBnfi7ajjOMk0j8plkvYFqYzfn+XXPjm+Ps332XiICAgKYOnUqGo2GypUrc+rUKaZOncrAgWoH1NatWzN8+PD04wcMGEDv3r0ZOnQoABUrVuSHH36gRYsWzJo1i9DQUFasWMFff/1F27ZtAShXrtxjrx8aGsrLL79MzZo1n3jslClTaNOmDWPGqHn5SpUqcfbsWb755htee+219OOef/553nnnHQBGjhzJ1KlT2b59O5UrV87W70YIbGyh2zyViFz6GxZ3h26/QLXOj33K6Oaj+XjrxzxV+qlHH3DwIFSqxPnz1Xn6aQvFnQdkZAQwmoyACyY3vUzTCJELTz31VKaajCZNmnDx4sX0Bl8N/lXyf+LECebPn4+rq2v6rX379hiNRkJCQjh+/Dg2Nja0aNEiS9d/7733+PLLL2nWrBmfffYZJ0+efOyx586do1mzZpnua9asWaZ4AWrVqpX+tUajwd/fn1u3bmUpHiEeYusAPZdAtS5g1Kspm6P/99jD/V39mdNxDneS7jz6gBs34OZN1q61SLR5RkZGgNDYUI4fW0rCqZ44PS8vMiJ/cbKz4ez49la5rrm5uGTexTQhIYG33nqL995776Fjy5Qpw6VLl7J1/gEDBtC+fXs2bNjAli1bmDhxIt999x3vvpuD7dnv+XfLdo1Gg9FozPH5hMDWQY2QrHeHowth7RBIiYGmj/53ejf5Lq+vfZ11vdY9/GDx4sAT9+PL9yQZQdWMaHRasJNW8CL/0Wg02Z4usZYDBw5k+n7//v1UrFgRG5tH/7+qV68eZ8+epUKFCo98vGbNmhiNRnbu3Jk+TfMkAQEBDBo0iEGDBjF69GjmzJnzyGSkatWq7NmzJ9N9e/bsoVKlSo+NVwiz0dpAxx/A0RP2/gBbPlX3PyIh8XXxpbpvdbaHbKdVUKvMD3bvDkYjv7exfMiWJNM0QC2/WtRo/xWuzS9LMiJELoSGhjJs2DCCg4NZunQp06dP5/3333/s8SNHjmTv3r0MGTKE48ePc/HiRdasWZNewBoYGEi/fv14/fXX+eOPPwgJCWHHjh2sWLHikecbOnQomzdvJiQkhKNHj7J9+3aqVq36yGOHDx/O1q1b+eKLL7hw4QILFixgxowZfPjhh7n/RQiRFRoNtPsCWt/rJ/LXZ3Dj8CMPHfX0KKr6PuLf8oYNMHcu9xanFViSjADnos4RumUeydeK4ygFrELkWN++fUlOTqZRo0YMHjyY999/P30J76PUqlWLnTt3cuHCBZo3b07dunUZO3YsJUuWTD9m1qxZdOvWjXfeeYcqVaowcODATEt/MzIYDAwePJiqVavSoUMHKlWqxI8//vjIY+vVq8eKFStYtmwZNWrUYOzYsYwfPz5T8aoQeaL5cKjxslr2u+p1SIl76BBPR0+2XN7CX5f/yvyAszMkJnI7i93j8yuNKSfr9/JYXFwcHh4exMbG4u7ubvbzb7q0id8//JIVUfMYPiqNMS9WM/s1hMiKlJQUQkJCCAoKwtHR0drhZEvLli2pU6cO06ZNs3Yo+VpB/jsWFpQSC7OfhphQqNkdXp7z0CHRydG88vsrbHxl44NC8atX4fJlvtrfhk8+yduQsyKr798yMgI42TrhoPXBxiVVpmmEEELkPUcPeGkuaGzg1Ao4sfyhQ7ycvHij7hsk6jOMDBYrBsWK0aNHHsZqAZKMAE0CmuDU5SNca4dKO3ghhBDWUaYxtLzX133DMLh75aFDulXrxsITCx80JYyKgnnzyNC+p0CSZAT4/dzvRCycTMLJABkZESKHduzYIVM0QuRW8+FQpinoEuC3AWBIe+iQmJQY1l9Yr75xdYV7NVQFecW5JCOopb1GvSMaO6OMjAghhLAerQ289LOatrl5BI78+tAh7zZ6l3+u/aO+8fKCkSP54IM8jtPMJBkBahSvgbN/Nex942RkRAghhHV5BjxY7rt9AiRHZ3rYzcGNca3Gce72ObC1hTVruH0bUlOtEKuZSDKCKmDVuXihddZJO3ghhBDWV78/+FaB5Luw85uHHjaZTLy36T21ncmuXfz5Z/psTYEkyQhqV8S4ExdIu+Mq0zRCCCGsz8YW2k9QXx/8CaIyb43gYu/CcxWeY/W51eDpib096HRWiNNMCkaPaQvTG/WkpTmhsTXINI0QQoj8oUIbqNgeLm5W7eJfWZbp4fcav4fBaICFLzMtBeztrRSnGcjICNC3dl90TWpj5xsvyYgQQoj8o92XoLWFC3/C5W2ZHrqTdIdJuydB167MmAEhIVaK0QwkGQH+uvAndsduYtTZ4mQvvxIhCorPP/+cOnXqpH//2muv0aVLF6vFI4TZ+VaChgPV15s/ybTU19nOmQt3L4DRSExMEawZmTlzJoGBgTg6OtK4cWMOHjz42GPnzJlD8+bN8fLywsvLi7Zt2/7n8dZwNuI0MXedwKiRAlYhhBD5S4sR4OQFt87C0fnpd7vau1Leqzw89xyVK0NB3l0g28nI8uXLGTZsGJ999hlHjx6ldu3atG/fnlu3bj3y+B07dtCrVy+2b9/Ovn37CAgIoF27dty8eTPXwZuLq40TRo0jGjupGRHCXHQFuZpOiPzE2Rtafqy+3vZV+lJfjUbDwHoDoV49nu9gpFQpK8aYS9lORqZMmcLAgQPp378/1apVY/bs2Tg7OzNv3rxHHr948WLeeecd6tSpQ5UqVZg7dy5Go5GtW7fmOnhzGdx8NDe6lMDGSY+zvdT0CpETLVu2ZMiQIQwdOhQfHx/at2/P6dOnee6553B1dcXPz48+ffoQFRWV/hyj0cjXX39NhQoVcHBwoEyZMnz11Vfpj48cOZJKlSrh7OxMuXLlGDNmDHq93ho/nhDW1SDjUt+v0+8evHEwTJnCwnl68tmkQ7ZkKxnR6XQcOXKEtm3bPjiBVkvbtm3Zt29fls6RlJSEXq/H29s7e5Fa0Acr++O6VIPJCA62UjMi8hmTCXSJeX/LwYbeCxYswN7enj179jBp0iRat25N3bp1OXz4MJs2bSIyMpLu3bunHz969GgmTZrEmDFjOHv2LEuWLMHPzy/9cTc3N+bPn8/Zs2f5/vvvmTNnDlOnTjXLr1WIAsXGDjpMVF8f/BluX3jwmIsLDugKdNOzbA0DREVFYTAYMr1YAPj5+XH+/PksnWPkyJGULFkyU0Lzb6mpqaRm+K3GxcVlJ8xsS0lNwWi0x8nBiFarsei1hMg2fRJMKJn31/04DOxdsvWUihUr8vXX6lPbl19+Sd26dZkwYUL64/PmzSMgIIALFy5QokQJvv/+e2bMmEG/fv0AKF++PE8//XT68Z9++mn614GBgXz44YcsW7aMESNG5OYnE6JgKt8aKj2nVtZs/hheXcXbDd6GukG0TLbHJf98xs+2PJ2TmDRpEsuWLWPHjh04/kelzcSJExk3blyexfVUyRZcKhWHzs4jz64pRGFUv3799K9PnDjB9u3bcXV1fei4y5cvExMTQ2pqKm3atHns+ZYvX84PP/zA5cuXSUhIIC0tDXd3d4vELkSB0P4ruPQ3XPoLLmwhMS0Rw5kTGD09SLAvYe3ocixbyYiPjw82NjZERkZmuj8yMhJ/f///fO63337LpEmT+Pvvv6lVq9Z/Hjt69GiGDRuW/n1cXBwBAQHZCTVbvJxLo/fXSvGqyJ/snNUohTWum00uLg9GUhISEujYsSOTJ09+6LgSJUpw5crD26NntG/fPnr37s24ceNo3749Hh4eLFu2jO+++y7bcQlRaBQrD08Ngr3TYfNo1paqSptzZThjU5+0QKhe3doB5ky2khF7e3vq16/P1q1b09fy3y9GHTJkyGOf9/XXX/PVV1+xefNmGjRo8MTrODg44ODgkJ3QcmXh0akk7v8ezxYFeJG2KLw0mmxPl+QH9erV47fffiMwMBBb24dfaipWrIiTkxNbt25lwIABDz2+d+9eypYtyyeffJJ+37Vr1ywasxAFwjMfwYllcOcSnq5uxHpUxD5RT1IBXsCW7WrNYcOGMWfOHBYsWMC5c+d4++23SUxMpH///gD07duX0aNHpx8/efJkxowZw7x58wgMDCQiIoKIiAgSEhLM91Pkkj5Nh9FkLyMjQpjR4MGDuXv3Lr169eLQoUNcvnyZzZs3079/fwwGA46OjowcOZIRI0awcOFCLl++zP79+/nll18AlayEhoaybNkyLl++zA8//MDq1aut/FMJkQ84ekCbsQBMCL9EwMD3eG5YVXr2tHJcuZDtZKRHjx58++23jB07ljp16nD8+HE2bdqUXtQaGhpKeHh4+vGzZs1Cp9PRrVs3SpQokX779ttvzfdT5FKfup9h3zZUkhEhzKhkyZLs2bMHg8FAu3btqFmzJkOHDsXT0xOtVr30jBkzhuHDhzN27FiqVq1Kjx490nsWderUiQ8++IAhQ4ZQp04d9u7dy5gxY6z5IwmRf9TpDa5+/KG7w9E5n3By6lYKcq6uMZlysH4vj8XFxeHh4UFsbKxFitcGfd+PvQtfo/Y7zvzfG43Nfn4hsiolJYWQkBCCgoL+s8hbFFzydyzMZnZz5kYcprh7Zzwj+3DA5wU++sjaQWWW1fdvaaoBnI4+QlyYn7SCF0IIUXA4eRGEFidvN4pV9uFfXTcKFGk3CjibnNDaG3C2l2RECCFEAeHsTTNsSPYPxKWsDyX/e1FrviYjI0Dnlksx9pKaESGEEAWIkxcnMTLj7Foufb+BR6yiLzAkGQEW/dkJ7apSMk0jhBCi4HDyxhOIMSZhr0soOu3gCyt9WhomLTjJNI0QQoiCwsmLkmh50aMkxd/qSscC3CpLRkaAcraNsC8bI9M0QgghCg5nb5yB6NS72B45QFqatQPKOUlGAA+32hhKp0gyIoQQouBw8kKLhl/jr5C6cSuLFlk7oJyTZATYHz4H/RlfHGWaRgghREHh5AWAxqjHwdaArgC3g5eaEcBoBJOdUUZGhBBCFBxO3gD8qnXDafUSfrht5XhyQUZGgGoeA7GpFi3JiBC5YDKZePPNN/H29kaj0XD8+HFrhyRE4XZvZGRiahSaV19hyhQrx5MLkowA0RF7SUtwlKZnQuTCpk2bmD9/PuvXryc8PJy4uDg6duxIyZIl0Wg0/PHHH9YOUYjC5V4yEowRYu5y5oyV48mFIp+MmEwmQm3OoUtwlj4jQuTC5cuXKVGiBE2bNsXf35/ExERq167NzJkzrR3aE+kK8mS7KLpsbMHBnRpo0TeqRfny1g4o54p8MqI36rHTO2GyN0qfESFy6LXXXuPdd98lNDQUjUZDYGAgzz33HF9++SVdu3bN0Tl//PFHKlasiKOjI35+fnTr1i39MaPRyNdff02FChVwcHCgTJkyfPXVV+mPnzp1itatW+Pk5ESxYsV48803SUhIyBRvly5d+OqrryhZsiSVK1cG4Pr163Tv3h1PT0+8vb3p3LkzV69ezdkvRYi84OTJCBzQNK3FuHHWDibninwyYm9jj1Plr3GueFtqRoTIoe+//57x48dTunRpwsPDOXToUK7Od/jwYd577z3Gjx9PcHAwmzZt4plnnkl/fPTo0UyaNIkxY8Zw9uxZlixZgt+9XcISExNp3749Xl5eHDp0iJUrV/L3338zZMiQTNfYunUrwcHB/PXXX6xfvx69Xk/79u1xc3Nj165d7NmzB1dXVzp06CAjJyL/cvLmK1K5PO0b+vSxdjA5V+RX00QnR5N08nNSHb6WZESIHPLw8MDNzQ0bGxv8/XO/W1doaCguLi68+OKLuLm5UbZsWerWrQtAfHw833//PTNmzKBfv34AlC9fnqeffhqAJUuWkJKSwsKFC3FxcQFgxowZdOzYkcmTJ6cnLS4uLsydOxd7e3sAFi1ahNFoZO7cuWg0GgB+/fVXPD092bFjB+3atcv1zyWE2Tl54YGGWDs9pBkpqGMMRT4ZSU1LRW/SgtaEo33B/EsURcTSpeoGsHgxfPwxXLsGNWrAkCEwaJB6bOBA0Oth/nz1/bx5MHkyBAdDhQrw6afw2mvqsT59wNkZfvpJff/jj+rratWgV6+8/OkyefbZZylbtizlypWjQ4cOdOjQga5du+Ls7My5c+dITU2lTZs2j3zuuXPnqF27dnoiAtCsWTOMRiPBwcHpyUjNmjXTExGAEydOcOnSJdzc3DKdLyUlhcuXL1vgpxTCDJy9eQ5b/J57ht6ukowUYLZ4J5Un2TdVRkZE/tarV+YEYfr0zI+vXZv5+5deevD1N9/897EvvPDg6y++yHmMZuLm5sbRo0fZsWMHW7ZsYezYsXz++eccOnQIJycns1wjY7ICkJCQQP369Vm8ePFDx/r6+prlmkKYnZMXbkBCWCgeNZIBtyc9I18qmCmUGRmNthjcq2HjrJPVNELkI7a2trRt25avv/6akydPcvXqVbZt20bFihVxcnJi69atj3xe1apVOXHiBImJD3YN27NnD1qtNr1Q9VHq1avHxYsXKV68OBUqVMh08/DwMPvPJ4RZOHkRjJHdN8/w4yyNtaPJsSKfjFy6e5W78fvQ6u2xsynyvw4hzCYhIYHjx4+nNz8LCQnh+PHjhIaGPvG569ev54cffuD48eNcu3aNhQsXYjQaqVy5Mo6OjowcOZIRI0awcOFCLl++zP79+/nll18A6N27N46Ojvx/e3ceFlXZ/gH8OzMwGwybyCabiiAqqaDyAr2ZyiumkWaFrxmCJf5MUIsy3CHNUlNT09Tc0HJpUanUQCRRwiVAIRecBNlMFk1lX4aZ5/eHr5MTiAzbMMz9ua5zXc45zznnPvcA5/Y5zzknKCgIV65cwalTpzB79mwEBgYqL9E0ZsqUKTA3N8f48eORlJSEnJwcJCYmYs6cObh161ab5ISQNicyezhmRE8GyLX3TXk6f5mmsrYWTC5AG/X8EkL+JzU1FSNGjFB+Dg8PBwAEBQUh+tF4licwMTHB4cOHERUVhZqaGvTp0wcHDhxA//79AQBLliyBnp4eli5ditu3b8Pa2hoz/zdmRiwWIy4uDnPnzsXQoUMhFovxyiuvYN1THk8pFotx5swZREREYOLEiSgvL0ePHj0watQoGBkZtSIThLQjkSk8wcOgfw1GwEITTUfTYhzGGNN0EE9TVlYGY2NjlJaWtvkfhfO5+Zjz7jeAuzt+W9L4gDhCOkpNTQ1ycnLQs2dPCIVCTYdD2gF9x6RN/RGH4v2vYt89ER48+A3L9jpqOiIVzT1/63zPSHHFXShK/4KhkC7REEII0TIiU/DBQbpeBcqu8yGXAzwtHP6o82fggge3cEdRRoNXCelASUlJMDQ0fOJECGkmkSmMAFjwAEcHBeq1dNiIzveMVNVUAQo+PQqekA40ZMgQeqsvIW1BZAYeOFjE40G0kuGxR+doFZ0vRvp2fw7wktAzRgjpQCKRCE5OTpoOgxDtJ3x423mQohoW/72DT47bQRsfi6Pzl2lS//gBgqSzVIwQQgjRPjy9hwUJF+DXV6K2VtMBtYzO94xUVN1DnUIfQrpMQwghRBuJTBFYdgeiCfX4x4OFtYbO94wIed1hrCeinhFCCCHaSWQKA3BgXXVN05G0mM4XI2JRbygcLKkYIYQQop1EZtjHk+Gbo3poxgOOOyWdL0b+uPkdyq7fp7tpCCGEaCeRKYw5HCi4d1FXp+lgWkbni5G6mhpwmB71jBDSSowxzJgxA2ZmZuBwOHTrLiEdRWyGKA4fc+bz4Oqq6WBaRueLEbNuo2Bsb0A9I4S0UmxsLKKjo3H06FEUFhZiwIAB2Lx5MxwdHSEUCuHp6YnffvutyW1ER0eDw+GoTPTIdEKeQmSKRI4CP+xIR1aWpoNpGZ0vRh78lQtOVT31jBDSStnZ2bC2toa3tzesrKxw6NAhhIeHIzIyEhcvXsTAgQPh5+eHkpKSJrdjZGSEwsJC5ZSXl9dBR6CeOm3tDyddj8gU98GQWadAYaGmg2kZnS9GCv9KQ81fCipGCGmF4OBgzJ49G/n5+eBwOHB0dMS6desQEhKCadOmoV+/fti6dSvEYjF27drV5LY4HA6srKyUk6WlZbPj+OKLL9CnTx8IhUJYWlri1VdfVS5TKBRYvXo1nJycIBAIYG9vjxUrViiXX758GSNHjoRIJEK3bt0wY8YMVFRUqBzjhAkTsGLFCtjY2MDFxQUAUFBQgICAAJiYmMDMzAzjx49Hbm5us2MmpNVEZrADB0YmMq18Lw1AxQjqZDJwuVx6zgghrbBhwwYsW7YMtra2KCwsxIULF5CWlgZfX19lGy6XC19fX5w7d67JbVVUVMDBwQF2dnYYP348rl692qwYUlNTMWfOHCxbtgxSqRSxsbF47rnnlMsXLFiAlStXYsmSJbh27Rr279+vLHQqKyvh5+cHU1NTpKSk4LvvvsPJkycRFhamso+EhARIpVLEx8fj6NGjkMlk8PPzg0QiQVJSEpKTk2FoaIgxY8ZQzwnpOCJTjIYelv6rAI/9ymkVnX/omYXL+/hTWEY9I4S0grGxMSQSCXg8HqysrHD79m3I5fIGvRqWlpa4fv36E7fj4uKCXbt24ZlnnkFpaSnWrFkDb29vXL16Fba2tk3GkJ+fDwMDA7z44ouQSCRwcHDA4MGDAQDl5eXYsGEDNm3ahKCgIABA79698eyzzwIA9u/fj5qaGuzduxcG/3tq1KZNm+Dv749Vq1Ypj8PAwAA7duwA/38vAPn666+hUCiwY8cOcDgcAMDu3bthYmKCxMREjB49Wt1UEqI+sRlSIMfGC3KM2w+88YamA1Kfzhcjhb9vgPEf4yGaScUI6dwOHHg4AcC+fcDChUBeHjBgABAWBsyc+XBZSAggkwHR0Q8/79oFrFoFSKWAkxOweDEQHPxwWWAgIBYD27Y9/PzFFw//3a8fMHlyRx7dQ15eXvDy8lJ+9vb2hqurK7Zt24bly5c3ue5//vMfODg4oFevXhgzZgzGjBmDl19+GWKxGJmZmaitrcWoUaMaXTczMxMDBw5UFiIA4OPjA4VCAalUqixG3NzclIUIAGRkZCArKwsSiURlezU1NcjOzlb7+AlpEZEpjMFBrX4VPQ5eW1UpHgByLkR8nb9iRTq5yZNVC4TPP1dd/uOPqp8nTvz7359+2nTbceP+/vdTzvnNYm5uDh6Ph+LiYpX5xcXFsLKyavZ29PX1MXjwYGQ14xYBiUSCixcvIjExESdOnMDSpUsRFRWFlJQUiEQitY+hMQb/eNZ2RUUFPDw8sG/fvgZtu2vj28qIdhKZwgZc+InlcO0jA6Cv6YjUpvNnYKG8B7hGPAjpMg0hbYbP58PDwwMJCQnKeQqFAgkJCSo9H08jl8tx+fJlWFtbN6u9np4efH19sXr1avz+++/Izc3FL7/8gj59+kAkEqnE8zhXV1dkZGSgsrJSOS85ORlcLlc5ULUx7u7uuHHjBiwsLODk5KQyGRsbN/s4CWkVoTEk4MCMUwZzwR1NR9MiOl+MyI2fRUUvA4j5Ot9JREibCg8Px/bt27Fnzx5kZmbi7bffRmVlJaZNm6ZsM3XqVCxYsED5edmyZThx4gRu3ryJixcv4o033kBeXh6mT5/+1P0dPXoUGzduRHp6OvLy8rB3714oFAq4uLhAKBQiIiICH3zwAfbu3Yvs7GycP38eO3fuBABMmTIFQqEQQUFBuHLlCk6dOoXZs2cjMDCwybt5pkyZAnNzc4wfPx5JSUnIyclBYmIi5syZg1u3brUie4SogcsDV2CM9SI5Yr7VzoHTOn8Gvle2G0a35tEAVkLa2KRJk3Dnzh0sXboURUVFGDRoEGJjY1VO7vn5+eBy//4/0f379xESEoKioiKYmprCw8MDZ8+eRb9+/Z66PxMTExw+fBhRUVGoqalBnz59cODAAfTv3x8AsGTJEujp6WHp0qW4ffs2rK2tMfN/A23EYjHi4uIwd+5cDB06FGKxGK+88grWrVvX5D7FYjHOnDmDiIgITJw4EeXl5ejRowdGjRoFIyOjlqSNkBbhGHQDl1uButKKpzfuhDiMMabpIJ6mrKwMxsbGKC0tbdNfcJlcgd5vDYNJ8QIkHXoJxmLtu85Gupaamhrk5OSgZ8+e9OTRLoq+Y9Iuto/E1T+uwHD0fjj8p/Pc39vc87dOX6apkclhJhuFWlsehDSAlRBCiLYSmWLHPRl+/UE7e0Z0+gxcLZMDsvvgcHjg83Q6FYR0eklJSTA0NHziRIhOE5khQ1SPlCvaOXBap8eM1NQpUCJOg0XNK8oHFhFCOqchQ4bQm4AJeRKRKRzBhZ5elaYjaRGdLkaqZXIwxoGeIQ1eJaSzE4lEcHJy0nQYhHROYjN8IVGA/9ZPAMY9tXlno9PXJqplchgavQeBLfWKEEII0WIiU7xXLsdra4ZoOpIW0e1ipE6O+qJo6CsEmg6FEEIIaTmRKUw4DGWsRtORtIhOX6apkclRLiyDWKTTNRkhhBBtJzLDaCEHIrtcTUfSIjp9Fq6qk8O43AYGYrpMQwghRIuJTGHH5WCAwSVNR9IiOl2MVMvkEHb7DwyENICVEEKIFhObIl2uQFS+m6YjaRGdL0YK676iR8ET0gYYY5gxYwbMzMzA4XDoNlxCOpLIFMZcoF6/Eqiv1XQ0atPpYqSmTg4AVIwQ0gZiY2MRHR2No0ePorCwED/99BOGDh0KiUQCCwsLTJgwAVKpVNNhEtI1CYzhKeLjs56/A9X3NR2N2nS6GKmWyWFf5gUhn4oRQlorOzsb1tbW8Pb2hpWVFZKTkxEaGorz588jPj4eMpkMo0ePRmVlpaZDbaCuTjvfdEqIEpeLSoERdv5pSMWItqmWyQEmo54RQlopODgYs2fPRn5+PjgcDhwdHREbG4vg4GD0798fAwcORHR0NPLz85GWlvbU7THGEBUVBXt7ewgEAtjY2GDOnDnK5bW1tYiIiICdnR0EAgGcnJywc+dO5fLTp09j2LBhEAgEsLa2xvz581FfX69c/vzzzyMsLAzvvPMOzM3N4efnBwC4cuUKXnjhBRgaGsLS0hKBgYG4e/duG2aKkPbDE5virIRLxYi2qa6TI984lYoRQlppw4YNWLZsGWxtbVFYWIiUlJQGbUpLSwEAZmZmT93eoUOH8Nlnn2Hbtm24ceMGYmJi4Ob298C8qVOn4sCBA9i4cSMyMzOxbds25ftp/vzzT4wdOxZDhw5FRkYGtmzZgp07d+Kjjz5S2ceePXvA5/ORnJyMrVu34sGDBxg5ciQGDx6M1NRUxMbGori4GAEBAa1JDSEdxtjAHPqMB1Td03Qo6mMtsGnTJubg4MAEAgEbNmwYu3DhQpPtv/32W+bi4sIEAgEbMGAAO3bsmFr7Ky0tZQBYaWlpS8J9oojvM5jpG95s0y832nS7hLRUdXU1u3btGquurtZ0KGr77LPPmIODQ6PL5HI5GzduHPPx8WnWttauXcucnZ1ZXV1dg2VSqZQBYPHx8Y2uu3DhQubi4sIUCoVy3ubNm5mhoSGTy+WMMcaGDx/OBg8erLLe8uXL2ejRo1XmFRQUMABMKpU2K+7m0ObvmHRyX7/K6t43YCxtr6YjUWru+Vvth5598803CA8Px9atW+Hp6Yn169fDz88PUqkUFhYWDdqfPXsWkydPxieffIIXX3wR+/fvx4QJE3Dx4kUMGDCg1cVUa1TL5LAwCIGQekaIFjhw+QAOXDkAANg3cR8WJixEXmkeBlgMQNiwMMw8OhMAEOIeAplChuj0aADArvG7sOrXVZD+JYWTmRMWP7cYwTHBAIDAZwIh1hdjW9o2AMAX477AttRt6Ne9Hya7TW6z2ENDQ3HlyhX8+uuvzWr/2muvYf369ejVqxfGjBmDsWPHwt/fH3p6ekhPTwePx8Pw4cMbXTczMxNeXl4qL7/08fFBRUUFbt26BXt7ewCAh4eHynoZGRk4depUo28Azs7OhrOzc3MPlxDNEJmhZ7ELblVrX8+I2sXIunXrEBISgmnTpgEAtm7dimPHjmHXrl2YP39+g/YbNmzAmDFjMG/ePADA8uXLER8fj02bNmHr1q2tDL91KivKUVt0FCL9kRqNg5DmmOw2WaVA+Hzs5yrLf5z8o8rnia4Tlf/+dPSnTbYd5/z3i7WWj1ze6lgfFxYWhqNHj+LMmTOwtbVt1jp2dnaQSqU4efIk4uPjMWvWLHz66ac4ffo0RCJRm8RlYGCg8rmiogL+/v5YtWpVg7bW1tZtsk9C2pXIFPVMTyvHjKhVjNTV1SEtLQ0LFixQzuNyufD19cW5c+caXefcuXMIDw9Xmefn54eYmBj1o21jVWUVqBQ8gJjupiGkzTHGMHv2bBw5cgSJiYno2bOnWuuLRCL4+/vD398foaGh6Nu3Ly5fvgw3NzcoFAqcPn0avr6+DdZzdXXFoUOHwBhT9o4kJydDIpE0WQy5u7vj0KFDcHR0hJ6eTr8pg2grkSmeL+0GlGQCNxPVX99mMCA0bvOwmkOt37i7d+9CLpfD0tJSZb6lpSWuX7/e6DpFRUWNti8qKnrifmpra1Fb+/dDW8rKytQJs9lqquUwqjanyzSEtIPQ0FDs378fP/zwAyQSifJ33tjY+Km9G9HR0ZDL5fD09IRYLMbXX38NkUgEBwcHdOvWDUFBQXjzzTexceNGDBw4EHl5eSgpKUFAQABmzZqF9evXY/bs2QgLC4NUKkVkZCTCw8PB5T55zH5oaCi2b9+OyZMn44MPPoCZmRmysrJw8OBB7NixAzwe/Z0gnZzYDO56tzDokBlwKArfONzGwuxuyNYTwLpehGjHZPjdcgcAvMLhwIJTgi2K7gCAr+0LMCD8IGA3VCOhd8ry/5NPPsGHH37Y7vux722LctHbMBXrt/u+CNE1W7ZsAfDwNtrH7d69G8HBwU2ua2JigpUrVyI8PBxyuRxubm746aef0K1bN+W2Fy5ciFmzZuGvv/6Cvb09Fi5cCADo0aMHjh8/jnnz5mHgwIEwMzPDW2+9hcWLFze5TxsbGyQnJyMiIgKjR49GbW0tHBwcMGbMmCaLGEI6jb7j8Nq/fsS/iisAAHZ2lljMB8plHIj0a2Fq6YKNeg97C+2MAT7HGK4PHn7uaWsJ6As1FjqHMcaa27iurg5isRjff/89JkyYoJwfFBSEBw8e4Icffmiwjr29PcLDw/HOO+8o50VGRiImJgYZGRmN7qexnhE7OzuUlpbCyMioueESonVqamqQk5ODnj17QijU3B8G0n7oOya6pKysDMbGxk89f6tV7vP5fHh4eCAhIUE5T6FQICEhAV5eXo2u4+XlpdIeAOLj45/YHgAEAgGMjIxUJkIIIYR0TWr3PYaHh2P79u3Ys2cPMjMz8fbbb6OyslJ5d83UqVNVBrjOnTsXsbGxWLt2La5fv46oqCikpqYiLCys7Y6CEKJV9u3bB0NDw0an/v37azo8QkgHU3vMyKRJk3Dnzh0sXboURUVFGDRoEGJjY5WDVPPz81Wur3p7e2P//v1YvHgxFi5ciD59+iAmJkbjzxghhGjOSy+9BE9Pz0aX6evTGC5CdI1aY0Y0pbnXnAjRdjSeoOuj75joknYZM0IIIYQQ0taoGCGkE9KCDkvSQvTdEtIQFSOEdCKPxktUVVVpOBLSXurq6gCAHqJGyGM65UPPCNFVPB4PJiYmKCkpAQCIxWKVF74R7aZQKHDnzh2IxWJ65Dwhj6HfBkI6GSsrKwBQFiSka+FyubC3t6cik5DHUDFCSCfD4XBgbW0NCwsLyGQyTYdD2hifz6fHyxPyD1SMENJJ8Xg8GldACNEJVJ4TQgghRKOoGCGEEEKIRlExQgghhBCN0ooxI48eElRWVqbhSAghhBDSXI/O20972J9WFCPl5eUAADs7Ow1HQgghhBB1lZeXw9jY+InLteJFeQqFArdv34ZEImnTe/PLyspgZ2eHgoICegFfO6I8dxzKdcegPHcMynPHaM88M8ZQXl4OGxubJm9p14qeES6XC1tb23bbvpGREf2gdwDKc8ehXHcMynPHoDx3jPbKc1M9Io/QAFZCCCGEaBQVI4QQQgjRKJ0uRgQCASIjIyEQCDQdSpdGee44lOuOQXnuGJTnjtEZ8qwVA1gJIYQQ0nXpdM8IIYQQQjSPihFCCCGEaBQVI4QQQgjRqC5fjGzevBmOjo4QCoXw9PTEb7/91mT77777Dn379oVQKISbmxuOHz/eQZFqN3XyvH37dvz73/+GqakpTE1N4evr+9TvhfxN3Z/pRw4ePAgOh4MJEya0b4BdhLp5fvDgAUJDQ2FtbQ2BQABnZ2f6+9EM6uZ5/fr1cHFxgUgkgp2dHd59913U1NR0ULTa6cyZM/D394eNjQ04HA5iYmKeuk5iYiLc3d0hEAjg5OSE6Ojo9g2SdWEHDx5kfD6f7dq1i129epWFhIQwExMTVlxc3Gj75ORkxuPx2OrVq9m1a9fY4sWLmb6+Prt8+XIHR65d1M3z66+/zjZv3swuXbrEMjMzWXBwMDM2Nma3bt3q4Mi1j7q5fiQnJ4f16NGD/fvf/2bjx4/vmGC1mLp5rq2tZUOGDGFjx45lv/76K8vJyWGJiYksPT29gyPXLurmed++fUwgELB9+/axnJwcFhcXx6ytrdm7777bwZFrl+PHj7NFixaxw4cPMwDsyJEjTba/efMmE4vFLDw8nF27do19/vnnjMfjsdjY2HaLsUsXI8OGDWOhoaHKz3K5nNnY2LBPPvmk0fYBAQFs3LhxKvM8PT3Z//3f/7VrnNpO3Tz/U319PZNIJGzPnj3tFWKX0ZJc19fXM29vb7Zjxw4WFBRExUgzqJvnLVu2sF69erG6urqOCrFLUDfPoaGhbOTIkSrzwsPDmY+PT7vG2ZU0pxj54IMPWP/+/VXmTZo0ifn5+bVbXF32Mk1dXR3S0tLg6+urnMflcuHr64tz5841us65c+dU2gOAn5/fE9uTluX5n6qqqiCTyWBmZtZeYXYJLc31smXLYGFhgbfeeqsjwtR6Lcnzjz/+CC8vL4SGhsLS0hIDBgzAxx9/DLlc3lFha52W5Nnb2xtpaWnKSzk3b97E8ePHMXbs2A6JWVdo4lyoFe+maYm7d+9CLpfD0tJSZb6lpSWuX7/e6DpFRUWNti8qKmq3OLVdS/L8TxEREbCxsWnww09UtSTXv/76K3bu3In09PQOiLBraEmeb968iV9++QVTpkzB8ePHkZWVhVmzZkEmkyEyMrIjwtY6Lcnz66+/jrt37+LZZ58FYwz19fWYOXMmFi5c2BEh64wnnQvLyspQXV0NkUjU5vvssj0jRDusXLkSBw8exJEjRyAUCjUdTpdSXl6OwMBAbN++Hebm5poOp0tTKBSwsLDAl19+CQ8PD0yaNAmLFi3C1q1bNR1al5KYmIiPP/4YX3zxBS5evIjDhw/j2LFjWL58uaZDI63UZXtGzM3NwePxUFxcrDK/uLgYVlZWja5jZWWlVnvSsjw/smbNGqxcuRInT57EM888055hdgnq5jo7Oxu5ubnw9/dXzlMoFAAAPT09SKVS9O7du32D1kIt+Zm2traGvr4+eDyecp6rqyuKiopQV1cHPp/frjFro5bkecmSJQgMDMT06dMBAG5ubqisrMSMGTOwaNGiJl9RT5rvSedCIyOjdukVAbpwzwifz4eHhwcSEhKU8xQKBRISEuDl5dXoOl5eXirtASA+Pv6J7UnL8gwAq1evxvLlyxEbG4shQ4Z0RKhaT91c9+3bF5cvX0Z6erpyeumllzBixAikp6fDzs6uI8PXGi35mfbx8UFWVpay2AOAP/74A9bW1lSIPEFL8lxVVdWg4HhUADJ6s0mb0ci5sN2GxnYCBw8eZAKBgEVHR7Nr166xGTNmMBMTE1ZUVMQYYywwMJDNnz9f2T45OZnp6emxNWvWsMzMTBYZGUm39jaDunleuXIl4/P57Pvvv2eFhYXKqby8XFOHoDXUzfU/0d00zaNunvPz85lEImFhYWFMKpWyo0ePMgsLC/bRRx9p6hC0grp5joyMZBKJhB04cIDdvHmTnThxgvXu3ZsFBARo6hC0Qnl5Obt06RK7dOkSA8DWrVvHLl26xPLy8hhjjM2fP58FBgYq2z+6tXfevHksMzOTbd68mW7tba3PP/+c2dvbMz6fz4YNG8bOnz+vXDZ8+HAWFBSk0v7bb79lzs7OjM/ns/79+7Njx451cMTaSZ08Ozg4MAANpsjIyI4PXAup+zP9OCpGmk/dPJ89e5Z5enoygUDAevXqxVasWMHq6+s7OGrto06eZTIZi4qKYr1792ZCoZDZ2dmxWbNmsfv373d84Frk1KlTjf7NfZTboKAgNnz48AbrDBo0iPH5fNarVy+2e/fudo2R3tpLCCGEEI3qsmNGCCGEEKIdqBghhBBCiEZRMUIIIYQQjaJihBBCCCEaRcUIIYQQQjSKihFCCCGEaBQVI4QQQgjRKCpGCCGEEKJRVIwQouWqqqrwyiuvwMjICBwOBw8ePICjoyPWr1/f5HocDgcxMTEdEmN7SUxMVB5zR4qOjoaJiUmrtpGbmwsOh4P09PQnttHU8RHS0brsW3sJ0RV79uxBUlISzp49C3NzcxgbGyMlJQUGBgaaDq1NPf/88xg0aNBTiyxCiPahYoQQLZednQ1XV1cMGDBAOa979+4ajKhzq6urozfpEtLJ0GUaQtqZQqHA6tWr4eTkBIFAAHt7e6xYsQIAcPnyZYwcORIikQjdunXDjBkzUFFRoVw3ODgYEyZMwJo1a2BtbY1u3bohNDQUMpkMwMPegrVr1+LMmTPgcDh4/vnnAaDBZZobN27gueeeg1AoRL9+/RAfH98gzoKCAgQEBMDExARmZmYYP348cnNzmx0LANTW1iIiIgJ2dnYQCARwcnLCzp07lcuvXLmCF154AYaGhrC0tERgYCDu3r371BwGBwfj9OnT2LBhAzgcDjgcjkpsaWlpGDJkCMRiMby9vSGVSpXLoqKiMGjQIOzYsQM9e/aEUCgEADx48ADTp09H9+7dYWRkhJEjRyIjI0O5XkZGBkaMGAGJRAIjIyN4eHggNTVVJa64uDi4urrC0NAQY8aMQWFhoXKZQqHAsmXLYGtrC4FAgEGDBiE2NrbJ4zx+/DicnZ0hEokwYsQIlWMkpCujYoSQdrZgwQKsXLkSS5YswbVr17B//35YWlqisrISfn5+MDU1RUpKCr777jucPHkSYWFhKuufOnUK2dnZOHXqFPbs2YPo6GhER0cDAA4fPoyQkBB4eXmhsLAQhw8fbrB/hUKBiRMngs/n48KFC9i6dSsiIiJU2shkMvj5+UEikSApKQnJycnKE2xdXV2zYgGAqVOn4sCBA9i4cSMyMzOxbds2GBoaAnh48h85ciQGDx6M1NRUxMbGori4GAEBAU/N4YYNG+Dl5YWQkBAUFhaisLAQdnZ2yuWLFi3C2rVrkZqaCj09Pbz55psq62dlZeHQoUM4fPiwcozGa6+9hpKSEvz8889IS0uDu7s7Ro0ahXv37gEApkyZAltbW6SkpCAtLQ3z58+Hvr6+cptVVVVYs2YNvvrqK5w5cwb5+fl4//33VWJeu3Yt1qxZg99//x1+fn546aWXcOPGjUaPsaCgABMnToS/vz/S09Mxffp0zJ8//6m5IaRLaNd3AhOi48rKyphAIGDbt29vsOzLL79kpqamrKKiQjnv2LFjjMvlsqKiIsbYw1d7Ozg4qLyK/rXXXmOTJk1Sfp47d26D1387ODiwzz77jDHGWFxcHNPT02N//vmncvnPP//MALAjR44wxhj76quvmIuLC1MoFMo2tbW1TCQSsbi4uGbFIpVKGQAWHx/faC6WL1/ORo8erTKvoKCAAWBSqbTRdR43fPhwNnfuXJV5j16NfvLkSeW8Y8eOMQCsurqaMcZYZGQk09fXZyUlJco2SUlJzMjIiNXU1Khsr3fv3mzbtm2MMcYkEgmLjo5uNJbdu3czACwrK0s5b/PmzczS0lL52cbGhq1YsUJlvaFDh7JZs2YxxhjLyclhANilS5cYY4wtWLCA9evXT6V9REQEA8Du37//pLQQ0iVQzwgh7SgzMxO1tbUYNWpUo8sGDhyoMtDUx8cHCoVC5TJD//79wePxlJ+tra1RUlKiVgx2dnawsbFRzvPy8lJpk5GRgaysLEgkEhgaGsLQ0BBmZmaoqalBdnZ2s2JJT08Hj8fD8OHDG40jIyMDp06dUm7f0NAQffv2BQCVfbTEM888oxITAJUcOTg4qIyjycjIQEVFBbp166YST05OjjKW8PBwTJ8+Hb6+vli5cmWDGMViMXr37q2y30f7LCsrw+3bt+Hj46Oyjo+PDzIzMxs9hszMTHh6eqrM++f3REhXRQNYCWlHIpGo1dt4/NIA8PCWXIVC0ertPq6iogIeHh7Yt29fg2WPn8SbiuVpx1pRUQF/f3+sWrWqwbJHBURLPR4Xh8MBAJUc/fPOooqKClhbWyMxMbHBth7dshsVFYXXX38dx44dw88//4zIyEgcPHgQL7/8coN9PtovY6xVx0GIrqKeEULaUZ8+fSASiZCQkNBgmaurKzIyMlBZWamcl5ycDC6XCxcXlzaLwdXVFQUFBSqDK8+fP6/Sxt3dHTdu3ICFhQWcnJxUJmNj42btx83NDQqFAqdPn250ubu7O65evQpHR8cG+2jObch8Ph9yubxZsTyNu7s7ioqKoKen1yAWc3NzZTtnZ2e8++67OHHiBCZOnIjdu3c3a/tGRkawsbFBcnKyyvzk5GT069ev0XVcXV3x22+/qcz75/dESFdFxQgh7UgoFCIiIgIffPAB9u7di+zsbJw/fx47d+7ElClTIBQKERQUhCtXruDUqVOYPXs2AgMDYWlp2WYx+Pr6wtnZGUFBQcjIyEBSUhIWLVqk0mbKlCkwNzfH+PHjkZSUhJycHCQmJmLOnDm4detWs/bj6OiIoKAgvPnmm4iJiVFu49tvvwUAhIaG4t69e5g8eTJSUlKQnZ2NuLg4TJs2rVlFhqOjIy5cuIDc3FzcvXu3Vb1Dvr6+8PLywoQJE3DixAnk5ubi7NmzWLRoEVJTU1FdXY2wsDAkJiYiLy8PycnJSElJgaura7P3MW/ePKxatQrffPMNpFIp5s+fj/T0dMydO7fR9jNnzsSNGzcwb948SKVS7N+/X2VwMCFdGRUjhLSzJUuW4L333sPSpUvh6uqKSZMmoaSkBGKxGHFxcbh37x6GDh2KV199FaNGjcKmTZvadP9cLhdHjhxBdXU1hg0bhunTpytvLX5ELBbjzJkzsLe3x8SJE+Hq6oq33noLNTU1MDIyava+tmzZgldffRWzZs1C3759ERISouz5edRTIJfLMXr0aLi5ueGdd96BiYkJuNyn/yl6//33wePx0K9fP3Tv3h35+fnqJeIxHA4Hx48fx3PPPYdp06bB2dkZ//3vf5GXlwdLS0vweDz89ddfmDp1KpydnREQEIAXXngBH374YbP3MWfOHISHh+O9996Dm5sbYmNj8eOPP6JPnz6Ntre3t8ehQ4cQExODgQMHYuvWrfj4449bfIyEaBMOo4uchBBCCNEg6hkhhBBCiEZRMUII0bj8/HyVW2z/ObXmkgwhpPOjyzSEEI2rr69v8tHnjo6O0NOjJxEQ0lVRMUIIIYQQjaLLNIQQQgjRKCpGCCGEEKJRVIwQQgghRKOoGCGEEEKIRlExQgghhBCNomKEEEIIIRpFxQghhBBCNIqKEUIIIYRo1P8D7gyz2mh7sz4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "to_plot = pr50[pr50[\"category_id\"] == 2].set_index(\"confidence_threshold\")\n", "\n", @@ -2278,7 +698,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "67ce223f", "metadata": { "ExecuteTime": { @@ -2286,113 +706,7 @@ "start_time": "2023-06-22T09:38:46.459873Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing PR curves for 4 IoU values and 1 prediction set\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4f31f9aae8f2458e8b9ed4bf7fceb3ec", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/4 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
indexcategory_idbox_heightiou_thresholdmodelAPcategory_str
02241(0.859, 12.196]0.5predictions0.185249person
12161(12.196, 18.645]0.5predictions0.391076person
22081(18.645, 25.596]0.5predictions0.509320person
32031(25.596, 33.533]0.5predictions0.565361person
41831(33.533, 43.947]0.5predictions0.661096person
51701(43.947, 59.039]0.5predictions0.733885person
61341(59.039, 83.073]0.5predictions0.776807person
71241(83.073, 124.26]0.5predictions0.826248person
81331(124.26, 209.234]0.5predictions0.855516person
91281(209.234, 773.969]0.5predictions0.911366person
\n", - "" - ], - "text/plain": [ - " index category_id box_height iou_threshold model \\\n", - "0 224 1 (0.859, 12.196] 0.5 predictions \n", - "1 216 1 (12.196, 18.645] 0.5 predictions \n", - "2 208 1 (18.645, 25.596] 0.5 predictions \n", - "3 203 1 (25.596, 33.533] 0.5 predictions \n", - "4 183 1 (33.533, 43.947] 0.5 predictions \n", - "5 170 1 (43.947, 59.039] 0.5 predictions \n", - "6 134 1 (59.039, 83.073] 0.5 predictions \n", - "7 124 1 (83.073, 124.26] 0.5 predictions \n", - "8 133 1 (124.26, 209.234] 0.5 predictions \n", - "9 128 1 (209.234, 773.969] 0.5 predictions \n", - "\n", - " AP category_str \n", - "0 0.185249 person \n", - "1 0.391076 person \n", - "2 0.509320 person \n", - "3 0.565361 person \n", - "4 0.661096 person \n", - "5 0.733885 person \n", - "6 0.776807 person \n", - "7 0.826248 person \n", - "8 0.855516 person \n", - "9 0.911366 person " - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "ap[(ap[\"iou_threshold\"] == 0.5) & (ap[\"category_id\"] == 1)].sort_values(\n", " by=\"AP\"\n", @@ -2600,7 +748,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "8107789c", "metadata": { "ExecuteTime": { @@ -2608,212 +756,7 @@ "start_time": "2023-06-22T09:38:47.210284Z" } }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
category_idbox_heightprecisionrecallconfidence_thresholdf1_scoreiou_thresholdmodelcategory_str
253692(12.196, 18.645]1.0000000.0000001.0000000.0000000.5predictionsvehicle
253702(12.196, 18.645]1.0000000.1544890.8302770.2676290.5predictionsvehicle
253712(12.196, 18.645]0.9887640.1544890.8300620.2672220.5predictionsvehicle
253722(12.196, 18.645]0.9887640.1837160.7987890.3098570.5predictionsvehicle
253732(12.196, 18.645]0.9795920.1837160.7971680.3094030.5predictionsvehicle
..............................
256042(12.196, 18.645]0.2502060.6346560.0522450.3589100.5predictionsvehicle
256052(12.196, 18.645]0.2489800.6346560.0520170.3576460.5predictionsvehicle
256062(12.196, 18.645]0.2489800.6367430.0517000.3579770.5predictionsvehicle
256072(12.196, 18.645]0.0000000.6367430.0000000.0000000.5predictionsvehicle
256082(12.196, 18.645]0.0000001.0000000.0000000.0000000.5predictionsvehicle
\n", - "

240 rows × 9 columns

\n", - "
" - ], - "text/plain": [ - " category_id box_height precision recall \\\n", - "25369 2 (12.196, 18.645] 1.000000 0.000000 \n", - "25370 2 (12.196, 18.645] 1.000000 0.154489 \n", - "25371 2 (12.196, 18.645] 0.988764 0.154489 \n", - "25372 2 (12.196, 18.645] 0.988764 0.183716 \n", - "25373 2 (12.196, 18.645] 0.979592 0.183716 \n", - "... ... ... ... ... \n", - "25604 2 (12.196, 18.645] 0.250206 0.634656 \n", - "25605 2 (12.196, 18.645] 0.248980 0.634656 \n", - "25606 2 (12.196, 18.645] 0.248980 0.636743 \n", - "25607 2 (12.196, 18.645] 0.000000 0.636743 \n", - "25608 2 (12.196, 18.645] 0.000000 1.000000 \n", - "\n", - " confidence_threshold f1_score iou_threshold model category_str \n", - "25369 1.000000 0.000000 0.5 predictions vehicle \n", - "25370 0.830277 0.267629 0.5 predictions vehicle \n", - "25371 0.830062 0.267222 0.5 predictions vehicle \n", - "25372 0.798789 0.309857 0.5 predictions vehicle \n", - "25373 0.797168 0.309403 0.5 predictions vehicle \n", - "... ... ... ... ... ... \n", - "25604 0.052245 0.358910 0.5 predictions vehicle \n", - "25605 0.052017 0.357646 0.5 predictions vehicle \n", - "25606 0.051700 0.357977 0.5 predictions vehicle \n", - "25607 0.000000 0.000000 0.5 predictions vehicle \n", - "25608 0.000000 0.000000 0.5 predictions vehicle \n", - "\n", - "[240 rows x 9 columns]" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "pr[\n", " (pr[\"category_id\"] == 2)\n", @@ -2835,7 +778,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "id": "69d80738", "metadata": { "ExecuteTime": { @@ -2843,18 +786,7 @@ "start_time": "2023-06-22T09:38:47.227247Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAHpCAYAAADasmf6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2W0lEQVR4nOydeVhU5duA7zMwMwwgiCKCiiDuuyDmWmmbqZmVpZlLWbmUu1m/TzM1TcxSs6zUck1tcS3LrdQ0zX3BDcMNcQMVUZBFBpj5/hjnMMO+zAa893Wdy3Pec877PmecYZ55Vkmv1+sRCAQCgUAgEAiKgMLeAggEAoFAIBAISh9CiRQIBAKBQCAQFBmhRAoEAoFAIBAIioxQIgUCgUAgEAgERUYokQKBQCAQCASCIiOUSIFAIBAIBAJBkRFKpEAgEAgEAoGgyJQ7JVKv15OYmIgojykQCAQCgUBQfMqdEnn//n08PT25f/++vUURCAQCgUAgKLWUOyVSIBAIBAKBQFByhBIpEAgEAoFAICgyQokUCAQCgUAgEBQZoUQKBAKBQCAQCIqMUCIFAoFAIBAIBEVGKJECgUAgEAgEgiIjlEiBQCAQCAQCQZERSqRAIBAIBAKBoMgIJVIgEAgEAoFAUGSEEikQCAQCgUAgKDJCiRQIBAKBQCAQFBmhRAoEAoFAIBAIioxQIgUCgUAgEAgERUYokQKBQCAQCASCIiOUSIFAIBAIBAJBkbGrEvnPP//QvXt3qlWrhiRJ/PrrrwXes2vXLkJCQlCr1dSpU4dly5ZZXU6BQCAQCAQCgTnO9lw8OTmZ5s2b8+abb/LSSy8VeH1UVBTdunVj6NChrFq1ih07dvD222/j5+dH586dbSBxFulaLfHR1wFwcXZCcnYBScp5oVKBQqNBynbOWaXIMVZaUCqVpVZ2gUAgEAgElkHS6/V6ewsBIEkSGzZs4IUXXsjzmv/9739s2rSJ06dPy2Ovvvoq9+7dY+vWrbnek5aWRlpamnycmJiIv78/CQkJeHh4FFveKb/N4pCyUrHvN8U7M47OyX+iwCH+KwrExUVD7aCg3JXmEqOnktfjVKr0hBXmzkKpdLapIqxQqFAoVDZbTyAQCAQCa2NXS2RR2b9/P0899ZTZWOfOnRk9enSe98yYMYOPP/7Y4rJc1es4pgmx2HwBbucJ5JLF5nMlFR9uWmy+7NyOO2u9uW9vstrc9sTPtye1a48DLKC8ShIqZWVhERYIBAKB3ShVSmRsbCxVq1Y1G6tatSqJiYmkpqai0Why3DN+/HjGjh0rHxstkSWltZcPSdd+RwK8uG8YdK0sW+ckFFRJ9Tasee8cD/wqolco0GVmICWqAahY1ZXl6tYAfC8NK7FMudHe5W6+54uqgty7d5eMjIziCwRIeVlcJT1urgkA3KcCbfi3ROs4HLHJEFu0HzRe3KUO5wBwIwkV6WbnK1Z8pMhi6PUZqNV++Pg8C4DS2RMvrzZIklOR5xIIBAJB+aVUKZHFQa1Wo1arLT5vv7b9CJu0DQ0POOvypmFwwg1QuQGg02ZyY9K+h1fXhuhcJjkLHoFp/BygtKgjO84lK1/q3wdeFpwZcLHwfPkQSSObrVVaqKK/iQ83qUukYeAeZOIM6PHjRoH3p6PCj+tANNxaaHbOVRNIrcDhqF18cZIkQjxcUStEAQeBQCAQ5E6pUiJ9fX25edPcRXvz5k08PDxytULaE0mpQOXvhvZqcr7XvX5Zy+uXtRZd+4EC/vFxJrUAw5LeEm5V41yFnKogZdmzay22JtzHzUmBVFz5FJC/jVWPTpefJHqioi7z4MGD4q1fCFxcXKhVK5D85NxzL4kUnQ69HjIfjt2WqnKbqpyhmeWFegD8lwxclIcU6HK5UCK73EXxqhfmUj2QqYdWHm6k6XSk6nS0qegun7+Zlk6IhyvuzoY3uVanp49fJbyUpepPmkAgEJRqStVf3LZt27J582azsb/++ou2bdvaSaK8kSQJ73dacKX/QFLDw+VxPRDefASJHkFWW1uXcRN9TP5ubICMB3tAXzJFqd4j7fCqVqNEczgrlPgdexim8N05nizRbKD0c8NnRDCSovhKsr5pEOnp6QVfmNu9ej1Lly4lNjY2/wuP78n39Gsm+6nOKq5WqsrVSj6o07N+dGQqFFz3qoJnSpI8plarqVGjRo54yX/uJlFLo0JhOq4Hnf4BWm0cusxUAOKowgPJ8KNMV9gqYFbKCTucmPUj7HxKmtm5P+8kmh1PvXgD6aEoGoVEFZXSTLyrD7S84FOx0GtfSk3jyUoeSBLo9VDB2Yl3a/oU4ykEAoGgbGLX7OykpCQuXLgAQHBwMHPmzKFTp05UqlSJmjVrMn78eK5fv84PP/wAGEr8NGnShGHDhvHmm2+yc+dORo4cyaZNmwpd4icxMRFPT88SZ2enaDNolI8724her0efmiofn7t7nn6b+lJV7cf659cXe/2SoHuQysUnnybKuwKxTepkWST1kHQvLd97nZwVuHqqSLx9y6IyPVf/Hdy0xf//yI6ztwafEcEFmr0kpXVKLen1+lyV0EIrmHbAyUmLl1cMSHrSJSfUFX1o164dkgROTk6kpkYTH7+HpORIs/tM/4BIkoqqPl3NzmdmJFPRqxUqlTcqVVXc3GoXKEtUahp30zNI1+s5lpBCRWWWWf1s8gNSM3W4OhkU3P33krilLVmcblGopHQiPj2T9wKr0tu3Et4qpSyLQCAQlCfsqkTu2rWLTp065Rh//fXXWbZsGW+88QaXL19m165dZveMGTOGiIgIatSowUcffcQbb7xR6DVtrURmJzI+kpd/f5kqmirs7LWz2OuXBF1KCpEhLXOM64FjwWNJ8Mz/S37wl48Tfz2K07u2o9fl5u4sPPHXr3I14hSSpECBE0EhodRo2KTQ90sKBUHBrajgXQX0cGvecTLiUgu+8SGqAA+qDG1m0yznvBRMS8xrLQXV19eXgQMHIkkSen0mkIIkSTxIu8Hhwz2KNae391P4VOmMJBkcIh4ezXBxqVasUkjpOj33MjLI0Ou5/iA9h/30dFIqafmGMJhz4n4Krk4KnB6+L5Zej8v3eo1CwaNe7jhLEk6ShLMEsdp0PqjlR303F1SShFIhoZQkc0uwQCAQlGIcpk6krRBKpEHZiO7bj9Rjx3KeA3TZvsTr/ruXTCc1Sz/YC8DAzzqgVBctkzev4uqxF8/z00fvo8ssmSWpyzBjBr6E1xF3Mm8V3k3vN7E1kirn81jLSmlNLKGgFkYZNVcq9SQlneHu3T1k92snJ5/jftJplMqKJCWdKbQMnp4hVHBvnGM8U5dKrcBhaDQ1Cz2XpYjTZnAnPYPo1DQGnIpCo1CQWswfUQ3cXJjfKAAvpTMVnBS4OYvMeIFAUPoQSmQxKakSqXZS0zkwbxe8UqHktYavUc+rXrFlzI/sbvbs6FJTOd++A/BQiVSoWDT+cLHX86vtyYvjQnJVyh4kJxEXfZnwvzYXSWmLPnmc1PuJOcZrNGzCKxOm53uvXptJzCcH871G6edGlaHNkUpxd6HiYlRGLWvd1KNWJxMQkEq9evHo0aGQnNHp0ki8f7xIM9WqNZqgWiMsIFPJSM7IZOPte0gYEoEy9Hoy9Homnr9e5DDRNp5ujAyoirMkoZAMkRhOkoQCQzxmoEaNSiHJ1lGBQCCwN0KJLCbFVSJvJN2g87rCxW92CezCZ49/VmwZS0J2l7ceCO/wEXedfYs9p6kF0xJtHzO0WnYuXUBi3G0A0pKTiL14HrWrGw06dMz/Zj3UvFYL1wf5/38BPFCnEl0jCtBTo0Fj6rZul+Oa0mi1LCym1k3rucx1ODunU6nyNTwq3EabbkjscXd3o0WLFkhI3Es4SGLiUbO7Knk9DpITTgpnkBRIkgIJhaHmpSSh02mp6NmS6tX7oVDYJ48wU69Hq9Mb4jsTk3n1hKGpgLMEGcX466sAdCb3/xZch9YmmesCgUBgK4QSWUyKq0QC7Lq6i0sJeXenOXX7FNuvbKeTfye+euKrYstYEnJzeeuB2vsPoXB1LfQ86WmZshvclPwsk8XldnQUP3xQNOuUk6TMMSYBT/j1xUtdNecNeWC0WiKVbYUSiu8yt4QC6uYWT0jLonc0cndrQFDtsVTxLmnuv2XR6/WsuHGH2Zdjqax0RiFJZOr16ACdXo9ODxdT8092M7KiaS1aV3THQ7jGBQKBjRBKZDEpiRJZEGvPreXj/R/bVYmELJe3qWu7/rGjRVIi9Xo9G2YdI+ZiQo5zhY2tLKzVUq/Xc3bP39y7GVNo+fKeDCSdRNXIqqhSi5boUZ4UyqJSWAU0P4XTySmdypWvGF5f9EiSHiS9oROSyb9qVSo1/CNy3O/n1wc3t1qoVd7o9To8PJrj6lrLof+f0nV6tDodWr2eBzodl1LS+PD8df5Lzj32t6WHK719K9G3WmXh/hYIBFZDKJHFpDwokUZMXdtFVSLBoBBkaA0JCHlZJvPDGlbLwqLX69GnG2SPv36Vm5cucvnEUc4f2o+TsxNKtYYOFV+korJKrvfbI/u7rFAYhbMg66aLSyIBASfxqRpV4HoqlQ9a7S1cXYNo0vhLKlRw/I5JaTodLfdFEJeed2JaU3cNXat4kqbT08OnInVcXVCWoIaqQCAQGClVxcYFpRNJksxiIf1qe+ZqmcyLmIsJpKdlonKx/dtVkiQ5c9u7ViDetQLReHnw36E9ZKano01/wLakJThJSiSga90haNKzfkhooxPRJacjqZyEVbKISJKESlWwFXjIkCF5KptGJTMyMgZ//9NU8IhDrU4mPd0FlSoFN7es96FWa6h9mpJyiUOHu1O/3lSqVettt1jKwqBWKDjdwVASK0OnZ1XMHZZdj+OsiYXyVFIqp5IMSXRzo7M6fn1arwavV6ss3pMCgaDYCEtkMSm3lsijR1C4lewZTS2T+WFqtfT00dBrQiuUaieH+NJLuhtPWkoymenp/DLl/9CmpsjnnCQlGk0FulUdZHbPPe0tdtxYSd3W7XPMVzWoNsFdns9zPaGAFp+CEoOcnR9QxUdJjx5PEHNjBfF3d5vd7+xcgSaNv6RSpcfksdLwf7H/XhIrb9yhktKJjbfucTOPguwBLipi0tLJRM/cBjVp6OaCv4sKT9FCUiAQFIBQIotJeVUi1Q0bUmv9Opt8ier1elaHHSbualZLP29/d158r+iubUtkg+dH8r27LBjS32zsCb++VHEpWUtII6ZxlsVBKKFZmJYvWrhwIfHx8Wbnvb2jadjonwLnqeL9NBUrtqJatd44O5eO7OjUTB1Lr8cx9eKNQl1/qE1DamrUVpZKIBCUVoQSWUzKkxKp1+uJeqknaWfPAoa6kU6VKtlGkdTpWT3DXJEsDsVVPqFoCmjyvbukpxmyafV6vaEGix5SV19Dd7twWbbWoDzXvMwPnU7Hd999l2tMpUqdjH+NM1SrHpnLneY0afwVVat2s4aIViMxI5Po1DRi0tIZf+4a19PSCdSouJyqNbvu5+ZBPO5VQbxvBAJBDoQSWUzKkxIJoEtOJrJlqHysCQkhYNVKm1kk09My2TD7WImVyeJgicQe0wSd7GycPZ3LJ3IW2x6xfA3oIW7hSdJjkou9tilFsWiWF+tlbgk8plZKSdLh7e3KW2+9hV6fxu3bf5KQeJxbtzab3dOgQRjVq/W2pehWISVTR4t9p0nMMH+/jg2syoBq3viqc5bFEggE5ROhRBYTWyiRwT7BjAjOu+5hw0oNcVfZxo2WW93I4mRql1SGwsRSZr/HEsrnoLmPWS2xR6/XE3c1mgNrf+LKmZM8SLpvdr5yjZq07PwCfnXroVS7yONqV1dUrgW83/Rwe8GJYimhxXGhlyXFU6fT8fXXX8vu7kqVKjFkyBBDophSiSRJxMZu5EzEGPmeoKCx+Nd4A2fnkv8dsDeLrt1m4vnrOcbXt6hDO6/S4b4XCATWRSiRxcSaSuT68+uZvG9ygdc1rNSQ1d1Xl3i9wqLX68mMjzdrh2grt3ZJKI7yCeaJPd7+7vSa0Mrqz6rX6ZjTJ+8EG1OcnJ3pM20WVYPq5D+nXo9eqyu2MlkUyprimV2RNOLr68vgwYNRKBRcujSXqMvzctzr4dGCJo3notH420pci5Op17M7/j5zo29yKMH8vTOvYU1e8a1kJ8kEAoEjIJTIYmJNJTI2OZbxe8YT/yA+1/PaTC3Xkq7hofLg3z7/lni9opC9HaIt3dq2JntiT37F0S2ZuKPX60m9n0j6gwfs+Wk5V06fIDUxAWdVVoJDhjYrvrJNzz64VfQCQJKgZtMWePlWy3XevFzq5hcW33pZHPJSPB1FucwrbtLUMnnl6kKio+fmer+391M0a7rAIZ6lJHxy8QZfX7mVYzy2UwvbCyMQCBwCoUQWE2sqkQURlRDF878+bxclMle3tgXK/jgq2gcZfD+64ExdWxdE3/L1bCL2/J3n+S7D36PuI23N3N9FodAKp3yD5RVPRyrUXlBGNxisk2+80Z+7d/8k4uy4HOfr1/sYX98XS72re+TZaFbH3jUb+6phTXpW9RLdcQSCcoZQIotJeVUiIadbWxUQQK316wxmMEDSaBzii98S5Ne2MTvZLZXWLCuUfO8uB39dzZ1rV1E/jEtNuhtPzLn/zK6r3qARTs7OtOrxCoHNgq0iixFrKJ7VPm6HohCtMW1JfhndAP7+/gwcOJDbcds4fXp4rte4u9XH0zMEvT4TV9da1Kz5FpLkWM+ZH3q9Hr9dJ3KM9/CpyMLGgbYXSCAQ2AWhRBYTR1AinSQnmng34e6Du7ze+PVcFRYFCjpU70BVt6oWlSF72R9T1A0bErhyhaxUQulWLPOLqcyvjaO3vzu9xrdCsmGLudO7trNt/txcz1Ws6kelGv64V6yEV7XqAGRmZOBXpz6unp6Ga3yr4ay0XfZtboqnXptJzCcHAXD21lB1bEubvoaFoaAC5uPGjcPNzQ1JkoiO/o4LF2fmO5+TkxtNGn+Ju3t9lMrKODk5fm3G2LR0Xgm/wPmUnKWrYjo2L7Wfd4FAUHiEEllM7KlEJqQl0HF1RzJ0effLNaW1X2sWPbPI4nLodTqier6cqyKZnbIaO1mQpdLYaSf7c1u7+HnCrVhunPuPuKvRHPp1TZHufXrQcJo99ayVJCsYvV7Pra+OyxZKR1UkTdHr9SQnJzNr1ix5zNfXl4EDB6JSqZAkCZ0unaTkSOJu70ChUJGRkUj0le/ynFOprEzTpt/gVbGVLR6h2Oj1erbGJTDw9OUc53r5evFVwwDbCyUQCGyCUCKLiT2VSDBYIy8lXGJb1DYeZD5AyiUdNv5BPOG3w1E7qannVU8ed5KceKPJGzxZ88kSy6HX69GnphoPuNyvf55Kpa1LAtmK7JZKY0JOwq3UPO+xZQxlSmIC5/bv5X58HLEXz8tJOPdibhBzIRKNhyfpqalkpGcVmW7zUm/a9+6f15RWR6/Tc3POUTLiDK+hs7cGnxHBIDlOwk129Ho9S5Ys4erVq2bjppnc2XmQFst//33InTu7cHb2ICMjMcc1T3S64JDPmxu+f4fnGBOJNwJB2UUokcUkVyVy3AVQ2UFJUrqauY6NGN3eudGyakuWPbvM4qKYKZWALjXVrCSQQqMp1a7twlKYTjvWrD1ZHKJPhbP2k4lmY9XqNSS4S3dqNm6G0sWl2Ik6xSG7ImnEkRJusqPX69FqtTnc27nVmMwNnS6D+Pg9XL22nPj4PQC4uzekVeh6FAqVTZ6hpNx4oOVQQjJDI6LlMeHeFgjKJkKJLCa5KpH2wr8NvLk1V0UyMj6SmOQY+Tj8VjiLTy8mwCOAIc2G4K50p0P1DiidrBMHl70kEJRd13Z2coulNI2hzO7qtraLuzDcunyJFf8bmes5pdqFvmFzqFyjps3k0ev03Jp3PEfyjd/E1kgqJ4e2Smq12lwzubO7ufNix87a8r5XxTaEhKyymryWJrfEm4HVvZlRzzK95AUCgWMglMhiYlQiQc/FOl/hdO2g5YQsDoV0pe+6uosRO8274ExoPYE+DfpYRazcSgJBllXSlHJhocxWe9IUW5cJygtdZiYxF84Rvu0P/vt3d47zY3/+3aYyGpNvTBNujGSvMeloSmV+mdz5ubkBkpLPc/BgVmzqY48eRamsaC1RLY5Or6daNkVyVEBVxgf52UkigUBgaYQSWUyylEiI+PgZXCVtAXdYAW0KzHrYrcTUlZ6HexsgJT2FGYdmcDP5JlGJUcQmx1LZpTI+rj4FLvdsrWd5s0nRra5GF7epazs3yo2FMh9Xt6O5uI3sWDKf8G2bcowHhbQi9X4iwZ2fo2rtulSqZj1Lk16v5/aCk2ijc8YNGnFEpdK0xmRubu7hw4fnqUg+SIvl33/by8f+/m/i5/sC7u6N7P5chUGv13M6KZWnj5yTx0SMpEBQdhBKZDExUyKndsZVZYcvfm0yhOXsTJKfe9uUZaeXMfvo7EIvV0FZgX2v7SuqlDJ5WSVNKavJN9kxdXXn5+I2Ym9Xd2HbMY5YthqVxnr/f3JJoEIWN3e0+Mnc3NwFKZIHDj5LcvL5HONt2+zE1bV0ZD4Pj4hm7U1DgfJ3/KswuU51O0skEAgsgVAii4lDKJF6PSx5Fq4eyHmuEO7tTF0mJ26fIDUj7yxigNupt/no349wdXblYN+Sue2zJ96AefJNeVEiTcnPxW3EHjUncyP53l3SHzzgemQEOl0mFw7tJy0lmev/RcjXaDw8ad+rL82f7mpVWcxqTOajVPpNbI3CLe9kFnuQvSe3r6+vnHiTHb1eT+S5yVy/njMm0s/vFRo1/NTq8paUTL2e6iau7esdm4vuNgJBGUAokcXEIZRIMCiS6SmG/dzc2/m4tgvL1ftX6bq+q0WUyNwwTb6p++9enCpVcqgvfFtQmGxuTx8Nfae0sbsimRu/fj6Ni0fM3xtdR75Pw/aP20wGU6Uye/ykqZvbEVzckFORNC1Qnh8nT73D7dt/yseurrVwda1Nk8ZfOXSR8iXXbjPh/HUA2lZ0Y0NwXTtLJBAISopQIouJwyiRpuTm3i6kazs/jEqks8KZt5q8BUCNCjXoUbuHRb6Ms2dwl5fYyOzkls2dveak0d2tVDs53OtzPz6OG5Fn+WOuoTtL9QaNefXj/Du1WIv84ieVfm74jAh2CGU8LS2NGTNmyMcFJdsYefDgBv/ue9RsLKjWaGrVGpHHHY6BaR3J6MeboS7gOQUCgWMjPsFlCaWrQWk05eqBLEtlMdE4G7KoM3QZLDy5kIUnF/LRvx8ReTeyRPMakTQaNCEh8nHqsWNkxsejS0mhPP3GkSQJpdrJbFO5ONN3Shs8fQz/Bwm3Uvl+9D+sDjuM9kEG6WmZBW62eg0rVPKmfttHeertdwG4/t8Zku7GF3CXdZAkiSpDm1Ht43Yo/czDOtJjkrk55yh6nf3fWyqVCn9/f/k4NjaWr7/+mrS0tHz/31xcqvHYo0dpFbpBHrsUNZf7989YVd6Ssjkky/oYsPskKZlF6LUuEAgcDmGJLCYOaYmELPe2qWvbAp10NpzfwNl4QyeaPy79wX3tffzc/PB18+WT9p9Q06NktQP1ej2Z8fE5srfLq1UyO4Vxd+eFreMpL588zrrpH8nHkqRA5aqhQiVvXp36OWobx7yaJuPcmnfcrAuOI7RTzKumZGHrSd66tZVTp4fJx47e4cbUGjkxyI/hAVXtJ4xAICgRwhJZ1pAkg8Jo2jnHAr8TXqz7IhNaT2BC6wkE+wQDEJMcw/Fbx1l+ZjkHYg5wOPYwx24eI/xWOKfjThOVEFUEsSWcKlUys0iCuVXSuJWz3z0ASAqJXhNaMWjuY3j7uxfp3rirSayacsBmlreajZtRs2kL+Viv15GWnEzc1WjCt/1hExlMkSQJhcoJhdqJqmNb4uz90LIel8qtecft/n6SJAm1Ws3w4cPx9fWVx2NjY5kxYwZLlizJV0Yfn2fx8+0pH+/8uw5xcX/b/bny4nrH5vK+i5P4ChIISjPCEllMHNYSacQ0PtK3KQzZU+IEGyMPMh5w5s4Zvj/5Pf/e+LfA6xtVbpTv+eeCnqN/I0Of5sLUlFQ3bEitdWuRymk8VW6xk3ldZxpP6e3vnmv5IGuh02Vy98YNMjPS5S44LZ97kY7937LJ+nmRvZ2isfsN2D/pJq+2iRMmTEClyrvtYWZmKrt2N8kx3qH9ftTqgmvA2pohZy7z2617TK5djXdqOp58AoGgcDiY5iOwGEpXg/IYe8qwpaeU2KVtxMXZhZZVW0IzSMlIITUjlUx9Jpm6TPnfa0nX5Osj7kTkM5vhfGR8JI29G9OnQR8kV1c5TjK3mpJpZ89yqUtXaq1fZ7jWgV131sAYO1kY+k5pw6opB0i4lUrc1SQytLpC31tSFAonKtcwxPu1er4nhzeu4+gfG/CtXZcG7R6ziQy5ISkkfEYEc2OyoeZp9ixueybdGK2SQ4YMITk5mVmzZgEUaFV0ctLwRKcLXLg4kytXvpfHT5x8m0dabbSqzMUh/aFV/GBCEu8glEiBoLQiLJHFxOEtkQBpSTDjYVHfcRfAzdti1siC0Ol1nLx9kvva+3leE5cax6R9k8zGgjyDqKKpwgt1X6BbrW7mNSX1eqJe6ok2OloeUjdsSODKFWbPVR7aJxYF7YMMvh/9D2C/jjjHt/7OzqUL5eOxP220qyU5v+xtZ28NPiOC7V4OSKvVEhYWBhRckDw7pn23Oz5+BicnF6vIWFz6nLjI3/H3CfFwZXPLevYWRyAQFBOhRBaTUqFEZi/5Y4FyP5bmn2v/cOHeBb44+oXZeM0KNdn0Us42e3qdjqieL5N29myec4pkHHPS0zL5bpShB7ZpRxxbdsHR6TI5uX0bOxZ/K4/1n/kVPoFBNlk/N7IXKzdNujFirC8p2aFjkF6vZ+HChbJbuyiK5M2bmzh9ZqR8/Nijx1Eqi//3ztJ8EHmVH27cAUQbRIGgNCOUyGJSKpTI3DraWCBT2xrEJscSfiucK/evMO/4PKq5VWPTS5uQkHBSmLtf9Xo9+pQULvfrn6cyWfffvSg0mkKtXdYtl3l1xLFHF5zZvZ8zl6FmILqMDGoFh9JxwNs2kyM39Do9t+Ydz7Xrjb3aJxals40per2OnX+bF/P29X2RRg0/d4j3+trYeIafvYKbk4KLjzWztzgCgaCYCCWymJQKJRIMimRynEXL/ViTU7dP8drm1+RjlULFtPbT6BqUs4Ve9haK+SXj5Ed2l3hZVCrzKhFk6y44ep2OzV/P5r9/d+c4N/jbZVSo7G0TOfIiv97c9mqfmF2RLCjJxpTDh18k8f5JszFHKAF0NCGZbscM/cBvdGyOoox93gSC8kL5TG8tT0iSxcv9WJMAzwC8NVmKhFanZX/M/lyvlSQJhaurvOVWIqgwpJ09S2TLUCJDWhIZ0pLovv0ctjxKcTGWCBr85eMMmvuYWfFyW5b/kRQKug5/jz7TPufliZ/w4v8my+e+e/cNu7/upuWAfEYG4zextXwu5pOD3F5w0uYyKhQKhgwZIh8XZf1WrTYQEvKz2djOv+tYTLbiUlOTpQQ7QM13gUBQTIQSWd5Y+qxDK5IeKg/+fPlP9r66l6HNhxbpXkmSCFi1kvrHjhZuO3oEdcOGOeZJPXbMPKGnjGDM6s6tC86qKQfkDjjWVpIkhYJq9RoS0LQFQSGt8KpWQz4359XuJN+7a9X1C4skSSjclKgCsjwW2ujErDhKG8tiZOHCheh0hZfBq2IrnnziotnYjp217aqwK02e53zKA7vJIRAISoZQIssDxnI/kFXux4FRKpR4qj1xKUZGaXbrZL6bmxu11q+Tlcq6/+7NmsiBFW1LICmkXNspfjdqN6vDDtu0JeDAOfPNjhcM6c8Xr73A6V3bbSZDXhjbJ5paJLHDW0OpVMqFyOPj4wvVGjE7nTr+Z3Z87vxUi8pYFDyds+Kco1O1dpNDIBCUDKFElgckCQZuzTrWppQqJele2j3upN6xytxmSqdJIs7lfv3t7lq1NkZFMnsHnLirSayecdhmzy9JEu/98gd1W7eTx3SZGWybP5f9636yiQz5IUmSXIwcDLGStn5vSJLE4MGDqVSpEmBQJGfMmMHChQsLrUwqFEqe6HRePr527QeuX7fP6ytJEqEehjCbB0WwqgoEAsdCKJHlBdPA9Vl1DFnbDq4kGV14u67u4qm1T3E96bp119NoZPd22tmz6FMc22JrCfKKlYy7mkTq/XSbKkvPj53AmB9/49l3x8hjp//+i+2L53Pot7XodJk2kyU7klKB0s+QkJYek4wu2bavDRhiI4vbGtGIJClo2ybLwvtf5ETi4v62irwFcT/ToDwOjYgu4EqBQOCoCCWyvKB0NdSJNHL1gMO7tTtU70Btz9o4SU5k6DJYd26dVdeTJMmQpf2QqJd6oktOLvN9u01jJXtNaCWPL/1gLxtmHbPpMyucnGj8+JN0H/N/ACTevsWJPzex58dlxJyLtJkc2TG4tbN6Psd8cpBbXx1HZ4MYUlOMSTbjx483UyavXr2KVls4t7Cray2aNP5SPj5x0j6llWLShBtbICjtCCWyvCBJhkLj4y5kjTm4QlTPqx6/vvArvm6GL8ttl7dZfU3J1VW2Rmqjo82ytstq5rYpSrUTfrU95eOYiwmkp9neAhjUsjVPvvkObV/ug6tnRQDS0+ybgCGpFGZJNukxydyYvI9bXx23aQypaWvEcePGyeNFSbipUqUzNWsOko+vXF1qcTkL4oemWYXmM8vwZ0ogKMsIJbI8kb3cz8LHDK0RtcmW3yz4pfBW07cAQ89uayNJErXWrc01axseZm6XYTe3JEm8OC6EgZ9l1dvcMNu21kgAZ6WSFp270e6VvrhV9AIgNSnvFpq2wJhkU+3jdrJrGwzK5K15x+0SJ+nm5pYj4aYwiqRCoSSo1ij5+Pz5T6wmZ140dMv6PIu4SIGgdOKgFbIFVsOYqR17CuIvZvXWtjQWbLFY3d0g47m759gRvYMnA54s8Zz5ISkU1Fq/Ls9C5lEv9aTW+nVIrq52L9psDSRJQlNBibe/O3FXk4i7mkSGVodS7VTwzdbgoXK2+avPadDuMbu+5pIkIT2sIanX6uRWiekxyei1OiQbv0bGhBtjMXKjIlmY9ohOThpatFhOePjrAFy6NJegoNE2kNqAykS+W2kZ1HK10/tLIBAUG2GJLG9IEgz+J6vkj7WwYMxlRXVFef/Tw59aZM6CyK2QeXY3t2nMZFlzcUuSxIvvFb1wuzVo9NgT8v79O7ftKEkWkiQZCpKPCJbHbs2zrVvbiDHhxjRzu7AWyUpe7eX9qMvz+GdPq3yutiwap6yvn8OJOVtNCgQCx0dYIssjCgUM2WOdxBptSlaLRQvRsFJDRgaP5KvjX6HNtE8wvtHNHdXzZblft7HTDYAmJISAVSvLlGXS9Fmyx0U6qxQ2e9bgLs+ze+USAK6eOUXjx61riS4KksqQtZ0ek0xGXCq35h3HZ2Swzd8HRkXS1CL53XffFdhnW5IkHmn1B4cOG3qap6fHc/fuAby82uR5jyXRKCRSdXpO3k+hl28lm6wpEAgsh7BEllckydBD2+Kba8FrF1lUiU7+nQCIfxDP/PD5BdxhHYxu7tw63ZTVLjdGln6wl+9G7ZY3W2ZtOzk7U62e4fXe+u0XHN30m8NYfiVJwmdEMM7ehtJI9ir/AzktkrGxsaSnpxd4X4UKDXn8saz+2seO97WajNmp7mJof1hZKewZAkFpRCiRglJBZU1lef/bE9+SnG4f95ehFV5WpxvTLje61FSHUW4sgbNKYZapbUrMxQQytLZLhvD2D5D3d/3wPb9+Zr9uK9mRFJKZW9te5X+g+H22nZ3d8PDIKmG0Y2dtMjOtn0DWxtNQ6L7sfGoEgvKFUCIFpQIvFy9+fu5n+XhFxIp8rrY+csykSZeb8+075FpbsrTWmDRmag/+8nF5M83atiUd3xhEt1EfyMeXjh3masQpu8iSG3mV/7m94KRdsraNLF26tNDrtwxZbXa8a7eV46aBzIfq4654+2beCwSC4iF8CIJSQ+PKjdE4a0jNSOWb8G94u+nbOCvs+xaWNBo0ISGkHjsGmMdJZkfdsCG11q1FKiBr1pEwFiLPDVsqR0qVmgbtHqN6g0Z8984bAKz+eDwAFX39yEhPp3q9hjw3+n82k8kUY/kfvVbH7QUnSI8xWMq10Yk2z9o29tmOjY0lNjYWrVaLWq0u8D6FwpmOj59m1+4m8tiNG6upVq2X1WS9n2GItQ3QqKy2hkAgsB6l59tMIABmPz5b3t9+ZTuHYw+TmmG/WERJkghYtTLXOMnspJ09S1TPl0udRTIvVocdRvsgg/S0TNJt5LqtUMmbx/u9aTZ2LzaGpDtxRO7fw+zez3Hir83ci42xuizZkTO2RwbjN7G1PG7rXtuSJDFw4ED5uChFyJ2cNGb9tc/+N96qsod4uBV8kUAgcFiEJVJQqni0xqNISOjR8/7u9+VxtZO5pcVb482Szkuo5l7N6jJJkoT0ME4y1+QavZ6ol3qijY429OROTUVytXwCki1wVink+pEJt1L5fvQ/8jlvf3defC8ESZKsmr0d2v0lWnZ7gdhL59Fl6shM17Jm2ofy+e2LvgWg36dfUrVWbavIkB+GuFmlnLWdHpOMPl2HpLKdNVKlUsnWyMJmahuRJAUNGoTx338TAIiN3YCf30vWFlkgEJRChCVSYD20KVbpZjOk+RCCPIPwUnvJY2mZaWbb9aTrTPp3UkmfoEhkry0pbw8VzLKAJEn0Gt8Kb3/3HOfiribx/eh/bJK9LSkU+NWpT/X6DanZpDljfvqNRo89QUVfP/kaeybfZO+1rddmonu42cIqaSxCXtRMbSPV/F6R96Muf21x+QQCQdlAWCIF1iOvepEl7GYzrMUwhrUYBkBKegr30u6ZnX/7z7e5ev8q/939r1jzWwXTZy3l7mxJIdFrQis5O1uv17Nh9jHiribJ18RcTCD1fjqaCkqb1ExUKJzoMmwsYCgDdGb3Dty97Fx30OSxYz45KO8r/dzwGRGMpLDu62LM1J4xYwZQtBhWSVJQqdKjxMfvITU1mjvxe6lcyT5JVQKBwHERSqTAsihdDUri1QN5X2PsZqMqeTyUq9IVV6W5azisQxj9t/TnQcYDpuybkut9ob6hPBf0XInXLw5RL/UkaMvmUpVgk53sCTdGpTI9LZOlHxjKHi39YC9+tT15cVyITYtv123dnjO7dxB78TyZGRlICglJsl1xdCOS0pCxrY1ONBs39tq2RVHy7JnahXVpA9SvN5n9B54C4OzZ/6ND+70F3CEQCMobQokUWBZJMlgZc+uGY4VuNrnh4+oDGFzc687n7kZed34d+2/s55P2n9hEuZA0GtQNG5J29iza6Ggudela6hVJU4xKpbG2ZMzFBCCrnqQt+26bWvjm9n1B3n/hg4+o3bJ1LndYSQ5jxnb6w6QWPea9tm0QJ1ncTG0AV9daVPF+mttxf5GWFkNGRjLOztZJhEnKsF3NUYFAYDnKxjeYwLHIsxuOicXQii7dau7VmNtpLiODR+bY3m3xrnzdxosb+ePSH1aTwxRj20RVgKFotjY6ukxlahsx1pY0rSdpq8xtIzUaNMZZmbNkzK+fTWN27+e4Hx9nM1kkSUKhcjJs2Xpt26LCdvZM7aLUjQSoWfNteX/3P83zubJ4pD/sNb4lLsHicwsEAusjLJEC+7D0WUP/bitZAZ+s+SRP1sy9x/JLdV7iqbUGN92WqC10r93dKjJkR1IoCNqymUtdusqZ2pnx8Sg0GiSNpsz03c7u6l76wV6bZW4DqDSujFq5nvQHD8jISCdi9w52/bBIPr9v9So6Dx1ltfXzxeSxby84YROXtmmmtjHBRqUqXF3GihVDcXJyfdi9xvJar4tT2XjPCwTlFWGJFNgOpSv4PuyCEXsqd5e3DajqVpUhzQyt4ZwUtnOzQlb/bSPn23cgMqQl0X37lSmrZPaWibbM3DaidHFB416Blt1eYPSqX+Xx03//hTbVPu89SalA6WdwCRtd2lZfM5s1UqvVFun1b/3IJnnf0q0QH/OqAEAlpW0/hwKBwDIIJVJgOyQJBm61txQA+LkZSsFcTbzKstPLWHZ6GasjV9ukJ7fk6oomJMRsLPXYsdxrTJZSjG7tQXMfy1EOyJi5bUul2cnZma4js+qKnju4z2Zrm5K99I8t1zUya9YslixZUujXX6XykfdPnBxsUbmcyoj1XSAorwh3tsC2OMiXhsrJ4M67mHCR2UezuuBMOzCN3vV7o5AUdK3VlRY+LSy+trHLjT41FV1qKufbG+IHdampZc6trXJxzjNz29vfnV7jW1m91I2Ruq3ayvsZaWk2WTNXTB/XRnq0UqnE39+fq1evAnD16tVCu7WdnFzkfRe19Yv3CwSC0oOwRArKJZ38O/FG4zd4vvbzPF/7ebNzv0T+wk///UT/Lf2tZpmUC5NrNPLY+fYdiHqpJ/pCtqgrLRhjJDUVlDlc3KtnHLaZRdJZpaJe6/YAHNvym03WLAhbtUSUJIk333yTcePGyWNFWbdO7Q8AuH//tMVlEwgEpRehRArsh7GjjR1iAd1V7rwX+h7TO0xneofp7H11L+NCx/FO83fMEnLe3PYmOr31lDpJozFzbZe1/tqmmLq4PX0MynPc1SS5aLktULoYrGp3Y24wu/dzxF2NttnaRrLHReqS023SyUaSJDPLY1EytTMexkKmPrhmFdkEAkHpRCiRAvsxqw6EVYMlz9q9i4un2pPXG7/Ouy3e5YuOX8jjEXci6L+5v9W+4I2u7fpHj8jlf4z9tcsipi5uI7YsAdT6pd5mx+s/nWKTdU3JHhcZ88lBbkzax62vjqPXWfd1MNaNhKK1QvTwaAZAZmYyen2mxeWKT7f8nAKBwPoIJVJgW4wdbUwxdrBxECRJYnfv3fLxybiTaHVaq65XlvprFwazTiof7LVZxraXbzVGLF9DlZqBANyPu83s3s+RmZFh9bVNkVSGbjamGDvZWLXneLZM7cJS0TPLWp6ccsly8pjsa8tYGIdAUB4QSqTAthg72ky4AeMuZI1rU+xujTSlkksl9vfZb9tFTRQrXWpqmXRpG8leAijmYgLpabaxRqlcNPSa/KnZ2Ny+L3D55HGbrA9Z3WyqTW1HtY/b4extcO/bouxPcRK3lEoveV+bdstisgRqsrrnJGcKJVIgKG3YXYn85ptvCAwMxMXFhdatW3Po0KF8r587dy7169dHo9Hg7+/PmDFjePDggY2kFVgEuaONSQebWXUcwq1tij2zpM+371Dmakeakltnm9Vhh9E+yLDJM7u4uzNqxXqzsXXTPyL1fmIed1geuZtN9k42DoqbWz2Lz2mjxHyBQGAl7KpE/vLLL4wdO5bJkydz7NgxmjdvTufOnbl1K/dfuj/++CP/93//x+TJkzl79iyLFy/ml19+YcKECTaWXGARsru2Hcytbcq5+HNWXyN7kk3qsWNkxsejS0kpcCuNyqYkSWgqKOU6kgm3Uvl+9D82c207q1QMX7qaRo89IY/dOHfW6uvmiokypbdBko28lgO9b+LTbRtSIBAISo5dlcg5c+YwaNAgBg4cSKNGjViwYAGurq4sWbIk1+v37dtH+/btee211wgMDOSZZ56hT58+BVovrU2KNpMUbYa8OdIfZofG6No2dWs7EMZakgC/X/rd6usZk2zq/rtXHjN2tCloi3qpJ7rk5FKnUEqSRK/xrcwKksdcTLBZxrba1ZUuw8biVa0GABtnhxF/4zo6nf0SPWI+Ocitr46js0HCUVF7aQPcv3/GYuubFhu/J5JrBIJSh92USK1Wy9GjR3nqqaeyhFEoeOqpp9i/P/dYtHbt2nH06FFZabx06RKbN2+ma9euea6TlpZGYmKi2WZpQj/ZTqNJ2+TtlQX7S9UXuV2RJHO3tgOhVCjpFtQNwKplfkyRJAmnSpVydLQpiLSzZ4lsGVoqWyhKColeE1qZubZtLX+lh0qkLjOTpWOGsGj42zaVQVKaJ9qkxyRzY/I+bi84aXE5ipuhnZxs+LGn11vWYljTpXB9vAUCgeNhNyUyLi6OzMxMqlatajZetWpVYmNjc73ntddeY+rUqXTo0AGlUknt2rXp2LFjvu7sGTNm4OnpKW/+/v4WkV+jdCI0wCvXc0ei75IqflUXDwdTfmpWqAkYCpDbCrnsz7GjBW9Hj6Bu2NDs/tLYQtFYkNzIhtm2cWkb6TbqfSp4V5GP79+5zc+TPrDZ+nKizcft5BqSANroRIsn2mTP0C7s6+zn1xOA23E7LCqPQCAovdg9saYo7Nq1i7CwML799luOHTvG+vXr2bRpE9OmTcvznvHjx5OQkCBvxrZfJUWSJNYMbUvE1M7ydmRillU1u4tbuLsLyVLHSq6pqK4o799MvmmzdeWONgVtD0sD1T921MwNXhpxVilkt7bNi5Cr1Az+ZimjV22Qx26cO8u2BV/aTAZJkgxJNiOD8ZvY2uprGSmsSzsjIwGAxMRwa4klEAhKGXbrne3t7Y2TkxM3b5p/Md+8eVN2tWTno48+on///rz99tsANG3alOTkZAYPHsyHH36IQpFTJ1ar1ajV6hzjlkCSJFxVub+EoZ9sz/O+0AAv1gxtW2Z6JJcYpSv4NoXYU4YtOQ7cvB2iz3bPej2ZcWgGgFVrRZYESZKQXM1DAnQPLZGlqRe3JEm8+F4I34/+B7BP0oeTs5J3vl/F/EF9ATj991+c/vsvhi35GRc39wLutgySJCGpsqyy1uivbXRpx8bGyi7tgvpo+/h05fbtPwFIS7uFWu1jecEEAkGpwm6WSJVKRcuWLdmxI8s1otPp2LFjB23bts31npSUlByKopOT4Y+tI1j38nNxmyLc3dmQJBi4NevYgcr9qJ3UaJwNNfzO3LFcQoG1MSbklLr4SBOF19YubSOuHp689dUis7G/ly60uRxGrNFfuzhFx32qPCPv37t32KLyCASC0ondLJEAY8eO5fXXXyc0NJRHHnmEuXPnkpycLP9xGzBgANWrV2fGDIMlqHv37syZM4fg4GBat27NhQsX+Oijj+jevbusTNoTo4s7LwUxRZuZr4WyXKNyM5T7uXrAcGws96Nyy/8+G5CaYbDqvb/7fR6v8bisVDoaxhJBqceOyWPG+MjslkpHxejSjruaJLu0TWMlbUXFqr6898sffP1mb9KSk4nY8zeJd27TO1uRcmth7K+dHpMs99dWuCktalU2naswSqpCocbdvSFJSWdJSDxO1ardLCYLQEYp+rEjEAgM2DUmsnfv3syaNYtJkybRokULwsPD2bp1q5xsc+XKFWJiYuTrJ06cyHvvvcfEiRNp1KgRb731Fp07d2bhQvtZCbJjdHHnvtlf0XVYHLjcz5S2U+T9sbvGsvDEQlZGrOS+9r79hMoF04Qcs/jIUvTlbHRpOwovjPtI3r8WcZoLhw/YZN3c+mtbI1PbSGHjIh88MPw9vnp1qcXWTso0/Og+lyKaRggEpQ27J9YMHz6c6Oho0tLSOHjwIK1bZwWU79q1i2XLlsnHzs7OTJ48mQsXLpCamsqVK1f45ptvqFixou0FF1ie7OV+tCmgTc59s6Fi1LNeT7zUhjCFvdf38nX418w8PJPVkattJkNhkRNyNFnW0qiXeqIvRX2JTS1k6TaolZgfNRo1YeTytfLxjsXf2mzt7P21tdGJ6C2YbFScUj/Vq79qsfWNGC2QLrnEtAsEAsdGfGoFjsusOhBWLfdt4aNgQ8VoTsc5vFLvFV6u9zJ1KtYBcDhLpCmSRiOX/tFGRxPV8+VSFRtpZOkHe23WwSYvlC4utOlpUJ6S7saTrk2zybrGsj+mmdqWjI8sTlxk9Wq9AYNr21K09LB/yIpAICgeQokUOBbZWyHmRewp+DrUZopkqG8ok9pOYnLbybTxM8i3+PRiJu+bzNbLW8m0Y4eT3JAkiVrr1qIKCAAMxchLS+1IZ5UCv9qe8rEtO9jkRfOnsxoaJMfH22xdSZJQuCnl2pHpMckWrRtZ1BhLSTKE0et0tlGkBQKBY2PXxBqBIAfG2Mi8emjr9bDwMYi/aNi+ewyG7LFpOSBvjbe8v/78etafXw/A/z3yf2bXSUh0qN6Bmh41bSab2foKBbXWryOyZahhoJRYIiVJ4sVxIaTeT2fpB4bYTntbUd29KqHSaNCmpvLTpPep3+5RnnhjiE3WNsZH3pi8zybr5S9LVlx3mjYOtco7n6sFAkFZRyiRAsdDkvLPyh5+xGCFjL9osEjaOIu7X6N+pGakcivlFhsuZBWn/vRQzszdJpWb8NNzP9lMthyYKNeX+/Wn1vp1paJuZG4dbHpNaGVX2StXr0nMhUhSEu5xfMvvtOzaA0+f3GvaWhzTx7ajPq1SZdWG1AolUiAo9wglUlD6UChgyD8wo7pdllc7qRkePByASW0n8dXxr7iRdMPsmnsP7nEw9iCn75ymzY9Z7vnk9GT6N+rPyOCRuDi7WF1WY2xk2tmzpJ09S2Z8vJx04+iFyLOX+0lPy0TlYr8/Wb2mfEpcdBSrPhwLwKIRb9Pv0y+pWqu2TeW4veAEPiOD7fJ/J0kSKlUVtNrbNl9bIBA4HkKJFJROHET5cVY4M7bl2Bzj8Q/i6bq+K8npySSnJ5udWxGxghCfEJ4KeCrHfZZGkiQCV66QXdrn23eQz6kbNqTWurVIDpoVm72Dzeqww/Sd0gZJYZ//e2elEt869WjZ7QWObvoVgJX/N4oxP/6Gwsp1arPXjdSn68y72tiBtLRYKrg3sKsMAoHAvjjmt4dAUMqp5FKJHa/sYNOLm+Rt3hPz5PPGAua2QHJ1RROSs/Zi2tmzXOrSFV1yMrqUFLvHHeaGUu0k99NOuJXKqikH0OvsK2fHAW/TovNz8vEXr/Ug/YF1axxmrxtpT4xWyAep1+0siUAgsDdCiRSUfrQpDpk04qZ0o6ZHTXnr6N+RdtXa2VwO0yLk9Y8dpf7RI3LWtjY6msiWoQ7bIlGSJHqNb4Wnj8EF7yiK5JNvDsXbP0A+/ur1l0mMu2XdRR0kLtKroiE8wzTJRiAQlE+EEiko/ThQr21HRS5C7uqKws2NoC2b5TqSRlKPHUOfkkdWvB2RFBJ9p7QxUyRXzzhsd4X39VnfULGqn3z8/bA32fPjMhLjrB8vaI1+2oWdz8nZ3aLrCgSC0otQIgWlk+z1JK8egOQ4u3S0KY0Yy/9kb5EY9VJPh3RvZ1ckjX217c1bX31Pw0c7yceHflvL98OKVsC7sBjjIuFhvUgLP39hWx8KBAKBEaFE2okUrX3buZV6cuu1bdrhRlgmC8RonXSqVMmsu42jurclhUSvCa3kY0eR7ZkhI2nfuz9OSqU8dvOS5XvAZ4+LtIQ1sjitD42+9Dvxu0u0tkAgKP0IJdJOhH6ynVcW7HeYL8JSiSSBm3fuHW6MlkkHfX2/Pv61vUWQMXa3ydW97WBdbkzL2myYbd92iEaclUravNSbEcvWyGN3Y2/kc0fxkVQKi3avKU7rQ632DgBK54olWlsgEJR+hBJpQzRKJ0IDvOTjI9F3SU13rHZ5pQ6jRXLCDcOW3TLpYBZJN6VBAbiRfIO5R+faVxgT8nJvOxrG2pFgcGmn3k8nPc0xrPpOzs74N24GwL0YKymR2bO0LfDYpop5YV7HKt5PlnxRgUBQJhBKpA2RJIk1Q9tyZKL16wOWK4wdblRuOS2TVw/k3ULRDkxqM0neX3J6CTq9/eP6jMjJNw+LkTsixtqRRpZ+sJfvRu1mwyzHsEo+SE4C4MKRA9ZbxCRL+9a84xbNVC9MXKT+oeYaE7sh3+sEAkHZRyiRNkaSJFztXCS4TJNbrKQDUdGlImu6G9yeevRcT3LwWnsOoJhlR6l2wq+2p9lYzMUEUu+n212RrNXcoODevHSBY1s2WmUN0wSbjLhUgyJZgucualyk9PBrQ68vTPykQCAoywglUlD2kCRQudpbijwJ8MiqL7j23Fo7SlIwl/v1t7tilh1JknhxXAiDv3ycgZ9ldeBZ+sFeVocdRvsgw24yN32is7z/97Lv2LfmR4uvIUkSPiOCcfY2WIxLmqmdPS6yoNeuatVu8v79+2eKva5AICj9CCVSILAxGmcNIT4Gi9XGixtJTk8mXec4Vh1jv20wdLVxyNqRkoRS7YSmgtLMKhl3NYnvR/9jN/d2RV8/+kz7XD7ev9bySiQYMtV9RgTLxyXN1DaNiyzIpa3R1JT3/4ucXOw1BQJB6UcokXbGwYw8Ahth7FwTlxpHmx/bELIihC7ruhCbHGtnybL6bRtxRGukEaNVctDcx+SEGzC4t9PT7JO0Vq1eQ54fOwEATQUPq61jyUzt4pX6AbXap9hrCgSC0o9QIu2MKPNjAxzw9e1Zr2eOsWtJ19h73TEyoyVXV3NrpIOV+jFFkiRULs70mtDKzL1tzxJAlarXACD1fqLVZLBkpnZRS/3UrzcVgMxMx7NSCwQC2yGUSDugUTrRyM9goYiISRRlfqzNUscq8wPgrfHm5ICTHOl3hH199uGpNrhkl51ZZl/BHpLdGlkakCQJTQWlWQkge1kjnVUqef/En5utt5AFM7VNXdoFoddnABAfv4e0tJvFXlMgEJRuhBJpB4ylfgRWROkKvk0N+7GnHKrMjxFJklA7qamgqkA7P4N7OzoxmnsP7tlXMCNFUCochewlgFaHHbZoCZzC4unjK+9fPnncautYOlO7sHh5ZZXRuhy9wOrrCexLx44dGT16tF3WnjJlCi1atCjRHLt27UKSJO7du2fTdcsDQom0E6Xw+7l0IUkwcKu9pSg074W+J+8/+sujNF3elDXn1rD+/Hp2RO+we+KNLjXV4fpp54VS7SRbIxNupbJ6xmG7yN36xV6AuVXS0uSaqV3CLjaFwd29Pk5OBuX19u2/rL6eQFAS2rVrR0xMDJ6engVfXATsqVw7CkKJFJRdSpGmXtWtKm38zNs3Tt0/lcn7JjN612hCVoSQkJZgJ+ngfPsORIa0JOqlnuh1jlMgPTckSaLX+FZ4+hgUq7irSWSUoAROcXH1rGiTdbJnaluii01hqFG9LwCuroG2WVAgKCYqlQpfX98ihWwICodQIgUCB+H7Z75ny0tbeLPJmzxe43E61uhodv6NrW9w7f41m1klJY0GTUiI2Vja2bNE9XzZ4S2SkkKi14RW9hYDgEtHD1l/EZPvxpKW+4HCtT90r9CoRGsIShcZGRkMHz4cT09PvL29+eijj+T3yd27dxkwYABeXl64urrSpUsXzp8/D8Dt27fx9fUlLCxMnmvfvn2oVCp27NhR6PVXrFhBYGAgnp6evPrqq9y/f18+p9PpmDFjBrVq1UKj0dC8eXPWrs2qwZubO/v777/H398fV1dXXnzxRebMmUPFihULve4bb7zB7t27+fLLL5EkCUmSuHz5cqGfp6wglEiBwIGoUaEGY1qO4esnv2bek/M49fopVAqDO/TCvQt0Wd+FkBUh/HbhN6vLIkkSAatWUv/YUeofPYIqwFAk3dGztY0UtSe0pXFydgYgPe0BZ3YX/suyOJjGRlrCpV2Y9odG7t07UqK1BKWD5cuX4+zszKFDh/jyyy+ZM2cOixYtAgwK1ZEjR9i4cSP79xsqjnTt2pX09HSqVKnCkiVLmDJlCkeOHOH+/fv079+f4cOH8+SThevDfvHiRX799Vf++OMP/vjjD3bv3s2nn34qn58xYwY//PADCxYs4MyZM4wZM4Z+/fqxe/fuXOf7999/GTp0KKNGjSI8PJynn36a6dOnF2ndL7/8krZt2zJo0CBiYmKIiYnB39+/qC9rqUcokYLygYNbzvJj3fPrcozNOz7PJmvL/bTd3Ki1PqccpQV7lPtp0L6jvH986x9WXStHuZ9iUORakQ9fT9H+sHzg7+/PF198Qf369enbty8jRozgiy++4Pz582zcuJFFixbx6KOP0rx5c1atWsX169f59ddfAejatSuDBg2ib9++DB06FDc3N2bMmFHotXU6HcuWLaNJkyY8+uij9O/fX7ZipqWlERYWxpIlS+jcuTNBQUG88cYb9OvXj4ULF+Y637x58+jSpQvjxo2jXr16vPvuu3Tp0qVI63p6eqJSqXB1dcXX1xdfX1+cnMpfS2OhRArKBw5Y5qewBHoGcur1U5x6/RRT2k4BDF1vbI5pPFEpeC2dVQqzcj+2jotUu7ry6GtvAHDz0nluXb5k3QVLGO5V1FqRFSo0kfcdPbxBUHLatGljZt1v27Yt58+fJyIiAmdnZ1q3bi2fq1y5MvXr1+fs2bPy2KxZs8jIyGDNmjWsWrUKtVpd6LUDAwOpUKGCfOzn58etW7cAuHDhAikpKTz99NO4u7vL2w8//MDFixdznS8yMpJHHnnEbCz7cUHrCgwIJdIBEH9/rUT2Mj/aZPvKYwGMfbcvJ14mLTPNbnKUlgQb03I/9lB0arVoKe+v+N9I2y1czEctSuKBSuUl76emXinegoJyw8WLF7lx4wY6na7IsYNKpdLsWJIkdA///iQlJQGwadMmwsPD5S0iIsIsLrI45LeuwIBQIh0A0bXGSmQv81OKrZFGqrpVlfdf3vgy80/MZ9GpRTZpl2jaU1sbHc2lLl3RJSejS0mRN0d7H5sqRfZwaVcJqEX9do8B4FnVt4CrLUdJC48XBqUyS4nU6bVWXUtgfw4ePGh2fODAAerWrUujRo3IyMgwO3/nzh0iIyNp1MiQfKXVaunXrx+9e/dm2rRpvP322xaz6DVq1Ai1Ws2VK1eoU6eO2ZZXjGL9+vU5fPiw2Vj248KgUqnIzCzfzUKEEmknRNcaG6Fyc/ii40XBv4I/7au3BwzWyG/Dv+XLY1/y9Nqn2Xd9n1WVJEmSqLVurZxgo42OJrJlKJEhLeUtum8/h1Ik7e3SBgjp8jwACTdjWTdjMukPHlhlHXsUHlcqK1l1foHjcOXKFcaOHUtkZCQ//fQT8+bNY9SoUdStW5cePXowaNAg9u7dy4kTJ+jXrx/Vq1enR48eAHz44YckJCTw1Vdf8b///Y969erx5ptvWkSuChUqMG7cOMaMGcPy5cu5ePEix44dY968eSxfvjzXe0aMGMHmzZuZM2cO58+fZ+HChWzZsqXIJYACAwM5ePAgly9fJi4urlxaKYUSaSdE1xobUcqKjheGD0I/oG/DvvSq18ssNnLI9iE0+6EZvX7vxaeHPs1nhuIjKRQEbdksWySzk3rsGPoUx1HUs7u07YFXtery/uXwo3z1+stsnjfL4uvYq/C4oHwwYMAAUlNTeeSRRxg2bBijRo1i8ODBgCGbv2XLljz33HO0bdsWvV7P5s2bUSqV7Nq1i7lz57JixQo8PDxQKBSsWLGCPXv2MH/+fIvINm3aND766CNmzJhBw4YNefbZZ9m0aRO1atXK9fr27duzYMEC5syZQ/Pmzdm6dStjxozBxcWlSOuOGzcOJycnGjVqRJUqVbhypfyFdUh6RzIb2IDExEQ8PT1JSEjAw8PDrrKkaDNoNGkbABFTO+OqcrarPGUWbTKEVTPsT7hhsE6WEZK0SSw8uTDXntt7eu+hoktFq6yr1+vNyvzoUlM5374DAKqAAIK2bEZSOMZv1PS0TL4bZSj1MfjLx1GqbZ9BmXzvLguG9Dcb6zhgEC279bD4Wrq0TG5M3gdAtantUKgK/7xarVau5zdhwgRUBXTb+WdPK9LT42ndeivubnWLJW+fExf5O/4+8xrW5BVfYdkU2IdBgwbx33//sWfPHnuLUqpwjL/ygtIeqiewE+4qd94LfY8j/Y7w/TPfs+CprD7GOqxnhZJL/zzcnCpVyjVe0tF+o9pLHreKXrz3yx+8PW+xPJZ09451FjP1yDnWyy8QOAyzZs3ixIkTXLhwQXZ9v/766/YWq9QhlEgH4bl5e9FZORBeUHZRO6lp49dGjpcEWHZ6mc2UprziJR0tRnJ12GG0DzLsJpOnT1VCu79ks/Us0b1GILAmjRs3NivNY7qtWrXKauseOnSIp59+mqZNm7JgwQK++uor3n77bautV1YR/lM7YkyuiYhJJCoumefm7WXTyA6iv6egRFRQVeC+9j5LzyyldsXa9KhjeZdpbhjjJaN6vkzaw/pwxhhJyc1+IQTG5Jq4q0kk3Erl+9H/4FfbkxfHhdj1s3Zs82883s8yyQWmGBNs0mOS5bhIqQgubSNC+RTYgs2bN+dZ2L5q1aq5jluC1atXW23u8oSwRNoRSZL4Y0QHankbvmBFlrYN0KYYYiS1yWU2hsDUpf1DxA82XVtSKKi1fh11/90rj9m7pqQkSfQa30rO0gaIuZhgl0xtAOXDIsu6zEyuRZy2+PyW6F4DRWt9KBAUl4CAgByleYybaaFvgWMilEg7o1AYFEkj4m+2lZlVx5BkE1YNFj4KaUll7kVvVqUZw1oMA+Dc3XNEJUTZdH1JknKNkbSrIqmQ6DWhFQM/M/2s2ef/vemTneX9Xz7+P+vIUcy4yCK3PhQIBOUaoUQ6AKYeNVF43AooXcG/Tc7x2FMwozosKf1FyLPzQp0X5P3nf32eLuu60Gl1J7qs68J7u96Tt98v/m6V9XOLkYzq+bJd39uSJJllZtuj+DhAhUredOiTFcC/e8XifK4uOUWJiyxq60OBQFC+EUqkAyAKj1sZSYI3txrK+0y4AeOvZxUgB7h6oEy0RDTF182Xd5u/Kx9fS7pGXGoc15Ku8Wf0n/I2Ye8Ezt89bxUZjDGSRkUy7exZs7JA9sARio8DPNLjZXn/6KZfydBatuOLaeHxotaLFDHZAoGgsAgl0gEQhcdtgCQZ6kOq3EDtDkP2wLgLWefLQEvE7LzT4h329N7Dmu5rWPzMYt5r+R7jHxnP+EfGMzpktHzd1svWK8ZujJF0FLIXH09Py7SLNVKSJN768nv5OCXhnsXnt0RcpEAgEOSHyM52EMSPfxsjSeDmbbBIxp4ybMlxoHI1uL/LyH9IRZeKcsHxR/weMTt3Ku4UO67s4LuT3zEieIT1hDB9LR1AUTe1tC39YK/dMrUr+vrhrFKToU2zzgKiXqRAILAywhIpKL9kb4loTLpZ+CiUgx6ooVVD5f12P7WziUXucr/+do/5dVYp8KvtKR/HXEwgPa1sh5BYr16kYc6U5EtWmFtgC+7cuYOPjw+XL1+2tyiCh1y+fBlJkpAkiRYtWthbnHwRSqSgfKNyy5l0E3sKvnvMIaxm1qRvw77y/n3tfaISrZPFLWk0cqZ22tmzdu+tLUkSL44LMcvUXh12GL0di/1rUy3/mpQkLrKwpKffBSAj477F5xbYhunTp9OjRw8CAwPlsStXrtCtWzdcXV3x8fHh/fffJyMjI995zp07R48ePfD29sbDw4MOHTrw999/m11jVIxMt59//tnsmm+++YaGDRui0WioX78+P/xQ9DJl69ev55lnnqFy5cpIkkR4eLjZ+fj4eEaMGEH9+vXRaDTUrFmTkSNHkpCQUKJ5AS5evMiLL75IlSpV8PDwoFevXty8eTPHdZs2baJ169ZoNBq8vLx44YUX5HP+/v7ExMTw3nvvFfnZbY1QIgXlG9Okm/HXoVJtw7jRvV2GFUlJkjje/7h8vPnSZqutE7hyhXxs77qRYJBJU0EpJ9kk3Epl9YzDNreSGl3Za8MmWXxuW8RFVq7c0arzC6xLSkoKixcv5q233pLHMjMz6datG1qtln379rF8+XKWLVvGpEn5v0efe+45MjIy2LlzJ0ePHqV58+Y899xzxMbGml23dOlSYmJi5M1UeZo/fz7jx49nypQpnDlzho8//phhw4bx++9FqyKRnJxMhw4dmDlzZq7nb9y4wY0bN5g1axanT59m2bJlbN261ex1KM68ycnJPPPMM0iSxM6dO/n333/RarV0794dncnfvHXr1tG/f38GDhzIiRMn+Pfff3nttdfk805OTvj6+uLu7p7bMg6FiIkUCIxJNwBD/jGU/QGDe9u/jUHJLCMxktlxVmT9CVh4ciHvtngXhWT535aSqyvqhg1JO3tWLvdTa/06u2YCG4uQr5pygIRbqXK2tmkZIGvjUaUqibdvknw33joLiLhIu6DX6+1WZUOjdCr052rz5s2o1WratMnyxvz5559ERESwfft2qlatSosWLZg2bRr/+9//mDJlCiqVKsc8cXFxnD9/nsWLF9OsWTMAPv30U7799ltOnz4t1x4FqFixotmxKStWrGDIkCH07t0bgKCgIA4fPszMmTPp3r17oV+D/v37A+Tpom/SpAnr1mUl/NWuXZvp06fTr18/MjIycHbOXTUqaN5///2Xy5cvc/z4cTw8DBVXli9fjpeXFzt37uSpp54iIyODUaNG8fnnn5sprY0aNSr08zkSQokUCEwxurevHjAcG8v/qB3/F2FxmfnoTP63538AHL15lFa+rSy+hrFu5KUuXdFGR8vlfiRXV4uvVSS5HhYh/370P3ZZ//mx41k5fjQAp3dtp0nHp6y21u0FJ/AZGSxK+NiA1PRMGk3aZpe1I6Z2xlVVuK/2PXv20LJlS7Ox/fv307RpU7OWg507d+add97hzJkzBAcH55incuXKsus5JCQEtVrNwoUL8fHxyTH/sGHDePvttwkKCmLo0KEMHDhQfk+mpaXh4uJidr1Go+HQoUOkp6ejVCoL9VzFISEhAQ8PjzwVyMKQlpaGJEmoH3alAnBxcUGhULB3716eeuopjh07xvXr11EoFAQHBxMbG0uLFi34/PPPadKkiSUexaYId7ZAYIrRvV3Gy/+Y8lRAluLy0b8fWW2dHOV+HOQ1tadS5RMYJO9vmz/X4vPbIi5SUHqJjo6mWrVqZmOxsbE5elYbj7O7po1IksT27ds5fvw4FSpUwMXFhTlz5rB161a8vLzk66ZOncrq1av566+/6NmzJ++++y7z5s2Tz3fu3JlFixZx9OhR9Ho9R44cYdGiRaSnpxMXF2epx85BXFwc06ZNY/DgwSWap02bNri5ufG///2PlJQUkpOTGTduHJmZmcTExABw6ZIhCW3KlClMnDiRP/74Ay8vLzp27Eh8vJU8ElZEWCIFguzkVv4nPSXL5V3GUDmp6FqrK5ujNnM96TpJ2iTcVVayvJoobJf79be7S9veSAoFXYe/x+avZ+OsUhd8Q1HnfxgXeWPyPovPLcgbjdKJiKmdC77QSmsXltTU1ByWv+Kg1+sZNmwYPj4+7NmzB41Gw6JFi+jevTuHDx/Gz88PgI8+yvqRGhwcTHJyMp9//jkjR46Uz8fGxtKmTRv0ej1Vq1bl9ddf57PPPkOhsI7NKzExkW7dutGoUSOmTJlSormqVKnCmjVreOedd/jqq69QKBT06dOHkJAQWX5jbOSHH35Iz549AUOcaI0aNVizZg1DhgwpkQy2RlgiHRAHMdCUb7KX/ynjvNrgVXn/mbXPWG2dHJnadu5gkx17lB+q3qAxYEiy0emsEEdXfnV0uyFJEq4qZ7tsRflR5u3tzd27d83GfH19c2QTG4/zimXcuXMnf/zxBz///DPt27cnJCSEb7/9Fo1Gw/Lly/Ncv3Xr1ly7do20NEOCmUajYcmSJaSkpHD58mWuXLlCYGAgFSpUoEqVKoV+rsJy//59nn32WSpUqMCGDRss4i5/5plnuHjxIrdu3SIuLo4VK1Zw/fp1goIMXgejQm0aA6lWqwkKCuLKlSslXt/WCCXSARH9sx0EByuSbU2aeTfDTWmwtJom21ia7JnajoY9+mk7myQqXD19yqZrC8o3wcHBREREmI21bduWU6dOcevWLXnsr7/+wsPDI8/kj5SHZbuyWwsVCoVZVnJ2wsPD8fLyMoshBFAqldSoUQMnJyd+/vlnnnvuOYtbIhMTE3nmmWdQqVRs3LjRIhZZU7y9valYsSI7d+7k1q1bPP/88wC0bNkStVpNZGSkfG16ejqXL18m4GGL2NKEUCIdhOz9s+8ka0nRZphtQrG0Iwsfg7SkMqtMOimcWNllpW0WM1HOdampdn9fZ++nbevC466eFeX9I5s22HRtQfmmc+fOnDlzxswa+cwzz9CoUSP69+/PiRMn2LZtGxMnTmTYsGGysnfo0CEaNGjA9evXAYPi6eXlxeuvv86JEyc4d+4c77//PlFRUXTr1g2A33//nUWLFnH69GkuXLjA/PnzCQsLY8SIrG5Z586dY+XKlZw/f55Dhw7x6quvcvr0acLCwor0XPHx8YSHh8sKcmRkJOHh4XJMp1GBTE5OZvHixSQmJhIbG0tsbCyZmVmf/wYNGrBhw4ZCzwsG1/SBAwe4ePEiK1eu5JVXXmHMmDHUr18fAA8PD4YOHcrkyZP5888/iYyM5J133gHglVdeKdJzOgJCiXQQsvfPDv1kO40mbTPbun21l+Q0oVDaDKWrIS4SIP6iofRPOehmczftLl8e+9Ima51v38HudSOz99O2R+HxqkF1Abh58bxN1xWUb5o2bUpISAirV6+Wx5ycnPjjjz9wcnKibdu29OvXjwEDBjB16lT5mpSUFCIjI0lPTwcMVretW7eSlJTEE088QWhoKHv37uW3336jeXNDrVKlUsk333xD27ZtadGiBQsXLmTOnDlMnjxZnjczM5PZs2fTvHlznn76aR48eMC+ffvMCqHv2rULSZLy7bCzceNGgoODZQX21VdfJTg4mAULFgBw7NgxDh48yKlTp6hTpw5+fn7ydvXqVXmeyMhIswLkBc1rvOeFF16gYcOGTJ06lQ8//JBZs2aZyff555/z6quv0r9/f1q1akV0dDQ7d+40S0IqLUj6cqaNJCYm4unpKafzOxJ6vZ5XFuznSPTdAq8NDfBizdC25TopwSbodIbuNbEmbkbfpjBkT5mrHRn/IJ7Hf3lcPq6grMAPXX6gjlcdi66j1+uJ7tuP1GPH5DF1w4Z2TbLR6/WsDjtM3NUkALz93ek1oZXN5In4ZydbvpkDwMgV61BaMMlGp83kxiRDYk21j9uhKKAOplarlS0/EyZMyLUuoJHwE29x584uGjaYSbVqLxdLvj4nLvJ3/H3mNazJK76VijWHoPhs2rSJ999/n9OnT1stecWSLF26lLCwMCIiIqxa8scRmDJlCr/++muunXEcBcd/x5QjjNbIiKmdzbYzH3eWXd1GjkTfzeHyLme/B2yDQmFQGLN3s0m3b+s+a1DJpRK/9fhNPr6ffp+lZ5ZafB1JkghYtZL6R4+gehgDZO92iMbC454+GgC58LitqBWc1cf8WsRpq61jrR7aOl2axecU2IZu3boxePBg2TXt6GzevJmwsLAyrUBeuXIFd3f3Irvx7YEo8eNgGLP6srNpZAdS0zNJ0WYS+sl2APlfI438PFgztC2uqsJ3LBAUAkkyFBs37WZTRgmqGMTB1w7Sd3NfLty7wIOMB1ZZR5IkJDc3aq1fR2RLgwJl75I/9iw87uJeQd5fP2Myb85diJefZd5rxlqR6THJhlqRWh2ShbryGJXH+Pg91KjRt4CrBY7K6NGj7S1CoVmzZo29RbA61apVk62P2ZOOHA1hiSwlGJXLym4qQgNyj5uIiEmk8eRtIrvbWpgqN9qUMptk46p0pVf9XgD8Gf0nS04vYUf0DqusZWyHCPa3RoJ54XFbfoYkSSKkaw/5+Mxuy73e2XtoW9IaKUmGH7wqteXLrwgE5RVnZ2fq1KlDnTp18Pf3t7c4+SKUyFJGbi7v7O7uI9F37da3tdwwqw4sKbudbNyVWcXGvzj6BaN3jWb6gekWXyd7yZ+ol3qiS05Gl5KCLiXFrj+GbF3up33vflSobFDGEuNuW3RuSWWdzjWeni0LvkggEJRZhBJZCsleyNZN7cymkR04MtF6fXcFGLK1/dtkHV89UCZjIwGeDniaLrW68HTA0/LYz5E/c1973+JrmVojtdHRRLYMJTKkJZEhLWWl0lbKXPZyP7aMi1S5aKjziOH9dXbP3xZ95uzWSIFAILAEQoksIxgUy6w4pxRtpki4sTS59dUuo7g4u/DZY58xp+Mc1nTPikFq91M7i7+fJEmi1rq1siJpStrZs0S2DLVZGaDs5X5s/dmp2aSFvH/iry2WnVyESQsEAgsjlMgyimmdSREjaUEkCVSu9pbCpjSo1IC6XnXl40d/edTia0gKBbXWr6P+saOG7egRM6Uy7exZLnXpajNF0oitXdq1Wz4i70efPC4+twKBwKERSmQZQqN0yjXpRsRICkrKuu7r5P2EtAQe/flR0nXpFl1DkiQUrq6G7WHmtmkZIG10NFE9X7a6YmVPl7YkSbR5qTcAFw7vZ/HIt9FlWuGzK3RTgUBgAYQSWYbInnQjYiQFlkKSJA6+dlA+vpd2j8F/Drb6mgo3N4K2bLZpPUl7u7QDm7fEWWko8J1w6yan//7L4mtYq16kQCAoXwglsoxhnnSTFSMpvi+sRBku9ZMdV6Ur//b5Vz5OTk+2ybpGV7eRy/36W10BsqdLu3qDRry75Cf5OCXhnkXmNdaLBMtmaAtKN3fu3MHHxyffNoICx8PY/lGSJF544QW7ySGUyHKCiIu0EmW81E92PFQeLHjK0Cf2bPxZ1p1bV8AdlsHW9STt6dIGUKrUNH2ys0XnFBnagtyYPn06PXr0MOtPPXLkSFq2bIlaraZFixY57tm1axc9evTAz88PNzc3WrRowapVqwpcq6B5AVavXk2LFi1wdXUlICCAzz//PMc1aWlpfPjhhwQEBKBWqwkMDGTJkiWFfWQA1q9fzzPPPEPlypWRJCnX1oKxsbH0798fX19f3NzcCAkJYd26gv/mXb9+nX79+lG5cmU0Gg1NmzblyJEjuV47dOhQJEli7ty5ZuOBgYGykmjcPv30U/l8u3btiImJoVevXkV6bksjlMgyjEbpJNePjIhJFHGRlqIclfrJjSquWYWlp+yfYhOLZPZ6kta2RmZ3aduTf1ev5Oyevy0zmcjQFpiQkpLC4sWLeeutt3Kce/PNN+ndu3eu9+3bt49mzZqxbt06Tp48ycCBAxkwYAB//PFHgWvmN++WLVvo27cvQ4cO5fTp03z77bd88cUXfP3112bX9erVix07drB48WIiIyP56aefqF+/fiGeOIvk5GQ6dOjAzJkz87xmwIABREZGsnHjRk6dOsVLL71Er169OH78eJ733L17l/bt26NUKtmyZQsRERHMnj0bL6+c+QobNmzgwIEDVKtWLde5pk6dSkxMjLyNGDFCPqdSqfD19UWj0RThqS2PaHtYhjHGSDaevA0oN8Yy62Ms9ZMcZ7BEljPqedVjeofpfLj3QwDa/NiGkwNOWr1dodEamXb2LGlnz5IZH49TpUpWW9ferUOr1qrDKQyf3c1fz6Zq7bpUqlbDrjIJColeb78flkpX8+5a+bB582bUajVt2rQxG//qq68AuH37NidPnsxx34QJE8yOR40axZ9//sn69et57rnn8lyvoHlXrFjBCy+8wNChQwEICgpi/PjxzJw5k2HDhiFJElu3bmX37t1cunSJSpUqAZhZUQtL//79AfJ14+/bt4/58+fzyCOGqgkTJ07kiy++4OjRowQHB+d6z8yZM/H392fp0qXyWK1atXJcd/36dUaMGMG2bdvo1q1brnNVqFABX1/fwj6SXRBKZBnH9G/JKwv2s2lkB7t/OZYJspf6KWcaeveg7nwb/i3Xk64D8EPEDzSr0owm3k1QKpRWWdNojTT22j7fvgOakBACVq20+nvaHqEgzZ/ugmcVH9bNmAxA3NVooUSWFtJTICx365LVmXADVG6FunTPnj20bGmZrkMJCQk0zKXWa1FIS0vD1dW8hJpGo+HatWtER0cTGBjIxo0bCQ0N5bPPPmPFihW4ubnx/PPPM23aNItb5dq1a8cvv/xCt27dqFixIqtXr+bBgwd07Ngxz3s2btxI586deeWVV9i9ezfVq1fn3XffZdCgQfI1Op2O/v378/7779O4ceM85/r000+ZNm0aNWvW5LXXXmPMmDE4OzuW2mZ3d/Y333xDYGAgLi4utG7dmkOHDuV7/b179xg2bBh+fn6o1Wrq1avH5s2bbSRt6SO7S/tOslYUILcGS8tPXCQYFLqNL2yUj2cdmcWALQOYun+qddd1dUUTkuVmTj12DH1qqlXXBNsn1xgJbNGS6g0aAXB2zy6bry8o20RHR+fpSi0Kq1ev5vDhwwwcOLBE83Tu3Jn169ezY8cOdDod586dY/bs2QDExMQAcOnSJfbu3cvp06fZsGEDc+fOZe3atbz77rslfo7srF69mvT0dCpXroxarWbIkCFs2LCBOnXy9kBdunSJ+fPnU7duXbZt28Y777zDyJEjWb58uXzNzJkzcXZ2ZuTIkXnOM3LkSH7++Wf+/vtvhgwZQlhYGB988IFFn88S2FWl/eWXXxg7diwLFiygdevWzJ07l86dOxMZGYmPj0+O67VaLU8//TQ+Pj6sXbuW6tWrEx0dTcWKFW0vfCkhu0s79JPthn8DvFgztK2wSpYEpSv4NoXYU4YtPaXQFoCygMpJxTdPfsPU/VPR6/XcSr1FZHykVdeUJImAVSvJjI/nfPsOVl3LmFwTdzVJTq5Rqp0KvtHCPEhKAiD5brzN1xYUE6WrwSJor7ULSWpqKi4uLiVa7u+//2bgwIF8//33+VrVCsOgQYO4ePEizz33HOnp6Xh4eDBq1CimTJmCQmGweel0OiRJYtWqVXh6egIwZ84cXn75Zb799luLWiM/+ugj7t27x/bt2/H29ubXX3+lV69e7Nmzh6ZNm+Z6j06nIzQ0lLCwMACCg4M5ffo0CxYs4PXXX+fo0aN8+eWXHDt2LN/v37Fjx8r7zZo1Q6VSMWTIEGbMmIFarbbYM5YUu1oi58yZw6BBgxg4cCCNGjViwYIFuLq65plltWTJEuLj4/n1119p3749gYGBPP744zRvLjIO88NVlbMIuShAbgEkCQZutbcUduWxGo+x/ZXtfPCI4Rfy2fiztFzRki1RW9hwfgOxybEWX1OSJBSmXxRWshA6SnJNy24vABBzIZLvh79JWoptSisJSoAkGX5Q2mMrgmHA29ubu3fvFvsxd+/eTffu3fniiy8YMGBAsecxIkkSM2fOJCkpiejoaGJjY+V4xKCgIAD8/PyoXr26rEACNGzYEL1ez7Vr10osg5GLFy/y9ddfs2TJEp588kmaN2/O5MmTCQ0N5ZtvvsnzPj8/Pxo1amQ21rBhQ65cuQIYQghu3bpFzZo1cXZ2xtnZmejoaN577718Yztbt25NRkaGw5VispsSqdVqOXr0KE89lVUQW6FQ8NRTT7F///5c79m4cSNt27Zl2LBhVK1alSZNmhAWFkZmPh0d0tLSSExMNNvKG6ZFyEUBcgsjLLkANK+S9UNOq9PywT8fMGnfJJ5e+zRJ2iSrrm3NTG1HsNQHtshSZBNv37J8T+18EGEvZZvg4GAiIiKKde+uXbvo1q0bM2fOZPBgyzYecHJyonr16qhUKn766Sfatm1LlSqGqhDt27fnxo0bJCVl/V05d+4cCoWCGjUsFzOc8rCMmNECaiqbLp/2q+3btycy0twjc+7cOQIeNkzo378/J0+eJDw8XN6qVavG+++/z7Zt2/KcNzw8HIVCkauX1p7YTYmMi4sjMzOTqlWrmo1XrVqV2NjcrReXLl1i7dq1ZGZmsnnzZj766CNmz57NJ598kuc6M2bMwNPTU978/f0t+hylhawi5LZ3x5UbtCmgTTbfysmXsK+bL8f7H+fZwGdp7duaKpqsMkB3Htyx+HqSRmPTupEA6WmZpKdl2lyxqlDJm9GrNsjH186ettnaS5cuFYpkGaZz586cOXMmhzXywoULhIeHExsbS2pqqqzsaLVawODC7tatGyNHjqRnz57ExsYSGxtLfHxWyMWGDRto0KBBkeaNi4tjwYIF/Pfff4SHhzNq1CjWrFljVkPxtddeo3LlygwcOJCIiAj++ecf3n//fd58880iubLj4+MJDw+XlejIyEhZNoAGDRpQp04dhgwZwqFDh7h48SKzZ8/mr7/+Mivu/eSTT5qVIBozZgwHDhwgLCyMCxcu8OOPP/Ldd98xbNgwACpXrkyTJk3MNqVSia+vr1ymaP/+/cydO5cTJ05w6dIlVq1axZgxY+jXr1+upYLsid0Ta4qCTqfDx8eH7777jpYtW9K7d28+/PBDFixYkOc948ePJyEhQd6uXr1qQ4kF5YpZdQwZmaZbOSpE7qxw5vPHP2dR50Xs7LWTCsoKVlvL1nUjAZZ+sJfvRu1mwyzbJ9k4OStp0dlQBiTq+BGS7xXfBVkQxi80MBRbTk+3bI90gePQtGlTQkJCWL16tdn422+/TXBwMAsXLuTcuXMEBwcTHBzMjRuGOM/ly5eTkpLCjBkz8PPzk7eXXnpJniMhISGHRa6geY1zh4aG0r59e86cOcOuXbtklzaAu7s7f/31F/fu3SM0NJS+ffvSvXt3uXwQZHVzyc/1u3HjRoKDg+XyOq+++irBwcGyPqFUKtm8eTNVqlShe/fuNGvWjB9++IHly5fTtWtXeZ6LFy8SFxcnH7dq1YoNGzbw008/0aRJE6ZNm8bcuXPp27dvgf8fRtRqNT///DOPP/44jRs3Zvr06YwZM4bvvvuu0HPYCrsl1nh7e+Pk5MTNmzfNxm/evJlnXSQ/Pz+USiVOTlnWtIYNGxIbG4tWq0WlUuW4R61WO1QQqiORos1Eo3RyCJddqcVYePzqgdzPGwuRl6OEG1uRvW6kPjUVybXwSQWFwVmlwK+2JzEXE+SxmIsJdkmyafHMc4Rv2wTAyR1baduzj1XWkSSJgQMHMmPGDKvML3AsJk2axPvvv8+gQYNk1+2uXbvyvWfZsmUsW7Ys32veeOMN3njjDbOxgub19vbOM5zNlAYNGvDXX3n3lI+KiqJOnTpUr169SPJlp27dugV2qMlNUX3uuefyrZdZ0BwhISEcOJDHd4qDYTdLpEqlomXLluzYsUMe0+l07Nixg7Zt2+Z6T/v27blw4YJZPMK5c+fw8/PLVYEU5E/oJ9tFO8SSYiw8PuGG+Tbugr0lK/Nkt0Zaa40Xx4Uw+MvHGfiZdbPBC6JyDX9UGoOSHHf1ilXXEj8syw/dunVj8ODBXL9+3d6iWIzNmzcTFhaGUmmdmrWOwJ49e3B3dy9Uu0lrYld39tixY/n+++9Zvnw5Z8+e5Z133iE5OVmuNTVgwADGjx8vX//OO+8QHx/PqFGjOHfuHJs2bSIsLEyONRAUjEZpnqktsrQtQK6ZmCYWMW1KuXFp2xwTZUeXmmqVH0SSJKFUO9mlvE92Qrp0B+Dc/j2kpz2wszSCssLo0aPLVL7AmjVreOWVV+wthlUJDQ0lPDycs2fP5hvSZ23sWieyd+/e3L59m0mTJhEbG0uLFi3YunWrnGxz5coVs8wof39/tm3bxpgxY2jWrBnVq1dn1KhR/O9//7PXI5Q6jJnad5K1cs1IgZWZVcdQT3LgVoPSU4S2ZILCU9Y72ABUqlFT3r907Aj129rXOioQCOyDRqPJt+i5rbB7/5zhw4czfPjwXM/lFj/Rtm3bUhMr4KgYMrXtb1Up02SPlYw9BTMexuf4tzG4wIUiWWIkjQZNSAipx44BWR1sLB0bmZ0Ns4/Ra0Irm7t9G7R7jM1ffQ5AhjbNpmsLBAJBdkpVdrZAUGowxkqOv26wQppiTLYpJ/wS+YvV5jZ2sKn7716rrWHE2MEGkDvY2BpJkqjVwjK9jgUCgaCkCCVSILAWkgRqdxiyp1wm2yRnGDqrrIhYQWqG9fpb5+hgY8V1HKGDjZGt335hbxEEAkE5RyiRApHzYW3kxBvrulgdjcXPLJb3H1n1iFUVSTOs+IZ2hKxlySRO/EGSdbsBCQQCQX4IJVLAc/P2kpyWQYo2Q5T7sRXl4HUO9Q0l0CNQPv6/f/6PywmXrb5u1Es90efTlqy0031MVsWKcwf/taMkAoGgvCOUyHKKRulEIz8PAKLikmk8eRuNJm0TdSNtxdLy0clm4wsb5f2dV3cycNtAq6xj2gZRGx3NpS5dra5I2utz4mxSEzc1MSGfKwUCgcC6FFuJPH/+PN999x2ffPIJU6dONdsEjo8kSfwxooOsSBoRdSOtiNI1K8km9hQkx5X5HtuSJLGk8xLaV2sPQFxqHJk6y7+/JEmi1rq1qAICAIMiGdXzZasqehtm2779oZGmTzxjl3UFZY87d+7g4+OTb4tAgeMxZcoUJElCkiSz3uK2plhK5Pfff0/Dhg2ZNGkSa9euZcOGDfL266+/WlhEgbVQKCQ2jexAxNTOHJn4lL3FKftIkqFWpBHTXttluMd2K99WzHg0q4Xe/BPzrbKOpFAQtGWzrEgaWyFaEkfI0DalLLvtBbZh+vTp9OjRg8DAQHls5MiRtGzZErVaTYsWLXK9b9u2bbRp04YKFSpQpUoVevbsWShFdNOmTbRu3RqNRoOXlxcvvPBCrtfduXOHGjVqIEkS9+7dk8eNfbGzb7GxsYV+5vj4eEaMGEH9+vXRaDTUrFmTkSNHkpBgbtnPbZ2ff/4537kDAwNz3PPpp5+aXbN69WpatGiBq6srAQEBfP755znmSUtL48MPPyQgIAC1Wk1gYCBLliyRz48bN46YmBhq1KhR6Oe2BsWqE/nJJ58wffp0UeS7DGCoGWn+NhA9ta2Iyi33XttlvMe2l0tWl6SFJxcyqNkg1E6W72kvKRTUWr+OyJahhgELK+bGDO3vR/9j0XmLivGxDmz4hTY9Xy3mJJaTR1A6SUlJYfHixWzbti3HuTfffJODBw9y8uTJHOeioqLo0aMHY8eOZdWqVSQkJDBmzBheeukljj2s2Zob69atY9CgQYSFhfHEE0+QkZHB6dOnc732rbfeolmzZnm2Y4yMjMTDI8uT5uPjU9Djyty4cYMbN24wa9YsGjVqRHR0NEOHDuXGjRusXbvW7NqlS5fy7LPPyscVK1YscP6pU6cyaNAg+bhChQry/pYtW+jbty/z5s3jmWee4ezZswwaNAiNRmNWM7tXr17cvHmTxYsXU6dOHWJiYsxaPru7u+Pu7o6Tk31rPhdLibx7926ZbylUngn9ZDuN/DxYM7QtriqhTFoUY/1IY51IbYrBIgll1hJp5OduP/PqJoPCs/78evo06GOdhUzer5f79afW+nUWfQ+bzpWelomzSmHzz4irpycAHlWqFnuO2wtO4DMyWHy+rYBer7ddNYJsaJw1hf4/3bx5M2q1mjZt2piNf/XVVwDcvn07VyXy6NGjZGZm8sknn8hd5caNG0ePHj1IT0/PtWd1RkYGo0aN4vPPP+ett96Sxxs1apTj2vnz53Pv3j0mTZrEli1bcpXdx8enUApdbjRp0oR169bJx7Vr12b69On069ePjIwMnJ2zVKOKFSvi6+tbpPkrVKiQ5z0rVqzghRdeYOjQoQAEBQUxfvx4Zs6cybBhw5Akia1bt7J7924uXbpEpUqVAMwsxY5EsZTIV155hT///FN+EQSlH2NP7SPRdwGIiEmk8eRthAZ4sWZoW/FFY0mMJX+ys/AxGPKPeSebMtQisbF3YzTOGlIzUgk7GMaj1R+lRgXLu2KMSTZpZ88aXNopKUhu1rHwLv1gL97+7vQa3wpJYbv/p1otWnLo1zXcvXGtSPdJSgVKPzfSY5JJj0lGn65DEt2rLE5qRiqtf2xtl7UPvnYQV2Xhyont2bOHli2LXry+ZcuWKBQKli5dyhtvvEFSUhIrVqzgqaeeylWBBDh27BjXr19HoVAQHBwstzr+/PPPadKkiXxdREQEU6dO5eDBg1y6dClPGVq0aEFaWhpNmjRhypQptG/fvsjPYUpCQgIeHh5mCiTAsGHDePvttwkKCmLo0KEMHDiwwO/DTz/9lGnTplGzZk1ee+01xowZI8+blpaGa7aOWhqNhmvXrhEdHU1gYCAbN24kNDSUzz77jBUrVuDm5sbzzz/PtGnT0NigJm5RKJYSWadOHT766CMOHDhA06ZNc7xpRo4caRHhBLbD2FM7RZvJKwv2ExGTCGQl2mR3eQsshDHZJvYUxF/Mao1opIy1SJzRYQajd40GIDoxmuru1S3+A0WSJAJXrpBd2pa2RjqrFPjV9iTmoiF+Ku5qEqtnHLZpG0Sl2kXev3P9KpWr+xfqPkmSqDK0OTcm77OWaIJSRHR0NNWqVSvyfbVq1eLPP/+kV69eDBkyhMzMTNq2bcvmzZvzvMeoEE6ZMoU5c+YQGBjI7Nmz6dixI+fOnaNSpUqkpaXRp08fPv/8c2rWrJmrEunn58eCBQsIDQ0lLS2NRYsW0bFjRw4ePEhISPGaAcTFxTFt2jQGDx5sNj516lSeeOIJXF1d+fPPP3n33XdJSkrKV8cZOXIkISEhVKpUiX379jF+/HhiYmKYM2cOAJ07d2bMmDG88cYbdOrUiQsXLjB79mwAYmJiCAwM5NKlS+zduxcXFxc2bNhAXFwc7777Lnfu3GHp0qXFekZrUSzN4LvvvsPd3Z3du3eze/dus3OSJAklspQiSRJuamc2jezAnWQtoZ9st7dIZR9JgsH/wHePGRTJ7JSxWMknA57ER+PDrdRbDN0+lOdrP8/0DtMtvo7k6mpujbRgP21JknhxXAjpaZmsDjtMwq1UOclGqbaNVc+nVm15X5tSxBaaZeP3iEOjcdZw8LWDdlu7sKSmpuLi4lLwhdmIjY1l0KBBvP766/Tp04f79+8zadIkXn75Zf76669cf0wZ4/k+/PBDevbsCRjiDWvUqMGaNWsYMmQI48ePp2HDhvTr1y/PtevXr0/9+vXl43bt2nHx4kW++OILVqxYUeRnSUxMpFu3bjRq1IgpU6aYnfvoo4/k/eDgYJKTk/n888/z1XHGjh0r7zdr1gyVSsWQIUOYMWMGarWaQYMGcfHiRZ577jnS09Px8PBg1KhRTJkyRQ4N0Ol0SJLEqlWr8HwYujJnzhxefvllvv32W4eyRhZLiYyKirK0HAIHwpBsI1xcNkOhMLRGNO2nbRorWcboUacHP/73I8npyZyKy0VxtgDZrZHWmF/l4kyvCa3skmQjSRIeVaqSePsmN6Mu4le3fsE3CWyGJEmFdinbE29vb+7evVvk+7755hs8PT357LPP5LGVK1fi7+/PwYMHc8RYgsGCCOYxkGq1mqCgIK5cuQLAzp07OXXqlJzcYiyh5e3tzYcffsjHH3+cqzyPPPIIe/fuLfJz3L9/n2effZYKFSqwYcOGPF3xRlq3bs20adNIS0tDrS5cYmDr1q3JyMjg8uXL1K9fH0mSmDlzJmFhYcTGxlKlShV27NgBGOIjwfBaVa9eXVYgARo2bIher+fatWvUrVu3yM9qLUpcbFyv14vi1AJBSZFbI7qV+RaJI0NGMu+JeQBEJURx7X7R4voKjQ1cy/aMFU68fROA2Ivn7CaDoHQTHBxMREREke9LSUmRrWZGjFnCujzKThlLBkVGRspj6enpXL58mYCHZbnWrVvHiRMnCA8PJzw8nEWLFgGG2M1hw4blKU94eLispBaWxMREnnnmGVQqFRs3biyURTY8PBwvL69CK5DGexQKRY7scScnJ6pXr45KpeKnn36ibdu2VKlSBYD27dtz48YNkkzamp47dw6FQmH3kj7ZKbYS+cMPP9C0aVM0Gg0ajYZmzZoVy5QscHxStJmkaEVbRIHlqFmhprx/KPaQHSUpvbTo/BwAZ3ZZN+xEfObLLp07d+bMmTM5rJEXLlwgPDyc2NhYUlNTZaVOq9UC0K1bNw4fPszUqVM5f/48x44dY+DAgQQEBBAcHAzAoUOHaNCggVyix8PDg6FDhzJ58mT+/PNPIiMjeeeddwDkai+1a9emSZMm8larVi3AYIUzKmFz587lt99+48KFC5w+fZrRo0ezc+fOfJXM7BgVyOTkZBYvXkxiYiKxsbHExsaSmWlohvD777+zaNEiTp8+zYULF5g/fz5hYWGMGDFCnif7M+7fv5+5c+dy4sQJLl26xKpVqxgzZgz9+vXDy8tQ5iwuLo4FCxbw33//ER4ezqhRo1izZo1ZwfDXXnuNypUrM3DgQCIiIvjnn394//33efPNNx3KlQ3FdGfPmTOHjz76iOHDh8sZUXv37mXo0KHExcUxZswYiwopsC+msZEiW1tgCaq6VaVFlRaE3w63zYJlUBGq3qAR4dv+AOBm1EWqmsRJWpKlS5cyZMgQ8ZkvgzRt2pSQkBBWr17NkCFD5PG3337bLN/BqBhGRUURGBjIE088wY8//shnn33GZ599hqurK23btmXr1q2ykpOSkkJkZCTp6enyPJ9//jnOzs7079+f1NRUWrduzc6dO2UFqzBotVree+89rl+/jqurK82aNWP79u106tRJvmbZsmUMHDgwzx9Ax44d4+BBQ8xqnTrmYUPGZ1QqlXzzzTeMGTMGvV5PnTp1mDNnjln9x+zPqFar+fnnn5kyZQppaWnUqlWLMWPGmMVJAixfvpxx48ah1+tp27Ytu3bt4pFHHpHPu7u789dffzFixAhCQ0OpXLkyvXr14pNPPin062QriqVEzps3j/nz5zNgwAB57Pnnn6dx48ZMmTJFKJFlgOwlf4yIbG2BpaiormiztaxRLzI7trbY1W/7KJu+NMSk/fvzD7w0Pvd4seKgVCrx9fWVrTPp6emoTHp2C8oOkyZN4v3332fQoEGyi3rXrl0F3vfqq6/y6qt5F7rv2LFjjs+EUqlk1qxZzJo1q1Cy5TbHBx98wAcffJDvfVFRUTz++ONFmjc7zz77rFmR8cLMExISwoEDB/K5wxDfuX///nyvAWjQoAF//fVXgdfZm2K5s2NiYmjXrl2O8Xbt2hETE1NioQT2x1jyJ2JqZ9EWUWBVPj30acEXFQNjvUiwTgvE7Ni6l7YkSVQNMlhRosKPkq5Ns+jcAwcOtNh8AselW7duDB48OM/OMKWRLVu2mCX9lEXCwsJwd3eXk5LsRbGUyDp16rB69eoc47/88otDZQ0JSoaxJaJhE9nadkObAtrkMueS9XE1xDilZqRaRfkyZmhbE3v30m7Z7QV5f/NXOfvvlgThvi4/jB49Gn//wtUaLQ0cOnTIzD1cFhk6dCjh4eGcO3fOrj/4iuWT/Pjjj+nduzf//POPHBP577//smPHjlyVS4FAUAKMpX58mxpqSipKXFTBIXi98eusPmf4ezHor0EsemaR5RcxVYSspKia9tK2tUu7TmhWKZWE27dsurZAILAflSpVklsi2pNifRv17NmTgwcP4u3tza+//sqvv/6Kt7c3hw4d4sUXX7S0jAJB+UPpauhWY0rsKUNR8jJikTRteXgw5iDpmen5XF1yLvfrbzWLp5HVYYfR62z3/6N0ceH59yYAWSVWBAKBwFYU26TRsmVLVq5cydGjRzl69CgrV66UM7gEAkEJkSRDu8MJN2D8daj0MPM29pR5UfJSjEJSsP3lrMz/yfsmk2LhZ7NFXKSpSzvhViqrphywqSLp5GwokBx78bzN1hQIBAIoghKZmJhotp/fJhAILICxALnaHYaYdEUxxkiWgTjJKq5V5P3fL/1O6x9bk66znEXSFnGRkiTRa3wrPH0MpU0SbqWyesZhm7m2XdwryPtndu+wyZoCgUAARVAivby8uHXLEHNTsWJFvLy8cmzGcUHZppTrLaUT09i+WXUgrJphW/Jsqf4PUUgKfuvxm9lYyIoQHmQ8sNwituhco5DoO6WNrEjaMsnGtOXhnetXbbKmQCAQQBESa3bu3CkHcf79999WE0jg+LyyYD+bRnYQ2Zu2xBgjeTVbDbKrByA5Dty8baIsWYOgikGcHHCSZj80k8cOxBygo39H+wlVDCSFZJde2pIkEdylO8e3/E7pfAcIBILSSqGVSNPCnfkV8RSUTTRKJxr5eRARk0hETCIp2kzc1KLguM0wxkgaYwa1KVlZ27PqGBTMN7eWWkVSkiRODDhB8x+aA5CWabmah2ZY2Wprrx9WkmRwKqXeF+FEAoHAdhQrsWbr1q3s3btXPv7mm29o0aIFr732Wo4enIKygbH4uJFXFuwXPXVtjTFGUuVmsDyaZm9fPVDqE24UkoLQqqFWXcNaGdr2RpeZAcCpnX/aWRJBaePOnTv4+Phw+fJle4siKAKBgYFIkoQkSdy7d89uchRLiXz//fflBJpTp04xduxYunbtSlRUVI4ekYKyg6vKYI0EiIhJ5E6ytkx+IZcKjJbJcRfsLYlVWHZ6mcXmsnXnGiO2/Gz41q4HgLuX/evGCUoX06dPp0ePHgQGBgJw4sQJ+vTpg7+/PxqNhoYNG/Lll1+a3bNr1y5ZgTHdYmNj81zn8uXLud5j2iYwPT2dqVOnUrt2bVxcXGjevDlbt27NMdf169fp168flStXRqPR0LRpU44cOVKk537++eepWbMmLi4u+Pn50b9/f27cuCGfj4yMpFOnTlStWhUXFxeCgoKYOHGiWS/w3MjtGX/++Wf5/N69e2nfvr0se4MGDfjiiy/M5pg/fz7NmjXDw8MDDw8P2rZty5YtW8yuOXz4MOvWrSvSM1uDYvkjo6KiaNSoEQDr1q2je/fuhIWFcezYMbp27WpRAQWOg9Ea2XjyNgBCP9lOIz8P1gxtiyQZXN4iTtKGSBKoXO0thUXJ0BksaqfvnGbf9X20q56zvWpRMWZoR7a0rpUzO6vDDtN3ShskhfU/E1UCall9DUHZIyUlhcWLF7Nt2zZ57OjRo/j4+LBy5Ur8/f3Zt28fgwcPxsnJieHDh5vdHxkZiYeHh3zs4+NT4Jrbt2+ncePG8nHlypXl/YkTJ7Jy5Uq+//57GjRowLZt23jxxRfZt2+fXELw7t27tG/fnk6dOrFlyxaqVKnC+fPni5zU26lTJyZMmICfnx/Xr19n3LhxvPzyy+zbtw8w9PkeMGAAISEhVKxYkRMnTjBo0CB0Oh1hYWH5zr106VKzvtsVK1aU993c3Bg+fDjNmjXDzc2NvXv3MmTIENzc3Bg8eDAANWrU4NNPP6Vu3bro9XqWL19Ojx49OH78uPzaValSxSGKjRdLiVSpVKSkGFxn27dvZ8CAAYChgroo8VO2cVU5ERrgxZFoQ9hCRExillIZ4PVQoRSKpF3QphgScErx6z+n4xyeWPMEAFGJURZRIgGbvSbGmpFxV5PkmpG9JrRCqbbND6yku/Ho9XrxGbQzer3eZhbv7EgaTaH//zdv3oxaraZNm6zQmDfffNPsmqCgIPbv38/69etzKJE+Pj5mClJhqFy5Mr6+vrmeW7FiBR9++KFsjHrnnXfYvn07s2fPZuXKlQDMnDkTf39/li5dKt9Xq1bRf0SNGTNG3g8ICOD//u//eOGFF0hPT0epVBIUFERQUJDZNbt27WLPnj0Fzl2xYsU8nzE4ONispnZgYCDr169nz549shLZvXt3s3umT5/O/PnzOXDggJkC7ggUS4ns0KEDY8eOpX379hw6dIhffvkFgHPnzlGjRo0C7haUZozWyBRtJq8s2E9ETNaPhiPRd0lNz8RVJRJu7EIZSLCp4lqFLoFd2HJ5S8EXFxcrupmNNSNXTTlAwq1UEm6l8v3of/Cr7cmL40KsptwpXVzk/fBtfxD8bPd8rhZYG31qKpEhLe2ydv1jR5FcC+eh2LNnDy1bFixnQkJCrlavFi1akJaWRpMmTZgyZYrcBjk/nn/+eR48eEC9evX44IMPeP755+VzaWlpuJi8lwE0Go1ZDsbGjRvp3Lkzr7zyCrt376Z69eq8++67DBo0qMC18yI+Pp5Vq1bRrl07lEplrtdcuHCBrVu38tJLLxU437Bhw3j77bcJCgpi6NChDBw4MM/P/vHjx9m3bx+ffPJJruczMzNZs2YNycnJtG3bNtdr7EmxYiK//vprnJ2dWbt2LfPnz6d69eoAbNmyxcyEKyibSJKEm9qZTSM7EDG1M0cmPiWfEyGSNiZ7e0RjyZ8yUIw8NcM6lhxrJ9cYa0Yau9gAxFxMsGrdSC/favL+zqULC39j6X17CCxAdHQ01apVy/eaffv28csvv8hWMgA/Pz8WLFjAunXrWLduHf7+/nTs2JFjx47lOY+7uzuzZ89mzZo1bNq0iQ4dOvDCCy+wceNG+ZrOnTszZ84czp8/j06n46+//mL9+vXExMTI11y6dIn58+dTt25dtm3bxjvvvMPIkSNZvnx5kZ//f//7H25ublSuXJkrV67w22+/5bimXbt2uLi4ULduXR599FGmTp2a75xTp05l9erV/PXXX/Ts2ZN3332XefPm5biuRo0aqNVqQkNDZaXTlFOnTuHu7o5arWbo0KFs2LBBDiN0JCR9OcuMSExMxNPTk4SEBLNYDkHxSdFm0GiSwaVdy9uNHWMfR2GDODDBQ/R6g+JoLPljSim0TI7bPY5tlw3vp1Ovn7LInHq9nqiXepJ29ixgsNYoCmmtKcmaqffTWfqBwYoy+MvHUaqt19/67J6/2fz1bADG/vx7npYPnTaTG5Mexn35ueEzMjjXa7VarRz7NWHCBFQqVY5rLkXNIypqLtWrv0aD+tOKJXefExf5O/4+8xrW5BVf+8d4WYLS4s7u3LkzderU4Ztvvsn1/OnTp+nUqROjRo1i4sSJ+c71+OOPU7NmTVasKHyHqAEDBhAVFSW7iG/fvs2gQYP4/XfD+7d27do89dRTLFmyhNSHr6dKpSI0NFSOXQQYOXIkhw8fZv/+/YVeGyAuLo74+Hiio6P5+OOP8fT05I8//jB7/a5evcr9+/c5ceIE77//PiNHjuSDDz4o9BqTJk1i6dKlXL1q3gggKiqKpKQkDhw4wP/93//x9ddf06dPH/m8VqvlypUrJCQksHbtWhYtWsTu3bvNFMldu3bRqVMn7t69W+SwAksh2h4KSoyxhiRAVFwyT87Zjc6GvYPLPZKUs+SPkVJY+qeNX9Zz7LuxL58rC48t2h/mtqY1lcbsBDQPkffXfpL3F76kVKD0cwMgPSYZfbptOuuUJyRJQuHqapetKCET3t7eeZbli4iI4Mknn2Tw4MEFKpAAjzzyCBcuFK1aROvWrc3uqVKlCr/++ivJyclER0fz33//4e7ubhab6Ofnl8Mi17BhQ65cuVKktcHw/PXq1ePpp5/m559/ZvPmzWbZ4gD+/v40atSIPn368OmnnzJlyhQyMzOL9IzXrl0jLc289m2tWrVo2rQpgwYNYsyYMUyZMsXsvEqlok6dOrRs2ZIZM2bQvHnzHFnyjoBoeygoMZIk8ceIDtTyNnwxRcUl89y8vaL8jy0xlvyZcMOwleLSPz3q9JD3f/rvJ8tNXIqsscXB1cNT3r9y+gQpCfdyvU6SJKoMbW4jqQSOTHBwMBERETnGz5w5Q6dOnXj99deZPn16oeYKDw/Hz8+vSOvndY+LiwvVq1cnIyODdevW0aNH1t+E9u3bExkZaXb9uXPnCAgIKNLa2dHpDD+msit72a9JT0+Xry0M4eHheHl5oVar8503v3ULe409EG0PBRZBoZDYMfZxnpyzm6i4ZCJiEkWSja0xFiMv5SgVSgY0GsAPET+w6+ouHmQ8wMXZpcD7BDD422V89+4bAET8s5PQ7nkkAZRtfVpQSDp37sz48eO5e/eubAA6ffo0TzzxBJ07d2bs2LFy7UcnJyeqVKkCwNy5c6lVqxaNGzfmwYMHLFq0iJ07d/Lnn1nF7r/++ms2bNjAjh07AFi+fDkqlUrOTF6/fj1Llixh0aJF8j0HDx7k+vXrtGjRguvXrzNlyhR0Op2Z+3jMmDG0a9eOsLAwevXqxaFDh/juu+/47rvvCv3cBw8e5PDhw3To0AEvLy8uXrzIRx99RO3ateXklVWrVqFUKmnatClqtZojR44wfvx4evfuLSffbNiwgfHjx/Pff/8B8Pvvv3Pz5k3atGmDi4sLf/31F2FhYYwbN05e+5tvvqFmzZo0aNAAgH/++YdZs2YxcuRI+Zrx48fTpUsXatasyf379/nxxx/ZtWuXWSkmR0G0PRRYDIXCYJE0lvwRCIrLS3Vf4oeIHwCYtG8SbzR+g0aVHS+o3NGoUNkbpdqF9LQHZGZk2FscgYPTtGlTQkJCWL16NUOGDAFg7dq13L59m5UrV8pldcBQ4sbY1Uar1fLee+9x/fp1XF1dadasGdu3b6dTp07y9XFxcVy8eNFsvWnTphEdHY2zszMNGjTgl19+4eWXX5bPP3jwgIkTJ3Lp0iXc3d3p2rUrK1asMIv3a9Wqlay8TZ06lVq1ajF37lz69u0rXzNlyhSWLVuWZxceV1dX1q9fz+TJk0lOTsbPz49nn32WiRMnyhZDZ2dnZs6cyblz59Dr9QQEBDB8+HCz0kAJCQlmVlGlUsk333zDmDFj0Ov11KlThzlz5phljut0OsaPH09UVBTOzs7Url2bmTNnyq8/wK1btxgwYAAxMTF4enrSrFkztm3bxtNPP53n/6W9KFZizdKlS3F3d+eVV14xG1+zZg0pKSm8/vrrFhPQ0ojEGutimmQTMbWzsETaC20yhD3Mupxwo9RZKPV6Pa1/bJ0jQ3t/n/24q9zzuCt/dCkpctmV+kePoHCz/muSnpbJd6N2AzBo7mOoXKz/edi24EtO//0XHV4dQOsXe+V6jWlyTbWp7VCocsZuisSa8sGmTZt4//33OX36NApFsQq2OByvv/46kiSxbNkye4tiVUpVYo0pM2bMwNvbO8e4j49PgZXcBeUHERIpKC6SJPHZY59R3b262fjoXaO5cLfk8Z726KG9OuwwepFwJnAwunXrxuDBg7l+/bq9RbEIer2eXbt2MW1a8X7UlBYaN25Mly5d7C1G8ZTIK1eu5FohPiAgoFgZUoKyySsL9ovkGkeglP4fdPTvyNaeWzne/7g8djDmIG9se4NMXeGzI43Yo4e2sYMNQMKtVFbPOGyzz0ReiTUCQXZGjx6Nv7+/vcWwCJIkER0dXWaeJy82b97MqVOnOH/+vF29qsVSIn18fDh58mSO8RMnTpj1wRSUP0zL/RiTawR2ZuFjkJZUaouPOyucWdFlBR39OwKQkJaATl/0sjQ5yvzY4LUwdrDx9NEAEHc1ifQ0634mMtPTATi5U8QmCwRllYCAAOrUqUOdOnXsGoZQrJX79OnDyJEj+fvvv8nMzCQzM5OdO3cyatQoXn31VUvLKChFGNsiGknRZpKizRAWSVujdAXfpob9+Iswo7ohRnLJs6VSkWzh04KwDhYIlTEp82Mrl7akkOg1oZV8vGH2Mauu61u7LgAelatYbQ2BQCCAYiqR06ZNo3Xr1jz55JNoNBo0Gg3PPPMMTzzxhIiJFJiV4wv9ZDuNJm0Trm1bI0kw+J8sRdLI1QMGi2QpZ+C2gcW6zx4ubQCl2kl2a1vbGlklMKjgiwQCgcACFEuJVKlU/PLLL/z333+sWrWK9evXc/HiRZYsWZJrBp+gfKFROhEaYF50/kj0XVK0wrVtUxQKGLInZ/HxpaXTGumuzMrKPnH7BPEP4os8hz061xjXffG9rI4y1rZGCgQCgS0okSM9MDCQZs2a8eyzz5a4Wryg7GB0aUdM7cyRiU/J48IaaQeMBcjdvLOskrGnSl0rRDC8r/a+ulc+fpDxoLgTWUiiopHdGpmhtW67wfgb17h1+ZJV1xAIBOWbYimRKSkpvPXWW7i6utK4cWM5I3vEiBF8+umnFhVQUDqRJAlXlTOV3VQi0cYRkCQYuNXeUpQYT7UnLk6ls3tNdmuktXCvlJXcuOJ/I4m7ctnqawoEgvJJsZTI8ePHc+LECXbt2oWLS9Yf9KeeeopffvnFYsIJSj/ZE20EdqSM9Y6+lXLL3iIUGckG/wdevtVo0imrs8XdmzFWX1MgEJRPiqVE/vrrr3z99dd06NDB7I9i48aNc7Q5EgjKmO4isDMPMg1ubGNbxBJRRsMrOg8dhV+9BvYWQ1AKuHPnDj4+Pnm2CBQ4JpIkIUmS3TrVGCmWEnn79m18fHxyjCcnJ9vkl7ag9CJK/ghKSvvq7QH4K/ov7mvvl2gue3SuEQgcienTp9OjRw8CAwMBg1L57LPPUq1aNdRqNf7+/gwfPpzExET5nr1799K+fXsqV66MRqOhQYMGfPHFF/muc/nyZVnxMd0OHDggX7N+/XpCQ0OpWLEibm5utGjRghUrzBPhpkyZQoMGDXBzc8PLy4unnnqKgwcPFvv5L1y4QIUKFXIoY4WRJTe++eYbGjZsiEajoX79+vzwQ94/dn/++WckSeKFF14wG8/tdZIkic8//1y+JiYmhrlz5xblUa1CsRq5hoaGsmnTJkaMGAFkuWgWLVpE27bCdSnIm9BPthv+DfBizdC24keHvSjFitOgpoP49/q/ALT7qR1ruq+hQaXCW92MZX7Szp6Vy/xIrq7WElcgcFhSUlJYvHgx27ZlFaZXKBT06NGDTz75hCpVqnDhwgWGDRtGfHw8P/74IwBubm4MHz6cZs2a4ebmxt69exkyZAhubm4MHjw43zW3b99O48aN5WPTBiWVKlXiww8/pEGDBqhUKv744w8GDhyIj48PnTt3BqBevXp8/fXXBAUFkZqayhdffMEzzzzDhQsXqFKlaLVR09PT6dOnD48++ij79u0zO1cYWbIzf/58xo8fz/fff0+rVq04dOgQgwYNwsvLi+7du5tde/nyZcaNG8ejjz6aY56YGPMQlC1btvDWW2/Rs2dPeczX1xdPT88iPa81KJYSGRYWRpcuXYiIiCAjI4Mvv/ySiIgI9u3bx+7duy0to6CUYyz5cyT6rjx2JPouqemZuKqK9RYUlJSlzxrK/5RCJb5l1ZZ0DuzMtsuGL74BWwZwqO+hQt9vLPMT2TLUWiIWCmEBLbvo9XqrZ9/nhbNKUegf55s3b0atVtOmTRt5zMvLi3feeUc+DggI4N133zWzggUHBxMcHCwfBwYGsn79evbs2VOgElm5cmV8fX1zPdexY0ez41GjRrF8+XL27t0rK26vvfaa2TVz5sxh8eLFnDx5kieffDL/B87GxIkTadCgAU8++WQOJbIwsmRnxYoVDBkyhN69ewMQFBTE4cOHmTlzppkSmZmZSd++ffn444/Zs2cP9+7dM5sn++vz22+/0alTJ4KCHK8GbLG+wTt06MCJEyeYMWMGTZs25c8//yQkJIT9+/fTtGnTgicQlCuMyTWp6ZmkaDP/v707D2vi+voA/k2AhLCKsiOiQCsuKJtFtNZdtGi1tdVXLSDuinWhpZW672Jxq7WoiEpFxQ21dUNEUSioiOKGoiLgBlgsAgJlSeb9I7+MRLYECQE8n+fJ02TmzsyZWwyHe+fey7ZGVjVvpEBNhVonFUWyik3WbfGrtBDga9V+XCMU0DsAppqm2HV3F4rLi3Hv1T10aNVB9hNU/BlTUjJ3dN11jPq5G/28N0PlpSJsn62cBpUpm3pDja8iU9mYmBg4OjrWWObFixcIDw9H7969qy1z48YNxMXFYcWKFbVe84svvsB///2Hjz/+GD/++CO++OKLKssxDIPz588jJSUF/v7+VZYpLS3F9u3boauri65du9Z67YrOnz+PQ4cOISkpCeHh4TWWlSUWACgpKZEabAwAAoEAV69eRVlZGdTU1AAAy5Ytg6GhISZOnIiYmJgar52dnY2TJ08iJCRExjtrWHInkWVlZZg6dSoWLlyIoKAgRcREmiHJlD8VSZJJqW3Uza04kml+VpuJPzfh1kgAmNRlEnbd3QUASPonSb4ksoL0b93RLvxIg/zMqfK40DfXQs7TN+xckbL+wiekvmVkZMDU1LTKfWPGjMHx48dRXFyMYcOGYceOHZXKtG7dGv/88w/Ky8uxZMkSTJo0qdpraWlpYd26dejZsye4XC6OHDmCESNG4NixY1KJZF5eHszMzFBSUgIVFRX8/vvvGDhwoNS5Tpw4gf/7v/9DUVERTExMEBkZCX19fZnv+9WrVxg/fjxCQ0Oho6NTbTlZYqnI1dUVO3bswIgRI+Dg4IDExETs2LEDZWVlyMnJgYmJCWJjYxEcHIykpCSZYg0JCYG2tja++uorme+vIcmdRKqpqeHIkSNYuHChIuIhzVxVXdsVUTe3gvE0pVsjy4rE25ogHZ4O+rfpj6gnUVh1ZRXG2IyR+VhlPRcpmSsyaM4lhV+LKI8qj4spm6pvuVP0tWVVXFxcqeVMYsOGDVi8eDEePHgAPz8/+Pj44Pfff5cqExMTgzdv3uDy5cuYN28erK2tMWZM1f8O9fX14ePjw37u1q0bXrx4gV9++UUqidTW1kZSUhLevHmDqKgo+Pj4wNLSUqp7uW/fvkhKSkJOTg6CgoIwatQoXLlypcoBv1WZPHkyxo4di88++6zGcrLEUtHChQuRlZWF7t27g2EYGBkZwdPTE2vXrgWXy0VBQQHc3d0RFBQkc9K7c+dOjBs3rtr/T8pWp9/Ukr8e5s6dW9/xkGauYtd2RRW7uYkCvdsa2cS1023Hvo97EYcepj1kOk6Zz0VSK3vzx+FwmkQLs76+PnJzq/6D3tjYGMbGxrCxsUHLli3Rq1cvLFy4ECYmJmyZdu3E//5sbW2RnZ2NJUuWVJtEVsXZ2RmRkZFS27hcLqytrQEAdnZ2uHfvHlavXi2VuGlqasLa2hrW1tbo3r07PvroIwQHB8PPz0+m654/fx5//vknAgICAIi7q0UiEVRVVbF9+3ZMmDBB5lgqEggE2LlzJ7Zt24bs7GyYmJhg+/bt0NbWhoGBAW7duoX09HSp5yNFIvGzs6qqqkhJSYGVlRW7LyYmBikpKY16/u06JZEfffQRli1bhr///huOjo7Q1JRuyZg1a1a9BEeap6q6tkkDakZJzIyuM7DjtribbWrkVCS5J0GFK+Mv72ZUD4TUhb29PUJDQ2stJ0l0SkpKaixT0/6qJCUlSSWldT2vvNeOj4+HUPi2IeP48ePw9/dHXFwczMyq/wNb1uuoqamhdevWAMTT+AwdOhRcLhc2Nja4ffu2VNkFCxagoKAAmzZtgrm5udS+4OBgODo6yv28Z0Oq02/y4OBgtGjRAomJiUhMTJTax+FwKIkk76WoVEgDbIhM1FTUsKnvJsy+MBsAkJKbgo6tOsp/IhopTT5Arq6u8PPzQ25uLvT09ACIR2xnZ2ejW7du0NLSwt27d+Hr64uePXuyc0lu2bIFbdq0gY2NeGqtS5cuISAgQOp3/2+//YajR48iKioKgPjZPh6Px47qDg8Px86dO6WetVy9ejWcnJxgZWWFkpISnDp1Cnv27EFgYCAA8VzUK1euxBdffAETExPk5ORgy5YteP78Ob755huZ77tDB+nnp69duwYul4vOnTvLHAsgXr3v+fPn7FyQDx48wNWrV+Hs7Izc3FysX78ed+7cYQfFqKurS10DADs/5bvb8/PzcejQIaxbt07m+1KGOiWRaWlp7HvJNBX0C5/UF6cV52iADZFZH/M+7Pu99/Zi5acr5T5H2lcjYXn6FDjcOq2/0Ki9fPwIH3Wj+XtJZba2tnBwcMDBgwcxdepUAOIu2aCgIMydOxclJSUwNzfHV199hXnz5rHHiUQi+Pn5IS0tDaqqqrCysoK/vz97DgDIycmptILd8uXLkZGRAVVVVdjY2ODAgQP4+uuv2f2FhYWYMWMGnj17xk5iHhoayk6Zo6Kigvv37yMkJAQ5OTlo1aoVunXrhpiYGKm5J/v06YO2bdti9+7dda6b2mIBxPM5PnnyhP0sFAqxbt06pKSkQE1NDX379kVcXBybfMsjLCwMDMPI9XiAMnCYOk5WFhwcjA0bNuDhw4cAxF3cc+bMqXF0VmOQn58PXV1d5OXl1TgqizQshmHwzdZ4qQE3yctcqdtbEUoLgVX/G5Hp97zJTvNT0bRz09gJyK+MvQINtdoHyTAMg7SvRqLk3j0AAL9DhwYZpV1WImSnf5m88TPw1BXzM77ju4nIe5mNtl0dMPLnZVL7RKVCvFgknhfPdFkPcHmVHwEoLS3FqlWrAAA///wzeDxepTKP0zYjLW0jzMzGwqb98jrFOeZmKi78W4DNHdrgG+OWdToHqbuTJ0/C19cXd+7cAbeZ/BFlYWGBpUuXYvz48coORaF2796NOXPmVJpnsiHV6Sdm0aJFmD17NoYNG4ZDhw7h0KFDGDZsGObOnYtFixbVd4zkAyAZcHNtwQB2W1GpkCZkVrRtnwElb5p8d+70rm8nR45+Gi3TMRwOB+2OHAbPwgIA2FHaDenouusK+xnv+Jl44uXnKfcUcn7SPLi5uWHKlCl4/vy5skOpF3fv3oWuri48PDyUHYpCaWlpYdq0acoOo27d2YGBgQgKCpJqZv3iiy/QpUsXfPfdd1i2bFkNRxNSNfGAm7ctItStrSAVJx3/N1U8UtvYVjxqm6fZJAecdDV4++B5+KNwfG75uUzHcbhctAs/0qCjtBtqrkgdA/F0J2X/FaO8rAyq/5vomJB3zZkzR9kh1JtOnTrh1q1byg5D4STzTKqoKHcWgDq1RJaVlcHJqfKXrqOjI8rLy987KPLhkswjKSGZN5LUIw4HmHJJnDhKZN0WJ5M7BzfZVkmPjuKWB1WunH8bN3DSLJkrUtEsHbqx7/97U6Dw6xFCGo5kiiPJNEvKUqck0t3dXWqEksT27dsxbty49w6KfLioW7uBcLni1Wr8nksnk08viycgb4Lat2yv7BBkVrFlXVE/23yNt1OvPb6eoJBrEEI+bHV+ojs4OBhnz55lF26/cuUKnjx5Ag8PD6lZ6devX//+UZIPSlXd2h1NdHDiu0/B5Ta9rtZGi8MRD6qZGgMU5gAB1sqOqF78/fxvlApLwVOpPBCkMVLUGtoqqqpQ19LGf28KIKIeIkKIAtSpJfLOnTtwcHCAgYEBUlNTkZqaCn19fTg4OODOnTu4ceMGbty4IfPakIS8691u7eTMfPRffxEiEbVI1jsOB+Apfsk/RTMQGLDvr2Vfq9M5RMXFDdLqLXkuEgD7XKQitOnURSHnJYQQoI4tkRcuXKjvOAiRIunWLioVYujmWKTlFCItpxBDN8fi5KxPaaANqaS7SXf2/aorq3DiyxNyn+Nhz08hcHCAxd5Qhf6MvbuGNj2uQQhpiprHpFCkWeJwONDkqyLKpzfa6Yuf70rOzKeBNqRKHA4HAy0GAgDUVdRlP04ggMDh7UCX4uvXG2Sqn4pJqiKn+iGEEEVpFEnkli1b0LZtW6irq8PZ2RlXr16V6biwsDBwOByMGDFCsQESpeJyOTjx3afKDoM0AV9//HXthd7B4XBgsTcUH/0dq4CIqtdQXdqEEKIoSk8iDxw4AB8fHyxevBjXr19H165d4erqipcvX9Z4XHp6On744Qf06tWrgSIlykS910QeQka+1moOhwOuQKCgaKq/ZkNM9QOIl6kjpCqvXr2CoaEh0tPTlR0KkUOfPn3A4XDA4XCUOv5E6Unk+vXrMXnyZHh5eaFjx47YunUrNDQ0sHPnzmqPEQqFGDduHJYuXQpLS8saz19SUoL8/HypFyGkeXv0+hEe5z1Wdhi1UvSzvZIu8oQ/Dyv0OqTpWrlyJYYPH17l+s6vXr1C69atweFwpJbWi42NRc+ePdGqVSt2XekNGzbUeq2DBw/Czs4OGhoasLCwwC+//FJt2b///huqqqqws7OT2t62bVs2ear48vb2lvWWAaDKc4SFhUmV2bJlCzp06ACBQID27dvjjz/+qPW8T548gZubGzQ0NGBoaAhfX1+p+bNlqbuCggLMmTMHFhYWEAgE6NGjBxISpKfpCg8Pl7nXVpGUujBxaWkpEhMT4efnx27jcrkYMGAA4uPjqz1u2bJlMDQ0xMSJExETE1PjNVavXo2lS5fWW8yEkMbrY72P2fd3c+7CUrfmPzKbO3VtbQCAVstWSo6ENEZFRUUIDg5GRERElfsnTpyILl26VFoSUVNTEzNnzkSXLl2gqamJ2NhYTJ06FZqampgyZUqV5zp9+jTGjRuHzZs3Y9CgQbh37x4mT54MgUCAmTNnSpV9/fo1PDw80L9/f2RnZ0vtS0hIgFD4tqfhzp07GDhwIL755hu573/Xrl0YPHgw+7lFixbs+8DAQPj5+SEoKAjdunXD1atXMXnyZOjp6WHYsGFVnk8oFMLNzQ3GxsaIi4tDZmYmPDw8oKamxq5DL0vdTZo0CXfu3MGePXtgamqK0NBQDBgwAMnJyTAzMwMAtGzZslE0iik1iczJyYFQKISRkZHUdiMjI9y/f7/KY2JjYxEcHCxz862fn5/UvJX5+fkwNzevc8yENHtNeICHvkAfzibOuJJ55f1O1ITroCIrx09wOyoCxfl5yg7lg8IwDMpLSpRybVU+X+YW7lOnToHP57PzPVcUGBiI169fY9GiRTh9+rTUPnt7e9jb27Of27Zti/DwcMTExFSbRO7ZswcjRoxg13u2tLSEn58f/P394e3tLRXztGnTMHbsWKioqODYsWNS5zEwMJD6vGbNGlhZWaF3794y3XNFLVq0gLGxcbXxTp06FaNHj2bjTUhIgL+/f7VJ5NmzZ5GcnIxz587ByMgIdnZ2WL58OX766ScsWbIEPB6v1rorLi7GkSNHcPz4cXz22WcAgCVLluCvv/5CYGAgVqxYIfd9KpJSk0h5FRQUwN3dHUFBQdDX15fpGD6fDz6fr+DISEMqKhVCoKZC0/woyq7B4gnIm2j9qnLe/2st/Vt3tAs/0gx+xsTx573MRklRodQqNkRxyktK8Kun/IO86sOskMNQU5dtdoKYmBg4OjpW2p6cnIxly5bhypUrePy49sdCbty4gbi4uBoTnJKSEmhoSM9HKxAI8OzZM2RkZLDd6bt27cLjx48RGhpaa8JUWlqK0NBQ+Pj41Onfqre3NyZNmgRLS0tMmzYNXl5e7HlKSkqg/k49CgQCXL16FWVlZVCrYi36+Ph42NraSjWMubq6Yvr06bh7965U8ijxbt2Vl5dDKBRWee3Y2IYd/CcLpT4Tqa+vDxUVlUrN1dnZ2VX+dZCamor09HQMGzYMqqqqUFVVxR9//IE///wTqqqqSE1NbajQiRI5rTiHb7bG05Qo9UlN4+3yh1m3m+zSh++DIxCA36EDAKDk3r0GmeZH0czad2TfF77OVWIkpDHKyMiAqamp1LaSkhKMGTMGv/zyC9q0aVPj8a1btwafz4eTkxObkFXH1dUV4eHhiIqKgkgkwoMHD7Bu3ToAQGZmJgDg4cOHmDdvHkJDQ6GqWvsfg8eOHcPr168xfvz4Wsu+a9myZTh48CAiIyMxcuRIzJgxA5s3b5aKd8eOHUhMTATDMLh27Rp27NiBsrIy5OTkVHnOrKysKntWJfsqqq7utLW14eLiguXLl+PFixcQCoUIDQ1FfHw8W0+NiVJbInk8HhwdHREVFcVO0yMSiRAVFVXpGQkAsLGxwe3bt6W2LViwAAUFBdi0aRN1UzdjkhVsrmWIfxFey8hFcZkQGrwm1ZjeeHE4gNcZYLX4eRuUFokTyybcEpddlF17oQo4HA7ahu5BiqOTgiJqeOpaWlDX1MJ/hW+UHcoHRZXPx6wQ5QxmUpWj5624uLhSi5efnx86dOiAb7/9ttbjY2Ji8ObNG1y+fBnz5s2DtbU1xowZU2XZyZMnIzU1FUOHDkVZWRl0dHQwe/ZsLFmyBFwuF0KhEGPHjsXSpUvx8ccfV3mOdwUHB2PIkCGVEmFZLFy4kH1vb2+PwsJC/PLLL5g1axa7PysrC927dwfDMDAyMoKnpyfWrl0LLvf9299qqrs9e/ZgwoQJMDMzg4qKChwcHDBmzBgkJia+93Xrm9J/A/v4+MDT0xNOTk745JNPsHHjRhQWFsLLywsA4OHhATMzM6xevRrq6uro3Lmz1PGSB2Hf3U6aF8kKNq8KS+G04pyyw2meKiaMAdbilkmvMwBPs0klk+WMeCTkpuub0EW/Cz4x+UT2g5V4n9Sy3nxwOByZu5SVSV9fH7m50i3U58+fx+3bt3H4sDgJlvxc6uvrY/78+VIDVdu1awcAsLW1RXZ2NpYsWVJtEsnhcODv749Vq1YhKysLBgYGiIqKAiB+3rCgoADXrl3DjRs32EYkkUgEhmGgqqqKs2fPol+/fuz5MjIycO7cOYSHh9dLXTg7O2P58uUoKSkBn8+HQCDAzp07sW3bNmRnZ8PExATbt2+HtrZ2pecyJYyNjSuNmJb0tL7bu1pT3VlZWeHixYsoLCxEfn4+TExMMHr06Fpno1EGpSeRo0ePxj///INFixYhKysLdnZ2OHPmDNsE/OTJk3rJ+knTx+FwoMFTUXYYzZeaBmDeHXh6Wfw567a4ZdK8OzDhTJNJJEd9PIodWHPn1R35kkglOrruOkb93K0ZPIdJmgp7e3uEhoZKbTty5AiKKzzKkZCQgAkTJiAmJgZWVlbVnkskEqFEhsFEKioq7Ajj/fv3w8XFBQYGBhCJRJV6Gn///XecP38ehw8fZpMuiV27dsHQ0BBubm61XlMWSUlJ0NPTqzSGQk1NDa1btwYgXuBk6NCh1eYkLi4uWLlyJV6+fAlDQ0MAQGRkJHR0dNCxY8cqjwGqrztNTU1oamoiNzcXERERWLt2bV1vT2GUnkQCwMyZM6vsvgaA6OjoGo/dvXt3/QdEmoSi0rfTPNBAm3rA4YiTxdJC8eCarP99oT+9LH5Gktc0BmUMajsIw58Nx/HU40jMTsSEzhPqdqIGaBmUrFqT8/QNu2qNGl8xfyi9TH+MlqatFXJu0jS5urrCz88Pubm50NPTA4BKiaLk+b8OHTqwPX9btmxBmzZtYGNjAwC4dOkSAgIC2K5gAPjtt99w9OhRtrUxJycHhw8fRp8+ffDff/9h165dOHToEC5evAhAPL3fuz2KhoaGVfZAikQi7Nq1C56enjI9O/muv/76C9nZ2ejevTvU1dURGRmJVatW4YcffmDLPHjwAFevXoWzszNyc3Oxfv163LlzByEhIWyZo0ePws/Pj51NZtCgQejYsSPc3d2xdu1aZGVlYcGCBfD29maTU1nqLiIiAgzDoH379nj06BF8fX1hY2PD9tA2Jo0iiSSkLip2aztZ6OHQNBdKJN8XhwPwtcSjswtzxN3aTZAKV5yIXXp2CXkledDl68p9joYYoS1ZtSZoziWFXUPyPOTL9Mew6fGZwq5Dmh5bW1s4ODjg4MGDmDp1qszHiUQi+Pn5IS0tDaqqqrCysoK/v7/UOXJycioNdg0JCcEPP/wAhmHg4uKC6OhofPKJ/D0F586dw5MnTzBhQtV/II4fPx7p6enVNkKpqalhy5YtmDt3LhiGgbW1NbvwiYRQKMS6deuQkpICNTU19O3bF3FxcVKTsufl5SElJYX9rKKighMnTmD69OlwcXGBpqYmPD09sWzZMraMLHWXl5cHPz8/PHv2DC1btsTIkSOxcuXKKkeEKxuH+cAexMnPz4euri7y8vKgo6Oj7HCInBiGwTdb49kBNhUlL3OlgTb1qbQQWPW/B9Z/ftFkWiIBIOXfFHz919spVq5/ex1qKrV/ATMMg7SvRqLk3j0AQPvrieC+My1JfSsrEWL7bHFrzJRNveu9JTJi66+4c+EsnL8chU//zwMAICoV4sWiOACA6bIe4FbxmEhpaSk7QfLPP/8MHo9XqczjtM1IS9sIM7OxsGm/vE7xjbmZigv/FmBzhzb4xrhlnc5B6u7kyZPw9fXFnTt3ms2jY71790bfvn2xZMkSZYeiUOnp6WjXrh1u3LhRaWWfhkK/cUmTIhlgU1wm7souKhXSQBtSSfuW7dG/TX9EPRF3pb367xWMNaueVLgiZY/QVsTf9LwmMMCDKI+bmxsePnyI58+fN4sZTvLy8pCamoqTJ08qOxSFGjJkCC5dUlwPhqyax58d5IMiHmCj+r8XDbQhVdvYdyPUuHXo/lHiIxFH112nUdqkwc2ZM6dZJJAAoKuri2fPnkFLS0vZoSjUjh07cPPmTTx8+LDGQTuKRi2RhBCiRA05uIYQ0jxIRrgrG7VEEkKIEkkG1xBCSFNDSSQhhCgZzSpACGmKKIkkzQY9SqZAVLkNhp6JJIQ0FZREkmZj6OZYiET0C1ghdg2mRLKB0OAaQkhTQUkkadIEairoaCKe7zMtpxBDN8fSL+D6oqYhXj8bEK9eU1qo3HiaMcngGgDs4BpCCGnsKIkkTRqHw8GJ7z5FO33xRNjJmfnsHJLkPXE4gNeZt5+bcGvkyceNe844GlxDCGmKKIkkTR6XK04kiQLwNJt0a2SZqAwAsPH6RrwpfaPkaGpGg2uIMrx69QqGhoZIT09XdihEDn369AGHwwGHw0FSUpLS4qAkkjQL9PtXQZp4a+Tez/ey7/ck75H/BE3oXgmpi5UrV2L48OFSa0JLkpOKr7CwMKnjtmzZgg4dOkAgEKB9+/b4448/ar3WkydP4ObmBg0NDRgaGsLX1xfl5eXs/tjYWPTs2ROtWrWCQCCAjY0NNmzYIHWOgoICzJkzBxYWFhAIBOjRowcSEhLkvu8HDx5g+PDh0NfXh46ODj799FNcuHCB3f/q1SsMHjwYpqam4PP5MDc3x8yZM5Gfn1/jef/991+MGzcOOjo6aNGiBSZOnIg3b97+AbtkyZIq61dT8+2ysuHh4XByckKLFi2gqakJOzs77Nkj/f0VHh6Oq1evyn3f9Y0mGyeE1EzSGpl1W/wqK2oy62h3MegCgaoAxeXF+P3m73Bt5wpLXUuZj0//1h3two9QKyFploqKihAcHIyIiIhK+3bt2oXBgwezn1u0aMG+DwwMhJ+fH4KCgtCtWzdcvXoVkydPhp6eHoYNG1bltYRCIdzc3GBsbIy4uDhkZmbCw8MDampq7BrtmpqamDlzJrp06QJNTU3ExsZi6tSp0NTUxJQpUwAAkyZNwp07d7Bnzx6YmpoiNDQUAwYMQHJyslwTcA8dOhQfffQRzp8/D4FAgI0bN2Lo0KFITU2FsbExuFwuhg8fjhUrVsDAwACPHj2Ct7c3/v33X+zbt6/a844bNw6ZmZmIjIxEWVkZvLy8MGXKFPaYH374AdOmTZM6pn///ujWrRv7uWXLlpg/fz5sbGzA4/Fw4sQJeHl5wdDQEK6urmyZ2hLaBsF8YPLy8hgATF5enrJDIfWosKSMsfjpBGPx0wmmsKRM2eE0P/8VMMxiHfHrvwJlRyOXKy+uMJ13d2Y67+7MRGVE1VpeJBIxqSO+ZJLb2zDJ7W0YYWFhA0TJMKX/lTO/TY1ifpsaxZT+V15v5z2/axsTMMqNidkfwm4TlpQzT3+6xDz96RIjLKn6WiUlJczixYuZxYsXMyUlJVWWSX38K3MuypK5d39BneP7v6RHjNH5G8zBzFd1PkdjIxKJGGFJuVJeIpFI5jgPHTrEGBgYVNoOgDl69Gi1x7m4uDA//PCD1DYfHx+mZ8+e1R5z6tQphsvlMllZWey2wMBARkdHp9qfL4ZhmC+//JL59ttvGYZhmKKiIkZFRYU5ceKEVBkHBwdm/vz51Z7jXf/88w8DgLl06RK7LT8/nwHAREZGVnvcpk2bmNatW1e7Pzk5mQHAJCQksNtOnz7NcDgc5vnz51Uek5SUVCmWqtjb2zMLFkj/O0tLS2MAMDdu3KjxWEWilkhCSO0qtsRt+wyYekncGtkEWug+MfkEXQ264uY/N2Uqz+Fw0DZ0D1IcnRQcGWmumDIRXiyKU8q1TZf1AIcn27KZMTExcHR0rHKft7c3Jk2aBEtLS0ybNg1eXl5si3xJSQnU1dWlygsEAly9ehVlZWVQU6u8Zn18fDxsbW1hZGTEbnN1dcX06dNx9+5d2NvbVzrmxo0biIuLw4oVKwAA5eXlEAqFVV47NjZWpnsGgFatWrFd8A4ODuDz+di2bRsMDQ2rrY8XL14gPDwcvXv3rva88fHxaNGiBZyc3n53DBgwAFwuF1euXMGXX35Z6ZgdO3bg448/Rq9evao8J8MwOH/+PFJSUuDv7y/zPTYUeiaSEFK7itP9/JsKrDYDdjat5yPlouTkmGmu9UoalYyMDJiamlbavmzZMhw8eBCRkZEYOXIkZsyYgc2bN7P7XV1dsWPHDiQmJoJhGFy7dg07duxAWVkZcnJyqrxWVlaWVAIJgP2clZUltb1169bg8/lwcnJik1kA0NbWhouLC5YvX44XL15AKBQiNDQU8fHxyMzMlPm+ORwOzp07hxs3bkBbWxvq6upYv349zpw5Az09PamyY8aMgYaGBszMzKCjo4MdO3ZUe96srCwYGhpKbVNVVUXLli0r3SMA/Pfff9i7dy8mTpxYaV9eXh60tLTA4/Hg5uaGzZs3Y+DAgTLfY0OhlkhCSO04HGDKJWD7Z+LnIgHg6WXxaG2+lnJjk8Om65vQr00/ZYdRq6PrrmPUz93oWcwmiqPGhemyHkq7tqyKi4srteoBwMKFC9n39vb2KCwsxC+//IJZs2ax+7OystC9e3cwDAMjIyN4enpi7dq14HLfv20qJiYGb968weXLlzFv3jxYW1tjzJgxAIA9e/ZgwoQJMDMzg4qKChwcHDBmzBgkJibKfH6GYeDt7Q1DQ0PExMRAIBBgx44dGDZsGBISEmBiYsKW3bBhAxYvXowHDx7Az88PPj4++P3339/7HgHg6NGjKCgogKenZ6V92traSEpKwps3bxAVFQUfHx9YWlqiT58+9XLt+kItkYQQ2XC5wNQY4IdHb7c1kdHaWjxxolsqLFVyJNWjCcebDw6HAy5PRSkvef7w0NfXR25ubq3lnJ2d8ezZM5SUlAAQdx/v3LkTRUVFSE9Px5MnT9C2bVtoa2vDwMCgynMYGxsjOztbapvks7GxsdT2du3awdbWFpMnT8bcuXOxZMkSdp+VlRUuXryIN2/e4OnTp2wXuqWl7APmzp8/jxMnTiAsLAw9e/aEg4MDfv/9dwgEAoSEhFSK28bGBl988QW2bduGwMDAals9jY2N8fLlS6lt5eXl+PfffyvdIyDuyh46dGilFloA4HK5sLa2hp2dHb7//nt8/fXXWL16tcz32FAoiSTNTlGpkLoDFYXDATT1peeOLCtSbkwymNZFPBqyMbfs0YTjpKHZ29sjOTm51nJJSUnQ09MDn8+X2q6mpobWrVtDRUUFYWFhGDp0aLUtkS4uLrh9+7ZUkhUZGQkdHR107Nix2muLRCI2ea1IU1MTJiYmyM3NRUREBIYPH17rfUgUFYm/s96NlcvlQiSq/o83yb6q4gHE9/j69WupVtHz589DJBLB2dlZqmxaWhouXLhQZVd2ddeu7rrKRN3ZpNlxWnEOThZ6ODTNpVEnDU2WZO7I1f+bToMS9npDP6+kIbm6usLPzw+5ubnss4B//fUXsrOz0b17d6irqyMyMhKrVq3CDz/8wB734MEDXL16Fc7OzsjNzcX69etx584dqVa8o0ePws/PD/fv3wcADBo0CB07doS7uzvWrl2LrKwsLFiwAN7e3mxyumXLFrRp0wY2NjYAgEuXLiEgIIDtRgeAiIgIMAyD9u3b49GjR/D19YWNjQ28vLxkvm8XFxfo6enB09MTixYtgkAgQFBQENLS0uDm5gYAOHXqFLKzs9GtWzdoaWnh7t278PX1Rc+ePdk5Na9evQoPDw9ERUXBzMwMHTp0wODBgzF58mRs3boVZWVlmDlzJv7v//6v0rOnO3fuhImJCYYMGVIpvtWrV8PJyQlWVlYoKSnBqVOnsGfPHgQGBsp8jw2FkkjSLAjUVOBkoYdrGeKumWsZuSguE0KDRz/iCvHuaO2Z18Td3YSQJsPW1hYODg44ePAgpk6dCkDcurhlyxbMnTsXDMPA2toa69evx+TJk9njhEIh1q1bh5SUFKipqaFv376Ii4uTmrA8Ly8PKSkp7GcVFRWcOHEC06dPh4uLCzQ1NeHp6Ylly5axZUQiEfz8/JCWlgZVVVVYWVnB39+fjU1yXj8/Pzx79gwtW7bEyJEjsXLlSqkR4UuWLMHu3burXYVHX18fZ86cwfz589GvXz+UlZWhU6dOOH78OLp27QoAbGI5d+5clJSUwNzcHF999RXmzZvHnqeoqAgpKSkoKytjt+3duxczZ85E//79weVyMXLkSPz6669S1xeJRNi9ezfGjx8PFZXKI+kLCwsxY8YMPHv2jJ10PTQ0FKNHj67yfpSJfsOSZoHD4eDQNBe8KiyF04pzAMTd2gI1+Z4RIjKSjNbOui0erf2bU5OY9udpwVPkleRBl6+r7FBqRY9kkIawaNEi+Pr6YvLkyeByuRg8eLDUJONV6dChA27cuFFjmfHjx2P8+PFS2ywsLHDq1Klqj/nuu+/w3Xff1XjeUaNGYdSoUTWWSUtLq3UAipOTU5WTrEtIEuOa9OnTp9K/05YtW9Y4GTkg7jZ/+vRptftXrFjBTmvU2FHTAWk2OBwONCrMj+a04hzcfo2FSES/jOudZLR2Syvx50Y+7U/FpHHT9U1KjER2R9ddp0SSKJybmxumTJmC58+fKzuUesEwDKKjo7F8+XJlh6JQQ4YMQadOnZQdBiWRpHmRdGtLJGfmo//6i5RIKgKXK+7GlgyyAcTT/jTCgTbtdNuBx+UBAA49OKTkaKpHI7SJMsyZMwfm5ubKDqNecDgcZGRkNJv7qc6OHTtw8+ZNPHz4sMaBSYpGSSRpViTd2neXuqKdvnh957ScQvRffxGFJeUoKhW/qIWnnlQ17U8jtbHvRgCAQFUg34EN+LNCI7QJIbIwMzODtbU1rK2twePxlBYHJZGk2eFwONDkqyLKp7dUItlpcQQ6LhK/vtkaT4lkfeFwAJ6GsqOoVTvddgCA4vJirL4i+3xraV+NBFPDtB/1jZ7hJYQ0FZREkmaLy+Ugyqc3OproVNonGb1NPhwGGm8nQd53fx8OPzhcbVmOQAB+hw4AgNKMDKSN/Jr+6CCEkHdQEkmaNS6Xg5OzPkXyMlckL3PFtQUDlB0SURK+Ch9nRp5hP9/JuVNtWQ6Hg3ZHDoNnYQEAKLl3D0xxscJjJISQpoSSSNLsiUdtq/7v9Xb0NjUsfXjMtMww026mTGU5XC7ahR9RcESEENJ0URJJPlj0XOSHSa5nDun5REIIqRYlkeSDIlBTYZ+RTM7Mp+ciCSGEkDqiJJJ8UCRTABEFaiKtu0ceytlV3UTuixB5vHr1CoaGhtUuEUgapz59+oDD4YDD4SApKUlpcVASST44FXsoi0qF1KVd37Z9BjTglDjy0uG9Ha2f+SZT5uPSv3Vv8J8V+tkkirZy5UoMHz5cat3rhIQE9O/fHy1atICenh5cXV1x8+ZNdn9KSgr69u0LIyMjqKurw9LSEgsWLJBaQ7oqT548gZubGzQ0NGBoaAhfX1+Ul5ez+8ePH88mRhVfFVdmCQwMRJcuXaCjowMdHR24uLjg9OnTct/3rFmz4OjoCD6fDzs7u0r7o6OjMXz4cJiYmEBTUxN2dnbYu3dvtecLCwsDh8PBiBEjarxueHg4Bg4cCAMDAzb+qpZffP78Ob799lu0atUKAoEAtra2uHbtmtR5rl69KvP9KgolkeSD5rTiHD0bWR8ka2kD4iUQt3/WaFvuvrD6gn2/4/aOGstWnOpHGSO0aelDokhFRUUIDg7GxIkT2W1v3rzB4MGD0aZNG1y5cgWxsbHQ1taGq6srmySqqanBw8MDZ8+eRUpKCjZu3IigoCAsXry42msJhUK4ubmhtLQUcXFxCAkJwe7du7Fo0SK2zKZNm5CZmcm+nj59ipYtW+Kbb75hy7Ru3Rpr1qxBYmIirl27hn79+mH48OG4e/eu3Pc/YcIEjB49usp9cXFx6NKlC44cOYJbt27By8sLHh4eOHHiRKWy6enp+OGHH9CrV69ar3np0iUMHDgQp06dQmJiIvr27Ythw4ZJrUWem5uLnj17Qk1NDadPn0ZycjLWrVsHPb23q7G1bNkSBgYGVV2iQakqOwBCGppkacRrGbkA3s4ZqcGjfw51JllL+zcncRKZdVu8/CFPU9mRVaKhpgGBqgDF5cXIKsqqsSyHw0Hb0D1IcXQSb2iAhE6y9GHO0zfs0odqfJXaDySNBsMwtbbKKYqamprMg8dOnToFPp+P7t27s9vu37+Pf//9F8uWLWOXDly8eDG6dOmCjIwMWFtbw9LSEpaWluwxFhYWiI6ORkxMTLXXOnv2LJKTk3Hu3DkYGRnBzs4Oy5cvx08//YQlS5aAx+NBV1cXurpv17k/duwYcnNz4eXlxW4bNmyY1HlXrlyJwMBAXL58Wa61pH/99VcAwD///INbt25V2v/zzz9LfZ49ezbOnj2L8PBwDB06lN0uFAoxbtw4LF26FDExMXj9+nWN1924caPU51WrVuH48eP466+/YG9vDwDw9/eHubk5du3axZZr166dzPfWkOi3JvngSJ6LfFVYCqcV55QdTvPB5QJTLwGrzZQdSa38PvHDorhFuPTsEp6/eQ4zrRpirvALOf1bd7QLP6LQVWUkSx8GzbkEgLq0m6KysjKsWrVKKdf++eefZV4GLyYmBo6OjlLb2rdvj1atWiE4OBg///wzhEIhgoOD0aFDB6ku74oePXqEM2fO4Kuvvqr2WvHx8bC1tYWRkRG7zdXVFdOnT8fdu3fZBKqi4OBgDBgwABb/m6/1XUKhEIcOHUJhYSFcXBT/rHteXh46/K9nQmLZsmUwNDTExIkTa0yiqyMSiVBQUICWLVuy2/7880+4urrim2++wcWLF2FmZoYZM2Zg8uTJ730P9Y26s8kHSTx3JLXu1LsmMiVOa+3W7Pvp56bXWFYZXdoVk1Tq0iaKkpGRAVNTU6lt2traiI6ORmhoKAQCAbS0tHDmzBmcPn0aqqrS7U49evSAuro6PvroI/Tq1QvLli2r9lpZWVlSCSQA9nNWVuUegRcvXuD06dOYNGlSpX23b9+GlpYW+Hw+pk2bhqNHj6Jjx44y33ddHDx4EAkJCVKtorGxsQgODkZQUFCdzxsQEIA3b95g1KhR7LbHjx8jMDAQH330ESIiIjB9+nTMmjULISEh73UPikAtkYSQD043427oZtwNCVkJUFdRr7FspS7tBvBul3ZZiRA8dfq6birU1NQqdYc25LVlVVxcDHV19UrbJk6ciJ49e2L//v0QCoUICAiAm5sbEhISIBAI2LIHDhxAQUEBbt68CV9fXwQEBODHH3+sl/sICQlBixYtqhyo0r59eyQlJSEvLw+HDx+Gp6cnLl68qLBE8sKFC/Dy8kJQUBDbZV5QUAB3d3cEBQVBX1+/Tufdt28fli5diuPHj8PQ0JDdLhKJ4OTkxLZm29vb486dO9i6dSs8PT3f/4bqEX0rEUI+SBM6T0BCVgLu/XsPOcU50BfU8IuggVtY3+3SPrruOkb93E2h3eik/nA4HJm7lJVJX18fubm5Utv27duH9PR0xMfHg8vlstv09PRw/Phx/N///R9bVvLMZMeOHSEUCjFlyhR8//33UFGp3MtjbGxcaTRxdnY2u68ihmGwc+dOuLu7V1mPPB4P1tbWAABHR0ckJCRg06ZN2LZtm7xVUKuLFy9i2LBh2LBhAzw8PNjtqampSE9Pl3pGU/S/WSlUVVWRkpICKyuras8bFhaGSZMm4dChQxgwQHo5XhMTk0oJcYcOHXDkSONbQYu6swkhitHIu2Bba73t0o57EafESKqmxleBvrkWALADbAipT/b29khOTpbaVlRUBC6XK/UHi+SzqIapu0QiEcrKyqot4+Ligtu3b+Ply5fstsjISOjo6FRKmC5evIhHjx5JjRqviUgkQklJiUxl5REdHQ03Nzf4+/tjypQpUvtsbGxw+/ZtJCUlsa8vvvgCffv2RVJSEptgV2X//v3w8vLC/v374ebmVml/z549kZKSIrXtwYMH1T4bqkyURBJCFGPX4EadSLbVbYu2Om0BAIvjqp+apJIGuidJayQhiuLq6oq7d+9KtUYOHDgQubm58Pb2xr1793D37l14eXlBVVUVffv2BQDs3bsXBw8exL179/D48WMcPHgQfn5+GD16NNudfvToUdjY2LDnHTRoEDp27Ah3d3fcvHkTERERWLBgAby9vcHn86XiCg4OhrOzMzp37lwpZj8/P1y6dAnp6em4ffs2/Pz8EB0djXHjxsl1748ePUJSUhKysrJQXFzMJoKlpaUAxF3Ybm5umDVrFkaOHImsrCxkZWXh33//BQCoq6ujc+fOUq8WLVpAW1sbnTt3ZltQ/fz8pFow9+3bBw8PD6xbtw7Ozs7sefPy8tgyc+fOxeXLl7Fq1So8evQI+/btw/bt2+Ht7S3XPTYESiIJIfWn4nyRkml+GrHerXsDAMpF5cguzJbpmIacdJy6r4ki2drawsHBAQcPHmS32djY4K+//sKtW7fg4uKCXr164cWLFzhz5gxMTEwAiLtr/f398cknn6BLly5YunQpZs6ciR073s67mpeXJ9WapqKighMnTkBFRQUuLi749ttv4eHhUWkwTl5eHo4cOVJtK+TLly/h4eGB9u3bo3///khISEBERAQGDhzIlhk/fjz69OlT471PmjQJ9vb22LZtGx48eAB7e3vY29vjxYsXAMTPZBYVFWH16tUwMTFhXzWNQK9KZmYmnjx5wn7evn07ysvL4e3tLXXe2bNns2W6deuGo0ePYv/+/ejcuTOWL1+OjRs3yp0oNwR6JpIQNOoGs6aFwwG8zjSJaX4AYFT7UQhJFo94HHB4AG573q6ynGSEdsm9e+wIbY6GRkOGSohCLFq0CL6+vpg8eTL7DOTAgQOlkrJ3jR49utpJuiXGjx+P8ePHS22zsLDAqVOnajxOV1cXRUXV//EZHBxc4/EAkJaWxraaVic6OrrG/bt378bu3btrvda7x9S2rbbrSgwdOlRqPsrGiloiCQFo1Zr61IRaz9rotIGziXOt5SQjtFn0s0KaCTc3N0yZMgXPnz9Xdij1Ii8vD6mpqfjhhx+UHYpCDRkyRK7J1RWFkkjywRKoqaCjiXgd5eTMfBSXCZUcUTPUBJKttZ+tla3gO5OO0x8dpLmYM2dOjQNBmhJdXV08e/YMWlpayg5FoXbs2IGbN2/i4cOHCp8jsyaURJIPlmTlGgnKCRSgkQ+ueVfKvynV7lP2OtqEECJhZmYGa2trWFtbK3U6KUoiyQetYs8rdWnXk3cH15QWKjeeWmiqvV3f++Tjk9WWq9SlTQghHzhKIskHjbq0FUAyuEaikbdG8lX4GNJuCABAyNTy/78JPe9JCCGKRkkk+aC926VN6glPs0lN9WOsaVx7IUIIIVIoiSQfvIqNS0WlQhSVllO39vt6tzWytKhRt0YSQgiRH80TSUgFTivOif9roYdD01xosuf3UbHuAqwB8+7AhDPUJUwIIc0EtUSSD55ATQVOFnpS265l5OJVYSm1Sr4PNQ1x4ijx9HKj79aWC/1cEEI+cJREkg+e5LnI5GWuuLZgALvdacU5dFwUQaO264rDEbc8/vDo7bZGXo8MZI+P5ookzcGrV69gaGiI9PR0ZYdC6hmHwwGHw0GLFi0Udg1KIgmB+B+bBk8VrTR5VbZKFpXSqO064XAAXoXlARv5SO09yXvge9G32v2V5oqsYXk2QpqClStXYvjw4Wjbti27bdasWXB0dASfz4ednV2lY6KjozF8+HCYmJhAU1MTdnZ22Lt3b7XXCAsLA4fDwYgRI2qMJTw8HAMHDoSBgQF0dHTg4uKCiIiISuWeP3+Ob7/9Fq1atYJAIICtrS2uXbsm6y0jPT0dEydORLt27SAQCGBlZYXFixejtLRUqtytW7fQq1cvqKurw9zcHGvXSi9MUFZWhmXLlsHKygrq6uro2rUrzpw5g5rIUnfh4eFwcnJCixYt2DJ79lQ/vdi0adPA4XCwceNGqe2ZmZmVttU3SiIJqaC6Vsmhm2MhEjXe5KdRe3feyEbYpe1g6MC+P5N+Bhn5GVWWe3euSGqNJE1ZUVERgoODMXHixEr7JkyYUO362HFxcejSpQuOHDmCW7duwcvLCx4eHjhx4kSlsunp6fjhhx/Qq1evWuO5dOkSBg4ciFOnTiExMRF9+/bFsGHDcOPGDbZMbm4uevbsCTU1NZw+fRrJyclYt24d9PT0ajiztPv370MkEmHbtm24e/cuNmzYgK1bt+Lnn39my+Tn52PQoEGwsLBAYmIifvnlFyxZsgTbt29nyyxYsADbtm3D5s2bkZycjGnTpuHLL7+UivddstRdy5YtMX/+fMTHx7NlvLy8qkyojx49isuXL8PU1LTSPmNjY+jq6spcL3VBA2sIeYekVVIyh2RyZj7ScgoxdHMsTs76lAbbyEsyUnu1mfhzI0y6+pj3wdmRZzHoyCAAwJuyN9WW5WhogN+hA0ru3WNXruFoaFRbnnx4GIaBSKScFY24XIHM31GnTp0Cn89H9+7dpbb/+uuvAIB//vkHt27dqnRcxWQLAGbPno2zZ88iPDwcQ4cOZbcLhUKMGzcOS5cuRUxMDF6/fl1jPO+2mq1atQrHjx/HX3/9BXt7ewCAv78/zM3NsWvXLrZcu3btar3XigYPHozBgwezny0tLZGSkoLAwEAEBAQAAPbu3YvS0lLs3LkTPB4PnTp1QlJSEtavX48pU6YAAPbs2YP58+fj888/BwBMnz4d586dw7p16xAaGlrltWWpuz59+lQqExISgtjYWLi6urLbnz9/ju+++w4RERFwc3OTqw7qCyWRhFSDw+HgxHefov/6i0jLKWQnI9fg0T8buVX8pbbtM2DqJfFcko0oITfRMoGRhhGyi7JR06ORktbIFEenhguONCkiUTGiL9oq5dp9et+Giopsf9TExMTA0dGxXq6bl5eHDv971ENi2bJlMDQ0xMSJExETEyP3OUUiEQoKCtCyZUt2259//glXV1d88803uHjxIszMzDBjxgxMnjz5veOveJ34+Hh89tlnUksKurq6wt/fH7m5udDT00NJSQnU1dWlziMQCBAbGyv3td+tOwmGYXD+/HmkpKTA39+f3S4SieDu7g5fX1906tRJruvVJ+rOJqQGXK44kZSgeSTrqGKX9r+p4lbJnY3v+UjJ/9cfL/1Yc8FGlPwSUlcZGRlVdoPK6+DBg0hISICXlxe7LTY2FsHBwQgKCqrzeQMCAvDmzRuMGjWK3fb48WMEBgbio48+QkREBKZPn45Zs2YhJCSkztd59OgRNm/ejKlTp7LbsrKyYGRkJFVO8jkrKwuAOKlcv349Hj58CJFIhMjISISHhyMzM1Pma1dVd4A4sdTS0gKPx4Obmxs2b96MgQMHsvv9/f2hqqqKWbNmyX2/9YmaVAipRcV8QTKPZEcTHZz47lNwuZRMyITDAaZcArZ/Jn4uEng75Q9Ps+ZjG5Ceuh5eFr/Ek4InsA2xxRyHOZhoW/l5MUJqwuUK0Kf3baVdW1bFxcWVWtLkdeHCBXh5eSEoKIhtESsoKIC7uzuCgoKgr69fp/Pu27cPS5cuxfHjx2FoaMhuF4lEcHJywqpVqwAA9vb2uHPnDrZu3QpPT0+5r/P8+XMMHjwY33zzjdytmZs2bcLkyZNhY2MDDocDKysreHl5YefOnTIdX1XdSWhrayMpKQlv3rxBVFQUfHx8YGlpiT59+iAxMRGbNm3C9evXlf54FbVEElKLquaRTM7MR//1F2mwjTy4XGBqjPSUP41M0CDpVpMtSVuUFAlpyjgcDlRUNJTykiep0NfXR25ubp3v8+LFixg2bBg2bNgADw8PdntqairS09MxbNgwqKqqQlVVFX/88Qf+/PNPqKqqIjU1tcbzhoWFYdKkSTh48CAGDBggtc/ExAQdO3aU2tahQwc8efJE7vhfvHiBvn37okePHlIDZgDxoJTs7GypbZLPxsbiZVINDAxw7NgxFBYWIiMjA/fv34eWlhYsLS1rvXZ1dSfB5XJhbW0NOzs7fP/99/j666+xevVqAOLHEF6+fIk2bdqw9ZuRkYHvv/9eapR9Q6AkkpBaVByxfXepK9rpi1vO0nIKKZGU17tT/jQyeup6uO5+HfM+mQcA4KnwajmCkKbL3t4eycnJdTo2Ojoabm5u8Pf3ZweaSNjY2OD27dtISkpiX1988QX69u2LpKQkmJubV3ve/fv3w8vLC/v3769ysEjPnj2RkpIite3BgwewsLCQK/7nz5+jT58+cHR0xK5du8DlSqdDLi4uuHTpEsrKythtkZGRaN++faWR4Orq6jAzM0N5eTmOHDmC4cOH13jtmuquOiKRCCUlJQAAd3d33Lp1S6p+TU1N4evrW+UIbkWiJJIQGUhGbGvyVRHl07tSIllYUk7PStZFI6wvNa4aepnVPh0JIU2dq6sr7t69W6k18tGjR0hKSkJWVhaKi4vZREUyj+KFCxfg5uaGWbNmYeTIkcjKykJWVhb+/fdfAOKkqnPnzlKvFi1aQFtbG507d2YHq/j5+Um1wu3btw8eHh5Yt24dnJ2d2fPm5eWxZebOnYvLly9j1apVePToEfbt24ft27fD29tb5vuWJJBt2rRBQEAA/vnnH/ZaEmPHjgWPx8PEiRNx9+5dHDhwAJs2bYKPjw9b5sqVKwgPD8fjx48RExODwYMHQyQS4ccf3z5T/dtvv6F///7s59rqDgBWr16NyMhIPH78GPfu3cO6deuwZ88efPvttwCAVq1aVapfNTU1GBsbo3379jLXQ32gJJIQOXG5nEqJZKfFEbS6TV008snHCWnObG1t4eDggIMHD0ptnzRpEuzt7bFt2zY8ePAA9vb2sLe3x4sXLwAAISEhKCoqwurVq2FiYsK+vvrqK7mun5mZKdUNvX37dpSXl8Pb21vqvLNnz2bLdOvWDUePHsX+/fvRuXNnLF++HBs3bsS4cePYMkuWLKmxWzcyMhKPHj1CVFQUWrduLXUtCV1dXZw9exZpaWlwdHTE999/j0WLFkm1HP73339YsGABOnbsiC+//BJmZmaIjY2VWiEmJydHqvtelrorLCzEjBkz0KlTJ/Ts2RNHjhxBaGgoJk2aJFf9NgQaWENIHUgSyaGbY5Gcmc9uv5aRS9MA1UYyUjvrtvhVWgjwtZQdFSEfpEWLFsHX1xeTJ09mu3Sjo6NrPGb37t3YvXu3XNepqvy722q7rsTQoUOl5qN8V1paWqW5FisaP348xo8fX+t1unTpUuPURL179671cYAlS5ZgyZIl7GdZ6m7FihVYsWJFrfFVpKxlK+k3HSF1xOVycHLWpyguE6KoVMiO3KaGtVq8O/n4rsHiATc0bQ4hDc7NzQ0PHz7E8+fPa3xWsalgGAbR0dFyz9XYHGlpaaG8vPy9R+DXpFF0Z2/ZsgVt27aFuro6nJ2dcfXq1WrLBgUFoVevXtDT04Oenh4GDBhQY3lCFEnyrKQGT4XdRl3aMuBpNvqlEAn5UMyZM6dZJJCA+Ds5IyOj2dzP+0hKSsKdO3dqXIbxfSk9iTxw4AB8fHywePFiXL9+HV27doWrqytevnxZZfno6GiMGTMGFy5cQHx8PMzNzTFo0CA8f/68gSMn5C3JEokA2JVtSA0krZESlHQTQki9sra2hrW1tdzLQspD6Unk+vXrMXnyZHh5eaFjx47YunUrNDQ0qp2sc+/evZgxYwbs7OxgY2ODHTt2QCQSISoqqoEjJ+QtyTRAEpQTyaBi9zUNsCGEkCZHqUlkaWkpEhMTpSYT5XK5GDBgAOLj42U6R1FREcrKyqTWvKyopKQE+fn5Ui9CFKFiTkRd2jKouBQidWkTQkiTo9QkMicnB0KhsMr1KSvO11STn376CaamppVmtZdYvXo1dHV12Rc9J0EUhbq05fRulzYhhJAmRend2e9jzZo1CAsLw9GjR6sdfeTn54e8vDz29fTp0waOknwo3u3SJjKgEdmEENJkKXWKH319faioqFS5PqVkbcrqBAQEYM2aNTh37hy6dOlSbTk+nw8+n18v8RJSm4o5EfVmE0IIac6U2hLJ4/Hg6OgoNShGMkjGxaX6Fp21a9di+fLlOHPmDJycnBoiVELkRs9FEkIIac6U3p3t4+ODoKAghISE4N69e5g+fToKCwvh5eUFAPDw8ICfnx9b3t/fHwsXLsTOnTvRtm1bdt3JN2/eKOsWCGG9+1xkUSk9F0kIabxevXoFQ0NDpa14QpQnPT0dHA4HHA4HdnZ2dTqH0pPI0aNHIyAgAIsWLYKdnR2SkpJw5swZdrDNkydPkJmZyZYPDAxEaWkpvv76a6l1JwMCApR1C4Sw3n0uklojCSGN2cqVKzF8+HB2rembN29izJgxMDc3h0AgQIcOHbBp06ZKx0VHR8PBwQF8Ph/W1taVlvIrKCjAnDlzYGFhAYFAgB49eiAhIaHGWMLDwzFw4EAYGBhAR0cHLi4uiIiIkCoTGBiILl26QEdHhy1z+vTpKs/HMAyGDBkCDoeDY8eOyVwngHhpREmCVfHVqVMntkzbtm2rLOPt7c2WmTp1KqysrCAQCGBgYIDhw4fj/v37NV47Ozsb48ePh6mpKTQ0NDB48GA8fPiwUrn4+Hj069cPmpqa0NHRwWeffYbi4mJ2//Xr1zFw4EC0aNECrVq1wpQpU6Qa3MzNzZGZmYnvv/9errqpSOlJJADMnDkTGRkZKCkpwZUrV+Ds7Mzui46OlvrhTE9PB8MwlV4V16YkRJk0eDRKmxDS+BUVFSE4OBgTJ05ktyUmJsLQ0BChoaG4e/cu5s+fDz8/P/z2229smbS0NLi5uaFv375ISkrCnDlzMGnSJKmEb9KkSYiMjMSePXtw+/ZtDBo0CAMGDKhxYZBLly5h4MCBOHXqFBITE9G3b18MGzZMasWV1q1bY82aNUhMTMS1a9fQr18/DB8+HHfv3q10vo0bN4JTx8F7mzZtQmZmJvt6+vQpWrZsiW+++YYtk5CQIFUmMjISAKTKODo6YteuXbh37x4iIiLAMAwGDRoEobDq3wsMw2DEiBF4/Pgxjh8/jhs3bsDCwgIDBgxAYWEhWy4+Ph6DBw/GoEGDcPXqVSQkJGDmzJns+ucvXrzAgAEDYG1tjStXruDMmTO4e/eu1JrhKioqMDY2hpaWVp3qCKC1swmpd5LWyE6LI2ovTAhpdhiGQZFIpJRra3C5MidOp06dAp/PR/fu3dltEyZMkCpjaWmJ+Ph4hIeHY+bMmQCArVu3ol27dli3bh0AoEOHDoiNjcWGDRvg6uqK4uJiHDlyBMePH8dnn30GAFiyZAn++usvBAYGYsWKFVXGs3HjRqnPq1atwvHjx/HXX3/B3t4eADBs2DCpMitXrkRgYCAuX74s1UqYlJSEdevW4dq1azAxMZGpPiqSTAsocezYMeTm5rKP2gGAgYGB1DFr1qyBlZUVevfuzW6bMmUK+75t27ZYsWIFunbtivT0dFhZWVW67sOHD3H58mXcuXOHvZ/AwEAYGxtj//79mDRpEgBg7ty5mDVrFubNm8ce2759e/b9iRMnoKamhi1btrCJ5datW9GlSxc8evQI1tbWctdJVSiJJEQBKn6HF5UKIVBTqfNfxISQpqVIJILVpdtKuXbqZ7bQVFGRqWxMTAwcHR1rLZeXlye1oEd8fHyluZldXV0xZ84cAEB5eTmEQmGlqfcEAgFiY2Nlig0QD7QtKCiodjERoVCIQ4cOobCwUGowblFREcaOHYstW7bUOtOLrIKDgzFgwABYWFhUub+0tBShoaHw8fGp9ru+sLAQu3btQrt27aqds7qkpAQApOqOy+WCz+cjNjYWkyZNwsuXL3HlyhWMGzcOPXr0QGpqKmxsbLBy5Up8+umn7Hl4PB6bQALi+geA2NjYeksiG0V3NiHNmdOKc3D7NRYiET0bSQhpPDIyMmBqalpjmbi4OBw4cECqRS0rK6vKRULy8/NRXFwMbW1tuLi4YPny5Xjx4gWEQiFCQ0MRHx8vNcahNgEBAXjz5g1GjRoltf327dvQ0tICn8/HtGnTcPToUXTs2JHdP3fuXPTo0QPDhw+X+Vo1efHiBU6fPs22Albl2LFjeP36tVR3scTvv/8OLS0taGlp4fTp04iMjASPx6vyPDY2NmjTpg38/PyQm5uL0tJS+Pv749mzZ2zdPX78GIC4dXfy5Mk4c+YMHBwc0L9/f/bZyX79+iErKwu//PILSktLkZuby7ZayvP/oDbUEkmIAgjUVOBkoYdrGbkAxM9GDt0ci5OzPqUWSUKaOQ0uF6mf2Srt2rIqLi6udqEOALhz5w6GDx+OxYsXY9CgQXLFsWfPHkyYMAFmZmZQUVGBg4MDxowZg8TERJmO37dvH5YuXYrjx4/D0NBQal/79u2RlJSEvLw8HD58GJ6enrh48SI6duyIP//8E+fPn5d6jvJ9hYSEoEWLFhgxYkS1ZYKDgzFkyJAqk/Jx48Zh4MCByMzMREBAAEaNGoW///67yrpXU1NDeHg4Jk6ciJYtW0JFRQUDBgzAkCFD2EGaov89KjF16lS2e93e3h5RUVHYuXMnVq9ejU6dOiEkJAQ+Pj7w8/ODiooKZs2aBSMjI6nWyfdFSSQhCiB5LrKoVIihm2ORllPITvmjyad/doQ0ZxwOR+YuZWXS19dHbm5ulfuSk5PRv39/TJkyBQsWLJDaZ2xsXOUiITo6OmyXqZWVFS5evIjCwkLk5+fDxMQEo0ePhqWlZa1xhYWFYdKkSTh06FCVSxrzeDy2O9bR0REJCQnYtGkTtm3bhvPnzyM1NRUtWrSQOmbkyJHo1asXoqOja71+RQzDYOfOnXB3d6+29TAjIwPnzp1DeHh4lfslz1d+9NFH6N69O/T09HD06FGMGTOmyvKOjo5sklxaWgoDAwM4Ozuz82JLnvGs2PoKiJ9NffLkCft57NixGDt2LLKzs6GpqQkOh4P169fL9P9AVtSdTYiCcDgcaPJVceK7T9ltNOUPIaSxsLe3R3JycqXtd+/eRd++feHp6YmVK1dW2u/i4iK1SAgAREZGVrlIiKamJkxMTJCbm4uIiIhau5j3798PLy8v7N+/H25ubjLdh0gkYp8lnDdvHm7duoWkpCT2BQAbNmzArl27ZDpfRRcvXsSjR4+kRrC/a9euXTA0NJQpXsmMMpJ4a6KrqwsDAwM8fPgQ165dY+uubdu2MDU1RUpKilT5Bw8eVPnMppGREbS0tHDgwAGoq6tj4MCBtV5bVtQkQoiCSab8Sc7Mp9ZIQkij4erqyj57p6enB0Dchd2vXz+4urrCx8cHWVlZAMTTwUhGI0+bNg2//fYbfvzxR0yYMAHnz5/HwYMHcfLkSfbckuls2rdvj0ePHsHX1xc2NjZSo5v9/Pzw/Plz/PHHHwDEXdienp7YtGkTnJ2d2WsLBAJ2pLSfnx+GDBmCNm3aoKCgAPv27UN0dDQ7vZCxsXGVg2natGmDdu3ayV1HwcHBcHZ2RufOnavcLxKJsGvXLnh6ekJVVfp7/fHjxzhw4AAGDRoEAwMDPHv2DGvWrIFAIMDnn3/OlrOxscHq1avx5ZdfAgAOHToEAwMDtGnTBrdv38bs2bMxYsQI9pECDocDX19fLF68GF27doWdnR1CQkJw//59HD58mD3vb7/9hh49ekBLSwuRkZHw9fXFmjVrKrXSvg9qiSREwWgCckJIY2RrawsHBwccPHiQ3Xb48GH8888/CA0NlVrQo1u3bmyZdu3a4eTJk4iMjETXrl2xbt067NixA66urmyZvLw8eHt7w8bGBh4eHvj0008REREBNTU1tkxmZqZU9+v27dtRXl4Ob29vqWvPnj2bLfPy5Ut4eHigffv26N+/PxISEhARESF361rbtm1rnV86Ly8PR44cqbEV8ty5c3jy5EmlqZEA8QjrmJgYfP7557C2tsbo0aOhra2NuLg4qec8U1JSkJeXx37OzMyEu7s7bGxsMGvWLLi7u2P//v1S554zZw78/Pwwd+5cdO3aFVFRUYiMjJSaNujq1asYOHAgbG1tsX37dmzbtg2zZs2qrWrkQs0hhDSAd1sji8uE0ODRPz9CiHItWrQIvr6+mDx5MrhcLpYsWSLT4h19+vSpcfDKqFGjKo2qfte7q9zI8rxicHBwrWXe9e4f7UVFRcjOzkafPn1qPE5XVxdFRUU1lhk0aFC1jQKmpqY4deqU3PHNmjVLpmRv3rx5UvNEvkvSwqtI1BJJSAN4tzWSEEIaAzc3N0yZMqXGlWSamwsXLqBfv361JpHN3ZMnT6ClpYVVq1bV+RzUFEJIA6GZfQghjZFkkvAPhZubm8yDdpozU1NTduARn8+v0zkoiSSEEEII+cCoqqq+98o11J1NCCGEEELkRkkkIUpAg7MJIYQ0dZREEqIENM0PIYSQpo6SSEIaiEBNPM0PAHaaH0IIIaSpoiSSkAZC0/wQQghpTiiJJKQB0TQ/hBBCmgtKIgkhhBBCiNwoiSSEEEIIIXKjJJIQQgghhMiNkkhCCCGEECI3SiIJIYQQQojcKIkkhBBCCCFyoySSEEIIIYTIjZJIQgghhBAiN0oiCSGEEEKI3CiJJIQQQgghcqMkkhBCCCGEyI2SSEIIIYQQIjdKIgkhhBBCiNwoiSSEEEIIIXKjJJIQQgghhMiNkkhCCCGEECI3SiIJIYQQQojcKIkkhBBCCCFyoySSEEIIIYTIjZJIQgghhBAiN0oiCSGEEEKI3CiJJIQQQgghcqMkkhBCCCGEyI2SSEIIIYQQIjdKIgkhhBBCiNwoiSSEEEIIIXKjJJIQQgghhMiNkkhCCCGEECI3SiIJIYQQQojcKIkkhBBCCCFyoySSEEIIIYTIjZJIQgghhBAiN0oiCSGEEEKI3CiJJIQQQgghcqMkkhBCCCGEyI2SSEIIIYQQIjdKIgkhhBBCiNwoiSSEEEIIIXKjJJIQQgghhMiNkkhCCCGEECI3SiIJIYQQQojcKIkkhBBCCCFyoySSEEIIIYTIjZJIQgghhBAiN0oiCSGEEEKI3CiJJIQQQgghcqMkkhBCCCGEyI2SSEIIIYQQIjdKIgkhhBBCiNwaRRK5ZcsWtG3bFurq6nB2dsbVq1drLH/o0CHY2NhAXV0dtra2OHXqVANFSgghhBBCAEBV2QEcOHAAPj4+2Lp1K5ydnbFx40a4uroiJSUFhoaGlcrHxcVhzJgxWL16NYYOHYp9+/ZhxIgRuH79Ojp37qyEOyCkbopKhcoOQflKy6Hxv7dFhflAablSw5EoLioAADAMg6I3eZX2i4qL2feFOdngCAQKiaOsVMS+f/0iE6o8+f/u/+9NIQCguKAAuc9fAACYsgrnzXgOqFU+b1lZGfv+ZWoG1FQr/7oozMsVn/t1PrIfpskdGwCUFIrrMi/rH2QXVK5rRWhpYQY1Hq9BrkVIc8ZhGIZRZgDOzs7o1q0bfvvtNwCASCSCubk5vvvuO8ybN69S+dGjR6OwsBAnTpxgt3Xv3h12dnbYunVrpfIlJSUoKSlhP+fn58Pc3Bx5eXnQ0dFRwB0RUr2i0nJ0XBSh7DAaDQH+wz31CcoOo5InqqpwMzcFl2HgUvxfpf2qZYD372oKj0PI5eHiZxve6xxlRRcgLLkBDlcXHK4eAECFo4KvWn9d83EQIkQ9usYybdrcgkXbmygp0UBhYYs6xfe79nTc43WEaflz6IoaJol0KHqKdV/+1CDXIqQ5U2pLZGlpKRITE+Hn58du43K5GDBgAOLj46s8Jj4+Hj4+PlLbXF1dcezYsSrLr169GkuXLq23mAl5HwI1FThZ6OFaRq6yQ2kUisFHguhjdOM+UHYoUnRFIqgyDMo5HPytUUUrI8Ogf2shbJ4pNg6uqBS6eanI07Wq8zk4HE0AACPKA/O/JE0E4J//nsFAvXW1x6mCCyORLrK51Sd2pWXqAAA+vwh8flGd4tNHNoCOeKFqhhcwq9M55NW6OLNBrkNIc6fUJDInJwdCoRBGRkZS242MjHD//v0qj8nKyqqyfFZWVpXl/fz8pJJOSUskIcrA4XBwaJoLisuoK5vFuKKorG4JiKKoAQjOTcHj/MfVlhE6MUguKat2f31RZwB++fM6H8+UG6M4rSdEZdKxJjEPwWVSazxWwDCwYFRqKNEe/7zQBFeltM7xuXHuwZJfDGEDPqLfxYh+BxBSH5T+TKSi8fl88Pl8ZYdBCIvD4UCD1+z/6cmHr6vsCCpx0PoEDvhE2WHUj0+VHQAhpDlS6uhsfX19qKioIDs7W2p7dnY2jI2NqzzG2NhYrvKEEEIIIaT+KTWJ5PF4cHR0RFRUFLtNJBIhKioKLi4uVR7j4uIiVR4AIiMjqy1PCCGEEELqn9L71Hx8fODp6QknJyd88skn2LhxIwoLC+Hl5QUA8PDwgJmZGVavXg0AmD17Nnr37o1169bBzc0NYWFhuHbtGrZv367M2yCEEEII+aAoPYkcPXo0/vnnHyxatAhZWVmws7PDmTNn2MEzT548AZf7tsG0R48e2LdvHxYsWICff/4ZH330EY4dO0ZzRBJCCCGENCClzxPZ0PLz86Grq0vzRBJCCCGEvIdGsewhIYQQQghpWiiJJIQQQgghcqMkkhBCCCGEyI2SSEIIIYQQIjdKIgkhhBBCiNwoiSSEEEIIIXKjJJIQQgghhMiNkkhCCCGEECI3SiIJIYQQQojcKIkkhBBCCCFyoySSEEIIIYTITVXZATQ0yVLh+fn5So6EEEJIU6etrQ0Oh6PsMAhRig8uiSwoKAAAmJubKzkSQgghTV1eXh50dHSUHQYhSsFhJE1zHwiRSIQXL17Uy1+P+fn5MDc3x9OnT+lLpBpUR7WjOqod1VHtqI5qp4g6opZI8iH74FoiuVwuWrduXa/n1NHRoS/tWlAd1Y7qqHZUR7WjOqod1REh9YMG1hBCCCGEELlREkkIIYQQQuRGSeR74PP5WLx4Mfh8vrJDabSojmpHdVQ7qqPaUR3VjuqIkPr1wQ2sIYQQQggh749aIgkhhBBCiNwoiSSEEEIIIXKjJJIQQgghhMiNkkhCCCGEECI3SiJrsWXLFrRt2xbq6upwdnbG1atXayx/6NAh2NjYQF1dHba2tjh16lQDRao88tRRUFAQevXqBT09Pejp6WHAgAG11mlzIO/PkURYWBg4HA5GjBih2AAbAXnr6PXr1/D29oaJiQn4fD4+/vjjZv/vTd462rhxI9q3bw+BQABzc3PMnTsX//33XwNF2/AuXbqEYcOGwdTUFBwOB8eOHav1mOjoaDg4OIDP58Pa2hq7d+9WeJyENBsMqVZYWBjD4/GYnTt3Mnfv3mUmT57MtGjRgsnOzq6y/N9//82oqKgwa9euZZKTk5kFCxYwampqzO3btxs48oYjbx2NHTuW2bJlC3Pjxg3m3r17zPjx4xldXV3m2bNnDRx5w5G3jiTS0tIYMzMzplevXszw4cMbJlglkbeOSkpKGCcnJ+bzzz9nYmNjmbS0NCY6OppJSkpq4Mgbjrx1tHfvXobP5zN79+5l0tLSmIiICMbExISZO3duA0fecE6dOsXMnz+fCQ8PZwAwR48erbH848ePGQ0NDcbHx4dJTk5mNm/ezKioqDBnzpxpmIAJaeIoiazBJ598wnh7e7OfhUIhY2pqyqxevbrK8qNGjWLc3Nyktjk7OzNTp05VaJzKJG8dvau8vJzR1tZmQkJCFBWi0tWljsrLy5kePXowO3bsYDw9PZt9EilvHQUGBjKWlpZMaWlpQ4WodPLWkbe3N9OvXz+pbT4+PkzPnj0VGmdjIUsS+eOPPzKdOnWS2jZ69GjG1dVVgZER0nxQd3Y1SktLkZiYiAEDBrDbuFwuBgwYgPj4+CqPiY+PlyoPAK6urtWWb+rqUkfvKioqQllZGVq2bKmoMJWqrnW0bNkyGBoaYuLEiQ0RplLVpY7+/PNPuLi4wNvbG0ZGRujcuTNWrVoFoVDYUGE3qLrUUY8ePZCYmMh2eT9+/BinTp3C559/3iAxNwUf2nc2IfVNVdkBNFY5OTkQCoUwMjKS2m5kZIT79+9XeUxWVlaV5bOyshQWpzLVpY7e9dNPP8HU1LTSF3lzUZc6io2NRXBwMJKSkhogQuWrSx09fvwY58+fx7hx43Dq1Ck8evQIM2bMQFlZGRYvXtwQYTeoutTR2LFjkZOTg08//RQMw6C8vBzTpk3Dzz//3BAhNwnVfWfn5+ejuLgYAoFASZER0jRQSyRRmjVr1iAsLAxHjx6Furq6ssNpFAoKCuDu7o6goCDo6+srO5xGSyQSwdDQENu3b4ejoyNGjx6N+fPnY+vWrcoOrdGIjo7GqlWr8Pvvv+P69esIDw/HyZMnsXz5cmWHRghpJqglshr6+vpQUVFBdna21Pbs7GwYGxtXeYyxsbFc5Zu6utSRREBAANasWYNz586hS5cuigxTqeSto9TUVKSnp2PYsGHsNpFIBABQVVVFSkoKrKysFBt0A6vLz5GJiQnU1NSgoqLCbuvQoQOysrJQWloKHo+n0JgbWl3qaOHChXB3d8ekSZMAALa2tigsLMSUKVMwf/58cLnUhlDdd7aOjg61QhIiA/oWqQaPx4OjoyOioqLYbSKRCFFRUXBxcanyGBcXF6nyABAZGVlt+aauLnUEAGvXrsXy5ctx5swZODk5NUSoSiNvHdnY2OD27dtISkpiX1988QX69u2LpKQkmJubN2T4DaIuP0c9e/bEo0eP2AQbAB48eAATE5Nml0ACdaujoqKiSomiJOlmGEZxwTYhH9p3NiH1TtkjexqzsLAwhs/nM7t372aSk5OZKVOmMC1atGCysrIYhmEYd3d3Zt68eWz5v//+m1FVVWUCAgKYe/fuMYsXL/4gpviRp47WrFnD8Hg85vDhw0xmZib7KigoUNYtKJy8dfSuD2F0trx19OTJE0ZbW5uZOXMmk5KSwpw4cYIxNDRkVqxYoaxbUDh562jx4sWMtrY2s3//fubx48fM2bNnGSsrK2bUqFHKugWFKygoYG7cuMHcuHGDAcCsX7+euXHjBpORkcEwDMPMmzePcXd3Z8tLpvjx9fVl7t27x2zZsoWm+CFEDpRE1mLz5s1MmzZtGB6Px3zyySfM5cuX2X29e/dmPD09pcofPHiQ+fjjjxkej8d06tSJOXnyZANH3PDkqSMLCwsGQKXX4sWLGz7wBiTvz1FFH0ISyTDy11FcXBzj7OzM8Pl8xtLSklm5ciVTXl7ewFE3LHnqqKysjFmyZAljZWXFqKurM+bm5syMGTOY3Nzchg+8gVy4cKHK7xdJvXh6ejK9e/eudIydnR3D4/EYS0tLZteuXQ0eNyFNFYdhqF+DEEIIIYTIh56JJIQQQgghcqMkkhBCCCGEyI2SSEIIIYQQIjdKIgkhhBBCiNwoiSSEEEIIIXKjJJIQQgghhMiNkkhCCCGEECI3SiIJIYQQQojcKIkkhLy3JUuWwM7Ojv08fvx4jBgxQmnxEEIIUTxKIgkhhBBCiNwoiSSkmSstLVV2CIQQQpohSiIJaWb69OmDmTNnYs6cOdDX14erqyvu3LmDIUOGQEtLC0ZGRnB3d0dOTg57jEgkwtq1a2FtbQ0+n482bdpg5cqV7P6ffvoJH3/8MTQ0NGBpaYmFCxeirKxMGbdHCCGkkaAkkpBmKCQkBDweD3///TfWrFmDfv36wd7eHteuXcOZM2eQnZ2NUaNGseX9/PywZs0aLFy4EMnJydi3bx+MjIzY/dra2ti9ezeSk5OxadMmBAUFYcOGDcq4NUIIIY0Eh2EYRtlBEELqT58+fZCfn4/r168DAFasWIGYmBhERESwZZ49ewZzc3OkpKTAxMQEBgYG+O233zBp0iSZrhEQEICwsDBcu3YNgHhgzbFjx5CUlARAPLDm9evXOHbsWL3eGyGEkMZDVdkBEELqn6OjI/v+5s2buHDhArS0tCqVS01NxevXr1FSUoL+/ftXe74DBw7g119/RWpqKt68eYPy8nLo6OgoJHZCCCFNAyWRhDRDmpqa7Ps3b95g2LBh8Pf3r1TOxMQEjx8/rvFc8fHxGDduHJYuXQpXV1fo6uoiLCwM69atq/e4CSGENB2URBLSzDk4OODIkSNo27YtVFUr/5P/6KOPIBAIEBUVVWV3dlxcHCwsLDB//nx2W0ZGhkJjJoQQ0vjRwBpCmjlvb2/8+++/GDNmDBISEpCamoqIiAh4eXlBKBRCXV0dP/30E3788Uf88ccfSE1NxeXLlxEcHAxAnGQ+efIEYWFhSE1Nxa+//oqjR48q+a4IIYQoGyWRhDRzpqam+PvvvyEUCjFo0CDY2tpizpw5aNGiBbhc8VfAwoUL8f3332PRokXo0KEDRo8ejZcvXwIAvvjiC8ydOxczZ86EnZ0d4uLisHDhQmXeEiGEkEaARmcTQgghhBC5UUskIYQQQgiRGyWRhBBCCCFEbpREEkIIIYQQuVESSQghhBBC5EZJJCGEEEIIkRslkYQQQgghRG6URBJCCCGEELlREkkIIYQQQuRGSSQhhBBCCJEbJZGEEEIIIURulEQSQgghhBC5/T+tyTAxLtzxbAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "sns.relplot(\n", " data=pr[(pr[\"category_id\"] == 1) & (pr[\"iou_threshold\"] == 0.5)],\n", @@ -2880,7 +812,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "id": "8852c25d", "metadata": { "ExecuteTime": { @@ -2888,18 +820,7 @@ "start_time": "2023-06-22T09:38:47.476070Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAHpCAYAAADasmf6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wVZfb/3zO33/TeCwm9994tKGJXLIgKKliwY8O+ruLacW1gAQsWxI4dEJDeey8JIb23W6f8/pjcm4QUkoDu7u87732x3pl55nmemdxkzpznnM8RVFVV0dHR0dHR0dHR0WkF4n96Ajo6Ojo6Ojo6Ov976Eakjo6Ojo6Ojo5Oq9GNSB0dHR0dHR0dnVajG5E6Ojo6Ojo6OjqtRjcidXR0dHR0dHR0Wo1uROro6Ojo6Ojo6LQa3YjU0dHR0dHR0dFpNf/njEhVVamoqECXx9TR0dHR0dHRaTv/54zIyspKQkJCqKys/E9PRUdHR0dHR0fnf5b/c0akjo6Ojo6Ojo7O6aMbkTo6Ojo6Ojo6Oq1GNyJ1dHR0dHR0dHRajW5E6ujo6Ojo6OjotBrdiNTR0dHR0dHR0Wk1uhGpo6Ojo6Ojo6PTanQjUkdHR0dHR0dHp9XoRqSOjo6Ojo6Ojk6r0Y1IHR0dHR0dHR2dVqMbkTo6Ojo6Ojo6Oq1GNyJ1dHR0dHR0dHRajW5E6ujo6Ojo6OjotBrdiNTR0dHR0dHR0Wk1uhGpo6Ojo6Ojo6PTanQjUkdHR0dHR0dHp9X8R43IVatWceGFFxIfH48gCHz77benPGfFihX07dsXi8VC+/btWbBgwV8+Tx0dHR0dHR0dnfoY/5ODV1dX06tXL6ZOncpll112yvbHjh3jggsu4NZbb2XhwoUsW7aMm2++mbi4OMaNG/c3zLgWj9tN3rGjZGzfjdloIywuHqPJTHVJKaqqYgkMxGQxo5oUTBHhmC0mVBWcVS5kScYaZMZkNKEoCrIsIwgCJpMJg8GAJEmoqoogCAB4vV4AjEYjgiD4t81mM0ajESNGJEkCAQwGA7IsoygKgiBgNBpRFAVVUTEajZhM2phOlxMAk8nU6Bg2uwVR1N4xJElCURT/tZtMJv/c/pf5/+U6dHR0dHR0/hMIqqqq/+lJAAiCwDfffMMll1zSZJuHHnqIH3/8kd27d/v3XX311ZSVlfHLL780eo7b7cbtdvu3KyoqSEpKory8nODg4DbP97Wf5/KeKZUSMQKL6sKOEwkDLsGOiIxddSCgoNY4e1PcWRy3JFIlBKEiYFerEVFwYMeGg2fdDyI77Xi9VgAslmosFkeT48uygerq8JotheDg4mbn63CEIElmAKzWSsxmV5NtJcmEwxEKgCDIBAWVNNt3VVUoiqIZozZbOSaTp8m2Xq8Fp1O77waDl4CAsgZtSkriOX68J6oioqqGmnkoCKLc7DwU2eT/LIpeaMY+VBWRqKh4rrvuOlRVQlUbztlnUAuCgMFg9++XpOpm5yGKZkRRm4uieFAUL0ZjAEZjYLPn6ejo6Ojo/C/xH/VEtpZ169Zx9tln19s3btw47rnnnibPmT17Nk8//fQZn8shl5MiawwATiEQJ/UNBKcQUG+72BZVb9stWGvbEsDn1mvpa90MgBcTKgJlhAICQVRgQKaSIGSMxHGCMMqpCgikiEgURKwk4sKCCzsm3CSQQ1f2+sewWps3fE4mMLCsxW1b07fVWn1KozQ+/hDx8Yda3OfpsH7DnL9lHACbLYUe3d/AF0UiCCImUxgAqqri9TZ/X4zGQETRAoAkO7BZk/zeYh0dHR0dnb+b/ykjMi8vj5iYmHr7YmJiqKiowOl0YrPZGpzzyCOPcN999/m3fZ7I02WQNZjf1HIqhRBC5WJS3Bl4RDMVxhAMqkyYVI5VNaOKIl6pmu6Cm12ijSJjOIoqEkERJoPEVsMAAFYK57CSc057XicTRw4BgoIoBFKmiFRiQkRABdSa/wcQETEiEUEhsqzi9QRQbgtHqfHQCYggCKhqjTdQFQiWy7AZPBhEgUohkirVjKJ4EQStT1XVXIGCoGJW3YTIlZjNVjyqRBHhqIqAioIgKP4+qTnXjpMQygCoIITm3OU2HJjRluNdWHBjbbKtAZlAqrThavpuDjvVmJAAcGLDg7nJtkYkAtAMagWRSoLqN3ACm074NwOpwoB2Px3Y8WLiZEQU+rCZICqx4mYA64mk0O9kreshrYvJFIHJpF2b11uO11vrqVZVEEUTRmNwzbZEePhw0trdhdUa3/TN0NHR0dHRqcP/lBHZFiwWCxaL5Yz3OyZ1ML/m/sAyxtEhK49PMh7AdPceDCHhPPLnI5gxMmP5hU2ef6LPfKqjdjCn4i22BkYTqDgoM9gQEBBUzZ7yGU4+g8G3bZNUAhSoNHtwY0GoaaOgap/qxPnlEk8dW/GUlBMIBsBnjwsnGTZC7X+dYh0Dxte/aGrYFs0zWy6G15/HyU60uu0JpJgo/goKWtG2+SCB06OY6Ba1+40J/s8LuRGAALVS2yGDioBDCCRJPQZACGUYZRlcUElQPcO3ghBSyMCiuEECG07sOCAX3LmfUEUQoSEDEEUziRaBwcE14QQ15wuCiMUSh1jnO1Z7zLct1NvfWBsaO+Y7r2ZHqs1MuMmIAJh1j6uOjo7Ofx3/U0ZkbGws+fn59fbl5+cTHBzcqBfyr6SphAxZkfk983dQ4e64y5FzG48PDMs8l6D8/rxWVoHZYccVfAx34AnMVQnYKtLw2PJxhh3E6A4joLg7kqmS6qjtCLKF4PyBqIJMRdxaAIJzhyCoRipjNqIY3KglvXm6cxR/xphIc1Zw25FKsg0RvNbFil32cn5+GXiD+SpFM64vyc/B6ozgh0QT1UaR20/sJ7kgmde6WMizGehTWUj7kkB2hpo4EGIk2VnEoCILRYLCH4khJDnzuSBXZI8tkD/jbFhkNxcUVIA3mK+TtTGuyc5kUF4Us3oYcJgtDC09QWJFFL/FqJRZrXSrzKFrSThrkhRyRDuXSKu4tMsknjtyjAOKkSilgNTgFDKdLgpklRCllA7BUZRIIkddHpLk49wfF8oaOYkvi8sxqF46m5zYrDFsrtKSiDriJEgROYSLCjGEOyLK2OCO5UB1OW5FJdQAYQaVHK+CWzERWVXFxe1szCs2IwKdc49TFBBAQVA4MgZiHAUYZCgOCMUtmulmUJnZKYUPc4pZWVpFgNtJoNtJtdlKpT2QsKpyLJIXh9mCw2Kj1/FDRFeVURgYSkZkLAoCZllCEkVUQaDUHoziN55UEGoNqWrhJC8nkCW00/57iu/uTsKbb1ABoHmH389vLA712ClG+GsIMmjXbxY1T3qAwUC6zUyBV8Itq3QPsjIlIQqDIJBobejVDTMasRp0Y1RHR0fnTPE/ZUQOGTKEn376qd6+33//nSFDhvztc/G6Gk9MMRlMzBo0C4CQuI7kTnkRS8fz8WSuxr3na4S4vgT2uQ5XQRd252XS/8iHmEc9hFgSw6rMBESllAsiwOyM4c+8cDwqDLMXE0wE1b8VEnTsD/JHhxJoi+XEwa7kyMG4qpcieQ9iyh+OiIDX8yWjDhi5pvgEFrcLQbRRmjqaB7d6EACLV0IFUtXDAFi8bgRgmlEzXsxeDxWITN5uRhFETLIXg6LQzmBEEg0YVAWT10OKqNLLFIIoWLFLKsMFgYEmEwIqVo8XVbAy06otqRqc5ZSYHDxcEoyAiEWWMaoqvQ4YMYpWhitjsaheqg8q7AitokNVb6KW7eWucIFcq0DPMitpjgL2BQkcCBJIrTbSu7yUEzaBzWECke5whi1V6G46QecoEYsM5+aDSgFfd8hHReHiY+HsJIufU4sJNQTRfa0V2buCfl0TSenVjT4GE5dneHAYAkgzlbL8rCG8/NFDyF2moiLz4xUXMH/+i/wraBQOIZDXO1aQbK7ihqMlHBS6cG/nFFJKXsBUmYgqDqdLXiZjhV/5JXE0O+hD7xOHGexZz1cdLuagIYgLRo3A+e1slgUPoigojH4Z+xlZsIHvOo/maFAKVq+bKzb+wc6k9pglL/0zD1BpsbEurZv/+6aIInnBEdg9td/HDgVZ2Lzay0tGRCwVVi0+tyQgGIvkRaiTSxdRVU50ZSkmkwsxroo9dMeBHflkDzRgU6uJJRcVAQ8mcoTkZn9Hko1uLKIWNJErWahWms50CjKIxFq0MatkmVy31KBNpVwT9lBj15Z4ZbJctS9pR5xuvisob3ZORgFMTbwAmgSBIKPmeZVUlXyPRKjRQKBBRAWMgkCVrHBBVAheVaVnkJ0b4yP0DH8dHZ3/s/xHs7Orqqo4fFgzZPr06cMrr7zCmDFjCA8PJzk5mUceeYTs7Gw++ugjQJP46d69O3fccQdTp05l+fLl3HXXXfz4448tlvipqKggJCTktLOzj27fyhslH7OZgfTbu4MXCt/Ge/d+7OFx/jaKx0Pec8+jur1E3n4bBruFoyVHeWTFw4SZI3njvDcxBdpQPDJVpSVYbXZkyUtZbj6CKBIWH4cgCBRnaXF0Ee1SsATYKM3OxVVZhemIgGdLOcutq/nC9jU9lB7MKJ/CCSmDd8V5OAKhU2YwJ8IrOJhSRUx5ABMKexEUEkLHL39kW2ocJaEBmOw2TGYjqgqVJRVQE1/YAEHAaDIBNiRPWZvvXWNclnIPJvHMhx2cjIyCgooJA0fFfJabdxOrhDLB049SoYrvQpdjCpIZUzWA+JJE5gf9iBDm4IILrqBPykjeeus1SjnKyNFXcGJ3Hoq0kZgOxdiC+tEj5WaOHryL48XrSUh7nPiwQZw4NJO1FV5C27/N4JAA8neexU/e/lRF3cYN8ckcX3k+e0M7sK70LGKyqxkb9gPfJoyjxBnLsM0HGHnWUa733kOIKPNUeS6/Svv4JewcrjzxHRFHVI52DeZweDJjC1aT5urJgcBKjoUqhDiridmu4IqTKI4IJKTMQWgWVAUbyAyPw+aUSMvPw2U0cSA2BYMi0yv/APaIIiTRgFnx4K7z8wgODuGCcTcToJayZ++tuKVyKmj+9yeISow1Fl8lgUh1Yj7N5vqxzWY8BFCBokiERU9gtyuYYiUQoyWBLc4AjELtn6kwg0JiaCcCTDaOO918mFNMtazQGCJgEAS8f9GfOSPQzm7BKorcnhyNURAwCprBGWYy0j8k4JR96Ojo6Pyv8h81IlesWMGYMWMa7L/hhhtYsGABN954IxkZGaxYsaLeOffeey979+4lMTGRxx9/nBtvvLHFY54pI7KwoIhVrz+LgMyFLMRklHDcdxRTQDDv7noXgFt63ILJUN+joyoqJXla8kV4bACC2HYvRvnvmVQuO45lYBQBFybj2V1K1RdHcQa6iLquJwVf78CQC9tjN/BU5CJ+3vcWACvdi+mw/A9CRj9JgC0ax+qXkEuOogoi23rOoCwkHQHtAayiLWwKQOeBMYyZ3BmMIgfXrWPbT9+jKgqKoBkKYo0cj4IMAoTHJBMRn4CkKGxcshOkQgRBRFFlVFTMVgOKXITX5SI6NY2SzGzUmmVUAQFRMDR7/bJa660KCokgLC6RHu7B2NTaB3fwuSkEDk8AoHpDLuU/1i7FKijIqAiAEQMqKlLN+Ca0sb01RpAtNojo23rjlbyoqgpGgeeff56QkBDuuOMO1qxZw8qVKxk4MJXhw/thtcZjMoWzd98DuFzZ9O3zKYIgsH3HzUjeMrp2fRmbLZm9+x6lqmoPqSn3EBY2jKysdyks+pnY2CuIj7uWrbtv4/qyyYwNFXmj51BGrP6VY2oCM8MzmZA6ljkHVvBNdRL3Bm/lvp6TeXrfOt4rDuZSx9cE7LCT29nCsrAxDK7aQO8tuXj6lPBB8FS6Gyv4pncKu0szuPRICFavmxvX/szxsGh+6jmU1KJcztuzgWMRcazo1IfY8mLO37OBMlsg3/Yejk1yM2nbz1is1bzfV9N4fZ57CTOKPCc8Q7YSwoPWr0mo/o753MJ2+nIFnzOClfzCeH5jPMNYxeUsYjt9+IQppHGY23md/XThFyYwgHUMYzU5JFBEFHaqSecQKgICKj17vEV0lPby6FVUyiQJSVXJdnn94bYJVjMxFhMeReGTnOJ6nksfvj+AcRYTg0M1lYVVJRWsLKnCWPP7uaKk0t8+3GigRGpebqouiVYTRkFAVDWDFgEOOdx80SudFJsZoyAQbTbqcZ86Ojr/c/xHl7NHjx5NczZsY9VoRo8ezbZt2/7CWbWMgNBQZnpHkywcItEUQT81H0QjXsXL2zveBuCGTtfhXLkMgKCzz0YwGpG8Cp//YyMA0+aMwmRp3lBqjuAxSQSNSkQQBQSjiK2njaAu0biqKqn+Mgt7gQ3VDgMvuQJWL/KfN2jSZPI3bkSqEx9WPeoOYkO60WvPF7DjDaydxmPtNB73sVXEv3YLUq5K+aKDFLy/m/Ap3UlO6kGAJCPYjUQ/NBCA/Ce1GM24xwZhCDST9/JmpM1OQm/oSm5GGol51SSYRXY6ZDI8CiIw9eURmAM0Q9tRUc7cW69HkX0Z4A2vecgV15LWpz8AG79bzKGN2phlZXmUleVxjM2cG38jYRbN0yUYRERzTXKIsf5DWkREBGIeGoAhoNbYVzwyqFD0/i7I07Q6pTwHOTXXB2CMtRMXG0fvnr00A1TWJit5wjl+DCQ1ix49QunS+QUkScLr9WI2m+nd6716c+jW9bl62+npd5Cefod/u0+359mhuDCZwjAajbzbqwcbi3MZHtWPhEA7/aM7k+gsY3TkSEwmE2fHppHhzeecdpcx4ZyufJmxFqE4k2Ex6dw0bgrf7PonwytW0zO0K+UVazhx+FXOsjxITHRv7rrrMh47IUKxRKRBM55iEhNxm8x4jDW6l4KAy2wFBCTJirfKSpmgyRQdz+xOVqWZzHbBlAUEsn5zHCMjkymNCKfIEI1L1bLmqwgiX4jDEHohvVMmkl3iJjfLSqhaCsBOerNJGIxZNDPWmMkq5WqWyX0IE5xMUt5jo9qLFcI5TNz1CdcFvsP3phsJE71cHJQLioMCsTeyCt1sHlSnSp4gEB42hKmJLU/U6hVk586U+vuKPBLFXu3FJcpkYEuFg7v2Haf0FAblCVfjnv2rdhxpsO/mxEjOjQhBFEBEwCBohqcoQLzFTLTZWC+pSUdHR+c/yX+N2PjfxZnyRJYWFvDK4rmsiexCUl4hrxc9iumBYxhtNl7Y9AIAM7vN4NgALV6z09YtiHY7XrfMR4+uxSk5yZ+wFtUooxqUeqms8YHx3NH7jsaGbTGqqqJ6Na+aS3Az6NNBWBQtS9cteAisFpn4ZyoHLw3h3+PfYusTi4m3pCP0MyMlK2R9tZ1UsTueo3+Qc14M1Qcr6MZgKs0Gfs/aSoBygnFxF+BWVH6p0B6sF4dqhobPiDw4azV2RWV1lYQpJZiRMVbce0uwn5vC1u+P0tlqwNI3mtCL2/vn/dvcV1EaWZoURC2Zqdc555PYpbvWdt6/2bXs10avP7FDd6yBAaioqDVLoYIq+DOARdVAn/IRAHgFD9tDV/vP7Vs6CgMGqg2VHAzcTsfK3gQoDRNZ1Jr/iYj+ZXIZhU+sqwB45OFHKK8o56233sJut/Pggw8C4PF4/NVyPB7NM2Y0Gv92zcf9B54kO/sTund/AwGBXbvvIDi4P9HdPqK84DvKs17BI0YR3v45qkocLPv8ZyRBpMIWgIBKmKMKFS3WUgXCqysRUSmxByGLIiHOasyyRJktALfRRJDLQZhYghBZjcNmxpETTaDDi9sikDhoE3YcJJPJbnqwmKs5nyUMYh0Ly25hB/248PjvxFizWd6xP38KY7ha/YgRrOQxXqBUiOBj9QpEVG7jfSqEUJ5X78GMh/t5g/H8wONpMYhh43k8U8JqEJnbLRWAKbuOUSHJPNgulkGhrROEr5Zkvi8sQwBkVYullFSVxw5lk2w1c2dKNF0DbSgqPHggi73VTYv8txSjoGWrO2SFrgFW9la7WNQrnRFhgXp8po6Ozt/K/1RizX8T1fnZHO1kZq/QnoAqNxQBsgezIYTHBj8GgOJyYR8wAFVVUGqq5hSrFbzZ625El4cpi18HIDfoKN91m+M3JLuEdzltI1IQBIQaD5xNtdEnug/bCmo9uFWBCotGHafKKeGxisTfPBDV6+Xwjk0c/WwTFfkFKEc/IqqyihOl4eSEB5NlKMUbfDayZz9lUgbf5NoQjUlIcgmiMYElZTFc/+wQxBqv3q5AM4XHq7QF4SPl2G/qRsilHZBVFb4/CsCBdbkU/pmj3QevikrfRq8nMimQiY8MqLf8P/bG6aCqVBQVAuCuriLviCZSfuLQ7kb7qUtiXDuirInIksTRrZv8+we0GwtAgBxEn/IRlLrz+S1vAYoqAwpj4yYRZonR5JhqfmgGRAyAEZEYJQQBgdI3dsHVCf5+PR4Pzz2neR7vvvtuwsLCePfddyksLOSGG26gXbt2eDweDAaDv/yloiiIoojRaESW5XolMhVF0cpdopXA9I0BNDBSGyvx2LnT06QkT8NkCqasbDNmcxRmcygpNgvHhSpKZCdd0m4gyGZgY861jBxlZMjgzSxaNJvy8nxKHEkIQER1BbfffjuhoaEAfPLJJxw/ftw/TqizVozeTSBkByICgTWxtxa3SuGqvhiNXpwRCUQEFTLF+wUAmfSkZ8VRkktdhISW07HjepLZzjXqx5hxU+qOJNBcRZhSitdrweEIJSqoiEBDNRZTMIfkWFRE9qldOXL0YQr4kF+Ft7Hi5YDpIwplKz8XnUs/SyE/HNnET6hkeIO4MCCTbsZsDAn3EmULJ9RoaNRACzAauCYuosH+mxrxen7ftwObK6q5eof23TcKINW8wp8dHsSG8mpSbBZ216gJNIWkglTzouUzSifWeDVnpcVxdkQwXQP/XrUKHR2d/5vonsg2krd/D/fnLGGZMI4BGXv4JONOTHfvwRwaxbLj2hL2WclnYRSNuA8d4uiFF2EIC6PjurWsyFpBzDm3sXz0m5i6FmEY4gCr4tfHi7BGcHH7i8/A1daiqipOqfbh5JScjF40GoAVE1dgM2oPHaMskL1vD7IkIb0yB3XbdsptZlwmIwEuD91/XcbRQ/soz88huXsftv+2hANrVzD8min0Oe9ijCYBQRQRBAHJI+Nxycx/cHW9ufQ+O4mCo+XkH61AFGB8iGZ0LinzRSA2TmRSIBNnDWjS21KYeYyFs+5l+NU3YAnU4iJXfPgeHmfT5SO7DBlNUreeYISMHVs5uG41RsHkNxTrsqHoJzIqdwHQI2wkXUNrVQGMsQFE3qR5SAve3o6nxOGPsxRirUTe1ANzgIX58+eTlZXFAw88QEBAAG+++SaFhYVMmjSJbdu2sXfvXs4991yGDh3KH3/8wcqVKxkwYAAXXHABe/bs4csvvyQlJYUpU6ZQUFDQwMv51FNPATToPykpialTp7bYU+XxFON2F2C1xlNatp5du24nrd29xMVdxrGMN8nJ+Zwe3ecTHNwXQTBhMpn8nlSv19tkmErdmvCHDx9m0aJFjbYDGD58OIMHD8ZkMvHuu+9SVFREQEAJffv92Gj7TRsvxuXSfqe79/idsLA8jpHGMdIIUioYIG7EgY31DMOAzCj+QEbkTe6lD5sZwUpm8wS7hV7crr5GChmsZAw/CReTO7oXFZJMhawQbTZiOUNeY1VV+bGwnF7BdpKs2ovA2I37kQFFVVFULeu8Lot6pRFsNHL9rqMUeyXkZv6CJ1hM9Am283zHJCJMjRvCOjo6Om1F90S2EVU00lfeQahQyaXFWwkRZByAR/Ywc+VMADZcuwGj2PAWj04azT5g1Kp7SX9qKbbY+l6LnKoc/jj+B5G2SHpE9Tgj8xUEAbup8eomPmMSoE90Hz4870MEQUD9dBCq04lUUsKRs7VqOgbZQ9cRI/0Po6LjRxAEFUXysPLjd9i59Bcm/+t1olLaseP3Hyg8nklc+nByj5TjrV6KioTHfQ0X3deHNV98hqAKGMu7gQDX3dMBwSj6PahGQXvIfvniFsoLXZRmVeEodmELsyAaRFSvohklBgHBIBKZnMq42++ly7BR/utxVVXhdTXt2WnXuz9xHToBEJGQRESCVs2oUnVTpWQRcyAGs1N7uHcaPJyBQ6/lxP49lP9aXytRyqsm79kNAJhTghHNBqQ8h+apzHNT9OxmTHEB3Dj9BrySF5PRhOKRufnGm1BVFaPRyKqV2jK4ARHFI/vjLFVZ1bYlX2UfLW5T8cr1tuuieGQUk4wiK7RPb8/QwUNwu92YTCa/l9NgaNqoMJsjMJs1D1tU5Nmkp80kOKQ3FkscOTmfY7XEEx7ehy1br6Kqaj89e8wlJKQPx7Pm15wzlpCQxr3KPjp16sSsWbOabePzsPrmWV0dzto1VxMRcVzT1UfFYBBIS2vHHXfMYP/+TH788UfycjtSXRVOu6S9tOOoX9jejpOOJ7JRFAO5pnRMJhdXeL7Hagknsdc0rnILjJIOklaRz9vybRwWtO/G239MIMt+EfOdg1jStwMBBhGzKJBqs2jJMm1EEAQmRIfW27d8YOcG7byKikdR8KgqQQYDRlHg/MgQPsxpXg4/2+0lu7CcJYWa9FGgQURWVUaEBVElK/QMsvFkerxuXOro6LQJ3RPZRsoqq1jwrzux4Wa6UfOMOO7ajxgcxm1LbwPg7bPfxmq0oioKao2upGjXDDnF4cBd4WDRo8sBuPqV8VhCtHisxQcX8/S6pxmTNIbXx77e5jk2h6qq3PDLDfWWuH3U9UwCSMUlZI+uLclo6dOL1IWf1ovhKzqewaePP4DX5eS62a+xeck3VBYXkXvoAPcs/AbJo/DO9GvwOB3c+PI7lOab+e6F6YAXc9Akgk3BdLAFEmsU+PmkGMvIB/rz/qPrGBNkJNggsMtm4qyH+lO+6CDuvcUEjW+HfVCttFJTGM1iqx+WdWNLfcbq+q+/YN0XCxEEAwI08FoaoqxEz+iD6lHIf2GT//xTjlWTHW5AqBdnKSJohmUrssmNiAgISMhIKKwx7eeYoYBzxp7NkMFDWLFqJYePHOKmGiNWEIQW3xtZdlBRuYPg4L6sWtuDuJgrCAnuR0hQHzZsPY/Y6Eux29rhlSrIzVtEXOyVtG/3EPmFSwgNGYjF3HylHsHU8OfkW5ZvCp+xuW3bNr777jv/fqu1gpSUnUTHaEZ/RUVXdu7ojaoaSG+/gfj4g/62brcNi8WJzdaOzp1eprBwCcez5wMCW+nPu9yOGzNPWD9mo9yZH6ThXGHdwkNJJh7KbcfyqiD2DOtOhPnvezd3Kwr91u6lyFtfV3NWWiwg8NzR3Bb10ynASrdAGzkuD7M7JtJFXw7X0dFpAbonso1IXjdTDT8w3zOUOfIopps1L5LVaGX+efPrtRVEEcFe3wso2u2IbpkqUyQA3konKCoGm/YwNMgqRreM4vEgms2okoTq8YAoIlqbNkwBBJvtlAaBIAh8eN6H/iXuusvbdT2TABa3wsd1tt3bdnD74km8dcVCvyEZmZzK7e8uxOt2YbEH0Ovc8eQeOkCHgUO0GD6LgWFXXYcsSQSEhlKa70AwRCEaY0Ew09NSRZQ5GLfS+DtNbFowFGrXV17o5N17VtHfbiDBLLJm8WGOf3qw2aVw0JbDL72/b5u8LnUN0OjUNBRBBVWL6fstZwGGOuLc8jEvAbeF0j6gL50DBvBb0UcMDDmfUFPz2cECgt8YhNo4Sx++bPKm2gMNto0YMCDiELQl0epfj5P5k8Qay2pkQeH4k6vJEovYaczkYs8Af4xnS3CyhaSwRwAFtTSOIvNBwtqdg7AjDlN+Twp7vI0UV4GyJJATJX9w6Kz7MHiCaL/i3832a4oLIOrWXvWSzYwYGjUuT6Znz55061Yrxq6qKvPnz+fAgVxSUvcyYcLtXDB+GK+++ipeT31DyWKp+V1wHmPb9sv4c9Uk4DrCI7Lo3Wkjc403AnDMlcYOzgYBUpy/sfvgTpYLnwGwZ//jhCXfz3OZ5dyTEtPqRJ3WYhFFdg/XwigkRWVhbjG/FVUwMTaCMJOBA9UuvsovPWU/B6pdHKiJrxyz6QCgia97VZVpiVE8lh6nSxDp6Og0QPdEtpGczOM8se4XVkR0pUfmURZk3YPp7j1Yw2I4WqYFzqeFpiEKTf/hlb0Sx37U5H52/nqUXDWefunlnLhYZu8LT3DlapWwa68h9oknqPjlF7LvuRf7gAGkfPxRgzhLgH2duwDQYe0ajOGnKG13Es15Ji0elY9fbmiiWfr0ot2nn7XJKFNkBVlSURSZH+fM5ti2Tdzy2kdYAwP9y9mqV2bRs5soL3UTGm3j4rt68dPbOynM1oxJTUga2ltE0iwilbLKn1VyPX3LM8XJiT1VpSW4HdXIXi9fPPUwXreLxM7dydq7EwCDYOKK1Pvq9VHqLmBF3hcoqoRao18kUrukPPSKa+g1bkK9cwQBBFPbZaAAULU4TWdeJYaaZKDvzZuJVIIYKHXgR/MWisRKrneNwlTT4kwgmcuoitpOYFEvVEHi6MgHiDx4JQFFPckc+jgdf/sAoUEB9aYxpwQTdWvPNnmTvV7N4Pd5LF944QUcNS9dRqOLqCgjFosHe8B6IiKyOXx4APl56VitVbTvsJGs490xm5O44orRiKJIteMQ2QXLMYlmUCpZXB5JHnFEUMxSxlEoxPFm1xRSrGaeO5rLDQmRXHjSsvXfwbtZhRx3ufm+oIx8T31vpd0g8l63VI453czPLuKww91ELxpvdkkm0WpmQEiALjOko6MD6J7INqM4q3FGl1IlBCIZah/yLsnFpd9fCmgxkU3FIQIYTEbaXzIUgF2/HdVi21SBqrU2bOJ4FOGXv/Yi6nCyZ7IuisNJ1svDtQ2bFZyax8K9bQeq09nAy9oSRIOIaABVFSk+cZy0vgOori4kICoIQ03pOdUsYgo0QambsgInHz62nsjEQKa8MBzRIGAwiqiqSsm8nUg51cQOjOGaxCCqvz+CMTmIoEldoCZu8sd5uynKqmrz/SnKqmLR7E3+xJ7AsHACwzRD/c4FtckhboeD7P27+eZf/6DQdYIoa6L/WJglmktT7mRd6Q8kntMHgNDMEIIKa+SDNkHepg31xjW3Cybqlh6oiooqKQjNeIMEo+g3cn3xotoBiL6rT20qMHCrOhRZljEYDFg+PESKMRz7uM58+/133DL15jMYIzfe/ymwJARz70iOZLwMZWCYUUKAPZ2de6fTMe0JoiLOJee9P/AUl2LwBGOQ6n+vPJkVqB4FoZXaqoIg+I1HH/fccw+qqjJ37lxKSkrIzQUwcu65z9OvX1+GDxNYu+5ZFGUJACE9tLCTnbs+9PfRrdtrxMZcCECX6sOs3zAOFxYiKcSjmlGOBzK+6iYEVPZWOVDQkmhe75z8t9XwviVJ834/00H7HjplhfnZRfzjSA6vdU5mbEQwa0urTmlAAtyx73i97YmxYbzWOVk3KHV0/g+jeyLbyPHdu3mk4McG2dkEhXDeV+cB8MvlvzRrRNbFU+VE9UqoopH3H1oHwLHx3/HsmOcxWMwYRLVFy9mKy0Xm5OtBgHZffoloO/3YJlVVOXbZ5bj37QPg9ttE3npb8/N12rIZMeD0Sru5HdWU5mTz0xsvEZvekfF3ziT38AFURSU6NY2vXtxO4fFiUBUQjAiCiSGXpdP3XE0NetcfWaz54hAyEG8SGBBgpEhS2OmQGRtswqNCu+eHI3kUit7aTvDU7k0aSQajgFjzgJclBVlS+PqlLVQUavd6ygvDmxSI9y15y5KXyuJizYiTVFDBuegESqH2oK7q66XzRE1GqPTbw1SvbzpurcB5nD/yPsNuDObCpNuavY/Rd/TGnKQZpMUL9+HcVeQ/5lsiFhqJC1VVFYfDwW+//caOHTvqJbs0Jg10uqxePRS3J5+xYw6TeXweR468QHT0eHp0/zc7dtxCUfFyOrX/J/GxE8nO/ZRQ+0DKXy4AwBhpI+a+fqdV6akuiqIwb9488vLyABg/fjwDBw7E4/Hw+usvEBm5kaTkPY2em5Q0lY4dHsXrLUWSHFit8Sz/o329Nn8yikKiOZ8fmGt9mU3uWAD+GNCJRw6eIM5i4u1uqVRJMtftPEqYyciNCZGMCm+oS3qm8cXCFnskLt9+mP3VLlJtZjKc9eNPr4+P4LDDzdqypl/CBocEMDE2nGvjG8od6ejo/P+L7olsI5LUSKC/IGI32Vl19SocXm2pzPeH2ik5sRqsTWfD1gSyy14FWy8Xm/I2EVGcwHsPrCO+QyiX3t8XSa4RykaLs5QMWm1joWYMnzHpOVJTCeMMvR8IgkC7rxbjzcnFbYLK7871Hzs6aRJxixa2yNCwGRuP1bTYA8jYuQ1nRQWCKOKqqiJj+1bWfrmQKx9/lomzBvD9K89zeOMajLYxGK19Tp6gPx4y16uypMyLCgTUcfaoXgXX+hzkfAfHntnA6iptac93nogWgjdqcme6DIsHYNtvmWz6MYOYdsF+I/JkuaK6xKWHcOnMvhiMJkJjYusdC70vrk6CTu3EQieksXLfp2TsaKoK05n5GXpzq8l5ci2mhECiZ/TWsu9rvJsAVqOF4qJi7DY7RgysWbeWZX8s80sF1RVIP12GD1+LLLsRBIEAezoJCdcRFjoAAIPBjtEYhGgysWPvTchSFQcrnqJb3CKkXAdSkZP8V7YQfWcfLTu7BXGSzSGKItOnT/cvdxtqVhVMJhM2WxgZGX3JzOxNRISN8vJyRFEiIvI4NlslWVkOwkLXUVq6jKwT8+nc+TnGjjlESckaPJ5CDh/5F+cIh3C5V6ICO12hDGAdN/EOe47exPrykbSriYGWVZX15dWIwIudkpi4/TDxFjOvdUk+nVvdLL77FmE2sqJORrhDVui9djcVksK1ceFMjA3HKAhkOt1Emo24FZVrdx6t19f68mrWl1fzS1E5H3Rv5y8XqaOj8/83uhHZRuo+uFTfR5PVv2/Qp4MAWHnVSsKt4Vyz5BqCLcF++ZymMJhEgs9ysHrdYi5kkta/qrJy53py13goOyjR7yHNS7HxKa2e79QXh2MLqpFCsVhI/vBD/+czhSCKmBMT8FSW8OSnCm4jWCTw7j/AqA8H4Taf+qHRObwzH573YaPH2g0ZQmlhLql9+uOUXexdswIAl+TGKTlRBc3YGXZFB3qdMwrRUDte1xHxdB7SMDtbVVSoMZIEk4hzbwlHvAoHHTKjgowEGQRWV0kUSyp9a5J0pDXZqINitXNrknwKjlUQkxpEfkZlgzHqknukHGelF5PF0CATvK74e10Eo8jFDz9OUVYm6xd/xvE9O3FVVZLcozfn3HIHgihyZPMGFEkm25VbT3/x2PYt5B895N8OejEKXx2dqMR2THj6IQQECt/ZgTdXE/z2ZlehehUEswFvdhUFb273nz+OjkgozP3n6+SLmiSMx+NhwYIFFBYWEhcby5Trp6AoSgOD0ld6s6UYal6AoqLOJirqbP/+7t3n+D87HRlkZL5Np07PUJn0G8ez3iN291SCc0aw/63XEIAwcSTRt/Zt1MPaUhpb7hYEgdtuu4033niDkpISiorcGI2BuN0SOdld/e0++GAR/Qd8D8D+/bNwOvNJSZ6KyRRIXJxWU7ysbDPFJav4IGMSCgIiKpVFH3AXG7E4XKxdW4w9uD9PhCRxXAphf2kAq0q1n9drXZJZUlDG+KiQv23Z2G4QOTiiJ1WSjCBAgMHAvfuP81luCQBf925P3pjeuGSFP0srWV1WxdwsTfD/t+IKElfuALQYysGhgSRYzU2OpaOj87+NvpzdRnIO7OfB7G9YKpzPhO3LeKXsWYz37MEeoPXZ47PBAKy89GesRiuDvhwDwIYr/8BubH6J+esj3/Pmrnd5pO9MRsUMRxAEnnr6C+Iq03Aaq/hwwKMA3LpOe+BO/ucQlrypJXRc+Uh/DKpEzoMPARD/wr8Qz6AxKVdXc7Bf/3r7jsXAQ1MMcCYfcnW/lYK2PSC4F4+1u4fMndsYfvVkTBZrU2c33qWq4q3yIpgNFL2xDbnQSdiN3TC3C6Hss/14c6sIHJmIWuWl8o8srP1j+GLpCeJNAl2CTLR7fJCWdCIpUMcD5nU3FFT3ZYKbLK0TeFYVhUMb19J+4BCO797J0vfepDw/r9G2osFQW2e8CYZccS3dx56DKAtUf3YcY6SNiElaApYnq7KeEemfQ410UMCAWCImtGf+xwsQC710r0xgjyGLTEMhMUoIEzz9/Ek4AYPjCLukPaqsojZStrIudb2Hikdu1pvo8ZRgMoWxfsN5OByHicuZStDuERw8dwqCbCJps/Y9zxrwPKLJysAB32O3pzTaV1tQFMVvSALMnDkTk8nE+++/T0GBtsSenLKDlJSdDc4dOWI7JlP9Zemioj/YsfPmZsd0YOMW4RMmmLdgMQax0p1CkWxhaf8OdA86vdCRtvJqRh7/Olb/e/jvLslcGavFBe+udHD25oONnQrAyoGdSbKasf9NsaA6Ojp/D7oR2UaKjhzhmz3PsMB2Gb+svIMgY0W9446ah6JNVVGAtTYrVlWlr8vNqdIC8gwGXgkP5YXCWiHhS+JjERXNGHQaPZwwmQjzGFiWlYOaOJB3t2qZwNPmjMIguznQtx9QW7P7TKE4HP6+65K44neEZuIvpy2dxq7KA6dlaCbl2zhrSzQRySkMumQijrJS1i3+DJPNxgV3zvTX1G4JPnFuXzKKLxFFNBso/z2TymXHCRgcx9LdxXQucxFmFAl/sD8mr0L+q1sxpwQTOqWblrhjFFjy7x3kHa1oMM7JskKt0ar0uJys+Og9Dm9aj7OiHKO59mVA8rgJCA3jrJtuw2i2cHz39pojApt/+LrR/iwBAdwy5wMsNYZI3eXseqhQ+M4OIiZ3xRhuRVVVct7ZhppZze+mHRSLVfSUkkmXY/0SQj4j0rm/hOIFjccQ+oj/x1DEGq9s3itbEAxCA0kfqG9sejzFVFbuJSCgPSYhipVru2HwBJH+x6uUJi2loMsnROVeTtSooew9eD99eiwkNGTAaS93Q23cpNPp5N577wVg9erV7Nq1C1VVKSgoIClpF6ntttc778jhGUyefBPFxT+QkHBtg3lUVx+lqOh3BNEMqkJp2UaKipbWa3MDnyMJJh5Q/8l6hjEuJpWbu116WtfTVv55JIc3jhc02J83prf/c4UkM+vgCVaWVlJ4UjY4wFWx4cz5C5fodXR0/l50I7KNOKrKsb+k/TG8rfPj/Bo5lH8e/jfX5v10pqbaJMdMRi5KjCdYlllzPBtFFcmduBeMVuI6hCLIEqWLFqF6vYRfey2C+cwtJ6mqSuak63Bu3drqc02dOxH74XvUtRYEW9Nxoj58GpYGWeDK5QkcTqxCHpnKHZ4L2bLkW867/V4ik1IIjmpexLqlqJKCqqgIooDHK3Pg8bUowN4gK1dM7UrBm9sR7EZ+yHEyIdREsaRwODqAC+/qDcA3L29tMhO8rlHZFvHzxji4fjU/vPp8vX1dR45l76rlmtHexK94am/tZUCRvFgDg0npqc0/OjWdmLT2oFIn21tGVUGSJLxeLxs2bWTt+rX06N6DC84bj6zIiCYD0pFKihbsblYEPeEfwxDNBhSPTM4Ta5u8rlNJ+qiqiupRyH1zHaWmP7CXdKM0+VfKUjRDrN2fL2CMNpM0fcJpJ+L4ZIJMJhNz5871J+LUJSYmBlBQ1A0IgkphQSpWa5V/uTs9/XES4q/AZGpaO1KWXRQW/U5pyVoU1UNe3rc4sJNLHB9yM0eEjryj3kj72PF06/JPhGYkxP4q7tqXyaK8UiyiwE0JUTzYLpbvC8u4PCasXvUeRVWJX7GDCJOR4jpi6Nmje51WlR8dHZ3/HnQjso1UV5ZR8GJfPvGM4OfeEzga04F/JgZxc0psg7Zu2c0j654GYPaQJ7EYTm95+VhFJhf9eBXBpiDWHKzx+szKAXP9pa7Cf79B9bp1pCz85Ixm2KqqilxSwqFhw0+7L0uXLqR+8nE9D+XJYukna1iKMigGWHnRMgSXF4/LRUHGEbqPPueMZxKrqso3L24h/2gFIXEBXPP4QFRJQVbh/btXMiHUxCGXzGG3wrXPDMEUaMJgFJAltVljEmoTcU53zjkH97F5yTdUlZaQe3B/vWOXP/oMSV2788E906kobOhFagprYBDn3X4PKT36YDzpJURVVT744AOysrIYMGAAqamp/preN15/I/l5ebzz7lzsNjsz770fgH889wwA9999H5YALQzBYDBQ9NZOnNnlqOCv1AOaFzJwZCLBY5JOGWupKioF/96GN7ea8ri1lCesJPLw5ZQl/kFl/DpsVR3oO/ZjTKYQrcrQaXonT87orsvFF19M165dmT9/Pnl5eXTrvozw8JwG7QIDOtG+wywiwlv2O7QlZx0XHLBxozqP9hzkMeElAHJH9/qPlCxUVZXtlU76BNvJdLoZtF5Tbrg4OpS53VIbtF9aXMF1dZJxFvVKp2+wnUDjaWqg6ujo/EfRE2vaSFVpJUdT+tPOko8q1iwXG8wNDDkA2Svwe5amM/fPEbOhhbI/TREb2o4Pxn2AUfaiHDyfi+OTuGjOcgRBJPjcMgSLGcHtocu78xA9XvKLM4mNTD2tMesiCAKG8HCsPXrg2rWLsMmTiZpxB1UrVpDz0MNYOnUi+f33ag1DVSXz5lvw7N/foC/3vn0cOCnG0ta3bz3Dt66GZd3KOtbAQLL2b2HT919RmptDZFIKce07nbHr9I196QP9kDyKlg0sagkygqoy9bWRFL+9g8MHyxkWaKT0pc0USwoh13UhuWsEl93XB7WmnKCqNjQq6ybi+GiLdzK+Yxcuuk+Lc9y9Yim/vv2a/5izvAyD0cRF981iw7df4q6uAlRswaEAyF4vxdlZhMbEIhoMHNms6VS6qir59gXN8AuLT2TsjdNI6tYDg1FLqJk6dSperxdRFDlw4EDt/TIIiD5xdAH/srUP0Wzg3XffpbCwkBtuuIHUGb1Z9MUi9u3fx/nnnseA/gPweDyIoojZbkFyeZFlL2azucn7IogC0Xf1QfUqxDMUmAkqrFrxBtaydIJzhrDv839SkraEmD03EqVc4F8+b4tBeXJGt68qTl5eHmazGYPBwJQpU1BVlQULYikrW0ZaWn3PfVX1ASrK9xMeNgyPp4iCwp+xWZMIDOyEyRThTzzy0S9+CMuDqikrv4p/HawNF9iSt4VOgQEIgojdno4o/j1/0gVBoE+w9nfszTpL3N8VlPFdwfYGxu2osPqxoRN3aAoS18dH8EKnpL9hxjo6On8FuieyjZzYv48DOVp1kV82TmGi+DUJ05YSH9qwUoxX8bL44GIAruh4BSbR1KBNm/BUs+mVdkyLTuLmjS8C8N7AB5AMHoySyk2/KQRZQsi7/mweGP4oorV1iSinQlVVVKfTH3NZ9vU35NbRGKyLrW9fkt6dV/tgUVUyrpvs1548maZiOR1ehz/zfcO1G1CqXMy99XoGXnwFXUaM4eD6NciSl+FXX48sSRhNZ+heN4GiKHz70la6FDpwKCqH3ApDu4QhZlVSmBDIoXIPF9/VW5P1MQhIHgWvR+aTx9Y12t/JlXHaSnlBHjkH95PQuSu5hw6QsWMru//4vcn21zzzEvEdO5N/7AhL33uTvMONJ0lYAwIxWq30qVNZR1FVFEUFVNJ79yMsIRFqlll9Wc++2tcmk4m33nrLb0S2a9eORYsWsXfvXsaNG4fL5WLNmjX06NGDsxMGs33ZBn53biUpKYkpU6a0qsa3qqjkvLUST2E5R0feD4JKyrqnEKUAMgc/RfsVczDHhjSpn9kafMvdBoOBZcuWsXbtWmJjY5kyZYq/zdy5b+H2HCUi4gSKIlJWGkdkZBgDBkgUFf+CJNWPqTWZIujR402//JGPnPzfGL9HYipz2UNPvhMu53X1FiIooVOnZ4iJvgCTKaTN19JaVFXll6JypuzOaHDstc5JXB1Xqx15//7jLKzJ8vZRN6ZSR0fnfwvdiGwjR7dv5VjJlQBsWjqSa+wruX3cj9yXlsBZEW3vt1WoKr/MH8VPzjxCi0cAUB7xJwgydDofBANX5yQT+s/3qOyWzGtTtT/mBsHAjd1v5Kzks87sdLxejk28qsWGoc8I9aE4nf4l8pYYkSsmrsBmtOEpqdA8Zy8+Q3VpCdagYK5+6l8s/uejJHbtwQV3PUBFUQHl+XnYQ8OISDizng9f1jeAYDZQ/uUBXLuL2emQMYvQ2WrgmFtml1PxJ52brAa8rsYzq0Oibf7KOCfTFk+lo6Kcg+tWU1lSRN6RQwSEhgFQlptD7uED2IJDuOzhp4hN78Celcv45a1XGXTpVXQYOIR1X33m9062FEEQOeumW+l1zvhGj/sMSqPRiCiKeL1eLalJFPnwww/Jysqif//+DDgSz978w6w07yVODOeC6y9lyc8/Mm36NH/N9lOhqiqqV0GSKikpXUPBnysojP4akyOasMxxBOcOxiAFYIoLIPrOPmdExHzJkiVs3rzZvx0bG8u0adMAGiyDm0xO2rXbSkzsUYzG4AaGJMDYMYcb/My375jKvJJEvuYyuqi76cQ+nNiZzAcIQHLyLYSFDiI8fBii+PdJ7MT+sd3/+Zn2CXQMsDYqnL4or4S7airgXBgVyrvdU/+mGero6JxJdCOyjRw/uJ8Ty54FoG/2byyNHcjN3Z5hbHgQn/ZKB8kNihZM7pW9vLt3AQC3dL0Rk8EEgqFWV1JRoJFyg/Uw2sD34PS6QK0xQPyl7QS8lVWIr3fFIEgo9x5CFq04VvxBzgMPU9w5jtsuLfR31y+mHwvOW9Dm62+Kkw1DH6LdjuJ0gqo2iHn0UTfzu6lKOHWNSB+dwzvzxYQvKM46Tu6hA3QffTY5B/fxxVMPk9i1O1c9+Twbv1vMn58uoNuoszjv9nspy8/DUV5GfMfOyJKXE/u0JcLY9A5Y7Kcno6J6FRRF4ZuXtxJa4PAbkUWSSgeLyMoqmfj2IYyb0hVjgMm/3L3ouU2UFzT/PThTnsqmePmq+rW74zt2oc/5FxKV3A5Fltj68w+oSsOMbkdFGce2ba63r+uIMST36E3XkWNb7j2s8eiJoohBNJD78ibcxZpw/1rTfg4Z8rgl+kIib9KqDrVWAF1RFP5Y0YGUxFsxrEghJ2oerpBjJGy9h1CGnJFqOJIk8d5779UzFiMiIpgxYwaA32j2LYH7CA8PZ9q0m6is3EBO7ucUFS0jLe0+UlNuazKB5teichKtZn4/9AnPl2key4Xq5f7j6Wn3k5p6+2ldT2vJcXnI83ixiiI2UeT7gjLuSoluEOcct2KHf3vNoM6k28/sSomOjs5fj25EtpFql4cRT32FFRdrrffwcdyFPNBxJqPDgvi8dzp8cxvs+BTQ5H4GpWrerw0ZWdhVFTqcC5O+1Dor2AdvDW5+wNvXQ7QW98bCK+HQb/5DcsJQtsS+ybbfjtPR+CtjQt7isGsov5Y9QKxpHxd1+Y7D3e6lQCljW2Ae7+/9gDR7OlO730Sf+F4kh/w9khuHx56FNyenQcyjj7pGpDklhbSff2pQK/rkJBsfncM7s2jColpJGJeTH159ni7DRtF15Fh2Lf+NLT9+S3r/QUgeD/v+/ANnZQX3f7EER3kZb0+7jsCISKJT2nHpQ0+eketVVRWvQ4IaKZ3Sj/ci5VQT/eggBIeX/Fe3YkoOImxqd/AqiEaBr17eStGJ6mb79XkqW6tB2RIKMo7y8UN3NdjfcfBwLrz34WbPVRSZY9s2+2MpfQSEhjFp9qsEhUe2ej6+pBlPbhU/mLdQITiYrIzm6NkKy/5YRlJSEpMnTwZaXqJRVWU8nmJWrxkCQPLhh5Ar3NjKOmAJjdQ8kmdgedvj8fhrcwPMmjULs9lczxPr9XrrtYFaz6XP2+pwHKO6+hBRUec2HAjwKipJK3cQbzExLSwbT8FCFshXcgmLGcafREWdR88eb7b5WtpKtSzzQ0EZ9+zPAmBKQiSzO9bWkt9YVsVF2w77t/9TSUI6OjptR0+saSOCKOJW4ULDXp5y30K6rC3NrCmrovvq3bxviMXnLzOqKldVVCID3hqv05n8UymeWMuJ0iIkr4IYpi1ZS6q2hCUiU5xZzPKdFkweO70f1qptnLvsLk4sA/n27ST3TMbrljGYRMS/oVyZc+tW5JISf11vwWhEMJsRbDYsXbrg3rcPT2YmR88fT7uvv0Kw2xtNsgGYuGQimRWZ7C/Zj1Ny+muVm602Ln/kaf+YPcaeS4+x2kM4Y8dWsvfvJaGzdi8EUSQyOZU+4ybQYfAwdvz+E91Gnd0gK7m1CIKAOUCLyVRVFdEgYm4XginARFmGtmxZlVHBN/esYkKo1u6yWQNRfQ/SuhqWisKXL26hvNBFeYGTd+9Z1UCDsilaswQenZrGvZ9+R+7hg2z/dQn716wEtFhIgOITxwlPSGq0P1E0kN5vEJc/+gwH169m17JfAaguK+XPhQsYf+fMFs2hLnWTZqarQ/F6vSz84lOy/siip5BK34pOzJs7j6LiIpISk7j+husxGo3NXq8gGLBYojlr7BGczmyKO66iZMVRsvu+Rsff39fKQ57m8rYgCFgsFmbMmMG8efMQRRGTyUR1dTVr1qzxx0xOmzbN38bnlczLy+ONN95g+vTpZGW9TubxdwAYOWILJlNog7FMokDemN4crHYxNyuI1eaHCKeKnc7exJJDbuEOKteOYkD/rzGb/77a1gEGA7MOZfu352cXEWw08EiaVl1qYGggg0MCWF+uvTRdt/MYC3ul/W3z09HROX10T2QbObZrOxkZ01ECinBUB7O8eghfxEzDt9C3uEcyw4PrZ1j+enwZM9c8Sp/Innx4znsI5hpx7rYuZ3sc8FJ7ANQHjiIZQxEFMOBCkVVkRzWmf3ekyJXMF2VzMEnVXPvSEP61Zw6xH2sVdLrdaSH7S5GyPCe7BvxISXRWo8PPGjSL3tG923Kr/EglJRwaOqzB/ugHZhJx003adSgKR88fjycz03+8Kc8lNEy0sZ9G5nvG9i38/t6bVBQWMP6uB0jvNxCT5dQ6li1FVWvKMBpFvnlxCwVHK/y1uy+uMSIjH+hP2Yd7kQocRN7SA2t6KMUL9+HcVYQ5JZg/il2n9FSeTFPGZmvjK3ct/43dK5aSc2Cvf19a3wE4KyvoM24CMekdCI+v9TQ5yst4e/pkf8jFVU8+T1zHzlqdd0PbpV1UVcVd7SL3nxswYeBL8zqCVBs95RT2BeTgiRK5+ZZbWnxt2dmfsf/AYwRU9SBiz0Xk9pxLcM5QYssnnZEa3aqqIkkSRqPRL43kIzw8nBkzZiAIQgPPJUBqaihJyf/2byclTSUu9hICA7s2Op9qSWZ+dhGpNgsl1Zn8dOx3VghnM0Wdy9nUrl706/sFoaH9G5x/plFVld1VTs6pU83m5ESaunGUgQaRQyN66B5JHZ3/EXQjso0c276LjNzJKJbaesoJPX5EtWkl15KtZgJO0kD7/sj3PLr6UfrH9Ofts9/GajzNGCBPNTwXr33udS1c+najx1VV8HsmTSl9YOoveD2auWs0iXz50iYKj1bxfdd/kxNymMaYe/ZchiYMPa3pNiVUXteIBM2QPHb5FfUSdDqsWe33XEKtluTJiTbh1vA2P4A8TgcfPnAn8R070+uc8/nq2SdI7NajnkfzTKGqqiYbhFY28aOasomh8QGMDjQiFTgIm9oNc4pWklHKqyZwWAL2ftFIisq3c7ZTnFWFiFYhsvlCg43TWp3K+ffdRkl24y8ZANagYKa/taCeBzdjx1a+eu6JBm1twSFMfW2u38PZWlS1RhsypxoJ2Z+w9KF1BUGWAO68/26g5UvcHk8xFRW78ThL2HdoJkE5Q4jZdz2KyYHJFXHGEm8aW+b2GZKiKDaqQXnuuLU4nUca9DVq5A6Mxqbv32e5xdy7P4vr1PnkEUs4xVzMN/7jAwZ8R3BQy6s8nQ4z9mayOL8UgNuSoniyfYL/2K5KRz0j8/UuyUyMbahyoaOj89+HbkS2kfyDxyj+ZCu/RfxKly6rMBq99OrzA5FhXclyeRi3+QA2UWTL0G7+cyRFwiN7TstbVg9VhQ/Og6z1mhF58RuQWVMBJGWoJrPiOw4okoBgUBEezUGRRX+Si1fxsu7oRrKWSKgqpF5uRDTWf1h2jehKmDXsDEy5kcQbQaDsa61UX9jEiQgm0ykFzX3eSafkrJdo0ye6Dx+e9+FpezKqy0p5Z/pkBEHkvs+/54N7pmMNCOTyR/9x2ok3J+NLqinKqiK9bxRjr+mE0WLgt/l7OLKtCBGITAzg3IExVC7PImBwHKEXp1O1rYDyRQcxpQYTPqWhMdCYNuXJTJszqp5O5amoLivF63KRfWAviiJzeOM63A4Hyd17MuSKa5G9XubdMYVhEyfR65zxqKrK+q8+Z+2XCxv0Nfr6m+l3wSUtHvtkfJnX2gYUvL2dxSUr6N6lG2q0mTVr1hBhD2PabdMQ7ac2JlVVpbj4D7KyPsS4PwGPu5Cy5OWEZp5DzIFJGCNtZ8QzCQ1rcsfGxjJ9+nR/klV1dTUvvfSSb2akt99IfHytoRUbcwnJyTcTFNTllGNtKKvip6Jy5mYVcp55F5PdT/mP9e/3FSEhvdt8HS1FVlUSVuzAKIBNFDk0smejxwH+2SGBmxOj/vI56ejonD56TGQbMZlNGDwhlJXGoygGwOs/pqgqJV4Zu6G+fS4KIjlVWvWKtNA0xNMtWSYIMPUX8DpANILkgg9rsmtnHgazHab8jFJRwoHBmgRQ+oR8zMCxK6/Ec/iI3xgbmjyEeQdWEhhuYXDs4HqGhVNysi1/G6IoMjjuFAlAp5yygHCSdI/icJD/zD8BCD7vPAzh4X5Bc1vfvo2WWPTFVVrDwugT3cefaLOtYFu92Mi2Yg0M4rrZr/m9aqW52XQeNorK4iIKjh0hJr0DZmvTtcJbgyAITHxkAItmb6LPuSmYg8y+A4DmZSw4Uc0uxwlS65xjqKnkIgCUuVA9CqaEQC2OUlW1fmcN8Hs8fXjdMvNrPJ+tfYf0yQOFxmpxbT3G1E/2yNy1HWdFOUvfewuzPYAuw0Yx5IprGHz51XicDmRJ4u1bJgGw4qP3SO7ei6iUdq2agw9B0ITffcTc3ZfbPL1QBZUP5n+ApMiEl1k49sxqbLFBxN3Wt1kDUBAEIiPHEhk5Fm/3Clb92Qe7rT1hzpE4g49iK0oj50ntJc0UF3Ba+pKiKDJjxgzeeecdgoODGTZsmL+soiAIBAQEkJSUVLP0LXDk8CCOHNZeljp2dDFi+EOAwuo1wzEYrNjt6XTv9noDkXKAGIuJuVmFzEyNZWhoey7b3oPZ6r0kc5zNW7RM7jGjD/ylQuUGQeDr3u3JcLmZGBOOrKr1Sh8aBIHxkSH8VFROmbdx6SsdHZ3/PnRPZBvJ23+Q8gXH+cy6muCgfJZKyXxx1+0E2UL8ZcDsBpGjdd64z2T8XqPUXd72kTQYdcrPZE66Fue2HXS4JA/jYwc5cuUNmJISCZ88GVufPghmM9/O2UWHATF0HhJXL14uqzKL8V+Pxygauam7tuycGJTIxekXn5HYpbpZ2VA/BrI5LUnQyiamfPwRpZ4yzvvqPABW3rCBgEYqB50OKz5+n8CwcI5u2Uh1WSldR45l0KUTz+gYqqqiqviTmySvjCLXSv8IQHiMjYmPDUQ0GVBlFVVWUL0Kuc9o3ub4fwxFNBsoeHtHk3WnvW6ZeXdrCTN1NSnPRC3v8oI83rvzZgASOnfj6qf/1aDNsg/eZvuvP/q3b537sd84PVMoikL221s5lp3BTmMmBkQu9GgxgKeqye3D4ykhN+8rqqsOk5u3GGtZe1I2PlavTUv7agqfpJHZbOabb74hPz/fn5ntO9aYHNCsWbOQ5QLWrhvl35fW7h7atbuzyXGKvTLzswt5OSMfqC8FBNC+/SMkJ930l8YjyqqKU1YYvWk/awZ1wVJHfWHi9sOsKtW85roAuY7O/wan6Qr7v4vXI2PGwCBvBzLyrewv6YLBoBkusRYTv/TryLd92jc4L8wSRpjlzD4w/ZjskHSSpzBrPYLkJGXBe3S6IheDRYGX2tPuYi+Jr75K2eKvONh/AGVffsnF9/ShuszNBzP/ZPHzm/1eKptR87hJisTcnXOZu3Muj695nAOlB06eQZsQbDZsffv6t51btyKXavFTgiAg2u3+fz7vpA/3vn0c7D+AwqHn8PHLMh+/LLPhvOHIVVUoDker/jX3PjV68k30n3AplcVFlOScwFFextFtm8jasxMAWZLI2LEVr9vV9vsgCPWy440mA2arkUlPDSYk2oYKFOc7kRVQFBWppoa3bBAwJQch2I1IbpmyZcfxZFaguBv36BjNIpFJWiydL9N73t0rWfTcJlTl9N4pQ6JjOftmTZcwe/8eqkpLGrQZc+M0Og6ufRF4Z/rkVtX1bgmiKJJwW18OpZVTJFYiIFAqVFEoVCCVubSM91O8P5vN4aQk36IZkNYE4npOoGLyTxT2+8zfxpNZgeppS0SqhiAIftmfHTt2+DOz3W53zRzMWCwWpk+fzsyZtdntHo8HszmSAf1rYxyPHnuNyso9DcbwjRNpNmIWRAIMIm90SWbIiN312hw+PJvsnM8aPf9MUeKVaP/nLk64vKSs3IlDrr13rjrfvT9LKhs7XUdH578M3RPZRvJO5HHk2UUAPB5lpspgZflDEwm0nmHvYmtRVW15u07mNrNyNAOzTnykb/+JBx6l8tdfiXn8McKuvZbFz2+mILOSriPiGTmxIwaT9p7xzaFv2FeiJbosObqESk8lY5PGMmfsnDM07foxkIawMDquW9tkW9XhaLZsYluwdOlC6icf19b8hiaF0bMP7OPzJx4gNCaOm15/1x9D2XnYKMbPuB9aUZ6vJaiKyqLZmwiJsnHetB7kZ1Sw+Pn64t6+hd0JoSYOuWT6PtifoEgbsqJitBhAUrVlboMAgsCi2ZsaxEueCQ3KjJ3b+OrZx/3b506/yy+vVJf37ryJ8oJ8/7YvgSk8MYngyOg2jX0yvkQWr9PDS6+9DNTqNebP2dqiZBnNI1iMw5HBvv2P4HAcZUT/7RQ8tx0AY6TttEXKVVXlzTffpKioyL8vNjaWm266CVNN6U6Px8Nzzz1X7/i0adMoKvqNXbvv8O9vrMJNXZyywvNHc5l7opB53VIZImxi565b/ceTkqbSscOjbb6WU1E3G/uxtDhmpMT459Vu1U7/Md0bqaPz34/uiWwjwdGRTApJZ1JIOjOGvMPsEc/gcmYA4FYUdlU62FPVuGyPw9u81+u0EAQwB2jxkCfvn/qLFivpQ1WJf+FfdNywHqmgkMJXXuXy+3oybc4okjqH891r2/zzvLTDpcwaNItZg2bRJ7oPAKVuzVt4oOQA63LWsSlvE1vyt7C9YDu7i3ZzrPxYK6YtNPAyAo16DAHEgADaff0VnbZu8f9L2vAnx2Jae8Nqce/bx4F+/TnQt5//37HLLm+0QovZaiUmrQORyVo2fuZOLSYzOjWNypIiXr3mYhRF8wR6nI62T6oGQdTiG8+e0rXJNnLNv2JJ4ZhboXrhPnKeWMufr2xl0XObKP5iPzlPrKV6Y56/v2lzRnHLayMJida8zT7P5DcvbW3zdzS5W0+Se/T2bzdVv3zSc69irpNx/9XsJ/lq9pO8e8dUdvz+c5vGPhmfXmNASCBJSUnY7XYUj0zJ8qN4cqso+Pe2U16n5i2MJCioKw7HUfr0/givoYjjw59FMlcgFTlb1M+pxrj99tuJjY3178vLy+OTTz7xb5tMJpKSkuodnzdvHlFR44iLrV2aLi1t/OXLh80gMvdEIV0CrHydX0JU1Dl07/6G/3hW1gcsW55OdXXDjPAzQfboXv7PVkPtI8hmEOlgbxjTqaOj89+L7olsI2WVVcx9fgZOMYlBw77CbHbTsft3RIR2JsvlYdSWg83GRP5y+S8kBCY01f3po6rgKNY+2yNqvWt14yZje8D0P1GcTn9MYsdNG5Ek+O6d/RRmVjaaveuSXOwp3oPdaKdLRBceWPkAv2T80uRUPj7/Y7/G5Ls732Xp8aX1jk9Im8DkrpNrpl0bAyna7ezv07dBNrelSxfafbW4QTUbh9fBoIUDsXhpQMfwTsw7ex4ANuNJ2o+q2qxX09KliyZ63ox3p6KogKXvvcW4W+9m43eL2frTd1w3+zWiU9P48IEZXPLA4/5klDOBoqjI3saXUVVVBRXKFuzBk1nB6iqJYkllWKSFSEkh9OJ07P1iEEQBwSiiyiqKV2bxS1vqaVBOeWE4JouhzbGSiiJTmpNDYHg4W3/+nu2//kivc85n6JWT/G28Lhc/vfESFYVaSc6CjFrDZdClExl+9fWtHrcpfDGGGzduZOnSpcQoIUzw9CP+scH+BJ1TZV1XVR2koPBXjh17DQCLM4nwQxdQEbeOXuPfwhYU2+S5LZ2jx+Pxx0B26NCBSZMmNTheVyJo5syZWK0iW7ddS9cuL2CzJVJQ8DN79z3I8GHrsFgaenW3VTiokmTa2S0sL67g+oRIysu3sXnLFfXa/VXZ29P3ZPBdQRlPpsdzW3Lt/P4sqeTKHdp3QPdE6uj896MbkW0kY8deXJ9m87ltDQMHLcZocvP0+gfJropHsRnwjIzFLoocHVVrRNYt2bfyqpWEW/8DWmiqCnNHQN4ubXtWDqrJTuak67B27oR94ECO3/cgO4c+jK1LZ86b3h2jydCsDMzLm19mdfZqFFVBVmUkRSK7qrZSxdtnv83wBG2Z+h/r/sGXB79s0MfF6RfTLbIb13S+pt7+xoxIAEuHDrT7/rsG9XgbK4l4Mo3JADWQHlJVjl12uV/0vKla3nXx/SotuO82qkqLueXN+axdtJBtv/zApQ8/SVqfAc2ef6ZRVRXFI/PFc5sozXciAlOfH4ZrQy5Vq7Ox944m7PIOOHYWUvLpfswpwQRc05mPH14D4BdCj04M4LKZ/RBPY4l71cL5bPr+KwAuuPtBOg8d2Wi7zJ3bWfxs/eSVhM5d6XXOeNL6DsRib3u4iKqqfrHvIYOGkLbSiBUTQp36US1JlFEUL2vXjaFd6gziIq9k/ZILcIYdIjr7WtIuuhlLQAzG09SA9Rm8vuSyk/Uu3W43s2fP9m+fXCpx2fL2gEpQUDcGDvi+0TEeOXiC+dna8nldg+3wkZfIzKzVnE1Lu492qXecfPppMXXXMX4qKue8yGAW9KitUrOvysmYTVqs9Xd92jMotG06ojo6On8PuhHZRrJ2HcCxMIvPrKtBVfnE1Q1J0IyMpoxI0B4Ope5SpvwyBQGBzyZ85k9cOeN4nTD/fO3zpK/AHq55JN1VMLvGC/pINlgCazT3vFT89BO5Dz+CtX8/gp55ne0r88jYVcTNLzf+0G8KRVXYWbiTSk8l3SK7+Q3mQ6WHyKvWskyLnEU8sbZWiDrSFslXF31FtaeaHUU7mJA2wb98DdQz7Mzp6bT7chGC0YgqSXWaqLhM1Hvg3vDLDewv2V9vfi3JjleqqznQz5fRm0K7r79qUbxkXb567gkUWWLoldcRGB5OSPTpearagscl8e49qwC4+dURlC/YiyezgoDBcYRd0p7qLfmUfnkQc7sQQsanUvjmDtyKyi8V2n31VdOJnTUI0doyj93JbPvlB5bPn+vfvu+z7xt4kn0UnzjOgvtvb/TYlFffqVcVp7X4jDOv18t7r7yD4pW51DMQIwZMiYEEjUzE2rn25e5U16mqKpu/vZaKkI3E7roF2VxBdcIuBk/4/rSFyRVFoaioiDVr1pCXl8f06dP9RmJdg9hHeHg406dPx2w2s2JlVxRFq9E9etQeDIaGRu3WimrGbznEJz3TUFSVkWFB/uXlw4f/Rebxef62gwb9QmBAh9O6nrpcs+MIf5RUMjUhkufq1NNWVJX4Gr3Id7ulcmF06BkbU0dH58yjG5FtJOdgBtIHmZQJDrKHVDH8nAsxGIw4PDJ9X/6jSSMS6i9r/3nVn5gNZmzGUxskreZkyZ+kwbW6kr794ekwfZXfOFIlCdXjxZOdzdev7qHUGIs1wMj1T/U+PQkYk72eAeZj1YlVHC47TIg5hMs6XEZ2VTYHSw/y8uaX+fGyHxu091WzCZ88mdDLLqXw329Q9Oab9dqcXCZRVVWckhOn5GT0otGAVt2mKePd97NQa4zWppa5myvH6KOyuIiCjKMc27aZPSuXcevcj0/Lm9YW6kr6hMUFcPXjA0BS6y1nq7KCaDbgza8m/9WtCHYjUQ8OYNFzmxjt0YzJNSYDo8IsSAUOzWN3cw9/oo5gaD68WlFkdi79lWXvv+XfN/lfrxOd2nitZK/bxf41qzi4fjUZO+rrhA6/5gZMFiudhgxvszSQL0mlfXp7LrnwYoxGIwaDAZPNTNlPR6lapXnSW6IHqSpa9Zyj8U/iiNiLuSqeDgdf1ZJ2TuN3RlVV5s6d65f2qVvZxne8sVKJsbGxTLgwlgMH7vfvGzliGyZT/b93sqryzyM53JQYxZiN+6mUFb9HUpbdFBT+zN69tX2MHXMI4XS1bWt483gBuyodzEqLI9lWPw7ykq2HWF9ezUudkrgu/u+r9a2jo9N6dCOyjRSXlPLlU1q259g7O2C3GYiJuQCvGkTn2UubNSJlRWZrgfZgXLhvIcuOLztjlVbqUbeijQ9fpnbdJe2TUCSBvM0hlGXYSb+8BNGgsstxPsfcA7ksfFZjtuCp8Rmwpzh5V+Eubv7tZkItofx42Y8ICBjE+kvpWg1qCcFkatSIBOiwbi3GsDB/e9XpxOF1MnrRqAZt3SbqzatzeGe+mPAFoiA2WoKx3jhrVvvF0Zvj5asm0HnYKIZfPflv90bWrYgDtVVqvG65wYuBqqiokhZrKZoNqIrKZ0+uo6LQhQycE2oirGMYQaMSqVqbg2tPMaEXpxMwIBZVUU/puXv5Kk0M32ixMPTKSQy48DIkj4eSnBNNGpRuh4Pl899h76rl9fZ3G3025912T5vvyQcffMDYsWPZtGkTe/fuZfz48QwcOLCeEenjVMvcqqririrgyNfzMBaE4ww9gskRTZT5/NPSkWyusk3dNieXSgSVESM/qddX3z6fERY2sMEYPq/gLYmR3JEcQ7DRgL3mpWDX7jspKPjJ3zat3T3ExFyI3Z7apuvxUeaV2FRezTmRIQ2ODd+wj8MOTeJIj4vU0fnvRjci20hJaQn219L5Ue5I0GgHBtHBoIE/IZrTT2lE1uWu5Xexv2Q/U7pP4YqOV2ASG89kbTOqCtVF9eV+zAGgKDBvZKOGpCIJHP4+BgSV9AkFLC5/iSIpjd72bxkY+Dkm0d22ufjGboZdhbu49qdr/dtm0cwzw55hfNr4xi/P4/EvZ9cVIje3Tyd9yRJt/0li5idzMB4eu94AgoBRUpEM0DmiC4smLGqx4HnqJx8j2O1NGgsfPXgnl8/6B1l7drJn5TIGXnIlsWkdcFZVYrJYsAUFo8gygnj6gt+N4ZMIik0LYcTEDhzfW8K2347jdni56tGBzS69qorKwqfWU17gxABEJAZwxaMDKfl0P85dRYRenI5c5aVy2XHN2JrWA8TGJY5UReGnN16mPD+PiU89T2nOCZZ98A7Z+/cw7a0FBEVENjmP/WtWcnTbZspyc8g9fID0/oO45IHHm2x/ynuiapJHixcv9huRvXv3RlDAIBgofGcH3tzaRCOfkHuzfSoqy1e0R5DNWCtSid95G0HTwwmPG3bGDEmfRNHJ11I3IcfHgIG/Y7XmkZpyO8HBPYmKOqdB/15F5aodRzgrIphSr8QbxwvqGW/Llqc3Oq8xo/cjnum/V8DojfvZX63prWaO6llPkFxHR+e/C92IbCPlhYVsf+YZ/ggPZ9DgLzGbXX4jsssTv4JRYMOss4g9hWSFW3YjK/KZr15Tl7rL2nUNOZ+m5ClQFZVFL+7mots7YzSLrVvWPlmv8hRGZIWngou/vZgiZ61e3iXtL+GZYc+cep6qSuak63Bu3doqI9LSry/Rb72OaLfx2S1jCD9RwRPXGdgwaWOjP5e649Trpxlj0uNysuz9tzm8aR2BYRGk9x9ERGIyv7z1Kik9+3D5rH+Qf/QwC2fdyy1vfEBw1JnRSTx53oqkIhqFep7JkGgbk54a3GJDEjRvptFXXtEgUPF7JpUrThAwOA5zSjBVq7OJntG7SUOyLD+XsLgEJI+HOZMv8x+77/MfTvnd2rnsF36f9wbt+vTnsoefasOdqI/X60WSJNauXcu6devo2bMnF110kXa/qr3k/nMD0DIjEqCg4Dd27b6NlHVP4bWWkNPndWJzbqTrtY+1OU6ybiJNY0akj8aWuO++eyIWiw2TKZS8vO85nvUBw4aubHDu+ycKefRQNhdEhfBCxyQizEZ/nwUFP7H/wBNIUpm/fefOz5EQf1Wbrqdakpm+N5NSr8T3fTvUK4FYJcm0/1N7uV01sDMdA04vSUlHR+evQ3/FayNytZtY+0WNHhMAQVIJNp76gSMismDPAt7a/hZeuRFtmr8Sv6Zk8/8EayCXPTSAb/69n3kPbObLl/ehmuwtOreBXuUpCDYH89sVv7H66tXc2uvWU59Q73IEUhZ+QqetW2j3ZW0GuGCz1dOT9P/bshlLly5E3XILgSERWL0wdH0FnU+Axasl5DT2juUfp+Z8Hz6dyca0Jc1WG6Oum8q50+/iwnsfZuSkKTX1r40YjEaclRWsXaQtP67+/KNWXXdr7o+hZrl54iMD6mlDLnxqPR6X1KTWoU9Xst4+k4hoNiAYRILPTiH+H0MJGd+OqjXZeLOrUL0Kikdu0KcgioTFaYldRrOZsDqJMq9cfSHVZaUtup5j2zaTd+RQi6+/KUwmE1arlYyMDCRJwmAw4PFoSSligAlzSjCmxMAWGZAA0dHnMmL4FgIjupDT53VMjiiccgZ5b2xss5akz7Du1avXKdv5Ktz4+PjjpRgM8Wzddj0HD/0Dl+sEy5anN5jLTYlR9Au2MyQ0kGy3hwK3199nTMwFjBq5hbPG1kow7d8/i2XL09m6bTKq2rp6115VZWlxBVsqHBysrl/lKbDO381KSa+jraPz34xuRLYR2Ss1eUw1CMixNn4uKj9lP17Fy9s73ubtHW/jVf4iI9JXDnHonaf0BILmudvXuQv7OnfxZ0cbTSJmm5HkbhEMu7w9f6X/2iSaCLGEEGWLIiEwoVVlIv1lEuuIWJ9cOtH/r0awPHD48Eb72l+yH6fUuGC8IAi1gueNGJNHzx+PUl1dTyTdajLToVc/wiOjURwOOvcfzF3vfsolDz6BPTiEpG49OWvqbXQYNJS3p13HRw9qdZBlSWLf6hW4a34WkteLLJ3ed0UQBX85RagVGZeaKeHXnIdQMNYYlDVGqjk1GLnURdm3hyl8e0ezxtOUV96ut/3O9Mkc2bKxyfax6R39n7f8+G2T7VqDIAhMnTqVhx9+mMTERBYsWMB7770HQNStPYma1hO5yoNU4mpRaUizOZSY6f0YOXg7iVl3EZw7jH1dbqCq+HCbDEmf0PiwYcP8ZRI9Hk+TfZnNZr9weUlJCbNnz2bb1vPqtTl46B8NzvuxX0f2VTk5d/NBrt/VeLGA9ukP1tsuLV3Ltu03tOp6QuoYiplOT4Pj4Sbt+Aq9/KGOzn81xv/0BP5XqXY0vQysmkW8vcJ54FA2l58iu9AoGrmq01X+z38Jvmo1sldb2oYms6Wb7kLg8gf7IXmUZjUjzyQTO01kYqeJVHmqKHYWE2E785magiCAseF9/8cnMg9NOfV1CoKAUGNMqg6HX4LIk5nplwc6Fb4s7wEXaVVH8o8dwVFehmgwUJqXwy9vvUbOgb0MvPgKRlx7I9+//CzHtm3mvNvvpV2f/lSXlhCZnOqP3/Rf16nmXmNINlb+8FR4T6rL7QtxEASBqNt7gaRQ8PYOvDnViAFGVK/iF/RuMA9B4P4vlvD9K89xaMNa/9yaIjo1jeTuvTi+ewf5Rw832a61+Lx469evJzc3l+TkZBwOB/aabHrfsrYpLoDou/qc8h4LgoDJHkTcdWNZu2kYAHt/f5TUgodbVG7x5L6mTp2K1+tl4cKFHDqkeWBjY2OZMmUKZrO53nwEQWDatGn1Em7y8grxeO6iW/fXAThx4iMCAzqSkFBfm9WtqEyMDSPA0PjPKyVlOsnJ0ygr28DWbZoQemnpOtzugkaFzZu6nv7BdjZXOHA1UhGqxKt9v3Ldf/PqjI6OTqvQjcgzgNMZTHBwHKoq4XQcJdJaRA6xOBQFh6dpj6XNZMBsMPPY4MeabHPGUGQ48COsmQM525rNlhZsNjqsXYPqdCJYa+ORZElh2Yd7UWSVc2/uhtHUSmPS04jh3QJjdnP+Zu5dcS9LLl3yl1b5EWw2LF264N63j3b52pJ2XU9kczJMPmMy7eefms3mbgzn1q2oDgdCjZh5eEIiN7z4BoLBQEh0DLJX89R0GDgU0JZxARI6dyPv8EG++dfTdBt1Nufdfg+7lv3K7+++wZRX5xIef+p75Vum9nsgBfj0ac1YuvT+PlgDTI1e8/wHV9fbjksP4dKZff2GJCYD0Xf2QfVq0kEtqVN90X2zUGSZ8oI8TFYbeYcPsnnJN1iDggmOjKL/hZci1mTqdx4+iuO7d1Cam83hzRtI7zfwjCQk+Ywvr9dLWVkZL774IklJSUyZMgVTXADe3Gq8udUo1V7EJu7NyVgDY0g5MQuyLFiqEvCq1eS/sqXV9bYFQcBkMuFy1S7/5uXlMXv2bJKSkpg6dWq9+YiiyPTp0+vFSJaUlJJx7GZS22le1qLiPxoYkQ+nxbG3yolNFPm5sIzzo0IbnUtY2GBGDN/En6u1MIfVa4bUW+4+FZWy9p27dW8ml8TUX204KzyYZSUVHHa4GjtVR0fnvwTdiGwjZpsdX47ywaU9Oev52bhcm9m56zb+OcDMHcp7eLJUuv76a5N99E8J47NpA1iepUmXnJV81l/njRQNsP4dzYAETfbH62h0eVsQBIzh4RyZMAFDcIhfC1FV4MjWQgLDLahNr3o2jS/Bpi4tkP55afNLSIrEVwe/4q6+d7Vh4JYhCAKpn3zs9yD+4xOZ0aZRCIDZq5VOfPfCj/wP6saMSkEUNa9kI1V2TqZulvexyy4n7eefEEQRk9lCZHKqv911s19DUWR/ZZXb5n3CvtUrCI2JZc0XHwMQUCNntO6rzwDIP3qIE/t2k3toP8MmXkdgeNNeXEEQ/N5lr1umtCYj+YOZq+sZh0azSFx6CLlHGoZp5B4pb+ClFgQBFahcmYU3t5qCf287pQdPNBgIi0vg4PrV/PDq8/WOJXTqSkJnrXZ4SFRtkfTvXnwGo8nM4MuvxnySBqfBaKTj4OFYA1pe+USrlW3G69W8YMXFxUiSRNStvch5UvOU5v5zg+aRnNEHwXBqj2T65KlkHnuPo4dmIpnKSF/xeovuR2N9TZ06tUEmdlZWFl6vt0HCjc+7OmPGDH+Gd1aWm3HjXubAwfsbLE0DJFrN3LT7GHurXHhVlV3DuhFlbjwL22wOJzioJxWVOwGQpGqMxlOHzADkuhsuY9fOQRtvb/Wpf490dHT+c+hG5Glgx0ySHMGY6VcTEhROkduE0RiCyy1xV+W/eO3Ybc2evzmzlAq3i5krZwJaFZW/fEm7rtxPM7FZisOB57DmVVCdTgS73W9EdBigPcBlr4LBdIqwWl88Zl2tyro0Y8z6kBTNm/trxq9/qREJINjtWLt1w7VnDw4LmCQIrYY335aBvfz2dn+euE6TA6qrJ1mvD0FAaIGgeF3Ppyczk2OXX9FkjW6xjlamPSSUfhdcAsD4O2cydsp0jCbNeBhw0RVs/uFrEjp3Y+UnH3Bw3Z/kHjrAjS+/1aDPxjjZUMw9Uo7XLWO2GhEEgUtn9q0XN+l1yw28kvWu0STi3FtC4MgEgka2vNJMWr9BnDX1NhwVZez4/Wcc5WV43bVeqYTOXRlw0eX+UoqS19NkQtLv897ghpfeJDIppcXjA8TFxTFr1qzaHSYBc0ownswKALy51bgOlWLrfOrypZqhHoRkKiMq9wokcxnZQT8S7noJk611yWd1k2eqq6t56aWXTnmOzyvpy/BesiSbSy55Das1gYqKnbjdeURFnetv/88OiVy49RCvdk46Zfxz376fs2KlZtyXlK4mOmpci67jox5pXLJNC0eQVbVehnasRTMi/29ph+jo/O+hG5FtxBwZRKT1Qm4CihI1XcPIyDGMGrkVVVXp6/RwoGMOBkHgxQ71H54Oj0z/fy4FQECgf4zm+TrZGDnjCEL9bOm5I+HOLbVeQI8D8MXUySS9OQfBakF1VaIaFASDmYvv6cOmH4/xwcw/6dg/gjHXpDUqWu1fpvYZrydLCdWV/jkFN/W4iX+s+wfW06xH3BIEQSB18ZcoDgcpZoHxgJSdQ/bbFwL4M7fdZi3x5qJvL+L7S75v089OEATafbWYo+ePx5OZiXvfPuSSkhaJl9ftwxZUK1XV9/wL6Xv+hciShCJ5OeeWGfQ8+7xmemjY36Uz++Ks9PqNw29e3srEWQP8S9VNxcQ2lckedWtPFIdE4VzNWxU9o/cpM52NJhO9x10AwOFN63GUl+Gsqk2yMBhNjJw0hd7jJrD+q8+oLivFaK4vp5W5cxtuh+ZV/XDmHVjsAXQYNJRzp9/VovsriiJms5nVq1ezdOlSbVl7+hTwqn4NSeFUL1F1SEi4mvDwEUiuSjZuuwBUgV0/3k2fy+e1aSleEAQCAgJISkoiPDzcn3Bzcp1tH75km7y8PPLyCgkMvIFDh5+nuHgFLteJekvRA0ICyB3di1cz8+m5dk+zot8GQ+1937XrdkYM34jZfOr45R6BNoKNIhdGhSKdZER2DdQSvnxL3jo6Ov+d6DqRbaSopJjAOem8LY2j0tKZYcNHcNbYswHtYbp0621MrtAkat7pqnlABocGEmsx4fBIdH1CW+be+49x2M1/oy2vqvWr1dTVbny1B5Qf9zdVZMhZH0Zllg1rmIfUF++EYXfzzUtbyT1STlfbryRZdrKt6hIEQeHy8IdrV6VPtUxdV7uypn53U6zNWcv03zXJktdGv8ZZKWedzh1oNaqiIJWUcHj4CACMKck8NMXAIddxv0fSJ0zeFurW6IaWlVNszdy/mv0kiV26M/iylmv6NVXl5mTqllQMibb5jU2g3ouF4pHJeUJbCm6p3qKPjx6YQeHxDKBlOpJ1WfHRew0yuG1Bwdz27sJT9lO3PvXQoUMZNmwYRqPRv2SsejUDp+zbw6hehfCJnVpkVKqqyqrfBoIMcTunY7rcS0rKNKD1Ncl9/Xm9XrKzs1mzZg0VFRXceuut/vKIdamrNwmQnm4gPmEBAO1S7yQt7R7/sZUlldy2N4MSr8z87qmNxkb6yDrxMQcPPgVAUFA3Bg74vlXXcDIHql2M2qjVu88d3esvEeDX0dE5fXSJn7bigT/yn8Xk6oiiCDhPioFzlq/1f751bya37s1k0s6GQeeKqnC49DCHSw+jtCnQsJUIAkxbBbE9tO1mlpEFEbzVBox2ieBUJ8iK31M1bfJRRga/x9aqSymQOiAi4VKD8Co1XoniQ3irKvG6a3UCvR4Zr1tGqZFIkVSTtlw1/7xm161CLaH+z89ver7Jdn8VgihijIjwy/hImcd59qlj/OszE6gqRwr24WiBaHuT/dvt2Pr29W87t25FLilBcTjarCsIWv3pV665iOz9e8nev4fiE1l8+c/H2LtqOYrcvP6eIAhc8WB/ep+TzIALUhGbiPszmkUik7QXAJ9M0Ly7VzLv7pUsem4THpeE1y0jySphN3Yj7MZuqLLSquvqNlqrshIUGdXq9c3R19/MHe9/zrhb7/bvc1ZW4HWdOtbOF384a9Yshg0bxoIFC5g9ezbz5s0D8BvCjq0FOHcVkT9na4vkfwRBYPiotSRsvxNXcAZHs17iyEufkPPEWgrf2dnqn7kv4ebXX3/l8OHDFBQU8MYbb6A0kvVsNptJSkrybx85Upv4dyzj36z6s1YLdGRYICVemec6JJBub34VIClxsv9zZeUeCgqajgU/mVy3B+Wka/bFRAIUNSOnpqOj859F90S2kZyDGSgfZLHeeJDdxiz6D+jHhAu0JU9VVVn+R3ve5G7UkHPI9apkOD1MjA3j9S4p9TyRW54YyegvtazbDddu+Gsr19TFV62mrhFZZzm7tpmK6nRRvOAjqjdsIuXTTzWvgOwFWdOpkzwKFSVuPp+9C2uAkZtm9wNzAG/eqiUMTX1xOLYgM58+vYHS3GouubcPCR1D+eXhf1PpMHNF+EMoD51AMdgRRU0QW5EVZElFEMBgEnl353u8veUdwqxhLL926d9zj06ibh3toHHjCLhxEqO2T+Ge7xRG23rS7tPP2uwxUVUVuaSkXjlFOH2vZP6xI2Rs30JQZBRGs5kfXplNQFg442fcT3L35oWrfciygiLV/17U9TL6SiqeSiZIBPraDSSYRUwJgU1WtPmrqFsdJzgqmgn3PITZaiM8IalFXsn3338fq9XKsGHDSElJQRRFrZrL69v85RFbKv+jqioF72xjd6crCT0+FpMjhvDjWixh/NNDEdsgo9WSOtu+sevGUsbFy7Rv/6n/eN8+CwkLGwxoJREPO1wYBYEOp6gcU1i4lJ27akXOhwxeit3ertlz5mYVsKPSSf9gO1MTo+odi/1jO0CziT06p8fo0aPp3bs3r7322t8+9lNPPcW3337L9u3b29zHihUrGDNmDKWlpYSGhv5t4+rUosdEthHVowX5d5eS2V+9kr79bm7Q5g7mMKLHdZjNzQfet0ZM+4zhq1ZTl0aqywiAKosUL/gY1eXyJ9lgMIHBhACYLEBlVdP9NoLXo3CkvDuBYgGSamHbbzls+iWb7qMSGHVNJ45uL+LXd3cT3yGUS+/vy2WRV+PdmI410AjX1uoU+owZr0cGldaVZGwlJ2deu0xg3gxD9qu42YHicGAIaFlmaoO+BQFDeDi2vn3rlVP0eSVbEydZl5h26cS006qTbP/tR3qdewEjrrmBL558kPYDhzD0ykmn7OPghnyWf1RfsqiepM9JMkGqqvLNy1sbGJUKYBfBoahEd49EdclgEhGMLVsQyd6/lxUfv0fnoaPoO/6iVt8PY53M5YrCAj599H7/9lVP/4vEzt2aPFcQBG666SacTidLlixh/fr1XHHFFZhMJqLv7EP+K1uQipya/I9DwhDQvNEjCALRt/ahZ8F7GHsGoXg9OOdo3+nCd3a0OmsbtBjOulnYeXl5TWZsBwQE+OMjc3MMoN5N+w5ztPGLlvmNyHJJZsymAwCsHNiZTs0YkpGRZxEZeRZFRcsAKCpaTnLyTc3O+eOcYg473HQ4RXlYHZ3GGDp0KLm5uYSEhJzRfv+TxvX/GroR2UYMFiNFLi3Q/+Y7niA29tSZp7sqHXgUFVudfTajjVVXr8LhdWAz2po89z+K0UjIhRNAEFE9HhRRRLTWf5iExwYwbc6oevt820azZiRc+Uh/UKkpvQdRSQF0KfsWk+jmVNQ+UAVWZ6/GtDOWzd8d93s5v5y9mdLc6nrGzV9B3cxrm6rSMbwTsBcAR2UpgY3UzW5N3ykLP0F1OuvJ/xwaNhxLly60+2oxQiNxbi3tu8+4CQAcXL8ar8fN5iXf0u+CS1BkuV5yTks4WdLn5ISbetqTNfgyuQ3AFdVecp5eh21ALMET0lA9MsYAY6NxfD7yjhwk77D27/ju7Vz60JOtmjPALW98wGdPPojJbKE0N9u//4snHyK5e08uf/SZepnwdREEAaPRyN69ewkJCakVdhcFou/s45f/KV10gMgp3bWlbaFp4XdBEAgIakdGxpvk5n1NcqeZ2A50x5tbjepRENrgjTw5C7spfHqYPoMzN7eEfv0HI4oC6Wn3UV6xg8CADoSbtL9J0xKjyHF5mjUiBUGgV895rFk7Epcrm0OHnyMpaWqzvw+DQwI57HDzf2o5TOeMUbcyk85/Bj0mso1EtUtFuFLFdaEb2WaloqKiybaSojJo3V7O2XyQC7Ye4spdR1FCzShBJp49lgvA5wc+b7JW838a0Wwm7plnCBg6hIODh5B1y7QGbQRRMyJMgguejYNn4zAJLkwWg/8hYjIbMFkMiKKW5XvlzG50tf8GQL/RoUx7sT/DL4oHTzVpXe1Me7E/F07vAJ5qwmPsTHqpP290vYdfXtvP5u+O1xtfVVSSu0XQb3xqi+LSzgSCIDDv7Hn+7ROjz+HYZZejuGuNYlWW/WUPW/Kz9ZVo9Hklfbj37ePY5Vecke9HRGIK0e3a02fcBRRmHOOtm6/1l1RsjI6DYpg2ZxTT5oxiyguNl4hs7DpMFkODfwAysH2p9vPbtzqbJTNXceDpdRx8Yl2jcXw+2vWpTT46unUTWXt3tWgudQmOimb6WwuY+tpc7v74awZecqX/2PHdO/lxzovNnl+3/CCAJGnxeoJZxJxS3xCXCh2njHG0WuPJzfsag8GOdUyQf3/Bv7e1+Xvs+30bOnRos+18BqePtWsGkJ72ELJcTcaxN1ixsgeiILBqYGfuTY1hTETLXjTS0u7zfy4o/KXZtnKN+aiXN/zPIUkSM2bMICQkhMjISB5//HH/d7a0tJTrr7+esLAw7HY7559/vr9aUmFhIbGxsTz33HP+vtauXYvZbGbZsmUtHv/jjz8mNTWVkJAQrr76aiora78LiqIwe/Zs2rVrh81mo1evXixevNh/fMWKFQiCQFlZmX/fu+++S1JSEna7nUsvvZRXXnml0aXupsa98cYbWblyJXPmzPErUmRkZLT4ev6voRuRbcSrCry4L5Cvfl/Ku++9x+o1f9Y7nppyO6kpt2MwWDGKAmdHBJNiNTMsNJDf+3QAj4wSaeG7wnKu/OFKXt3yKtsKtjVZq/m/DZ9hVHfb/7D0OhpK+jSCIAgYBG0Jz/BaR0wvJ2F4MRGei0f8VwKml5MwvqRtC++OJNQkYrIY+K7bHN4b+ABTXx2GNVBbNpz46ADOm9adfWty+OpFTWZJllqXwNEWBJuV/XWc0O59+zhx553+bdfevRzo248Dfftx7LLLUZsxkur1W+OV7LRlM+aUFH/fLRExPxURiUlceM9DDLlyEsvmvwOAs6Kc3MMHyD18oEF7g0FsYAi2BZ8GJcBBl8KSMi+7nAodLCJhRhGXS8JZ2nQ96PD4RKa9vcC/vejpR3j5qglUlRS3cT5mRlxzA1Pn1L4IHFy/mi0/ftfkOYIgcMMNN1BZWckLL7zATz/95N8fdWtP4v8xlIjruqJ4ZCpXnsCTWYHaTD1yUTRz1tgjjB61i7LK9bg6HARAKnJqhuRp1tmuWwqzMerX2C7js8/WkJHxDkXFWjxzTs4ictweXsvMZ0lBWYvGj4u9xP959+4ZzbatlLTf/xSbudl2On8dH374IUajkY0bNzJnzhxeeeUVf934G2+8kc2bN/P999+zbt06VFVl/PjxeL1eoqKi+OCDD3jqqafYvHkzlZWVTJ48mRkzZnDWWS1T0Dhy5AjffvstS5YsYcmSJaxcuZLnn69Nnpw9ezYfffQR77zzDnv27OHee+/luuuuY+XKlY32t2bNGm699Vbuvvtutm/fzjnnnMOzzz7bqnHnzJnDkCFDuOWWW8jNzSU3N7deMppOfXQjso0UHcvknp0ldFRTAep5UARBID39ftLT78dg0JY+n+2YyIYhXfmqT3tCTUYQBaSOIRR5Jb6Y8AW/XP4Lv16uJdvIivaH1S27cXgdeJX/jvqxQWefTcfNm4l+8EHynv4Hh8eM9R870LcfmZOua91DzydE3hLydsHsBF5220AAyeBhZf4fbM7fjFNyYqrJlD2ytRBHhRvJo7Dl5wwWP7/5LzUk7SY7n97Vjcn3GzhWU0RFbEI8urXeREEQEGvqcvs5g9diNJkYePEV9Bh7Loqi8Omj9/Ppo/ejKkqz2dtGs+gPUfC6Zf+/U12XP7N/zihumTOKm+aM4uY5o2j3+GCWlHnZ6ZA5Nnsji57d2KQXLig8klHXTa23T1G0sYuyMnntukvZ8ftPlOXltvg+hMXGc93s1/zbe1b83mx7g8FARkYGkiRhqFNfWhAERLPBL/Pj2FoAaDGOp7o3uXnf4nAcJbv9v5ETNaPYt6zdWnxZ5Xa7nfnz5zN37twmPby+Ze3wcC1uOy8vj+Tk2ljRffsfYXN5NXOzCvmztOXewoSEU8faAvQNPnUM8e7K/40X6/9VkpKSePXVV+nUqROTJk3izjvv5NVXX+XQoUN8//33vPfee4wYMYJevXqxcOFCsrOz+fbbbwEYP348t9xyC5MmTeLWW28lICDglKEUdVEUhQULFtC9e3dGjBjB5MmT/V5Mt9vNc889xwcffMC4ceNIS0vjxhtv5LrrrmPu3LmN9vfvf/+b888/n5kzZ9KxY0duv/12zj///FaNGxISgtlsxm63ExsbS2xsbL3fc5366EZkG5GcLiLtkQSZTl2tojGEOg+HlzPyyfSGcPvS2xn06SAWZmilCR/58xEGfTqIxQcXN9XN34pgNCIG2MmfPZvy776Dmvg1n0fSuXUrcmkZiiS0zNbxCZHPymn63yPZtXJEwIjj2/3l/x5Y+QBTf53Kgyu10m1Gs4gUUcXvoZ9zyXeXsPW3TAoyK5E8SouMnLYgCAIfnv8RbrPAQ1MMRK39nbBnn8ThdeDwOrB06XL63sQ6MWXHLrscpbr6jF1Ll+GjOXf6XQRFRmK22ehx1jicVZW8eu3F5Bzc36C9yWJg+uujmf76aEwWAx89urZRSZ+m5tfYMrc92ExsWjDtrQZCjQKlJ6pZ/NzGJg2f/hdexn2ffc+1z77M1f94EXtIGBu+/oIPZ96B7PWy9L23eP/uW8g/1vI6zjFp7Tn75jsAKMzK5OWrJrDg/tv589MFfsHyutcwdepUHn74YRITE9m+fTuyLKMotZ5vwSRiitMMJG9utV9Tsiks5iiqqg/QvsMjqOML8VpKtbm0wABtDEEQ8Hq95OTkkJeXx7x585rs5+Rl7Xnz3qVTx1rvTbq8nRnJ0YwOD2rs9EZJa3eP/7PLldPq+dclw9V0eUSd02fw4MH14laHDBnCoUOH2Lt3L0ajkUGDBvmPRURE0KlTJ/btq020e+mll5AkiS+//JKFCxfy/9g77/Ao6vXtf2a2ZTe9ktASei8JvUixAEdAQBQVQQRpNhDFAiogCCggIggqCMhBREBAkSYC0qv0XkISShJCetnN9vePyW6yySbZDUE8vzf3de2V3Zlvm8nuzDNPuW+VyvUiqYiICLy9879XYWFhJCVJD1/Xr19Hq9XyxBNP4OXlZX/997//JTra+W/7ypUrtG7d2mFb4c+lzVsB91BRWFNGyOTFV19arVYOHeoEQOvWv6NQ+BVtZHQ0IrXVpM8W0Yd5CTK6hOXn1RnNRhadlmTrRjQZgUL28OguChZ/2Lep1dTauRNRoyZu0CAMN8JQB+kJH5+DIFNKldwAJgNYjPlqNtKApVdzj9rvINc4qvEwdtz6i7TcNNL0aQyoN8C+toyepzl3ZR8WrYVMr2RaNW5C3PkUTu2IQxAF+r/X4sHRyggCXX93fOqNDIlkRY8V1Niw3oFQ3K1hC8kjXmnRElWDBkT8uLJEzXFbX1eOV6FU8dKsrzHm6tj5/UJAyjusXLe+y+tMvpXNkrf2AbhV4CQIAk+NjyJp0Rm0t7MxA+2yDdz79iwhrzonmhZEkbDa9eyfW/d7lrTEeOKvXrJ7IX+dNZVR36xwef3VmzRDrlRhMki/vZTbN0m5fZNjv/3CyG9+wDsgyGHNoiiyceNGABo2bEh6ejobNmyw0+oU1Nq2GsxY5SKC6Px8BAR04NGuV0lO2cO9e3+iqBOO7/kuUrV3jhEhz9PuDhm5QqEgMDCQlJSUYiu1bSioZpOamsrmzQrq1JX2Vbo3m37tdrs0Z/54+Q/XSff+oHq1oW71B2jo6cHFnFxUxZyzCvw7EB0dTXx8PBaLhdjYWJo0aVJ6pzwoFI73MkEQ7A+P2dkSu8OWLVuoUqWKQzt3DFV3562Ae6gwIssImUJBSV+5XL309G0thkBcsILiXBq9Hq2BTBRo5q3hvV6refp0HKeycrmSk8vMR2byaYdPMVlNdFgtJfK/3Ojlh2pEQlFtaEEQUFbN+5FbLHiG5RJYPxtm14F+iyAyL7S1/wvY+1npajZFJ3SgH3q98XBeb/EWAFqj1kFycEzUGI4kHuFW1i02Nf2Kd57Zx/rZJ7h3M4uw2r6YjRbkbqiluAK1XE1kSCSnkk4V2WfLc/W4D8PVJo9o46gEyaPpilFqMzYFF6rGfUOkeHyd1u25c/kiAVWqos1IR+PrV2yfl6a3d0rpU7h6uzSIokil15tjyDIge+8gAMabWXYDqjTjSRRl/Od1qaBj+6IvubB3F17+7kUJ/EMr8+rilaTfTeTCnp2c3JavurL41Zd5fdnPeHjmKyvZcg9tFeUHDx50NNYKLDfh06NUGheFopKn5JWUC0WORxBkJCVtJSXlL3zrReF7vou9r33OME9C3ows1hh1HE8KVdvCiyV5NAtXaycm3qVV646kpx/gkk7gt0tXuGmQs7pZrVLnzR9TgdVqRBSKv1618fVkQo0wGngVrfqu7KHkYk6uk14VKE8cPXrU4fORI0eoU6cODRs2xGQycfToUXuRVkpKCleuXKFhQ0kr3WAwMGjQIJ577jnq1avH8OHDOXfuHCEhIfe9roYNG6JSqbh58yadO3cuvQNQr149jh8/7rCt8GdXoFQqMZciyFABCRXh7DLCbLj/EIssXssXdavydcNw+lbyRy1XcypLumhOjY5HJVOhUWjwkHnwXL3neK7ec8jFf7fdX2PDBqoOqI06sIQ8zltHXCq8KRbfdQJ9Nhhy0FiteFjMkoyiIQc/UcGMNh8DkGvOZdqxT6g1TGTkV53pPLAeK6bvZcrBKWy+sdnlXL7SIAgCK3qs4OjAo/bXngF77Pt1Jh1ao+S59Xvh+bLNkcdRWe/E33blHFdgMzbdCYM36NiFUd+u4OK+3XwzchAZSXfJSLqLMbfoDV2hkqH0kDNgYitGftWZ4XMfoV2/WnR6vi6i3D3DWRAERJUcM7Aj08hBhYx73511W8mlTpsODp+tVqvLfZVqDSERNen68kjeXr2JmlH5Ci4Lhz3PnpVLHdY7bNgwBg0ahEKhICUlBY1GY/f2CYqiFdsAKT9eLPZ4goO7ERW5ikaN5xHXeTJmmWPqgzEhh7tzT7hcuV3QUF2+fHmJ56FwWPv0KcnTq6z+CSsSdVx106ALDpJkYNPTi7+Jt/D1ZGxEJboFlS/PXwVcx82bN3n77be5cuUKq1evZsGCBYwdO5Y6derQp08fRowYwYEDBzhz5gyDBg2iSpUq9OnTB4APP/yQjIwM5s+fz/vvv0/dunUZNmxYKTO6Bm9vb8aPH8+4ceNYsWIF0dHRnDx5kgULFrBihfMIw5tvvsnWrVuZO3cu165d47vvvmPbtm1uR58iIiI4evQosbGxJCcnV3gpS8C/2yL5F8NsNiEHWppqEW09SKdObznsj4qUFCDkctfziACm1a6CQhToUeCiqpQp+ajtR/e75H8GMhnxlxuS9cdtQt55i8CmA/L3tR0teSLLAoVGyo1MPAep0TCzSrFNQ+QyqFYFvVnP+usbaBbcjKb+zTm14ya5d+G3K7+z/vp64g5L3k0b1+T9QBCEYtWGuqztAlYrsyM01HxlGKJGg0WrdTnUXHAOIa/QptS8SquV2EGDi3guXVbAsULc2VO06NWPrOR7xJw5wZkdW3l1yY9OUznyeSJlRHUPx2yycGbXLQCaPVoNmYuE4jYZxeRb2eju5ZJpNONf1x/vDpUltnIXHJs2L127ZwYCkH43gWVjR9L3vY+p1aJNSV0LjSPS7/3JbPz8E26clAyhE5s3EtEsioimkfnHnRcae+WVVzAajRgMBhQKhb1i25YPKchFLAYzuVekfEer0WIPU9sQEtydtPTjHDrcCVSQ/cJOGtSdCVaJ9seUrLNXbrtCSK5QKOxh6tJC2uAY1r51y8DAgSdJMxt433iFyr6ueyEBdLm3AUhJ3Vdiu3SjCZkg4C2vKF54GHjppZfQ6XS0bt0amUzG2LFjGTlSonFbvnw5Y8eOpVevXhgMBjp16sTWrVtRKBTs2bOHefPm8ddff9nV31auXEmzZs345ptvePXVV+97bdOmTSM4OJiZM2dy48YN/Pz8iIqKYuLEiU7bd+jQgW+//ZZPPvmEjz76iO7duzNu3Di+/vprt+YdP348Q4YMoWHDhuh0OmJiYoiIiLjv4/m/iArZwzLiTnQcd+dKYbdKb3egSq1wl/sWlD28OLU7GqWjLa81W0g3mqjsIV3sTRYTu25KlWOPVX/sX+2NtFqtxL04CN3Jk4R88D6WrGysBgPBb76BgBFmVJYaTrgDKq+SBysMiwUWd5IMyVKwS6PmRt7NvdPA36kb0owNs0+QnJjF183GADD6sKTQMXh6OzZ/fRaQCNEV5RDutlqtDNk+xDHEbbXSxLseM371RHf8OB6NGhHxy7oHlqNptVqxarUOxiRAvRN/I7qgrHPj5HG0GemYDAaObfqFrOR79H1vErVaFE1ULwyj3szisRINx9BZHVF7K1w+TqvFyqopR8hI0iEDAqt60jXCG3OGgZDXnOdIFoRBp2Xr13Pp+6704LVr2Tec/mOLfX/h/EZXkHkviSVv5HtYBkyagad/AAGV8/mdDAaDnTOvOMlBi8FM/CQpT7IkecMjR3sQHPQEwcHd8PGRcsysFqtdGae0/gVhMpnYvn07SqWSRx99FLm85OuHXq+3h8AnTJiAKOayb38UIPDYo9dLnc+GGzELiImZB0DXLpcQxaLG66lMLcczstmRnMkvkbUd9g06e4OdKZnMrV+NgWGBLs9bgQoUxIgRI7h8+TL79+8vvXEF3Ma/1xr5lyMovCpzOzdCzE3nxZxMZImJdr41q9WKThcLgFpdHUFw3ShJNZo4kZHD7JhE1javhUIU0BlzeWfvBASMHBl4BKNFwJJ3b1IKIoo8z0uOkxwOjfjgZACdoWDhjdVk4mpryfMTOHIEolLITxNb3kMqmHFnbaIo9XEhFP6YQctjeYU4+NcBQeDpd1tgMljoa9rJ4788zvet36V95fZ4eHYiLU/7uLykM2whbhvv54DNA4jLjONc1hWMmTUByL1wgey7dxDUajTe/iWqtZR1DTbPZUFd7thBg6mxYX2p3wtbKDc3Jxu9Nodm3Z5EVQx9UUlY/t4Bgqp50e+dKImUvhQjXRAFXpzS1m5IptzOITfbgMxP5dR7VxhKtcZuQAKE1HD0oB1au4ruo8e6dQw+wSG06NWPE5ulQpq1UyVPyOPDX6fZE1IxlS1HsiAZeUkoSd6wbZvtZGVd4PadVdL8Pk2KKOMkLThFpbdblJofKZfL6dWrl8vHWnA93333HZGP5bCO59GgxTX2PwmVw/rbjUiLRe/UiDyWkc3k6yVXb///5eaowP1izpw5PPHEE3h6erJt2zZWrFjBokWLHvay/s+iIieyjJBZzfRTHcLz7Gp+3bCek6f+dth/+MjjHD7yOEZjhnvjAoPPxXA2W0f9A+epte8cjQ9fh6qTaFmpJbEZsbTZs4Fa+85Ra985vr99z9632cEL9u22V8195ziXJRld13JyaXP4Im0OX+TRY0XpW8oLNtUV0dsbdVQU/gNfIOfgQeKGjsJaqbHUKPFc2fIibdXcpb6c6IDnhVwreVZiVNNRmGQGRCXIlTL6jouk77hIrBYrZnP55L/YQtwahYa1vdba1/9Crxv2Nre7PMGtNh3Z2bPNA8u7sely23Ip9ZcuYU5NdVlFx8PTizb9BrDju/l246k0FCQWh/zK7dVTjpbQq8Ca8/S4QVK4STdZuKozY8w1YTG6l/DepGs33lr1q/3z+b/+xKBz/7vXsmdfgqqFE1Q9wr5t5/cLuXxoH1mpyfYcyQ4dOvDDDz/w9ddfYyiUO+0O9c+x432Ij19DTMz8/P7K/P6mZB13557A4kJer9ls5sKFC5w6dYrc3NwS29tC4ACpqansPunLr8Kz/MGTmM2unzelMt/bq9XGOm3TyV9K9wlQFH0wMOXlfR7JyC6yrwL/fjRq1MiBmqfga9WqVQ9s3mPHjvHEE0/QpEkTvv32W+bPn8/w4cMf2Hz/v6PCE1lGJMfeJHBfbWorTVwnBUs5Se35KuTUVKu4oXPUk24S1ISFDbsx/eh00vUR4KJDSGexYMhbm9FqJS6Pc81L9uCfH2xeSUtGBjeHjyD3/Hmsiw4gLO+SZ+Q9POqOMM8w/FR+CAiIooAizMRvS/7GcE1F+/61iXyiernOV7CCW6+Ay1Wh/u38/dVisklNj0fjHWBvX54eZEEQiPhxpb2i2+aVdDVHMv7qJW6cPI7ZaESvzUGlKTkcbiMWN+rNRSq3QQp3y5Ule8kVKhlhtXxJiM5gf7aZeiY9CdOPkuohJ3JKO7fOj0wu58kx77J1viRrePXoIRp3edzl/gBeAYEMmSPRH8WePcX66VIB15avZtnbvDL/ezT+Ady7d4/atWsXGaMw9U9JqFPnQ65d+5RGjeai1yehUoUgCJI30hbWNiXriJ98CGW4D8GjmxZ7TsxmM+vWrQPgt99+o1q1agwb5lzXunCldnZ8Gt2qbMGTHM6cXUFU5I+lnyxw8DwmJv5qD8sXhKyE/2F6nppNkt7k0nwV+Hdh69atGI3OCywrVar0wOZdu3btAxu7AkVRYUSWEWaDGW+FB4FiADG6W3h7u5nflwdnDoFDbRuQa7Y4UAiJgMWSy97be6nOYX7u3Be1XI13XjGHzqTjaOuaqGQqRFGGwaxHazJxU2+hnqcHRrORELmZjc0jUIgKrFYzsTmZfBGXgskq0CPIhycCPB6I8SJ4eCAolWhatcJiFWHUUUSN+2HR8oRSpiQyJJI3IyWJwmuZV4lLvEMYNdl58092f6ugjl9tej7T1uWikJJQOLxtHWjFqstFl5vJqnE9AVi5oQcGOSAI1A+oz5peaxzoi+57DRoN6qgodCdP2rfpTp7EqtM5UDY5Q6WatalUsw51WrdDdFG9QRAEe+W2yUaun/fVWjx2L0HVvBgwoVWx4VgHQ3TOCQLTc5ELAtpMA1knk5ABmuYhCDLXvq91WrVDJpej8FDftwJFRNNIOg9+hf0/rcBizjdylo4Zzqhv/2sPaTstYnHx51W92lC8vOpz48Y8ku79QccOB6TuokClt1uQtOAUxrw0DJu8olBMjqQt1H7rllTsdOvWrRKLbGyV2jNnzsRTZ+QZ1pNCEB6qVk7bFweFIgCjMZVbt3+gbt2P3eobrlZyOkuLvqIy9n8S4eGu1wlU4H8XFeHsMkJQSGSnTczVqdUolHbt2jttd/rMyxgMxWv7PvvtYaehJQ+ZiKbAy0MmolFoOPD8AQ48v5v/rH+ULmvakW1MB+CFzS/QZU07LqWcRiMTmXroQ7qva0/M3a14yWUsObeErmvasevK17T09eSPOyfpcHA/6+5msDEpnVEXb9J486cM2T6k3JVdRA8Pwn9cSeikj0n67HMHucR/BAZtEWu9a7Wu9IjoQR3/OgDsvLXTrsn9M9/hcboqt/bkkpVbfqG0guFtT6UnXr6BBIVEcHJwS5Z2l9Eozsrny80IViuXUy/z3ObnyvV/YdfjPnmCOgcP5O9wYQ6ZXMELU2ehzcxg64I5JcoiOpvXrlCjlGHUS32Tb2WzdubxUvkLlR5yBnzYmtp58ogXcy1krrtK2rqrWE2uUzTJlUreWvUrry9dTYNHurq8/uLQslc/xv30K2+v3kREsyj79u9Gv8TjbVtz9OhRVq9eXcQbI4gCmqgQNFEhpeYzykQPbt3+Ab0+gays/OIoQRQIGRNJ2Ef51eYlqdvYQu3jx4+3b3NFphLALAhcTOnBBOFL7mTeKLFPYYSFPW1/b8y7VrmKpt7Sg83xzJxSWlagAhV4WKgwIssIpa83x9OPczz9ON26D0GpcGTQ91BJVchmcy5ZWecd9qkVMhqGSZXhFxMy0bmZ41UeaKbWo8ncQi3TMfs2rd8AYjNiSc1NRWt0LV/OZQgCCZOn5MklCpB9z871+MAz5+fUhmU9HObxUnrxZM0n7Z/finqL8a3GMyLqFTqFd+R8pf2cr7Sf9/e/90CXZvNQHu67hyk3mlPjLsxdIYM8Q9LmuSzP+USNBlGttm+Lebo/Vhe9Paf/2MK9m7Ek34or8/dDrhTxDZHmT76Vne+lLGXdGh8l/tW8MFohxWQhQyZgSsslacEpt9aiy8ok7uxpfp09jeRbcWU6Boe1iSL9J06lZe98g2ndtA+5fPkyiYmJRdYmyEUCBtQjYEA9rBYrFoMZi8G5Mezj04zw8Ffp3OkM3t6O/KCStrrCIcfSkmMs0ZAs6HksjTfSlhspWGFekCQYcMbgXlV7zRr5BUxHjnZ3q29IHmtFXU1RIvIKVKAC/w5UUPyUEcmpKQR8VZOD1obcqDuKlpGtaNSokX2/wZBKdvYlfHyakZZ2GD+/Vg7yhzl6E40mF0/zUxq0eUUptvCzzqTDarWikqmQiTL0Zj1mixmFTIFCVGA0GzFajMhFOUqZEpPFhMFsQBREfr6bzQdXpQS9a480of2q5gDsfW4varkaD5lHuYS4rVYr1owULJ/V4dqvUuJ+vWcSEGu0cU/BxrXJJMPx1pH8beOv5xfcFJRedLLOFitbUi25IWGeoSwa/jniA84htVqtxPTpi/7qVQAGvyNDrxQ4OvBosfyT9z3f0/3t1D+qBg1cqtj+anB/eo55F6M+l20L5/LS5/MdCk1chSHXZJdIdIcCqCD9j1KAfp0qk3vmHpWntndZEvDw+tUcWisl9nsHBTNy4XK3118crh45wO9ffoYVULV5lDYdO9K8eXM7b2TB49DHZJC977adN7I4NRqTKYtLlyeSlLSVR7teLcL2YNGbHXIsS1K1sVqtfPfddyQmJgIwceLEEnkjLRYLX3/9NeeUFjR+KYzu3JsGYaVTPBXErt351fGPPeqoeXw1J5dOxy4ToJBxsaNjzuT+1CyePRNNA08P/mrtuvxmBSpQgX8OFZ7IMsJkMnI1py4H01sQcz2WmFjHMI9SGUBAQAcEQca5869z7tzrDvvv116yhUVtNya1XI1GoUEmSjcYm9qNQpS4EhUyBRqFBqVMumHIRbmkhiP3YFBYIO/VCCW+S7MihL8vbH6h3ELcgiAg+gYihheS67tfBRvnk0mG6fgCvHZzaks8lTMqF/FMFl7nzn676HZ1KE1O/QeT0VIuyjYlL1cgYvVPD2x8Z/PVWP8Lyry8Jf2lS1i1pf8PXpq9gJAatTi/ZydWi4VNc2eUeX4blr93gI1zTrp0fgtWbRusYErRIXrKEZUykuafcknJpUXPvgTnGb5Zyff44rlemE3lU7xRt61UsCQAXneuk5WVxaxZs1iyZInj8QmQuSPObkCC5El05lW1ySEC3L5T9DsiKB2VcYobRxpLYNSoUUycOJEpU6aUaEBCfm5klcR0zLcD2LrZdeUgG2zCC4IT+UNvucjTlfzpGezn1pgVqEAF/h2oMCLLCEt6Ll7yudT2iSyxXVbWBaxWM3rD3X9oZe5DLgq8HRHKl7F3+TQ6ni3PHOTowKN4yDyIzoi26z+XCwQBYdQf1NnzJ3X+3IQgy7shWR5ABaYggGeQpNVdGLeOQE5ysYakj8qbynV8Cayp5sqNGBaP3euyoXNf682DysgDD/PbpBRtiB00uNTj8w+tjE9QMPXaPcKTb7xD91fHcXLrb1gs7qVkFKQACgn3pumj1cok5bfzro6QsS3I2nurROOpIJQeagZMdlROmvdiX2LPFtU+LwvshqQoEh0djclkokqVKg5avDY1m8pT21P5k/bIg6TwvjPaH5lMQ80a43ik4zGqVR1cZD77WKWMU7B9acZjQSiVSk42bcOhWo3Z5B2EweCe/KFabWM6KPrkHKZSsqhhOLPrVXNrzApUoAL/Djx0I3LhwoVERETg4eFBmzZtOHbsWInt582bR7169VCr1VSrVo1x48aR60TT938JWoMZrcFkfz2sDIPvb9/j65tJ5KJEo9CgkqlY9NgilnVfhkqmKn0AFyGIIqJvIHGj3+LG1mAsJgGu7yq38R0ny/NIToyXXoU9k8V4JOVKGd3G1Gd6pZGM/estANLual3K3ysPfD/fzNQfH6z3E6SK7YL8kaXKKeah6WPdQRQ5t2s7f61YwsV9f3H3xnWOblzrmkcxr/J65Fed6ft2FLVbhGA2WV3y+NqkEQEy7uWyfv4pdBdT8OpUhaBXGru0fg8vL8au3OCw7dS2TS71LQ1NHu0GgC4jnWYh/rw5ehQRERGcP3++iCEpKmWIKhkhb5b8MFqlygukpOzj3PkxTvdLuuOFxilH4vyksOrE+wUTGhJNekbJ1+jiYLUait2Xafrn88IrICElJYWQkBBiY2Mf9lIqkIfY2FiJ2UQQaN68+cNeTol4qEbkmjVrePvtt5k8eTInT56kWbNmdO/enaSkJKftf/rpJz744AMmT57MpUuXWLp0KWvWrClWR/NBwlWyYh+f5nTudJpWLX8ttk3LT3fScNIf9ldxFdsPGmKeh8fGISkTZTxS9RFahbayh8nLDVYrhugbKILytMWVpcvwlRkFCcoLeyZdCKXf87xFh4+DeGXOI3n60A9omWo16iipynddB4Hpz8mw5uZi0WqLfVkNxd+YXZozjz/SBotO5zIJeZV6DbiwVzL+G3bqSvSJYxz4+b/8Nme6y3MrVDJEmcDB9ddZPHavSx5fQRAYMKFVfnHO7Rz8hjbGu3M17i0+x90vT2IxlG6UyJVK3li+lubde9J73Af0e3+yS+suDQqVVAiizUjnwOoVbJgxmXXr1vHrr786GJGOB1XymCZTJhcvjScpaQsmUwnVygXGKa5a22Aw8OWXXzJr1qwiZOjFYWPTGkzUTuMZfnapfUHIZPk5vVptjMM+q9XKqvgU3r9yiwS987VcyvnfdhL82zF9+nT69OnjoA198+ZNevbsiUajISQkhHfffRdTKSkfV69epU+fPgQFBeHj40PHjh3566+/HNrYDKOCr59/dvxOLVy4kAYNGqBWq6lXrx7//e9/3T6mDRs20K1bNwIDAxEEgdOnTzvsT01N5c0337Q7pKpXr86YMWPIyChZHKS0cQGio6Pp168fwcHB+Pj4MGDAAO7eLRqJ3LJlC23atEGtVuPv70/fvn3t+6pVq0ZCQgLvvPOO28f+T+OhGpFz585lxIgRDB06lIYNG/Ltt9+i0WhYtmyZ0/aHDh2iQ4cODBw4kIiICLp168YLL7xQqvfyn4DZanXqSRRFOXK5N3K5I4+kWiGjZbi/07H+jkt7KBXbY8NDaOvradfs1pv1vL3nbcbsHoPerC+lt3uwGUyBU76F8dex1vyHaH+c5UoWA1v+KIKVrTFbWTh6NwtH77ZT1JT/0iQKnmpHD7CprYheKXC8V1euRLUo9pX83WIArEZjvmHp7gNIgfDwtQ4duRLVwqWKbZ+gEN5Zs5nR361EFGVcPXKAqP88RfXGTTnz5zYuH9yLyQUjRZQJ3L2Rf/FOiM4o1eNbMDfSvk0hYkrSYkpyPb9WpdHw2LBXqdu2I5cP7mXTFzNIjb/jdni+IMLq1qPjC0PsnzPuxlMpKJDw8PBiw8iCQiTsozaEfdQGQSEWqdhWqyPw8KhGjYg3uXv3dywW5yTOririZGRkoNVqWbZsmUvfl0CFnAhLLAGkkpN9sdT2BaFQ5CsXmc2Onm5BEHjnyi02JqUTn1uICunhaRH8fwOtVsvSpUt55ZVX7NvMZjM9e/bEYDBw6NAhVqxYwQ8//MCkSZNKHKtXr16YTCZ2797NiRMnaNasGb169bIXcdmwfPlyEhIS7K+CxtM333zDhAkTmDJlChcuXOCTTz7h9ddf5/fff3fruHJycujYsSOff/650/3x8fHEx8czZ84czp8/zw8//MD27dsdzkNZxs3JyaFbt24IgsDu3bs5ePAgBoOB3r17OyiSrV+/nsGDBzN06FDOnDnDwYMHGThwoH2/TCYjNDQUL6+y8U//k3hoZOMGg4ETJ04wYcIE+zZRFHn88cc5fPiw0z7t27fnxx9/5NixY7Ru3ZobN26wdetWBg8umidkg16vR6/PN4AyMzPLZf1eXp7kkkKgxRtFRhobLmUy9oBUbd0y3J91oyVFDYMhhbS0w8hkngQF5XPTCYLAutHtHIxFrcFMy093lsv6yoKR1UIYWS2Eg2lZfBF7F6vVzN+6lqhkCm6fiWNynao089aQpDcy5tJNQLrQr24mVV/uSslk2e1k+3bbPaC6h5JnQwNo7pPvkRAEgerLlxE/fjw3/9yJR1UfIt7qgNBjJsjLL3TuFILgKItYzE1UISroWbMnW25swWKVLgDNn6iOyVi62krZlybg6RNAjdAGXE69jLEYY6EwMn7fTEKeR95VFRr7nHkGfUEScv2lS9z4z5NSzmTeOILaORG9p5/0MPTSrAVkpSRz88IZdnw7H+/AYCwWCw1L4WS0hbZ1WUaWvyfxV7oaErdh7YzjDJzUhqARUoWv4CZBvMlg4Mrh/Vw/foRrxw7hHRjMiIXLyvQ/FkUZbfo+S+Muj/PtqMEIQM7+P3j04xkkJSURFBRURCddEARkXkqsRjNJC09jvC3xkxZUomnf7i/0+gQOHnqEmNgFdOxwsMjchRVxrAYz1kJV6zbqnsTERBITE0skHbdhd2oW4zznkSN4c8C63+1zolSGYDAkOZVNrO6h5GZu0YeNBp75NFSpRhMBiv8dbQyr1fpQHAEgOShc/d5u3boVlUpF27b50ZkdO3Zw8eJFdu7cSaVKlWjevDnTpk3j/fffL7YYKzk5mWvXrrF06VKaNm0KwGeffcaiRYs4f/68XUYTwM/Pz+FzQaxcuZJRo0bx3HPPAVCzZk2OHz/O559/Tu/evV0+BzaboLgQfePGjVm/Pj8fvFatWkyfPp1BgwZhMpmQy51/10ob9+DBg8TGxnLq1Ck7+8uKFSvw9/dn9+7dPP7445hMJsaOHcvs2bMdjNaGDRu6fHz/Jjy0X2VycjJms7mI/FGlSpW4fNm5rvPAgQNJTk6mY8eOWK1WTCYTo0ePLjGcPXPmTD755JNyXTtgV+2oYwlD1etRjlz0A6QLv82TqFHK0WpjOH9hLBpNDQcjEvK474qh9nlYxEtvXIzjt6R0jLYFeDTECBzK0LLy8kYaRg1AZ7GwJy2rSN87uQZ2pRY10lv4aHgzvFKRG4GgVGK8m4Q8LBSf4CtwdCk8MfXBG5GFsbwHjNrv1PVR3VsqClgTvZpPanUnqlt1Nn5xCqWHjP7vtcBssmC1gCgXkMlEzCYLoky4LwNTEATW9FrDU78+xYSXYxGssGfAXjQKddG2Ti52rqrQFJwvfNWPUj5kHvWPIS4OQ1ycXSYR8miA1v+CIDo30ESZDN+QSvjcDaFeu0fo/NIreAe4xitoC23bsPGLkwyY2KrE82jLjUy+lU1Gko6fph5l4IetSfvlKtkH4wl8oT6CwjVjUq5UYiiQD5qVco+fJ73HC9Nmu9TfGTz9/Ok6ZAR/rVgCgsjqX6QczBJpdeQiQgE6KUNcJlajBUEpGQbn83IiPVRhxU9c4JQlfHq0iCSiIAgMHTqUmTNnAq4Z7CYr5Aje+FgzSE3ZDbXeLLVPQRgM0sNlTMwCIiNXuNQnsMC1UWe2QNHi7n8tdEYzDSf98VDmdocybv/+/bRo0cJh2+HDh2nSpInDvbl79+68+uqrXLhwgcjIovm7gYGB9tBzVFQUKpWK7777jpCQkCLjv/766wwfPpyaNWsyevRohg4dav9u6vV6PDwceUHVajXHjh3DaDSiUDy4L4GN9q84A9IV6PV6BEFApcq/h3l4eCCKIgcOHODxxx/n5MmT3LlzB1EUiYyMJDExkebNmzN79mwaN3Ytp/vfhIdeWOMO9uzZw4wZM1i0aBEnT55kw4YNbNmyhWnTphXbZ8KECWRkZNhfNtmv+4Xc24PM3AVk5i6gcfMOrBvdkb8/ytfi1RrMGEz57mutNoYcvd7lwpmHlRc5o25VvmkYzrd5r0UNqvNF3RC8kxex9fI3GC1GAhVyFjSozvy8lw3t/b2YV78aX9avxty81+d1q9IjyBcBaHjgPAvi8nNDBEEgYs3P1Nq4DotBJHZXENZl3f8ZC1qhgdA8XrrEcxLpuRP4qfzyFgvtX62CTCGSlpCDSqPAZLCwc/lFFo/dy8X98QCc2BZbLlXcoiCyttdaDAoBvVLg+d1DyFVI3kBRo7G/hDxjxLd3L0cVGjdhJyH39KTmtq32YpuCsHknSwtzhzdpzn/eeBsPL2+3qHMKFsy4QkJeODcyI0nHz58eRXcuGcOdLAw5RocQUml49uPpvLVqo/1z/NVL/PXDYpf7O0PUk32o1jDPO2oyIpiMGHKLL16yVVoXVKJxGC9qFR3a7yc8fCRWq3NPl6BwpPyxGaKF57GhNNJxgMcDvJiW/BHzGE1Wtvs0P/a8SDcfrlSlKPpU4P4QFxdH5cqVHbYlJiY6de7Y9jmDIAjs3LmTU6dO4e3tjYeHB3PnzmX79u34++enbU2dOpW1a9fy559/0r9/f1577TUWLFhg39+9e3e+//57Tpw4gdVq5e+//+b777/HaDSSnJxcXoddBMnJyUybNo2RI0fe1zht27bF09OT999/H61WS05ODuPHj8dsNpOQkADAjRsSHeCUKVP46KOP2Lx5M/7+/nTp0oXU1NT7PpZ/Gg/NExkUFIRMJiuScHr37t1iXd0ff/wxgwcPZvjw4QA0adKEnJwcRo4cyYcfflgkRASgUqkcngrKC3KVgjq+f7DG0o7t/11Khw5daNI8/4mr5ac7GdmpJmM6edu39f3yO66l13IIdxeETcnmYkKmXcnGXRLy+4WPXEavED+HbQazgZhq1TFbq2C0GFHJRJ4NDSjSt7bGg9rFqEs8e1rKQZx+I4E3w/MvUIIgYFWoSbnijdUEllsXEJJvIQRWLdbjVS4QBBi6HWZWkT4X443sX7c/M49JHhuj1YhCJSO4ujdR3aoXKbIx6s2c2nETk9GCIdeM0sP1sJIzqOVq6gfU53LqZeIy42jzUxvqB9RnRY8V9v1275JC4aBCY9HpyqxPbqP+sVdqF/JO3vjPk9TctrXE/89fPyzhzJ9b0fj68eriH12bVxB4+t0WrJtxHIVK5pK9IYgCL05paycgT7uXS4qXjDsJOpRTDlNFI6fetPYuk8XL5ApeXbKKb0ZICi0Wi4XcnGw8PMuem/TMx58yf3B/vK6dAeC7ES/y9upNxZ4/QRAQlAW+WwXsNVFUIZd7c/7COCyWXLp0Po9Mpi7SP3h0Uyw5RhI+PVpkDHA/pK1SKlEbaqFCIqfPybmDl1dVF88AVK8+nJiYeaSm7kdvSEaldE/55n8NaoWMi1PdU+gpz7ldhU6nK+L5KwusViuvv/46ISEh7N+/H7Vazffff0/v3r05fvw4YWGS5/zjj/P10yMjI8nJyWH27NmMGTPGvj8xMZG2bdtitVqpVKkSQ4YMYdasWU7v7+WBzMxMevbsScOGDZkyZcp9jRUcHMy6det49dVXmT9/PqIo8sILLxAVFWVfv+3B9sMPP6R///6A9CBXtWpV1q1bx6hRo+5rDf80HponUqlU0qJFC3btyqd2sVgs7Nq1i3bt2jnto9Vqi3yRZHlh5X/ca2cWOWz+mKSsxmRm6Lh3L8lpsYynZ137+ydr/AlI4e6/Tw7i8JHuHD7SnczMswDk5t7mo9bTmNZ+OtPaT+fk3//h+IkXychJcqAA+idfVqsVpUzJR20/om1YWzr+3JFXd77q9unq6CcZ00MqB2Io5B0SNBpU9RriXzuHnEQVVx7pTtwTUS5L8ZUZSk9Hb6STKm2VTMXuZ3ez69ldhHmGIQgCz05oSVgdPwAeH9qQkV91puEjlRFFgbqtK9G4cxVizybft0fSFtauH5Cv1nE59TJtfmpDm5/alEgCf/3xJ8o8r21uu8czzztpIya3GZIl/X88vLzxCgyidksnHJ0lQKGUMXBKW56d0Aq50rWboc2QtHkxD2SbuWW0UFsl4m2xsmHmcbc8khofX16Z/z1egUHUa/8IgiCid4GIvTiIooyxKzcgKpRkNWhJVoOWfDGwL8d++8WlAp7CVdZ3727GYsmlQf3Pyc1NcNqnsCFaeAxBEBg+fDidO3fmiSeeKPUGfV2rZ16NEXzE55w53R0E9x5ug4Mes7/PybnmVt//RdhSlR7Gy50H16CgINLS0hy2hYaGOnXu2PY5w+7du9m8eTM///wzHTp0ICoqikWLFqFWq1mxovj0hTZt2nD79m173YJarWbZsmVotVpiY2O5efMmEREReHt7Exwc7PJxuYqsrCx69OiBt7c3GzduLJdwebdu3YiOjiYpKYnk5GRWrlzJnTt3qFmzJoDdoC6YA6lSqahZsyY3b9687/n/aTzUTOW3336bIUOG0LJlS1q3bs28efPIyclh6NChALz00ktUqVLFnrvTu3dv5s6dS2RkJG3atOH69et8/PHH9O7d225M/lPITcugpqkNSV5XOY8UIi9cLCMXpYT24ODu3Lv3B481actXeXzGublxGPTSDcBsligsLBYjOl00lfOcHvpc0OfeYPT3Czmc4J7UWHmhOK+puxhWNYiZMQm8Vj2EDJOZYGX+TUsQBCLWrcO6pAeZhySDWhAFrDkZCN7OK9jLBYW9kcUgWCNdvKYcmsL7rd/P8wBK++QFn/pl0HVwA4x6M7/OPUlSXBZGvRlBEMpciGMLa+tMOoZsH8Ll1Px8YRsJvE0W0VmBTHlBEEVqbtvKjf886ZJHsuPzg2nevSde/kU91qXBarWSmy0VFHl4uSaHaKvWtoXALRYL0VOPkJJrRpajJenr01R6M9Ll/4FfpVBGLfqB9LuJ3Dx/mk1fzKBqw8Y8V4ik3FUIoshrS1czc+ZMFClSSHD/Tz8giqKD5ra9vUJEUdUL4+1sVHX8pHB0XoFMlSovYDbrMJuzyco6j6dnTedz5lVqGxNypEptgwWhgPdcLpfTtWtXzGZzqUakyWrltt6E2liF7OwAlAr3/q/e3g3RaGqj1V4nV3cbnPysTf9/KfD+KxAZGcmPPzpGCtq1a8f06dNJSkoiJCQEgD///BMfH59iiz+0eQ9Zhb9HoiiW+AB3+vRp/P39i0QLFQoFVatKnu6ff/6ZXr16lbsnMjMzk+7du6NSqdi0aVO5eGQLIihI8rbv3r2bpKQknnrqKQBatGiBSqXiypUrdOwoCRMYjUZiY2MJz3tQ/1/CQzUin3vuOe7du8ekSZPsyaXbt2+351/cvHnT4Yvz0UcfIQgCH330EXfu3CE4OJjevXszfbprvHTlCUOu9KOpaa7ElbSD1Kv/AuC8WKZxoy/JyDyLVQwCJHqMuvXmoZRJxqaXl+Rp8vAII7L5KiZvusCVu1n8J2IXIZpkwjwfntrN33FppOQY0ChltAvtzOEXDhOXGcf1tOvU9KuJKLj2w/aWy0js2pxNSemMvBDLI/5eVPXID58NCgukxcg/MD6fRjWTAUVqFvrY23g08n3wYW0X8Ov1X1l/bT13tXdpHtwcT4UnfWr3wVvpXaStIIBMLlK5jh/pd7Wsm/k3YbV86Tc+qkyGpCAIaBQauzGpM+nosrYLQBEloeo/roQC5PsWrbbYqmq31+HEkIzp/0yxmtun/9jC6R2bqVKvoVscjCaDhWXvSvmdI7/q7DI3p2Nxjoxak9py4O39tPOUYYrPwWowg9K9FIPslGQ2fSFJO96+eJ7rx49Qu5V73lUblEolVatWoVbdGpzYtB4rsPfHZbTo1a/ImgRBIOT15liNFkSlDO3Ze2QfjLcXyISFPU18/BouXByHv39bVKoQp+ejYKX2vW/PEDKmqCF94sQJzp07x7Bhw4o9N+FqFZua1uC/y5egUOSSnLyTypWfdOv4tVopF0yvd7yeNfFWU0OtQvegIw8VKILu3bszYcIE0tLS7LmL3bp1o2HDhgwePJhZs2aRmJjIRx99xOuvv2439o4dO8ZLL73Erl27qFKlCu3atcPf358hQ4YwadIk1Go1S5YsISYmhp49ewLw+++/c/fuXdq2bYuHhwd//vknM2bMYPz48fb1XL16lWPHjtGmTRvS0tKYO3cu58+fL9Gb6QypqancvHmT+HgpV/3KlSuA5EkNDQ0lMzOTbt26odVq+fHHH8nMzLQztwQHB9udUvXr12fmzJn069fPpXFBCk03aNCA4OBgDh8+zNixYxk3bhz16tUDwMfHh9GjRzN58mSqVatGeHg4s2dLBXzPPvusW8f5b8BD50x44403eOONN5zu27Nnj8NnuVzO5MmTmTy5fEiB7wdWINdsxgcvhr35AWG16hbbVhRV+Pu1QmswYTMivX2aFzE2ZTI1AQFtmT+kDTqjmYyM1nioqvKEKY0+54fZx6pZeyr+AV0e0JFJKEg3VJB2KCpcwzWNlL9ydOBRuxfMVcyLzfPCpGU7bO/o50Wkj4ZVaQY+i0mk5cUzzF7wGfWO7EfQFK1KRqH5R4nkfrwoPa0fuHOAA3ckA0dv1vNKk6K8YnKljKfflfJj78ZKF6a0u1pys40ue9acwWZMFoTNmLTBljOpMli52q495rQ0lBER1Ny6pVyM8cKGpE3lxlkleOa9u+hzcvD0D8Bo0KPLzMA7MNit4zfqy06nJIoiRqv0W00XIOCuluwtMQ6VyqWhasPGjFnxC/OHPAPArqWLymxECoLASy8NYfHixWTXj0LU5aCJvYTVYkFwEkmxhaQtBjNZ+25jvJ1t9ybK5T5cj55FtWrD0OluOjUiQdLVdvBG5lV622AwGDh48CAZGRkl5kVqZCJNvDzw8k+hdY2NXLq8kdDQHm55h4KDn+DevT8QRMeQ4WvVQqjv6YGn/J+NJlVAqiuIiopi7dq19lw8mUzG5s2befXVV2nXrh2enp4MGTKEqVOn2vtptVquXLmC0ShFDIKCgti+fTsffvghjz76KEajkUaNGvHbb7/RrFkzQPIuLly4kHHjxmG1Wqldu7adK9oGs9nMF198wZUrV1AoFHTt2pVDhw45EKHv2bOHrl27EhMT47C9IDZt2mSPaAI8//zzAEyePJkpU6Zw8uRJjh6V8oVr167t0LfguFeuXHEgIC9tXFufCRMmkJqaSkREBB9++CHjxo1zmGP27NnI5XIGDx6MTqejTZs27N6926EI6X8FD92I/F9FUM1wbrbcgNFkoWHYm+gMRtRKBSazBZl4/xQvGqUcTXB7ADIy0zCZ0gGoXu0VPBSKB15wY8vv/DvOMV/m5M10qjb1QxAgTZeN1aJwKw9nceMItt3LKKLI1tBLjRX4LEYyMk/Vb0x81RAazKvlfKBqbSXS8H/IkPyg9QdsjdmKFSunk05zPf06WYaiNEeFEVLd2+5NO/lHHDFnknn63bJ5JG1Qy9VEhkRyKqmo1rMtZ7K+fz0+D62EOS0NQ2xsiR5Dd2ErvLHT/xQThvzPG+/Q8YUh3LlykfmDpQTyum070nvcBy7Ptfy9A2X24tqqvfffykYpmMmcd4rqSonIW3TDI6nw8KBt/+c5sv5nstNSMRr0KJRlK9ZTKBR4eHhQs0YNEvZsB8BqtQAlG1A23sh8b6JIRPirCIIcRQmh5cLeSGcoTaUD4J7ByHNnYrhY8zkesf6Gwmxi8eLFjBo1yuXzKJdLXvuc7CsO21v4PkC1qgqUikmTJvHuu+8yYsQI+0NBeHg4W7duLbZPly5diuRjt2zZkj/+KJ7WqEePHvTo0aPEtTRo0IBTp0rWsI+JiaF27dpUqVJ8GtLLL7/Myy+/XOx+Z+t3hsJtShsXJH7Mzz4rOe1FoVAwZ84c5syZU+oa/u2oMCLLCIVSRbO+Y5g2cxI7v/wCc1Atpr0xmD8u3GX5wZhyySO0wcuzHm3bSD9OhcIfpTKwXMYtCYXzO+2eSauS22ckI6DrzTnIvC/SkAn8Mrq9S8dbW+PBm+HF554caVOftkcv83bcCrq0PeO8UcM+0GEsGHWgUP8jhmTL0Ja0DJWMps+Pfc719Ov8ev1X3mrxVon9BFHKh1wz/RjJt7IlsnKD5b7kEwVBYEWPFUVC2QVzJi+nXWHsoOp8uTgcYykewzIuwv425un+koGq0Th8BwRBwCcoGIUqEv+wyrTq8wxV6jXkq0FPgyDQomcfOj7/UpGh5UqRsFq+JERLxo1Nwcbdc2ajAFo78zhpt7IJlQvoLVZys4zkrLvglkey2RNPcmS9JM+Wk5qKX2gJPI2lrOmVV14hOyODxVvXAbD87VcZPv/74vsUzm3M8yZGRLxBUtIWjhx9gscejS5h0vy3VoMZS96Y7lyfAhVyLubJDyZQhRqyGy4TldtgMKQAkJrmaNBey8kly2QmXK1y4IaswD+Dnj17cu3aNe7cuUO1atUe9nJKxdatW5kxY8YD5Yx82Lh58yYNGzbEYDD860nIK36xZUROUhKXpv5ONQ9fEr3MWDGjNZj4bl80Z29nOKXn0SjlxH7W0+25ZDIPPD1rl96wnFEwv9PRM2lFU2M+Mg+pMOjk1dtoDSY8Vff/o47QeJDQuSnaZh+zcKyWq9Vr8NzoIXQM8XO86Sk9Ye1LkHW3/DySLib2B6mlhOmP2n6EyWLCbDXz67VfMVkdOREFBDpW6Uh1n+p2YyaqW/W8qaz3760uFNq25UwO2DyAuMw4YrNv8t7Qakyf4t7xuTS/Wo2qQQP0ly7ZScmLU8pRe/swbJ7Et5hy5xYmo4GuQ0YQ3jSq2GMrrGBT5nXmFdzYxpIBNaYdpZFahiHLgNJb6dL/wcs/AKVa7UBIXlaYTCa27diBrkpNPOJjyLibyNYFc3jyzfFO2xfnTbRYdFy89B5envXQ6W6iVld32r8gbJQ/NgJyVyEKAvta18fDksql43EAKBQ6t9gHfLwbk5LyFwbDPYfv/6Trd/grNYsFDao7pQ6rwIPHW2+99bCX4DLWrVv3sJfwwFG5cmW7LveDoCgsT1QYkWWEPj2dUK+6BMkhkVu0jghAFASUMpE2NaT35Y1bt1ZwPXo2CoUfHTvc383VXRT2TFqs3YhNv0Pv+cdQhy9m+J+/8VPPVeUWLm17MZF7w6Rc2V+uJ/NajpmP61TNzx0z5MDF36T3Rq1kVN4vSlCuKYhBDQehM+loGtyUs/fOMmT7kGLbNg5szOpeqxHEfA7EtEQtwdW9eXZCy3KVTrQZlpv6buKpX58iLjOOm1n5lBGxgwZRY8OG8vkfCQI11v9CTP9n0F+SuANdUcrxqxTGiK+XcffGdc7s3IqHpzftnx1YpF3BIpnqje7P8y4IAmpvBWG1fEmKzqCRWsa1XDPb3j9IYA0f+r3bwqVzElilOv5hlfEJcZ5/6CqsVisXL14EnwCIjwWsXDqwB5WnJ48NK4Y+y8nyFAp/ZDJPImq8gVzuW7SBrWse+bghLl9NyhkBeWmo6+mB1RrGNaRrgEKZy/Lly10OaYeFPUtMrEQsff78mzRp8rVb81egAv+/QC6XF8nV/Lfif0qx5l8F0dH+FgUBD4WMX15tz5pR7fBwg/DVVXh7N8Ji0aHXJ7Brdy12/9WAw0e6YzKVnptXHijIfealUlLTvxpWixKZKglPuTdaJzyLZcWsetUIzcrP1VqUkMbYg6fLbXw7CivX5CSX6rFTyVS8EfkGIZoQmgY3ZWjjoXSP6O7wahMqKY40Cmpk7/f8tgFcyr6AqWoGrfpWx5hrxmwu/4pUURDZ1HcT9QPqo1fAtTC45wOe/fpgzc3FotVi0Wrvm1vVlhvpoJRTypgyuRyf4BDSEuM5te137lw+T1rCHTKSijIQ2MLaUd2qI4rCfXNu9hsfxdAvHyFTJnBdb6GDl5xaSTloMw0ujT1gymd0eH4wMaf+Zsv82XzxXC/uxpQQRi4GMpmMJ598kieffJJhX35j3376jy1uj9Wu3W6sVjNXr36Sl1tZFDby8cpT2xerhOMKnjl1nc7HrnBXke/BTExMxGAoqnvtDGp1fg5bcsqeMq+jAhWowL8HFUZkWSEvmgdksVi5ejeLq3ezsFiK3pR0BjMdPttNh892ozOUTjJcGL6+UYhivmvbajVgsejQamPcHqvcYFVg1lXhr+P16LriVcbuHkeaLue+DZT/BPtxqncn1jeXCmv67vmDxlYjv3z6OV/M+5ZDyaUXA7gEG1ekDXNqw7IeLod+5aKct1u8zZzOcxxeszrPwlPhyfut37e3vZp+lV8bz2Nl6Gfs23GeJeP2cXb37fI5jkKw8UvueW4vHw6R8fYIGfJne3N35QquRLXgSlQLovv1I0efjdZYdoNSEAQHpZyYp/u7RBLf4JEuNO76BDWj2pAYfY0dixcUaWMz/MLq+LFn1WXWzjiO1cnvyp21qtQK6k9rz8Bp7fCRCQTKRVa+f9AlYni5QoFPUAh3rlzi8sG9APz4wVgsZvd+yzKZjKioKHJycjhz+Sr9P/rUvq+4sQpKGYoOajZWLlx4i8S7v2GxGIudUxAEqZioGCUcVxCj03NVm4shT8RapZQeGl2RTbShXdudpTeqQAUq8D+DCiOyrLAU1gS2kqvNpM+XO+j25T5yTWYp5GrIsRskVqzcSddxJ12H1d0rOCAIIp07naVD+wP2V7u2u/HxcT23qTwh5UkGoI19A7MuHJ3yFLtv7SRy6o5y0f4WBIEO/t6cjqpF7xEvMyyqEZsFFbObteXpK0mklBDCcwtKT6na24ZbR5yq17iDAI8Adj27C3kBZY9vHv8GBNDLtRizJENLrnhwP0FBEFDLpcIjvVKgy9ouLDiVb6wZL1/hSJdWdPqhNS9ueKbMxqQtPxLy1WwsOTkleju9A4LoPnosgVWqcnDNSnKznHvTBUHAbLRw+UgiybeyWTXlyH0ZkiBR/6j9VVzxVnE424SAVLxj1LtmDHYa+DLNu/eyf/5yYB+MBbg5XYHFYmHv3r3s3bsXv7B8D92CIc86PWcFvYkFIZf7ULXqS1St+hKCi5ytNthUbDQaDRoXCq6+axTB+ua1CFeaCA19Gj8/KTfYVmDjCgRBMkAtFh063S231luBClTg34cKI7KsMEkhnEbmaijSbhAZ7odmTnUOebxFgGeel3JGZemlTSm3aUVRjodHmP0lCA+PW82WJ3nhkx40qBRIbmIfchP7gFXG33FpaMvgbXWGUF9velathMzDg9YNJT5OGXDJqyb/DetNv7M3789gFQSpOGf89fxt5VCE4qnwdMgV61ilI+0rtwcBQl7I5ZUvHiEnXc/hjdGYTRYsZku5y3fa6IBs2NpKYPA7MuLz6Mgqp8HKL8yMmnWRNj+1YcDmAViKCYsWB1t+ZEFZxCstWnIlqgVxLw4q8Zi8g0KoEdmKeu0fKbaNXCniHyoZORlJuvIxJGUij05sRaeWIfT0U9DRS8bGOSdcPv+PDRtNULV8dYn5Q54hMznJ9flFkVatWtGqVSu8/PwR83J9TUYDh39Z7bSPzZtoMZjt65TJVNSrO5l6dScjiqUXttkqvQGMCTnIjQLvvvsu7733XqlV1i19Peng780jLf5LvbqTeP75KS4frw0FmSXOnnNfPrUCFajAvwsVRmQZIdN4k67PwZxrYfCrH6HVmbhGBDqPSpz8+IkHzuMIcPPmUv4+8QxJ94rn5nrQEAQBT5WcrWM6c2bcFA6//jE2zrvy8EY6zKVQ8Fq/J/ktsjbR7WoRlXmR76oO4HCWnrA9Z3j78s0iutxuHAgoC3hjlrse0i7rdDK5yIntcZz8Iw6L2cqN0/evt110HokO6OjAoxwdeJRDg4+x7+VjtN1zHEX9ekXaX069zHObn3N7DTYScptH0gZbsU1xCKxajceGjaZ1n2dKPIYXJrXBN0QKm2ck6Vg783i5eLplIuQKEG+0knI7x2VvJMCQOQvxqyRR/Wh8/bhz5ZLLfeVyOT179qRnz57I5XLeWL7Gvu/cXzuc9rEYzCR8doz4SYdIWnDKfvyxsd9y9dqnaLWxpc5rq/S2IeHTo9z79ix6vb7U8/nelVsMPx/DbaMCudy7TAVaMpkaP99WAGRnu36+KlCBCvw7UVGdXUb4Vg3Dd24omHI5cuIM27fvA/pRr1ptXgCSk5OJ/c82LIZcVN8MB0FA3v0TpESk8qnIvXZdkmO7ePE9Qjp3L5cxywqTxcQPF5dgMBtoENaMSwlaLiZkOqU6KiusBgPJ3y2mhsGA6o3XIaw50Zp8WpOfElL5KSGVxA51yBU9UMpE96rkbUU2ieekV3lVfRcDW+FIYFVJLP3UjjiS4rLum0eyMJzRAQHU2rgRq06iaalmziV81xASk2OJSbxETmYqnj4BbhkKtkIbq06HRafjWgdJF7Y0Y3zL/NlcPriXNv0GOOWNlMYWeHFKW1ZNOUJGko7kW9nlcp4CX2iAt85I7KTDPOIlY+30Y7z4STsE0bXjfmX+EnKzsxFEEaM+l+gTR7lx4jhPjHSuwmWD2Wzm8uXLGI1GmjRpgkLlQdeXR/LXD4vR+DhP0xAUIqJajjldjzE+Xws7IXEjWu11goOeQKOJKHXNgtKxWtsQl8mcOXMIDQ0tUfpwV0omd/RGXgnW4a29h1LpXLO7NNSsOY6Tp6SK/JLyOCtQgQr8+1HhibwP5ORmM/2T4fy5ZTmVKoVQKTSUDZeyiPhgC+s3bGDzth1s3bWPjdnN2ZjVjHW/bKCKKBWEGE33722qUeMtAIKDHwfg7xPPcfv2qvsetywwWox8c+Yblp5fysrhLe3btQaJP9P2uh/vkdVkInnhQlKWLMFqNpNVdRw7XxvIV9vzecPapp/GOqMyx9e8SeU9Z8h1p/q5cJHNA4atcKTjM3Uc9LZNRnO5h7WLm1/UaJB5eqKRq5k9IZqVX5hZ+YWZW206Evfii+57JPPGdKfYRq/NAcDTz7/EIhVBFHj+o9ZUruNHeONA3EwBdD6mQkSuklHHQ4a/XCTnXi5rZxxz67g9vLxQaTRcPriXX2dN4+yu7dy9cb3EPmazmXXr1vHrr79izjtm/7zcyOSbsc7XWsiLaMtprFL5OcLDX8XDo7JL67XlV9oqtY2YMRqN3Lp1q8TcxvdqhDGjThUMCd9x+swwom/kFwS5c768vQuSJ1uZ36A6x9s15MmgcspxroBbSElJISQkhNjY2Ie9lAq4gT179kjSqIJA3759H9o6KozIMiIjIYkr7++kS/ojeF1LZOCg5xkybDjHTZJnrF2HR6hduza1atWiVuV8Al0PpIKcZQfvv6K6RsQbtG61iRoRb3Lr1goEQeTK1Unk5sbf99juwpZ791y959Ao8g2Ilp/upOGkP+yv+wlxC2o16qgo/Ae+gKiRtLNlVitt7sRxWXGTaae+4o2bP5Gs8GeGl+QFi9h31s1JCnhhDNoixVH3i7dbvM2y7stoV7ld3nQCMoWIXCmj3ztRdHqhLgd/uc6G2a7n55UHbOe2IHQnT2HRlq3AyJ1im37vTWL4gu9JuXObrwb3l6hzijHCbOep1xvNkJcTjZaolOFR1Ys7okCIQqB+ei6G3MKFc6Ujskdv+/u0xJJ/gwqFgmrVqhGel0dqtVoRRel4LGYzN04dd9rPpoUN2NVrqlcfhq9PM7dYGmy63O7gubAAhlUNRmOSGAUUcj/7PncqtAsjWKmgmoeyQjv7IWH69On06dPHQYd6zJgxtGjRApVKRfPmzYv02bNnD3369CEsLAxPT0+aN2/OqlWlOzBKGxdg7dq1NG/eHI1GQ3h4OLNnzy7SRq/X8+GHHxIeHo5KpSIiIoJly5a5esgAbNiwgW7duhEYGIggCHZy74JITExk8ODBhIaG4unpSVRUFOvXry917Dt37jBo0CACAwNRq9U0adKEv//+22nb0aNHIwgC8+bNc9geERFhNxJtr4Jyiu3btychIYEBAwa4ddzljYpwdhlh1hsI0QQBQRxPlnIS1QoZJz6SvIIBnkqaNsrLDzPmwsaRWIGByV2IvpmDxs0LuDMIgoC3t8RDaLHouXptKgDZ2Vdc9kqUFwRBYGn3pWyP2c7+O7toEe7DiQLkxjbYCm48Ve5/9QRBIHzVj1jzvCXejz9OvZMnsOj1XGvXno5Avf1/IC5swikfydsxNOMQWJuRbjKzLjGNEdWCXZ9wTgGy19AmMHIfiPf33FUvQMpD/PHijyTrkh1lEwXYufwiybey8fBSoMsyolDJkCvdk6grC2zn1qzN4cUNzzBluqRKojPl4oX7IX1bsc2N/zyJIS7OXmwDoGrQgIgfV4IgIKjVCKKIb0goMrkci9lE/4lTyc3OLnZsq8VKamIOJr0F/zBJavF+zpEgCIS83hzftFw0M47hLxfZ9MVJnvmwtVtjyuRyqjVqyq0LZ0lPKNmIFASBoUOHkpCQwJYtW0hJSWHI4MH2/Rs/+4R31mx22q+wek1a+nFycq6RlX2JwMBOLq83X04x/3dakiH43a0kMk1muvj1gMzTCKJIaGgoiYmJbksg2mA2axFF9/pUoPyg1WpZunSpU83rYcOGcfToUc6eLfogfujQIZo2bcr7779PpUqV2Lx5My+99BK+vr706tWrSHtXx922bRsvvvgiCxYsoFu3bly6dIkRI0agVqt54438FJEBAwZw9+5dli5dSu3atUlISMDiZj58Tk4OHTt2ZMCAAYwYMcJpm5deeon09HQ2bdpEUFAQP/30EwMGDODvv/8mMjLSaZ+0tDQ6dOhA165d2bZtG8HBwVy7dg1/f/8ibTdu3MiRI0eoXNn5/Xrq1KkOa/P29ra/VyqVhIaGolar0ev17hx6uaLCiCwHyFtGoFJ6IAgCgV5OJIqsZrj4GwLw04RF6AQP5PdpjBSGl1c9vL2bkJV1rlzHdQdGs5GJByYCcOSVIwjknwu79jbQa8EBdr3dGdHFvLOCkDwo0k1HkMulV54XzRATgxhUDaq15da+R9kS1InquYl8fr0XK+5mkGo08/H1O7Tz82RAaADPhzrJ+VNoJLqfW0cctyeeg8WdXFK0KQ1Zhiy2xW7j3L1zjIkag5gXlxUESaLPluu3cPRuAIbN7oja+8HfaAVBQO7pxdKnVnFruuTJzTXrEIuhO1LL1SUaWbZim4KqNgD6S5fsBmVBqcSuQ0bQqvfTCKLI4tde5pX5S/AJKqoOYzJa+HnqMYdtYbV86Tc+6r4MSaWXAplKRrLeTPLtnDLlXObmSMbv9b+P0Lb/86XO+fvvv5OYmIhGo8EqCLR6qj/HN0meDrPJhEzu5BKdd4iip7QvJ/sqN2LmExT0mFtrtRmkcZP327eVpECz+NY97uiNNK6sQAkkJm5k6NAzzJw50615ZbL8/NzsnGvMT67MqUwtY8Mr0TXQx62x/rWwWu+bJqzMUGhcvkZt3boVlUpF27ZtHbbPnz8fgHv37jk19iZOnOjweezYsezYsYMNGzaUaESWNu7KlSvp27cvo0ePBqBmzZpMmDCBzz//nNdffx1BENi+fTt79+7lxo0bBARIUb6CXlRXMTjvoa2kMP6hQ4f45ptvaN26NQAfffQRX375JSdOnCjWiPz888+pVq0ay5cvt2+rUaNGkXZ37tzhzTff5I8//qBnT+dyyN7e3oSGhrp6SA8FFUZkGaHy9uR6Xvho6NBJeKg06AxmnvpaUu/Y9EZH1DZvo0zJ5RbTOH8nh7tLfqB5VAuiBamqs4ouhpTkewD4+Pjw2GOP/c8Ky4uCSMtKknEgE2V4FLgBqhUyGob5cDEhk5jkHHotOMCWMR3LTYIvfNWP9oIOYeg2FMYc+mbcBoWGBl6V+fJ2qr394fQcDqfn8GSQL74KeeHBJLof2w3AaoXvOkFqdL6ijbJQkYobF20As8XM2XvSBfRO9h2qeVdzOBZnhotRb/5HPJKF0WN9D/RK53PWD6jPml5r7EawMxQstsFqJXbQYAeDsrBUoldAIL/NmY7FbCY7NcWpEWkrSEqIziecT4jOQJdlRO2tKPM5EpVyan/cliVv7QPcy/OzoUazKO7F3uDujetcO3qIOm3aF9tWEARGjRrl4MFr8lh3uxE578W+zr2RecTj6oaBiEoZQUGPotFEoChAn+MyBJAjEmjxIkXMLtGj+GxoAOkmM/6imRzAajWW6VwLggwPVWVy9fHk5Fzjck4ARzJyeNHofgrBvxZGrUTv9jAwMd7lgsD9+/fTokWLcpk2IyODBoXYGdyFXq8vwlmqVqu5ffs2cXFxREREsGnTJlq2bMmsWbNYuXIlnp6ePPXUU0ybNg11gVzs8kD79u1Zs2YNPXv2xM/Pj7Vr15Kbm0uXLl2K7bNp0ya6d+/Os88+y969e6lSpQqvvfaag0fRYrEwePBg3n33XRo1alTsWJ999hnTpk2jevXqDBw4kHHjxiF39mD5EPHvWs3/EDwD/Wk937GS1IqVa0nZ9vd2yBRcNlfnfOJpQM+tW7eYdEoyaibVS+JmXJy9ac2aNalbt+6DXv4DgYfcg+U9lqM1alHJHD2ygiCw+c2OPDZ3LzHJOeVfua3TcSVKuhiqGjQg4qdV4BUueSkFgTtdmnEkPZu4XANvX5ZIjg1WK/G5Bgafu0H3IF/eqxFmW6zjRXjUPpiZRwhdMMRtQ7W2kuHp4g1VJc8/N79c/YVxLcY5bTfyq86YDGY2fnHygeltO4NG48PGIbWIyYjBWMK/x0YHtLbX2pI9koJgNxKdVW9bdDoprJ03hndQEPXaPYKHl3OvlK0gyWSwYNSbWf6e9OC2/L0D9+WRtFqsmO/p8JMJpJutrJ1xnIGT2yDKXI8aNHm0O8d++wW5SkVORnqp7QVBcDDY/EMdDQ+LxWzPlSzYJ3h0U6xGC9mH47EazPh3aIcgdz+6IShElGFe9EpowQoPSYWnOA7OD2pKvw+d7gkO3ZSYIbKzL7o9J0CuXgr3m03Fpy1U4MEjLi6u2FCqO1i7di3Hjx/nu+++u69xunfvzrhx43j55Zfp2rUr169f54svvgAgISGBiIgIbty4wYEDB/Dw8GDjxo0kJyfz2muvkZKS4uD9Kw+sXbuW5557jsDAQORyORqNho0bN5aoa33jxg2++eYb3n77bSZOnMjx48cZM2YMSqWSIUOGAJK3Ui6XM2bMmGLHGTNmDFFRUQQEBHDo0CEmTJhAQkICc+fOLddjvF9UGJH3gYysVBa+NgiA1xf9iJenP6tHSGEBVaEk8Sc6d6Da2a8wW8x4NnoaTkmGTIuWrWncqBGHDh0iPT2dW7duldmIjAh/FYMxBVHmgVYbh0YTXnqncoTFauFG+g2WX1hOXGYcK/+z0uFmLoqSIdlocvnzWgpqNerISNSRkQQOf4WYZ57FEB1tD5fK8tRvOgDPhQaQa7FwMTuX3ievAXAhO5e1ian83c7JU6FN0aZwiNsGm8KNi0//armaqJAoTiadZFP0JkY2HYlGrili+NjyIZVqOdUbBRLVrTpW631H00uFqFAw4YPf0Zl0WLQ6BLVHkbUN2DyAuMw4LqdeRmfSOaUQcoaCBqUN1zp0RNWgATXW/4Igijz68iisVisntvxK8s1g6rbt6HQc2/mxeSXrtQ0lslv1MrNoWU0WUhaeprO3nM3pRjKSdFyedIj609ojuph+4hcaxgvTZrPhsyk07/Zkqe0NBgMzZkgG2cSJE1Eqlby6ZBXfjHgRALPBiOhR1DMtCAJWIP23aHICzpOe/ieyKjJatlxXpG1JEASBkDcjif/iOJ3SJS9SyrfnCBvbosj/fEdyBrkWK538842O1NS9bs1nQ6VKT3H37ibKpcT+3wiFRvIIPqy5XYROp8PDw+O+pvvrr78YOnQoS5YsKdGr5gpGjBhBdHQ0vXr1wmg04uPjw9ixY5kyZYr9N2ixWBAEgVWrVuHrK1X0z507l2eeeYZFixaVqzfy448/Jj09nZ07dxIUFMSvv/7KgAED2L9/P02aNHHax2Kx0LJlS/vvOjIykvPnz/Ptt98yZMgQTpw4wVdffcXJkydLfNh9++237e+bNm2KUqlk1KhRzJw5E5XKSdrcQ0KFEVlGpMbeJm1RNANCx7L51rcAyESBdrWch5Q8vX1o0bwxyJRoa9YCJCOydt16eKrk7N8v5SVlFSP/5gpCQrpjMCSTnv43V+MW07x5+T6VlQYBgYkHJnIp9RL+Kn9Sc1MJ8HDMOyz4m9EazKgVsvILaf+0CqtOJ1Vum8141lQTUCsecrNBnZ+QLBMEPGUyWvl68lX96oy9fJOJNcPoHezHusRU/hPki1fBh4DCIW4bDFrnnkkX0L5ye04mnSRZl0zbn9py/MXjeMiLXswFQaD/ey3Q55jY89Nlzu29zeNDG5ZbZXKxMBrJmreQ1GXL8GjShIi1axz+T2t7raXNT23KPLwtj1V38iQg5UnG9H+GGhvWo8vKtBtRcoWSGpEtUaic3+gKeiVBskm2LDqLUW+m95vNkLtRwGYLE5vuafFRyAjMNOBjtmLKMaF0Iye1ct0GvPb9T3nURQIqFyQFC0Imz09nmT/kGTz9A4js0Zs2fZ8tsl5FmCcG+V2yvc+gzC0a+ncFgihQ+Z1WyOaKmJJ1WBJ1WI2WItXbE67e5o7eyB8t69Kk8UJ8/VqC1RtwLycScFui8X8OhaMZ/1IEBQWRlpZW5v579+6ld+/efPnll7z0knOOV3cgCAKff/45M2bMIDExkeDgYHbt2gVIUTqAsLAwqlSpYjcgARo0aIDVauX27dvUqVPnvtcBEB0dzddff8358+ftxnGzZs3Yv38/Cxcu5Ntvv3XaLywsjIYNGzpsa9Cggb2qe//+/SQlJVG9ej7Hsdls5p133mHevHnF5mi2adMGk8lEbGws9eoVFYp4WPg//kt+sFCJIh4FksRzjWZeW3WC11adINdYiO9OroKnFsATUyFPVk7AwqBv/sJqsTBgwAC6detGq1at7mtNGZlniL4xB6OpaGX0g4YgCKzptYajA4+y7/l9dFnbhSHbhxSbW9by053lqmpj4ygEqLHmR6pG3SD9SAyxg4cWO8dzYQEkdm3OK1WD8JHLeOvyTb6+6US+znZTcHi5ZxwURP+6/V1ua6MBij55j+iT93BTlbBsUCjIOXwYgNxz50pUnSmrVGL4qh+pd+Jvu1yi/tIlrDodGh9feo/7gCdGvMFry1Zz9chBbl0svmDM5pVUqGRYLRB3PoX4a+msd5MmyRYmDv2gNf3fbUEjtWREGfVmjHr3uDvT4u/w9dDn+HrogBL7KRQK3n33Xd599117LrRKo3GQVMxJS+XA6hX88M5rTtbbDN/4DlQ+9SZNG5Q9lCiIAoGvNeWE/AYn5Dfs3JUFEeXjSTs/TzxlIiEhPZCJKiyW/Aerf5KSqgLlg8jISC5eLFtKwp49e+jZsyeff/45I0eOLNd1yWQyqlSpglKpZPXq1bRr147gYIlZo0OHDsTHx5NdgMHh6tWriKJI1apVy20N2jx6s8JRCJlMVmIleIcOHbhy5YrDtqtXr9rpvAYPHszZs2c5ffq0/VW5cmXeffddp1XyNpw+fRpRFAkJKdvD4oNChRFZjrBYrWw9l8jWc4lYCl9QzSa4sBF+6In652doGOZDbSGejenPYFnWg2pVq9K+fXuqVKly3+twhy+uvGFTR9Hmee1OJZ1CZ8o3QNQKGS3D86kOylNjuyBEteS5yrqlxhR3CUtGRok3OU+ZjIU3kzBbYV7cXebEJKJ3hzKiIKekC7ySQeogzr50lr8H/c3fg/7mrvYuP1/+mS9PfOn8eOQCnZ6vS4dnaiPKHnxxjSAIEg1PMVDL1dQPqA9AXGYcT/36VJkMSdHTkxob8nnXLHkKOnXbdqTp4z2YP7g/2xd9SdzZUy6NKVeKBFWTFICSb2W7JWNoX5NShqCUsS3DyI4MIz98dJjFY/e6JUkpL5DneGbH1hLn8/T0xNPTUWd9yJyFjP5uJY8Ny9eXTrl9E2NubqEBQDR74H2vBdkrMu/LkDNbzJySx3BKHuPUiFzSOIKNkXWorfHAYjGQlXWJQ4dbolRKv3W3uCLzmiUl/XPk/hUoiu7du3PhwoUi3sjr169z+vRpEhMT0el0dmPHYDAAUgi7Z8+ejBkzhv79+9tpnlJT8wsYN27cSP369d0aNzk5mW+//ZbLly9z+vRpxo4dy7p16xw4FAcOHEhgYCBDhw7l4sWL7Nu3j3fffZdhw4a5FcpOTU3l9OnTdiP6ypUr9rUB1K9fn9q1azNq1CiOHTtGdHQ0X3zxBX/++acDufdjjz3G119/bf88btw4jhw5wowZM7h+/To//fQTixcv5vXXXwcgMDCQxo0bO7wUCgWhoaF2D+Phw4eZN28eZ86c4caNG6xatYpx48YxaNAgp1RBDxMVRmQ5QiETmdqnEVP7NEJROBlflMGRbyH+FIIoZ93odqiRuJ3ElOsYdZmkp6ffN9+TSlWJ0Ep9CQxwnS/uQUAtV7O9/3b2PrcXtTz/hy0IAutGt+PvPD5NKH+NbQAUGoQqjfDwNxBYN5XUH5YR+2zJXqFIn3zP4pzYRML3nuWHO8muzTentlSNaXstK117WxAEVDIVKpmKhacWMv3odJadX0Z6bnqRtjKZSJMuVTHoTHYicovZ8mC9P6UUy6zptYZwH+npOi4zrkya24Xnudaho4PCTYfnBuNfuSotez3t4lAC/d7JJ01fO+N4sYUiJUGhkhFY05e2XnI6ekkeyYToDJeNUt+QfFqO2BIMYIPBwMKFC1mwYIH9RmqDp58/zbv3ZMx/f7Fvs1gc57eFtK93Hsvl5kO4FfeDS+srFU5OWbQ2l8s5OnRmCxaLnjNnXwGgXj3podVW2e0KzHkeTA+PsPJZbwXKhCZNmhAVFcXatWsdtg8fPpzIyEi+++47rl69SmRkJJGRkcTHS3meK1asQKvVMnPmTMLCwuyvp5/O/51mZGQU8ciVNq5t7JYtW9KhQwcuXLjAnj177BQ7AF5eXvz555+kp6fTsmVLXnzxRXr37m2nD4J8NZeS6Hs2bdpEZGSknV7n+eefJzIy0h6mVigUbN26leDgYHr37k3Tpk3573//y4oVK3jyyfx85+joaJKT8+8TrVq1YuPGjaxevZrGjRszbdo05s2bx4svvljq/8MGlUrFzz//TOfOnWnUqBHTp09n3LhxLF682OUx/ilU5ESWIxQykZfaRTjfWTCvThARrHBHXY/2/MjOcf/h2KED7NmzB4COHTvy+OOPOx+nFPh4N6ZRoy/KdgDlCEEQqOLl3KsqCAKBnko75U95V2rnTYIw7A8iEqtgMQpc++G/WHP1klY0OFQD29A7xI+lQgSvnI8F4LO6VWnt68m+1Cw6+Hshc5VTEqRtNjogFyiA3mn5DttitwHwyJpHAJjUbhJ+Kj+eCH8CkMKqp3bcxGS0YDJYiDufwtndt+6LH9FVWPR6e6qADaIgsqnvJp769akyFdnY4Cw/8sZ/nqTmtq20eLIPQdXC2fPfJQB0Hz0WoZQiF4VKRlA1L5JvZZORpGPtzOMMmNjKPR1wQaDPmGYkTD4MCMgwY0YySl+c0tYlbe02/QZwdONaB6+kM9y7d6/Eak9Rlp+bWNhItxXGnN+TgSqnKqKifBLuk5eeo8pYx3M24HS0PSeymbc3tuqlSpXiOXfOvYIKf//23Lu3A4AnAn2IUKuopfn3FAv8/4RJkybx7rvvMmLECHvo1nYvKg4//PADP/zwQ4ltXn75ZV5++WWHbaWNGxQUxOG8NJqSUL9+ff78889i98fExFC7du0SI3vO1lcYderUKVWhxpmh2qtXr1JJ10saIyoqiiNHiink/JehwhNZDqj0ZAfUHp4YTBa+/PMqX/55FYPJSWjPllenUKNRyjkxqTuHJvVGo5Q75HJYLBYyMjJISkqy52W4A7M5l/j4X0hNPXg/h3Vf0Jl09P21L31/7esQzrbB5pF8oBAEBAFEhRVV7Vr4DRhA9r59xL00hNjnn3fqNesZ7Edi1+bEdGpKr2A/buUaWHDzLn1POpHhsz0YTIzPf40v0M7mnfzuESglNF7JsxJtwxwJf6censrCUwvtn+VKkYDKnjTuLF0YT+2IIyE6w15U8iBxa4SU82S1Wh3OmyiIrO2V78UoKQe2ODjLj7RJJcqVSqrUb8iFvbu4ecE1CUtBEBgwoRX+oZIxG1TFC0sZtOpFhYzAoY0IfLkR/lWlIgmbUerKMWp8/UptY5M/7NChQwlqL/mGXMypotJpgijQtctVWj/2G5WDy+gNRvJq2mBM1GI1On6v/BQyAhQy5HmGZdUqkmfFQx1RpvlsGFY1mJl1qxLl8+8vRPm/iJ49ezJy5Eju3LnzsJdSbti6dSszZsz4n+VcdgX79+/Hy8vLJbnJB4kKT2QZoQnw45ooGQz9+o5GqVChNZj4apdEGTOqc02Updnohhw7IW3tifFMnDgRrVaLSqVi8+bNXLhwgW7dutG+ffGExYWRmXmWa9dmkJ4hae+2bvU73t4NS+lV/rBarURnRNvfO8M/xZstCBCxagVWQUncCwPJvXABTatWWPV6hGLoLdQyEZkAQ87l55dardai3qzCVZjOvJOJ5+DrlvDG3yXKJi7ptoTbWbdZd3Ud0enRCAhU8qwkDZGTyKmkU7R9vTHBqhAEAWRykbDavpjyirjcVVcpDYU9hADmtDRuv/GmXWUG8vMjL6deLrs3UhAQPD2puW2rg1RiTP9nqL52DZ7+ATwx4g0u7v8L35BKVG3QuOTxRIEXJrcpk+pMwTHU9QJIWXWJroEe7NCbybiXS/KtbLfGvXHiWLH7BEHgpZdeYv369Rw/fpx+/foVufEVVK3ZumAO4U0j0fj4OrQxGlPI0l4gdUU0fppWBI9u6rZ32rG9tUhIe1crx/w2r4dwXanAg8Fbb731sJdQrli3zj2qq/9FtGzZ0q737eXl9dDWUWFElhEePl60+nQIKRl3yTJnobRokIkCg9tKnhRZGST9lEql3RthM7x27NjhlhHp6VkPT6+6ZGVfwmzOJjv70kMxIlUyFcu6L7O/fygQ5dBqOACCTIEgVxLxyzosOVpMCfEYb91CWatWseFRpSjyW2Rt+py6zkuVAzmRqeVMlpbqHkqeCPJ12schbaGg2k1qtEuGZFXvqkXIx5eeW8ris4vRmvK90p92+JSn3+1DSnw2y8YfwMNLwStzHrHn7JWHuk1BJSBEEYtWS8r3S4uozAiCwIoeK+yUP0O2DymVgLzYOfOkEm2GpP7SJUSDgaFzv2XX0kUYcnOJ/vsI41b/VoSE29n6FSrZfan9WAxmdOekfKdnJ7bm+/ck774r3j6b8WfU52Ixmx3C0gVhtVq5fPkygEPCfkF0fP4lDvz8XwA2zJzCwE/nOIwXHT2bhMQNqGpVR3OknlOKHnewWXmCZ7/xodLY0lMlMjNPAHXsx+IuTmbkkGw00dhLTWWPCh3tClTAFajV6hLTYP4pVISzywiT0ciNv0+z+rU3+O/oEWTlpKOSy5jWtzHT+jYuQjZeGFqDiQbT9tHevATt2CtFCGJt4W1ZMTee4iCTqahfbyqiKHkz7sSvcat/eUEmymgV2opGgY1KlMWzQWswozWY0BpM5VcsIldBzy+gx+cgy9PbFgQEUeBG76e40fsprLm5WLTaYuds4+fFlqg6zKxblcs5uXx47Q6Dz8XwxPErTtvnTSJ5J1VektEYUEvabjMk9dmlFt0UxGPVH3MwIAEWnFrgtO25PbdZPHYvudlGjAaJmsZShsKS/EORaJPEPI9t6rJlTtsVrNa2eSPLPGeeVKINMU/3R+nhQUTzFkT/fYSOLwxBn5NT6jgWi5U7V9LYvvg862e5R/djX4tMwPfJGvj1qeWgCONKwU6Djl14ZODLDJn9dYmGmEwm48knn+TJJ58s9vfept8APLwlBZ+7N66x8n1HpYugoMdQqcLwTG7q6qEVgUKhICxMKnQxYyU3McshpN3i0AVC/zrNmawCkqBI8oc2uFWhnYfZsYm8dC6Gg+kV6jUVqMD/GiqMyDIi885dPDbk8HT4W8gEyWAzmS1sOZvAlrMJmMyl56npjBbijZ7gGVQktnu/zP++vpIEoNXiWrVkeUNv1vP2nrdp81Mbnt/iPP+wIFp+upOGk/6g4aQ/6Dn/wH0ZPkUQvatItbTM3x9ZHlXClagWxA18sdg1tvD1RCYI1FTne1TPZesI/et06XOLYlFDcmYVl6q3bYjwjeDckHOcG3KOKe2mANgr3gNCPRn5VWdemt6eDbNPcHhjtL3fupl/s3jsXhKupbs0j1twUuCxoseKchte0GhQ5enw2vIj60e1ZuD0udRt0x4PL+9SRpB+Ugd+ucbNCyncjcksU+6oIBPxal8Zc7YR3cE7BLuRG6lUa2jd5xmCqkdwYsuv3ItzTr0lk8lo3bo1zZs3L1EZ57lJM+zvk2/FOcwdEtKD9q32Enz9GXcP0Q5BEBg5ciQfvPM+zxjaIkfmtErbBm/vxnnr1xAaKlWju1OhXYEKVOB/HxVGZDnCYLbw+k8nef2nkxhcMCI90LND+S4e37aReAbLEbVrvUulSk8RVvnZ0hs/AChFJYk5iYR5htG3dl+yjFlFbriFOSNtuJiQyWNz95aPIWnIgYNfSTmKBsl7JWo01D18iLqHD+WvJTKyREJtgPb+Xlzs6JiLl2NygfLFZkiGFpDJskklugkbpU5sZix6sx5BzCfa7jc+ipFfdWbkV53x8HqwCeUFaXgeBARBoMb6XxwKba60aMm5jyaybeGXbF0wx6UxCtL9lNXDbbVYydp1k6xdt+g/vgW+IZIB7yoP5cJXXuD0ji2s/GCs0/0mk4m//vqLWbNmsWTJkmLXGVQ9gpGLfrB/Trh2ucAYWdyO/y9pVXfnLdrFgysEQRBQqvJDyve+PWNfz5+t6nG+Q2MaekrHr9FE0LnTGTp2OMzQoUPLNmEFKlCB/2lUGJHlgKcmTMLb0w9REGhTI4A2NQIQXci/ErBSV7zDiUxfrIWImpVKJe3bt6ddu7JVMHt61qZxoy+RyTScO/8mN2LmYzSml2msskAQBFY9uYp1vdeRlpvGY2sfY+CWgQ43SFuF9sWp3bk4tTsXPulOjSDJ0xOTnEOvBQfKJ7Qdl1elvryo909Qq1E1aEDgcInzrrT5AhRyEro0A+D9GqF4yESOuBKGE0UYtd+xersMx1bJsxLeCm+qeFXhcPxh7ubc5ftz35OYk+ig3CIIAs9OaMkrcx7h7F+32frNWXsBTllhO1cgGXUxffvZz5fFYMCi1dmPSWfS3ff/zpYfaZsT4Lo+i4Rrl4k9c7KEngXGKPA73PiF62ThjusQ8GwbhmfrUES5yICJ+apSroS1G3V+jIyku/gEO1eakMlkXLt2DZPJRJUqVZwSfdvgFZAvq5qWkM+tZzSmce3Gp9yrK6WvJC06XaZjtVqtGK0mCFVhxYoxIcce0g5QyAlSylHk5XsLgohc7oVc7lXm/NuHFSmpQAUqUD6oMCLLCJ8qlZC/KL2qN2yMKIp4KGSsGdWONaPa4VGKtrFaIaNGaDDHLXX5QvsfdIJjlbBaraZbt260bt36vm7Gycm7SEraSkzMV+TkXMdqtWC1uifhVlYIgoCP0od9t/eRa86lfmB9jIVuGoIgoFHK0SjleKrk7Hq7s92QvJiQef9qNgpNvgcw8VwR758gCET8tIq4wS9xJaoFsf2fKfXcCIJAfJdmPF3JnzGXbtL31HVq73OBfkYQHKUSnRi1paGadzW29d/G9v7b6VKtC+dTzvPVya944pcnOHTnkMPaFUoZMoXIjdP3uHcrC5PBglFvxmwsmwexsHdQHlrJ7r1NnDSZW206MvVHM1itdFnbpUxyiEXmzMuPrHPwAABtr9+h52vjeH3papf6F1awKVNIWy7i37c2qtp+JH1zxmHMjCQdq6YcKdGQrNu2o9T2biLrZ04uojojCAIjRoxg4sSJ9OzZE7m8+HpHQRCo0bxFke2iTENISC98s/JooqzWIhQ9rsBoNDJz5ky+T9+Kibz+eYf2zKnrdDp6mcs5+R57szkXszm3yENwqchrfy/5zwq5xApU4H8YFUZkGSFXKAioH86+mB1s2PYdBqMei8XK1btZXL2bVWooVhAE1r3ankGGibws+wPlhqFgdLy5ZGRkcPPmTbZuLV42rTRUrfIifn6t8fZqhFzuTXz8Wnb/VZfdf9XmRswC4uPXER+/Dq02rsxzlARBEFjdczVHBx6lbVhbBm8bLKmtWC1ojUULWkRRYPObHe2f71vNRhBgaMnSaoKHBzIvLzw7PULI+++XyukIIAoC1T2UrL8ryYVlmy3cyjWU0otSjVpX4KvKrwy/npbv2Ry1cxRN/9uUAb8P4LNjnwGSERVWy5eobuGc3X2LxWP3cuCXa27PaUNB72DgK8OLEJDXvw2qvOeEy6mXy65iU3BOQUDMkzNTG80kzZ/Pxs8/4YvnepGdmlJq34Ih7bLCYjCTte82xjvZYLIyYEIre1i7tPxI/8r5hMexp08wf8gzRfgeLRYL165d48KFCyV6IiE/Ur19Ub5EpkoZRJPGXxHVbymKME+8O1VDvI/q7IKwhbRjdHquanPRF7i2HTz0CHv2NkKru+HWmL6+kfb3BQtzKlCBCvxvocKILCNyM7M5Pmkl1o0x3F71B7rcHHJNZrp9uY9uX+4j14VcOUEAEQs9ZMeRX94EVsc+Gzdu5JdffuH4cdfIjZ3B378tLaJW07r1Jry86jnsi4mZx6XLH3Dp8gecOTu8TOO7Aluoa/n55VxMuYjOpONG+g3a/NTGTk6tNWrtRqVGKaNhmFSJalOzuc8FlLq+8J9XU3XePNRNGpdIwVO437VHmvBogDc/N6tZVC+9uLWUYtS6gxcbvMjLjV522HYp9RKrLq0iPTddMqLGR9HwkcrlNqfNO6hpme8Rq/TB+/b3q3+pQoRXdeD+K7XtcxYIpSelp3Lj5HHaPTMQqwvJf+Wh5iMoJIogZY08A16AF6e0dciPLM7LqfbyZvR3jjrkSo0jsbbZbGbdunWsW7euVCNSJs/Pd9Vr86vUb95aTtzNb/AbXR1NZLDLx1YcFHlk7baQ9neNIljfvBa11PdP2eXjU/Yq8gqUL1JSUggJCSlRIrAC/z5MmTJFYhsRBAdt8X8aFUZkGaFNTSfcWo8OlfoiCvnhpwBPJQGernGdKWQi056O5GTjDzH3mGWnobHhqaeesr/PLRQCKytCQ/vRuNF8AgO7EBjYlcDArjSo/xnt2hYvIVUeUMvVyAQZLSu1RKPQkGuWjic2IxadSUebn9rYjUrgwavZFILVYCB+wkQppP3Msy4b7d5yGT81q8Uj/t48eeIaoX+dpvvfV/j2ZlLxncqRZd1L6cU7Ld/h70F/s6TbEr59/FvahbWjXVg7e6WvIAjIZCIt/hPB8C87EVrTl8tHErC4UPxVHARBQChARyP6+tqNPFPcTeZ+b3HIj3TmdXZ3vogfJUOs4Z1k/jNyDD5BwZgMBswmU4l95UqRYbM7Mmx2R+TKsl3yBEEg+NVm+PWsQfqv17n3zRkQcMiPLAmefv68s2YzwxcslSq2q4UXGT88PJzw8PBSjd6eY8bb3ydcy6eaio1dRPSNLzDmppC5+xbpW29gdaac5SKCXmni8Lmlrycd/L3xKoW+zHVIx2mx6MtpvAqUBdOnT6dPnz5ERETYt40ZM4YWLVqgUqlo3ry5035//PEHbdu2xdvbm+DgYPr37++SIbplyxbatGmDWq3G39+/WG7UlJQUqlatiiAIpKen27fbdLELvxITE10+5tTUVN58803q1auHWq2mevXqjBkzhoyMDId2zub5+eefSxw7IiKiSJ/PPvvMoc3atWtp3rw5Go2G8PBwZs+eXWQcvV7Phx9+SHh4OCqVioiICJYVoFgbP348CQkJDmp3DwMVZOPlCI1SzsmPn3C5vUIm8kzrmhD1FsY9sxH3zUZ4ZDzIJWPS39+f4cOHI5fLUanKh7BbJlNRqVJPKlXqad9mMKSSnLIHs1mLn19rVMogAPSGZOQyb2TlQBYuCAI/PvkjerN0w2gY2JCjA486KJu83OhlhjYemtc+v6/WYEatkD1QfWhBqcSYkIC8chg+vXuB0QilaB4XxJyYRMx5RtKZLB1nsnQ09FLziH8pRQfllA+mkqnssokdqnRw2kYmF7GYrexcfhGAWpEhlMLX7TJs+ZI2knBTTCwqowy9Erqs7QJA/YD6rOm1xiXe0GImkf4Ayllz2V7Fj9ycbDoPfoWWvfqVuDa1t/S/vC8ydgHSNlzDGJ+D6CmXCL0LjOGKkewbUolHBr5cZLtCoXC5wlmhys+fXj9jEm+t2ohMriA0tA9mUw4y0Zv0XRLVk/5aOiFjIsv22ynU5b0rt0g1mvioVmUiysEbaQvMz6t6j4Cgx1D8UxJWFbBDq9WydOlS/vjjjyL7hg0bxtGjRzl7tmi+d0xMDH369OHtt99m1apVZGRkMG7cOJ5++mlOniy+6G39+vWMGDGCGTNm8Oijj2IymTh//rzTtq+88gpNmzYtVo7xypUr+Pj42D+HhDgvXHOG+Ph44uPjmTNnDg0bNiQuLo7Ro0cTHx/PL7/84tB2+fLl9OjRw/7Zz8+v1PGnTp3KiBEj7J+9vfMpybZt28aLL77IggUL6NatG5cuXWLEiBGo1WreeOMNe7sBAwZw9+5dli5dSu3atUlISMBSINXKy8sLLy8vt7mkyxsVRuRDhsFk4budl3jzyCwArO3HIMjzibH/iaeMzMwz9nB2UOCjNGu2BIDLlyaQnLKbRzoeQ6kMLGkIlyAIAh5y6QYoCqKDAXl04FH0Zj1Dtw/FbDWzovtPIBgBKy0//YOGYf5sfrMjYhmUgFBoJF1r2/ti1hax5mesOh0pS5cRO/BFIta5rrryXo1Qngjy4XJ2Lm9fuQXAmEs3+S2qNuEl3XC/61Sqik1ZcDrpNJtvbObRao/Svkq+4pEtR9JGDVSesOVLxvR/BnlwMA2r6rh4+yR6BSAIXE69zFO/PmXX2lbL1W4ZN7aQtv7SJQxxcShUZnzVUljYaNCjUBZ/nk0GMxu/OElSXBYAYbV86Te+dDUWh/kFgZA3I7EaLfZ8Q3MBip+1M47z4pS2CKV8R0//sYWjv61DrlDwylfSb81isZCcLCnjBAUFlcgXCdD26ec4siGvEjv2BmG161G3zkeAZMwqwhIxJuTYQ9H3o14jDQq7UjK5ozfyZnil+xsrDz4+zcjMPINSFFDL/m8FxaxWa7mkcZQF7vyutm7dikqlom3btg7b58+fD8C9e/ecGpEnTpzAbDbz6aef2r+r48ePp0+fPhiNRqea1SaTibFjxzJ79mxeeeUV+/aGDYsqqn3zzTekp6czadIktm3b5nTtISEhLhl0ztC4cWPWr88XNKhVqxbTp09n0KBBmEwmh+I2Pz8/Ow+qq/D29i62z8qVK+nbty+jR48GoGbNmkyYMIHPP/+c119/HUEQ2L59O3v37uXGjRsEBAQAOHiK/02oMCLLEVqDiYaTpCe6i1O7o1GWfnoVMoE/L6fga5I8mM+YBQqaOadPnyY9PZ0GDRpQqVL5XLwLw8enKRpNTXJzExDEfO9bcorEOXcveSchwd0RRQ9kMuda0/cLm0EZnRFNxyodUclFwmpvJFt+ktzEPlxMaMWTC3ax9c1HS73BFoFNQcagdSxkUWgcXJ6CIGAFUpYulZRssrMRZDIEdekXZUEQiPLxJMrHk8MZ2axLTOOpED/C1SrevBTHwLBA2vl55c8b2kQqrEmNhsWdJPqfcvTEDN0+FJPVxKmkUw5GpCAI9H0niuRbWaTEZxMQ6lmq0eMObPmS1txcFt+6RdJfizFcvsq4IWZis28Slxlnl0eMDIlkRY8VLt/wbN7OmP7PoL90iUeu3sYCXG16khNbfmXkoh+KHUumEJEVUJxJiM4ok662IAgOBpmtUjv5Vra9UnvAxFZ2miVn0Gamk50iGYy3L56nasPGmEwmFi1aBMDEiRPt8qfFof2AQXYj0pYWmpz8F1arEX//dgSPbkb85EPFD+ACflj5Az1phIDAvW/P8N6AcHLMFiqryouD9P+u59GWovMwUDjCUxL2799PixZFq/1LQ4sWLRBFkeXLl/Pyyy+TnZ3NypUrefzxx50akAAnT57kzp07iKJIZGQkiYmJNG/enNmzZ9O4cT7/7sWLF5k6dSpHjx7lxo3iC7aaN2+OXq+ncePGTJkyhQ4dnEdgXEVGRgY+Pj5F2BFef/11hg8fTs2aNRk9ejRDhw4t9Zr12WefMW3aNKpXr87AgQMZN26cfVy9Xo+mUEGiWq3m9u3bxMXFERERwaZNm2jZsiWzZs1i5cqVeHp68tRTTzFt2jTUeUWG/xb833r8e0gwKu4v12v1q52YZBrKJNNQrIVCx6dPn2bPnj3cu3fvfpdZLJTKQNq1/ZOuXc7TtMlC+3a1R15xxOWJ7Nvfgribix/YGkB6go4MiWRY42F4Kj1pV0vyfgZ6KlEG/cUdv3EM3jak7Ll1S7rCjMr5r+8eKSJBKKjVqOrUwX/gC+QcPCip2bw4yK05FzQIJ7Frc6bWqcK2e+lsv5dBv1PXCf3rNPcMRslYHLkvX8WmjFXaJWFUs1EAXE27SkyGo1KK2Whh3cy/+XnqMUxlpPspCYIgIHh4EP/+B+Rs2oLx6jW+XGymgZ9jYdeppFNue2sKU/4YZSI3zp4iOzWF5FvFMwzYCoyGzsqv/C/L98hiMHP7g/3c/mA/FoMZQRCKVGoveWsfG+cUz0nZ5LHu9vdrPvnA3k6j0RS5uZR0PD7B0kNlWoIU7rt46T3OnnuVXH2io33mxmEqFAqqVq1KeHg4XR99FHmB4ppnA/0YVjWYYGX5EtlPuePFI0cvsf1eRumNK1CuiIuLo3Jl94vuatSowY4dO5g4cSIqlQo/Pz9u377N2rVri+1jMwinTJnCRx99xObNm/H396dLly6kpqYCkoH1wgsvMHv2bKpXr+50nLCwML799lvWr1/P+vXrqVatGl26dCkxjF4akpOTmTZtGiNHjnTYPnXqVNauXcuff/5J//79ee2111iwwLnkrA1jxozh559/5q+//mLUqFHMmDGD9957z76/e/fubNiwgV27dmGxWLh69SpffPEFAAkJCYB0rg4cOMD58+fZuHEj8+bN45dffuG1114r8zE+KFR4Iu8D+rz8hFemfY2vdwBWq5UTHz0OSDyQrkKwmnhSPALAc9948vvYzg80/89VVKnyPNej5wD5hobthvcg1meTzrNxC858ZCafdvgUo0mg1SLpR1jTtxaZhkxUMpU9NF5mJJ6TJAirtYVh2yEvCTpi7RqsRiOZNmolUcCcno7Mz8/t45YJAll5BSyLG0WQaTKTYTJTW+MBo/ZJ8z8A9K3dl4WnpQeCp359iqpeUoL67M6zqetVHw8vBTnGHLbe2EqfBr3Lff7COZLGuDg++6E+ldYcIdeca8+THLB5AGt7rXUrBCcIArKAANRRUVhPnqTW3TRqJqURGFRyTpSNjN2GjV+cZMDEVvf9XRZEgRentGXtzOMk35KI50vydHoHBNHxhSEcWC3JRO5duZQuLw3nvffew2AwFOvJKYzsVMmbGXf2FA07PYqPTxNMxkxkouPv4t63Z1zOixQEgVdeeQWj0YhSqcQSYbZ7NBffSSYLC4MrBxFabt5ISDSKXNPqySqlKv1/CWq5mqMDjz60uV2FTqfDw8P962hiYiIjRoxgyJAhvPDCC2RlZTFp0iSeeeYZ/vzzT6ffNVs+34cffkj//v0BKd+watWqrFu3jlGjRjFhwgQaNGjAoEGDip27Xr161KuX/0Davn17oqOj+fLLL1m5cmWx/YpDZmYmPXv2pGHDhkyZMsVh38cff2x/HxkZSU5ODrNnz2bMmDEUh7ffftv+vmnTpiiVSkaNGsXMmTNRqVSMGDGC6OhoevXqhdFoxMfHh7FjxzJlyhR7lM1ikfKtV61aha+vxAgxd+5cnnnmGRYtWvSv8kZWeCLLiICIqtSa1ZlaszoTECHlLQqCQKCXikAvlVs3JrVgYpFyPouU84lOTLl/SptyQnj4KB7tepmuXa7QtcsVggK7cubMMHb/VZu/9jQiO1uqDL2XvAu9voRqZDcgCAKyvGoPlUyFRqFBIVNguPc4WZen0jq0DR1/7sirO191f/ARf0m5kRPulChBKAgColKJb69e1Dt5grDJk7nWrr3bHkmAbkG+XO7YmM1RdWjmreZIeg4dj17mlfMx6AuOVc6Ey6GeobzWLP+p9Xb2be7m3KWqV1UUKhnPzmjGkqh3mXJ4CldTr5br3DbYciRt5OT6S5dRmwQCPAKoH1AfwB7eHrB5gFsV3IIgEL7qR+oePEC9xFROh1fiy6EDSL1zu8R+90s+LihEwj5qQ+j7rRAKhMcFUWDAxFYOnk6jvnhS/9Z98jWuT2z5FZNB4hg9duwYy5Ytc+k81GvfCYCL+/8CoHmzZdSq/T5yuQ+CQkRRRTpOq9k94nFBEPLD6QUuY4vjk/ki9i53Dfm8jo0azqVZ0yWolGEuj2+D1SpV1RuNaW73/bdDEAQ0Cs1Deblz7wkKCiItzf3zv3DhQnx9fZk1axaRkZF06tSJH3/8kV27dnH0qHPjOSxM+o4UzIFUqVTUrFmTmzdvArB7927WrVuHXC5HLpfz2GOP2dc5efLkYtfTunVrrl+/Xuz+4pCVlUWPHj3w9vZm48aNpT7AtWnThtu3b6PXu84o0KZNG0wmk71yXRAEPv/8c7Kzs4mLiyMxMZHWrVsDUn4kSOeqSpUqdgMSoEGDBlitVm7fLvka90+jwhN5H8jVa1mydBIAI16ZilVQ8dTXUpht0xsdUbuYzC6IMszVO3A8NhVLMXb9b7/95pA38k9BEGT2VD2VKoSMzDMAWCy5CIICgyGF2NhvyMw8RePGC6gU8uQDWokcrKAvQFmiNWrdK84oqBYzaj/kpsORb6XPYtGLhyCXI8jlWPLolQwxMVh1OgQXQ442+CnktPSVozVbeCev6GbLvQzC72Ww0bcp7TLOSuo15ZwX+WrzV3mh/gskahPJ1GdyLf2anajcahAYffgrAHZEX6PG5FrIFWWoWC4FtvDzlRYt87cJAmt6reG5zc9xOVXSf76cepk2P7Vxq4K7IAn5PR+pwObomNfp/t+fJK+yk1xWQRB45r2WHFh3DblKBoLkXXfLC+qlJHHuCUS1nODRTe19C3s6l793oNgCHkEQeOWrJSwdK1Vw5qSnsXrDRjtNic0TWBJqRrXiUp4BabVYMJpSSUzYgEIZSO1a4wl5o7lDEZCrMJlM9mrdJ7o+bt/+bIgfGVYrgYr820Zg4CMAGAwuEO0XmScTAEGouA09LERGRvLjjz+63U+r1RbJTbdVCVuKEWuwUQZduXKFjh2lhy2j0UhsbCzheQ+a69evR6fLT3E5fvw4w4YNY//+/dSqVavY9Zw+fdpupLqKzMxMunfvjkqlYtOmTS55ZE+fPo2/v79bbCmnT59GFMUi1eMymYwqVaRI1OrVq2nXrh3BwRK/a4cOHVi3bh3Z2dl4eUkPg1evXkUURHdCHgABAABJREFUxYdO6VMYFb/eMiInJY1zn/xGrVx/rmQcRT84F4VKybUkKZzlCgmyHQo1hkG/8/HXB6gOCAUe/21PPLbKrFOnTlGtWjWCgoLK61BchkpViUc6HsZozMRi0aNSVSIj8zSZmacAOH/+Tc7zJp0eOYFC4fdA1jD+BzOIn3AvN5dPj3zKzaybrPzPyjLQtQig9oeuE6TPhhyweVgKFdx4NGpEvZMniqizuAuNTOTvdg3peeIqdw2SF6Zf8wX8fPYduiT+LXlDlZ6ljOIe/Dz88PPwA6B1WGv7dh9PL3SBqVxRnuJ0lV0EzAjEw1PhdsWyS3AyniiIrO21Fp1Jx5DtQxyMyad+fYpNfTe5Zkiq1aijomh3+QIag4mroQF8Oew5up+9gaZ+fYlbspBBKVOIdB4ohcOun0ji7O5bbh23xWDGlCR5rgtXPtuq3xOipfy+ksLafqFhvLNms/3zyJEjycjIQKlUuhTSrlq/kf397csXMKr3kJyym+AgqUjPVgRkMZjtZOkuHZ/FwvHjxwF4rPOj9u3Dtt51Gha3WssWOQkM7Mrt2yvK1LcC5YPu3bszYcIE0tLS8Pf3t2+/fv062dnZJCYmotPpOH36NCB5EZVKJT179uTLL79k6tSp9nD2xIkTCQ8PJzJSUiM6duwYL730Ert27aJKlSr4+PgwevRoJk+eTLVq1Rz4EZ999lmAIoaijbGgQYMG9krsefPmUaNGDRo1akRubi7ff/89u3fvZseOHS4fd2ZmJt26dUOr1fLjjz+SmZlJZqb0UBMcHIxMJuP333/n7t27tG3bFg8PD/78809mzJjB+PH5PK2Fj/Hw4cMcPXqUrl274u3tzeHDhxk3bhyDBg2yn9/k5GR++eUXunTpQm5uLsuXL2fdunXs3bvXPu7AgQOZNm0aQ4cO5ZNPPiE5OZl3332XYcOG/atC2VBhRJYZ+qwcqmpqUVVTi6uZkoSZSi5j9Yi29vcuw2JBnX6VPweFQFA9B7qXl19+maNHj1KpUiXu3bvH8ePH2bFjB++//34JAz44iKIKlSpfDcPfrxV16nzEtWuf2rf9feI52rX9g/T0v/Hza+lsGLegVshoGe7P33FpgAwsIjf4jrgb8fir/NGZdC5XIxaB2Qhn18LBryA5j7g5tIlU+GIj6xZFBI0Gi1brUqV2SajqoeRMh8ZMj45nwc0kpkYE4XMyh5uqUMafv41MJmdy7crU93ywFwpBEKg0MJdVRyX1nLREySgqS8VyqXN5eFDz90329wXXoFFo7MbkgM0DiMuMIy4zzmUqIFtYu7pWy/HBL3JLIRnnKV5qZJcu2T2gqgYNiPhxJYImP9xn1Js5tSOOpLgsjHozSg/XLoeCXCRwaCMEuegQ0ratp9/4KHRZRpa/d8CNswSiKDrcyEuDV0A+7dbRjWt59LUnsVqN+HhLajDWPP3srL230V9Pd/CaugpBIaII88SYkMNuUy6ahDQ6B/vgl+eNvH59FklJ26hde6pb41bg34EmTZoQFRXF2rVrGTVqlH378OHDHYwam2EYExNDREQEjz76KD/99BOzZs1i1qxZaDQa2rVrx/bt2+1Gjlar5cqVKxiN+ekPs2fPRi6XM3jwYHQ6HW3atGH37t1ufe8NBgPvvPMOd+7cQaPR0LRpU3bu3EnXrl3tbX744QeGDh1abFrIyZMn7WH32rVrO+yzHaNCoWDhwoWMGzcOq9VK7dq1mTt3rgP/Y+FjVKlU/Pzzz0yZMgW9Xk+NGjUYN26cQ54kwIoVKxg/fjxWq5V27dqxZ88ee0gbJA7IP//8kzfffJOWLVsSGBjIgAED+PTTT/m3QbDer7Dt/xgyMzPx9fW1l/OXFamxt9F+K1W9rrIu5o0pi/BUe5fSqxgYcqRqYZBy9orxRu3fv59du3ahVqsfmhFZHCwWA2fOjECpCqJy2LN4eTVg3/4oPD3r0qb11vv2blmtVnRGM1qDmZaf7gSs/P1xZ4I8vXlp20tuUcUUGhiW9ZDyIgsitIk9vGzRarkSJdFgqBo0oMaG9eXirYvW5uJp1nN8xWA+rD2WJJVkFDT1VrO9RV3EB1xcZbVaafrfpghWgarp9fmk02RaNG9YNi5OF1GSIW6xWnjq16eIy3SssnaVCshisbBr8deE1qiF4bslGGNi8NU5hlnVUVGEr/oRQRAw6s0sHivdKH1D1C5xPNpgNVpIXSs9dAQMqIegcDQmC449Yl6nEg3U2DMnqVy3PsjkLFki8UaOGDGi1HA2wPK3XyX1zi3750GfzyCwag3kcm+sVitJ809hTJCkEStPbe9SaNtgMDBjxgxAohuSW2XETz5Ez06e3FWL/NGyLs28pYe2Xbslz1GdOtNZtvSyvY8ra79ydSq3b69gjmwGpyz1WNCgOs+GBji0Cd97Br3Fyol2Dani4Tr5fwVcx5YtW3j33Xc5f/68+/Rp/1L8P/bOOzyKsuvD98y2bHonCYQECJ3QkY6AKCpIUQGxgChNQAEFFURFVBRB0VcRBQERVDqKgPQuvZdAgAChJCE9IXXbfH9Msskmm2Q3WYp+ua8rF7s7M888M7vMnDnldz788EN2797Nrl277vdU7jqhoaGMGzeOcePG3Zf9/zd+MfcBhUZNQlYSCVlJjBz3JS5aN3L0Rkb9eoxRvx4jx87iGMnZB0nrQ5bOUOLTU/4TU1EdqwcBUVTTrNliGjb4Ei+vNly5KufbZWZeJDfX9nZUJSEIAs5qJc7mm6DAiz8dYsGZBeWSiik0sFyZnV9wY0V2R9Bq0TZrhvcrr1B9wU9IWVlIeZWkptxcTFlZSHlPopJOZ3NxSC1nJwI0Sp5I3MfXkZ/T2t2JqbWC+LtFHVJt6L1eUQRB4MRLJwhyC6JRs1CC6/rcNQPSlJvL9REjiGzegis9eiJZyZsSBZF1fdaZi27ysfX7FUWRR0e+gat/FXapDPxTJxjN4p/M7RgBso8fR8qSv9fCRTZp8dms+Mz2HvWSJJF9JpHsM4llbrP2y5LlfuYOf5HV0z/g57dGA7K4sz1yXn3fKSg2cPbPJuL4D+ze0xS9Xu6b7jeyic1jlUjeTyI8zUjLDAnnQr8RH5/OxVa39RwajfL3IIqO6cZVSfno0aMHw4cPL7EzzL+Rv//+my+++OJ+T+OuMn36dFxdXc1FSfeLSiOynHgE+tPsf31o9r8+eATKCbMmSWLjmTg2nonDZI+DV+1C9riL1Ej5lnNfdCNbZ70XcGBgIFOnTuWtt95yxCHcVWqHybmGvr7dUKsdl7+pVSloECh7kC/E3eHr419XfNB8MXKNqyy7U2yxQMhvv+IzbCjRgwYR2aIlmf/8A0DM2+8Q2bwFKXn6aIk/zrO7iluJka4ph/mzrg8v+WnZE59Ai/3nCNh5ssQkdUehFJWs77WBrpEvcfyXeAx3SRlAUKsxxMvGke7KFa4+86zVc5SfK3no+UPs6r/L/Lk91dtV68u5gk+NfxfP4BALXUmAay++ZC6mKazxaE+1tqAQ8OxdC8/etRAUxQ3volXg+lzr51WZ12XnTlICSqWSwYMHM3jwYJsfFD2rBDBm0Qo8qgQgKEyYPOWCmNu3N+RNtNDK5Yw55Ye0Pz+Vww//ZFBLVbpHcNGiRTZ9T95esgj+Q/o/mRAaQAPXByvX6/8T48aNIzg4+H5Pw2EcPnzYIjz8X2TkyJGcPHmSixcv2twy9W5QaURWgIysNKaN7cu0sX3JyEpDpRCZ1rsh03o3RGVvGy9dJiMUf9FKvFiq8LTJZCIpKYmkpKRizeIfJERRxcOdTlIjdAyZmZc5d84xhq8gCKwc2VZ+I6kISpvBrv677NJGKxW1i6wbqXLO63KTCXkGh8LTE4W7XN0saIpX8pmyskhasED2dmWXwzM6KwzNjBAGRsSQbZJvwk22/+Nw+Z+iSCaIOp7A1ahYYtJj78o+8nUjC+R+zpd4jvJzJUuSAsrXES0JtZOWsUvXEtywMd5B1cy6kvkeydzz583eyHxpHruPRyHi0ioAY4ae9K3RSAbLOQmCQN+3mpvfl+SN7PXmJPPriD07qFatGkeOHGHVqlUWuWSloXF2pkbTFmTGunBta1Xatz1ItWovFFsv4YdT5RJYz/doRjsLRLmIZBuLn3+FQmFu8xYXF2fT3BUK+f/sw4qjTKgRQMNKI7KSSmzG29ubsLAwwsLCLKSA7jWVRmQ5SbsVx9X39tOTZ3G/LWE0GlEpRAa1DWVQ21D7jUhgkur3UpdnZmZy7NgxfvnlF7799ltmz57NunXrynsIdx2l0o3k5L0cPtKTuNt/EBfnmLk6q/O9kQKRsbkM2fQKff/s65hetfnh7Yl5mmNfh8s5k3mGZMivS6l7/BjOLeUcyaAvZlD3+DG8+vcHpRKPp3rimffaJlTOstGahxIjUXsLOpokKN2ISL27OnpKtUiqVwx7/f5g+K6hd20/+XI/ZsowaPKlgAqHty8kX2DA+gFlGkMXD+5j58/ziDyw1zxW6NICIeJ8b2T+svIgmSTubL/OnV03kUzF56PSKMrUpPQPrWl+vXnu10iSREREBBEREXYZfM2f6AVA2jU3DqxchckkRzPyvYiAuY92uRBgVEtnBnRw4VJWcY08AcFub4iLS+28V5W3oUoq+bdS+b+3nBj1Brw0rvhrZVEeAJ3BxOytF5m99SI6g50Xa5UzzXN+oHnOD7JhYQWNRsOpU6fIydMtBCrU6uleEBJSUPEXn7DZIWNaeCOBq+lXiEqLKn87xOI7KPBCZiVZiJELgoDo7IyQp4kmajTye5UKUa0m8OOPcWnXluiBz9s2n8I5mXl/Lu9e4XDjgj7pK2KTQZdJREoyMdm2i9zafrgC6Y+dxUXnQeD5cNKy0h2+j0I7M78sbMiVROHwdoi77MW8kHyhzAeG21cuc+GfPWSmphbs2tnZqjdSpVEw+oeujP6hq12V6YJKRB3ijkubQKsFK0W9kVbHEEWeHCN76ZVqDQqFgieffJInn3zSrLtnC16Bst5c8MMxmKrN4vr1ReY52JsXKQgCISEhhISEWBjYHnoJT52J9FUXrX5v5TXGT0mN+D02iatWjNNKKqnkwabSiHQgBpOJb7Zf4pvtlzDYm8smCCTjTjbqEh00SqWSoUOHMmnSJAYPHgyAi4tjdQUdjSAoCAt7F4CEhE0YDHccNG7eC0nJnC7zWdh9IRrF/U/QN2VlkfTTAnLOnbM9pJ1vtBb6q+7mzhvXZRHgwet6sfKnl1n35yc0P3ieIwkJ5jC7o+hXuz/Nbz1Gy5tP0HO149sg5iNotTjlieY71a1rLkgqdZtCUkC2ElAzDK/AIJo93tNinMLeyKtPP4MpM9NsEOl1JXeYKWlefsPDUYe4k3U6AclYPsOqar2GCIKI1s0dhULBQw89xEMPPWSXEQnQ6cVXzK/3r1iK0ZDnjVSK+LzcEJ+XGyLYECFRqVQMGTKEIUOGmPUqBZXIymsC23ZmUvNqBTyaVthg6sb4Czc4mp7psDErqaSSe0OlEelAFKLAS21CeKlNCAp7q1z1WWxRT+S80yvEzGxttXq1MG5ubvj5+eHj41Pqeg8CLs4FOlwpqYcdPLrI52v1tKzS0twu8a5gazs+rRYUIs6tWlVMnFzlzGTDGeJ2P0yNnFvoRBVfhwyiSm4is3evhulBfLNmBkPPXmVvcsUN88Z+4UQGHiTC/x8U5UjFsBVBEAhduYK6x48R9PlniDZIwZSH+h270P65l9ix6AfO7d5esP9C3khddDSRLVqaC6F+n3qItbNKrqS2hmSUSFkeSfJvF5Cs5AparFvCuEq1GoVKxTOTp2EwGNi5cyc7d+7EYLBeYFcSwfUbkXiiLqcX1iHuhCsRe3YAchGQtp432nreVouAbKEkj6a/X3eqVx+Kq2sdu8fUaOxvlVhJJZU8WFQakQ5Eo1TwcZ9GfNynkX1i44BW64pR5cpOYxPezx5Itk5PrsFIls5g/it8E/L19WX06NH07dv3geulWRQfn85UqzaI0JBROGtrOGRMc5W2oOeKOJdxO98k13gXw2E/dgJD2a3dBEEg9Lff8H/7bbLPnCnzYaCUgSzC3C8MmceH8Wu4rfHl53PvATDXrR3rE9LodyqKOdcr1rtcrVHxxhv9uel5kc4nBzsuNcAK+SkBpqwsWR7pLu0rLf42Jzdv4PrZUxb7rrF6VTHZH11qBneSc4iNSiuxktoaggDqGh6oa3iU2bGypOIaZw9Pur4yAp9qwZhMJnbv3s3u3bvtrswPCKvD8O9/RlBICAoTWWmpdm2fj8lkIiUlhZSUFIs5tDx6gZbd3TjvXnDbCArqT+2wSbi7N7Z7PwqFBoXCtVxzrKSSSh4MKo1IB6BoFoxG7YTBaGLD6Vg2nI7FUIZXoiiCKFJ70gFy+i5k+KBBqFUqPll/ngYfbDb/9fjfPjJzCwxKvV7PrVu3WLBggd1ei3uJIAjUrfMhtWq9hYtLzbI3sHFMOS9SQuV+hh03tmE0OVieRuUsi44DJEfBwe9t2kzKzeVav35c69cfqVD+qt0UDnNrXHmt/0ecaVUD9VuyqPOQmLXmVT+Oiin/fvIw6Ew0i3kEv/TqNkvdlAfJaCTz0GFujhtHZPMWXH36GbuN7cGbyjZ0g2rXo80zAwlr2cbi8/wCn8KyP4U9zSumH7FaKGMNQaXAb1g4Xn1qYUjOKbZdUamfks5ro86PkpORwe2oi7Rq1YpWrVqVS/g5JmY54YMvEdypQJtVMphI+eMyKX9cLlZFbg2DwcA333zDN998U/J1xWHpxw+e5m0llVRiO5VGZDnRuLkQkxVNTFY0rwz9CCeNMzqjidG/HWf0b8fR2WlEAiglPU9cnkbXE+NRmnQoTHq05KBGzhuLjE2h4YebaPDBZvr9cIDc3Fz+/PNPJEni8GE5TBwXF0dm5oOXW6TXp5CccoAbN3/BaKyAYVUIQQAkBTlxvfHMGoBSdPANSRDk9of5hqSNfa3z+zkrvLzMHjeHeNsEAT9XD1DLYfJ3ri3k+zoFBTi7KxjW9tZ6I4kSAWHu5Bizmbp/KpdTLldoTKuIIgnffEPmHrlyOvf8+RJ1IwujVWrNldq2FNdUrdeA9v1foHbrdsWWCYKAWKgH7Y2B/fGtVk7hcYOJ27OPc3v28TKlfkri/N6dzHn1OVZMfZfHHu1Gjx49KtxU4NS2v5k3egj6nFwyD8aSeTDWat6mrWxpGsbWHRnUvmMyywWlpB7hdvxGsrNvlD1AJQ8kSUlJ+Pv7c+3atfs9lUrsIDQ0FEEQEASB1EIFhPeaSiOynLj4ePHQ/17kof+9iIuP3PdTFARa1/CmdQ3v8rWsk4wQ8SfEnQbJyBSPjZx3eoVz7XbTINCd7uIR1qmnABIKUUBUOeHjK/ex1pskJEnizz//ZObMmeZm8g8K16J/4MSJF7l48SOOHO3jkDHlkLYX+pRW3M5M5Msj35KWne3Y8Kgoyu0PJ8dA0xfkHtv/fFNqaDtfCqjm+r84X69+gbftLoRt+/rKrTbrujjxkIcLp+5kkViCWH1Z+Lv78uqUR3hmQkuuZEax+tJqFp1b5MjpAgXnp+6xo5a6kVkl66Pmb7f48cU27yf+2hVObtlI9JmT1sfTas1hbX10NC2PfV4u4XEA0UWJ6GLd6CtcXFPSb6BGM7nHtwTs27qFc+fOYTTa71mvVm0QzimfEL09iDuJCdxJTODvOV+al5dXKxLAx1mNv68zSqlALig6+gfOnn2dpKTiIv2V/Dv49NNP6d27N6GhoQCcOnWKgQMHEhwcjFarpX79+nzzzTcW2+zatctswBT+i4sruTvZtWvXrG5z8GBBy1m9Xs+0adOoVasWTk5ONGnShE2bNhUb69atW7z44ov4+Pig1WoJDw/n6NGjdh13r169qF69Ok5OTgQGBvLSSy8RE1MQ0YmMjKRLly5UqVIFJycnatasyZQpU8rUQLV2jMuWLTMv37dvH+3btzfPvV69esyePdtijLlz59K4cWPc3d1xd3enbdu2/P333xbrHDlyhNWrV3O/qYwlVID0zFS+HSWL+r7+/a+4u3iyfETbMrYqhXzNwPBnQe2CMi+cpVKIbBjZDNPPU1DEXiViSkecXT24kZzF51eDEAlk8foU6h/bx0Mpslj0pUuXaNGiRYWP0VEEBj7L9es/AdA4fK5DxswPaTec+hcav+38Fgk//lmTltWrsHJkW4f0t87bUYHkz9YP5M9aDQVKLgrJF7jWNmuGtlkzfIa+6pi5FN0PcK1TY85kZDP3RjyHUjPZnXKHuC5N7R5LMkm4ZHhzOzmdExknAcgxOMZrXBRBEBBcXKixZjWRLWQD6tqLL9nVl3zwpsGs6LmixPWjz5xkz9KFNOjUlZDwplbnUGP1Kq488SS66Gh058/Tb0FDfpps381IVCsIet+2//crph+h/+RWqDQKi3k7ubrlTUpk95FjcOQYkydPtrtCWxAE2vQdQPWGTVj24dt5ExRQBbqgj82UjT+dCcEOKaN8+p2MIr61lo+3ZlMrUzawTSY5Dzk5eS/+/v3sHrOS+0tWVhYLFixg8+YC+bVjx47h7+/P0qVLCQ4OZv/+/QwfPhyFQsGYMWMsto+MjMTd3d383t/fv8x9btu2jYYNG5rfFy4OnTJlCkuXLmX+/PnUq1ePzZs307dvX/bv30+zZs0ASElJoX379nTp0oW///4bPz8/Ll26hJeXl13H3qVLFyZPnkxgYCC3bt1iwoQJPPvss+zfvx+QVQoGDRpE8+bN8fT05NSpUwwbNgyTyWTuLV8SixYt4vHHHze/9/T0NL92cXFhzJgxNG7cGBcXF/bt28eIESNwcXFh+PDhAFSrVo3PP/+c2rVrI0kSixcvpnfv3pw4ccJ87vz8/PD2tuw1fz+oNCLLSWp0LInfRdLPbzQbb85DMpkwmSQuJ2QAEObnan8f4vxiijyhYDq+Be3fAFGJoFCjEJUQ0gFntbJQDpeAKU+nMiI2nbpqJzzEHMcZUA7C1aU2Xbtc5OatX9FqQxw2rrNaQYvq/kRkhWDKkas9j16PJ1tvlM/T3UKXJRv9pZzn/HaJxtRUol96CYAaK1dahFErzKLHcRqxl1YeLvx8K5HdKXfQlLP/tUFvYtk0OS3Ca7RsIG+J3sLCswsJcQvhkZBHHDbtfPKrpXPPnzd3sRFKqWrPD2lfSL5gDmk7l6Cr6hVYldqt21GlZm2ry6EgPzLfkL0+8Dnavvk9CAJiOSuZi5KfF5l4I4O0+Gzmj9uDb7Ar/Se1Qsj7rgRBoPmTvTn29zoUmXdw8/Ur1//hWzHLiYr6Ej+/R+k2dDTbfprD5aMHeOqXd4n5UL45JvxwCv83mtk9/tXsXG7l6tEVsj/zcxrVGj+755qPCj3OIigfsGtWRZAkqXxdqxyAoNXa/N1u3LgRjUZDmzYFecOvvPKKxTo1a9bkwIEDrFmzppgR6e/vb2Eg2YKPj4+5u1FRlixZwnvvvceTTz4JwGuvvca2bdv48ssvWbpUljybMWMGwcHBLFpUECWpUcP+gs3x48ebX4eEhPDuu+/Sp08f9Ho9KpWKmjVrUrNmTYt1du3axd69e8sc29PTs8RjbNasmdkgBjksvWbNGvbu3Ws2Ip96ylJm7dNPP2Xu3LkcPHjQwgB/EKg0IsuJSTLipFAAboCAJElkZ+noNVsO6xyb0g1tnhEjqETbL9iCAApZmw2lGgtv16tbIPYUbHgLkqKoOmQzEdO6I0nQ74cDRMSmky5p8CCHcxHnad687Fyse4kgKHBzbcD5C5OJjV1J0yaL8PHpVMExBVaNbMed3JVsuLKJj/fMQ5IUQM8yt60Qs8Jkr/Erm8o0JEWNBt3lKPkDR4S08wt+4s7If5mJoHZmTKAbq2+n8E6N8kmnKNUigbU8SLmdhZuzK0qjGoOoY/YxOdTyXN3neK/NexWffyHyvYH6mFhEZy0IAqZCYe2iN8T8kHbr31oDpXsjw1q2Jqxl67LnUMiQNURfxfOHN+3yiJp0RmI+kA20oGntigmP5/foXvHZERJvyA+ZiTcyWPGZ7JXM30/7AS9y6dB+hOuR1AkJMms02oPJmINen4TBcAePKgU3Mb0p19IbqTchWBFIL40fG4aSozPgt+20+TMPjxYkJ5d9Uy2NN5lBm5ZbcHGxz5P0ICNlZxPZ/P5EguoeP1bqg1hh9u7da1PEKi0tzarXq2nTpuTm5tKoUSOmTp1K+/btyxyrV69e5OTkUKdOHd5++2169eplXpabm4uTk2VLWa1Wy759BUVw69ato3v37vTr14/du3dTtWpVRo0axbBhw8rcd0kkJyfz66+/0q5duxL/312+fJlNmzbx9NNPlzne6NGjGTp0KDVr1mTkyJEMGTKkxOvJiRMn2L9/P5988onV5UajkZUrV5KZmUnbthWIdN4lKnMiK0hsbhb1XngazR0FKZ8cZhvubMOdlE8OE/PBfmI+2I8pU86hMNkpZlwMQYS/xsKp3yE5CtGYjbNaiYtGyYY3OnB0SjecBXlftvbdvdfk5MYSG7sSgJOnhhCdF+KuCIIg4KZxYv3VNSi0N0ES70676SItCgt3sil1fhoN1RcvpvrixQgaBwiiCwIMKZQnNCsMpgdR75saTE7+my5erkRm2h+GFgSBvhOaM/CD1lyf6cLQwzMZcmEaSOCududM4pmKz93afkURdbWqKL29iX5pEJHNW5j/igqCQ/ECm+ScZLL0WWTpLQuY0hMTiDywj7+/+7LYPosed+G+3tkXIjmz5Qpndt3EaEeBnGunqqUco9yje9jXnUrMu1Q7aanVqjVGtRNnDx2wW+IHICCgF60f2kjtsHepWq+B+fMfhr+E97CGqKq52iRHZI2WHi6083DFxcEiCJXcP6KjowkKCip1nf3797N8+XKzlwwgMDCQH374gdWrV7N69WqCg4Pp3LlzqR3UXF1d+fLLL1m5ciUbNmygQ4cO9OnTx6J1b/fu3fnqq6+4dOkSJpOJrVu3smbNGmJjY83rXLlyhblz51K7dm02b97Ma6+9xhtvvMHixbbnS+fzzjvv4OLigo+PD9evX+fPP/8stk67du1wcnKidu3adOzYkWnTppU65rRp01ixYgVbt27lmWeeYdSoUXz77bfF1qtWrRoajYaWLVuajc7CnDlzBldXVzQaDSNHjmTt2rU0aNCg2Dj3m0pPZDlx8fchRR2B6J9C1279ENJLubKaIPtcInd23wQJ/EY1KV+4WRBgxB7ZcClSKSwIAl7Oap7t24ed636nRctWXL0h7y84KKDClZ6Ooop/T/T6VC5enArAjesLCale8X7NgiAwr9tCGn70F6I6gV7zf2fLqOcdK0Cen26QmSgbbrZuplCgbdqEmLffIeW33wj6YgZiRY1JtYts0N4oSEoXgCER/+Ovhwbz5uV4Oni6sqqZ7fME+Txq3VQE1PQgoJYHzR+rzgtiO84nn6dzcGcup1ymlmete5YukXv+PJEtWuIUHk7oiuXmRPXC3sjOKzqb12/m34zFjy9GEARuXTjHxm9nAfBEXmvBkigc1pYEJXvXRgNQt01AmeLr+e0P3TpVs9r+0LyeIKB2UtJ/civmj7NeiFK/Y1f2RsvFCQaDAbWdYuwqlRcqlezRK2xQG3S5/Pr+eF7+0jaZKmu8HXmD5Fw9Q7UC1bLvno7ofwFBq6Xu8WP3bd+2kp2dXczzV5izZ8/Su3dvPvzwQx577DHz53Xr1qVu3brm9+3atSMqKorZs2ezZMkSa0Ph6+vLm2++aX7fqlUrYmJimDlzptkb+c033zBs2DDq1auHIAjUqlWLIUOGsHDhQvN2JpOJli1bmvMSmzVrxtmzZ/nhhx/MndxsZeLEibz66qtER0fz0UcfMWjQINavX29xfVu+fDl37tzh1KlTTJw4kVmzZvH222+XOOb7779vft2sWTMyMzOZOXMmb7zxhsV6e/fuJSMjg4MHD/Luu+8SFhbGwIEDzcvr1q3LyZMnSUtLY9WqVQwePJjdu3c/cIbkg2FZ/AvROGsJ+aALaecPcvbKERrXaUPQtOJSIiC3HUvfdh19rCy9U55QUsFgQolSMwpR4OFmdejY5H3G/HYc70urUAoSl3zasXTMow9EnqQgCARXewlBUBAZ+T65uttIkuSQuTmrldSr4s4tzw+JB2LSn8JZrcBJ4SQbRypFxfeTf/49qud/YNt2RiN38pPXPys9KdvmebyyqcATqsuCWWE4G3N487IsPL4vNYPpUTFMrlW6p6H40AJPT2xOTqaetV+eAODZdztwMv4k66+sZ/fN3Wx9dmvFj8EKIUuXgMkEksS1F18i9/x5AHLOnLHIl9QqtTTzb8aJ+BMW25+IP2HOkwxr2YYWPfuidXMvth9r5Ie1syKjzJ+t/fK4RcjZ6naCgO+rjYj/7gQg4D+maZnGZEn4Vg/FOe8YTSaj3f834uM3c+PmYry82lKzxuuM/+1P5g5/kZyMO2TfsU2xQalUmkODhR8+tyelcytXzwCVAA40Iv/HW4w5nsHndVPo7f/fCGkLgmBzSPl+4uvrS0pKitVlERERPPLIIwwfPpwpU6aUOdZDDz1kEXa2hdatW7N1a8G1xM/Pjz/++IOcnBySkpIICgri3XfftchNDAwMLGZI1a9fv1yVyr6+vvj6+lKnTh3q169PcHAwBw8etAgbBwcHA9CgQQOMRiPDhw/nrbfesrnorXXr1nz88cfk5uaiKeQ8yM/jDA8P5/bt20ydOtXCiFSr1YSFyU6AFi1acOTIEb755ht+/PFHu4/zblJpRJYTQ66Oo6vW8M86Odm31k+/oNK40+AD2VCImNbdorDD77UmxH9zHEGtKFcoyYwuE6bnGQWTY6walKIogiCgFOQLfXxczN0vNLETH++O+Ph0pop/D4eNKQgCq0Y8TKtFIYjqRDp+/g9q790o3CLIjh5JyxBvx1Rtq51hvH2hXUGlosr7U5D0eiSDwTGGs5UHCgUm9odXod2Z2wD873o8r1b1pYqTfR4tQRBQqhSk5D34CAiM2TGGtNw0ADou68iO/jtQifbn7ZWGWMgrUmPNaqSsLK69+BIubdtatJHM90bma0VmG7LNHsn+6/uzrs86VE5OdH7J9qr4/N7aF1q0xPXODTLcgs0hZ5UN1cyGePsLKYqmt6jVal7s04sL+3czZ3A/PPyr8MrX8xBtvGHl5saRmnoItdoXAFGh4Nn3PmbppHFkpaVy8+hZqgTXQOnnbC7qKYooilStWjw0/3aNQDJ0BqrsvGj+zElTBXf3Jjg5VSv1uEojGy0pBgmdjQLvlTiOZs2amQtWCnPu3Dm6du3K4MGD+fTTT20a6+TJkwQG2pePXdI2Tk5OVK1aFb1ez+rVq+nfv795Wfv27YmMjLRY/+LFi4SEVKxgMz99JDe35M5nJpMJvV6PyWSy2Yg8efIkXl5eFgaktXFL26+t69wPHhyr4l/GncREju6x/alZVCsImNjqLs7Ikq/6N2XBT0c4H5vOFaM3e3fvwtVZa1Pi871Aqw2mSeP5CIJj03JdNEoaMIljl+NxrvENCic5l0ZQZHI0GrJ0Rlw09/5nL6hUeL/wAgnffsfFh1qjbd6ckF+X3hXvcM3v6rHZtQ7dW8wHoM0/J7japZWseWkHCpVIn/FyFaFkktj89Gba/C7nhKbmpjJ8y3AWPe54Hcl8CssASTk5pG/ahCkrG4+neiKoVAiCYK7MLly1HZ0ezYD1A/j10V84vfVvTm/fxPOffIWTqw0t9gQBAWh+cjZ7On4F2GYQCUoR32Hh5te2Ys3TKZlMnNkmP4ymxd/m7M6tNO72eElDWODj04lG6m/QOBXcmL2DZANPIahgVQq3SUEV6GJ3hfaAQG+5iEhXcD6CgvoTFCTf4HW6Au3URYsWMWLEiAci+lFJyXTv3p1JkyaRkpJilsg5e/YsXbt2pXv37rz55ptm7UeFQoGfn1yF//XXX1OjRg0aNmxITk4OP/30Ezt27GDLli3msb/77jvWrl3L9u1y7/rFixejVqvNlclr1qxh4cKF/PRTQV78oUOHuHXrFk2bNuXWrVtMnToVk8lkET4eP3487dq1Y/r06fTv35/Dhw8zb9485s2bZ/NxHzp0iCNHjtChQwe8vLyIiori/fffp1atWmYv5K+//opKpSI8PByNRsPRo0eZNGkSAwYMMBffrF27lkmTJnHhgtxF7K+//uL27du0adMGJycntm7dyvTp05kwYYJ533PmzKF69erUqyfnde/Zs4dZs2ZZhLsnTZrEE088QfXq1blz5w6//fYbu3btspBielCoNCIdiFal4NiUbubXdwWVM0yMKnhdAk4qBS8OGkzXT9ZhRMGRQwcxGAyEh4db6HrdT9LvnOHy5Rl4ebamZs2xDhkzv1o7W2/EJPUgLjMOJDW9Vr+AZNTy7A/ubHyjo2Nubrq8zkBlSP0URsq70WrCwjClpSF6eDhmLvlFP3k5kk0yLjL05irqZl3jpdi/4FwtGHPULkNSFAWq1HRn26IIoo4n4FfdjX1v7aPDsg4AZOrvTWckQZDVD26NkyU5kpcsKVY9LQgCy3sup9cfvYhOj+ZC8gVyjLnsXirnUl09dYz67R+2fZ+FDEebQtqigFMtT0w6Y5kZDoUlf4p6OnU6HfOXrYCwxrheOI4g2dcD29m5Bs7OlnInKicnGnbuxrld20jJvY2XpkqpFdp6vZ61a+WWmn379jXfMH+8EU9aroFHNQJ+ucUNa5VKRUBAAHFxccTFxaHX6+3O6azk3hIeHk7z5s1ZsWIFI0aMAGDVqlUkJCSwdOlSCy9lSEiIuauNTqfjrbfe4tatWzg7O9O4cWO2bdtGly5dzOsnJiYSFRVlsb+PP/6Y6OholEol9erVY/ny5Tz77LPm5Tk5OUyZMoUrV67g6urKk08+yZIlSyxkhFq1amU23qZNm0aNGjX4+uuveeGFF8zrTJ06lZ9//rnELjzOzs6sWbOGDz/8kMzMTAIDA3n88ceZMmWK2WOoVCqZMWMGFy9eRJIkQkJCGDNmjIU0UFpamoVXVKVSMWfOHMaPH48kSYSFhfHVV19ZVI6bTCYmTZrE1atXUSqV1KpVixkzZpjPP0B8fDyDBg0iNjYWDw8PGjduzObNm3n00UdL/C7vF4J0N9poPMCkp6fj4eFBWlpahYyplFsx/DrtDLmpctXV0J9+wcOtZOFPyWAidf0VADx71rTLW1FesnQGc3j9ZacjAIwdO9ZuUda7xfYdtcyvH+50CqXSBk9ROcjUZZo9aHcuTOPoe0/ibOXmaXPOZOGUArBJ6icfSadDMhjI2LOHW+PGO9YjKUmW1eKSRM68rizUNmVarVFEXXwTl+HbbTZ45SEkVs04RlZ6Ls0fC6FBxyAOxh1g5LaRAJwZfHcqtq3N4+rTz5hzJOseO4roUjyVI0ufZS642dV/F/HHzqBQqQiqXQ9Xb59i6xfFlJVFZPMWSMCxth+QrqmCk6uKQZ+2KzWkLelNJK+IJPtMIqqqrviPaVrqd6rLMZiLa4Z93Qm1k/w8r9PpmD59Ou3atcN45QIRO7fQvv+LtHnmuTLnDpCScpD4+E24uTUkKKhA/PvmhXMs//AdlIKKZ0Ll4gZrckSF5wAwefJksyHYYv85buXqWXIgk/rpJoKmtcMk5mA0ZaMQNSiVbuTm5vLZZ58V27Ykdu9pwaeGMZwWmvFt/er0C7C8hobsPkWuSeJY2wZUtTMloxLb2LBhAxMnTuTs2bPl6tf+IDJ48GAEQeDnn3++31O5q+zatYsuXbqQkpJit16no6j0RDqQbJ2RXt/JicXrxnRAW+gCLZkkMg/KoVWPJ2vYWo5RHF0WzM972hu209xH2RpalYLwqh6cuZWGSVAgSkaLkNP9pmXLNRw9+jSenq1JTz+Ft/fdCbU7KZ34qtO3jFxyGiQlLT/ZZnW9BoHurH+9Q9ki8UW8fmapHxt6awtqNYJajSlHluARFAqk3FyEUiokbcZajuRrB5i2Vzb0vtS24gMb51kwpMCz77QwS9GIooCfsxzS8tX6VnzOdswjdOkSu7rbdF7RmWb+zfjQbzSb5n6Ni4cn3UeNQyylYj+/FWLu+fO0ODANRWgYtVcvQ1CXcXNVChhSc1F4anBpWQVMEpQiVl543oU9nSqViuDgYNq3b88/12QPxz8rluJTPYTarcrWiMvIiOTmrSX4+/ewMCK9A+Ucx4p4DPoFeJOSq8dLl2H+7PqNhVy9+jVVqz5PvbofV4av/4X06NGDS5cucevWLXMRyb8ZSZLYtWuX3UU+/zYaNmzIlStX7vc0Ko1IRyIhcSk+w/z6bu2FBDn/AkMOqLQlepYEQWDdmPZk643MnnkSvd7IggULmDx58l2am314uDehYYPZeHo9xO24dej1qVSp4rhCm3wUooKOwW3wr7qIlKyD5MT0B6l4QUhEbDo9v93Hhjc6lH4zLKfUT2E8evbEPU8ywyHakSWgUsoGU62s64Rkx5SxtnVMRokTW6I5seU63kEuPPtuS37v8TspOdarOu8WtnS3KVq1fSL+BNv+mktmcjI1mrXgTmIiHv5VSt5HkVaIpmuXiWzRskyPsSAI+I9qgqQ3lVqZnU9JIW1BEHjppZeYN28euZlZSIJI9foNidy/1yYj0t29CTVCX8fFtY7leXH3KHPbsni3ZqCcE5kTXeGxKnmwGDdu3P2egsMQBIHo6P/+b3Tjxo1mPej7maJWaURWCCUaj5E8OsYfNxdPJAR+HyaHTTXKu5QTqXSCwevl1+telw2ZUkKpgiDgrFYSGBpG9KXz5eqCcTcJCOhFri6Rq9fmYDRm4OJSG9ciN0BHYJJMZCiPo3KHf179Ea2yQEtNkqDnt/u4mphJRGy6bZXsgmDpBbY3K0QU0d+6RdJPC9BFRxPy+295wzrek/N+iC/pe5bwYuz6cm0vKgSizyZh0JvwD3XHZJBo5NuIDF0GY7aPYffN3UxoOYHGfo1p5NvI4RXb+RT1Rpa0zuLHF5Ock2yu1u77wTTSrt+kVovWNlU5C6JIzb83cvWZZ8k9fx6jqCbr+HGMyckovL1L/o6MkqwFC7h3CS41ZUUQBPq+1dwc0i6aVZSYmAjAi29/gFIhEtrEtu5THh5N8fBoanV/T455i81z/mfTONbYkphGts5IbSW4G8o9TCWVVOIAKlqN7ijuewLEnDlzCA0NxcnJidatW3P48OFS109NTWX06NEEBgai0WioU6cOGzduvEezLcC9ij99XvOnz6gQwho0RxRFFKJA21o+tK3lg6Kc/YvLRFRAjY5QtTlcWC+HUnNS5Tw9Q175v9Egv9fLkiNZuTpOm6qyIqcRg4aNIktnQCpHN4y7hVLhjNEoe3APHX4Co7HsLjD2olKomNx6MhNbTkSllFAqTDirleaOP+tf71CxHSx63D5DUhC49c47pP35J7roaKTsbKJfeLFiHY1KYFRVT0bf+J39nk3ZnWp/MYwgCDz7bkuGzu5E1TpeXDp2G5PRhFqhZvfN3QDMOjqLQX8PYtqB0rs5VBTB2RltXjtPsQQdPkEQLB4SRh95C5/gEL556RnmDH3etv2IItV+X8GeR+eyu9NsjrR4l4vtO5T6HUkmiTvbr3Nn+3UkG+Rqioa088dVKpUMHjyYwYMHU7Npc0KbNOfioX84s2NLSUOZyciI5ObNX0lKdnwob9LFm4yIvM4tZ8feNh7lb6aFaGjm/uDrKlZSSSWW3Fcjcvny5bz55pt8+OGHHD9+nCZNmtC9e3fi4+Otrq/T6Xj00Ue5du0aq1atIjIykvnz51vVNLvbKJRK/BvW4VDMfv7YsgCdPpccvZFRvx5j1K/HyNHf5d5gCjU89gk8OQv2fysXemzOC1Nf+Et+v1SuehMSL/J1VA/2acYxZtYvjP34f+z9tMcDY0gqFM74+z1hfp+WdqKUtcuHSlQxsN5AMvQZtP+9PV8c+cJiebkcgCpnqNoSgppBx7fAZPt3LodNV1P3+DHCtm8j5bffyD5+HCnbfq1BW/b1ePMfeaXhxww4F0Oizn43kiAIiKLA5vln2f7zeYwGCbVCzZxH5lDFuQr+Wn8AIpMjyxipYgiCQMivS8vsBlK0NWKuIReT0YDJYPuxqzQKPKvIhk2GWzAmUS1/R1nWH3IEUcClTSAubQJL1GAsTH5IGyxbIIqiSI0aNahRowaiKHLl+BFunj/Lme1ly3ukpBwk8uIHxMSssDJBAZNkYOutxbi+VMPu4r7m7i60dXdBa3Dsg05zjvFCFTVhzg7IC66kkkruKffViMwvfR8yZAgNGjTghx9+wNnZ2aLFUWEWLlxIcnIyf/zxB+3btyc0NJSHH36YJk2a3OOZQ25GJjum/Y9ri//i2uK/yM7JxCRJbDwTx8YzcZiKeCsEQUAb7os23NcxIUuFCtq9Dg8NgzLCh06Fbhb+4h2qKtJxN6aSnXWn4vNwEOHh3yGKsvco6spXmEwGJOkBb9IrCDB0G7y8ARr2BYV92SGCIJi9afGzSu/vXFHeiv6ZO3nV743+OUtaVrrsrbbD86lUiwTW8iAwzIP0pGySYjLoGNSRbf228fZDso7b+eTzvLfvPQD0Rj3JOckOPxZBEEAQuNz1ES62bYfJilGXH9bOx83Pj+Hf/8zLX9ne9i+/l3hRrr34klVvpKAU8eoThseTNUotqrEY/63i4+v1elasWMGKFSvQ6/VkpqZw4u+/iL0cyfwxr5CbVbI3Wautjp/f43i4Ny22rFqDRkhIJOviuBD5j02GbmHmNwpldXhNQrP+Xwl6VFJJJaVw34xInU7HsWPH6NatW8FkRJFu3bpx4MABq9usW7eOtm3bMnr0aKpUqUKjRo2YPn06RmPJxkZubi7p6ekWf44gKy2Ny/GNLT5TKUSm9W7ItN4NURXptyuoRHxeqI/PC/URVA4+7R3fkrvXdM9rp1fvKfn9i6vkffvVQ5p0C+3EczQPkWVOPElz7BwcgJdXG+rU/oC6dT/i2rXv2LGzDleufO3QfQwLH8b+gftp4teEzdc2YzBVMLmrlDaUNg+h1VJ7/z/U3v+PXX1v7eGZ+G00zLhkfr/y13Gyt/rHjnKbQVvmmWdUPTEynGXTDrNs2mEMennbJn4FD3J9wvoAkJSTxBOrnyCjUDWvw5Ak9DExGFNSuGZDGoCoUODm44ubt30V5YUf+NR5vYLzi3qKTckokXU6gYR5p0n4/pRtIuWFxtfnym0OJUkiIiKCiIgIJEkitGmBoZmeEM+prX+XOJ6vbxcah8+hevVXii1z8/bFu6pcfXtorRVPZaE5NWjQgAYNGljMLyorh8isHHLyL18OsiUP0o4fY3I5n+F4L3wllVRyd7lvRmRiYiJGo5EqVSwrJatUqWJWyC/KlStXWLVqFUajkY0bN/L+++/z5Zdf8sknn5S4n88++wwPDw/zn6MkDJQqAY+0aARFEJLKC6VSxe6ffyQo4m+eb1m1mBF5V1GqZUNGmVflq1DK71V5BokoImhccXb1oHPXblwzeDAgZ3KpYuX3gyaN5+Hv/wTubo24ek3W37yTcd6h+1ApVCgEBZP3TWbC7gnojMUlj7J0RttzEw062DJF/stOkb17hf9sNCSU3t4oSyvaqAh5kkTbjw1FbdLRIv0croY8b1bcGZjXyWaPZH47RCdXFU6uBR7wAJcATrx0ggF1B9AqQO7MNOWfKWQZskjKSXL4IeVL8UCeUVdCiDmfO4mJ/PLOGyz78O1S1yuN4PnzS19BhDu7b6K/mQFKEQz2pYssensfK6YfQRREnnzySZ588kkUCgVu3r6M+3Wteb2b58+WOEZObhwpKYfIyLxkdXntFm1p59+bDoFPI+mtz0+lUtG/f3/69+9vUYjX/2QUXU5c4qqrfG1L+OGU/QVlVthNV764qeNspRFZSSX/Ov5V1dkmkwl/f3/mzZuHQqGgRYsW3Lp1i5kzZ/Lhhx9a3WbSpEm8+eab5vfp6ekOMSQVShUto7/GKKoJWrYetaDi1JYNAJwO7MCYxxqiLhRGlvRGEhdHIOmM+A0LR7hbHW3KoEZIdd4f3p/rv0/g2P820HHsglK1Ju8lgiCi0ci5dbXD3uPS5U8d3hYRQBREWlZpaX5dlJafbKNliJdtfbZNejknFQr+LYwNQuSm7Gyu9usHRhM11qxGdLQ3Ml+SSJ/Fy1cSqKGtSteuPcj5+TGckiJlQ9IO/UiVRsGrszoW+1wpKpnSZor5fURihMMOoSj26kaO2TqKNtdArS3/b/3S8SRKSxwRBAH/MU1tlvmBghSB2Cg5MpB4I4PVXxTvkKNQqmjavQcnN2/g6omjZKam4OJZvGlAQvxmLl6ahr9/D8IbFa/EDmnYBOGMHI2RJKlEvVqTyURsrKxrGxgYiCiKeKoUZJtMaHy0kJ6JPjaTKr698fJqbf5/W0kllfz/4r55In19fVEoFNy+fdvi89u3bxMQEGB1m8DAQOrUqWPR+Lx+/frExcWVKKKt0Whwd3e3+HMEzt6+1D8QQf1dxzmzL5O9Ky+al32/KwpDkRChJEHu5VR01+8Qb2Oo624gigLeTgK7s+uyO7MmkvRgFNcUJTh4CF27XCa8ke05bLbipHRi0eOLWPT4IpyUcjK/VqWgZUjBTflodApJmbqyv6d84fGSMObKep6lIUnoLkehCq7mEM+OVfLC7h/UCeGJAH/Wpel58qGfC5brsuzKkdTnGpkzcgdzRu5An3t/clfzdSPBeoi5cHHNJcN1zndV0+st+zRS8428/NdlIoExJQf97UybK7T7TmjOsK874eEvPzwk3Ehnx/ad7Ny5E0OhQqCmj/UEwNXbh5TYW9bnq/LA2bkWGk3JWpi2YDAYmD9/PvPnzzfPYXurekR0CKfDywWpC1qnanh5tS7WarGSfw9JSUn4+/uX2CKwkgcTQRAQBOG+darJ574ZkWq1mhYtWpibs4P89Lt9+3ZzA/SitG/fnsuXL2MqZKBdvHiRwMDA+9KjVWfU8dnBzzm7+xYR+2LNnw98qHoxiR9BJaIKdkPp44RL20C5o8X9Ii/srZNUDFhw4r4ZtKWR/x8kJnYFEeffISX1iMPGNkkmLqdc5nLKZUx5RrQgCKwc2ZajUwpydFt+so0e/9uHqbTvKt/LNznG+t/wXQVpBSUNodWibd4cn1eHlihb4yiUosCRtEwW3UwkIktHoipPhHpWmN05kgBNH61+l2ZaNvneyNKWL++5nBD3EIwKicOaS/jUCbPr955v5A3/5mFqNfXhSuiTXAl9EmMJoWrJYOL27OPcnn0cycZwtiAIqJ2U9J/cKu8Dib379rB7926La51PtWDG//4nw+YspFr9RlbHCgzoQ9s2W6hT+70y92vILePhpsQJl2+zSh5MPv30U3r37k1oaCggG5WPP/44QUFBaDQagoODGTNmjEU9wb59+2jfvj0+Pj5otVrq1avH7NmzS93PtWvXzNf1wn8HDx40r7NmzRpatmyJp6cnLi4uNG3alCVLLP+PT506lXr16uHi4oKXlxfdunXj0KFD5T7+y5cv4+bmVswYs2Uu1pgzZw7169dHq9VSt25dfvnllxLXXbZsGYIg0KdPH4vPrZ0nQRCYOXOmeZ3Y2Fi+/vprew71rnBfq7PffPNN5s+fz+LFizl//jyvvfYamZmZDBkyBIBBgwYxadIk8/qvvfYaycnJjB07losXL7JhwwamT5/O6NGj7/ncc9JTOfvco7jOLZ6gPuGxOmaHjskkkZUnqeI/qgn+Y5vj+lAgwr3MmSxKXghXFODijTiy77YcUTk5e248MTEriY1dxeXLMxw2bo4hh77r+tJ3XV9yCnkJBUHAx0Vt4ZGMiE3nka92l21Iql2s/9mQGykIAtUXLSRl6RJujh2HKTfXIcdZEg97uxGVnUtzN2dSg4uEpW3Mkcz30DV/rHqpPaXvNoJKhf/ECfhPnACCUMxAFAWRFT3l/6NPHKjCj4OeI+qofTccQRDkY5TgWmgProX2wJCZVaIxKrooEV3szxQyh68lgRbNW9KqVativYxFUYEgiJz/Zzd6K0ag0ZiDTpeMwWBdecErqJr5ddKtm3bNr8X+cwTsPMnpQrmLCUlbORcxgdjY1XaNVcmDQVZWFgsWLODVV181fyaKIr1792bdunVcvHiRn3/+mW3btjFy5EjzOi4uLowZM4Y9e/Zw/vx5pkyZwpQpU5g3b16Z+9y2bRuxsbHmvxYtWpiXeXt7895773HgwAFOnz7NkCFDGDJkCJs3F8hb1alTh++++44zZ86wb98+QkNDeeyxx0hISLD7+PV6PQMHDqRjx+LpObbMpShz585l0qRJTJ06lXPnzvHRRx8xevRo/vrrr2LrXrt2jQkTJljdd+HzExsby8KFCxEEgWeeeca8TkBAAB4eFe9EVVHua07kgAEDSEhI4IMPPiAuLo6mTZuyadMmc7HN9evXLS6iwcHBbN68mfHjx9O4cWOqVq3K2LFjeeedd+753A25OWjPxNNNVLO7k+WywYsOo1Q7seq1dlxOyOCx2XvMOXa25krdTdRCwc2vh/o80Pf+TaYUqgcP4dat30lPP5H3dxp398Zlb2gDXpri+WRQ4JHM0hnNXWyuJmba1g6xMJIEWUnwz9dyrmRAOAzJy41UORfPkTQaubM1r6f3Z9PLf2A24K5U0MDFialhQVRr+guYcuT5/tgJkqNsypEUBIGnxjZl5fQjIAj0m9QS1X34bQtqNT55N8DkX38lfcPGUtsTAuQac+V8wAoUMV3u9hhuTRoW25eoVhD0ftntCUtDQKT7Y4+jdip+eTYa9CwaPxJRqUIUFdRtaymSHxOzvNScSGdPT1LzXufcqbhSRUZmJHFxa1EotAQGPlP2Bv9PkCTJrPt5r1GqRZt/2xs3bkSj0dCmTUFKjpeXF6+99pr5fUhICKNGjbLwgjVr1oxmzZqZ34eGhrJmzRr27t3L8OHDS92nj49PiSlrnTt3tng/duxYFi9ezL59++jevTsAzz9v2TDgq6++YsGCBZw+fZpHHnmk9AMuwpQpU6hXrx6PPPII+/fvt3suRVmyZAkjRoxgwIABANSsWZMjR44wY8YMnnrqKfN6RqORF154gY8++oi9e/eSmppqMU7R8/Pnn3/SpUsXatasadfx3Qvue2HNmDFjGDNmjNVlu3btKvZZ27ZtLdzfDw4CYa3acehaMmdu3aFlLTmEma2TvXxXEjPJytSR8onckSdwSmsEtQJBZft/eEfh4qyhJac4ShMO6IMtQmYPEu7ujVGpvImJlT1JR4725ZGuUWRlRRMf/zfVqr2AUulm97jOKmf2PLeHLH2WRWeTfARBwEWjZPubD/PIV7vta4dYmGUvyB2FQDbMPssTxbdSbCOoVFR5Xy5KkQyGChs5ZbGiaRhZRiMahQjKPGNxxJ6COeqyrBu7hZEgJS7L/Pp+YsrKImnBAgwxscV6aufnRm5tFYkoCfxyfgx1EuqxvOdyq4VVJVFYful40/G0OvZ5ia0QTTpjuf9vS0gsnrmBtn1rUb9+fYsccIVSxZ2kJExGAwZdxTzWG76bxZjFy21ef2urupgkcDOB/T6f/18YdCbmjd19X/Y9/JuHbY4O7N2718ITaI2YmBjWrFnDww8/XOI6J06cYP/+/aUqpeTTq1cvcnJyqFOnDm+//Ta9evWyup4kSezYsYPIyEhmzLAeidLpdMybNw8PDw+79aJ37NjBypUrOXnyJGvWrCl1XVvmArKkoJOTpWi+Vqvl8OHD6PV6s9rBtGnT8Pf359VXX2Xv3r2l7vv27dts2LCBxYsXl7re/eK+tz38ryAISp58/R0+/XYmZz7pweJXHgIgvKoHEdO6c/z9R9EWMkBiPzlEzAf7Sfjh9L3PSVSoefTRx5BMOm6YvIqFzB4ktNpq1KwxDoDG4T9gMulJTT1M1JWZ7N7TtELnblnkMgZvGlxyWFIUyt8OMT9XctIt2QtZmBsHZU9f4dVVKrz69cOYnMKlTg9zrf+Au/q7uJ6dy/qENHocLyQFU9jgmRUGC0tv5ahQifQZ34w+45uhsKJ96qR0QqvUItyjJDpDTKzVz/NzI2tVqUuu2oRJlLvYDFhv3zlWaRT4VpMF2/M72Fwq0grRpDNy8929xHywn/j/2ZdvbO5gI5i4ZTxhljMrSkh4yTfLatUG0bXLZRo1/KbM/SlE+3wI3iolvmolKge3dPUglWpqAef7meLz/5To6GiCgoKsLhs4cCDOzs5UrVoVd3d3fvrpp2LrVKtWDY1GQ8uWLRk9ejRDhw4tcV+urq58+eWXrFy5kg0bNtChQwf69OnDunXrLNZLS0vD1dUVtVpNjx49+Pbbb3n00Uct1lm/fj2urq44OTkxe/Zstm7diq+v7RqwSUlJvPzyy/z888+lFtvaMpfCdO/enZ9++oljx44hSRJHjx7lp59+Qq/Xk5iYCMj5pAsWLGB+WZJheSxevBg3Nzeefvppm4/vXnLfPZH/fkxc9TxBl9BHEET5hlXYWyWKBe8FlYg6xB1ddEEYSRedjqQ3IdzLUKBChbHVMBb/VXYbtQeBGjVeR6dPwdOzFaKoIjauQDMvJnYFVYMG2DWeJEn0X9+fC8kXAEjJTcFJkWfwFPEcFX6bpTOiVSls9y4JAmhcYcRe2WjUZcnGWUmoVGTs3o2Uk4NT/fpIej3CXSoY++FmAuviUwFINxhxVyoKKs3zvaf5xm4JYW1RFKha13paAMCO/jsA7o7YuJ2IgsjgqJZcPSVy+KFMTjpHcyH5AtmGbJxt1EvNL7KZP26Pxef57SoFZ2fz/3F1iBtunaqVMFIp47/VnHnjdqLSeRAY5lnqb23T97Np+LBl+K6s36YgCCjCXLh26hg52RkYDQYUSttuA8+euEy8zsCPdYOx3/9fMiP5jjZNe+Hi4unAUe8vSrXI8G9K9tzd7X3bSnZ2djHPWT6zZ8/mww8/5OLFi2apvO+/t1TL2Lt3LxkZGRw8eJB3332XsLAwBg4caHU8X19fC7m9Vq1aERMTw8yZMy28kW5ubpw8eZKMjAy2b9/Om2++Sc2aNS3Cy126dOHkyZMkJiYyf/58+vfvz6FDh/D3t01qatiwYTz//PN06tSp1PVsmUth3n//feLi4mjTpg2SJFGlShUGDx7MF198gSiK3Llzh5deeon58+fbbPQuXLiQF154ocTv6X5TaURWEIXJgNQxig4dXmXtDFmrss/b76NSyxXQWToDDT6QjbWIad3xG9lYFvk1SeReS5dDXnb2sK0wBh2qPTN5VXMHo+BE5PnqNGsSXvZ295G6dT4wv27S+EcOH+5F06YLUSo9iIlZRVDQszaPle+Zis2MRavUMmTTEK6kXaGZfzMWP764xBuxXfqRljvME4N3gsHr5c+UxS8IgiAQunIFUnY2GXv2cP3lIWXm95WXOfVDzEbkjRwdDV21Bd7TzMTSjd08DHoj2xbJWpDdhjRAaUX7VJIkhmwewoXkCxx+4bDV9AGHU4L3LzvjDrqsTPrpOnDSObpcQxf+Lmpt38q1Lg8XW57/f7w8+c+CICCgwDO5CS+98DAqK+dUKBQ5yMnIwMnV1fz+VsxyoqK+xM/vUerX+7T4tioR92drsH+r/P/pxKa/aNnTtpzoq9m53MrVk2uSHGpE/hcxF2M94Pj6+pKSkmJ1WUBAAAEBAdSrVw9vb286duzI+++/T2BgoHmdGjVkaafw8HBu377N1KlTSzQirdG6dWu2bt1q8ZkoioSFydefpk2bcv78eT777DMLw83FxYWwsDDCwsJo06YNtWvXZsGCBRaFuKWxY8cO1q1bx6xZswD5OmUymVAqlcybN49XXnnF5rkURqvVsnDhQn788Udu375NYGAg8+bNw83NDT8/P06fPs21a9cs8iPz08mUSiWRkZHUqlXLvGzv3r1ERkayfLntaSf3msr4QTkRVWqMNVww1nDh4/afsOOnSK6fOcn1MyetyvcM71STnLwOEaJageikxKmOFwoPDYbkHJs05RyGSY9q3xdUE2T3OoZcsjLvkKUzPJByP0VRKt1o124nTk7BJCbu4PyFd9Dp7OuKIgoiVV2r4u3kjUky0aFqB4Y3Ho6xSL9ua/qRWbpyVrOLCqjREYIfMlfIFyXfSEn6aYHZw3U3UIkCvir5GXLhzUIZboJgs/i8ZIKo4wlEHU+gJLnRiykXzR7fd/e8y7W0axWZtk1cfeZZq7/jBh278NKM/9Ft1BvlH1wAr0AXvAJdShSFl/Qm4r87SdxXxzCV47ciIWFQZpKQEG81X/mp8QU3youH/rFYZjLmoNcnlVidDViIlO9esgDJyj6USiVjx45l7NixKPM8lT82DGV101rUdHKsd1wCc7vHSu4tzZo1IyKi7KYA+b/D3FKUI0wmU6nLrXHy5EkLo7S849q77wMHDnDy5Enz37Rp08xex759S36osnU/KpWKatWqoVAoWLZsGT179kQURerVq8eZM2cs9t2rVy+zZ7VoI5QFCxbQokULu/M97yWVnshy4uzpTaO/j5JjyGHslnGEX7T+w8s3QkZ0qsmAHw/goVWZPVmSwcTtWUcBCJrW7t6FtEUltBqK6qIW52wFNf7qw+k/q/Gc7v3yedruI+cvyJX5e/c9xCNdo8o1xoqnViBJElP+mcL3J7/n1yd/NR9/frV2UqaOlp/I1dP9fjhgX6V2Uf4aB8lXSu5kI4oIajXOrVrBXcxXTdTL0lPL4pL5sl4Jeo+lFNiISoFOz9XBaDAhKqyfizpedcyvd9zYwenE0+zsv7Piky9CfhvE3PPn0V27Vqy4BqDhw4+w9/fFXDtzkhB3Z6IDs8g2ZFtNYygJlVrB8x+2lj0XhVstFjGADPGlt2Es/WBMpPgeY95Px5g8eXIxDVxloffZ6WkWywICeuHl1abEgjPJJKG/lUHvl99h3c9fICFx7dRxajRrabGeKIp4eVmmKrT0kNMaTDojFa/rLuALpnD6SAbf1k+hX4C3A0eupCy6d+/OpEmTSElJMX/fGzdu5Pbt27Rq1QpXV1fOnTvHxIkTad++vVlLcs6cOVSvXp169WQx/z179jBr1izeeKPgAe27775j7dq1Zi3oxYsXo1arzVXda9asYeHChRa5lp999hktW7akVq1a5ObmsnHjRpYsWcLcuXMByMzM5NNPP6VXr14EBgaSmJjInDlzuHXrFv369bP5uOvnNSnI5+jRo4iiSKNGBfqrZc0F5I54t27dMmtBXrx4kcOHD9O6dWtSUlL46quvOHv2rLkoxsnJyWIfgFmfsujn6enprFy5ki+//NLm47oflNuIvHTpEjt37iQ+vvjT8gcffFDCVv89TJKJw3FHCOcZlM7d6DSgLmKhHKPCkjGX4uXcMLurfB2NUgM9vuTRlrc5v2cNnucKvBZHo1Pu//xsRBSVuLk25E7GOQAOHe5B3Tof4enZsowtLdEqtWTps9gavZVAl0DSdemoRJXZuMjXj2wQ6E5EbHr5KrXz0WXCqd/k15mJBV6/Qoaa6ORE6G+/2j+2nbxfK4iPo2J4o3op3U1mhZXYulGhEAnvXI3Df13hz9kn6DuhuZWcUoGF3Rey4MwC/on5h8TsRIwmIwrRsQ9MgiBQY/Uqrj7zLIa4uBJF21NjY0AyoTLK8+y8onOZaQzWMOhMrPsugvrI2tuF2y4KShHfYXJ6SHlTVQSTCkGgxAjFqJ9+Q5+bg8bZMl9VpfJCpSo5T1UymIifcxInQBSUGCU9/6z4tZgRaY23I2+QrDcwObgK+WasszYUH58uuLjUKbZ+pWfxwSc8PJzmzZuzYsUKRowYAcgh2fnz5zN+/Hhyc3MJDg7m6aef5t133zVvZzKZmDRpElevXkWpVFKrVi1mzJhhHgMgMTGRqCjLB/uPP/6Y6OholEol9erVY/ny5Tz7bEEqUmZmJqNGjeLmzZtmEfOlS5eaJXMUCgUXLlxg8eLFJCYm4uPjQ6tWrdi7dy8NGzY0j9O5c2dCQ0P5+eefy31uypoLyHqO169fN783Go18+eWXREZGolKp6NKlC/v37zcb3/awbNkyJEmyKz3gfiBI5fifPn/+fF577TV8fX0JCAiwuPgKgsDx48cdOklHkp6ejoeHB2lpaRVqgZiVnMjVZx7BhMTLA6FWahsmPTSJ+q2qoHEu7tkwmiT2XErASangoRreKEQBk85IzNQDAAS93wbByY6iDQdx7UoUx44dxctJ4rP9aVyWgjg37Yl/hREJIEkmduysDcg3UD/fR6lf/7NyjCPx3Ibn6BPWh5ScFOaemlvMuMjMNdDwQzm/9dxH3XHRlNOInG6lGrKQoSaZTOjyLr7qWrUscuDuCZIkV2bfKCSlNeGyZZg7z+jV5xpZOGEvBr2pVGmRlJwUOi2Xk9jffehdXqj/wl2auoSUnV2iEXlg9e/kZGSwyG8PJxJOmj8/9Pwhmwts9LlGjm+J5uiGazx6+weM588AUPf4sQp3HJIkiRXTj5B4Q37g9A12LdZHOx+DXo9CobD4fcTHb+bGzcV4ebWlZo3Xi21j0hmJ+UDWwzvqvoOoU0dQKJWMXbrWYh96vZ6lS5cC8OKLL6JSqWix/xy3cvVsahKG7xcnADmCUjj3U6fTMX26rHMaEBDAiBEjSr2m7d7Tgk8NYzgtNOPb+tWLeSJDdp8i1yRxrG0Dqjo4jF6JzIYNG5g4cSJnz559oJU67CEkJISPPvqIl19++X5P5a7y888/M27cuGI6k/eSclkKn3zyCZ9++ul9Efl+UDAZDYixOkRgYrMJKD08aBRWjf8N7EtQ3QY899EMi4unQhToUteyckxUK6g2XZaQyTgQQ9bJBPxGNr6nhmRyahpnzp3Hn0T+1vxKeM5P9lch30cEQaRd213cvr0eN/dwNJoqJKccwNvLPsFnQRBY1mMZBsnAnBNzADkUm65LR6PQ4KR0snDElTukXbQCOp9CldBSTg5XnpKrFeseP4aEHK69G9/HpcwconN0tPN0LZBYsVZgU7TQJs/oFUWBOg9VQVSKiKVIv3g5yd6xqq5VCXYLLnG9iiIIAhJwoVlzpOxs6h47iuhS4K1r8/RznNmxhXfVr+DVpjaP/fVEufZzdMM1AEIW/MSVdq0tlkl6E8krIgHw7l8XwYr8UWnz7z+pFb9OPUhafDaJNzLQ5xqLCY9LJhPxV6M4/vc6eo592/x5bm4cqamHUKvLrvwMf+Rxok4dwWgw8NVzTzHu1z/MldqSJBEdHW1+DfB2jUAyjUaC1Cp0JYypUqkICAggLi6OuLg49Hr9fWlJW4nt9OjRg0uXLnHr1q1iOXn/Rs6dO4eHhweDBg2631O5q7i6umIwGO571Xa5HjtSUlLsyj/4r9MztAfP1nkW8pLoYyIjMBRJvs3RGxn16zFG/XqMnCJtBk06I3d23zTL/dwP4vHlW+llBCRafrKNfj8c+NeEo7TaYEJDX8PHuwNJSbs4efJl9Hr7s7YEQUAlqhjddDT7B+6nVUArRmwdwfCtcgcGrUpBg0DZe50f0i7HTix7bb99FWo/Jv8JhUSlvbxQ5OUoRTZvYaFF6EiePXmZF09f4bfYIoVJggAuvrKxaI08o1ehEnn4+bpUrePF1dOJmIwl/36X9VhG1+pd6VStE3tvli6wW1HyC5KuvfiSxXkTBIE9vy7k7+++RMooZ+/oQuj1UjGddUmSyD6TSPaZxHJ9Z3qDnsviZhIC9iAJRlZMP1IsrB1z8QLndm8j/toVi899fDrRqOE3BAcPLnM/LgcsvcZxly+Wuv6AQG9eqeaHb6EohU6XREZGJLm5twH5/Oa3ra3k38O4ceP+EwYkQMOGDTl9+vR/xqtaEidPnuTs2bOcOHHivs6jXGe5X79+bNmyxdFz+VehdnYlp3dHcnp3RFBomTNyBz+W0qHAJElsPBPHxjNxmKzcWIypstEp6Yz31HgLCQnBzU1Owk8TPBAQeeOR2vzy6kP3bA6O5PLlz5EkA7dvryt75RJQKVS4qlz59fyvnEs6h4DA5ZTLRKVGsXxE67IHKIvCvbadveGFlfKfZARdJqJSos7urdTZvdVcsHG3KrVv5/V1/y463vo8Cxu8k2PksHYRjAaJzfPPsnn+WYyGkn+7DX0b8nart4nPimfKP1O4ece+3s22kl9kA5B7/jxSlmWRS3CDcKqHN0WZJ8NVERZ/eIwjLd5FQjB/V4JCwLN3LTx710IooeDIHtLis1nx2RGL64IkmTi9bRMpMZbn0Nm5BlWq9MTTw3oXEkElogqUPbOGuGzGL/nTvMxkNJQ6jx9vxDPzaixxuXrzZ7fifufQ4Se5eu27gn38CyIYlVTybydf4ihfZul+Ua5wdlhYGO+//z4HDx4kPDzc3Monn8IVWv9V1C6uNJsxjyx9Fu2XdGQoM0tdX6UQmda7ofl1ScR+cgh1iPs9C2v7+Pgwfvx4pk2bRr169djYoQ1+/v4ICDw2WxZVXjemA9oHoOe3LSiV7ri5NkCnt659ZiuCILD48cVkG7LJNeaa8/l29dtfxpblwGSCxEj45xs49bvlPKq1pta2rYjOzhZt9xzFwEBvfo9N5p/W9ayvkG/wloIgQFBtT0DWjiyrd+/rO14nS59FdHo0VV2rOvx3LggCoUuXENlCLhYpXPQC0HvCFFLiYrh47ICsLyPA4E2DWdFzhU1zUapFAmt5EBslV0ZnuAVzpMU7aF58iZprViMoRFzbWu8CYgsqlYqJEycimSTWzjxNenwOiTcyMOhM5pxTlaYghJV06wY+VWUvUkrKQeLjN+Hm1pCgoOLRIlnHsgkxHxb8jn2qVSfp5nVys0qvKJ93I4FbuXoe9XDD9t4glVRSyX+ZchmR8+bNw9XVld27d7N7t6X3TRCE/xdGpL2oFCKD2oZaXVa0k40p23BPu9iIhmx6so3cC3uo8uRjnDl1goZNmpmryYsH7B5c2rTZil6XjMmUw8VLn+Ln+wheXiWEZMtAEARzsYWXpuSK1wojCLLsT9E8SUC4eQilm5arL8j5PTVWrixRn7A8fFU3mJHB/rgoy/9bU6oV9BnfjOS4TP5ZdZm0+CyentiiRIMsMSuRHGMOI7eNpFetXnzaobgodkURnJ3Nkj+5589bSP5EnznJyc3riYu6TIuH6nBMuGhX95r8zjX6XCOrZx5DunqR4Kt/kZMSKXuL1U6k77wBRhPu3ULsrtAWBAGXvDzOAZMfMnfIKeyJ9K9RIEisK2T8ZWREcvPWEvz9e1g1IuUdWL7V58ph/T9nfcKwOQtx97Xe9aNfgDepBiPeVgTQK6mkkv+flMuIvHr1qqPn8a8jIyGOGx27AKAZV/ZNXWcwMWenHAoc3SUMdaEbS+EuF0C5Ol1UlJac4SrV+Pyr/wEQUqv2PZ+DI9CofdGofdm+Q77J3rixsNz6kfk4q5zZ89wesvRZeXmQee4rR5EfNi7cT7twi0RJQnc5yvzakQiCwKHUDAaeiuJ/9avTwaucvUgE2LYogsQbGTi5qiy8ZkXpHdab3y78RqY+kzOJZyow+1KmU8QbWRi/6qFcPnIQv+qhTG33Fk8dfL5c46udlDw35SF0KfW50m66eZlkkrizXZb9cOta3e5fik6nM/fVHTL4VfPna788bq7UFgQBd78qpCfc5vbVKAJr1wXA3b0JNUJfx8W1uOSOee5KkYC3W5lfh7Vqy/GNclj78pFDNH/iKavbvVtTFoU26YzE2HlMpdGb1QwPa0trT9eyV66kkkoeKCqs45L/dFyZBwOg4OlJn6BUiSjUliF+g8nEN9svATDi4Zqoi6SjCoJwb/tnF0blDBOjCJEkmCVXJiflNYv/t1KnzlQuXpwKgF6fikrlWeExl0UuY/ax2QiKKUgmtSxUrXJ1zG+/lLCxoFFTPU+sVtBUPI+vKG9flPPqnj0ZRVyXprZvWKRgpf/kVmbjcc3MY1Z1IwHeaP4GbYPa8srmV7iadpWbd25Szc2+PtO2IKjVBObJzQiFUm6cPTx5a/l60hMT2PXrAvCUP882yDmn9oiPC4KAqnDltCSZIwuqQJdyPxAmJMhdhBQqAd9gVxJvZJB4I4PsO3q0bioEQSA9QS5miYu6CDwJgIdHUzw8mpY+Z1FA6V0QDu8yeBhXTxwhJTaGc7u2lWhEbklMI8ck0cG1YjJGRanHedp4q3CplPCppJJ/HeUuX/rll18IDw9Hq9Wi1Wpp3LgxS5YsceTc/nUIgki1+uEEN2yMWERMWSEKvNQmhJfahKAoQQpFMphI/SuK1L+ikAz3sEo7rxJXdPWjUaNGVK1aFbVGTbgihqfU50i5k4nuXs7HAQRXe8n82mDIrNBYkiQx6O9BzD422/yZc43v6LyyHYM3Db47hVBKLYw6CKMOImhc0TZtQspvv3HzjbGY7GwtVhYheTdvP3u1QX/sJOdz5pFveB3fHE1sVBoGXcm/mepuBR1yDscdtm+/NiKoVHg+3RfPp/taGJEAuVmZXDt1jEv79+GfLBvmnVd0pvVvrem/vj+mkvo4FsGoN7Fn9VUia/fHJCi59qL8u/MbHo46xJ2s0wlIRvt+H0qlksGDBzN48GBUKhV932puXrbo7X3mau2m3XsCcG7XNvPyjIxIbt78laTkfXbtM7hBYwB02bI3XBRFWrVqRatWrcxVrpMu3mT4uWtczylJ4KeSSir5/0a5PJFfffUV77//PmPGjKF9+/YA7Nu3j5EjR5KYmMj48eMdOskHHaOoZ12Db5nzyHekJ8YhiuBZJdBCBFijVPBxn0aljCKHwTL+kQNF7t1DHRkwLR1dFsyXQ/PPDtsJameydAbqK+NxFvTM/3Y2glKNk0pB+/bt6dChw72aWQURAROXLn9C4/C5Za5dEoWLbLL1RlpM2w1ItA1sz7DGr2KSTCgEB3uRRRH8C7XmMhq5s3kzyqBAMJazd3cJfBRWlZfPXsVHZcPlQOUMAeEQdwaSo+C7ljDmqEV7xgNry04fqOJShUENBhGZEkmAS0BFpl8mpqysYjqbaq0zW+d9h7OHJw2cXMnIuUCWk3xeLyRfYMD6ATYV2phMEuf+uQ1VHyYs6g9z/iVKDSnLZa3IoGntEBS2/z5EUbSouFRpBItCnsQbGfw69SCdB3bE3deP+h06m9dNSTnIxUvT8PfvgY+39f+nkt5IwkK5y5PfKw0RVAqqNQzn9PZNpN6ORa/LRaXW0KNHD4vtmru7UF2vx9nB0ik76MaO6zn0r5ZFEzfHejkrqaSSu0u5jMhvv/2WuXPnWoh59urVi4YNGzJ16tT/d0bkVx1n4uTlQzV3T+YMkVsivbF4FapCIqAGo4nN5+TwU/eGVVCWUqGdj0lnRFCVXunqGCRIuFDwGlkT0eDkBbmy9Itk0JFtkG9wer2e3NxctFotCjtujveawIC+xMatpn49+zvYFMVcZCMZAIGsq6/z2Yvd0KoUiMLd1yMTtFq0zZvj3uPJCndFKYpL3m/xQqYNuomCAMP3yMZjclSBITliD6hdUKpFXpnZAb3OiLIMke2JrSY6YvolIul0JP44j6QFC9DUrk3oiuUWPdHfWr6etPg4TmxaT/29Cvp/NpOX9w4nOj3arkIb8/4sOneBuoaH+bU96PV61q5di9Fo5Nlnn5W9kXmFPCumHyEtPpu0+Gz+WaOg/+SnLa4PWm11/Pwex8O9acnzlEB3Nc38WgBCGzczL9dlZaFSazAajea2dbVq1WJ+o1DA8TmRR2jD6Tg9Tb1yKo3I+0BSUhL169fn8OHD5WrPV8n9oXPnzubC5hMnTtC0adP7Mo9y3f1iY2Np165dsc/btWtHbGxshSf1b6OpdxNqCw25k1hymFFnNDH6t+OM/u04uhIEmQVRwLV9EK7tgxBEgfjvTpLww+m7rxupdILB6+U/pWz4CoLArHdGMnLM6wwbOYpBQ15F4+rJNaM3Z86eY9asWcyZMwejg71ijqRBgy9o2XINGRkXuXr1WwePLjDt4Ae0/q01z214zvHfkT4Hfu0n/+lzEASB6j8vwhCfQPyXXyHpHBdSdMozIm2WNBRF2fvonVchnBwFn1WFhY8jAFo3Neu/O83aL4/fX8F6lYo7O3Yg5eSQc+aMVZ1NZw9Pjm34g+z0NIzpWazoucK8zN5UheNNx5t1DASVAv8RjfEf0RjBzmpmSZKIiIggLi7OIudc7aTkhalt8PCXC/kSb2Rw60IkO37+kd/fn4hel4uvbxcah8+hevVX7Nqn1s29mLVrNBr57bff+O2332SDMiuHC5nZZBe6flUNeJ42rTdTI7R4i8VK/h18+umn9O7d26oBmZSURLVq1RAEwaK13r59+2jfvj0+Pj7mvtKzZ88utn1RVqxYQdOmTXF2diYkJISZM0uWxvvnn39QKpXFjKPQ0FBzcVnhv9GjR9t6yABWx1i2bJnFOnPmzKF+/fpotVrq1q3LL7/8Uua4169fp0ePHjg7O+Pv78/EiRMxGAo0WG05d3fu3GHcuHGEhISg1Wpp164dR44csVhnzZo1HD58d1KB7KHcOpErVqxg8uTJFp8vX76c2rX/nVW99uLk7oVp4kgkSSLGkMa2j88jSRKBtetz+8pFRKWSE5vXA9D4kccRBYHWNeS+sGIJrglBKeL5lHxjNumMGOLl/CRTph7RRXX3PJKiAmp0lPs6SyZAvumJokiArw8AWToDPybWhg1RrOwva+BlZmaSmZmJIAhcvXqVxo0b3535VQClwpXElENcufo1Var0wtk5xDEDS0r2XLlEgEcAPWr04I7+Dm4qN8d9R5IRLuUJ+ufekd/rIenHHwHwfW0kgoPaybVwd+Zgm/r25UTmG5LzOsmhbZAlinSZ6NGSEivnoZZWpR2XGcfkfZOJyYjh76f/vut6kdZQaZx4+cvvMRoM3ElKxLtqMPW863Eh+YJN3kilWjQXvmS4BWMS5e9EMkkYEuT/v0o/Z4RSWkIWm5NKRXBwMOHh4cVaBgqiXMCUL/uTGhfDib//AmDj/2bS/fWhZGdFo1J74+pSvmtxSYZz/5NRBb2z8z5LW3AD/zeaVRZW/kvJyspiwYIFbN682eryV199lcaNG3Pr1i2Lz11cXBgzZgyNGzfGxcWFffv2MWLECFxcXBg+fLjVsf7++29eeOEFvv32Wx577DHOnz/PsGHD0Gq1jBkzxmLd1NRUBg0axCOPPMLt27ctlh05csTCeXH27FkeffTRcnXRW7RoEY8//rj5vaenp/n13LlzmTRpEvPnz6dVq1YcPnyYYcOG4eXlxVNPWS8+MxqN9OjRg4CAAPbv309sbCyDBg1CpVKZe8rbcu6GDh3K2bNnWbJkCUFBQSxdupRu3boRERFB1apVAfD29iY93f7ObI6mXEbkRx99xIABA9izZ485J/Kff/5h+/btrFixooyt/xsoNRoavjrWQmxcEASenfIZAgZMBgM7Fv4AQKOHu+Hk5MTyEfb1c87nrguQ63Ng7XCI+BMe+wTale5VaNgonO1bNtO3b180Gg1Xr15lzZo1uLu7P3DhECenQC5HzQDg7Lk3eKjVn2VsUTr5rQ8jYtNJuTySFEHPwrTDzDw6k2b+zVj8+GLHf0d5Uj9ClUZomzfDqZ4sDC5JkkP2JQoCoVoNCTo9OpOEly25kSAbkiP2WvbYXvQ4imF76DmmCQigUJY8P51Rx5E4+el62NZh/PTYTxU9lOIUPj8lGEduPr4c37iOGxFnuH7mJItfWEzr32zrTCQIAn3fam426vL3IxlM3J59HMjLibSjSlsQBAYPHszu3bvZuXMnHTt2RKlUWizPp2aLgnmmJcSTEL/ZnBMZ3uh/Nu8zf94AJzb9RceBxdsmeqoUZJtMKPO63uhjM9HHZt5TTdt/C5IkFWt9e69QajQ2Xxc2btyIRqOhTZviWrpz584lNTWVDz74gL///ttiWbNmzWjWrCAFIjQ0lDVr1rB3794SjcglS5bQp08fRo4cCUDNmjWZNGkSM2bMYPTo0RZzHjlyJM8//zwKhYI//vjDYhw/Pz+L959//jm1atXi4YcftumYC+Pp6UlAgPWc7CVLljBixAgGDBhgnu+RI0eYMWNGiUbkli1biIiIYNu2bVSpUoWmTZvy8ccf88477zB16lTUanWZ5y47O5vVq1fz559/0qmT3ORi6tSp/PXXX8ydO5dPPvnE7uO8m5TLiHzmmWc4dOgQs2fPNn/B+TkVhU/OfxmjXs/N/TvJNeUiSBJGwYhSUMqSHxon9DkF+WX63BxMkkR0uuzSDvNzRSzDM1FUgDy/r/ZduVgrNXAn72lPaVsz9379+uHj44NGozGHAJKSkh44I1KhcMbLqx1KhQuBJYkv24EgCKx/vQM9v91HRGw6SGpi0jLQ+EIdrzroTXrUCgd4CFXOct/qQgLkwu2zhLSH9GoDiB40GBQiocuWOcSQnHM9np9uJhCbq7dP5ie/x3Z+sU3cGURjNiGNfNg07wzHNl4rUeqnsKzPodhD6I16VApVsfUcRdHONfmonLQc3bCW3MxM3Hwtb1C2dLIpuuzaiy8RsmwFokv5FdRMJhN798r9xfMf1K2j4qk3J/PXV9NRKBQoVR44O9dCo6lS7n0f/mMl7fq9UOzz7a0KuhqZ8rrepAfsJ+HcAnz9uhJcbVCxbf6/YsjN5X+Dn70v+y6aj18ae/fupUWL4i0yIyIimDZtGocOHeLKlStWtrTkxIkT7N+/v1QDJzc3F+ci+dxarZabN28SHR1tvncsWrSIK1eusHTp0jINJp1Ox9KlS3nzzTfLdR0cPXo0Q4cOpWbNmowcOZIhQ4aYx8nNzcWpyHnUarUcPnwYvV5frFMfwIEDBwgPD6dKlYL/f927d+e1117j3LlzVu2joufOYDBgNBqt7nvfPvtUF+4F5b7KtWjRgqVLlzpyLv8qslOTyBoxFgDVBDWL2r7NPwP/QWUl/2nu8BfxqhrMNLUsyRExrTvOZYQOzQLkOUYyD8ciqBUO6cNbws5kseucVNj/Lez8DDq+BcqSjaFatQo6ZtSpU4eLFy9y9OhRqxek+03zZo6VnhJFgQ1vdCApU0fLT7ahS+jGvhHTOJF4mJ03dvJI9UdQihWUYC0sQC5JML+r3BoxMJzkxb+QExGBc6tWSLm5CDbeMEoj3FVLbF5P5GvZuYRq7dCjFAQYsknOi8xDn2sk6risdVhSSFsURLY9u41uq7oB8OH+D5nSZopdxSxlTi2vj7a1zjUF0xcYs3C5+b0kSXaHtANqeaA7H4HCpCMrMgoMuQS9X77IAxRI7OS/LolFb+/DwydfL/ISgQGzCQzoU6599n3nQ9bO+AiAxBvReOW1UrRK3qVI55xAcspetM6lrFvJA0t0dDRBQZYtOnNzcxk4cCAzZ86kevXqpRqR1apVIyEhAYPBwNSpUxk6dGiJ63bv3p3x48fz8ssv06VLFy5fvsyXX34JyHUWoaGhXLp0iXfffZe9e/daeN9L4o8//iA1NZWXX37ZtgMuxLRp0+jatSvOzs5s2bKFUaNGkZGRYe641717d3766Sf69OlD8+bNOXbsGD/99BN6vZ7ExEQCAwOLjRkXF2dhQALm93FxcRafl3Tu3NzcaNu2LR9//DH169enSpUq/P777xw4cICwsDC7j/NuY/OdLj09HXd3d/Pr0shf7/8L23tvxtXP0iWu1GgIqtuAmMgI82feLvZ5qARBQNAqcXv4HlygBQEUatgr/6em/RuAbfPNr9COjY3FYDDY9J//XqPTJZOWdhQ/v8ccMp4gCDibvcJKFKKSCbsnAHDw+YMoBEXFPYSFBchHHwJ9FoLSidAe2ZiysjDExqG/fh11WJiFnFR56OgldwsZWs0XnakcxTBFjlVUCrR7JgylSkQsJaTt51zg+fvryl/8deUvjr90HJXoGI+kIAiE/vYrV3r0RHDWllgqnR9+FJVKFEolix+3L6T99ITm6FJrc67LD1wPfpQL357jmXdalfs3oFQqi0nsmJcV6d2dcrtQftiuv6nTrjWiqEKptK/7UM3mrRBEEclk4mbEmWJGZIv957iVq2dzyzqE3wXR+/8SSo2GNxavum/7tpXs7OxiHq9JkyZRv359XnzxxTK337t3LxkZGRw8eJB3332XsLAwBg4caHXdYcOGERUVRc+ePdHr9bi7uzN27FimTp2KKIoYjUaef/55PvroI+rUKbnjUmEWLFjAE088UcwQtoX333/f/LpZs2ZkZmYyc+ZMsxH5/vvvExcXR5s2bZAkiSpVqjB48GC++OKLUh/sbKW0c7dkyRJeeeUVqlatikKhoHnz5gwcOJBjx45VeL+Oxua7vZeXF7Gxsfj7++Pp6Wn14pifo/UgV+w6FEG+2ZqMEmd2yV0/GnQMQqGQZXme+2iGOS/GaDRQY+VvAKiFznbvyqSTz6mgFO1K0rcLUQmthha8tpFu3bpx/vx5AE6ePEnNmjUxGo3FclfuF9dvLOLSpYKwSNculx1fxIFAyypyAce1tGvMODLDsfmR+Qbl1b0Ii3siGASurJKfhOseO4rgYr3bje3DC8R2boJRAqUDfl8KhUizR6ujzzWWmrohCiJ/9v6T3n/2JtAlkDdbvEmOIQeV2nFhbVGrJWzH9lLXObVlI9sXylqib/6+zmJZ//X9zVXbJXWzEQQBpVrBmYbDyXALRnEtg1uT5NBT0LR2dneuMRqNXLggy27Vq1fPQkorv3d39h09i97eh6Ao8IgkpP7F7X1jSs2JFEQBlzaB5teFkfLE43f98hO1WpcWRnccgcQguLSwPRf3X4DcyajiEYK7ja+vLykpKRaf7dixgzNnzrBqlWwE5xda+fr68t577/HRRx+Z183XMw0PD+f27dtMnTq1RCNSEARmzJjB9OnTiYuLw8/Pj+3b5f+XNWvW5M6dOxw9epQTJ06YC21MJhOSJKFUKtmyZQtdu3Y1jxcdHc22bdtYs2aNQ85F69at+fjjj8nNzUWj0aDValm4cCE//vgjt2/fJjAwkHnz5uHm5lbivS0gIKBYxXR+YVDR3MvSzl2tWrXYvXs3mZmZpKenExgYyIABA6hZs6ZDjtWR2Py/dseOHXh7y9XFO3fuvGsT+rfg6hdA/fMX0Jv0rDy3ipRlssu6XttA8q/3FheSnByO/y3fnDo8Nwis5FNYw6QzEjP1AOR5h6pMaCm3LBPuQqtJpQZ6fGn3Zj4+PrRp04batWsTEBDA0aNH2blzJ+PGjbOodrtfBAY8bWFEJiZuw8/vUYfuw0npxKLHF5Glz+LTQ59yIv6E3TqD9qLQ5D2sZSWBs7P9goRFiNPpOXsnGx+VkuYeFTNKjQYTx/6+xokt1/EOcuHZd1uW+Hut6VmT04NOczrxNA18GjjMC2kPQXVlYffHR41HkiS0Sq05pB2dHm32SpZWPCUIAs1PzmZPx68qPB+j0cjKlSsBmDx5cjE9VkEQ0LqpzJXhGs/xDJnxEEl31nDpkvVKW/O2ShGvPtbDYk9P+og1n30IyLmRhdnaqi4mCTyUCnBgB6tBLKRNw+dwcfn/FcF6EGjWrFmxtLTVq1eTXUgO68iRI7zyyivs3bvXIo2pKCaTiVwbiokUCoW5wvj333+nbdu2+Pn5YTKZOHPmjMW633//PTt27GDVqlUWAvwg5076+/uX6LG3l5MnT+Ll5YWmiCdXpVJRrZqcv71s2TJ69uxZoieybdu2fPrpp8THx+Pv7w/A1q1bcXd3p0GDBiXuu6Rz5+LigouLCykpKWzevJkvvviivId317DZiCxc+VSeKqj/KnqjnplHZjGUkvWuQJbIKfzaw8aHVEElog52MxfYAOReTSN9S7Tjq7WNBrggy4VQ7ylQFPw8tCoFLUO8OBeTbjWfs7BMQv5DxtatW8slu+BoVCoPuna5xI6dsuRJatoxhxuRhQt/d9/cjZfGy6HjmwlpB5NjEHVZ1FHKhsC1vp0JeTkM4dXNFTIkD6RmMioiGpUgcKNzkwpNU1QIRJ9NwqA34VvdDZNBQqEqvTiliV8TvjvxHVGpUQxuOJim/k0rNId8JElCys7GlJ2NwsvLaujfP7Qmz330BS6eXoh5BtvynssZsH4AF5IvmNcr7eFA0GrR5IXhjEDW5fnUXPQTQhmi69YQBIGQkBDz65LWya8Mlx9YtQR7DKpQgUuNpi1wcnElJzODrJQks4ybSqXCu9A8/l1NUCspie7duzNp0iRSUlLw8pKvWUUNxcTEREAuns13CsyZM4fq1atTL08pYs+ePcyaNcscCgb47rvvWLt2rdnbmJiYyKpVq+jcuTM5OTksWrSIlStXmgWzRVGkUSPLrm7+/v44OTkV+9xkMrFo0SIGDx5crvSpv/76i9u3b9OmTRucnJzYunUr06dPZ8KECeZ1Ll68yOHDh2ndujUpKSl89dVXnD17lsWLF5vXWbt2LZMmTTJHDR577DEaNGjASy+9xBdffEFcXBxTpkxh9OjRZuPUlnO3efNmJEmibt26XL58mYkTJ1KvXj2GDBli97HebcoVP9i0aROurq7m9ndz5sxh/vz5NGjQgDlz5ph/jP9ldJkZnH1/DAaMKOqXnUMmKhScdA83v7YVc4GNPu+yLUmk/RV1d6q1jbmw8mX59aSbILqajRJBEFg5si3Z+rJTFapVq8bNmzd59FHHGmoVQRBEfHw6k5Z2jOvX5xNSfThqtbfDxu/57T7Wv94BQVCzd8BeBEGg31/9WN5zuWM72ogKOaytcsZU5SFSdkWQnahBunYYQZ9VkENZDnLyQpn6igqE56W1PPtuSww6E9Fnk/jz6xMlVmkX5tjtYxy9fZTHazxe6np2TSc7m8jmcsGXpn59qxXaAMkxN9n7+2Lcff148vUJiILIip4r5HaXhmw6r+gMyOHtdX3WFfte8/MvGS9XVesiTiEqDAiC/dX6KpXKphtG/nFIko5l09bS7eVwgurUK3UbySiRc0kOYTrV9ipWsNfmmYHs+mU+CoXSQqfy2ROXidcZmNcohDoqx2iUAmTiQqLehGg0obWhk1cljiM8PJzmzZuzYsUKRowYYfN2JpOJSZMmcfXqVZRKJbVq1WLGjBkWYyQmJpo7HuWzePFiJkyYgCRJtG3bll27dvHQQw/ZPe9t27Zx/fp1XnnFuqj+yy+/zLVr19i1a5fV5SqVijlz5jB+vBx5CAsL46uvvmLYsGHmdYxGI19++SWRkZGoVCq6dOnC/v37LRRI0tLSiIyMNL9XKBSsX7+e1157jbZt2+Li4sLgwYOZNm2aeR1bzl1aWhqTJk3i5s2beHt788wzz/Dpp59arQi/35TLiJw4cSIzZsjae2fOnOHNN9/krbfeYufOnbz55pssWrTIoZN8ENFlZaDdeAgAZR1tmeu7Ojvx9eypGHJzcbGn8pW8Aps8Y9GkM5ITmVLGFuVEECEkr99u4iXYNEmuEC5kSAI0/3grAFvHd8LbRV3shjxkyBCOHz9OWloa27Zt4+zZs3z44Yf3XZA4uNrLaLXVCav1Lnp9UoXHK6wZeTUxk4YfymHE5iHO9Ohwxa4ezHYjCDDoD+K/yRPSHndGlgWqAI1cC37HKXpD+XPUFj0OI/aaj/nElmjio++UKjxelJ/P/kz30O7l238RbKnQBrh89CC3LpzDFFa3YNu8dpdFw9u9/ujFip4riuVI5ns5FYBbl/eIn3sO/9eb250TaTKZzB4gX1/fEsNn+WLn8VevkBC1lF1rdVRrl4qf36PUr/ep1W0ko4mkn+Xe2db6eitK8Oxczc7lVq6e3PIUXpXCd4zn9IlMvq2fSr8Axz3YVWIbH3zwARMnTmTYsGFWf2edO3cuJkD/+uuv8/rrpesJT506lalTp5rf+/r6cuDAAbvmVnSMfB577LFSu0ldvXqVLl26lLj88ccft4ieWaN+/fqcOHGi1HVefvnlYpXhISEhbNy4scRtbDl3/fv3p3///qWu86BQrrvE1atXzfH91atX89RTTzF9+nSOHz/Ok08+6dAJ/lcQBAEfVw0/fzgejYsrz300474bVcVQaWHIBrlzzYa3ZI1CK96t5Ey55V6LT7bRINCdlSPbIgiyUSUIAgqFglatWnHlyhXOnj0LyJXb5amgcyQ+Ph3x8GjGnTtnuHTpU9LvnEapdKdTx2MI5fAWFtOMzON4dCZO1XfycsOXGVhvIBISAo7/rgVnZ2rv/0d+7eVV4ZzIwkbk7uQ79KliR0RB5WyhFZn/uxEEUChFgmp72jQ9g0lO+zibdJb9t/bTrmrx9qr2YkvnGoAeb0wkNS4WJ9fiVc2CILC853J6/dGL6PRoc55kaTmSCrdADAk29CO3gsFg4PvvvwfknMiinWsKz6vvW835cYwsw6LX6dDrkzAY7pRrv4UxSRJz5swB5MraHxuGkmsyUUurMcezNXeCCfB/Gg/3/x/6wP9FevTowaVLl7h16xbBwf9+qaa0tDSioqLYsGHD/Z7KXeWJJ55gz549Za94lylX7ECtVpOVJbf02rZtG489JsumPChteO41KqNEsjYWzwAtJqPJ6hNSts7I4zO3knTzOjGREWSnp6HPybm/vYVL4+ImcPYp9nF+bmQ+EbHpNPxwMw0+2Ey/Hw5YHE/hSrJ58+aRk1O+G6ojEQSREycHk37nNAC+vl3R6RLLPV6+ZmTEtO4cndItfy+kXB7OyMYjGbVtFC/9/dJd+Z4FQUDp7Y3S21sOZesyS+zKYguiIOCplL1Sl7Ls/K7ytSLzyZuHUq3g6Ykt6PtWc5Q2eOO+6lxQlHI1/ap9cyhrfmWgdtLiFRjEjXPW+9WLgsi6Puuo510QLs7PkcxHqRapEuqKd/xxEo4twWNgLQxGqVzfv7OzczFxZmuoNAp8g2WJppRLTlzZ9CGh1d+2e39FuRkZQUJCAgkJst5nSw8X2nu54aos+B7dEprju30gAQF9K7y/Su4f48aN+08YkAAeHh7cvHkTV1fX+z2Vu8pPP/3EqVOnuHTpUqlFO3ebcnkiO3TowJtvvkn79u05fPgwy5fLQr0XL140VzH9f+Lj5Sa+fnMlE3r+zuE1V0mIvlMs/0tC4nJCJvlZgnOHyxpcQXUbPHheSbULvHNNfv1DBxi+R25xp8tCUGlZObItWToj/X44YPbAVfXU0qtpEAaThKpQjpW3tzfJycmAXOXXsWPHe300FigUznTpfA6dLon09NN4e3dErKAwuKwZqbQIb5+PvUOOwURUWhQdqna4K5Xapuxsrj77LKRGU6PLTUSlJHe5KZSCYC9jQ6pQx8WJBq7lkCcpvM+8kLYkQXKc3EfbO8ClTHkqP2c/ngh9gr+v/V3qehWiBIMu9nIkG7+dRWpcLLrsLJo9Xry1WX6eZHJOsjlHsjCCIND39YacbzUMhUnHltnriXMKI7CWh005ofmo1Wrefts2Q1AQBLoPb8aicWDMVZIVn4CTprgQsq2IeUZidno6FAoevB15g2S9gSm1gghxUle2PqykkvtIfoX7/aZcnsjvvvsOpVLJqlWrmDt3rvlg/v777zLzDP4rCE5OaH3lkvxqrlX5o88fKI1qTu+4SWxUGgadZf2iRqngl+EdcAupbf7MzdePeu07YSqvrqZRwqQz3h1vpi4T9n0thybTbsifze8CCx5FAFw0SrMHLmJad7a+2YnnWlUvpjE4atQoQFbtf5D0Q9VqH1xd63L9+jy276jFrVvLMJl0FRozv/goHyeFE/W96/NKo1fujtSPJKGLuoIuqdB5vXFQ7mWtywSD/cfzWnV/HvZyI1BTjsKJ/JA2mEPaBr2JZdMOs2zaYQz6B6Om99qL1j3DftVrkBoXS62WbXD3K7ltoCAIaJUFof/BmwZbjCc6O+Ncrw5OrUZQy8UfEaxeExyJd6B8DfaokU7IIz9z7fq3tm1o5dJRs1krq6tuT0pnfUIaaQZjXsFfE/ROCWR5nScrq+zWeJVUUsl/j3K5YKpXr8769euLfT579uwKT+jfgigqkB7V4mQE/zcWl7m+QhRoF+ZL2xlfmQXIAbsFaUW1gmqfy968jMOxpK65jDrE3fFyPypniMzzBqldZKMk4QKEPVoo302wkPv5cXcUf56MYf3rHcwC00qlkgkTJqDX6zEajfz555/07t3bcfOsAHpDOlFXZF3MC5HvcSHyPR7pGlXGVqVT+CsQBIElTy7hnT3vsCRiCTMfnolG4bhOH4JGQ/XFi5FycxAa14av88Kss/I0ANu9Do+V3nu2KJezcjiclkmYVsNDnnaGg6y0PwRwcrWvorBDtQ74aH2o61W37JVtnZpWi7ZJEwSVCu+hr4LRCEUKSJRqNW8tX09GSjKaMsLIhQttirZGFASB6gsWEDfjFL6AkKq3e746nY7p06cDpedEFuaxkeM5vvd93KpmcenEUcLCpDKvCQk/nML/jWYW66lLOPa3awSSaTQSpMn7PgVIC9pPUthajDHXqe9p32+tkkoq+fdT2fawnGhd3Kjx4TlyszPY+o6sy9b1059p3FUO5xft0pGjN/LmipPojRLfDmyGKAgYTCZMBiMapQKD0YTOaDIXp9iClOfZuCtyP4V7N+d70QKbQPuxVmVksnQGftxzheRMHY98tZvtbz5sPgeurq7cuXOH06dPc+LECXx8fMzyUPcTV5e6BAX2JyZ2hfmza9d+IDR0pMP2YTQZ2X59O4EugRhNRrls10EICgUurR/i5thxJP6QQEjX1gg3D1VozD9vpzLzWhzeKgURHcLLMSnL365Ko+DVWfalMPSq1YtetXrZv+9SEASBkGW/I2VnI5ZiIMZejiTxejRRxw7TZ+KUUscrrTWioFSQc+o3TIISU/V7ky9Yq3kLdv/uwvXdXZAMD2Hobb0aXlCJ5QpFDwisrJyupJJKLKlse1hB9Lpcam2RW/6ZPtbTsb/1np8mSWLjmTiqemoxSRLfb43AsPg9RAHG/ryCLRdTGP3bcVqGeOVVO5dtSLq0qkL26QQEtaKihbnWKdy7GeCVLbD6VTgyH/rOA1WBF1WrUuDrqiY5U8fVxEx6fruPDW90MB+HSqUyi8revHkTvV6PQqFwSA/S8iIIAvXrf0a9etPZsVP23mVlVcwTWRStUksz/2Y8UeOJuxLSNmVlcWezLC0kzT+KUNjpV47OL5o8w7+O8/1t2XYi/gQ7b+ykhnsN+tZ2jBEmCIJVaZ/CxEVdYsfCH3Dzta9l5+BNgy2knASFgP7qLoyiGqkcRqRKpWLixInm17bg7OFJ3Yee5sIhf0RFyZX1giDg/3ozTFl6+dphoxj6jzfiSTcYeSnIlwDNg6dXV0klldx7KtselpPcnCxOLBxLrl6Hvw3r51c192oaZA4BKzCZc5Jy8kS8FaJArsGEk6psz4CoUeI/qmk5j6AcSEa4kJfG0GeuxSJBENg0thOPfLWbq4mZRMSmk603mo/VycmJIUOGEBcXh6enJ9euXePXX3/lrbfews2tuKTKvUQQBLp0voBOl4BK5Ykkmcol+VPS2D899hM/nPqB709+z7DwYagUjrsBCyoV/m+/jaBRIxmNmFROiGp1qd2HSqOdpyu9/D0Jc3ZM2F2fa2TeWPnhYfg3D9usE7nz+k4WnZP1Zp+o8QROyoobtSadjvjPPwfA/9135fNUhLptO6J20qLSlH38pYW0UWlw7jAEfVIKAlZTD0tFEARcytEPvWmvJqQaviU70YOkm6EE1LLea1cQBRSu1kPkJelEzruRwK1cPY/5ejjUiBzIEt6t145w7/t7Haikkkrsp7LtYTkxGvS0iV9BrhE2d+uMKCqojpLfPpLDif0mtURVKESUX3RhyBPqHdGpFj8shgad5Xrt3k2DeCI8wGpLwQcGhRqenAVGHRj1YMiV+20bDWDMRVQ5s/71DmbR7aIEBwcTHBxske/15ZdfWhWTvdeIogqTSUd8/CYizk+kU8fjqFQeFRozv9bCYDIw/8x8AF5u+LLDjUjvF18g8cd5XOr0MB5P9STw448tuw9NjrHZiGzu4cK8CvbNNqPLkn8f5aB3WG+zEfnB/g94ueHLNPCpoIyFwUDKb78D4D9hAlgxIp3dPWj48CM2DVdqSFsChW9bFL4gpuqxNzaj0+mYP1/+zQwbNsymnEiAzMxIvOscJkV058qJIyUakaWhUKpo8ugTnNy6CXVCDNXqN0QURfoFeJNqMOJTXhH6EqhONK3dlbioK72blVTyb6Nc7pb8npdFWblypUVfyf8PaBTQ7fNf6Pm/NaidXEmJzSQlNtOq60EQBFR5bb2cXbQE1W1Amz7PonJyQhQEbqZkc/H2HUw2doSQ9CaSfj1P4qKzBW0R7yYKFTw0DHLSYUYIbJb76nLhL5geBAsfR7DB56JWq/HxKdCgtNZ4/n6QlnaciPNyCDHqyqwKj9fz232YTBJKUcmAugN4ts6zKCsoJ2QVlYrMAweQcnJAEEnftIn0LduQ7ncx9KwwlIs688qnzXjli/Yo1bZfbmp61DRXQP999W8GrB9A+OJwMnQZjplbCYoG6YkJ7F66kINrlldoeEEUcG7pR+7V3fgknKBmE2/sdW4X1mi0FTe3Jtw+UZ/Uq6V79Uw6I3FfHSPuq2OYdMVN3G5DR9O466NoEmOo5e+DUqnk3ZqBfF6nGtWcHNfysJL7T1JSEv7+/ly7du1+T6USO+jcubOcoiMInDx58r7No1xG5GeffYavr2+xz/39/c0epv86CqWKg/79OejfH4XS/idoQRAY8OFn3ElK5Ma502TpdDw2ew+Pzd5DjsE2v4UkSWSfSSQnMoX470/eP+FyfZ4wtahEMORS1VNLVU9tqV1aRo8ebX69atWquz1DmwgMfBpRlD1nNWqMLdcY+VqRgDk3VCWqmNJmCm0C2zB0y1CHf0+CIBDy61LqHj+G/5vjuTVuPLcmvItksj9R9mBqBv1OXuaDS7fKNxmVs6xVmT+322dQ/q8Oaz9Yy+/TDqG3YrBYQxAEvuj0BVVdLSu999x0TIeGkmR+stJSOfrXGk5v32Rlq9IpLPUjKEU8n6yO7tSvNDr3E90H1UYyYfN3r1QqGTx4MIMHD0ZZQnjZGu5uTYg/2ZC0K2UXNxriszDEZ5W4XFGkP/aWxDTWxaeSqjfYPB9b2EAvJkRlczjVQQ8IldjFp59+Su/evS16QucbJ4X/li1bZrHdnDlzqF+/Plqtlrp16/LLL7+Uua/r16/To0cPnJ2d8ff3Z+LEiRgMBb+nffv20b59e3x8fNBqtdSrV6+Y6sudO3cYN24cISEhaLVa2rVrx5EjR+w+7osXL9K7d298fX1xd3enQ4cOFql6SUlJPP744wQFBaHRaAgODmbMmDFlFhYnJyfzwgsv4O7ujqenJ6+++ioZGQW/7alTp1o9v4XTV9asWUPLli3x9PTExcWFpk2bsmTJEov9rFmzhsOHD9t93I6mXG6R69evU6NGjWKfh4SEcP369QpP6t+AxsmZNqPmk3knmQOPydqATddus2sMo17Pyo/fA2Do/GV4u9j3hF+syjLbgOB8D0JCHd+C9m9AvlctvB806AVqF7TAP+92LXOIwgU1V648OBpzHTscIiFhCwpRw6nTI/D3e4zAwGds3j6/FWLR3FAEHYvOLuJc0rm7IjyeXzRiEkWcW7WS81fJy1+1w2hN1BnYm5KBvrz9kfOr+nWZsuB43BmQBFJy/CE2C4wmbC1R7xzcmc7BnTGYDPwS8QuPhjyKv7MtGcglTM2GHtrOHp60fOppnFxskzcqKS9SMkpkR6SgDGqBPvYkJ58bTXzPt8hMy+XpiS3KLJwTRdHqNbYsMjMj8a4bRXZyBtlpqXZvXxiTJKH38CEmNR2j0cikize5latnc8s6eDowpH2WxpxOMtDVX8dDDhu1ElvIyspiwYIFbN5cPAVp0aJFFrrPnp6e5tdz585l0qRJzJ8/n1atWnH48GGGDRuGl5cXTz1VXKQfwGg00qNHDwICAti/fz+xsbEMGjQIlUpldj65uLgwZswYGjdujIuLC/v27WPEiBG4uLgwfPhwAIYOHcrZs2dZsmQJQUFBLF26lG7duhEREWGXAHfPnj2pXbs2O3bsQKvV8vXXX9OzZ0+ioqIICAhAFEV69+7NJ598gp+fH5cvX2b06NEkJyfz22+/lTjuCy+8QGxsLFu3bkWv1zNkyBCGDx9u3mbChAmMHGmpAPLII4/QqlWBPqu3tzfvvfce9erVQ61Ws379eoYMGYK/vz/du3c3r/MgdAgs15XA39+f06dPWzy5AJw6dcoiTPn/AckkUSVeZ35dXpzVSo6/L+dHPjt3v00V2vmCvzEf7gcgbUs0Xn3Cyj0Hm1GqgUIGryBCat7Dg29dubuNDbzzzjvcuHGj2O/ofqJUulGlylPs3FUfgMTEbfj7P4lCoS1jywJEUSiWGyoKImqFmub+zREdVLRjdd9OToQs+UU24qbntRv5sRO8fsyuLjYH0zLLPwlBAI0rjNgLukwUPzxMH70sl6P4WQEj99g1F6Wo5JVGr6Az6vj9gpzT+GL9F1GI9ukl2dJD293Xj44DB5OWcNvmMa3lRUpGEymrrqB9aAT6v8Zwxr0LGSfk0LQ+14jaqfRLr16vZ+3atQD07dvX5grt1LRDVG13gpTL7pzdtYVHXh1h03bWkCSJnKAanIuJp7fRSHN3F6rr9bgoCn6/3tcex/NGV4Im33/JrgcJSZLuTYqRFQSVaLNM3MaNG9FoNLRp06bYMk9PTwICAqxut2TJEkaMGMGAAQMAucXtkSNHmDFjRolG5JYtW4iIiGDbtm1UqVKFpk2b8vHHH/POO+8wdepU1Go1zZo1o1mzgj7soaGhrFmzhr179zJ8+HCys7NZvXo1f/75J506dQJkz95ff/3F3Llz+eQT27RKExMTuXTpEgsWLKBx48YAfP7553z//fecPXuWgIAAvLy8eO2118zbhISEMGrUKGbOnFniuOfPn2fTpk0cOXKEli3l68y3337Lk08+yaxZswgKCsLV1dWiJeOpU6eIiIjghx9+MH/WuXNni3HHjh3L4sWL2bdvn9mIfFAolxE5cOBA3njjDdzc3Mxf5O7duxk7dizPPfecQyf4oJKdeYfbX7Yl21hgOErZ5e8NLSGRpTPwy4FojkanWFQ2l4agFlGHuKOLlp9IJL2R+O9PAeA/qgmCDVXeFcaQDd/nXYQmx5CFhgYfyAbU0SndcFYrrOpfarVagoODSU1NRa1WWzzp3k9EUU3DBrM5FzEeAJ0uCa3WvnaehQ9VksBJ6cQvT/zC5ZTLDPp7EMt7Lr8rrS4lkwldVBSm7GycqjRCuH0WkqPMAvFlkd+x0iHFE3nGpPj6Eap+11Kex21snktRco25zDoq56o+X+95FOUR3SzjnOdkZBB5YA8X9u+h+8hxeFaxfhMtiWxDNlqlVlbHquEBSGiCg2l+cjZ7Osp9wdfOOk7/91qV+v1LkkRERAQAffr0sXn/WqfqpEXXJCs+Azcf+2SKymJ+o9Bin4kmDaJJg1LhoGKs/wiS3kTMB/vvy76DprWzWTN47969tGjRwuqy0aNHM3ToUGrWrMnIkSMZMmSI+Tebm5uLU5FGGVqtlsOHD6PX660+9Bw4cIDw8HCqVCnoBtW9e3dee+01zp07Z2E85nPixAn2799vNg4NBgNGo9Hqvvft22fTMQP4+PiYQ/DNmzdHo9Hw448/4u/vX+L5iImJYc2aNaUWFh84cABPT0+zAQnwf+ydd3gUZdeH75ktyaYnJCEJJYRQQqihh947AvqCItKbilhQVBCpKvKKCq8F6SJIFRBFpEsTpIP0TmgJCRBCkk2yZeb7Y5JNlrTdzVL0y31dXExmZ555ZrbMmVN+p02bNoiiyP79++nRI7fc17x586hUqVK+LYFlWWb79u2cO3eOadOm2XyOjwuHXCJTpkyhQYMGtG7dGp1Oh06no127drRq1er/TU6kLEuUk65TRrplWRfbviNV0/bS9PmKiGr7DITlE95DlmU+/f2sXfsp3sgahExuhE+X8sgy2eHtx5ki6VZC+fcQdT/aSuT4TfT8bl+e+WDnzp3j22+/5X//+9/jmKXNBAVli10fPFQ0ncKsc9cb9Sw8tZAz986QZkp7JDmscno6l7s+w9VezyP33YRcspryQpbRZkgtMLwdqlNyQgtpcW0XJrPMRu18NiaOxiQ7J91i4KaBDu0n6HToatfGrV69PEXHtTodW+d9y43TJ0m+E2/3+C1WtqD/xv6gFgkcXoPA4TUpv+EXdKWD8EhW2ofeuZGCMaPg3FCVSkWnTp3o1KkTKpXtxrKfXwtu7nmJhBPOjwhd0qdzNjWNNPOTrtgqxlnExMQQEhKSa/3kyZNZuXIlW7Zs4bnnnuPVV1/lq6+yW2m2b9+eefPmcfjwYWRZ5tChQ8ybNw+j0cidO3fyPFZcXJyVAQlY/o6Li7NaX7p0aVxcXKhbt67FmAXw9PQkOjqaKVOmcOvWLcxmM0uWLGHfvn3ExsbafN6CILB161aOHj2Kp6cnrq6ufPHFF2zcuBFfX2uN1d69e+Pm5kapUqXw8vJi3rx5+Y4bFxdHYKB1yo1arcbPzy/XOQKkp6fz448/Mnjw4FyvJSUl4eHhgVarpXPnznz11Ve0bdvW5nN8XDjkbtBqtaxYsYIpU6Zw/PhxdDod1atXJzQ01Nnze+oRVDJnS0PEDdAEBVKjXRi+TYIQVIXb52oXFwLKlSfh6mUSrl5GI5k4PK4NoBRo2DwHQbA8eco2Fi44Fa07vJud16iTZeqG+nIoJtGy7lBMInqDGXcX649cVm6kJEns3buXRo0aPZ4524BWG4jBEI/ZnGb3vlkFNqdjH1jyInUaHTEPYvB18cVN40a/3/uxqMMip3oks4wkw5UriB4eXN4cSNiyGwgGPXzTAJKuQVANGG5fSLkoyBJcOpYINKK17PjDgocmRwgo4Tj30u/h52pfF5WsIiQ5H0UAUaXi2TGTMKTpKVG6rE1jZgnKH40/CihC6XqDHu195XV1gBvl16wmrX7jbG/k50foNTZ/b6RKpaJ+ffszBDMy4nAreRu1riwV6uUOURaFXscuWXIia3oqBvj9Uju4X3oHxuvPEhY+opAR/v8gaERCJj+Z3zJbxeMB0tLScnn1AD788EPLclRUFKmpqXz22We8/vrrltfj4uJo2LAhsixTsmRJ+vfvz3//+1+nNJDYvXs3KSkp/PXXX7z//vtUqFCB3r17A0oofdCgQZQqVQqVSkXt2rXp3bs3hw8ftnl8WZYZMWIEgYGB7N69G51Ox7x58+jatSsHDx4kODjYsu2XX37JhAkTOH/+PGPGjGHUqFF8++23RT5HgLVr15KcnEz//v1zvebp6cmxY8dISUlh27ZtjBo1ivLly+cKdT9pihSzKleuHLIsEx4eblcF4b8JQYDxL6lwMcKOXj/h4W27B0AQBPp+OhNTRoalh3ZR/QeCSqRE3yogY5Mh+yjI0sRMM5rRG8zU/UgpOOr53T6rLjYAFStWRK1W88ILLxASEsLRo0e5d+8erVvbptX3KGkUvY1bt1bh7m5/nmnWNciZFykIAos7LiYxI5EFJxdwNP6o04tssowkc2Iid+fNI+PMWa707k/Y6p8QdN6QBMT9nW9IOcRFw/+qlLV0rnEGolqg2X9CYdMHiILjlb2CILDnhT00Wa7k36WbHEwfkWVMd+4CoAkJRnjophdWK+9wVkHzWtRhEffS79FiZQtlpUni9pfHACW8iCCgMmfgkXydFM8y3LmegsmQd1tCUMJ2u3fvBqBp06Y2/77eubuZcm1m8+BaPWp1eIbku3fwLJFbScMRfDQq0iQJdY7vr8kliQzvq6Rn2O4F+v9Azgf7pxl/f38SExML3a5BgwZMmTKFjIwMXFxc0Ol0LFiwgNmzZ3P79m2Cg4OZM2cOnp6eBATknUYRFBSUq5r49u3bltdyklVUVr16dW7fvs3EiRMtRmR4eDg7d+4kNTWVBw8eEBwczPPPP0/58rZrom7fvp3169eTmJhoadP87bffsmXLFhYtWsT7779vNe+goCAiIiLw8/OjadOmfPjhh1aGZs5t4+OtIxgmk4l79+7lmV86b948unTpkstDC4qDpUIF5d5Tq1Ytzpw5w9SpU586I9IhK0Ov1zN48GDc3NyoWrWqpSJ75MiRfJrZEeL/CxpZ5p2oUbzd9ANErTuzXv2DWa/+UWi4KgtBECwGZJrBTNsvdtL2i52kOehRFFQCuqr+aMt5kTDn78cj+2NIhYneyj+DUpAhCAJuWjUl3LXUKuNDjdLejGhZAfNDxUc6nY5x48ZRoUIFVq5cybp16yw3zyeNSuVGmTL98fNr7ND+eTmZBEHAVeXKl4e/ZEDVAUWbYL7HFVD5+pK8bTt+gwZRdv48ZTIDC5et8dGo6RXkR7fA/Nvm2YtKJVK9WRARuu2IdstuW+Pt4o2rqmjda+T0dC61acOlNm0Ubc2HOPzbz3w1oCdb59nubRAEwaJrmYXorkZ0V4w/QafDtUoV6h2eRv0DH9FnXC3UBXiMJEli586d7Ny5E0myPXysVnuT8SAIU5o3Kz9ay5wRA7lz7Wru+YoCnq3L4tm6LIKNDwzb6kVwukl1qnrYXmRWzNNNVFSUJfe2II4dO4avry8uD3Vy0mg0lC5dGpVKxfLly+nSpUu+nsjo6GhOnDhhZWRt2bIFLy8vIiPzbyQgSVKeWsLu7u4EBweTmJjIpk2b6NatW6HnkYVer0hbPTxXURQL/L5lvZaftnF0dDT379+38opu374dSZJo0MC6+O7KlSv88ccfeYay8zv206KpnBOHjMgxY8Zw/PhxduzYYeUKb9OmDStWFE2k95+GBugZ/hzPl+3G5QaNkSTZZrFwALPJxN/bNnL4t3WYTEYuxKdwIT4F2e5GadlIBjPJu25giHnweCsEG41UNCNz5N0JgsDaVxuxfFhDOtcIRl2Ad/SZZ7LzEGfPnv3Ip2sLt279xN69LTl1+m2njZkV/hxYbeAj6acNmR7JpT9SYugQYvr143LXrkjphf8ASbJMhiSRYYfhUhhmk8SBDTdYEL+In+7998npmdqI2WTCkJaGyWhweIwB2wcRPK4hIR9GI2pVlspwARkPfSxefq4FGm+iKFKvXj3q1atnV3iwVOkeJJ/6kvjjz/MgbivIMolxt3JtJ6hFvNuG4t02FEGd9/hmo9Hm4xaFcC7S0ltFcHE/7sdO+/btOXXqlJU38tdff2XevHmcPHmSixcvMmvWLD755BNGjhxp2eb8+fMsWbKECxcucODAAV544QVOnjxpVROxdu1aIiIiLH+3a9eOyMhI+vbty/Hjx9m0aRPjxo1jxIgRFuP0m2++4ddff+XChQuW6unp06fz0ksvWcbZtGkTGzdu5MqVK2zZsoWWLVsSERHBwIG250lHR0fj6+tL//79OX78OOfPn2f06NFcuXKFzp07A0rl+sKFCzl58iRXr17lt99+4+WXX6Zx48YWRZEDBw4QERHBzZuKrm6VKlXo0KEDQ4cO5cCBA/z555+89tprlkhbThYsWEBwcDAdO3bMNb+pU6eyZcsWLl++zJkzZ/j8889ZvHix1XV4WnAoBv3zzz+zYsUKGjZsaBWarFq1KpcuXXLa5J5mNFpX9lcZA0BtrSuYzGCyP1QnmUxsmfM1AKd2bmPpsPEIgoCLumihkJRdmWLRj+N+nSUw3fhN+L4TJJxV/h60ETKFVG2pNM9ZnR0bG0taWho63ZP1eqRn3CIt/RppcdeIrDLdKfmLgiAwu+1sXlj/ApIssbLrylxeLGcgCAKiiwuGi8p3UspIR5ALToU8m5pOq4PnCNCqOdG4mlPmIaoEYk7fx4QLgZqLSCYZVRFac7uqXRldbzQeWtu0HAskD4O2RusOVGrQGK2dn70Ce2mD1YWX0tIQdLp8P09qtdpyM7MHScqg+9vh/DTtGLcfuAFJmE2O/QhUbNiY/WvXWeZYZ++pXDmRzuA/LKdh5UG4uxf3zn7cVK9endq1a7Ny5UqGD1fkoDQaDd988w1vvfUWsixToUIFvvjiC4YOHWrZz2w28/nnn3Pu3Dk0Gg0tW7Zk7969VnJtSUlJnDt3zvK3SqVi/fr1vPLKK0RHR+Pu7k7//v2ZPHmyZRtJkhgzZgxXrlxBrVYTHh7OtGnTLHPLGnfMmDHcuHEDPz8/nnvuOT7++GOrivCJEyfy/fff59uFx9/fn40bN/LBBx/QqlUrjEYjVatWZd26ddSsWRNQomRz587lrbfeIiMjgzJlyvDss89ahbr1ej3nzp3DmOOB68cff+S1116jdevWiKLIc889l6twVJIkvv/+ewYMGJBn4VxqaiqvvvoqN27csIiuL1myxCKp9DThkBGZkJCQqwIJlBN/FLIlTyMarQsNnn8fvVFP/WUNcTHILJCMNNw/kbCf1xYYqsqJ2sWFkuUrcPvyRXReXtQr64lGW4Q77EMkfHecwNejHu37kiUwDSCZoUJbaPyGUlEhqDCYJKZvVn5MRrSogEYt5Cn5I4oiH3zwAR9//DHe3t6YTCYePHiAKIpWulqPk8CA9ly5MhOVygPFInfsOj5sq8iyzOWkyzQp1eSReuYEFxfKZrYijZv0MabjJQhtfdfBs3BwDoLAf96uiunj8mjEDNBMLNJ4kxtNJsQjhKSMJHRqHRrRcQ/W1Zf6ErZmtdVnUavToX+QRHpqKm7ePjaPlVMz0kXScu/Dw9xDyYkUM/PjzKKG4zVe5ciIVTQU91L+x7wLq8xmM2fPKkoNERERNldo37q1gvMXJlOteyduF6AGIpsl9Jm6lW5RAXnmT3t4euF5TikWkorglS3m6Wb8+PGMHj2aoUOHIooiHTp0sBIZz4sqVapw9OjRArcZMGAAAwYMsFoXGhrKhg0b8t1n5MiRVh7PvOjVqxe9evUqcJsrV64UmjtYt27dPEXWs8gyjAuiRYsWuX6//fz8ChQjB+Ved/369Xxf/+ijj2zWvHzSOGRE1q1bl99++83yZmf9CM6bN4/o6Gjnze4fgkk2YVbLlFq/Bp3aFU0ZX5vzjARBoM8nX2LKyMCs0vDGymMAfNGrFq4Oajzm6mRjlB59knfWjXD4LkC2KtowSRJzdinV21n/1w31zVNQXaPREBISQp06dUhISODWrVscPnyYN95wrA1hUfHwqEzrVkX3rj9cVJQV0u5TpQ/j/lSEuKc2nYpLUVx0eSCoVLg3qI+k13Nt2x+AC7K5oIaUjwZZghhDHUyylkomCbEI7Zdblm3JhcQL7Lm5h0/2f8KqrquI8IsofMdMCutco3+QxMK3hiOIIqOW/eL4RPM4rmutKO57VQIgbdesPLvmgGJErlq1CoCxY8faJfMDD+uU5n5Ikc0yiT+dB0BXwx8hj+F9grPDbwkxV9hSrwqSDN5FjJI8TAIBnNObCdea8HZiJ5xibKNz585cuHCBmzdvUqZMmSc9nSIjyzI7duywSzfyn0jHjh3Ztcs5bWCLgkPf2E8++YSOHTty+vRpTCYTM2fO5PTp0+zdu5edO3c6e45PJfqUJDSfhWESBAgLQRYEVGXKkHDVABeSCK7og2iHIalxdcVoMLHhhKIlNb2n496phzvZPFYEEdYOA7MJ/rMABBGdbKBuWR8OXbtv2awgQfXBgwdjNBo5f/48W7cqld137959Yt2QjMb73L9/EJXKza4im4dlfu6mGijhrrX0Sl3UYRGpxlRe2ap0RZgQPQGzZM4Uq3aumSdoNAS+Mwqu70NoVQ3y8d5VdHPleKOqTtWJBCUvctP90QCEL3wG8dXtRZIYWnV+laV7Tb/f+3Ggj+09ZAvrXCMIAi7u7gh2dsTJSYZgwOf9Gsp7mRmVEASBsgvmw5vKD79cwPkLgmCRTLPns1C6dD9Kl+6HMcPMVpTP1f51l4lo1Njuz5SruwfegSVJir/NnesxlImsbtf+trKA4fx9Us9XVR7QM8g+yaZinMObb775pKfgNARBICYm5klP45Ezb9480tIU+bmyZW2TI3sUOGRENmnShOPHjzN16lSqV6/O5s2bqV27tkWR/v8LGsGMCljVbhmurm4YD/7Nz0uUN3XYzOaI+ch3PIzJYOD3rz9HkmUmde6JERVGs4wsyw4bE4JGpORbtZWIcj6J848E2Qyn14F3GWV5z5cIOz9lVZmGpE1aj94oWSR/LLvIstJfGsXwUqmUf9WqVWPNmjW0bNmS+/fvPzEjUq+/zN8nXkanK0uj6D9s3u9hmZ+6H20lMtiLVS9H45ZZbOGidmFsg7EALDq1iLkn5hIVGOV8/UiNhhJDhpLwVQZXv9pJuYbDEFSaXIacRhQo+QgKHNTuHgS7xyAYktEkHHG4a00WYxuMxVXlysJTC0kzpXHm7hmqlKhi+wAFXFt3H19eW1DEAkEBRHcNKo21yzXne3qk1ltE5pPKoNFo7CoUeHh8jYsKjYsKgx4e3EkvUE4oPwwGAzd9gsE7iOtnT/NxYATxBhNzqoUS4a7ki+ruV8DvSif8IhxTMCimmGIcw54+4Y8Su60Lo9HIoEGDEASBuXPncuDAAU6fPs2SJUv+XxmQWYhAWc8ylHUJ4uawlwvdPi9kSeL8/j+5eGAvveuVJjndRM1Jm/Pt8mILgiigKemOnGEi/qujRerrbReWIps3FCPBrFQEC4ERuKkk3PIIq99LNRA5flOuzjaiKNK+fXt8fX1xc3NjypQpTJw4kXXr1nHs2LGnUu7gYdy0KuqGZsvlnI59QNUJm+j8vz2kZpgwmgReqPwCvSN6I8lKRXQl30oYJedXxkp6PXfnzyf95EnkmQ1gXutcyZrJJjOb7ySx494Dpx5bEEW6f/QfGnt9z21jBWQndD0ZUmOIZflYwjH75uPiQrlVKym3aiWCS+4UAlmWuXX+jMPfPxdJQ9L/ThH3xWGkHHJdaq2IfyklfJ3iWQaTIe/rIEkS8fHxxMfH2yXxc/PWCnbtrs/Zc+PwC8k20h09D1mlRlZriDl+hCtpGZzXp5OR47fE/V5VAi70IsC/nUPjF1NMMf9s7DYiNRoNq1evfhRz+UfhqvPg+kt7uNpnFyeSznD49hGnjLvk/TcwZFZ5VyzpiaEIN1vJYCZ55w2MsamKIfk4pFWyimzqDFD+bjEWxt6C8i1gfjt0apG6ob7UKO2dZyg7K8ydRXR0NDVq1CAxMRGzWVl/9OhRfv75Z6ZPn/7ozycHaWnX7L6GWd7IU5PaExnsZVmfZUzmNJxH1BrB/hf3M67hOLSqIiQN5jcXnQ6XihXxreGCqL8BNw8rHsEcXE830O/EFUaeueb045tNMqvuTuenu59hmt0WOT250DaMBeGl9aJ1WUWU/pP99rVbFVQqdNWro6teHeGhfEP9gyS+eKEryz4czfVTfzs0NxAwJ6Rjire+voIg0P21qoXubTKZ+Pbbb/n2228x2aH6IJnTMRrvYjIlE16nISptDQTRi5WfHCzSg2SGXs/squVYXSuccJ1z83aLKaaYfy4OxTm7d+/Ozz//7OSp/LMQVSrKVKhOYLmKDNk6lFe2OuaFhOz2hwCJsbcI+mMWpya1o0kFf/rM3e+4N1IjYr6veOvMqcbHpxkpCKDKDImqM42hP2dC7DEEUxqrXo5m5fDsAiw/dy2HMts95kelSpXo2bMnlSpVsqwzGo3o9XrOnDlDamqq008jC1fX0pZlk+m+3fsLgoC7i5rfXm+Sy5gExXC+m2ogzWhm943dbLq6CZPkeGeXguZRbumP6J4fy4NrrsiPuQVyVkjbVUhCc/8Ma0f/gPxxCMxuChkpDhmTYd5KZ4tKvpUK2TI3UkYGN954kxtvvImUw6vt5uWNxlVHUIVKDn/3jIKRr6utxn9oNYfTSdzc3HDLo+imIIKCnqFB/Q1UrPA+DXr8h+CI7ojqQJLi01g59aDD5yOqVNT1dqexryceOQprMtxv8qDkfh4kn3Bo3GKKKeafjUM5kRUrVmTy5Mn8+eef1KlTB3d369ymrP6a/2bMJhNn928iXSq69IUgCPSdOoNFo1/j7o1rlKociWQyMXvXJf6+kZRvAYot4wa+HoVslCwSI08EjRsIKghtAlp3BLCqPFd0JAuen1qtpmrVqlStWpX09HTWrFlD+/btMRgM/PHHH5QoUeKRaWhptc5pG5fTmHy4JWTdj7aCYMAzYjwA+1/cj1p0fqWqbDRy64MJgB+V/xP7eKV+RJEe/+1H+qyOHLnanVhjFUyyC5q4EzC1lJW2qK28WvNV1lxYw+h6o+2fkNlMcpbEx1RrT+bri1bZPx7WWpG/mbcxvuwnuZQaRJVAqZtKAaIo1stzHK1Wy7vvvmv38TUaXzSa7PSJXmPq8ePEv0iKTyu01WJhvHvuOveMJsaFh1Au0xuZXPIQdyusRbh9H58StRwat5hiivnn4tBdav78+fj4+HD48OFcTc8FQfh/YURmpKdSdcuL6AUByhVdFkEQRfpP/8bSRzvdaEarEmkQ5odYhAKLp6KHqyDA4M0Qe1wJoQZHQQFdOB5ujfgwrq6uvPjiiwBs27bNkju2Z88emjRp4tSpZ+HnqxQOCELRDbss8XWdRsmXPBST1S1CwJQaRp1QXx6ZCI8o4la3NnLMPiSzgCDLj9eQVKlQD9nAvswKZUpWhYTMVJDrfynhbRfbNUE1Kg1b/7MVGZlfLv1C7cDalPYsXfiOD/OQh+5+XCyG9DS8/ANxtUOjNKvqvsmSxoy+NYDkHy+i61PNUqENoFKLVL6wEoDrA07k0qksCvHxm7h+YxG+vtG4GtuSoU+ly4iK/Dghd1hesFHLNottdx9wM8PIyNDcfX6LKaaY/584dEe8cuWKZVnO0d7u/zsqyUCrHSOofOSwzZXZOcnZR9tVo+KnVxoVeU6ySeLBH4qoqVfLMo+3UjsnpnSY21JZHnurwMrcg1fv0SrCthtVZGQku3fvpkmTJlbdEpyJIIhERf3wCMZV8iVzeiXTrg1nzzV47uKhTB1N8hRmdxTR1ZXQBXPIeK8sF9YGobs6hNClyx7r91ftomLQZ4qxr3bfBvq7ML2C8uLCDjB8t13eSLWo5u2db2OUjByNP8qE6Al2z+nKs89R/vcNCJkPN1vmfcO1E8foNPIdqjRpYfd4IiJNk2tz+8p1/KVIVDkyhwrTqQSlMjqrhdzYsWPRam3Lkc3IiOP+/f1otf78tSKG2PNnqfdML8DasBa1KkpNsa+i+t2wYFLNZkKK2xMWU0wxmThsUcyfP59q1arh6uqKq6sr1apVY968ec6c2z+KDK1A6InDVDl7BtHOPKYsjIYMfnh3JD+8OxJDejrnbydz/nayXb24H0aWZJK3XSN527XHV6GdF1lV224l8jQgs7xyyrLtzzbBwcFMnDiRNm3aULq0Ax4oGzGZkklLu47J5NzcyyyvZAl3LXVCvRG1txFdr3M69n6uwhtnIpkUI81wNQY5U2sMlH487ioRNzv6NduLIAjoPLXoPLWK0ebuD0GZyg5xJ3IV+9gynt6kZ8f1Hfx0/if0Nu6fZcwBGGJiuPLcfyzX2dXDE3dfP9Q2Gm850al1hJUozyndRZb5bCBDtE55kSUZYez/uB1QG0lw7nUuUaIZ1arOpEyZ/ujvKx7u21cuOGXs54P9GFQ6gACtc43IwXzHpuputPf3duq4xdjG3bt3CQwMzLdFYDFPJy1atLBoDh87duyJzcOhX7Dx48fzxhtv0LVrV1atWsWqVavo2rUrb731FuPHj3f2HP8xSGaJU7tvcmr3TcyOVFVLMgkxV0iIuUKawUS7L3fR7stdpJvMhe/7tJNVtf1m3gn4WV6505PbUz/MD73BhN5gstl42rx5M5999hkTJ05k+/btTje6Ll76jL37WrBzVw0kJ+TBPowgCPwwOAr38C9xD/sGhOzCmocr1p2Ba2kvKvfNoNLOrYhq2RLOreKh41KzGuyPjnTq8XJiNJhZOmk/Syftx2gwK5+NgRuLNOYrNV+xLO+4vsOmfQRBIGz1T2gzRb2zvIIAXd98j5e/+4GK9e2PBgiCwKKOixhT9n+UMPmwdM63SDneP7NJZsP885yqOphDtd/N87Oq0WgYPXo0o0ePtuoJXBhubmGULNkFH+86RDZTKtdjL5yx+xxA6XXcunlzXOJiQJaYfT2ez67EEpfhXPkpf+5QQafCy8mdcIqxjY8//phu3bpZRXIOHjxI69at8fHxwdfXl/bt23P8+HHL6+fOnaNly5aULFkSV1dXypcvz7hx46x6SOfFtWvX6Ny5M25ubgQGBjJ69Ggr9YEBAwZYDKOc/6pWzVY0mDVrFjVq1MDLywsvLy+io6P5/fff7T7v119/nTp16uDi4kKtWrVyvb5jxw66detGcHAw7u7u1KpVix9//DHf8ZYvX66oL3TvXuBx16xZQ9u2bQkICLDMP6/2izdv3uSll16iRIkS6HQ6qlevzqFDh6zGOXDA9iYLjwqHwtmzZs1i7ty59O7d27LumWeeoUaNGowcOdKqofq/HTdZZv9ze9C5uHHnp7Xs2KkUYVSqH4Sdncpy4efufJmXJ4pRD59ktlLLI6QtCAIqUeDdn/5m9ZEbQP7tER8mMTHRUqG9a9cu7ty5Q/fu3W0OAxaGmKNP3927uwgIKLia3BHcNG5EBUZxNekq+yd1tSq8cSpad4T3LiOgaEcKX4Qj+IcrhpzWvUidZGxChsTYVMsyUORj1gyoaVlec3ENncp3smk/QRQJ+2UdN0aORNS5kfWlTYy7xeXDB7l78xrthhXcyzcvdGodVXwjeOFcB7gLaQY97hpPIFsr8s5NvUUrUvWQc14QhFwFi7aQmPgX8fEb8fSsildAIADG9HREV5NVPq9kMBM3TbkBBb1XP8/CO5VKRVTNGhz4LgEZ+C7mNrFGM+38vQkqDmn/K9Dr9cyfP9/KiElJSaFDhw4888wzFompCRMm0L59e65fv45Go0Gj0dCvXz9q166Nj48Px48fZ+jQoUiSZEnDeBiz2Uznzp0JCgpi7969xMbG0q9fPzQajWWfmTNn8umnn1r2MZlM1KxZk549e1rWlS5dmk8//ZSKFSsiyzKLFi2iW7duHD161MrYtIVBgwaxf/9+/v47d87w3r17qVGjBu+99x4lS5Zk/fr19OvXD29vb7p06WK17dWrV3nnnXdo2rRpocfctWsXbdu25ZNPPsHHx4eFCxfStWtX9u/fT1RUFKDczxo3bkzLli35/fffCQgI4MKFC/j6ZhfN+fn58eCBc/V8HcEhI9JoNFK3bu6WYXXq1LFL0+zfhGw0cnvKx9DsS4fHUGk0PPPOByDLeLrrOPJhWyfO8CnDmBlCVbtCjvZyWpVIzN3skHFB7RFz0rNnTy5evGhpfH/69GnKlCnjtF7uFcLfRUDEz68pHh6292m2h6yijDRTGm6PuIewpNdzrnYdAFx83AlrfwJhainuhLbmp9bfoVOJ9C/lnKr0h1FpRLq/FWVZzoWDXuR+kf344fQPdle1iy4ulJ0zx2rd3evX2PHDXACavzQIFzf7DDpBEJjTfi4/nJuhzE2Msnqt+2tVmTfmYL77GwwG5s5Vjj906FCbH4ZSUs5x4+ZiAgM7E157SvYLcjoI1gVCUmrhv9UuOYqKWkt61KVKUcLJn82V9Gb2OT0jyyXT1M/TqWM/KWRZLtQr96jQaDQ25zhv2LABFxcXGjZsaFl39uxZ7t27x+TJky29tCdMmECNGjWIiYmhQoUKlC9fnvLly1v2CQ0NZceOHezevTvfY23evJnTp0+zdetWSpYsSa1atZgyZQrvvfceEydORKvV4u3tjbd3dlrDzz//TGJiolX3pq5du1qN+/HHHzNr1iz++usvu4zI//3vfwAkJCTkaUSOHTvW6u833niDzZs3s2bNGisj0mw206dPHyZNmsTu3bu5f/9+gcedMWOG1d+ffPIJ69at49dff7UYkdOmTaNMmTIsXLjQsl1YWJjN5/Y4cejXoG/fvsyaNYsvvvjCav2cOXPo06ePUyb2tOPm4Q0TkzBKRjZcXIeQbqAyMr73zuDesKFDjhVRpaJivWj0D5JYMWkML0yaRprR7NTCiieKxg1GX1KWF3aCO+eg/3oIy356ywpr3001WLxwekPh10AURSpVqsTLL7/M8uXLiYiIcGpbKFHUUrHi2MI3LCJppjQaLG0AwI6ej673uaDToYuKQhdVixLqnyEpAYD4O1eYeOkWAVr1IzMiRVGgZHkvti48zYmdN2gzMNL6h8iB4hqAyn6VnTbHsKg6VGnakvA69VGpHfO6CWqRb4OU9on91aPy3zAfozkhIcHuY3p51SSs3EjcPSpZGb5m4xXULtXtSvMwmUwcOHgIdVgExivnGKxKp0ol5+cdXyGcv5PM9DQ8GaPrUWA0GvP1yD1q7CnE2r17N3Xq1LFaV7lyZUqUKMH8+fMZO3YsZrOZ+fPnU6VKlXyLFy9evMjGjRt59tln8z1WVlvkkiWziybbt2/PK6+8wqlTpywGVE7mz59PmzZtLH3kH8ZsNrNq1SpSU1Od5jAoiKSkJKpUsW6vOnnyZAIDAxk8eHCBRnR+SJJEcnIyfn7ZfeN/+eUX2rdvT8+ePdm5cyelSpXi1VdfZejQoUU+B2fj8CPl/Pnz2bx5s+UJZv/+/Vy7do1+/foxalT2D+bDhua/DaPZyKR9k9AYZVbXr0sT8TClXx3ssC6jMT2dg7+s5ta501R8bx0mUUNksBe/vd7EIUNSEEAb5m1ZfqIIglJEkbWc72bWupF1P9pqc1g7KCiIN998E4DY2FhSU1MdCgvmhdGYxMlTb3D//kFatjjllDFtxRZD2h4EQSB06Y/IaWmIutGQeie7QvoxIEtw6YhiJLXuD2jdlOKauBPZxTVF6K1t11zMZtJPnwbANTISQaVCpdbQou9gYk4e5+SOrdRqZ1t43HpcmSYPoizL5GOLrhj9Oy/N7YmYo5hJrVbTv39/y7KteHvXwtu7luVvD78SpNy7S1bewNrPj9BrbN7alA8jSRJbtmwBVw88BIHfbsRxIf4+zXw98Mn0Rvpf7ob/5W6ETC66kkQxj5+YmBhCQkKs1nl6erJjxw66d+/OlCmKN7tixYps2rQp12exUaNGHDlyhIyMDIYNG1ZgKltcXJyVAQlY/o6Li8u1/a1bt/j9998t0aWcnDhxgujoaNLT0/Hw8GDt2rVERj66PG6AlStXcvDgQWbPnm1Zt2fPHubPn1+kwpbp06eTkpJCr169LOsuX77MrFmzGDVqFGPHjuXgwYO8/vrraLVay+/C04JDRuTJkyepXbs2AJcuKZ4lf39//P39OXnypGW7f4X3LB+MhgyO/vINGbLy9GzUCJSc+y1uGscqs3Ny6Nc1AESV9SGqfEmGNytfyB75I2hUBA6voXSrUT9F78fQPxTZn19GwsG50GMOaFwtLz+soejpqibdKOGqEW36XK1du5aYmBju37/PkCFDnFK5LQgi9+4pT5p6/RXc3JwfXtCpdex8XhGidhGyr0fdj7YSGezF+pFNEEXnvI9yejpXMn+4wn5chAh4mPR08nPHS/toW9uJaoFmL1SyLFuKa6Zmeo8dCGm3KduG+v+pb3fLSDkjg6s9letQ8c89qPz8EASBuzevs+F/nynr60fj7uNb0DC5MUt8cHOoZTknGm93PI0JJGsCSNYEYExKxcU3O5QriqJD4auUlHPcv38InVsoJfyaMHzWImRZZuUnB7lzPcUiOK5y4CM0z6s0909dZVPdShYjspi80Wg0ucKhj/PYtpKWloarq2uudYMHD6Zx48YsW7YMs9nM9OnT6dy5MwcPHkSn01m2XbFiBcnJyRw/fpzRo0czffp0h0Ty82LRokX4+PjkWahSuXJljh07RlJSEj/99BP9+/dn586dj8yQ/OOPPxg4cCBz5861hMyTk5Pp27cvc+fOxd/fsajN0qVLmTRpEuvWrSMwMNCyXpIk6tata/FmR0VFcfLkSb777rt/hxH5xx9/OHse/ziMhnTqn5xEuiBQv34PRJUayQQbFyrVx20GRqLWFK2yZsng+qRKap6fvQ+AX15rgs5BD+e91ecxJ2YQ8HKNp8O417oBMpxdr/zdfZbVyzk1FAHctGrO305m7JoTNnkkNRqNJTfFWS0R1ersm/yD5JOPxIgUBAE/Vz/0Rj2uKmtD+nTsA7p8tcdhr3QuZBnDxUuWZYCyGXEsqBLyyL2AKpVI9RYPGfY5z8mBkLabxq3ID3EXGjdBV7s2oT8uIbhCZQJCw6jZtqNFP9IuBIG/3c4D0FywDtWJokifGZ052aglKrMBtdY6dcFoNLJ27VoAevToYbNhkJj4F+cvTCYwsDMl/JpkTkOgx9u1mZsl8O4gYSmJuAYF4q56Qlqz/yAEQXBaUd+jxN/fn8TERKt1S5cu5erVq+zbt8/iHV+6dCm+vr6sW7eOF154wbJtVs5kZGQkZrOZYcOG8fbbb6PKo6o0KCgoVzXx7du3La/lRJZlFixYQN++ffO8jlqtlgoVlMhJnTp1OHjwIDNnzrTyEjqLnTt30rVrV7788kv69etnWX/p0iWuXr1qlaMpScrDolqt5ty5c4SHh+c77vLlyxkyZAirVq2iTRvrQs3g4OBcBnGVKlVYvXq1M07JqRQ/ThYRV1nmq6YzcNW4cm30WC4ZOgPQql/+4StbWTH+XZ776EsuxKcAIONYwYFkMJN2TAkdykbpyXewyUKlhU7TwWwAMffFytJQBNAbTHy385LNhTYdOnQgLCyMBw8e5AqhOINTp94iqGTXwje0kzRTGr3X9+ZS0iWq+FVh5fDlpBkluny1hyt3Ujkd+wC9wYy7ixM657i4UHbRImXZzQO6fau8YKcnzxHMJonDv18FoE7HcqjUopIzmzOkbWf3GoAjt4/wwZ4PKO9Tnm9af2PTPoJOh652bdKOKJ1z0o4cQU5LQ+3mRr//fmXX8a3G1Yi8FzoDgP2a3rlfV4lojcp3++GHAlmWOZ0ZYi9MMiQnOl1ZAgI64O1Vy/pYTnjoGHLhAM/1tK5KTSy7mXuhm0i/2pMKlRxoPVnMEyUqKoolS5ZYrdPr9YiidcQn6+8sIykvJEnCaDQiSVKeRmR0dDQff/wx8fHxFq/bli1b8PLyymUw7dy5k4sXLzJ48GCbzkOSJDIyMmza1h527NhBly5dmDZtGsOGDbN6LSIighMnrCXrxo0bR3JyMjNnzrQY2HmxbNkyBg0axPLly+ncuXOu1xs3bsy5c+es1p0/fz7f3NAnyVPxSPnNN99Qrlw5XF1dadCggc3aR7bqMj0KRFHFCZcoTrhEIYoqMJtJ2Zotx7L28yMOaRWqXVwIKKeErwPKlUdlNrFsaEOWDW2Iy79NR02lgfpDIf0BLOpaaAhzzZGbNg+d1Wu7Ro0a3Llzh1WrVjlFO9LLS5GScXNzPMWgIFxVrrhr3WlSqgmv134dCQl3FzXrR2a3c3SW+LigUuHeoD7uDeojaF0hqg8xEf+h98lrvHLqapHHLwjJLHPwt6sc/O0qkjnzXB7Wi1zYwe6wdro5nRspN7idetvmfQRBIPTHJVT8c0+u1/b/vIqdSxaQfO+OXfMARVS8bEYwZTOC8xX6N4sa9tcbx/JpxxXNzExUKhWdOnWiU6dOed6Q88PfvyU1qn9D2bKDANj47Qy+GfQCp3ZuyZ6Xg5+d264enE1NIy1HaN6sTsOku4vRlOTQmMU8Wdq3b8+pU6esvJFt27YlMTGRESNGcObMGU6dOsXAgQNRq9W0bKl0Hfvxxx9ZuXIlZ86c4fLly6xcuZIxY8bw/PPPW7zma9euJSIiW8miXbt2REZG0rdvX44fP86mTZsYN24cI0aMwMXFOn1m/vz5NGjQgGrVquWa85gxY9i1axdXr17lxIkTjBkzhh07dthd1Hvx4kWOHTtGXFwcaWlpHDt2jGPHjmEwKDrAf/zxB507d+b111/nueeeIy4ujri4OO7duwdgabKS85+Pjw+enp5Uq1bN4kEdM2aMlQdz6dKl9OvXj88//5wGDRpYxk1Kyv4OvfXWW/z111988sknFtWROXPmMGLECLvO8XHwxI3IFStWMGrUKCZMmMCRI0eoWbMm7du3Jz4+vsD97NFlehS4unlQfcwOKr27ibEHxvP+7vcRJQMeyUqLwazcI3sRBIG+U2cQUK489Z55Dlc3HVFlfVj811VGLjtCugOi04Io4NUuFK92oWCWkQxmp4txO4whFf6cqfRNznjgsLxLfpw9e5YlS5Zw6tQptm/fXuTxKlX8EIBaNRcUeay8EASBJR2X8Hnzz1lzYQ39fu+HLMu4aVVEBnsBSljbGeLjUkYGN954kxtvvImU+RSfapb4414ye+6nFHn8ghBFgWrNS1GteSnrHE+te5G612Rhlu27PoIgIObI9cri2Kb1HPp1DSe3b8ljr0IwScy+/CGzL38Ipvx+CwRS3YNJvJ1GzkCDSqWifv361K9f3y4jMj0jjsTE/aSkKl1qjOlppKemYMrhpVn7+REQwadbOD7dwhFsTJD8KrIJLQ6c47w+3eb5FPN0U716dWrXrs3KlSst6yIiIvj111/5+++/iY6OpmnTpty6dYuNGzcSHBwMKA/p06ZNo379+tSoUYNJkybx2muvWXWtS0pKsvKmqVQq1q9fj0qlIjo6mpdeeol+/frlKsZJSkpi9erV+Xoh4+Pj6devH5UrV6Z169YcPHiQTZs20bZttiTegAEDaNGiRYHnPmTIEKKiopg9ezbnz58nKiqKqKgobt26BSg5mXq9nqlTpxIcHGz5V1AFel7ExsZy7do1y99z5szBZDIxYsQIq3HfeOMNyzb16tVj7dq1LFu2jGrVqjFlyhRmzJjxVKrfPPFw9hdffMHQoUMtOlDfffcdv/32GwsWLOD999/Pcx97dJkyMjKs3NzOFuc0S2a2xGzBxSAzEKh97Et2NS1aRbogirz0yZfcOn+Gm2dP410unA0nlOq16T3tN7IEtYhXq7IA3JqyDynVhCbYncCRUQhOKtJwGFENNXoqIdRzG+HQAqWzjZPyNmvXrs2vv/4KKHIWNWrUICAgwOHxvLxqERn5OWq1J4mJf+Hr27DwnewkK4y0JWYLwe7BmbqRbqx6OZqqE3J3NnAYs5nkLJHhKRNh7xeAJ9CkgJ2cg0oj0rRXRS4fu8OVv+9QvpY/okp0SoENwMX7F7mcdJny3kXzGFeo15DQGrUpGZZ/blNBJKmSAbCzJAeTyWSRC2natKnNFdoJ8ZssOZHVq/3P8rB4eMMa/MuMsBTXmM3gER1SyGjWqJOT8PPwRO3knOpqHKeifz3K6R5tMVcxeTN+/HhGjx7N0KFDLTmQbdu2tTLKHub555/n+eefL3DcAQMGMGDAAKt1oaGhbNiwocD9vL290evzf3icP39+gfsDXLlyxeI1zY8dO3YU+Pr333/P999/X+ixHt6nsHWFHTeLLl265BI1fxp5op5Ig8HA4cOHrZJKRVGkTZs27Nu3L9/9cuoyFcbUqVMtAqbe3t4F5inYQ3paKkemd+X4zJ5W60XJTNXGJXN7WOzEbDSyYuL7LJ/wLqLZzORuVZncrSqaIia1y5neUWNsKvFfHX3yHkm1CzzzFbSdDPtnKR5JB71PeSEIglUI4JtvbMuTK2g8N7cwLl+ZyZGjfTCZHo3HTqfWEVkikoHVBlqKRZxdDyVoNJT8cBwlPxyneKN2fgqHCv+BdhZmk8ymuSfZNPckJqOU/Vl8uMDGjs9oJd9KluVTd+yTYRJcXQnfupXwrVsRMitWWw96hbBadfAsYX/1paBV8UKl93ih0nt25yFLksTOnTvZuXNngXloD6PWeOPmFo6Li5IH7OqpFIN5+JWgx9u1LdvZ+r339vbG00Mpshrw0zccql6Gqh65PbZFoTO/8t/yOup5Px5Jp2Ks6dy5M8OGDePmTdvThZ5mkpKSuHTpEu+8886TnsojpWPHjnZ36HkUPFEj8s6dO5jN5jy1o/LSjYJsXaasbg6FMWbMGJKSkiz/rl+/XuR5A0hmE7VTdlEz9U+r9aJsotlzYTTvXTnvbhwOoFGJ9IsuR7/ockU2IoM/bIjaX7kJGGNTFemfpwFBBJULhDZRlp1IQECARZIqrxwbe3HTlePGDaUg5f79/LuOFAVBEFjccTEJ+gS+PfYtRrPzhZgFjQa/Pn3w69MH4QlItggChFT0IaSiD/dv61k7PTOPOKvABuwOafvr/GkQ3MCx+Ygi2tKlUPuXsBiyJ/7YzNJxb3P4t3UOjZlFr/W9kGTbv2uiKFKvXj3q1atnpR9ZGMFB3YluuJlKFT8AILxOfQDSHiRZFUr8PP0wD3ZeJ3nnDeR8Qu1arZa33nqLt98ZjZA59+unT+a5bTH/bN58802nOVieNN7e3ty4cQMPD/uK8v5pzJs3j+PHj3PhwoVHrpFZEE88nG0Pjugyubi45ErafRSYRfB4vicalRrsEAfOFwE8fBUFe4NZ5ustilTIiJYV0KodN7JErYrAkVHcmrAXTemn6Eum0cHA35UuNvGnITgKRFHxQjnBBffMM8/wzDPPOGGioNEo4u0lS3ZF6+J4aLwwTJKJuSeUh6UBVQcAzq2alg0G7sxW2v35D3oJq6v8GBzUaq2KHm/XxphhZueyc8ReSsJkkNC4qKxD2ga9Ylja+DlQC0X7/l0fOgzZbCb0xyUkxt4i/sol4q9cok7nbnaN4yJp+f2MUvHevfKbPPPzM/zS/RdEGx6S1Gp1nlWbhWE2p2M26xFFTaYklXLNkuJvYzal4V/GgzvXU7h3I5UHmdXx7tHB2HJlv+vzDp+le7ApWU9Nz6Lr4WYRQyjyAxM11EYCi3tyF1OMTTizI1tReKJGpL+/PyqVyqIVlcXt27dz6UZB0XWZHiUmtUCJce+jlV1Y+d/DAPzn3TqoHZTT0bi4Mvy7HwBF3mbmNiVRfnjz8miL6EAWtCLaUC88Goc43FnnkWBKg28zcwzH3lKKLBZ0UHIkM3m29tPxxalRYw6GjAS8PIvu2cwPtajm+crPW5ZNRa+lsUI2mbiTGd4vMWggQlB1Sty7yYhrS3Fv8ppzD1YIV0/cwdUjhwGR02CcXkHxTA7bpTxYFIKH1gNfF180KvsNEkmvR39Q8S7LaWlUqt+IwHLliWjUzO6xHpbViXkQw/Prn2dll5V5Su7kDDGbzWbOnj0LKIUOthbX3Lq1wionslTlbA+FPum+w3qRkc1a2b2PrSynL3+fTeOrKsn0DPIrfIdiiinmqeGJGpFarZY6deqwbds2i0yPJEls27aN117LfRMrii7To0ItyzxXvgdqjRa1qEY2wd0bmbqOTvLmqESBvg1DLctFRRAEAobXQEozIaWZEFyfkt7cGjco0xDuKgYze2ZYciR1GjfqhvrycvPwQjUi80Kv17Nq1SoEQbCSW3CUAP/W3L79GydOjsTbuzZlywws8pgPo1Vpeb/++2y7to2NVzfSolQ75x5Arcb3xUz9Qo0GBm6k5NRSfHhlNvSe4NxjFYDGRcWQzx8y0rI+C9f/Uv6OOwFf14XXDhVqSE5vPh1Qit6KSlCFSqSlJPPrl58SUimCOp2727yvoBEJHtcASZYJ2hJMTHIMZ++dtRRKCTod2srZ/b7ltDRwVXIYs3oCg9IL2Z4K7Zy4enhQtXkbjOlpaFxd7fqeGwwGS8eMuv6e9P/pG0IiqxPZ/EPLNu53IxHNWgKqOvmzWUwxxfwjeOLh7FGjRtG/f3/q1q1L/fr1mTFjBqmpqZZq7X79+lGqVCmmTp1q0WXKiY+PD+CcXDdH0ALvRr2Nq9qFq889j0lQQ8lXijyu2WRk/1pFdqFBj15M6e7c85NNErFTlBt0yORGT4cAuSAoXsesHLitE6DRSDCmI2RWJ6cbJQYuVHREZ71UB1cbuwKZzWauXLniVGP5asx3pKScJk0f80iMSACD2cA7O5UE8R09C642tBdRqyVo/PgcB3so71KWlffCjlCy08j6LBhSYXYzuHdJ+WejISnLMp8d+oxWZVpRP7h+kaZy/3Ys5/9SNCTr2BFhFgQBlYcWFbCy60oaLFVyNftv7G/xRoZ9P59yz08EQBTrWe2bJSxsz2e2dOl+lC5t/ZDU4dU3LcvGDMcMa0NaGrqMNORb19HkeJDVJVVEl1QRP9/i3tnFFPP/kSduRD7//PMkJCQwfvx44uLiqFWrFhs3brQU21y7ds2uxPLHhUqtYb+/ohdVS60BSSLj7FkkQaTD+5UQtC6oitCrWjKZ2ffTMmX8Tt3547Qidty+aknU/+a2Y4KghLFlWfFENX4Tvu8ELp4Ig7cgI/PHOaX7jvSEK8v9/VuSknKa5JRTyLKE4OSCIFCqtKMCo1AJWcayDDZlsBWObDKRvHUrUno63l26IGjcuFC+Ky+V7I/f3zf5vUYp+CREeR+cKLv0MMYMM3PeUPqFD5vZXMmJBOV4Lh6K0fh13WxDck6zQlsifn/qe2JTYjl592SRjcjSEVVpNXA4PkH2SeJIBjPxXx8DIGBETSL8Ijh776yVN1KlUVH+qiJ5cn3AFcLWrEYQBDQajeVB2h4eVUShSuNmfBpUhXRvPxqnphHh7twK7WKKKeafyRM3IgFee+21PMPXYJuW05PAxdWNBq8tJN2UTp8NL6ExSIwHRFkirLofGWY1P39xlB7v1C7yD/uqSe8zQWgPgsDpye2dakR6tnhKK/JyeqISzkKFtpkeyuwiKX2ODh86TcEheRcXF6cV1mRRMrALV68qOYUGQ4JFVsWZCILAwvYLOXvvLP89+AluoX+jjym6pxuUwpqbb74FgFe7dghubhh7zCHm0Hn0GQaloAWyZZcecT/tfBFFa0My7gSk3gF3/3wNyUv3L7H9+nZMsolB1QY5dtzMh5SA0DACQh3rk26KV66hIAgs6rDI4o3MQtDp0FSpyrVET0iEMimpaDw9kCSJO3eUB0d/f3+bH6Rv3lrBpUufExDQlioRHwNw+/JFzvy5k0oNGhMQWtGh89Do3Ej0LkGypw8ZObrvpHldJt37Mrr7KkoEFnsjiynm/xtPhRH5T0aSJc4lnkOUZAJmTMdF7YJJVnFk8zXralM7yWp/mHD1MndirhDd3BOzqEV0kqdB0GQW1zQtRfpZpY2Trqq/zd0rHgtZXsngmtDgZfj5FbSSjAvPkoGWuh9lt5msG+rLqpej8zUktVqtRebHWbi7V7AsJ94/8Eh6aQOIgsikfZM4c+8MgtYdBOfI/WT1jBZUKkS3zGrbnNdP83i8TWqtyKDPFIFzWZaRZTn3+yiKMHxXdsV2IcU2KlH5zu26sYukjCS8XbztntfVl/oStmY1cZfOc+XoYUqULkvlaNuF2AW1iP/Q6pZl8ogkC4JAmfkL2DT2EACNMyW3TCYT336rVHaPHTvW0kKtMCRzOkbjXUymZMu6JWPeBEBUqRw2IgG6bl2BR3BpwptWt6xL9T/B3QprUd8xFxuRxRTz/5B/cVz00ZKuT+HSlFpcmRYNgCQKuLVuiXujRsgGA8e2XCtkhIIRBIEXJk2z/P3DoAZ81KMaL83b75y+yYJAwMs1ENQi95ae5d7Ss/nqxT1RBAGG7YQy9eH0OtRnf6Fu2dwGQWgJdwzmgud/9uxZli1bxsSJE510DUW8vevg59cUWXK+jmP2cQRWdFnBjp57Sb3wIcjOkfoRBIHQxT8Q+O67ZFy4gCxJlHXVsqpmOHOrlntseZCCIKB2UbH2i6PMfXMXq6Yeyvv90borofUssoptMlJyVbG9GPGiZbnJ8iY262wKOh2umfnVblG1kI1G4i5dYN9PSy15kTaflyjgGu6Da7hPwZ2hclznmMFDLOfu5uaGm5t9UjpBQc/QoP4GKlbI7vZVraVS9PKwN1P0cUHlY7v8Wanb1wm/F4uH+inIny7Gady9e5fAwECuXr36pKdSjJMRBAFBECy1I4+CYiPSQSTJTLj5CpVNV/lvw0+Y0eJLxKQUEr7+hguNndM2ThBFSkdWo3RkNdJMZr7beYlDMYlO6ZsMmflTOe5tCd8df/IdbPJCEBSvWKfp0Gk6S4Y14fTk9lb/Pu9VE5dCbm4pKSmWXq7nz593ytQiq3xG1cjpBAfb10/VXgRBQKfO9gw6622SMzK42rMnl7s+g5yejodaRVM/Txr6PF4NUbVGROuqomzVEjR+rkLe55eV4jDmJvhlSnndu6R4J2c3tTImK/tVpnXZ1pZd76bftWkegiBQbtVKKh85TND48YhaLf5lQqnZthOhNaLsOifZKHH3xzPc/fFMgaL+Qo6e3RnnzyOnpaHVann33Xd59913bfZCAmg0vnh4VMbVNTt/U5vZfScnZiDgrToEv1/fZpmvzU27siSqFVfTMgrfuJh/DB9//DHdunWjXLlylnWvv/46derUwcXFhVq1auXaZ8eOHXTr1o3g4GDc3d2pVasWP/74Y77HWL58OYIgWFRY8mPNmjW0bduWgIAAvLy8iI6OZtOm3K1eb968yUsvvUSJEiXQ6XRUr16dQ4cO2XrKXL16lcGDBxMWFoZOpyM8PJwJEyZgMBistvv7779p2rQprq6ulClThv/+979WrxuNRiZPnkx4eDiurq7UrFmTjRs3UhC2XLs1a9ZQt25dfHx8LNssXrw43zFffvllBEFgxowZVutjY2NzrXM2xeHsIqIGmpdqhs7di5g+L5F25AiIzvEUabQuPD/hU0DRitx+Nh4/d+cKTgsaEU2wO8bYVEsHm6eiUvthVBqoPxQMqQgqDW4OFC3VqVOH9evXA5CQkEDlHPIqjuLmFlrkMWxBb9TTYFkDPKtA8tnJdPlqD9tGNS9Sa80sVL7ZnZ0zJIm4DCOiIFDmMT5iCoLAc+/WKTz9I2exzZxmijcSlP+nlrIqAprRcga1F9fGaKeXWBAEhBwewDKR1SkTWb2APfJGlmXSTih5jXLPSvnWQ+UM3R+p9RaRRXhCiI/fxPUbi/D1jaZ82EiHx8mLy2Urk+zpQ5KTBUtH8gW1otYQ4Onj1HGLKRy9Xs/8+fPzNNQGDRrE/v37+fvvv3O9tnfvXmrUqMF7771HyZIlWb9+Pf369cPb2ztXv+erV6/yzjvv0LRp00Lns2vXLtq2bcsnn3yCj48PCxcupGvXruzfv5+oKOUhLjExkcaNG9OyZUt+//13AgICuHDhAr45fscK4+zZs0iSxOzZs6lQoQInT55k6NChpKamMn26IhH24MED2rVrR5s2bfjuu+84ceIEgwYNwsfHh2HDhgGKxOCSJUuYO3cuERERbNq0iR49erB3717LfB25dn5+fnzwwQdERESg1WpZv349AwcOJDAwkPbt21uNt3btWv766y9CQnIX/gUFBeHtbX8qjz0UG5EOonXRcbTRN8iyTGk5nfQMM2WXLEZKTORsU+cL87pp1Rwb73wtNiWsXZNbE/Y6fWynYjLA7s/hz5kQWAWGbgdBwCzJHLii5HTWD/MrUEdTEASCg4OJjY1l69atNGrUqMiV/9euL+TevT8JDupByZL2dxhxlCt3Uuny1R5+e71JkQq3RDc3Ku1T3vurL/YhdfZcWh86T4BWzYl6jhWTOIrZJLFt0WkA2gyMRF2QfJMoKhXahlSlv3aWMflQEVCX8l0wy2YrL25hyCYTKXuU0LVHkybcvxNPwtXLePj5E1IpwuZxBJWAT7dwyzL5OCPVWhH/Um7cuaknxbMMJoOEWZOt0WhPTmRGRhz37+9Hqy28o1dhUQeVSkXPnj2VZVMGTQ5uQ1syiJDGzu3X64YeP42I679IdUKWZSQp7YkcWxR1Nv8mbNiwARcXFxo2bGi1/n//+x+gPGznZUSOHTvW6u833niDzZs3s2bNGisj0mw206dPHyZNmsTu3bu5f/9+gfN52Gv2ySefsG7dOn799VeLUTZt2jTKlCnDwoULLduFhdn3W9WhQwc6dOhg+bt8+fKcO3eOWbNmWYzIH3/8EYPBwIIFC9BqtVStWpVjx47xxRdfWIzIxYsX88EHH9CpUycAXnnlFbZu3crnn3/OkiVL8jy2LdeuRYsWubZZtGgRe/bssTIib968yciRI9m0aZNDHa6cQbER6SBqjZaodi8pHqLMisv9L+7HVee8YgSTwcCm72YC0P7lN1DbEdayCwFE96f8o6DSwIVNSlebUrXBbAC1CxkmM73nKnqXpye3L1SIvHLlysTGxgJK7/bAwMAiTSsl5Rx37/6Bj3edIo1TGDq1jp3P70SSZP7z7d9cvaPndOwD0oxmh8TXcyLp9SQuXUrakSPIGU8uVClLcOmIIt/Uur8NO2R5JYfvVqq1p1fItcnkxpPtn4fBwI2XlQr4ykcOc/X4EbYv+I5KDZsQUun9QvbOMT2ViEd0Du9ADiMyp1akIAh0f60q88YUvQ97iRLNqKadiYtrcIHbqYD4ifsARSc2r5C2SqWialXFYIw5cYxq54/in16OAG1xa8LCkKQ0duy033vtDFo0P4FKZVsu7e7du6lTxzm/XUlJSVSpUsVq3eTJkwkMDGTw4MHs3r3b7jElSSI5ORk/v+xORr/88gvt27enZ8+e7Ny5k1KlSvHqq68ydOjQIs8/53H27dtHs2bNrB7g2rdvz7Rp00hMTMTX15eMjAxcH0oX0el07NljX/50XtcuC1mW2b59O+fOnWPatOw6CUmS6Nu3L6NHj7Z8T58ET7nl8PQiSxKJd2JJM6Xnek2UjNQ/8BHlVq5ApXH86VqWJM7+qejnNRnwCjXHbwFsM5bsQdSqCPkw2mnjPRIEAYb+UWSpmebNm1OuXDlKliz5WHqqOwtBEPBz9UNv1LP+tSZUm7jZqePHT/8890qVC7y4Mnv5ESOqBZq9UMmybDOCAFrn9XJ+GA9fP0pXqYZfKfvksGSTxIM/rgPg1bIMOrUuT63ILERztgGv0WgYPXq0ZdlW3NzCcHPL3yuj1or4l/Eg8XpK9jxtDJ8fqtEIVUAQ7TOMBDmxx/UiBjP1ZCrvhSfR1v/Rht6KsSYmJibPMKi9rFy5koMHDzJ79mzLuj179jB//nyOHTvm8LjTp08nJSWFXr16WdZdvnyZWbNmMWrUKMaOHcvBgwd5/fXX0Wq19O9vy9Nnbi5evMhXX31l8UICxMXF5fJwZulXx8XF4evrS/v27fniiy9o1qwZ4eHhbNu2jTVr1mA2257ykde1A8WwLFWqFBkZGahUKr799lvatm1reX3atGmo1Wpef/11R07ZaRQbkQ6Spk/G79tI9IIA5bJvLoKrK+G/rgPgrqzm58+POEUrEkAtGRnUvFKRx8kL2SSRvOsGAJ7NSiuSJE8bkhkuZBpPEV1BZf3xteVeKAiCVQJ5UQkq2RVPz0i8vWo5bcy8SDOl0Xt9by4lXaKybxWgHyA4pcBG0OmouPdPAM5pchiLKjVUag+mDBAffZ6sSiUS2SSEw79f5fCGq9TpWA5VET+Hh+IOISNTM6AmWpVjnvyK9RtRsb798jWyJJO8TVFp8GxeGlEt5qkVCUrrxxa7R2UuH0YQBNzd7X9YSkz8i/j4jXh6ViUkRAlFe5cMolREVbwCAhEEgV5j6rFswj7ILNAzG6Q8nxFMJhPbt28HoEJJfw5Vb0Sypw+3DdlGpGjWosrwQqVy/MEujmBO6iXuO7s5/BNEFHW0aH6i8A0f0bFtJS0tLZcnzV7++OMPBg4cyNy5cy0eseTkZPr27cvcuXPx9y88tSIvli5dyqRJk1i3bp1VxEiSJOrWrWtJ94iKiuLkyZN89913DhmRN2/epEOHDvTs2dNub+bMmTMZOnQoERERCIJAeHg4AwcOZMGCBTbtn9e1y8LT05Njx46RkpLCtm3bGDVqFOXLl6dFixYcPnyYmTNncuTIkSfesrjYiHQygijiUrEixgwzR+efKpJWpKhW0fj5vgC467QMufUjpfaGouv0mbOnjSzJPNgcA4BHk1JO6oniZMwZsGqAsjz2Vi4j0tZikzNnzmAymahQoQK6IqYf+Pk1xs+vcZHGsAVXlSvuWnealGrCi5X703dvAiDQ87t9Rc6LFAQBUafjSs+e3PAvCf0fKsjYNBbiTj7SrjVZSGaZg79dBSCqXejDb7HdDNsyDKNkZMt/thDkHuTQGCajkb0rl3Dj9El6TvgEjdY2r6wgCrg3DLYs24PBYGDu3LkADB061OacyJSUc9y4uZjAwM4WI7J2x2eo3TFbaF8QBZ4bXYeETw4UOJYkSezdq+TLlu/WharnjyH4B1IiOtKyjV9MR/xiOhLSulgjMieCINgcUn6S+Pv7k5iY6PD+O3fupGvXrnz55Zf065fdbvPSpUtcvXqVrl2ztXMlScnnUKvVnDt3jvDw8HzHXb58OUOGDGHVqlW0adPG6rXg4GAiIyOt1lWpUoXVq1fbPf9bt27RsmVLGjVqxJw5c6xeCwoK4vbt21brsv4OClJ+SwICAvj5559JT0/n7t27hISE8P7771O+fPlCj53ftctCFEUqVFBSdGrVqsWZM2eYOnUqLVq0YPfu3cTHx1O2bFnL9mazmbfffpsZM2Y8VrmmYiPSychmM2nHj2M0ylz9O6lIY6nUGho++zwAxvR0NMY04i+epeP0rax9oxW6p7GK+lEiiBDaREmeMyppBDqNG5HBXpyOfWBzscn69etJTU3l5ZdfLrIRCXDm7AfIspmKFd5Ho/Ep8nh5IQgCSzouIc2Uhk6tIzJ4D6djH3A69gF6gxl3lyJ+lWUZw8VLGNMeqmQ2pMLBednLLo9W+kcUBao1L2VZfhqQZYmDvyg3qEsH/yKicXOb9hPUIr7dc+dpZtFrfS9+6f4LYma7TLOoZW/Dyez98BAvTKxHQkKC3XP18qpJWLmRuHsUHLFw5KGj6cGt+JctR2nXFwvfuJh/BFFRUfkWgBTGjh076NKlC9OmTbMUmmQRERHBiRPWnthx48aRnJzMzJkzKVMm/9SQZcuWMWjQIJYvX55nsUjjxo0tUm1ZnD9/3tJr3lZu3rxJy5YtqVOnDgsXLsxVZBkdHc0HH3yA0Wi0pJRs2bKFypUr56oEd3V1pVSpUhiNRlavXm0Vfs+Lgq5dfkiSREZmznrfvn1zGdft27enb9++DrVLLQrFRqSTkTMyiHmxD2ZRg3uXbxTPjZPvhZcSUpFxrp5jVgcbla8LgqD0/RU04hN3lVuh0cHA3yD+DHxWHtxKILx7mfUjm9D6i51cuZPqtGITe4iNXYMsGygXOvyRGZEABsnAuD/HYZJMLBk6ldqTdwA4xxvp4kLZRYsIkuFg9cqoVHk8oCzsUGjP6qKi0og071106aWH+e3ybwyuPtihfTVaFxr17EPpKlXxL1vO5v1ks0zaKUXiJ6sbVM68yJgHMTy//nlWdllp2ceo9cSYakKlUllCc2q17Z9lb+9aeHvXslqXnpKCIV2PVueGq3vuhwBbcyIvla3MraAQ7htN+GiKbx3/Btq3b8+YMWMshSJZXLx4kZSUFOLi4khLS7PkNUZGRqLVavnjjz/o0qULb7zxBs899xxxcXGA0hnMz88PV1dXqmWK9meRJXidc/2YMWO4efMmP/zwA6CEsPv378/MmTNp0KCBZVydTmeRqnnrrbdo1KgRn3zyCb169eLAgQPMmTMnlyexIG7evEmLFi0IDQ1l+vTpVg9sWV7GF198kUmTJjF48GDee+89Tp48ycyZM/nyyy8t2+7fv5+bN29Sq1Ytbt68ycSJE5EkiXfffdeyzddff83atWvZtm0bQKHXDmDq1KnUrVuX8PBwMjIy2LBhA4sXL2bWrFkAlChRghIlSlidk0ajISgoyCnSdfbwFCa+/bNwlWWWtf2Btc+sxVWdnVuikoz0m1iH/lPqoy5CcU1evG3YjNbJchhZHWz8nqtEwoJT3Bq/l4Tv/n46xccfQhQFto1qzu53W3J4XBt0BUnDACEhIZQuXdqugoWCkGVFoPbM2Q+cMl5+mCUzW2K2cPbeWVSiiSrBngCcjn3A3VRDkd4rQaXCvUF9fBvWp4y7jhDXzPCpxk1pLwiKjI4htainUSCSWeLi4XguHo5HKqQDkS1kaUTOODKDFENKIVvnT/R/elOmag10nl427yObpexuUJnnktV9KNRL8ZpkFdgIOh3aHD/+QkYGYWFhhIWF2SVDlZJyjhs3fuTuvezq0H0/LWXuiEEc+nVNnvv88r9jNn12tjTtyo+1WxOTni3IfDfsV863Hsr5S1NsnmMxTw/Vq1endu3arFy50mr9kCFDiIqKYvbs2Zw/f56oqCiioqK4desWAIsWLUKv1zN16lSCg4Mt/5591r6mC7GxsVy7lt3dbc6cOZhMJkaMGGE17htvvGHZpl69eqxdu5Zly5ZRrVo1pkyZwowZM+jTp49lm4kTJxaY+75lyxYuXrzItm3bKF26tNWxsvD29mbz5s1cuXKFOnXq8PbbbzN+/Hgrz2F6ejrjxo0jMjKSHj16UKpUKfbs2WPVIebOnTtcunTJ8rct1y41NZVXX32VqlWr0rhxY1avXs2SJUsYMmSIXdf3cVD8OFlERKC8V3ncPJSnJDmzH7Hxxg1ENzcSvvqa1H37CP1xSZE8RTl7aafGXkMyZiCLrk71FAqCAJrs8QwxD55O8XH/ykpOpEEPE5XrLo69RRk/25L7c/7YOBODwbauKI6iU+uICoyiY1hHfjz7I34V9kHs84BA3Y+2EhnsxfqRTRwKA0sZGdx69z1SELg1ZhxaFy1NfD0Vr+PAjdk9qx+xN9Jsktk09yQAw2Y2d6yeJ4dB9GOnH+mzQXm/F59ezCu1XnFoXntX/cjNs6ep3akb4XXq27SPIIA2zNuynIUoiKzsstKqwEYQBELnz4PMHtomo5F1mTf2Hj162PzAk5j4F+cvTCYwsDMl/PLvnKXSZhumd2+k2pS3HRJ/HaMhDXdVtlamLEjIKiOybLJpfsU8fYwfP57Ro0czdOhQywPLjh07Ctzn+++/5/vvv7frOHlt//C6wo6bRZcuXXKJmufkypUrubQWczJgwAAGDBhQ6HFq1KhRoDRR8+bNOX36dIFjTJw4kYkTJ1r+tuXaffTRR3z00UeFzi8nT6ptZbEn0kFcdR5cfX4bl3pt4UzyBY7GH8UsmZWbwY9LKPfbBvavOcfBTddJPXocOa1owrOCIPDcxM+Ir9WduLq9SNWns3zCe4/EU1jipbz1qp4aRFGR+SmCrEtCQoLlqbqoVKo4HgCttkQhWxYNQRBY1GERnct3ZuHJhfx95xi1Q7MN59OxD2j9haIlaTdmM8mbNnHldjwvnrnOK6djsl/Tult7I436Ip5J/ggChFT0IaSij+N26uxmkJnEXyOgBjq1DgGBb49/y82Um4XPQaej8pHDVD5y2NKSMCHmKtdOHiflnu0PCoJGReDwGgQOr4FQiHdc2SH7hK8OGMjp06c5ffq0Xd9xna4sAQEdClULENUqvHpW4mCqKT8N9Fw8s2UFw/f/RgW3olXzFvN00blzZ4YNG8bNm4V/N/4JyLLMjh07mDKl2Dvu4eHByy+//EiPUeyJdBBRpaJclbrojXq65xAbdxPdFI+e1pVDm29C6faUvVxwL01bEVQqViQFo5aMdNzwM7fOncaUkYGmiBINuY7j5PD7I0PjBqOVMEE6LvT6WgnhrRwejWsBN+3Vq1dz6dIlgoKC8qyKsxetS0CRx7AVQRBwVbnSuXxnBEHg/XqNMJlVdPlqD1fupDrcyUbI9KD7dOuR10Fh8BZY2BE07kqB0yNCrVXR4+3a9u+YFXaPO6H00/66rtIaURT5utXXfHrwU37s9KNNnWsebnsIUKdTNyo1bExQeEWbpyRLMqYExeBWB7gVWqGds4e2OSaG+iGBlBg6JO/81Hzw92+Jv3/LQrcTVAK6av7cMtpuoN7zLoHJw4c0s4TOiek0DdhHw+AGVHYvNk6fFG+++eaTnoLTEASBmJiYwjf8f0BWLqs9vyH2UmxEOojZZOLC4e2kS4+vw4dGJTK5W1VkYwZHv3n7kR/vqTcmBQHcFQ0yyWDi7xtKNbxUiOemVKlSuSoHi0LJwE6UbNXJaeMVhlalZWKjiWy6uomhW4ayqMMito1qblVcZG/FtiAIlP1+IbfnLaScdwgBng95VTU6GLZDWTakKv80bk4Pa8uSzL04JbwaWNbTdmkcQYBhuxTj8d4l5d+cZjB8N/WD67PmmbzzAfNDSkvjSmbLv7BVqygdWa2QPXIjmyRuf3kEULrCFJYWktPoF2WZsD17qPy/mYh23ADSM+JI08eg0frh4W67wZvffLKEqAVBYGWXgSR7+tBBn05NT+fJ17RgGw3LvIe7+9MviVNMMf8ksiSCHiVPuZXw9JKRnkrE7z2pvLkvAa7+BOoCH3kls0Yl8kK9stxNyU5slySz00PaWZXaHs1K59kO7anBoIdvGsBXde0Ksbq5/fNvVnqjnoUnF3I0/ihppjREUWD9yOwcuC5f7SE1w2TfZ8Nkwut/M1j45mDWReYhwSFJkBgDmz+ET0JgQQfbFN7twGSUWD75AD99egiT0c7CGlFUvI9+mfpzD4XeTZIdeXuZkkeGi5dAlrl85CBfD3qe1Z+Mt29K7upCW4r239g/1/skiQInq1Vlx549mEy2zzshfhNHjr7IlStfFbidbJJI3nSVSFcxX/EIjUbDsGHDGDZsGGqVCteMNNwz0lA/TYoNxRRTzBOl2BNZRHSyzPrOP1sKax41Jknifztj0JYdxP6xrbh6/Aj7f17FC5OmoXFxTqFNVqW2nG7m1if7kQ1mgsc2eAoNShkSzkKFtk43ZuzBYLjHxUv/RRTURETYlwztKKIgolVpqVuyrkVn0E2rstLMrDphE3VDfVn1crRtnwu1Gt8Xe1uWcyEIsGYYXFd6lXP9L6drR6q1IsHh3iTe1jsk0I8owvBd2YVABj1o3Oi/cQBH4o8Q7h3Oz91/tntYs9lERmoqBjtymwtqJ5pXC0QXtSvNXqiEbDAg75E4Va0a7N1LkwIKBB5GrfHGzS0cF5eSBW4nSzL6vbeo6KriXLptxvqAn77Bv2w5qnZwbovUM0Ry566RaDGDsrp/TivSYoopptiIdBhBEIlH0XTyLCRHTFenjnJzcwIqUaBvdDlA8RQc/GUNCVcv81X/noRUjuSFSdOcZkjKKgHpgeL1TJh1nMDXo54y3Ug3KNMQGryMdv1rzNHcZKRxZOH7ORmzOY3Y2FWIostjMyJd1a780PEHq3WCoHgju3ylCJEDHIpJtFk3U9Rq4b0xzLp8C48bdxldPth6A0FQutak3oHpmWESJ1drC4JAj3dqYzJIGDPMqLUOaJXm3H56BSjTEF1ZpQduhtmx9JPQ6rUY+OVs1FrnyEJlFUnlrNBWqUSqtyiNpNdzWjJT4cIFfHr1skviJzioO8FB3Z0yR1mW0ev1luVHxS88y9+X0vlKm1psRBZTzD+MYiPSQXTunugmXsFoNjL3RGZ7supD0aiUm0xWlSlA6Mi5TvPiuahVTOmu5GfJsmx1g8lZaGM2GRFV6qIJUGtEtGU9Ed01eDYrDRLwNDkjs4yajGTUPz5HpOiPiITRJINjbZL/MUiyxOX7lwEo71Pe4o0URYHfXm/C3VQDdT/aateYssnEtR07ma31x0+fwjthQbk/P1l5qFlFLFkhY63jvZMfxmSQmPPGTgD8y3jQa2w9+z7HWQ8XOTymL3eYyJ+3/nT4+6B11eEXUsqufSSDmVvjlbaBIZMb2fQbYDZJHNt+i4RSrYg68gdV5sxBtENs3GxOx2zWI4oa1GpFR7R2p25UbtQMj0whY1sxGo189pnSYvWlbl34rs87JHv6UCtZb8mJ9IiPQpNegqAabe0au5hiivl3UJwTWUSMkpFZx2cx6/gsi7AxZFeZ9ni7NmonhoFNZonf/o7lt79jMUsyvT+azitzcretOvjLmiJLAAmCQMArNfHrHYHopiZhzlMoPi4I4OKJuXQDZpu6kIYr3+y4WOAuVapU4Z133qFnZuFEUVGrPSlXbgShoY9WSiEn6aZ0evzSgx6/9CDdlG71miAIuOX4zOkNZvQGG/IjVSqSVmcVoAjIGfl47bK0Ix8Raq1IUHlvarUtyzOv17J/gKyHi3cK/hzYw43TJ1k2/l22zvvGaWPmpNf6XkiyhGSW+Wv9NS6Gd+d6mTLsGPEaZrPZ5nFu3VrB7j31rITvvQNLElIpAi//QKfP2zWlLN63muDtFeX0sYspppinn2JPpIMYMtI5vGQcGZjyvYpSRgaxH4wDIPjjjxBdih6qMZglRixVKj5PT26Pm0qNzsubkMqRJN66gcbVFWN6Ogd/WY0hTV9kCSBBEJCB5J03nl7xcUFA7P8LtWa8TnDSch5IowvcXKPROK1bjTKeF+HlRzltPFvxdfEtfCOweCQLEyMXBIGQz6fDofOoPDy4Nmhw/iL5Wesiuzk094IQBIFnR9e2SQC7gEGKpCP6MGmpydw6d9qu3FtBIxI8roFl+WHyaoH4Y9tlmTtL/NVI2bfRgweofG17rx8l/X/6Bt8yoUQ2/+xJT6WYYop5Sij2RDqIyZhB9PW51L/xfT6vm9m66Cz7LvmTuGEj2OFNKAhREGgQ5keDMD/EzBu5IAi8MGkaQ79eYNnOkOZcQWj9kXinjudsBNnMc6kreFX9C6NahaE3mAr0vi1dupSJEydy8OBBpxw/w3CHjIx4pBze6EeJm8aNXS/sYtcLu3h568u5zlOnUVE31NrwOB37gC5f7SnQI5llMEppetKOHMlfJD8rZNz4DSWUnSX74yRPtckoserTQyydtB+jwTnfHYDryddJykiye7/g8Eo88/ZYmvS2XVdUEARUHlpUHto8DfH8WiACIIN//B0C4uO5NniIzRGA0qX70arlRapVnWlZd2rnNtbPmMbZP3fmu58t4+sy0vAwpKPJ8RCi9z3DnfC13Lm73ab5FfP0cffuXQIDA59Yx5NinhxXr15VdHEFgVq1ajk0RrER+YiQJbhw5C63S9bDmZfZVaNixfBoVjwkqC0IgsXjqHZxIaRyJBGNmztdiJynLJptIdOokeoOZsvFFF6Y8xeR4zfR+X978uzgkvWDmZCQ4JTDHzjQmT1/RqPXX3bKeLagN+pZcHKBReYnJ4IgsOrlaE5Pbs+pSe0J81dyFk/HPiDNWLhRJhsMBXu/skLGAVVgZT9F8seZsj8yJMamkhib6pTPnLdLtnrC9muFGzyCWo3/iBH4jxiBoFbj4VeCivUbUSayus3HlAxm4r44TNwXh5HyMYSzWiDmOj4qvDKa0nL7H5hPn7a541XWDSGn0Rp/5RLn9u3mzvX8BZjXfn6kUENyRZeBfN70Oc6mZs9F73ueu+HruJuYv4FazNPNxx9/TLdu3Sy9po8fP07v3r0pU6YMOp2OKlWqMHPmzFz77dixg9q1a+Pi4kKFChVytfJLTk7mzTffJDQ0FJ1OR6NGjQp9aF+zZg1t27YlICAALy8voqOj2bRpk9U2s2bNokaNGnh5eVm2+f333/McT5ZlOnbsiCAI/PzzzzZfE1BaI+b8PmX9q1q1qmWbcuXK5bnNiBEjLNsMHz6c8PBwdDodAQEBdOvWjbNnzxZ47Nu3bzNgwABCQkJwc3OjQ4cOXLhwIdd2+/bto1WrVri7u+Pl5UWzZs1Iy/FbceTIEdq2bYuPjw8lSpRg2LBhpKSkWF4vU6YMsbGxvP2247rTxUbkY8B/xKsIdiTHF4QkyZy/ncz528n5trfL8ky2f/mNPF8vCgnfHX/68iJBMWoGrEcoU5/LW+dy6sY9IP9WgNWrK8bAo1Tyfxx8efjLfF9TciPVuLuorTQks3Ik8/LWuqtE2pbwolWFclTatxexIE1NQVBEyJNvZ6+7/pdT2iKqNCLd34qi+1tRqJwgeh/mWZa367zNjBYzaFyqcaHbC1otASNfI2DkawhaLbevXGLznK84sO4nu45ritdjirf9egzZPgj/0h7IyCTq3Ej0KWGXDX3z1gp27a5vlROZF4IAmlIeJItKusqd6ymYDAVL/SR6lyDe05cMR9pqFvNUotfrmT9/PoMHD7asO3z4MIGBgSxZsoRTp07xwQcfMGbMGL7++mvLNleuXKFz5860bNmSY8eO8eabbzJkyBArg2/IkCFs2bKFxYsXc+LECdq1a0ebNm0KbK+4a9cu2rZty4YNGzh8+DAtW7aka9euHD161LJN6dKl+fTTTzl8+DCHDh2iVatWdOvWjVOnTuUab8aMGQ4X082cOZPY2FjLv+vXr+Pn52eVS3/w4EGrbbZs2QJgtU2dOnVYuHAhZ86cYdOmTciyTLt27fLNdZZlme7du3P58mXWrVvH0aNHCQ0NpU2bNqSmplq227dvHx06dKBdu3YcOHCAgwcP8tprr1mKbW/dukWbNm2oUKEC+/fvZ+PGjZw6dcqqZ7hKpSIoKAgPD8dl2opzIouICNT2r4WoUlsqZAFElUCDZ8oDENCuBYLaOfZ6uslMuy93AZk5kflIt5iMBtZMnQDAs2MmodE6no8paEQ0we4YY1MxxqYiZ5iRM0NagsYBCZZHhdmAsHY4I4FBY6/yn9n7OXPXxJU7qbT+Yifb325umWvXrl3p2rXrk51vEdGpdex8fqdluSByvkUPV23nzJUM1bmwuIbyuZX0egSdruD3Ny/ZHycgigKlKjsxD3B2MwZktkG0h6xr8OBOPCe2bSKkUhXqd/uPTfsKahH/odUty/lhpRmZeJYOb1Zh8ei/SPQ/zJYObXhu1U82e3clczpG411MpuSC56ZRUXJkFL7pJra/ucumsbtuXYFHcGnCm9rujf3/iizL6CU7xfKdhJto+2/yhg0bcHFxoWHDhpZ1gwYNstqmfPny7Nu3jzVr1vDaa68B8N133xEWFsbnn38OKMWKe/bs4csvv6R9+/akpaWxevVq1q1bR7NmzQCYOHEiv/76K7NmzeKjj/KWQpsxY4bV35988gnr1q3j119/JSpKKd56+Hf7448/ZtasWfz1119WXsJjx47x+eefc+jQIYKDH5IrswFvb2+8vbMjGD///DOJiYkMHDjQsi4gwLrl7aeffkp4eDjNmze3rBs2bJhluVy5cnz00UfUrFmTq1evEh4enuu4Fy5c4K+//uLkyZOW85k1axZBQUEsW7aMIUOGAPDWW2/x+uuv8/7771v2rVy5smV5/fr1aDQavvnmG4th+d1331GjRg0uXrzotG42xUZkEXGVZWY1/zqX2LhKLVK3UzlAuRHJqkJuxnbg526Dfo0kc+P0SctyURAEgcCRUZjvZyBoRTIu3ufukjMAaEO9CHi5xtNhSGbl6Ylq3NPj+D31eU64VaGrfhxX7qTarJf4T0EQBHRqHb3XKwLhy7osy9eYzMqRPBSTmOu1LG/ttlHNEUUBSa/nXO06ALhUqULYmtWFG5JOLGKBzJzihacBaDMwEnUBvdDz5aF+2sY5TbnSawHv7X6f+kH1GdNgTL67ykYjSb+u5+78+QiiiN+sr2nc6yU8SvjbfHhBFHAN9yl8u4c0I/tu7MuzvqO4J2tQZyihp6sv9S38fQCCgp7B17ehRd7HlmNnUViEodTt6/i7qPBQO9d7/x4f0bD+Ztzd7ZMgeprRSxLhu5zXWtUeLjWrjruNEZbdu3dTp06dQrdLSkrCL4dE1L59+2jTpo3VNu3bt7f04DaZTJjNZlwfSqfS6XTs2bPHprkBSJJEcnKy1bFzYjabWbVqFampqURHZ4vg6/V6XnzxRb755huCgoJsPl5BzJ8/nzZt2hAaGprn6waDgSVLljBq1Kh8v6epqaksXLiQsLAwypTJoysYkJGpipHz2omiiIuLC3v27GHIkCHEx8ezf/9++vTpQ6NGjbh06RIRERF8/PHHNGnSxDKOVqu1kgHU6ZT7w549e4qNyCeNKKo4pVWeyMPFvL+wkl7PubYdke/G4xpZhbDVhd8ECsNNq+bIh49fk00QBdR+mR/qHKcgG8xgksCRm7yzyfKKmdIhXjFAqrnGE+XlwtE4A25aNWkGM22+2Im39IAPW4VQulRwvl9mR5Dlx+t9kGWZS0mXLMv5kZUjmTMfUpaV9ohX7qRy5U4qXb7aw3dD6zPuYhyqtz7g06RYSgwZnO+YjxJZgktHlHzV1v0dHOShftrS7ZM896viRbx4/yIVfSvyn0r5eBXVau4tXozhknJtk0a+SQMbjDirczBK3Ft5DgC/XpUL7EWf0xt5JfUSP9X7L+u6rSPmuZ5kmM1knDmDnJaGUEjLTo3GF42mcA+uLMtIqUakHCHstZ8fsdLkVKvV9O+fefGT77O5aVckvwCap2VQrlgU/F9BTEyMpT96fuzdu5cVK1bw22+/WdbFxcVRsqR1V6SSJUvy4MED0tLS8PT0JDo6milTplClShVKlizJsmXL2Ldvn13Gy/Tp00lJSaFXr15W60+cOEF0dDTp6el4eHiwdu1aIiMjLa+/9dZbNGrUiG7dnKMecevWLX7//XeWLl2a7zY///wz9+/ftwoXZ/Htt9/y7rvvkpqaSuXKldmyZQtabd7OoIiICMqWLcuYMWOYPXs27u7ufPnll9y4cYPY2FgALl9Wcu8nTpzI9OnTqVWrFj/88AOtW7fm5MmTVKxYkVatWjFq1Cg+++wz3njjDVJTUy1ey6xxnEGxEekgrm4eVB27hwxzBuP/VPrpTm48GReV8uNqzDDzw/jDpFefgEfyNeodnmbTTeBRIDu5GsY1ogQhkxsBinGJ6inwQmaRlacXHAVjbyFo3VkjyxbjSUbm5v00gtRxbNp4jLp16zrFiBQyVdiTU07h6VmlyOPZiovKhQXtF1iWCyIrRzIn20Y1p/UXO7lyJ5XTsQ9ISDey+e4DAqrWIqD2swXnRD5CRLVAsxcqYTZJiEX5fOVog+giw8Z0Tzq4KqHek3dO5mtECoJA2OqfuNyxE4aYGO5dusC9davxLFmSytFNbTq0LMuknbijLPeslG+P6qzjreiygmd+foaYBzHEPIjhhd9eYPniHzhft57Npxsfv4nrNxbh6xtN+bD8uzfJRonYj/YDEFjanfgbqdy5noIxw4zWVfmMiKJIWJjS6SfmxDEul61MsqcPSSbnVcv/W3ETRS41ezJhfzc7UjbS0tJyeQtzcvLkSbp168aECRNo166dXfNYvHgxgwYNolSpUqhUKmrXrk3v3r05fPiwTfsvXbqUSZMmsW7dOgIDrTVOK1euzLFjx0hKSuKnn36if//+7Ny5k8jISH755Re2b99ulUdZVBYtWoSPjw/du3fPd5v58+fTsWPHPI3yPn360LZtW2JjY5k+fTq9evXizz//zPPaazQa1qxZw+DBg/Hz80OlUtGmTRs6duxocRRImakSw4cPt4TXo6Ki2LZtGwsWLGDq1KlUrVqVRYsWMWrUKMaMGYNKpeL111+nZMmSdnXBKoziwpoiYpbMbLiygQ1XNmCWsn9c1VoRD1/lpp7iWRZzITd4W9EbTJR7/zfKvf8beoPJpn2yRMeNGekY09OLXBgjqARErQpRq+L++sskfPcUipCLokV6RoBcxpOQaVg764emcsQUms+sAv8AAKEESURBVDc7RkiwbflyzkIlqqgRUINlZ5cxetdou9v6iaJgVXTz9qrjmUsyV3r14lKXLki2VAYLKkUzMrKbslxEsloAGtJMrPvyaNE+X1p3JawNlIo9xWvVhxWyg4IgioStWQ1AsquWncu+58iGX2w+rKAS8OkWjk+3cAQbDGFREPml+y+EeoWiklRUPVyVKdOnY8oKTdpwDTIy4rh/fz+pqbkrOfMjp6B7QVXaTQ5uo9upPwlxcZ7GKsAsRtL0WAq/Jdx36rhPEkEQcFepnsg/e7zl/v7+JCbmTnEBOH36NK1bt2bYsGGMGzfO6rWgoCBu375tte727dt4eXlZQqbh4eHs3LmTlJQUrl+/zoEDBzAajZQvX77QeS1fvpwhQ4awcuXKXGFzAK1WS4UKFahTpw5Tp06lZs2algry7du3c+nSJXx8fFCr1agzi1qfe+45WtjRhz4LWZZZsGABffv2zdd7GBMTw9atWy35ig/j7e1NxYoVadasGT/99BNnz55l7dq1+R6zTp06HDt2jPv37xMbG8vGjRu5e/eu5dpl5Xjm9L6Ckpt67do1y98vvvgicXFx3Lx5k7t37zJx4kQSEhJseg9spdgT6SDpaamcnNWPDCQokft1QRDo8XZt5mYmrR+p9RaRj9HQUru4EBRekTvXr1GhbgMks4kFbwwjJfGe03psSwYzqX8pbvGnToTckKpIzoBiQDzU31kvO7cvYoB/a6eOZw9mycyWGKUq8KPGH9ndmtJNqyIy2IvTsQ+4cuMB77cpj6dsxnBRCeXaVNShcYVePxS+nR0YM8wc3XwNk1EquvD4wI0wtVTmn3Z87jO3dTWaqdygMX5lytq+q0rEI7rgUOHDiILIj22XsXj0X9wp+afVa7bkRZYo0Yxq2pm4uGYXEviHlqNi/UaUKJ333NUuKvzLeHDneoqlSlvjosJkMvHrr78CUDOsLNXOH8U/vRwBOfqHqwyeaFNKodUG5Dm2LTzAm1sGGb35yRSi/H8mKiqKJUtydzw7deoUrVq1on///nz88ce5Xo+OjmbDhg1W67Zs2WKVl5iFu7s77u7uJCYmsmnTJv773/8WOKdly5YxaNAgli9fTufOnW06D0mSLLmE77//fi5jrnr16nz55ZcOFVPu3LmTixcvWlWwP8zChQsJDAy0ab6yLCPLsmW+BZFV2HPhwgUOHTrElClTAKVAJyQkhHPnzlltf/78eTp27JhrnKzUgwULFuDq6krbts5LiSs2Ih1EMpuo+2ArRuDlZlPQaF3RiNZP6BoXFf6l3LhzU0+KZxlMBglVEVsM6zQqDo9rY1nOD0EQePHjL6w61hgzP7Q5e2z/a9G4QZkGUKY+1B+mGJVad3QaxWC6G/cAUBKzDQZDvk+YthIfv5Hbt9fj69eI0qVedMYZ2IxGpWFsg7EYzcZcn0FbyMqXrDphE4JRYsbcI4iyxLPPjWbiM1URnNBpyRFEUaBS/ZKIajHfLjs2U8QHJp+0DBq8/IZd4X3ZJPHgj+sAeLUsY59CgyxS4nZD9rVcjFulihjOnLUpL9LNLQw3tzCrddVbtqN6y/xDkQ8/8GYhSRLHjyue6erlynCoRiNUAUG0zzASlOmN9L3RCt8brQjp0Mj2cyvmqaF9+/aMGTOGxMREfDN1YU+ePEmrVq1o3749o0aNIi4uDlDkYLKqkV9++WW+/vpr3n33XQYNGsT27dtZuXKlVd5klpxN5cqVuXjxIqNHjyYiIsKqunnMmDHcvHmTH35QHkCXLl1K//79mTlzJg0aNLAcW6fTWQyqMWPG0LFjR8qWLUtycjJLly5lx44dFnmhoKCgPItpypYta0nPsIf58+fToEEDqlWrlufrkiSxcOFC+vfvb/F6ZnH58mVWrFhBu3btCAgI4MaNG3z66afodDo6depk2S4iIoKpU6fSo0cPAFatWkVAQABly5blxIkTvPHGG3Tv3t2SUiAIAqNHj2bChAnUrFmTWrVqsWjRIs6ePctPP2XLkH399dc0atQIDw8PtmzZwujRo/n000/x8fGx+zrkR7ERWUQ0wMCI/rmqs0F5o597tzYnvt+BWi2jdiu60SYIAiU8bLup5xQgBxj27UJunT+LWqtF5cS2f08lggCDNimahXNbQcJZKNMQYdBGVr0cTfUJ2eK0N2/edOjHJSep+kvEJ/yuVMWWKurk7UMjaugd0Ztvj33L4M2DWdRhkd1eZjetdfW2JIj8ZC7J+1VrIZpldKJc8JiSGWKPgUEPoY0gn2Ize1BpRFr2fTT5pcHuwVaSXAUh6HRkqERiTv2NztePoAqVbNpPlmSStymhJc/mpQvMicyJTq1DQECQtZxJOUvJ7zdxvUFmHmYhXuHExL+Ij9+Ip2dVQkJs7w1vy+flUPVGJHv6cNuQbUQW88+mevXq1K5dm5UrVzJ8+HAAfvrpJxISEliyZImVlzI0NNTSpCEsLIzffvuNt956i5kzZ1K6dGnmzZtH+/btLdsnJSUxZswYbty4gZ+fH8899xwff/yxVcvZ2NhYq/DrnDlzMJlMjBgxwkqwu3///hYx8/j4ePr160dsbCze3t7UqFGDTZs22e1dK1euHAMGDGDixIn5bpOUlMTq1avzFFvPYuvWrVy7di2XNBIoFda7d+9mxowZJCYmUrJkSZo1a8bevXut8jzPnTtHUlJ2J63Y2FhGjRrF7du3CQ4Opl+/fnz44YdWY7/55pukp6fz1ltvce/ePWrWrMmWLVusZIMOHDjAhAkTSElJISIigtmzZ9O3b19bLo/NFBuRDqLWuLCv3CsA1NHkb9SpXbREDbcvIbkg0gxmnvl6D2ZZ5reRTdHZEULW6twoV7M2d67HsGTsW0pIGwG1i8vTIdHjbARByYeTzFChrdKiT5YQBJAQOWIsxcJ3X8DXs4ju4acAvVHPwpMLSTenk2ZKw01jX0FMljfy6P1Uehy/hCHVyKTPP2Ndl4V8Wu8lKpYuUWDfbUzpirEO4BcODmgyPoxklrh8TClMKV/LH1HlnBRuL9GVqMAoXq31aqHbim5uRBw9woWD+1gz/SNCKlWh9xTbekcLooB7w2DLsq0o/erNJJY4SsvYFhiN2bnPhYW0U1LOcePmYgIDO1uMyAd3Ekh7kISbjw+efrZLFD1M1fPHEPwDKRGdnYclCyZk0YRZykDkyRRhFVM0xo8fz+jRoxk6dCiiKDJx4sQCDassWrRoUWBOea9evXJVVT/Mw11uduzYUehx58+fX+g2D/Nwnq9er+f27duF5kh6e3uj1xfcLKBdu3b55hGHhITkCvvbMr/XX3+d119/vdD93n//fSudyIfJ8vA+SoqNSAfRurgSPeBT9EY9bVYrRuLG5zbmunlLkkR6wn0MD/S4lQpEo9MUyWCTkbkQn0KLygGkG8242in2bUxP5+Avq0m4epmv+is3GWflSD61DN8FyIpBCahFiTEdI5DlyrjrdE6pVPPzjUYMfw8Pj4gij+UIalFN5/KdUYtq1KJjX2tBEHDVqMiQZbQakaa3/ua2zgdRlix9t397vUnen5OHNBmZ0yxXHqq9mE0ym+YqWqfDZjZ3hnMTgGd+foeKpWvh3zSPZOZ8cNG5EVC2HD5BtosWC2oR3+4OarEJYNbo8TJ6IrtocalShYwzZwoNaXt51SSs3EjcPbK9pYfXr+XI77/QoEcvmrxge+/vh2l6cCv+ZctR2jU7XeNu2G/crbCW1Mu9qRKZt4B0MU83nTt35sKFC9y8edOpcmdPM3/88QetWrVyqNDm38S1a9eIjIzEYDDkKtKxlWIj0gkkZuRd3QZgTEpl4YRjmX+dJyjcm2ffqe2wwZYlGj28WTgf/HyC+AcZrHo52ubx1C4uJMbdslrnaI6kIAjoqvtblp9aBBHWZlbk9piDVuPK8ObhnL9wkfm/7MDVN5B+LaqhKYKny9u7Nt7etZ00YfvRqrRMbDTRaeN5u2lxiYoiokNHQhL8LBJA+Qq2P6TJSNwJJZVA67iXVxAgpKKPZblIZAnRX/8LN1nGM+4kC47PpoxvOG1DCw6DSXo96UNfoX5aGpX2FlwUkBPZLJN2SvGk6qr621ShDYqyg1+IB8aEGgAIsopySxZzrk7dQvf19q6Ft3ctm+doD5fKVuZWUAj3jSZ8NMW3jn8TWSLh/1/o3LmzzUU7/2ZCQkI4duwYAC4O5r4X/xI4iD4liYzp1UgTgHI++W6n8XbH13CLRG0IoTGbaP1xwT1tCyMr7JiSYWLDCSXp2J5OLIIg0HvyZ5gyMjBmpDNr2EuOz0UjUqLP49NEdBjZDKfXKcvdZ1lW79u3j4TLl9htCKN308giGZFPGpNkYtu1bQC0LtvaYW+kBQHKLfqeO998yxJ1Is2lUEyiuuCUvByajM5ArVXR420nGeYPtWc85aLly+PfAEoEoZRHwXM23L+PUSVyrk8fItassemhSTZL3Ft6FoCQyY0QbOwiIggCnd+qxpJ3FGklURStregC3oSUlHPcv38InVsoJfya5LtdrpaMxsIro7c07Uqypw/90g3FRmQxxfwLUKvVRe5cU/xLUAR8eYALAuCT7zaiKPLC3N6k34pH0NbA1dejyF67rLDjB52q4KIR7TZ+sgpu1C4uvDL3R0DxUDqCbDRzZ5HSHca/fyTC09C55mFUWug0PXv5ERBzbS5XrnxNcPCzVK404ZEcoyAMZgPv7HwHgP0v7i+6EQlgMnF39mwAVF0+xiSq6fndvvxD2uAEl2E2siRzLy4Vk0EisKynXXmFeZKjPWNpU3ae4StbX+GX7vnrPwo6HferVGK/xoRv6gMq29g0QBBAG+ZtWbYHGYnzpTdkLtchp25TQXmRiYl/cf7CZAIDOxdsRNrYkjEnIfHXMRrScFc5N2WjBVvpVKYh1T0L7v9eTDHFPH0UG5GPAVGlwjWkJKe+38KDLVtpuHgqqiI+yWtUIkObFU0wVBAE3Ly8MaanOzyGLEPGxfuW5acyqK3SQP2huVb7BwSw7+Jt0il6pakkGTCbU5DMjl/LoiAKInVL1rUsOwW1Gt8XeyPLUMnThxPxaQWHtJ2MySixfPIBQMmJdFgnMg/qpWdQLy2dgzpXXFUFp3EIgkDJUW8i/O8z7Gn+JGhUBA6v4dgEBRlfkwcAJoMZfDxtyovU6coSENABb69ajh035xQEgYoVK1qWn9myAv+y5ajwn9w6dEWhAX/RMFiLu3uxEVlMMf80io3Ix4TxQSq7DmrApyMBvV6k4poVRfJIGkwS3/xxEYARLSugtUeDLhPJbObSkQMc/GU1SDK9P5ru8JzUJZ5izUmTAXZ/DuYMaDEW1Io3smXrNozY+e9o4eaqdmVhh4XojfpC2x8WRBlXLT/WKI9WEBC1WoLGKy09l2eYqDphU+EDqHXwxt/Zy0VArRUJDvcm8bbeeQZkjtzIQUkPOKhz5cy9M9xJu4O/Lv/K5fDa9en492W7DiVLMqYEpbJTHeBmlydVpVJxzO845e5VY/nYI5QM9eZZG1og+vu3xN+/ZeFzM0kkrlG62vg+WzHPbTQaDX369AGUtof3vEtg8vAhzSyh+wenfhRTTDHOo9iILCJaWeaTBpPRurqhLSBUKuiyb6iGc+eK3EfbJEnM3KbcBIY3L4/WgQ6Wgiiy76dlJFxVbo4OFddoRLShXrjVCUR8mjrW5EQyws5PleVmo4FHE9J+kkiyxOX7l1l4aiExD2JY3HGxQw8EnmoVrUt4ASCbTCRv3QqAqlkL2wYQRfANBWNakUPbgiDQ453amAxO7GSSIzey9IzssOyB2AN0Kt+pgB3tRzZJ3P7yCJCZE2nH90OlUnHJ6yJRV3sgIBIfk4zJWLgbND0jjjR9DBqtHx7ueRuHoBi4+iPxAPjYWEG+sstAkj196KBPp6an8+R8DlOX87cNtCmZTkX3p/hhtJhiislFsRFZRNRA69Kt8hQbz4mzq5dVokDfhqGWZUdQimz+yw/vjkTj4goOjCMIAgEv10BON3Pj/d0AhExqhOjE0GORyfI+BWV2HJBlEAT279tLU80lzpkCC97/H4CAwNg9Yzlz7wy+Lr4OaUUCGCSJBIMJUYCSZhM333wLgDJ/7bdvoCX/AcmkGGxF+OybDBJz3tgJODGknZkbWc5kIsxgRPILo6TWW+lqpHHLc76Xjx9hc9Vy+OgzqGzHoUR3x35izWYzVe5X4Uzp32lyfjDCww+J+RTXJMRvsuREVq/2P4eOnYUkSdy5cyfzcDKuGWlIWhfUTv4t20oH/o7JwN9NX2xEFlPMP4xiI9JBtC46DtefgSzLhAsmTIYHeGo87TIWzSYJUSU4ZGC6qFVM6Z53GyZ70Li4MnjmXEDRkDSmp9stPi4IAnIO+ZKE744T+HrU0yP7IwgwYD2cXAPfdwZBBUO2ci0mhnDVPW6ZC34A+CcgCAIruqwgzaRU9OocDCVf1GfQ6uA5ArRqjtepgFu9zPBpDi1NvcGMTqPK//01pELMHmW5iDI/j5qhSUkcSz9D1fmdeSCAV6kGeRq+MmBSqxBDyyLY2O1J1KoI+TB3L2Fb0ApaIu9n6rYJcq5czPyKa9Qab9zcwnFxKWlZ1+DZ54nq+Awu7va9DyaTiW+//RaAl7p1YcBP3+BfthxVO2Sfk1dsQ1wfhBEyuJVdYxfzdNCiRQtq1arFjBkznsjxr169SlhYGEePHqVWrVqP7bg7duygZcuWJCYmFqkFoCAIrF27lu7du+f5+pM6v8dJsRHpIGqNljqdBqI36mmwtAGgVMXa4v1R+foAcHTzNa6duksPB3QjTWaJTaduA9C+aknURchRMhmN7PhhHsc3K31PA8qVp+/UGQh2iHALGhFNsDvG2FSMsanIRsmu8N0jR1TDX98qrflCmygdVjJxdyn616BkYCc83Cvh6vqYex7mQBAE3DRuLDi5gB3XdzjU/jAnoqsroYuVjgd6Q3Y1c92PtlI31NcufVJHUWtFBn3WxLLsNDK9012v/0XHFD031GpeDgpk4/W/8jR8Q6PqMPDL2ai1GpuNyKKgUqmIqhPFmnNr8I9Tzl92dSm0uCY4qDvBQd2t1rl5eePm9WgelLRpJdGmlcTD3bZWkMU8XaxZs8aqDeGjZMCAAdy/f5+ff/75sRyvmMdDsRHpILIk8SDpnsXzUxg5iwSq/LkTY4aZo5tjMKSbMRkku8N0BrPEiKVKvtXpye2LZESq1GoSYq5Y/k64epnFY96k76czbTYSlLB2TW5N2OvwPB4pggDDdlgZCFlpAJO7VS1ytbGbWxhubkXrv11UZFmm1/penL2naBM6GtK2jCdJGC5dAsC1fHmr3tqHYhIfS5W2IAjoPB9BDmtWbqRRz4P0RD7+cxw34w/nu7nWVYevfwD3Fi8mQZ+G//BhCNqC5yUZzNwar3wfQiY3sitnWK1W80yXZ1hqWo5wUflu99/Yn6WFFNeYzemYzXpEUaP0cXci3/V5h2RPH2ol652aE1nMk8PPz+9JT8FuzGYzgiA4pdNYMUWn+F1wkDR9Mt4zw/H6trpN22cVCfT7uBGSXo8syxjSHa8MFgWBBmF+1C/nR7pRyrd3p61ze2HSNEYuWoVvcAigGJKmjAw7B3J4Co8HWYb71+DmYZCcWKwBmM16DIY7mEzJTh3XHrJC2huf28jO53c6FNKu4u7KzRY1OdaoKnJ6Ope7PsPlrs9AhtIZ6dC4NpZtbfrIFeFzCWA0mFk6aT9LJ+3HaHByJX1Wb3WtG38VYEAC3Dh9kuWTx7B96ffc+eYbrjz/QpG+c4VhNps5ffo0Y8LGIGfGss8nnifRcL/A/W7dWsHuPfU4cza7qcHRTetZOXksJ7Zvdvo8U/yPEVdlEbfjf3X62MU8elq0aGHpVpOYmEi/fv3w9fXFzc2Njh07cuHCBcu2EydOzBWSnTFjBuXKlSv0OBMnTmTRokWsW7cOQVBSuHL2yb58+TItW7bEzc2NmjVrsm/fPstr33//PT4+Pvzyyy9ERkbi4uLCtWvXyMjI4J133qFUqVK4u7vToEEDqzFjYmLo2rUrvr6+uLu7U7Vq1Vx9rA8fPkzdunVxc3OjUaNGnDt3zur1WbNmER4ejlarpXLlyixevLjA8zxw4ABRUVG4urpSt27dAnuL/1soNiKLiE6W2dr1d/7s/WfhN22jkaSFc7nQrDnX+vWjYr2SVKxXEkdk/Vw1KlYMj+ajHtWoPWULPb/bhyzL6A0mh25ugiCgddXR779fE1arDpUaNLYrnA3ZXTD8h1ZXumA8bZjS4NuGMLeVspzJmDUnKPf+b6RmmArYuWCuXV/I7j0NuHDhE2fM1GFEQaSURyn8XP0cCjULgoAq8x+AytcXla+v5TW3HN60rM9cgSzsUDRDUobE2FQSY1Pt0mh0lHNaTZ7zTUtN5taFc6T4+QBYwskFIWhEgsc1IHhcAwSNfd8Hs9nMqlWr+PnnNZQo40q8+zVkZDqs7mDXOAD3Y29x/dTfJMXH2b1vTvr/9A0fbl1CZA49x3SvGJLK/MH9B4eKNHYxT54BAwZw6NAhfvnlF/btU77bnTp1wmg0Fnnsd955h169etGhQwdiY2OJjY2lUaNGltc/+OAD3nnnHY4dO0alSpXo3bs3phwNAfR6PdOmTWPevHmcOnWKwMBAXnvtNfbt28fy5cv5+++/6dmzJx06dLAYviNGjCAjI4Ndu3Zx4sQJpk2bhoeHh9W8PvjgAz7//HMOHTqEWq1m0KBBltfWrl3LG2+8wdtvv83JkycZPnw4AwcO5I8//sjzHFNSUujSpQuRkZEcPnyYiRMn8s477xT52j3tFIezi4gAeGo9cdN6Fb6xRsODTZuRUlKQ/j5Km+/DEIsg8wOQlumduXwnlTSjmcjxm4qUr6bWanl2zCSH5iKIAi5h3pjupWO6l47az7XoXUacSVaV9t0LoHUnPDwcnbsHvx1Q8iML7cbyDyDNlEbv9b0BWNZlmd3eyESjid/vJKETRXqU9KXSPuv0BJ1GRWSwF6djH+QvPK5xg6DqSv/sIvbQVmlEur8VZVl+FLhrsuf2m7s7lWc3g9cOWRUTBYdX4pm3x+Ki1pD6Yj+bxhUEAZWHY6F4QRAIDVXUF57rU48h22ZjjjeiLsQZW7p0v/9r77zDpKiyPvxW6Dg5JxgGhhyHnER0RVGC4qpgBHHFiLuKEcysKwZMqyjKp64ZxLSuAVRURMUAiKIEYchhEjBM6lhV3x81NAyTunsiet/n4eF29b1Vp2uquk/de87v0KZN/fZJkoS9y5GHg2AcfYfHRaTXjaU13dOCRmHz5s28//77fPPNNwHn7rXXXqNt27a89957nHfeeQ3af2RkJA6HA4/HQ2pqarX3b7rppkAt63vvvZcePXqwZcsWunY1Zbh8Ph9PP/00ffr0AWDnzp28+OKL7Ny5k/T09MA+lixZwosvvsj999/Pzp07Oeecc+jVy1wt7NChenGOf/3rX4wcORKA2267jbFjx+J2u7Hb7cydO5dLL72Ua665BoAZM2bw3XffMXfuXE4+uboW6+uvv46u6zz//PPY7XZ69OjB7t27ufrqqxt07lo7wokME4czikP/yMWva6wqXIkrz83YDmOxyLUHKUuSRNbCN9gz40ZkhwOCrKVbF70yYlg/ezROqxpIfmiMeLVwsrShUhtvrjkrEao2XpNzdP3ke2IYChgz9/D8zp8orMspOo4wDIPcQ7mBdqjs8/iYsXEXSVaVs1Pi0Csq2NSvPwBd1qxGdjpZfNXQuoXHJQkuXwb/u94sM9iAEoyyLJHRJQ6fR2vMiopVsCk2zsg6g4+3f4wmAQdy4akBVRzJyPgEOg0yQ1E21b27ALpXo+CptQAkT88JKSbSYrEwderUwOuXTn+JA+4DjH51ZJ3jgo5htsgkTj1K3cFTf6jAonFTccfEM7jcRddGrC7jpJwEVcImYtxajA0bNqCqKoMHDw5sS0hIoEuXLmzYsKHJj9+795HKTmlpaQAUFBQEnEir1Vqlz7p169A0jc6dqyZ0eTweEhISAPj73//O1VdfzSeffMKoUaM455xzquyjruNmZmayYcMGrrjiiir9hw8fzhNPPFHjZ9iwYQO9e/fGfpTW8tCh4akzHE8cv7+WLYwky8TEJVLhq+CmD24G4LUNr/HmuDfr/CKXbTbaznsKv1fjv0/+DMD46/qghulsybIUcHocFoUVt5zM4YkFwzBCdgJ9Xg/vPfRPdq5bS0qHjlx0/2PH9cxcNY6qnwyQl1/AgkldGf74Dw3abbvMK8hsexlSY5UcDBObYuOF0S8E2k1BUJeDaoOzn2nwsfw+jc9eXE/umkKSMqM4b+aAJrkeUyMrZ0fssUBxNUcyf1suP3/6ETFxCQSx5nDE/oKKsOw5rNFoGAZRjlhz5tBWv4binr2LyM19hKSkU+nW9V9hHbs2DsYkUBoVi0dv3LiC63iMIf3OICIitlH3K2hcZFmu9mDaGEvdQJUM8cP3t35U3LrD4ahy35eVlaEoCqtXr0Y5ZjLm8JL15ZdfzujRo/nwww/55JNPmDNnDo888gjXXXdd0McV1I9wIsPE7/Py86evYRgGXeK6sOngJjYe2BhURqzudrNj2jXsjbgYaHDuQQBJkmgb7+TUR5ezuaAsrGVt1WLFVVoCQP7WLWFVsQmIlmtGWI5sk2Nxws25vP3BJxR9/CkJSUmA6XD5tPD+GLJsgUaowd1QFFmhd1JvZq6YyRsb32DOiDkNciYlh4NO334TaIeE5ofcZaZuZMdTwBYdsvC4osqUHvAQGW+j27A0dN1AUZrwesq5CNwLTSfyQC48dyJcuYKSogLWLVtKWscu9A1yV4djhA+3Q+FojcbE/OFIhsLFc+sueQiga258vv31JngdW5KxJlRVDSzlVeTtYfxni4hMa0P2iOCSCQXHD926dcPv9/P9998HlrP379/Ppk2b6N7d1CtNSkoiLy+vynf62rVrgz6G1WpF0xonOa5v375omkZBQQEjRoyotV/btm256qqruOqqq5g5cyYLFiyo4kTWRbdu3fjmm2+YMmVKYNs333wTOB819X/llVcCy+EA3333XQif6vhEOJFh4vW46P/D9QDMv34jJ//3tOAH6zqu1avhxMNOZOM+2WuGwUldkrjyxGx0A0L5zZUkiYv+9Shrl36IxW5DVkO7RGSrQpv7TV27spV7qVhbSNJVvVuXIylJEJGIMzqOfRt+Jy4+IfDWf9fuYfLQrJB3WVa2ibKyjTgcmcTEBOtmNA2arvHpjk8BuG/4fdCAiAJJklDrkAGpU3hc88DrE4+8bjsk5Ao2kiRx7q39w5LBCoVh6cOIUCPoldQLpt9kzkIeyA3EdCZktGX4xIuJiIrGsnLtYePqtl2WsGfHhm2T0+kMOZkoNfVM4uKG1Cvvc2xJxpqQZZnkZLOa0478vWTk7yLRphCptqIQFUGj0KlTJ8466yymTZvGs88+S1RUFLfddhsZGRmcddZZgJnJXVhYyEMPPcS5557LkiVL+Pjjj4mODm5uPisri6VLl7Jp0yYSEhKIiQlfu7Rz585cdNFFTJ48mUceeYS+fftSWFjIsmXL6N27N2PHjuX666/njDPOoHPnzhw8eJAvvviCbt26BX2Mm2++mYkTJ9K3b19GjRrF//73P9555x0+qywFeywXXnght99+O9OmTWPmzJls376duXPnhv0ZjxdEEEojIDVQ2+bth1Y3qiP54XUjePqifgzNTgirJKKiqvQfexa9TzkdJUQn8jC6V6N0+W68O0owfK1secBbAfMGE/vrfwBTL3JAOzPJwGExfyArvP7Av2D+NoVFn/Hb+hns3ftmk5kdLBbFwqzBs5g1eBYWpWGzo7rLRe64ceSOG4deQzbygPs+Y+y/v0avaYnzcCLTYQ4LeYdqg2bw0yc7+OF/W9H8TXMtDUkbwpV9rmRY+jAzDvLKr6q8H5/ehiHnnE+v08bQ8fNldPx8GVI9M/SGT2f/axvY/9qGkO8Bq9XKLbfcwg3X34hkhBJLGUdkZBfs9vSQjhcMn4wYz6t9/8J2V4jSX/XwCLfR/cdS3sk/2Kj7FYTGiy++SP/+/Rk3bhxDhw7FMAw++uijwJJvt27dePrpp5k3bx59+vThhx9+CCn7eNq0aXTp0oUBAwaQlJTEN99802B7J0+ezI033kiXLl2YMGECP/74I5mZmYCpcHDttdfSrVs3Tj/9dDp37hyY3Q+GCRMm8MQTTzB37lx69OjBs88+y4svvshJJ51UY//IyEj+97//sW7dOvr27cvtt9/Ogw8+2KDPeDwgZiIbiThbXEj9Zd1LZOkuyqLaUlLoatSZFkmCG9804y0fnZiD3RLefsNNrjmMVlz5Y9MM0iyhYUDhRgawmZy/P4YSkcBfrVZcPg0Jicc+/Z1nv8rFXfnD31zVWRoLi2zhgq4XhDdWksi0W4m3VH41GAbeLbmBNpiO9tHC4+v3lTDuya+rZ7Yfncg0t2OVfYSCrhn8+OF2APqe1g6lib61/LofRaqcVT36cxgGxXn72LrmByLi4uky1Fw+23HRxbR77dVarwvDMHCtq6w9fV7nZpFRLShYyq7dLxEXN5QO7c1lu/Qu3fD7vKRmh1ZVxufz8eab5kPRkB5d2ZrZhdKoWA75jyxJWtwJOA50xdk+K2yb/ah4DHMFRdC8HK2rGBcXx8svv1xn/8NLw0cza9asoI6VlJTEJ59U1yo99iE9Nja2yrZLL72USy+9tNo4i8XCvffey7331qwm8uSTT9Zqy0knnVTtuDk5OdW2XX311XVmVx/bf8iQIdWW+JtST7Y1IJzIRsChOvjq/K/q73gUEjBw9YP8dPrDdDqlW6Mu1emGwUfrTE24ueeFfgH73G7+PeVcoLIEYgiVa2qi1dXSVu0w5QMsgOWTm00n57IlOK0qhmHwzZaigAMJZrZ7hVdrlPKIzYFP87FgnVkPfVqvaSHNRnaKsPPD0CMxP5LNRuZLLwXaYC4xL75qKBVejXFPfs22ovLaM9uPSWTixdPhyhUhLWnLskTPkRmBdlOwrnAdK/as4Jmfn+H0rNN5eOg9R9588XQK+z3EFy8tIL1zNzr16c/B11/HtWYNRkUFUi01qSVFIvas7EA7FLxeL/ffb2qOJkrDg56N9HjyKC7+Hqs1MbCty9ARAcc3FAzDCGjuDe7ehRN+XIY1JZX04T0CfWL2nkDM3hNIP7PmJXGBQPDHRixntwCSw4GjXz8kDE7tsI3+Z2Q16v4tiszss3pwx9huqGHIZqg2G0lZpqZWWJVrOFJLGwjU0m41yAq0H0GRPYvfNm5i965tgWXWww7S+tmjq1RnGf/U18fNE6VP9/HMz8/wzM/P4NMblj0pKQoRgwcRMXgQ0lFZkJIkEWFT+eC6EwLbKrxazefosG4kHNGNDAHFIjPygi6MvKBLk2lF7nfv55mfzWzyJduXsMNVWMXmqOhIug4fSbveOQAUzH0EgO0XX1LrdSEpMpFD04kcmo7UgLKkoZCQcCI9ezxB27ZT6u8cIj1//4lhOzaQZG35BDJB6yMyMrLWfytWrGhp8wRNxPExtdJKOVgp9iHrPp775TkApvaYWu/MjyRJtHvtVQyXC2+FhxevfB+ASx4dhS0mss6xwWBRZCYPzeKxT3/nwgXfhbwUe7gM4pNTwheYlSSJpKv7kP/o6talFXkUm7fuYCnj6JXuoI1yRBTarMyiVhHW3lpYftxoSKqyyqQukwLtUMj3+Pi/3YVEKDLXZ6WiezzsveVWDL+fjEcfQbZVzfQ++rIacN9nNS/9SxJc8RVU7DdnJUOs561rOlvXmsvCHXISkZvAITup7Ul8cs4nnPa2mSBX5i+HqUtgjjkDmtohm7F/N6W8DMPA1q0bng0bApVrpBqKBhh+nZIvdgEQfXLbkDK0LRYLN998Mz6vxqszfwx6XE013Pfv3kVJUQExyanEp2cEva9jWdV7GEpSKqM9PlJt5necppajWSrw+g5gtyaFvW/B8U9dmdoZGeFfd4LWTev/RWylOCNjcN5j/kBU+Cp48icz/uLibhcHtXwoSRKS04nk0fBYKrPbGlF/rcLrD8T1heP8NDRZCMxM7bTbBmH49dBSxJsLudK5TegINfzNJEnig+tOYNyTX+PT9DrPoaI4sVlTUC2hqAg2DVbFyh1D7ghr7H6fnyd3FpBkVbk+KxU0jdKlS1HT06AGeY5j4yNrFbqXZYisdDK85eb/FmdQy9qa32Dpgl8BuOKJkYE/W2OTFplGijOF/Ip8M473KNsqDh2icN9mbE4nqR07k/XqK2zqP6DO/Rm6QemynQBEjWwT0h0lSRIRERH4VC2ke/Hgwe8oKFhCVFQP0tPNh8BfPvuYNR+/z+CzJ3LC+cFV26mJVb2GURoVS773iBN5MPMz9nd8F8+OC+jW/b6w9y04/unYsWNLmyBoAYQT+QdFkSUm5GRgUeSwMrQbk0Mfb8O7u6z1Sf3olU5R/m/gHw9q9RJ1sizx4d9PwO3TAxWBgGqyNpltp5LZdmq18S2BX/ezbOcyPJqHMe3HhDwbeTSHQy+ix46psUTn4eX//eVeBtxXs/RFAG8FLDgZCjear4OU/JEkSO8UG2g3JYeXpm/56hY+HHck037P5t95/4m5pHfuxgX/fDgoQyRZImJIWqAdCl6vlwULzLjWcdedh6paglrKLyvbxO49r5CcPDbgRDYWPX5fi5SYTMLQmnXyBALBnw/hRIaJ1+Nm9Rv3ANBz4kzGtB8DmGLPoaBGOhhzZmSg3VjYVIUHzulNhdePNYzlP8VqYeJd92MYBool/Bgo3atR9s1ewJQ8aVVL20alE1nwG+g+oPY6xwYG85dv5d/LzESD7mnRfHDdCU2W6NEQvJqXm5ab0hujMkeF5ETGqgqXpCcQWXnNSJJE5n9epGje0xQ++RSJV16BZK16nszl/yD+rhZHZUWYSg5L/tRTV1u1Kpx9Y7+gP0NDiLPHUeAqIL8in62HtnG42q7N4SApM4vY1LSg9yWpMnETwp+dKSwsBCCtUyxWq5WKIGJJo6P70D7rOiIi687EllSZlBv6BdoEEbM84sfPSMzMoo39wiCsFwgEfwaEExkmfp+HodvNQPwKfSYPnhieHpRiUck6fSAH8sopLnQTnxoR8qxFjfZpOkt/y+fZr3KRJYl3rxkW0iygLCu07dGbg/v28OqsG7hkzuNIf7TatodLFMZ3qLe+8+Tnfwgs2YIpa3PKo8tZNmMksixx8OAPHDz4LVFRPUhKOrUpra4Xh+qgb3JfFEmpt3rSsaTbrTzcpW3VjX4/+599FoCEv11WzYkMmpokf4LA0A0O5JXj9+okZ0Y1yv1RGwtOW8CJi07k0ZMeJTPqyHnI7NGTyQ8/FdK+DM3A9ZsZy+nokRhShraqqoFKGWoIWq0xMTnExOTU20+SJSwpdTvvx5Kb2YW9qekU+/zEWhrvp2MM73Nx+6EMjAnNHoFA0PIIJ7KFMXSd8o2bWfjvPQBMfeiEgNyPapXDXv5VZIn5y3NZt+cQg9vH4/HrIetF+txufnz/bQq3b+WVmdeHJfUjyRKRw9MD7daEarXjcDiwxibA86fBFV/WuEx5eMnW5dMwDAKyNtuKyhnz7xV8/I8RFB/6kW3bnyQ9bWKLO5GSJPHi6BfZeGAjWw5uoUNsB+SG1PRWVeIuvCDQbqBxVSV/gsDv01k426xtfsUTI5u0ck2cPY41l6yhzFvGqoKfUOw2Bro9+LxePGVuZFXFGR2DZLWS8fhjALU61Yamc+B1c+k+ffawKtnt9SHLMu3bt0fz6XzxsrmPQRMz6x1XVraJ4uJVOJztSIg/od7+9dnQp08fsy1JfDpiPKVRsUx2exvViezFLwxJshDhaJpa7wKBoOkQTmSYyIrKqmhTAqaj4efaJWY83DOjnsGuBl9r2nC72X7uRDjR/EF68ZavA+9d9vAJOKLCm/WRJIn3pw/H5TOXbG0h1u4FU+onL9dcvt2/a0dYdbQlVSZ2fHbIx24OBg4cyMA+3eE/Y2HfWvCWgTWyVkfycLLIshkjOeXR5WwrKifaYcHl09Aqk6JaiwiQR/Nw/ofnA/D9hd8HPSO5tcLDVb9tJ86isijH/LvJVisps2ZR+tlnlH3+OVGjRiHV4Uw2thKSapVJy47hYH5FkzqQh7HIFkq9pUz74joiUpL4bsdutv/yc5WYSElViT799Dr3I0lgbR8TaIeCz+fj3XffRdcNir5LQEJmwLlt6x138OB3/L55NsnJY+t0Ig2fzv5X1wOQcHHNMY6qqnL22WcDsGPdWtILduHzuohQuob2YQQCwR8W4USGid0RwYAZbwNmdvaq/FUA6Eboeoiy7iXmUC6HYhrX2TIM2H3QxfzluWwvKuftq0Nb0pYkiUse/Dd+jwdZVZFDmEk5brA4QVKg3QlwaDf87/p6kz1kWWLZjJGMe/JrrhrZAadV5YP1Tg4dHIx3Xwz3dTVaRQJRqFWUANy6zi9lLpKOya42vF72XH8DAF3WrK7TiTxv/srq1WtqQg0uBliSJM6+qR9+b8tpjUoSSLIcUkiHZFFIvrJ3WMczDIP1600nL1EaHvTTicORSVLS6cRE59S7f/emg4F2MJz56SISM7PoeO4ZwRkTJCsYyXe7PUzIcNGjEePCBQJB0yOcyFaABPT76VGyV/4QyIDVdYM9Gw+CBFm9EsLSxpMkuGHRWn7bW0J8hDU8qR9JwmK389PSD9j4zVecf++DITlIulej4Km1ACRPz0FuRYk1u3fvZuvWrSSf8BRdM5Phk9uDTvY4nLV9eAZyv38Qr/yWAsDtrUBP0mlxhlxFqU5kGefAgYH2sRytqVlr9ZrDHK6p3eEkUKzm004915Tfq/PcP5YDTb+kXRMd+w9kxhvvB14bXi8Fjz8BQPL1/6hxSdvQDfyFZjKMmuQMKZxDURTGjBmD5tdZ/XJZ0OMSE08mMfHkoPvXha7r7Nixw3xhGByIScAfGYtL03E0olbnt4zgl71eOscIJ7KlmDdvHg8//DB5eXn06dOHJ598kkGDBtXY95133uH+++9ny5Yt+Hw+OnXqxI033sgll1zSzFYLWgPCiQwTd0UZuY+by1np099t8P4kwGJTkCt/HH0ejY+fXQeEr413WOfw8JK2owE1tH98/21KiwrxedxY7aF90fsLQqtQ0lzs2rWLzz//nF69etE1OxN+XwLOhKDHS5KEWpkscdNpXXjlO/MHtzUVtqnwVeBQHQ2eGZXtdtq9Untd3cNxoz3uXgrUcw4OJ9hoPvjlTVjzclBSP60Jw+/nwAsvAJA0/dqanUi/Tv5ja4DKmMgQHqAURWHQoEH4PBprXl4e9Di3Jw9XxQ4s1ngiIzoBMOLCSxk+6WJkNTSVBb/fz0uVJS8vPmscb46bSmlULKdXuOkTZT7sxu45kcii3qRPPymkfQtaD4sWLWLGjBnMnz+fwYMH8/jjjzN69Gg2bdpEcnJytf7x8fHcfvvtdO3aFavVygcffMDUqVNJTk5m9OjRLfAJBC1Jq0i3nTdvHllZWdjtdgYPHswPP/xQa98FCxYwYsQI4uLiiIuLY9SoUXX2byp0XaOHdx09vOvQ9eoizK2Fw7F8L6/cwbnzV4Zduq+0yJQbWXj3rcdN+b+QsEbArdvhlq31zkLWxMH97zJz0KOckfUp5zXgPDcWFb4Ker3Ui8GvD2biBxMbbI+h63g2b8azeTOGXvOy8tE+YL3nQJJMWaVvnjgy+1sHqlXmsodP4LKHT0C1Nv/X1ta1a3jqskm8ff9dIY2TI1TkiNCf1f1+P1988QVfrViOQfDL+IUFS1nz04Vs2/ZkYJtqtWJ1OFEbINUFYPe4iPC4UI/6Q6ueOOwl7bHbRUWS45VHH32UadOmMXXqVLp37878+fNxOp28UPmQdCwnnXQSZ599Nt26dSM7O5t//OMf9O7dm6+//rrG/oI/Ni0+ExnqU9CXX37JBRdcwLBhw7Db7Tz44IOcdtpp/Pbbb3+o0kqSBAltIgPtcDEMg7H//pr1+0q44sQOHKzwEee0hDQzdbiWduH2rYFa2qEm2JjGhD6kKUlISKBnz560bVt/wkJ9GP5COsZuZ29ZGh9vr2c5txlwqA5yknLISc7hgq4XYGA0qAqR4XazdfyZQGVMZA3C48cuaVd4NSJs9ZyDok2VB6j74pAkKewks8ZA82t4ysvxulxBj5GtCul3Dg3reLqus3y5OQMZSkykaonB6czGZksJ67h1celb80jMzKLH6eF9pj8ThmHgdrtb5Nh2uz3o73ev18vq1auZOXNmYJssy4waNYqVK1fWO94wDD7//HM2bdrEgw+GJ3MnOL5pcSfy6KcggPnz5/Phhx/ywgsvcNttt1Xr/9prr1V5/X//93+8/fbbLFu2jMmTwy/p1RBUWeXqPlcDZmZnKEgOB52+/SbQDuzTqnD+HTXHpIS0/6NK9115YgcmPbuSGIclpHrajVFLG6Bw/s8k/71vq0g6AejcuTOdO1eKMnvL4X5TiohZe0OfjWwdHymAJEm8fMbLuPwuLvzwQqJt0bx0+kv1nvtkq4W7s9NrjHlT4upO1Dl2STvoBBuAF0+HK1fU+sTk82osnmMmr503cwCWZo6tbdezF1MfexbV2rDZvGCRZZmBAweiawY7Pgr+4kpLnUBa6oQq237471tsWPEFvU4ZTb8zzmxUO0tTfqAk9QfI20mbzIsadd/HM263mxEjRrTIsVesWIHDEVzIUVFREZqmkZJS9aEjJSWFjRs31jru0KFDZGRk4PF4UBSFp59+mlNPbVlpM0HL0KJOZEOfggAqKirw+XzEx8fX+L7H48Hj8QRel5SUNMzoGrDIFq7JuSassZIkocbHo1fUvJzn82gN0ouEI0kgFV6NzQVmkH6oM2WSJJHQplKnLgRTJIuMpW0UeqmXiEGpZn3w1lhHu5FIirIxuH08citwlA9fM7mHcgFw+V31Sv0kWlWuzqy+AiA7nXRe+S0A2y+8iHavvVrjNem0hphgk9oL8taZ/+pKaDLg4L7yQLu5sdrtxEcHHy8LZlLZ3rvMc5Y+e1hISWWqqjJ27Fj8Po0lO8264cEk5miaG02rQJYtqGoUAOUHD1C0awcVh4pDsv9Y5l90E6VRseSUVgRiIj0R+yhLWUVpWacG7VtwfBEVFcXatWspKytj2bJlzJgxgw4dOnDSSSe1tGmCZqZFnchwn4KO5tZbbyU9PZ1Ro0bV+P6cOXO49957G2xrMISTxGD4/ZR9+SX7/+95DEMna+FCJElC8+l8/dZmfl2+h7i0CC64c1CDxLolScJuUXhx6kDsqoJNDW0mx2Kzc+kjT4d13ORr+mD49FaVmQ3w22+/8eOPP9KhQwdOHDECbs41HZkgpWdq4pSuyUw/u/Us99kUG0+f8jR21Y5NaZiYs15RwcHXX8e1Zg2Gy1Xjkvaxs5F1IkkwdQnMqT8MRbHITLihb6Dd1GREZvD1X5fCYz0A2L1xPSveWkxSZjtGXX5tkx9f07TAd+AZV/dEUZSgyh7u3bsooBPZq+e/a+0nyRLOfsmBNlorizU5zrHb7axYsaLFjh0siYmJKIpCfn5+le35+fmkpqbWOk6WZTp2NKtO5eTksGHDBubMmSOcyD8hLb6c3RAeeOABFi5cyJdfflnrjTNz5kxmzJgReF1SUtIoMXCqxcbKttMA6C4ZnPLmKRS4CugW341F4xYF70gqCoXznsazYQNA4MdZViXyth4CzBmY1+75jvPvHIQaZoY1mFVsTu5SfZYpWPw+HyteexGfx81fLrs66EB9SZJaV83sSkpKSti+fTtRUVGmQxORCPMGgy0K/vZpWMGoBrDrgPljnxHraPHa2oqsMKLNCCp8FUFVrdlQ5mL8ms0kWlW+G1JdhLpg7iP17uPo01ZvPk+Q51iWJTK6hK57GS6KrBBji4HKJCJXWTl7N60PKfVessik3TE40A4FTdNYvHgxALNmzUJpZI1WSZWJn9jl6APWO2bKW/OIa9uO7iMfblRbEimkk0MmOsQH29aMJElBLym3JFarlf79+7Ns2TImTJgAmPG4y5YtY/r06UHvR9f1Kit+gj8PLepEhvsUBDB37lweeOABPvvsM3r3rl3Q12azYbM1fjktq83O0L/NBczg4nhHPAWuAjYc2BDUsuFhJEki6/XX2DphArLDGdDgkySJiTMH8to933GowMWhAhcfz/+V8df1Cdtmt09jxptrAXh0Yk7IZRANTWPNx6ZWXt7WLUGXQdS9GnvvMcMT0u8Z2upmJAN4y6FwI3Q8NSityKOJix1Mdocbsdi7MPyhLwD47d7R9SeWNDEezcPMFTP5dMendE/ozsKxC+v8mxlAmabj0KpnBNcWv1sXQcVFBnGv+H0an71oim+Pmtq9QQ9T4ZCWnc2ZN87CHmkuESPL2Hv2DLRrQpIklMjwK061a9cOgIN55aiqF3tC/fdamzaTadOmaWLDHR4XkV43lkZ+MPobzzKk1zlERMQ06n4FwTFjxgymTJnCgAEDGDRoEI8//jjl5eWBPIXJkyeTkZHBnDlzAHN1b8CAAWRnZ+PxePjoo4945ZVXeOaZZ1ryYwhaiBb9hQv3Keihhx7iX//6F0uXLmXAgAHNZG3tSJLEG2Pf4Id9P+CwOEJeNpQdDjourb78J8kSF90zhDfn/EjRrjIstoYt4+mGwUfr8gCYe17oy1eqzUZqdifycjfTtltPNL8/eNkQ/ThYLrM4Ia0PDP9HyIk1sbEDiI0dQIXXD4SRWNJEWGUreeV5pEWkMaHjBPyGH4sUXnKIJEnIDgfbzjMTrNovXoxcgzMZkvC4NQJu31fvsQ0dcteYMlOnTAnL/JDIK8/j78uuxZGWzEv7CoiMi6dTypEVDNlup/1bi+vcR0OE9i0WC1OnTsXn0QIi6xfPHVjvuGCvNUM38GwzVzps7Wt23iwWCzfffDMAhbm/s2jcVNwx8Qwud9E1ovXPsgmCY9KkSRQWFnLXXXeRl5dHTk4OS5YsCYSZ7dy5E/moB6Xy8nKuueYadu/ejcPhoGvXrrz66qtMmjSppT6CoAVp8eXsUJ+CHnzwQe666y5ef/11srKyyMsznaLIyEgiIyObzW5XeSmlD5szoFE3/4IjIophGcMa/TiSLDFx1kD8Xp0gViPrxKLIzD6rR6Adsi2SxIX/ejR8iZ/WjiTBZZ/A23+DHxfA2c+BJbTPGZbMTRMiSRKvjXmNEm8Jr214jXk/zePanGuxKDU7ku0dNj4f2AWlNmfEMPBuyQ20aztm0HGRQSKrEiee3znQbmq8mpcNB38nolJEPH/7Nn7+8gtiU9IYdNa5Qe8nXKF9XdcpKirC79VCkmfas3cRubmPkJR0Kt26/qvWfoZfp2iBWcwgfXbN31uSJBERYT5MFUkSB2MSKI2KxdPID4RerJRrBlbdaPRZTkFwTJ8+vdaJmy+//LLK6/vuu4/77ruvGawSHA+0uBMZ6lPQM888g9fr5dxzq36R33333dxzzz3NZrdh6CRzAIAKQ0c3dLYWbwWgQ2yHoOLPDqN7vRQ88AAAybfdhnxM9QtJkpAk+HDeL/i9Gmdd3xc1jCVhiyIzeWgWFV4/aphf1ofLIIY0RpVJuWlAoN2qMTTY+IHZnhD88szOnS+wfcczpKaexeKrbgtP5qaJkCQJi2zhmZ/Nz3NF7ytqdSIdikz3OkrPSTYbmZVVTKQ6wkQa++Mqikyvk9o07k5DoKSoiHXLlpLeuRuDzjoXwzDQDpq1p5W4uBr/vpIqkzitV6AdCn6/n6efNhPZTJ3I4O53XXPj8+3H7y8N6XjBMP6zRUSmtSF7RK9G3e9j3MIvq8t4sttBzkutWWVDIBC0TlrciYTQnoK2b9/e9AaFgdvv5uz3zwbg+wu/DzomEgC/n4OvvwFA8k03QU0l1AzYvdH80Xr74dWB2clQ5H+8fp15X2zh2a9y6ZISxXvXDg/ZufF53Lw2y0xUuuj+R7HY6ncoJVlCjbfj2XYI7ZAHW/uYBmWaNxZt2rRh5MiRVdUBFCuMmXukHSSa7sLnO4DmLw9N5qaZcKgO+ib3pXNc5zqvzQpNZ2OZC1WW6B1VQ/a1ohAxuOH6pQG85fB4pVNy/bpawwg0v87qj7cD0P+MLJRmfhhJyMhg+MSLiUxIBMwEuM3DhgO1i69LsoQ9OzbsYzqdzpDljFJTzyQubkhA3gegXZ++WJ1O2nTtGdK+fD4fL774IgCnDOpPRv4uEm0KkUclwNjK04nKG0RUxx6hGSoQCP4QtAon8njEZo9g4xlmTFQnewQew9ukx1OtMslZ0XjKffQ8MQNdN3juH8tJy47h7Jv6BeUMWhSJLzYV4Pbp9G4Ti1fTQ5b6wYD9u3cG2kEPO2b5rDVka7dt27Z6pr5igUHTGrTfpljObSiSJPH86OdZsm0JS7cv5ZTMU1Dl6rf/dpeHMWs2k2RVWTe8utOhezzsveVWANIfehC5MZLWKvbX20XXDH78cDsAfU9rh9LM31zxaekMOSc0LUTDp3PgTbMiT/zELiFlaFutVm655ZYqMZHBYLHEYbFUzWLv0HcgHfrWH095LIZhsHfv3sp2Pz4ZMR49PomRLg9ZDvPvHpU/kKj8gaSf2/ihPAKBoPUjnMgwUVSVroNPO7LB1zhOpO7xINeiv3furf3xe3UsNgWfx5Tk2Jd7KLCtPiRJ4r/XDm8VM2OtFr8XVlTK2Iy4EdTgZiPT084lIX5E4AfcblH477XmTJWEhGEYLV6px6f5mPX1LMCcLa/JiawXTaP0cBLYnPsb0bq6kWWJniMzAu3mpjg/j63rfiUiLp4uQ4OrRGIYBq51RWb7vM7NUtSooGApu3a/RFzcUDq0v65R9701swulUbEc8tcvByQQCP4cCE8iTHRNY+fvPwGQ2blvo+137623kvncc+hud0CjTrJYzH+SVKOzaISgXafpBl9sLMTt0zgrJx01jASbwHFbWzHsEFm9ejVffvkl3bp1Y8yYMeZG3QfLzfhUhv8dCM6JtNlSqtQrVmSJPm1jAbjmtdVsL6rgg+tOaFHdSFmSGZAyINAOB8liIeXOOwLt5kKxyIy8oEv9HZuIwl27+OKlBaR37ha0EykpErFnZQfaoeD1ern/ftNJT5SGIwUZE+nx5FFc/D1Wa2JgW96W39m/ZxeJmVmktM8OyY6jOeHHZVhTUkkffmTp2mc7gN9+EJe7LRHWrLD3LRAIjk+EExkmblcZWYtOAaDipp1gC/8HVXI4cPTrh2vNGlMrEth9zTWUf2tqK6bOvpe4iRNrHf/uI2uYOGtgUDNdXk3n2tfXADC6ZyoRshT2DNnCu28NWiuyNeL1eiktLcXlch3ZKKsw8PIj7SDxeArxeguwWOKw29MD2yu8/oCs0rgnv27RJBu7aufF019s0D4ki4X4i5q/RrKu6Wxda87qdchJRG7Aw084RMXH03X4SOLS0uvvXImkyEQODb5/Y5CQcCI9rU9gs6cFtm34+kvWfPw+g8+e2CAnsufvP5HoziLpqPrhhzJWsL/ju/h3b6Fbd5GxKxD82RBOZCtAkiTavfYqhssFQVamUK0yiW0jKdpVRtGusqCXtB0WhQHt4lBkib3FLma9s47FVw0N2rFRbTZSO3amvPggvf5yGrqmoah/oMtItcHY+quyHMvefW+ydeujpKdNpFu3OYHtDotCx+RIthSUtbjkT0MUBA5jeL0UPfscAIlXXoFUQxJYU6D5DZYuMGtIX/HESOQmDqmNtkbzt26TsX77JACpHbIZ+/ebQ9qH4dcp+WKXub+T24aUoX1Yo9HQDdwlZiiEaqn/HnU62+N0tg/JzmBZ1XsYSlIqoz0+Uhvw0CwQCP44/IF+/VsWh+pg+aTlgXaoSJJUJcOzzdNPV1nOrqn/ebcNYOf6A1isStD1hA8nfRys8HHfh+tZteNgSDGSkiRx4X2P/CG0Inv06EF6enpACw8AzQ8b/2e2u46noRkch+NQW4PkT4MUBCox/H6K5s0DIOFvlzWbEylJkN4pNtBuamLtsVyfcw18ZM6uVRw6ROG+zdicTlI7dg5qH4ZuULrMTEKLGtkmpJjIozUaDxfJCaZ29sGD31FQsISoqB6kp59X+/6PLcnorV6h6FhW9RpGaVQs+V7hRAoEAhPhRDYSkiQRbY1m+W7TkRzZZmR4iQuVyJUOml5RwcZepqh5lzWrqyTdyIpMVq9EfB4tpB9WSZKwW2Q+31hAfEToTkA4WpGyVaHNA8HFkjUX0dHRREdHV92oeWDxpWZ71t4GO5FAq5L8ibPVXX+6a4SdbSfWXkYUVSXuwgsC7eZCtSqcfWO/ZjvesezZ/DvvPzGX9M7duOCfwdWOlmSJiCFpgXYoeL1eFixYAMC0adOwBumsl5VtYveeV0hOHlu3ExlGScYev69FSkwmYWj1muoN4Vze4B+dh9EvrvmKRQgEgsZBOJGNiFfzcv0X1wMNyH4NAUM3OFTo4qdPdnBgXzl/vbl/0DNcTqvK2rtOq79jDfjcbp66zCxxNf2FRcftjGRFRQVlZWXY7fYjzqQkQ7sTzDp7DS0RVElrkfxxWpx8df5XAJz3v/NYNG5RtSVtWZJw1JEEIlutpN51V+MZFaQup6EbHMgrByA+NaLJdUbLfeUs3/4JitPB6AoXNoeDpMwsYlMrncIgRNclVSZuQsewbSgsNMs8fvzsOhRJ5cTL6o9njI7uQ/us64iIDG62tC5kWWbYsGGB9ogfPyMxM4s29gsbvO+jySaXIbEqEbbmmdUWCASNh3AijyN0lwvJ4TjiKEqw9P9+pWhXGUDQcZGNYosWmsyHoemUr84HIKJ/ClIzJ0bUxM8//8zSpUvp1asX55xzjrnR4oCpH0LBBnj+NLjyq0ZZP3VazVjU5Ghbi8orVfgqWLhpIRsPbGTSB5N4c9ybVR48in1+Pt1fgk2WOTM5ttp4w++n9LPPAIgaNQqpobORQepy+n06C2f/AJgxkU19ne937efWlXcRkZTA6B27yezRk8kPPxV4PxjRdUMzcP1mJgM5eiSGlKGtqipTpkxB8+kseXS7KROld6h3XExMDjExOfX2M3waBc/+AkDylTXPPKuqymmnmQ+aO9atJTezC3tT0yn2+Ym1iJ+OPxLz5s3j4YcfJi8vjz59+vDkk08yaFDN1/d//vOfQFniw9hsNtxud3OYKmhliG+CMHE4ozhwzXoA4pxm0JIsyXSJ6xJoNzabh5+Ao18/2r32amUpRImzb+zHguu/Clk6psLrp/td5szY+tmjm9yxMTSD4ne2AODMSUZqea3x2vGWwzdPQN4v4KuotYpKKByejfT46489a0ocqoMvdn7BpT0uZWrPqdXe3+vxcd2GnSRZ1ZqdSK+XPdffAFRWamnGJW17ZMvF4fm8XjxlbmRVxRkdE9QYQ9M58PpGoFJgP8ikOTBn/tq3b2+GqrAj6HFlZZsoLl6Fw9mOhPgTarfNAN/uskA7GD4dMZ7SqFgmu72N6kQu5Qw+3O7m4jbl9Itp+L0mCI1FixYxY8YM5s+fz+DBg3n88ccZPXo0mzZtIjk5ucYx0dHRbNq0KfD6eFXoEDQc4USGiSTLxCdnVNlmV+28deZbjXuco+R/Ik4cQcJll4GmBeLRrHaVa+f/BU3TWb9iLz6PRp9T2gZdFu6KE+uf3TgW1WrlssefDbT/cFicsD8XnAlBO5CZbS+nbZvJSFLtt5RuwKY8s6Zxz4wYlBbQjJQkiZfPeBmX3xVWYg2yjHPgwEC7wfi98H1ljfLBV9cq7m6xKfxtbsvF1G7/5ecqMZG610veXXcDpgTXsfXuwZzAtraPCbRDwefz8e6776LrBgYJSAR3rg8e/I7fN88mOXlswImUFAXFYkEKMaVd0zQ2bjSdYKeuk16wC5/XRYTSNbQPUw9r6c8vBT6GJnj+cE5kFfmwGrBYLKiV3+U+nw+/319rX0mSsFeGDhmGUePMn8MRelLno48+yrRp0wKzi/Pnz+fDDz/khRde4LbbbqvVltTU1JCPJfjjIZzIMPH7vKz74k0Aep08EdXSNM5UFfkfwF9QwI7JUwKzkYfR/QZfLfwdgM2r8uvVjTws9XNlpRMZSkUVSZaJS8uov2OVzwG2jrGBdqtGkuBvn5izkN5y06msx2hFsQF1lwD0+DXOmvcN0Dyzv7Xh1txc+KEZ1/bGuDeqqAk4ZJnBMRHEWmp2OGS7nXavvNx4xug++LQyxnLg5QQr7t7cSJJ53UuHHWe/n0PvvQdA6l131ljvXrIotS4V14dhGKxfb650JErDgy4x6nBkkpR0OjHROYFtJ13yN0665G8h26BpGosXm6VdLz5rHGd+uojEzCw6nntGoE/czlHE7B1O+s2tK2mutTBiRN3n5YEHHmDUqFEAPP3007zyyiu19u3evTsvv2zee8XFxZx66qnV+qxatSok+7xeL6tXr2bmzJmBbbIsM2rUKFauXFnruLKyMtq1a4eu6/Tr14/777+fHj1E/fQ/I8KJDBOvx0Xfb68FoGLYeFSLFa/m5aEfHwLgloG3YK0jUSAUDsv/6BUV7H/+eVxr1mC4XFUkgULVjZQkiVf+NpjxT33NloIyemZE87/pwUnP6LrGng2/AZDRrQdyEDMckkUh6fJeQXzaVoKvAu6vFIr+xy8Q167O7mXlmykv+x2Hoy3R0eE5Ds2FYRjkHsoNtI+mvdPGf/vVXiPa0HW8ueZYa3b2EaeqiTm6hnRzxEQeS8f+A5nxxvshjTF0A3+hKcujJjlDSgZSFIUxY8ag+XVWv1wW9LjExJNJTDw5JDuD5UBMAv7IWFyajqMyplnxR6D4I6rV6xYcHxQVFaFpGikpKVW2p6SkBGahj6VLly688MIL9O7dm0OHDjF37lyGDRvGb7/9Rps2bZrDbEErQjiRjYhf97No0yIAZvSf0WhO5NEUL655ufzo+MhgsVtkouwqJ3VJ4soTs9ENCCb2X/P6eHO2WYP5upcWY7WHvoTS6rE4oe0Q2PVdUEvahYWfBMTGg3EiQ6hU2ejYFBsvjH4h0A4Fw+1m6/gzgcqYyBrqvAtMDL9O/mNmdaj02cOQrME7voqiMGjQIHwejTUvLw96nNuTh6tiBxZrPJERtT8MhMOb46ZSGhXL6RVu+kSJv3swrFixos73LUdpAF9zzTVcccUVtfY9+gE/Nja23n03FUOHDmXo0KGB18OGDaNbt248++yz/POf/2wRmwQth3Aiw0SWFXIVszJERlOXz6gkEB/5yy9V9CID74e4TixJEu9cPYziCh+3v7eOV77bzqMTc7DXspRZE8GWPjR8OgfeNAOx4yd2MQWOW5j+/fvTq1evQExSFSQJLlsCFfvhxTHm62lfgLVxfjxbUnRckRUGpg6s8b3dbi8PbN1HtKpwf+eaZxWUuOafdVKtMpc9fEKg3dxsXbuGj+Y/RVrHLpwza3bQ4+SI8L5i/X4/K1asQNcMDPSgYyILC5YGYiJ79fw3AN8seoVfli2l3xlnMvjs2sun1ofd40K32lCPumYPpX/NofQV+PecTVb7+rPs/2yEEqNosViqOJV1IUlSWPGPx5KYmIiiKOTn51fZnp+fH3TMo8VioW/fvmzZsqXB9giOP4QTGSZ2ZyTZd65t1mMeHR+pV5jLZMdK/sSlmbNmuqZjGHK9TookSdgscqC+89zz6p8iU202krI6ULh9K4XbtwZVvcYwDFzrTLkT47zOIVXvaCqsVmvdIs6SZEr+FFVmIfrdgFFjjKTNmkx0VG/sjtqXcxyW1iE67tE8zFxhxkDNGTGnymxkiV/jrfyDJFnVGp1I2emk88pvm83Ww0iShCOqeeMlZUlGNsxses2v4Skvx1tPokSV8VaF9DuH1t+xBnRdZ/lycwZy2KC/oshqUAoMqiUGpzMbm+3I8qTX5aLiUDE+T8MkWC59ax6JmVn0OP3IZ/LZ9+OK34TLFXwGuaD1YLVa6d+/P8uWLWPChAmAee0tW7aM6dOnB7UPTdNYt24dY8aMaUJLBa0V4UQeb/j9FL/7Lvuffx7/3n1VJH8sVoUL7zZLma1483cKd5Ry9k396nUkLYrM7LN6BNr1IUkS59/7IE9Oqb0ixvHAgQMHKCgoIDo6mvT09Jo7qXaY8oHZfv862PiBucx92ZIqjmR6+nl1VgiB1iM6rukan+74FID7ht8HrVluqRKfV2PxHDNp4LyZA7CEsDQcDpnRmfx8/reBuNh2PXsx9bFnUa3NIzMkyzIDK7Pg/zK6O6qqBlX2MC11AmmpE+rtJ8kSkSdmBNpoLRhfIWhRZsyYwZQpUxgwYACDBg3i8ccfp7y8PJCtPXnyZDIyMpgzZw4As2fPZsiQIXTs2JHi4mIefvhhduzYweWXX96SH0PQQggnMkw87grW/p+ZWJNz+Txs9maKEVJVSj78CP/efQA1Jtn4PBq/fL4bCE6A3KLITB6aFZIZUquYS2wYmzZtqi42fiyyAu0rMyy/ewZi2kKvc0H3m0LZIdIaMtMtioVZg2cF2qGgV1SwqV9/oHoZzibFgIP7ygPt5sZqtxMfnRDSGN2rsfcuc9Y2ffYw5BAcX1VVGTt2bEjHA9A0N5pWgSxbUNWoWvtJqkzsmA5HD6x33/MvuonSqFhySisaNSayLTtwRA0gqQVF+P/MTJo0icLCQu666y7y8vLIyclhyZIlgWSbnTt3Ih+VQHfw4EGmTZtGXl4ecXFx9O/fn2+//Zbu3Ru3HKbg+EDctWGi+X0MLnoHgAr/44AZa3Zqu1MD7abg8JK2duAAm4fXLiYcCl6/zrwvzHiWa0/uiDUIjUmL3c6Niz5olOMfN5z7AhhajYk2RUVfUFj4CbGxA0lL+2utu7CrCituOTnQbgkssoULul7QIseujgQxmUfataBYZCbc0DfQbm52b1zPircWk5TZjlGXXwuKQsTIEyuNa/y/42GNRsMwiFHSkGWZmKz6l/P37l1ULSaytXMhrzCk2yVERETX31nQJEyfPr3W5esvv/yyyuvHHnuMxx57rBmsEhwPCCeyEbEpNh496dEmP44kSch1BFXLskTvv7QJtOvDr+s8sWwzAFeO7IA1yCD+4x2n00lKSgoxMcFVIEGS4evHQPPASbOqCGOXlq1n7z5TN7QuJ1KWJdrGt2xmq0/zsWDdAgCm9ZoW0myk5HDQ6dtvAu0GY3XCDevq7SbLEhldmi+hZ0/ZHqZ8PBlnRhrv79mHq6ycvZvWB9LqZZuNzGefrXMfkkUm7Y7BgXYoHK3RmJg/HMlQuHhuzclQ4XBsScaasFqt3HPPPYBZ9nDKW/OIa9uO7iMfbjQ7BALB8Y1wIhsZt9/NdZ9fB8CTf3kSu1p3wknYSBLWjtmB9tEoFpkREzsHvStFlrhkSLtAOxg0v5/flps1lHuMHIVST/k7SZaIGJIWaLcG+vTpQ58+fYIfoPtg+QNm+8Sbaa3C2PXh030887NZJebSHpdWcSJjVIXzU+OJqmU2WpIk1Pj4ZrHzaPw+jc9eNMW3R03tjhqCgkA4aLpGfkUBEZWzxWnZ2Zx54yzskbUvER+LJEkokeFdI5Ik0a5dOwwDKvKCH9emzWTatJlcb79jSzIGg8PjItLrxtLI928xsezy6LS1aYHzLRAIjg+EE9nI6IbOd/u+C7SbCtnhIPuD2peTQ0lEsKkK/5zQM6Tj634/nz73FADdhp9UvxOpysRN6BjSMVodh7UjU3uGXU/b7dOY8sIPALx02aCQ5JQaC1VWmdRlUqB9NBl2K493y6xpGAC6y8W288wEovaLF9c5I96YGDrkrikE4JQpzXLIKkTGxdMppe1R9tQvuq57NQqeWgtA8vSckGIiLRYLU6dONUXWfwheJ7IpJaMWjZuKOyaeweUuukY03t/9Wabzy8/lPNntEOelNv8DikAgCB/hRB7n6BUVVWV+DhNCIoJf01n6m6kTNrpHCmoQGdp/BLZu3cqGDRvIyMggJyen/gGSBJd+AL++A7+9C13HgxLaLaQbBt9vOxBotwRWxcodQ+4Ib7Bh4N2SG2g3GG/5kcpAs/bW6pzLqsSJ53cOtJub/O3b+PnLL4hNSWPQWecGLbruL6g/o7omdF2nqKgIv1fDwAg6kW3P3kXk5j5CUtKpdOv6LwA6DRpGTEoaqdmhPcR5vV7mzZsHwJknjeBgTAKlUbF49CN/d3tJe2J3nkJsl8ZbahcIBMcPwokME1lRWRNpBtZ3P8qRsCgW7h56d6DdVOheLwVz53Lw5Vew9+pF1puLwp6F8Go6175uVtZYP3t0cE6kLJHZKyfQrg/Dp1Hw9M8AJF/TB6kFZuCOJT8/nx9//BG32x2cEwmgeeHdyqoSs/aG7ES2Bvy6n2U7lwFwSuYpVWYjt1V4mL5hB7Gqymt9OlQbK9lsZL70UqDdXCiKTK+TWq6kWklREeuWLSW9czcGnXVuUGMkVSZxWq9AOxT8fj9PP/00cLh2dnD3i6658fn24/eXBra16d6TNt1DW2k4zKFDhwDzOXT8Z4uITGtD9ogj5Usji3oTWdSblAuDWxIXCAR/LI6/X8BWgt0RQb+b/ldtu0W2cG7n4H5kGoJksVDxo7lc7V63rprMTyjIksTg9vGBdjBYrDbOu+O+oI9hGOCrnBk1jLrycFs5kgztTjjSriQyohMpKWcSHZPTMnaFgFfzctPymwD4/sLvqziRLl1ndUlFrXIrkqIQMXhQs9h5NJpfZ/XH2wHof0YWSohOWUNJyMhg+MSLiUyoOQmlJiRZwp4dG/YxnU5nyHJGqalnEhc3pE55n3DJyN9Fok0hUsQtCgSCSoQTeZwiSRJZixaS/89/mlmy9cQk1oXdorDoyqFUeP3YmvnH+bjD4oCpH1bbnJR0GklJp7WAQaEjSzIDUgYE2qGgezzsveVWANIfehC5mWYjdc3gxw+3A9D3tHbNPgEcn5bOkHNCq0XdkFKfVquVW265xYyJ/EfwMZEWSxwWS9Us9p2//kLBti2kdupCm649gt7XsXwyYjx6fBIjXR6yHObf3evMw+vMo6w8gWir0AkUCP5sCCcyTNwVZWx+YhwAnf7xAXZnJAAVvgoGv27Kenx/4fc4LU0n5yJbraQ1QsF7XTfYUljG/OW5bC8q5+2rh9W7NO73evn4qUfwedyceePtqHWVDwQkRSbhkm6B9nGLrh8pg5jYBWpIqGjt2FU7L57+Yo3vZdgsPNO9HbbaQhQ0jdKllRV35tzfRBZWR5Yleo7MCLSbm+L8PLau+5WIuHi6DB0R1JiWKPVZULCUXbtfIi5uKB3amyoRuau+Y83H7zP47IkNciK3ZnahNCqWQ/4jwuQlqd+zv+O7GPvyiY4LfmVCIBD8MRBOZJjoukYvz08AVOj1V3tobkJJRJAkuGHRWn7bW0J8hJUD5V7iI6x1OpKGrvP796Ze4Ot33sQlDzxRZ39JkWrVozuu8Lvg6SFm+6hEkH373mXvvjdJTDiZdu2uaEED60c3dLYWbwWgQ2yHKrORMRaVs1Nq12OULBZS7rwj0G4uFIvMyAu6NNvxYmwx3NT371g+vQeAwl27+OKlBaR37ha0EykpErFnZQfaoeD1ern/ftNJv+H+m7BarOhWX73jPJ48iou/x2pt/HvthB+XYU1JJX14+I6oQCD4YyGcyCZk4gcTeX/C+yEvGQZLXXIroSQiSJLEB9edgMun4bSqzF+ey2fr81l81dBaHUPVZiMpqwOF27dSuH0rPo8bq7122Q/DMNDLzR9BOcLSpFIkwRIfH0+3bt3IyMgIbaCzevk7t2cvxcU/4HRkNY5xTYjb7+bs988Gqs+Wa4aBS9ORoEbNPsliIf6ii5rL1AC6prN1rTmr1yEnEbmJZ7NjbDFM6XohvGPGjkbFx9N1+Eji0mqpsV4DkiITOTT4/rXhiLRitVqp8Pnr7ZuQcCI9rU9gs6fV2U+2KrR54IgzrHnqfxDu+ftPJLqzSGqm+uECgaD1c/ytxbUSLFY7P/S8mx963o3FekRQ3KE66BrfFYAdJTuY9MEkjKaScqmUW/FuyTWXWRuAJEk4LApjnljBAx9vZNWOg7h8tf+wSJLE+fc+GHi98O5b6/ychk9n333fs+++7zF8TaefGQpdunRh0qRJDBkyJPhB1gi4Zav5LwytyMPC7pcMaRe0sHtTEGeLI85WfcZxU7mbjivWMeT7DTWOM7xeCp98isInn8LwepvazACa32Dpgl9ZuuBXNH/zSyOldshm7N9vZth5wTvQhl/n0Kc7OPTpDgx/aNe8xWLh5ptv5uabb8YSwoyv09melJRxxMb0D+l4wbCq9zA+7dSPPE/9M6KhMJnnebe7k1MSRNnDlmLevHlkZWVht9sZPHgwP/zwQ619TzrpJCRJqvYvnFrvguMfMRMZJharjUHnzqi2XZIkFo1bxLn/O5cUZwqX9bwM3dBRpKbNaNx+8SW0f+ftwAyfz6Pxfzd8BcDlj52IxVb/8Q/PSO4pduG0KjjqkeGx2OykdOhE/tbNpHfuhub3ozbjEmdrIjHxFOy2VBzOrDr7hSPs3tg4LU6+Ov+rsMYafj9FldqBCX+7DKmeWNh6UWxw3n+OtGtBkiC9U2yg3dSUeEv436a3sERFMrG0jIpDhyjctxmb00lqx85Idjsd/ve+aY+95qpUhm5QumwnAFEj24QUEylJEhEREfi9Gm89YKowjP57t3rHHTz4HQUFS4iK6kF6+nkhHLE6sixz6qmnBtqreg2jNCqWfK+PVFvj3edp7KN3pEKERfwctQSLFi1ixowZzJ8/n8GDB/P4448zevRoNm3aRHJycrX+77zzDt6jHiD3799Pnz59OO+8hl1vguMTcdc2AbIk8/b4t3H5XU2aWCM5HNi6dcOzYQOeDRuqyfzoeugzNodrO1d46186kySJi+5/FL/Hg6WWH9LWzPr161m1ahXt27dnxIjg4txqE8eOiuxKVGTXJrK0FaGqxF14QaDdYBQVepxd/2GtCmff2K/hxwuSYncxD6x5jIj4WCaWlrFn8++8/8Rc0jt344J/Powky9g61Z2t3ZBSn16vlwULFpiz+zu6IKEEtaJRVraJ3XteITl5bJ1OpO7VyH90NQApM2qetVRVleHDhwNm7ewev69FSkwmYajIwg4Wl8sFgN1uR5Ik3G43hmFgtVpRFAWPx4Ou61gsFlRVxefz4ff7URQFq9WK3+/H5/MhSRJ2ux1d1/F4PAA4KsOXjj1GqDz66KNMmzaNqVOnAjB//nw+/PBDXnjhBW677bZq/eOPKXu6cOFCnE6ncCL/pIjl7DCpKDsE98TAPTFm+xgMDApdhWw8sBGtiRJvJEki69VXGnWfLq/GqY8up/tdSxn/1Ne4fVqdP16SJB2XDiSYQspbt26loKCgwfsyDA1d96LrdTvffk3n8435fL4xH7/WMsv6Fb4Ker3Ui14v9aLCF1pFFdlqJfWuu0i96y7khs5ChoChG+zfW8b+vWUYYTwcNRSbw0FSZhaxqXXHGh7N4VKfcRM6hiw2DlBYWEhRUVFIoqrR0X1on3Udycmn19tXK/agFXuC3veIHz9jwm/f0sbeuH/3dzmHaze7+PZgWaPutzUwYsQIRowYQXFxMQCTJ09mxIgR/PSTmZR51113MWLECN555x0AXnjhBUaMGMFjjz0GwJdffsmIESP4+9//DsC2bdsYMWIE48ePr/UYoeD1elm9ejWjRo0KbJNlmVGjRrFy5cqg9vH8889z/vnnExERXilYwfGNmIlsItx+N+PeNSWAusZ35c1xbzZJMolktdaYLataZC66d0igHSx2i0ykXeWkLklceWI2/1j4E/vLvLUm2fi8Ht64w0w+uOC+uViszVfFpEWwOOHm3CPtSrbvmM/WrY+SnjaRbt3m1Drcq+lc9h9zeTLo6kCtCMPvp/SzzwCIGjUKqaGzkX4vfD7bbP/lLlBrdlD8Pp2Fs804rSueGBlUeEZjktmjJ5MffirwWvd42F35w97m3/+uUS/T0Axcv5nJQI4eiSFlaKuqypQpU9B8Okse3R70uJiYHGKOEby3RUQQlZCE1RHaqoimaaxebc5WJtlUcjO7sDc1nWKfn9hGXHr+nW78ctDP2NTmi7EVmBQVFaFpGikpKVW2p6SksHHjxnrH//DDD/z66688//zzTWWioJUjnMgm4nCCzcYDG9lycEuTLW3Xli0ryRKxKaEfT5Ik3rl6WCCp5nBN7cOZ29XQDQp3bAu0jyfat2/PuHHjqi3P1IkkQcTxLVXkUB0sn7Q80A4Fw+tlz/U3AJU1oxvqROo++PZJs33STKD2WS57ZMvF2/q8XjxlbmRVxRkdA5pG+fLKuFKt5pUGQ9M58Lr5Q5w+exiSErzjK8sy7du3x+fRkNgR9Liysk0UF6/C4WxHQrxZWWnYeReFlBB0GE3T+OijjwC4+KxxfDpiPKVRsUx2ewNOZMK2scRvP4P0u0TZw5pYsWIFYC41A7z88suB5WyA2bNnc8899wSSpy677DImT56MUnmtnHTSSaxYsSLwAN++ffvAPms7RnPy/PPP06tXLwYNav4qVoLWgXAiG4XqzpMkSbw57k1cfhcWxYJP82EYRrNJ2+i6wb7NxQCkdYoNSaBZkiScVhWfpnP7mG7YLDKWBs6YSapMyg39Au3WQGpqKqmpqaEN8lbAgpPN9rQvwNp0Ma9NhSRJxNtrdpyzHDaWDuiMWtt1Kss4Bw4MtJsLi03hb3ODjFttArb/8nOVmMhgkCSwto8JtEPB5/Px7rvvousGBglIQUYeHTz4Hb9vnk1y8tiAE9lYpBfswud1EaEcif2VDBXJAFluvtCG4wmHo+pD2rGOnu2YGWyLxVIlG19VVdSjHtRkWa62z2Nfh0JiYiKKopCfn19le35+fr3fjeXl5SxcuJDZs2eHfXzB8Y9wIhsB+yvj4KoV1X4pJEnCaXHyxsY3uP/7++mb3JeXTn+pUR1JvaKCTYPMCjldfvgeuTKxRvPpvPeYGXdzxRMjkcNY/rMoMtNO7FBnH8Vi4cybbg+0a0OSJSwpf4SYGQMKNx5pH4e4/C4u+MBMjnlj3BtVZiOdikyfqNodY9lup90rLze5ja0NSQJJlpFCcJwli0Lylb3DOp5hGKxfvx6ARGl40Jeaw5FJUtLpxETnhHXcujjz00UkZmbR8dwzGn3fgpbBarXSv39/li1bxoQJEwDQdZ1ly5Yxffr0OscuXrwYj8fDxRdf3AyWClorwokMF4uTNXpHDhkRDB01G7uhQy0yPi6/mT33U8FPTbOs7a8/kzocvH6deV9sAeDakztirWEGUVYUOg0cWu++DN3Au7MEAGtmdMjZqk3BypUrWbp0Kb169eKcc84JbpBqhykfHGkfhxiGQe6h3ED7aFyazuYKN6ok0T2y+gyHoet4c82x1uzskJyqhnB0DemWiIns2H8gM954P6Qxhm7gLzQTl9QkZ0jXvKIojBkzBs2vs/rl4BNOEhNPJjHx5CrbvnhpgVn2cMJETjj/kqD3dSwHYhLwR8bi0nQclSsTB9suo7jtZ3h2nkt2x+vD3reg5ZgxYwZTpkxhwIABDBo0iMcff5zy8vJAtvbkyZPJyMhgzpyqsd7PP/88EyZMICGhevEFwZ8H4USGic2i4pm8FKffhSW7DdTxA3Fu53N5bPVjzWhd4+DXdZ5YthmAK0d2wFrDkpphGLhKTefQERVd6yyr4dcpnP8LUBkfZm1eJ6DRkBVo33LLqo2BTbHxwugXAu2j2ebycNqq30myqqwbXl3P0nC72Tr+TKAyJtJ5/C3nB4MsySTaE3CW5oW9D8Ovk//YGiD0a15RFAYNGoTm19H3mSUq5SASc9yePFwVO7BY44mMqJQgMgzzXwNnzt8cN5XSqFhOr3AHZqs1SxneyH14vUUN2reg5Zg0aRKFhYXcdddd5OXlkZOTw5IlSwLJNjt37kQ+5mFx06ZNfP3113zyySctYbKgFSGcyDBRZImhHeLh4DY4uBXi2tcaI6ZKTXeaJbud7CUfB9qNyeHqKofbNeH3eHhmmhm0//eX3jpu5X6CxueGdytrY5/9HFjMz5uW+lfi4oZgtbT+p3JFVhiYOjD88XG119ZuKlSrzGUPnxBoNzVtotrwxdkfBjRBt65dw0fznyKtYxfOmRV8DJgcEd697/f7AwkTI84agaqqQckxFRYsDcRE9ur571r7SbJEzBntA220+h1Mu8eFbrXVHi8rOG6ZPn16rcvXX375ZbVtXbp0abpKbILjCuFEhomuG+zM30/Ws5UCyEcJTzcnkixjzcpqkn3bVIW7x3dn6W/5fPDzPs7KSW+QJI0c/QcIvjc0WP9fsz3hmcBmuz0Nez31ilsLHs3DzBUzAZgzYk6V2UhZglhVIaaGutkAstNJ55XfNoudRyNJEo6olrt+NL+Gp7wcb6WwczDIVoX0O+sP9agJXddZvtxcvj8s+B0MqiUGpzMbmy2lzn6SKhM1ss2RDbVkmB/NpW/NIzEzix6nh/eZaqMr62kTP7DR9ScFAkHTI5zIMHH7Nc544is2BDHxJkkS2THZgXZjYmgaFatMLTfngP4hyYgEg1fTufZ1c0nujF6pYTuRslUhfdbgxjStZVCsMGbukXYlXu9+vN79qJZo7LbasxodFoX1s0cH2i2Bpmt8uuNTAO4bfh8cZUbXCAcbR/RqPmMkGdL7HmnXgs+rsXiOqa953swBWJo5HKJdz15MfexZVGtl8piqElOZiNAolXuOQZZlBg4ciGEYbFu7H0VRSO1R/0NqWuoE0lInNJodzmYIVziLdxjS8SoiIiKb/FgCgaBxEU5kA/EZCqoi1VlUwqE6eG/Ce01yfMPjYeeUKUDVGDWLTeHa+X9p8P4dFoUB7eICy9nNKVPUKlEsMGhatc179i4MSmz8sHxSS2JRLMwaPCvQDgW9ooJN/cwyeV3WrA6oAYRvjAOu+LL+fgYc3FceaDc1O0t2MuG/E4jIzGDFzj1Y7Xbio4+EKshWK+kP1P53BrO04N67zFnb9NnDkENwfFVVZezYsVUSii6eW38Igqa50bQKZNmCqkbV2s/QdMp/MOM9IwbV/NBjtVq55ZZbALPs4fyLbqI0Kpac0oo6M/gFAsGfB+FENgCf7KCb71V+uf20eh0Dr+YNJNfc0P8GrMrxsXQjSRKLrhzKb3sPccd7v7K9qJy3rx4WsiNp+HVKvtgFQPTJbVuFVmT37t1JTU0NrVyX3wsrHjHbI26stcJKa8YiW7ig6wU1vlfo9bFw3wGciszf2iQ1s2W1o1hkJtzQN9BuDny6D1/ldb5743pWvLWYpMx2jLr82iY/tqZpbNy4Ec2nY2BQ92PqEfbuXRRUTKShGRT/18yyd/ave+m7qdlLBmvLNLpa/CS08AOWQCAIDXHHhonTqrLl/jFB9/frfl7d8CoA1/W9rsmdSE3T2fjtPvxenZ4nZaA0JJZRgpnvrOO3vSXER1hrr15TB4ZuULpsJwBRI9uEUg64yYiJiSEmJia0QboPlj9gtof/ncMVVmRJRZYdSPWILru8Gmc+9TUA708/AUcLZKn7NB8L1i0AYFqvaVVmIwu9fv61dR9JVrVGJ1JyOOj07TeBdoMxDKjYb7adCbWqcsuyREaX5k/oOYyrrJy9m9ZXZjkHF0YiWWTS7hgcaIeCpmksXrwYOKwT2fJqBlPemkdc23Z0Hxmc2HqwvMJUfllfwZPdSjgvNYTqUQKBoMURTmRD0Hyw+j/gLYf+l5pLnRZn6OUpmgDdb/Dla5sA2PjdPibOGhj2MrQkSXxw3QkB53HMEyv44LoTkGUJ1Wplytx5AKjW42tWzuVyUVFRgdVqJSqq9qW/KsgqDLz8SLuSdu2upF27K+sdbmCwuaAs0G4JfLqPZ342k4Iu7XFpSEvakiShhlImsl5jKuBhM164ruQ0v0/jsxdN8e1RU7ujNnM8aVp2NmfeOAt7pHmd1BZGcjSSJKFEhndPSJJEu3btTB87BJWhNm0m06bN5Crbup/4F9I6dSGhTWZINni9Xh5+2HQYJ40ZjcPjItLrxnKUUoPzYBfYMoGE7ieFtG+BQPDHQDiRYeLTdBZ/u5kLl91kbvjsbvP/tkPgsiXVHElVVrm428WBdlOjWmWSMqMo3FmKPcKC5tNRGzDrddgBnb88l/X7Shj35Nd8+PcTkGSZxLbtGsvsZmXt2rVhiI3bYOwjTWtYE6PKKpO6TAq0Q0F3udh23nkAtF+8GLkxZiODwNAhd00hAKdMaZZDViEyLp5OKW1DGqN7NQqeWgtA8vSckGIiLRYLU6dONWMif1ge9LiaHhRTOnQkpUPHoPdxND6fL9BeNG4q7ph4Bpe76Bph/t2dB7viPNiVxHhRO1sg+DMinMgw8Wk6sz7cSidrZwbKvx95Y9d35uzKMTMqVsXKrYNuBaDCV4FFtjRpgookSZw3cwB+r95o1T0cFoVP1+dzxYkduLKyHKKua+z73ZzxTOvcBVlu+WW3JkXzw8b/me2u40Exb6FDh9Zy6NAaIiI7N3rN4sbGqli5Y8gd4Q02DLxbcgPt5kJWJU48v3Og3dzkb9/Gz19+QWxKGoPOOjfocf6C+rUda0LXdYqKivB7tZBiIvfsXURu7iMkJZ1Kt67/CuvYtXEwJoHSqFg8utAHFAgEJsKJbBAS53nvZv0dI3BKfvjPmMD2mjhcszj3UC5Z0Vn8d8J/keuQNQkG2emk28YNNVsnSY1aHk6SJN66amiVmEi/x8fCu80Mzr+/9Bay/fhyIiVJCs2Z1zyw+FKzPWtvwIk8cPCbQHZ2a3ci/bqfZTuXAXBK5ikhzUZKNhuZL70UaDcXiiLT66Q29XdsIkqKili3bCnpnbsF7URKqkzitF6Bdij4/X6efvppILSYSF1z4/Ptx+8vDWzLXf09ezZtILN7L7Jy+odkx9GM/2wRkWltyD5KAsodtQNP1E4iSuzEJYYvYC8QCI5PhBPZYCRz1tGqwrXf19nTrtgD8WfbS7Yz6YNJvDnuzSabkWyKODK3T+esp8zEivennxD0BSRJYG0fE2i3BoYOHcrQoSEKJ0sytDvhSPs4xKt5uWm5GYbx/YXfV3Ei7bJM3ygnsbVcK5KiEDF4ULPYeTSaX2f1x9sB6H9GFkozZ/cnZGQwfOLFRCYkBj1GkiXs2bFhH9PpdIYsZ5SaeiZxcUOqyPvsXPczaz5+H1mWG+REZuTvItGmEHmUEH1Z0lr2d3wXuaBCOJECwZ8Q4UQ2I5IksWjcIs5870x2lOxg44GNuPwunJbwNdcMn4/id98FIPbss5EsR5IkmiKOrFpiiGTGiwG1TcCab1kUkq/s3ThGtCQWB0z9sKWtaBCyJDMgZUCgfTQdnDY+HtC51rG6x8PeW8ywjPSHHkRuptlIXTP48cPtAPQ9rd3hCeAmI94ez/1D7kZ9/zrzdVo6Q87pFNI+DJ/OgTfNUI/4iV1CytA+WqPxMMGUPbRY4rBYgstiD7Uk4ycjxqPHJzHS5SHL0Xyz0IKmZ968eTz88MPk5eXRp08fnnzySQYNqvlh0efzMWfOHF566SX27NlDly5dePDBBzn99NOb2WpBa0A4kY2F3wOf3g2+crOiiVrzl6wsybw57k0Gv9441VsMn4+8u8yknphx46o4kU2BTVV4Y9qQQFuRVa6c/3KTHrOpyMvLY+fOnSQkJJCdnR3cIF2HItMxILFLrfXSWzN21c6Lp78Y3mBNo3TpUrM95/7GM6oeZFmi58iMQLupibRGMr79GVBuOm7F+XlsXfcrEXHxdBk6Iqh9GIaBa12R2T6vc7PIWhUULGXX7peIixtKh/bX1drv2JKMmqf+sodbM7tQGhXLIX/9fQXHD4sWLWLGjBnMnz+fwYMH8/jjjzN69Gg2bdpEcnJytf533HEHr776KgsWLKBr164sXbqUs88+m2+//Za+ffu2wCcQtCTCiQwTCYlOyZGBNrofvq+spbz3J7hyRa3rtg2pGNLSKLLE0OyE+jseg+HTOfC2mYAUf07nkHXzmoJt27YFsrODdiL9LnjadKLDqZeuyjL/OKVToN0S6IbO1uKtAHSI7VBlNnKP28vc7XlEKQqzO2VUGytZLKTceUeg3VwoFpmRF3RptuMdS+GuXXzx0gLSO3cL2omUFInYs7ID7VDwer3cf7/ppM+aNQtrkPJZHk8excXfY7UGv+weLCf8uAxrSirpw3s06n6v4kl69llERnSImq3HAa5aaq1brVYURUHXdTweT2C7o1LtwO/3V8mMP4wkSdjtZq1dr9eLVlnzXFGUoK+RY3n00UeZNm0aU6dOBWD+/Pl8+OGHvPDCC9x2223V+r/yyivcfvvtjBlj5gBcffXVfPbZZzzyyCO8+uqrYdkgOH4RTmSYOKwKn84YeWSD4YT0frB3jRkzp3lrnY2sq2JIyMgyEcOGBtpNjdunMePNtQA8OjEHi6Tz/btvAjD47Ikoas2OhWEYuNaaS+vGXzu1CrHxsHFWd6Kt1kQiI7tjs6fXOdSqytxwau3Lxc2B2+/m7PfPBsyYyKPDKQ75Nd7Yd4Akq1qrExl/0UWNZ4xqhykfHGnXgq7pbF1rzup1yElEboB4fjAUu4t55dcXsMZGc2VxCVHx8XQdPpK4NPPvG4zouqTIRA6t+3oIhtfv+Q4ZlQm311/TPCHhRHpan8BmT2vwcRVF4ayzzjLbskHP338i0Z1FkrVxHx5iOESGTSZCPb6S8oJhxIiaHzjmz5/PgAED2L17N3/9618B83x//70ZV//OO+/w0EMPVRvXoUMH3nzT/L598skneeONNwC44IILuPHGG0O2z+v1snr1ambOnBnYJssyo0aNYuXKlTWO8Xg8AUf2MA6Hg6+//jrk4wuOf4QT2VhIEkz7vEZ5n5qo8FUw/I3hAHxzwTdhx0XKdjuZL7wQ1thw0A2Dj9aZ6sdzzzPQNY2Vb5lfZAPHn1OrE/mHwRoBt2yttjkjfRIZ6ZNawKDwiLOFV/3F8HopevY5ABKvvAKpoQLzsgLt65/Z0/wGSxf8CsAVT4ykqZWkSrwlPPfbi0TEmE5kaodsxv795sD7wYiuN6TUp8Vi4eabb8bn1Xh15o9I+INSVHI62+N0tq+3n+7V2PfP7wBIu3NIjX0URQksT+5Yt5ZVvYehJKUy2uMj1fYHv8//JBQVFaFpGikpVUtfpqSksHHjxhrHjB49mkcffZQTTzyR7Oxsli1bxjvvvBOYFRX8uRBOZJh4/BoPfGzeZLed0RWbqlSmIAe/vOk3/E1lHtA0cWQWRWb2WT0CbfTgxkmyRPRp7QLtPys+Tee9n/YAMKFvhnkOmxmnxclX539V43uJFpUb2qXgrMUuw++naJ5ZoSjhb5c13IkMEkmC9E6xgXZzU3HoEIX7NmNzOkntGNxMckNKfUqSREREBD5VC1ojEuDgwe8oKFhCVFQP0tPPq9s+X5A3byWreg2jNCqWfG/jOpGvM5knNlRwQ/sSTk6IbrT9tgZWrFhR4/bDS89t2rSpsc9f//pXxo8fX2370Uoe1113Hddccw1gOvzNxRNPPMG0adPo2rUrkiSRnZ3N1KlTeaEZJzMErQfhRIaJphu8+M12AG4eXRmr5a2ABSeb7WlfgDX8rOtgqStbtiniyCyKzOShWYHXNYTt1IikykT/JbSya60SbzncX7lEeVRMZNH+Lykq+pzYmP6kpp5V63CfpnPzW78AMLZ3Wos4kXWRbLNwa4c6lkJVlbgLLwi0G4zfA/+73myPf7zWEBDVqnD2jf0afrww2bP5d95/Yi7pnbtxwT8fRne72XHxJQC0e/UVZHv1pXhJlogYkhZoh4LX62XBggUYhgF0QSI4J6GsbBO797xCcvLYgBMZmZBIcvtsIuJCK1fp9/sDDk67+Bh6/L4WKTGZhKHdA30kQ0Hy25DrqRlfF7vI5JdSjSJf0z5UtwSOeio6ybJcYx9VVVHrub/CjYE8msTERBRFIT8/v8r2/Px8UlNTaxyTlJTEe++9h9vtZv/+/aSnp3PbbbfRoUOHBtsjOP4QTmSjYkDhxiPtOrCrdj44+4NAO2yaOVvW69eZ98UWAK49ueNxHdvocDhITEwMvm52HZSW/saePa9h6L46ncjWQIWvIqAOcGxMZH3IViupd93VeMbofvj5dbM9di5QsxNp6AYH8soBiE+NaPbZbJvDQVJmFrGplQ62ruP+9ddAuyYkVSZuQnjlBgEKC80Y4kSpS9B6kdHRfWifdR0RkUdmSweO/ysDx/815OPrus7y5WbJxYvPGseIHz8jMTOLNvYLA30Sto0jYds40meLsofHI1arlf79+7Ns2TImTJgAmH/3ZcuWMX369DrH2u12MjIy8Pl8vP3220ycOLEZLBa0NoQTGSaKLDF1eFagHSqyJNMuumlrTvu9Gm89tBqAc2/p36Da2YF96jpPLNsMwJUjOxDsopbu1ch78AcAUm8dFFId4aYiJyeHnJyc0AZZnHBz7pH2H4zfy91c8HMuCRaVTwZWn8U2/H5KP/sMgKhRo5AaYzYyCPw+nYWzzevniidGNmolpmDI7NGTyQ8/FdIYQzNw/WYmAzl6JIaUoa2qKlOmTEHz6Sx5dHvQ42JicoiJyQnJzmDJzezC3tR0in1+Yi3ip+OPwowZM5gyZQoDBgxg0KBBPP7445SXlweytSdPnkxGRgZz5swB4Pvvv2fPnj3k5OSwZ88e7rnnHnRdr6ZrKvhzIL4JwsSmKtw9PnypC03XWFOwBoB+yf1QmiBTwDBg/+6yQLsxUGSJS4a0C7RBok33nuab9TjTevkfYLlKkiCiunxKTHQOmZnTiI7u0wJGhYZDdbB80vJA+2j8hsEejw9vLReM4fWy5/obAOiyZnWzOZEA9siWS+bweb14ytzIqoozSCkaQ9M58Lq5MpE+exhSCHFrsizTvn17fB4NiR1Bjysr20Rx8SocznaB8ps+txu/z4tqtWKxhb/q8emI8ZRGxTLZ7RVO5B+ISZMmUVhYyF133UVeXh45OTksWbIkkGyzc+dO5KOUP9xuN3fccQdbt24lMjKSMWPG8MorrxAbG9tCn0DQkohvghbCo3m4bOllQOWSonx8zGrZVIV/Tuh51BaFSXc/0GL2NIRt27axadMm0tLS6NMnSOevlrjX+PjhxMcPbyJLGxdJkoi3hxYfF0CWcQ4cGGg3Fxabwt/mBqfP2BRs/+XnKjGRwdCQUp8+n493330XXTcwSEAiuHN98OB3/L55NsnJYwNO5NcLX2bNx+8z+OyJnHD+5NAMOYr0gl34vC4ilK6BbQeyPuJA1kdUbJtI5y63h71vQcsyffr0Wpevv/zyyyqvR44cyfr165vBKsHxgHAiw8Tl1TjzKVMX6/3pJ+A4enk2pm0LWVUVRZU446pegXZj4Nd0lv5mBmGP7pGC2soSQ0IhLy+P7777jl69egXvRIYQ99pacfldXPCBmRzzxrg3qs1G1oVst9PuleOzQlEoWGQLnWKyceSbP5aSBJIsI4XgODek1KdhGIEf6jFnXYyqWJCDWA53ODJJSjqdmOicsI5bF2d+uojEzCw6nntGYJsu+9CsZWhazaLaAoHgj41wIsOkWg1pMGPk2g6BXueGXMkkbOrIlpUVmQ45SY16OK+mc+3r5jL8+tmjQfOzdP4TAIy+6h+ozST50mLUIo69e/er7Nz1AinJY8jOvqmFjAsOwzDIPZQbaIc0Vtfx5ppjrdnZITlVDcHn0XjuH+YSfHPERKZFpvHOmNcCmfgd+w9kxhvvh7QPQzfwF5plE9UkZ0jJQIqiBCqC9O/fHkVRgqqdnZh4MomJJ9fbT1Ik4s7tHGjjr/86OBCTgD8yFpem4ziOHx4FAkHjIZzIxkSS4LIlZsZpM1FXtqxhGLjLTA0ee6SlisZY2MeTJAa3jw+0DU1n4zfmj/tpV9Req7c1kpqayuDBg0lPD6GqSC3i2D7/IVyuHXi9++vdhcPSsklFNsXGC6NfCLRDwXC72Tr+TKAyJtJ5fIRhtASGXyf/MfOBK332MKQQkskURWHQoEEhH9PtycNVsQOLNZ7IiE619pMUmYgBRwlMB1EP+81xUymNiuX0Cjd9ohrv796XVfRJHkS2M7RrUSAQtDzCiWxsfBXwQKUe4m07m29Gsgb8Xp0XbjaX3Btr9sZuUVh05dDAa58WnFCkpMjEX9g10G4NtG/fnvbt66/uUQWfG969wmyf/RxYQktUcFpVNvzz9NCO2cgossLA1IE1vpdus/DvbpnY6pg1U+LCq3ZTI5ICnU470q4F1Spz2cMnBNpNjW7oVPjKQZKINAy2rl3DR/OfIq1jF86ZNRtJVYm/zIxpriu5SI4I7yv2sEajYRgkkI0sK7QfElvvuMKCpYGYyF49/x3WsY8mKclcyZAAu8eFbrWhNrLa+2ksYUjWDCIiWu67UiAQhIdwIpuCZpyJ1N1utp9vLmdnLXyjRtHjRj2ebrCl0FzG75gUiawqDJ9kii7LddS+lRQJZ+/GXVpvEQwN1v/XbE94pmVtCROP5mHmCrNW7pwRc6rMRsZaVCam1p50IzuddF75beMZY7HDRYvr7SZJEo6o5guV2F26m7HvjiUiM4PvduxG82t4ysvxuszYP8lqJeWWm+vch2xVSL9zaJ19auNojcbEfA3JUMgcULPjfzSqJQanMxubLaXOfseWZKwJq9XKtddeC5hlDy99ax6JmVn0OD28zyQQCP54CCeyhXBanKybsq7hO9J1PIdrnNYietyYuP0apz1mlsxbP3s0TquFIX+tv2a0YRgYbnPJTLIrjbK03lDWrl3LN998Q+fOnTn11FODG6RYYczcI+3jEE3X+HTHpwDcN/w+ji6GohsGvso4SVszZl/Xh8+rsXjOKgDOmzkASzPrjLbr2Yupjz2Lam0emSFZlhk4cCC6ZrDjo+DvlbTUCaSlTqi337ElGVuSLXSi4qCf/oqXdPvxeU8JBH9WWsWvxLx588jKysJutzN48GB++OGHOvsvXryYrl27Yrfb6dWrFx999FEzWXqEwzWkZ5/Vo2rpOtUB160x/4WQ9Xo8ER9hJT4itC97w6ez996V7L13Zcg1e5sKl8tFYWEhJSUlwQ9SLDBomvlPCd2hqPD66ffPT+n3z0+p8LaMbqZFsTBr8CxmDZ6F5ZjPsLHcTbvlvzBgZc0SHnpFBRu6dmND127oFfUnetSLrkPBBvNfXQ9BBhzcV87BfeUtkhRvtduJT88gOjHZNMfvp2TJEkqWLMHw1/x31L0au29bwe7bVqB76485PBpVVRk7diynjz4jaHkfAE1z4/UewO8vDel4NWEYBl6vF6/Xi2EYzL/oJm4dczk/lzbC3/0o3mYS0za7+Ka4rFH3KxAImp4Wn4lctGgRM2bMYP78+QwePJjHH3+c0aNHs2nTJpKTk6v1//bbb7nggguYM2cO48aN4/XXX2fChAmsWbOGnj171nCEpuHoGtIVXj8+TceuKsiyjBbXAU9FCVRU/yJ3Rpq6cRXuct7b/A4uv5sJHc4kIcZcfjpUdgC/31ttnNViJyoiFoDi0iI0zfzhclqctHnqSXRNY/+BvUiHjszQ+L1Vf5Rd5eUcKsoDQJZVktuaouGH9hfhKjtU7ZiKxUpSurnUtT9vDz6PG4AvrumLJcq0Zdfvv/HfB2ZjGDDqH7fgdNhRZAlbTBIRsXGg+Tmweytel8bRbueBgkKK9u5FliTsFgVdN3BXBvd3zjHldnbv2EXFwQM4LAoWZwQxGZkYGBzYsR18Htw+Dd0wsCgyFkVGiYolJiUFRZYoys3F5/Xg1XTi22SSmBhHRWkZuyszi51WleI881yUHizG43Zjs9vJ31fAofx92FQFi91OfLv26IZB8b7d6OXleL0+rL8uAnzQ52Jkm5PY9BSiIgaRGv8P5Iokfl/1I1EJ8aS1zwbg91U/AuCw23H5dRIObkXCoCCvJ8mpSRzaX8D+XbuwWqw4bVaSs7OpcLko2V+Mu7QETdPRNC+SJGOxWEGWSWiTgcOqUH7gEJ6yUorLyrBGRJCR3RlJltn+y1p0XUNRbSiyhOH3I6ETn5ZGdEo6Z2SMZ9uva9iwajV2q4PItGQ0SWP3QbO0oObzs+6HFRiA3Rpt2p+egOFy4ZdVNNXBz19/hRRhp3POQJwREWz56UfKSg6h2CJBtdPJvQPV8PLbmkTa9+yDu6KEvA2/okrgjE7AERuLx1NMwn9OwkssReNepLTEvGecMfHIqoot2o7N4USW7OScYcdVeogfP/uYNj2644yOYc+WjZTlH8BqsxIRl4imaXhLi8FqpV2vXni9bnb/8is+j5eYlGSc0VF4K+8vza1jURVKiwrxut3YoyKxOBxosk6xXoLqgjhPJLsrkln/4ovs2byB1OyOdDpxJAW/bcR+/zxk3YfxLxeuymXuToMGALBvz158xeWkYJ67Ld9/jY6O2+1FVSRcB4vxezVsEQ7s8bEoNisWawSyKlFRVICrpJyd+/KRHREYpGIYBt8vfo8ee9LxWIsB+Oadt3G7vaR27YAzIoKCzVso4yvkxE+x+PsSxWUYsoQlNoYBZ52Hy+Xl0/97HtViITo6kiQS0DD4+eOlaLqGalgwJJ3vP/qQrF6dObS3iMWfm9WJ+kfHI3Uy78tvF/8Xd0IsyW3TsBf1JNEbQX6Bg5K1byE5o3C7jjyULf/P63i9flRVJb5dGprfj4GMr6wMxWLFH+sJTGVs//k3fv5VI+/3bUhWhejEOPToNiBJfP6fN2gX5SAmJZnyQxUc3LcXVbEQGeVAiozC4rCg+b3gN3DvL6G8wryOY2PN869VyiPJqpXMXp1Jbd8Bq00k8ggEDUUyQtX4aGQGDx7MwIEDeeops6SYruu0bduW6667jttuu61a/0mTJlFeXs4HH3wQ2DZkyBBycnKYP39+tf4ejwePxxN4XVJSQtu2bTl06BDR0dENsr3C66f3PZ/g181T+MVNJ9E+3s5vK5dQsORBTlZ+rj7oHtNZW7H4Qa6peBWATl6Vd6b9BMBlzw3mR1v1J/2TvUn8e9rnAIxf0IvtlR7ZP+LO5vIzZ5O77lu85/2tyhhNtrL8xMeIyyjhvFvG8+HTj7NnU18ALN5irnjBrKf7wrQ7cSnVZUHsrs387aUrAXh+ysO4Hf0BcOjL8F50GQ98vJHbClyUl/+n2lg5ug1PJIxnZm+Dsv/OR5EsnJs1g5+iyxh702n898aHGBhxQrVxbq2Cjg+PBmDJ1U/QM6YfADvLc7m7fXs2F5TxrrucJHtatbEbStYyLboDlwxpxyVf78KpRgLwkWs5VzxxB/99aB79DxzR7Vun7OR7y2achpXU9CQmXzmN16+5j4j4thRKJfgML5vaduW9bfBy6R62xHvRj5kGc2sV/NX6fxy0pnCo4Crycv6LJWI/muFjxCkPkJAwnJV3LKaoT/X4Sb/u5YFNl3Hr/mXEJJ5ARVczNlBR/Yz5+Wc+zrsNT7f9KOlrqowzMEhy59E1t4xfCu+gsPcP2OK3oRkan+X144O9o3jDX0Z+31dQrFWvJb/hZ1fk31i18TWuKryC/f2eBsBjuJnrKWH05rN59uRziNZLeOTAPSx2jmevmmr2kXxs9xt0PpjOYN/vDI14G93Qec45lei2J1C8fg9jfW/SzrGeQjme1yPPCdhb4InFXlpOoprGFP/jRFgPsFFpw/IDJ+PX7KREJHKuzSyrtsx+Ar9au5ljdQ3nDj8lUYn08rsZ7XwaA4O3LWPwatHs93RhhO9bcpyfoSPxZPTllccEu9+NVKbi17MY43uL9o51FEqR/Ee6Ds0TQ7ziYxr3Isl+1lp7sNxu1n/WDQNfaQY+bymdDAcTbf8C4DNLf34uy0GRkujn282JEeb9+3LkRA7KlaLiHh+OnTqu+Lac4F1Nv4gl6IbOfPtNONypuA0P53mfI9G+i51KOu9GjA3Y63An4i+3oCgWrjBm41Ur+NXSg2Xui1B0iRhtK5PtC7AZFj5wnMrvFvMhUDIkPAc7oFtKyJG/5dzYl/F7nDzPFRTKCciuaEaXfEO3mGW4bQbPKn8HXQVJB0lD9zmIKmvHeP+/yYhfwy4pk1dLbibeiEaL+olrpMepKI/lS+tI1jl6skvOBAPSDpRidXg5ZFOIo5iJ+qv8IuewQj6JciIY5vuGC6WX+E4dyhvSZByam3j9AC7VRqGUjE33cg2Psli+kI1ST2TDj5MKpMrzkWVsY73UHV2yIBkaBhIyeuX7EhI6VnwYgB8VAxmnUU6iVEgeqbhxQOUYAA0ZCYgzDjDJ/Tt3j72m2j0pEAhCo0VnIr1eL6tXr2bmzJmBbbIsM2rUKFauXFnjmJUrVzJjxowq20aPHs17771XY/85c+Zw7733NprNR+OwKOS0jWXVjoNHNkoybdc+Qo+aHMijsKLS1+3mJ7sdm9E08YGy7iXmUC7JJ1gaVVfP6zd44OPDgtsqkpKOoe2tc4xm+Ch07+aXNirjW0HdbACHYXriFZKX0qOWZoukUnYrplSP4ncBZljCbnk/unTMM5cCFZXvaxgQswtnTCEAHk9B5f7dOBNqLl3nzDVnd0sth4iq7KNrR5aYK5x5pNQw1lV6ZF7XG7GXuMo+SaWmY+GTNCxxO7Hby6uNtXkOstdZikv2BOxyAupeO4mlB7nv13eI7/EBzoRD7CCFTVK3I4Mt8JsD2hZtDozdbLSn5EAppEZzUnEJzpgdSMCvR4+zAlGwC5hSvg+nMw8/aayKMx9q2pWV4oww91fA6KpjK0t4RxzYiTPO7LNDy2Cj2h2Abvt9OON3oCNXP2alEs2JxaU4Y3ZgIYPfJTPBa6emYjd2oCh+SuhRdawNIAZ/WXnAroOMYmOMWeo0af8+nPHm9i20ZZ+UceSYldVQO1faBbCWDIwoCVA5u6QQZ9QO/ERXtzcaJMPA5ttJpMWLl55siY4CIOtQPHHR5n22hzg2SN2PjE0FSCJxv6kModoq2GpksVtuC1YYolXgjNqPl1h+lXpRBRVwwBllh7BaPXix8HtiAgDxRgeseLBa8/Ehs1Gq/HASbEk07bIZbvZIbTnLsLGbtuRL5gNekTUBCz4KSOWQFMchFfI48vBXpkCpEYsT8xrVJZUyjjzY/yr1IcIooRwLRmXmvl5laV/BRdVwjFIphlKqlqXUjhpjAAekRHYbvyMQCBpOi85E7t27l4yMDL799luGDj2S8XfLLbewfPlyvv/++2pjrFYrL730EhdccEFg29NPP829995Lfn5+tf5NORMJZtyQy2cuw5rL2RKapuNx1RyTdHg52+f14PW4cGtuFEUlNsqsxxzqcnaEIxq7zYnm93OwcFeN9sXEp2O12xttOdseEY012pR5ObR3OwBl5S4MDGyqUvNytl/Hr2mkte9EVISzVSxn67pO7u69eLxe2nfuRJeuXcnfV8CmX3/B5/WgWCx07NWb+IREivftZtP69fj9OpqhI2NgUVUkWaFbn17ExMSQv2MXW7b9D79xCKvNxuBhU3A62/HjF8s4UPE5qqIgIeHTNHRdJyI2lj79LqWixM/mX7/H5V2NRVFISm9L28xzKNlfzJYtX+D1b8XQdZAks4atJJGW0ZmOHcZTfuAQv67/H27fHmSLhe69zyAhcQAbf/ye/AOfIcl+s+SeYQAGdoeT3v3PBymZX39cQWnF1yiKQkRsNG07TEBzwb6tP+Py/ozP7+MXJZUyxZResUdGkpA0EMkHtt2rSHKtRpJkdmWdRlxKX/ZtyyU5bxmxagkuxc5qktE1DdliIbVNHyzWFPbv2kGPks9x2HSK7XHsiz0BdBsUF9LF9Tk+j4utaiKF1gQkSUK1WUhO6oesRGLs3kCbki8x0NmbNgBLyggO5u8jes/3pCs7kW12vlXaomt+kGQSUzoQGdmR/bt2kX5gJcnOUrxWB5ujh2KxJOIpd9OnfAk+dzl7iGCnLcUUT5cgIb47xX6NksJt9C7/EsWQ8af3x5J1JoX79lD000d0tGzGEuVgnbU9Fe7K+zQxFpwZWPd6SS/dQnZCCW6jguVaNv5yB7rdQl/9Z2yu/RzSbGyJ7YTFbsMh27H4orHYEtnnK2RA8TL0chdFEYnktT8RbzlYt2ylp7KW+PQMtirp7K0w8Pm9GBEqkjMT1+6DJJbm0TFyC4rdyiZ7Ol4tiih7O7K1Qmwl3+KmmNW2/mi6A/Bjkb1oFU48/gR6+laTEbeXUjWGQ+2vJXdjLqpnMwOVlVS449mjpnEgKoJtjnb4/Srt3RJOXOSpEG/k0933K0XWWNar3SmVoulatpl+0irynQl8ZRuJ0+cg0VdMheInT47H4tEZ6f0SZ/R+PrSPI580krwHkWQ/hmKQ7d1HrOZmjb0DOyyZ+LDi1CpQDA23bMMhVRCplaPL4NZj0A2FeF8FafJGdlsy2KtkgGHOThoSpoNqQDf/Pi5Jb8OYvqNr/I4WCATB84d3Io+lpKSEmJiYRnMiBQKBQCAQCP6MtGh2dmJiIoqiVHP+8vPzSU1NrXFMampqSP0FAoFAIBAIBI1PizqRVquV/v37s2zZssA2XddZtmxZlZnJoxk6dGiV/gCffvpprf0FAoFAIBAIBI1Pi0v8zJgxgylTpjBgwAAGDRrE448/Tnl5OVOnTgVg8uTJZGRkMGeOmbn5j3/8g5EjR/LII48wduxYFi5cyKpVq3juueda8mMIBAKBQCAQ/KlocSdy0qRJFBYWctddd5GXl0dOTg5LliwhJcXUTdy5c6eZTFDJsGHDeP3117njjjuYNWsWnTp14r333mtWjUiBQCAQCASCPzstrhPZ3IjEGoFAIBAIBIKG0yrKHgoEAoFAIBAIji+EEykQCAQCgUAgCBnhRAoEAoFAIBAIQkY4kQKBQCAQCASCkBFOpEAgEAgEAoEgZIQTKRAIBAKBQCAIGeFECgQCgUAgEAhCRjiRAoFAIBAIBIKQEU6kQCAQCAQCgSBkhBMpEAgEAoFAIAgZ4UQKBAKBQCAQCEJGbWkDmpvDpcJLSkpa2BKBQCAQHO9ERUUhSVJLmyEQtAh/OieytLQUgLZt27awJQKBQCA43jl06BDR0dEtbYZA0CJIxuGpuT8Juq6zd+/eRnl6LCkpoW3btuzatUt8idSCOEf1I85R/YhzVD/iHNVPU5wjMRMp+DPzp5uJlGWZNm3aNOo+o6OjxZd2PYhzVD/iHNWPOEf1I85R/YhzJBA0DiKxRiAQCAQCgUAQMsKJFAgEAoFAIBCEjHAiG4DNZuPuu+/GZrO1tCmtFnGO6keco/oR56h+xDmqH3GOBILG5U+XWCMQCAQCgUAgaDhiJlIgEAgEAoFAEDLCiRQIBAKBQCAQhIxwIgUCgUAgEAgEISOcSIFAIBAIBAJByAgnsh7mzZtHVlYWdrudwYMH88MPP9TZf/HixXTt2hW73U6vXr346KOPmsnSliOUc7RgwQJGjBhBXFwccXFxjBo1qt5z+kcg1OvoMAsXLkSSJCZMmNC0BrYCQj1HxcXFXHvttaSlpWGz2ejcufMf/n4L9Rw9/vjjdOnSBYfDQdu2bbnhhhtwu93NZG3z89VXXzF+/HjS09ORJIn33nuv3jFffvkl/fr1w2az0bFjR/7zn/80uZ0CwR8GQ1ArCxcuNKxWq/HCCy8Yv/32mzFt2jQjNjbWyM/Pr7H/N998YyiKYjz00EPG+vXrjTvuuMOwWCzGunXrmtny5iPUc3ThhRca8+bNM3766Sdjw4YNxqWXXmrExMQYu3fvbmbLm49Qz9Fhtm3bZmRkZBgjRowwzjrrrOYxtoUI9Rx5PB5jwIABxpgxY4yvv/7a2LZtm/Hll18aa9eubWbLm49Qz9Frr71m2Gw247XXXjO2bdtmLF261EhLSzNuuOGGZra8+fjoo4+M22+/3XjnnXcMwHj33Xfr7L9161bD6XQaM2bMMNavX288+eSThqIoxpIlS5rHYIHgOEc4kXUwaNAg49prrw281jTNSE9PN+bMmVNj/4kTJxpjx46tsm3w4MHGlVde2aR2tiShnqNj8fv9RlRUlPHSSy81lYktTjjnyO/3G8OGDTP+7//+z5gyZcof3okM9Rw988wzRocOHQyv19tcJrY4oZ6ja6+91vjLX/5SZduMGTOM4cOHN6mdrYVgnMhbbrnF6NGjR5VtkyZNMkaPHt2ElgkEfxzEcnYteL1eVq9ezahRowLbZFlm1KhRrFy5ssYxK1eurNIfYPTo0bX2P94J5xwdS0VFBT6fj/j4+KYys0UJ9xzNnj2b5ORk/va3vzWHmS1KOOfo/fffZ+jQoVx77bWkpKTQs2dP7r//fjRNay6zm5VwztGwYcNYvXp1YMl769atfPTRR4wZM6ZZbD4e+LN9ZwsEjY3a0ga0VoqKitA0jZSUlCrbU1JS2LhxY41j8vLyauyfl5fXZHa2JOGco2O59dZbSU9Pr/ZF/kchnHP09ddf8/zzz7N27dpmsLDlCeccbd26lc8//5yLLrqIjz76iC1btnDNNdfg8/m4++67m8PsZiWcc3ThhRdSVFTECSecgGEY+P1+rrrqKmbNmtUcJh8X1PadXVJSgsvlwuFwtJBlAsHxgZiJFLQYDzzwAAsXLuTdd9/Fbre3tDmtgtLSUi655BIWLFhAYmJiS5vTatF1neTkZJ577jn69+/PpEmTuP3225k/f35Lm9Zq+PLLL7n//vt5+umnWbNmDe+88w4ffvgh//znP1vaNIFA8AdBzETWQmJiIoqikJ+fX2V7fn4+qampNY5JTU0Nqf/xTjjn6DBz587lgQce4LPPPqN3795NaWaLEuo5ys3NZfv27YwfPz6wTdd1AFRVZdOmTWRnZzet0c1MONdRWloaFosFRVEC27p160ZeXh5erxer1dqkNjc34ZyjO++8k0suuYTLL78cgF69elFeXs4VV1zB7bffjiyLOYTavrOjo6PFLKRAEATiW6QWrFYr/fv3Z9myZYFtuq6zbNkyhg4dWuOYoUOHVukP8Omnn9ba/3gnnHME8NBDD/HPf/6TJUuWMGDAgOYwtcUI9Rx17dqVdevWsXbt2sC/M888k5NPPpm1a9fStm3b5jS/WQjnOho+fDhbtmwJONgAv//+O2lpaX84BxLCO0cVFRXVHMXDTrdhGE1n7HHEn+07WyBodFo6s6c1s3DhQsNmsxn/+c9/jPXr1xtXXHGFERsba+Tl5RmGYRiXXHKJcdtttwX6f/PNN4aqqsbcuXONDRs2GHffffefQuInlHP0wAMPGFar1XjrrbeMffv2Bf6Vlpa21EdockI9R8fyZ8jODvUc7dy504iKijKmT59ubNq0yfjggw+M5ORk47777mupj9DkhHqO7r77biMqKsp44403jK1btxqffPKJkZ2dbUycOLGlPkKTU1paavz000/GTz/9ZADGo48+avz000/Gjh07DMMwjNtuu8245JJLAv0PS/zcfPPNxoYNG4x58+YJiR+BIASEE1kPTz75pJGZmWlYrVZj0KBBxnfffRd4b+TIkcaUKVOq9H/zzTeNzp07G1ar1ejRo4fx4YcfNrPFzU8o56hdu3YGUO3f3Xff3fyGNyOhXkdH82dwIg0j9HP07bffGoMHDzZsNpvRoUMH41//+pfh9/ub2ermJZRz5PP5jHvuucfIzs427Ha70bZtW+Oaa64xDh482PyGNxNffPFFjd8vh8/LlClTjJEjR1Ybk5OTY1itVqNDhw7Giy++2Ox2CwTHK5JhiHUNgUAgEAgEAkFoiJhIgUAgEAgEAkHICCdSIBAIBAKBQBAywokUCAQCgUAgEISMcCIFAoFAIBAIBCEjnEiBQCAQCAQCQcgIJ1IgEAgEAoFAEDLCiRQIBAKBQCAQhIxwIgUCgUAgEAgEISOcSIFA0GDuuececnJyAq8vvfRSJkyY0GL2CAQCgaDpEU6kQCAQCAQCgSBkhBMpEPzB8Xq9LW2CQCAQCP6ACCdSIPiDcdJJJzF9+nSuv/56EhMTGT16NL/++itnnHEGkZGRpKSkcMkll1BUVBQYo+s6Dz30EB07dsRms5GZmcm//vWvwPu33nornTt3xul00qFDB+688058Pl9LfDyBQCAQtBKEEykQ/AF56aWXsFqtfPPNNzzwwAP85S9/oW/fvqxatYolS5aQn5/PxIkTA/1nzpzJAw88wJ133sn69et5/fXXSUlJCbwfFRXFf/7zH9avX88TTzzBggULeOyxx1riowkEAoGglSAZhmG0tBECgaDxOOmkkygpKWHNmjUA3HfffaxYsYKlS5cG+uzevZu2bduyadMm0tLSSEpK4qmnnuLyyy8P6hhz585l4cKFrFq1CjATa9577z3Wrl0LmIk1xcXFvPfee4362QQCgUDQelBb2gCBQND49O/fP9D++eef+eKLL4iMjKzWLzc3l+LiYjweD6ecckqt+1u0aBH//ve/yc3NpaysDL/fT3R0dJPYLhAIBILjA+FECgR/QCIiIgLtsrIyxo8fz4MPPlitX1paGlu3bq1zXytXruSiiy7i3nvvZfTo0cTExLBw4UIeeeSRRrdbIBAIBMcPwokUCP7g9OvXj7fffpusrCxUtfot36lTJxwOB8uWLatxOfvbb7+lXbt23H777YFtO3bsaFKbBQKBQND6EYk1AsEfnGuvvZYDBw5wwQUX8OOPP5Kbm8vSpUuZOnUqmqZht9u59dZbueWWW3j55ZfJzc3lu+++4/nnnwdMJ3Pnzp0sXLiQ3Nxc/v3vf/Puu++28KcSCAQCQUsjnEiB4A9Oeno633zzDZqmcdppp9GrVy+uv/56YmNjkWXzK+DOO+/kxhtv5K677qJbt25MmjSJgoICAM4880xuuOEGpk+fTk5ODt9++y133nlnS34kgUAgELQCRHa2QCAQCAQCgSBkxEykQCAQCAQCgSBkhBMpEAgEAoFAIAgZ4UQKBAKBQCAQCEJGOJECgUAgEAgEgpARTqRAIBAIBAKBIGSEEykQCAQCgUAgCBnhRAoEAoFAIBAIQkY4kQKBQCAQCASCkBFOpEAgEAgEAoEgZIQTKRAIBAKBQCAIGeFECgQCgUAgEAhC5v8BNyLi9DSreYIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "sns.relplot(\n", " data=pr[(pr[\"category_id\"] == 1)],\n", @@ -2932,7 +853,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "id": "ddad0660", "metadata": { "ExecuteTime": { @@ -2940,197 +861,7 @@ "start_time": "2023-06-22T09:38:47.845182Z" } }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
category_idbox_heightiou_thresholdmodelAPcategory_strbox_mean_height
03(124.26, 209.234]0.3predictions0.799908outdoor166.7470
16(124.26, 209.234]0.3predictions0.874707sports166.7470
210(83.073, 124.26]0.3predictions0.897088electronic103.6665
310(124.26, 209.234]0.3predictions0.915319electronic166.7470
41(83.073, 124.26]0.3predictions0.863140person103.6665
........................
4753(0.859, 12.196]0.9predictions0.000000outdoor6.5275
4767(0.859, 12.196]0.9predictions0.004310kitchen6.5275
4779(0.859, 12.196]0.9predictions0.004237furniture6.5275
47811(12.196, 18.645]0.9predictions0.017868appliance15.4205
47911(0.859, 12.196]0.9predictions0.000000appliance6.5275
\n", - "

480 rows × 7 columns

\n", - "
" - ], - "text/plain": [ - " category_id box_height iou_threshold model AP \\\n", - "0 3 (124.26, 209.234] 0.3 predictions 0.799908 \n", - "1 6 (124.26, 209.234] 0.3 predictions 0.874707 \n", - "2 10 (83.073, 124.26] 0.3 predictions 0.897088 \n", - "3 10 (124.26, 209.234] 0.3 predictions 0.915319 \n", - "4 1 (83.073, 124.26] 0.3 predictions 0.863140 \n", - ".. ... ... ... ... ... \n", - "475 3 (0.859, 12.196] 0.9 predictions 0.000000 \n", - "476 7 (0.859, 12.196] 0.9 predictions 0.004310 \n", - "477 9 (0.859, 12.196] 0.9 predictions 0.004237 \n", - "478 11 (12.196, 18.645] 0.9 predictions 0.017868 \n", - "479 11 (0.859, 12.196] 0.9 predictions 0.000000 \n", - "\n", - " category_str box_mean_height \n", - "0 outdoor 166.7470 \n", - "1 sports 166.7470 \n", - "2 electronic 103.6665 \n", - "3 electronic 166.7470 \n", - "4 person 103.6665 \n", - ".. ... ... \n", - "475 outdoor 6.5275 \n", - "476 kitchen 6.5275 \n", - "477 furniture 6.5275 \n", - "478 appliance 15.4205 \n", - "479 appliance 6.5275 \n", - "\n", - "[480 rows x 7 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAHuCAYAAABtWFO7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUDElEQVR4nOy9eZhc5Xmmf59zaq/qfZPUEhJiERIgCSQQiw3GgLGxnZDJOE68YJMxM3GCkxns+cWMHTvLTJgkDhe5xnacccDO2InNJEMcxwGMLYxZLBCITSwSO0JS7921V53t+35/nOpSt9QtdXVXd5Wk976uvrr61Fm+KrXqPP1+z/e8htZaIwiCIAiCIMyK2egBCIIgCIIgNDsimARBEARBEI6BCCZBEARBEIRjIIJJEARBEAThGIhgEgRBEARBOAYimARBEARBEI6BCCZBEARBEIRjcNIJJq012WwWiZ8SBEEQBGGunHSCKZfL0dbWRi6Xa/RQBEEQBEE4TjjpBJMgCIIgCEKtiGASBEEQBEE4BiKYBEEQBEEQjoEIJkEQBEEQhGMggkkQBEEQBOEYiGASBEEQBEE4BiKYBEEQBEEQjoEIJkEQBEEQhGMggkkQBEEQBOEYiGASBEEQBEE4BiKYBEEQBEEQjoEIJkEQBEEQhGMggkkQBEEQBOEYiGASBEEQBEE4BiKYBEEQBEEQjoEIJkEQBEEQhGMggkkQBEEQBOEYiGASBEEQBEE4BqFGD0AQBEEQlgKt9eSDyS0wuan6eMp3wLBCGKbUFgQRTIIgCEKToI8QMscWNHrKY7QOzqEBrQ4dp/SU4488B1M2T9tmGITiSRFMAiCCSRAEQZgjRwqaQ4/14SKk8nhGQQOgpgua6uMZRNGhARy5bepPhgaM6k8zPjYwwKh8VZ82pjw89Fi5zpFvgnDSIoJJEAThBCIQJHMXNNXngoOnTFupQ6JnroKmco5pP055PGdBg1Fx2FYqO7MIGkFYSkQwCYIgNCHB1JJGK4VWiqq4qUw1HRI0lW1HE0XTTzz9x8N+MGYTNNVNMwmaQ/uIoBFOVEQwCYIgNJhAHKmqONK+QvteIJS0nlIBqkHQGBzaeYqgARE1gjAfRDAJgiAsIVprUAo9KZB8D+X7gadHB54fwwAMMzAbGwamCBxBaDgimARBEBaJqjiaFEheRRzpycpRpSJkGhimJeJIEJoYEUyCIAh1YJo4mlo5EnEkCCcEIpgEQRBqZHI6DaVQvgLlHxJHSqONwCdkGCaIOBKEEwIRTIIgCEdhcjotEEc+Wvlo3w9Wm01WjibFkWVhhCTkUBBOREQwCYIgVKgu4VcKpfxpK9WYTJA2p4gjqRoJwkmDCCZBEE5atO8fqhp5XjXvSGtdWYkv4kgQhAARTIIgnFRorQOh5Loo10FrVRFHJoZpgGGJ30gQhCMQwSQIwkmB1jpY1u86KM9Fa41pWpihSKOHJgjCcYAIJkEQTmi0UijPRTkO2vcAMKwQpnSgFwShBkQwCYJwQqJ9H991UK4Lyg/8SKGweJFOYqr9+SrZWKhDjw9/TmuNdl3McAQzHG700IUmQASTIAgnDIf8SU7gT1IawzJFKDUBerLpr1aVkM9JkTJVsKgpTYeP8ly1vczk6sXDnpsUPuowgTQPrESSUCJZx3dCOF4RwSQIwnHPZNsRf3LaTWmMkIUZsho9tKbhaIJFTxUf1ceqIlqOrMJMOwdTnpvcn+A8kysOq7EMTYcx2bhvSoPiqY8rwk0QEMEkCMJxzKQ/yXds8H3AwDhBwiO11viOjZcv4Nv2oSqJ1hwuRHRwAKAP+z5le5NxaERTK3/GEd/1bPsYxpSTGFP2ndxiTLnOlGMmf648PlR4NKYeDICyHcxQdC4vRzgJEMEkCMJxh/K9Q7EASmEYx/+0m/Z9vHIJr1jAL5dQjh1MSS3W9YBJZWBMq6pUvs8gLqZVXyYrM3BYlcasPKw8Z07dz6yey6wKlub9N7Ntp9FDEJoIEUyCIBwXBP4kD+VMjwU4HoWSVgrfsVHlEl65hF8uoT135p3NEIYVYlYRUxUrRjVs80ghc9jPNLdQEYRmRASTIAhNjVYK7Xv4jl3t4XY8xQJorVGug18u4dvloHpkl2feFxPDCgci0AqDdfyJQUE4URHBJAhCU6KVj+8G+Un4ftDDzQo1vYBQnotfLuPbpapICgzQ0wmar1hghTBDUYxwBOM4EYGCcDIigkkQhKahGgswGTSpfAzTwgg3Z6VFK3+KOAqqR5PhmEfsi4XGBCOEGY5iRsLHTZVMEAQRTIIgNAGztS0xwpGmEUpaa5Rdrk6r+XYpqH7NhBkCLJQ20NrEDIUDgSQxB4Jw3CKCSRCEhhHEAngox26qtiWTKc9Tp9V8uzxjlpBhhTBCEbQ2UL6B8gFMrHCIUNiSaTZBOEEQwSQIwpIybdqtSdqWKN8LhFFlek2Vy+hA+UzHNLEisUAgYeK7Gt9V4CiwTKxICCtkNU1VTBCE+iGCSRCERWeylYWqxAJo5aO1xjAbl5/k22Wc9DheqTjzkn7DwIrEMGMxzFAEjYXn+Hi2gyp4GPgY4RCheATDkiqSIJzoiGASBGHR0KrSssRz0J4XhEyaVjDt1qAqjFcq4kyM4RXz07ab4QhWLI4Vi2FGYmht4jsubrGMKpRRnsKwDMxwiHAqLlUkQTjJEMEkCEJdCfq6+SjPQbleJa06aFlihhrT9V1rjV8qYk+M4peK1e3hVCvh1nasaAytNL7j4pVtytkcyvXQGsyQiRkJE0qIYVsQTmZEMAmCsGBm9CUBhmk1NHxRa41XLOBMjOKXS9Xt4dY2ou3daAy8soOdTQdTbZ6PYRiYYYtQIiqGbUEQqohgEgRhXjSjL2nq2LxCDnti7FCqtmEQbm0n0taJ9jXlbBG3UApEkmUGU22x5okxEAShuRDBJAhCTczsSzIb6kuqjk1rvHw2EEqOHWw0DCJtHYRbOvBdn9J4Fq/ogNaYsTCRuHSjFwTh2DS83vy1r32NNWvWEIvF2LZtGzt37jzq/rfffjvr1q0jHo+zatUq/st/+S+UyzP3ZRIEoT5orVCui1cq4hZyeKUC2vUwTAsrEsVsgoqSk01T2Pc6paGDgVgyTSIdXST6T4VQksJImsLQGF7JwYqHCbfEscLyN6MgCHOjoZ8Wd911FzfffDPf+MY32LZtG7fffjvXXHMNe/fupbe394j9/+Ef/oHPf/7z3HnnnVxyySW8/PLLfPKTn8QwDG677bYGvAJBOHE5qi+pwQJpEq0Ubi6DPTFWjQYwTItwewdWLIlXcigMjaNcDzMSJpyMY5iNH7fQpByeSzpDUKlw8mJo3bjfiG3btnHBBRfw1a9+FQClFKtWreIzn/kMn//854/Y/6abbuKll15i+/bt1W2f/exnefzxx3nkkUfmdM1sNktbWxuZTIbW1tb6vBBBOEE4qi/JbJ5ARq0UTnYCZ2J8SkK4RaStE0JxvGIZt2iDVpjRCFZEKkkNY8Y7jJ5huz5ifz3DtskftNbB9LAffCl/8rGPmvxZTX3On33/Kdv1lGOV63HKuy+g++zT6/JWCMc3DfsUcRyHXbt2ccstt1S3mabJVVddxY4dO2Y85pJLLuG73/0uO3fu5MILL+T111/nnnvu4eMf//is17FtG9u2qz9ns9n6vQhBOEGY7OXmu/ZhviQL02j4zH0VrXyc9AROeryaxG2EQoRbO8CMYOfL+PYEhmlixcOY1gkaBVAPETJt+xz+bp48vXH4Ng1aHxIcnkIpP3ispgoThfJn3q59NUW0+ChfVwXOVGGjDxNCS4HvzNxMWTj5aJhgGh0dxfd9+vr6pm3v6+tjz549Mx7zkY98hNHRUd7xjncE5k7P47d+67f4b//tv816nVtvvZU/+qM/quvYBeFEIZh28/AdG+0eqtQ0Ki9pNpTvBUIpMw4quFEaoTDhljaUDmHnbZRbxgxbJ860mwoqKHMSMxV0RbgEwkQfEiKHV1bUlOd9H610tTIztUqjlQ4ytdQMoqW6v1/LEBcHA0zLqvzuVoS+ZWFY5pHbQmb1uer3UOXY6v7Bdt92aFnZd+zrCycFx1Wd+sEHH+RP//RP+frXv862bdt49dVX+b3f+z3+5E/+hD/4gz+Y8ZhbbrmFm2++ufpzNptl1apVSzVkQWhKJoWSchyU54LWGKEQRhNVkwCU5+Gkx3Ay6UoAZiWRO9mK75rYWRvl21ixyPGdvq0JqjRTBJLWmnI6T2FwAidXqFRuglDQqdWaatWmInwazVQhYoSs6eKkKlamipP5iZlpzy9SXpadLRCSVZRChYYJpu7ubizLYmhoaNr2oaEhli1bNuMxf/AHf8DHP/5xPvWpTwFw7rnnUigU+I//8T/yhS98YcYO59FolGhUfuEFAWYRSlao6QIalesGQimbrhpvzXAUM96CZyvcjB1Mu0XDhELH4bTbVIE0aSM1QHkqWM03MEr+wCi+7cz7EoYZpKtPiotJoVEVH0eImSmiZE5iZurzZvVax61oFYRj0DDBFIlE2LJlC9u3b+e6664DAtP39u3buemmm2Y8plgsHiGKrIpHoYHedUFoeqor3hy7yYWSgz0xhptNV7eZkShGJBkIpayNGTkOp900oCtTY0yxARkmTtGmMDBG/uAIxeGJaSuzzHCIVH8Pyd5OzHDoqGJm8rlJMXNcvT+CcBzQ0Cm5m2++mU984hNs3bqVCy+8kNtvv51CocANN9wAwPXXX09/fz+33norAB/84Ae57bbbOO+886pTcn/wB3/ABz/4wapwEgThEFWh5NpBNECTCiXfsXEmxnBzmeo2MxIDM47v+CjHxYqFj58k7hkFUlDx0RpKoxnyB0bIHRjBzRenHRptS9Gyso/Uyl6SfZ1N928lCCcrDRVMH/7whxkZGeFLX/oSg4ODbN68mfvuu69qBN+3b9+0itIXv/hFDMPgi1/8IgcOHKCnp4cPfvCD/I//8T8a9RIEoWlRnndIKKmKR6nJbr6+XcaeGMXL56rbzEgMRQTX1RimjxWLNP+0mwaUChoPM10gGWYIv2yTHxghv3+E/OAo2vOrhxqmSXJZFy2r+mhZ2UukJdmY1yAIwlFpaA5TI5AcJuFEZzJDSbkOWmvMJqwoKdehPDqEV8hXtxnhGEqHUR6YYQsrGm66cVeZSSAZk56hEGgoj2fJHxwm9/Yw5YnpcSahRIyWlb1BJWl5N6YkjjcldrZAakUPkVSi0UMRmgD5XyoIJwgzCaWZFkI0Eq0U9sQYTnqs6tUxQjGUCuF7BlY0TDgear5pt6kCSYNhEAikUCgQpIaB7/rkD46S2z9E/sAwvu1OO0W8pyMQSav6iHW0Nt9rFAThqIhgEoTjHO37+I6Dcu2KULIwzeabwnILOcojQ9UWJphhfBXG0KHmm3absYJkThFIJhgGTjZP7u395PYPUxwZn5ZHZEbCtPT3BFWk/h5CMVmtKwjHMyKYBOE4Rfs+vuugnOYWSsp1KI8M4RUr02+GiSIKhAmnos0x7TZlif9sAsmwTLSvKAwEVaTc/mHcQmnaaaLtLbSs7KNlVS+Jno7meG0nMVrpILtK60OPlZ7yc6W9ig4eTwZ3+pW0cSdfJNTWIlNyAiCCSRCOOw4JJQetFaYZZOw0G1opnPQY9sSh6TdNBE0MKxHFtBosJjRo3ztMIFlVz5dhBplCTr5Ibv8wuf1DFAZGp7XkMCyT5PLuQCSt7JUba52YUejo4HdqJqGjlUJ5Cn/yeyWFnMnnta70SdSoyjmn5TsYVH5HjSC/yjAwTJNSpojnSmsUIUAEkyAcJ2hVmXpzHLRSlTDCSKOHNSNeIU95dDBYoQdorIpQijde3FWE0mTEghkOTxNIWimKIxPk3g5Ekp3OTTs8nIxXDdvJ5V2YIfkYneRwoTNV0EwXOlQFj+/5+P4hoaP9KUJJg9ZqRqFT9ZJxpNAxDCqPjSC3qvpc5Xvl61iUM/lj7iOcPMj/dEE4DtC+j1sqoD0vMHNHmlMoKdetrH4LRIbGQBPFjCcJNXolmKbS90yBZWGGI5ihwLDtle0gF2n/EPkDI/jOFMO2AYmezqphO9recsIZtucidNDTKztThY6a7Ct3NKEzea3ZhM5UQWMaGJZJyDQwjNARYkcQGoEIJkFocrRSeOUi+Aoz3JzBjVrrYPptfLTqA9KEMWMpQo0Wd5NCCQ2miRmOY4ZCKNdj9IXXyO0bpDgyMc2wbUXDpPp7Dxm2o80pUA+JGzWj0JnJq+N7gbiZ/PInm+8eJnS0Dn6uTqfWInQMA8MUoSOcWIhgEoQmRmuNb5dRrtu0YskrFigND1RXv2ksjEiSUCze2IFNFUqGiRmJYlohtFKMvfA6I7tfmbb0P9bRSqoy1RYYtpvjvfYcj0KmgOd5QTVnik+nNqETcITAEaEjCHNCBJMgNDG+Y6McGzMUbrobl/JcysOD1dVvGgMjFMeMJRub/1QRShqNMUUogWbilX0MP/syXrEMQKQ1SfeGtaRW9RFJNljgHYbv+RQyBdLDaeySg2nO4sURoSMIS4IIJkFoUpTnouwyhmk11fJ0rTXOxBj2xKHpN8woZqKlsbEGOjDGax0IJWtSKBmQeeMgw8/sxckWAAgnY/RuXkf7aSub6r2FoAl5MVskPZyhVCgTiYZp6TzxfFOCcLwhgkkQmhDt+3jlUjCb1OhVZVNwC3nKI4OHpt8MCzPe2tjVeocJJTMSwQqFwYD8gWGGntpDeTxoTWJFI/RsPIPOdasbv1rvMLTWlPIlMiNZCpkCVsgi1d7gap0gCFVEMAlCk6G1wrNLaN/HDIUbPRwAfNelPDSAXw4qNBoDM5rCjMQbV/mYFEpKYZjB1JsVCmOYBoWhMYZ27aE4PA6AGQ7RffZpdJ29FqvRq/VmoFy0yY5myE0E05uJtgSW1VyC7mRCa13xgJ1UrVaFY9B8nxyCcBITmLztwOTdBL4lpRT26AhudgKopGCHYljxlqA9SCM4QijFsMKBUCqNZRh6eg/5/cMAGKZJ5/o19Jx7elO2JnFtl+xYluxYDt/zibfEGx+/cJwxKW6C7xD8glS+VUSPrhrgD39uFgwDw6AaOyEIIIJJEJoK5Qa+pcmGro1Ca42TyWKPD4OqJB2bIax4K4bVoKpXpb+bUv4UoRSkctvZPMNP7yXzxsFgX8Og44xV9G46k3CTmbkBPNcjP5EnM5LFsR3iqTiJ1hM/JfyQuOFQBWcWcXNov7mJm8rD4GcMKumVU6IPKqZ504SKMX7y+cljDJND2wAVChOKN5/QFhqDCCZBaBKU5+GXS1BJnW4UbqFIeXQI7ZYrWwyMWAoj3MDpN3+qUIpWKkombqHE8LMvM/HK29Vl9G2nrqD3vHVEW1ONGetRUL6qrHzLUC6WicajTWvoPqq4oTJlNeXxscVNEO8QtKE5urjBNDFNI9jfmpu4wTCnn3fqMfPECFlN+W8jNAYRTILQBGilArGkVcMM1J7jUh4Zxi9lD7XYCscxoqnGCTg/yB0yDGOaUPLKDqO7X2VszxvV3m6plb30nXcW8a62xoz1KGilKeaKpEcylHIlQpFQXYXSjOIGQC2euMEwAjFTFTdBxMHRxA0Ghwkk6iZuBGGxEcEkCA1Ga41fLqF8ryEmb601djqDMz4M2g9ukmYIM9aK0SjTua9QWmFgVFe9GZaJ73qMPfcqoy+8hqo0RU30dtK35SySfV2NGetR0FpTLpTJjGbJT+QxLZNkDSvfgqayPsrzp7UXOWyv+YmbyempqmABg0qVxhRxIwiHI4JJEBqMb5eDcMrw0pu8fcelNDSIb+crVaUGT79NFUrhQ0JJef6hdO6yAwTJ3H1bziLV39uUN2+7ZJMdzZEbz6G1JtGawJpDlIHyvKpIwjCxQhbhRAwzHBJxIwgNRASTIDQQ5Toox8YIhZZ01VlQVcrijA8dqiqFopixFoxGhE+qytQbTBNKWqkgnfuZvbiFSjp3S5Le89bRduqKphQCnuORHcuRGcviO16w8i0y+0dttYrkBllSpmVihkNEWpJYkTBmOIxpSRaTIDQaEUyC0CCU7wXhlBhLKlJ8t1JVKk+pKsVbMEKxpRcgU4VSKBJ4lCwTrTWZNw8y/PRe7EyQTRRKxOjddCYdZ6xqunRuCFqZ5NMFMiNBK5NYMkai5cgVelprtO9XqkgKDCOoIiXjhGIRzEgYU8zGgtB0iGAShAZQNXkrhRleGpN3NSpgrAmqShq0H3iQzNBkFcVCa01uMp17LAOAFQ3Tc+4ZdJ61punSuaHSyiRTMXTnS0RikSMM3VoplFvxIk2rIkWxouHgPZAqkiA0NSKYBGGJCcIpS0E45RKJJd/1KA0NNEdVaVIsGSZWNIoZCj6GisMTDD31EoXBMQDMkEXX2afRffZarEhzJJ5PRWtNKVciM5KhkC1ihUOkOlKYZlAhO+RFmqwihYi0xIMed5GQVJEE4ThDBJMgLDG+Y6NsZ0mSvLXWONkc9uhg46tKADowNZshCysSw7BMyhNZhp7aQ+7tIaCSzn3WanrOPaNpQwPLhTLZ0Sy5dB4Dg2RbEsMA5fq4nh1UkUIWZihEpDWGFQlJFek4Q2uNW3bwKqsxBUEEkyAsIZNJ3oZlLboPJ6gqDeKXc42vKgEojVY+ZjiEFYnhFooMPb2XzOsHqAyP9tODdO5IqjlTr52yQ3Y8R67SyiQaj2Ci8Ur2lCpSQqpITYjv+ZTzJcqFMuV8ufK9hF2oPK78XC6Uq9uUr7juc/+e9t6ORg9faAJEMAnCEqF9v2LyBmORG6vamWzzVJUAfIXWCiMcwbBCjOx+hZFnX0GrIHSydfVy+s5bR7S9pTHjOwae65Ebz5MZSVPOl4nGQkQjIUwjWNUXiUexIqFqsKawuGilsYtThU6ZcmGK+Kn8PPnYLpRxbXde1yrnS3UevXC8IoJJEJYArRReuRRUWBYxDNL3KlWlUpNUlQDtBVMaRiSKPZHn4I7nsNM5AJLLu1m2ZT3x7vaGjO1Y+J5PbizLxMA4pVyJWDJGa2croXgEKxKRKlId0FrjOV4gcPLlKSLnyGrQZPXHLtpH7y83C4ZpEkvGiKViwfdkjGgqRiwZn749FfxsF8usPvfURXjVwvGICCZBWGQCk7eN8txF9S052RzlkYHmqSpVzd0GGBbDT+1lfM+bAFixCMsvPJu2U/ubTmwE4tYhP5EjM5qlXHKIJuN0r11BOBbBrDT8FWZG+f4hkVMROKX8zNUfu/Kz7/nzulYkHqmKm1gyRnSK2Ikd9jiaihGJRWr6fRP/kjAVEUyCsMgE4ZRlTCu0KOIgqCoNTekB1/iqEjrImTJNi8JQmoEnXsArBsGT7aevYtnWDYRijemZdzjBijYf5bj4roddcsnnipTLLuFEgp7+PsJNMtalRiuNU3amVX/sKdWeIwRQvoxTSWKvFStsVSs90WSMeGomARQjmowHzyWimIs8tS0IUxHBJAiLiPLcIG/JNBelKuFkc5RHB0F5zVFVAlAapYLk6sGn95DdNwhApCXBios3klrR07ixTUHrwKwdrNoL4Wko2YpC0cGIROjs7ZpTK5PjicOnvo5Z/SmUj9LDbnYMwyCajAYCKDVL9afyc7TyOBxtvugIQZiKCCZBWCS0qpi8NdWsoXqhPJ/S8CBecUpVKdaCEW5gVQmC5G7PJ7tvmOFnXwka5BoG3WefRu/mM+r+PswX3/XwimVC8SihlhTFfJlsJofveCTaW46Lm7fyFXbRPrL6M9ULdJj3x3PmN8UUjoarYudQ9Sc+gx8oTjwZIxKPBj3uBOEEojk+vQThBENrjV8uo/36m7ydXI7yyNSqUgQz1trYqhLBKkA7k2fo6VcpjUwAEO9qY8Ulm4h3tTV0bJNopXGLQTuacGsKV0HmwBjlok2iJU6yLdnoIU5D+YrXn36VgVcPHrEM3i7ZUHvxB9MyKyInPsX0fKTnZ2r150SrtAnCfBDBJAh1JjB5l1FufcMple9TGmrCqpIOfFpje/YxvucttNIYIYu+89bRtf7UpjFI+7aLW7YJJ2IoM8TERIFipkAkHqWtp62pzOdaaV5/5jWe/vGTZIbTR903mohOq/5MFUNTK0DRyvRYOLr4gamCcCIigkkQ6oz2XJRjB+GUdboxeaUixYEDTVdVQkNxeIzBXS/jZAsApPp7WHHRRiItzRE+qZXCyZcwLQsrlSBfcsmNpTFNg5bO1qZK39Za89bzb/LUvU8wMTAOQDQZY91F62npbKmYnqdUgOLRphq/IJzIiGAShDqiPK8STmnUTcz4rkPx4D7QmqapKgG+4zH8zMtkXj8INGdUgFe28R0XKxrFVpAbyuLaDsm2FKFI83z8aa05sOdtdt37BKNvjwAQjkU494pNnH3ZuURO0lV6gtBMNM8nhiAc52jlByvilKpbU12tNcWD+wOxZFiYyY7GV5WA3NvDDD21B68ULCFvtqgA5fm4hTJmyEJHoqSzJUq5MrFkjERPe6OHN42BVw+w654nGHojWE0YioQ4+/KNnPuuTUQTzdlLTxBORkQwCcIC0b6P77oo1wlM3uH6mbxLw0No10YDVrK94WLJK9kMPbmH3IGgCtK8UQE+KmRRtH0K2TxWyKS1u62pVm4NvTnIrnueYOCVoJeeFbZYf+k5bLxyM/FUvMGjEwThcEQwCcI80FqjfT8IpXRdtPIxLAszXD9DrZPL4eWC1WZmvA3DbNx/V601mdcOVKIC/EpUwFp6N5/ZNFEByvVwikFjY1sZFLJFfNcn2ZFqqlVeo2+PsOveJ9j/0j4gWLW27uL1bLrq/KZbpScIwiGa45NOEI4TtNZoz8N3bbTnobXGtCzMUH2nTnzXpTwceIMIxTDDsbqevxbsbIHBJ16iNJIGINbZSv+lm5srKqBURnk+HgaFnI1Tcoi3xEm2pxo9vCrjA+M8fd8TvPncGwAYpsEZF6xj83u20NLZnE2HBUE4hAgmQZgDWimU56IcJ+iPhhFUlBZhybzWmtLAftAq8C3FW+t+jTmNw1eMvfQmYy++EUQFWCa9m9fRffZpTTO15TsuXsnGUwYlx6NUdAhHI7Q2UUxAZjjN0z9+kteefjXITTLgtPPP4PxrttLa0xyiUxCEYyOCSRCOQuBPclCuA0qBYWAsYgNdgPLoMMopB76lRHtDbvyl0TQDT7yEkwmiApLLu1hx8Uairc1RsdFK4RbKeK5H2dOUSg5g0NLZ0jT9xXLjWZ7+8S5effLlanuRNZvWcv41W+lY3tng0QmCUCsimAThMAJ/koeaNHJXqiuLLZQA3HweNxPk75ixFgxraf+L+q7HyHOvkn5lPwBWNEzf+etoP3110+T9eGUHt2hjez7FkovvaxJtyaZpZ1JI53nmp0/x8mN7UL4CYNWG1Zz/vgvoXtnd4NEJgjBfRDAJQoXAn+TiT067VRKrzSUyDCvPozQ06VuKYoSXdqVU7sAIQ0/uwSvZALSuXkbflrOItKSaYnpL+T5OroTjeBTLLo7rE03GSSYbn0kFUMqVeHb70+x59AV8zwdgxZn9bHnfhfSu6Wvw6ARBWCgimISTnkl/ku/Y4PtM+pOM0NJVVLTWFAf2g/bBMDHjrUsmArTWjO5+jbEX3wQgnIzRd/46Wk9ZjhEKNVyMTEYFlPMlSmWPsusTioRp7W5piqqXXSiz+8FneeGh3dXmtn2nLmPLtRey/PQVDR6dIAj1QgSTcNKipk27KQxjaabdZqI8OoqySwCYiXYMY2mEgPJ8Dj72PPn9Qa5S++kr6Tn3NMLJRFPEBSjPo5QpUiralBwfbZikOloIRRo//eaUHZ5/8Dme//lzuOUgwLP7lB62vO9C+tetbLjQFAShvjT+E1EQlpBD/qRKfpLWmKbVMKEE4BYLuJlRAIxoCsNaGjHgFsvsf/hZ7IkchmkEXqXT+rEiMYwGV2601rj5EvlskVLJwVWQbEsRTTYuXmES13Z58ZHn2f3AM9jFYPqyc0UX57/vAk45e7UIJUE4QRHBJJwUaK2C/CTHRvs+aI1hhRYlFqAWlOdRGgySnrEiGJGlaVhbGstw4OFn8coOVjTMiovPIbmsKxBLDY4M8B2XwniWfM7G8RWRZIL2tkTD/60812PPL17k2Z8+TTkfVAPbets5/71bOXVT80QtCIKwOIhgEk54tFJ4pSLadSuxANaSTXkdi+LAAVCTvqWlyQ7K7hti4PEX0L4i2pqk/5JziLS3YkWjDa2OaKUopfPkJgqUHA8rGqG1u51QuLEfU77n8/Lje3jmJ09RrMQstHS2cN57t3La+Wc0hY9KEITFRwSTcEKjtcYvl1CugxmONNV0SWl0BGUXgcnWJ4t749VaM/bCG4w+/zoQZCstv3A9oUQSK9K4KUkAp1QmO5ylkC+hLYtUdzuReGMbzypf8equl3n6x7vIj+cASLYn2Xz1Fs7ctq5p8p6E+aGVRimF8qd++dVtQMOrmkJzIYJJOGEJxFK5IpYaKwgOxysWcdOTvqUkRiiyqNdTns/AzhfJ7RsCoOOMlfRsPA0rFsds4Eo45StywxPk0gVsTxNvbyHZlmzo9JZWmtefeY2nf/wkmeE0APGWOJuuOp91F69veMVLODpV8XOEGFJorTAw0GgM08A0LUzLwLQsQmGLUDJKKBomFAljWSZmyCLesjTT5ELzI//zhRMSrTW+baOcMoYVapopOAh8S8WqbymMEVnchqteyWb/w89SHs+CYdB3/pm0r12BFY01bCWc1ppiOk9mOE257BFKxOhc3t7QJrlaa956/k2euvcJJgaC8NBoMsbGd29mwzvOboqVeScr06pBhwkh7atAAGGAAYZpBiLINDEtk0g8EEDhSAgrHMYKmZiWdcR3mVoVjoUIJuGERLluIJZMa9GnumqlOHgQVNCPbrF9S+WJLPsfehavZGNGwqy4+GxSfV2Y0WhDppQ816OUK5EeHKeUKxNKxmhd3kUk0bjVb1prDux5m133PsHo20G8QjgW4dwrNnH2ZecSiS1u9e9k5vBqkJ4ihrTSaENjaANMpleDQhah+GQ1KIQZsqoVocO/N1NlWTi+EcEknHAoz8UvFwODd5P5TMpjY6hyYBwOfEuLN77c28McfOx5tK+ItCRYcck5xCbN3UsoIrXSlItlitkiuYkC5UyOUCRC28oe4m2N7U038OpBdt2zk6E3BgEIRUKcfflGzn3XJqKJxnqojle01rNOi2mlqvsYhoFhGJghs1oNCsWmV4NMy5y1IiQIS40IJuGEQnkeXqlipF7iPmzHwi2VcCaCCoYRSWCEF+eGrLVm7MU3Gd39GgDJZZ0s37aBUDy2pLEBru1SypfITeQpF8ooT2Giae3tIN7RihVtXOVG+T5P/Ohxnn/wOQCssMX6S89h45WbiaeWtiXN8cJU8aMPE0OT1SA0YBhYpolhmUGVxzKJxiOEIkE1yAqHqtUfc3KfSkWo2arBgjCV5rqjCMIC0L6PXy6BUpjh5ppGUb5PaeAAoMEMYUQXp7KifJ/BnS+RfSuomHScvpKejWsxozGsyOKvElS+olwok88UKGaLuLZLKBImGo+gXY9wMkGsPdXQFPFCpsDP/u4n1arSuovXc941W0m2La6XrBnRWk+bBju8MjS5T7UaVBE1lmUGlaBoqCqEZvMFmZYp02LCCYEIJuGEQCuFVy6ifA8z1Hzm3OLgACgXMCqtT+p/A/HKNgcefo7SWCYwd28+g/bTVmBEoliLvErQLtmUciXyE3nKRRvDMIgmosSSMZTr4Tse0dYUkdZUQ821A68e5Gf/5yeUciXCsQiX/cYVrNl4asPGs1gcXv05fMn85Eqxw6tBhmkQjcUIR0KEomGsSvPpmfxBUg0STjZEMAnHPYeyltymy1oCKI+P45dyGBA01V0E31I5nQvM3cUyZjjEiovOJtnXiRWLLpqA9D2fUr5MPp2nlCvhuR7haIRke7KaX+OVymgN8c5WwqlEw/5ttNbs/tmzPPlvj6OVpmN5J1fe8B7aetobMp75MGM1SB3yC01fMm9WRU1QDQoRisQIRysrxWYxSEs1SBBmRwSTcFzTzFlLUPEtjQ9jAEY4jhGu/2qw3IERDu54Hu35hFMJ+i89h2hrqhIbUF9xprXGLtoUsyUKmTx20Qk8KokoidbEtP3cQhkrHCLe0UIo3rhVcE7J5qHv/Yy3dr8JwOlbz+TSD73zuIgJ0FpTLpRxijYYVKa5gpVipmkQjUWCalDFG2SGLEzzSKO0LJkXhIUjgkk4bmnmrCWo+JYGDxL4liyMWEtdz6+1ZnzPW4w8+yoAib5Oll+4nnAiVvcGup7jUcoHU26lfBnfV0TiEZIdySPSkJWv8EplQrFoZVVe44TJ+MExtn/rx2RHs5iWycX/7h2su3h90wnrw5kqlKLJGH2nLiOaiB5hlG721yEIJxIimITjlmbOWtJaUxwcBN8BwIzX17ekfMXQky+ReWMAgPbT+unZdBpWJFK3lXBKKeyCTSFXpJAu4NguoZBFLBWbNWBSeR5e2SWcShBra6y5+5Un9vLoPz6M73okO1Jc+cn30HNKb8PGMxdmEkotXS3HRTVMEE50RDAJxyXNnLUEYKfT+KVsMBUXa8WoY8SBV3Y48MhzlEbTYEDf5jNpO3U5ZiRSlwa61TiA8SAOQGtNNB6lpSN11HP7tovvekRbk0TbUg0TsZ7r8fg//4I9O14EYOVZq7j8Y1cSSzZuWvBYiFAShOZHBJNw3KH85s1aAvCKZZyxSd9SrK6+JTudZ//Dz+AWJs3dG0j2dWKEIwuODfAcj/HBcYq5Eq7tEo6EibfGsY4hSAMfmd0U5u7ceJYHvvUTRvePgAHnX7OVzVdvaWhvuqMhQkkQjh+a724jCEdBKx+/1JxZSxA0uS0OHQBU1bdUL/GQPzjKwV/sRnk+4VSc/kvOIdqaxKz0hFvIdbTSjA+OkxnNEk/F5xzeqJXGLTaHufvtl/bx4He3B+IjEeVdH7+KlWetath4joYIJUE4/hDBJBw3aKXwSs2btaS1pjg01bfUVjcj+sQrbzP01F7QEO9pp/+is7Fikbo10M2MZciM5ki2JefcALdZzN1KKZ758S6e/sku0NB9Sg/v/sR7aOmsr8m+HohQEoTjFxFMwnFBs2ct+Y6Lncke8i1FWzCs+twEC4NjDO3aC0Db2hX0bj4dKxTGjETrEhtQypeYGEoTTUTmLpaaxNxdzpd48LvbObB3PwBnXbqBi667dM6vY6kQoSQIxz8imISmp1mzloJxOTiFEm6+CF4glghFMSL16UfmlWwO7ngemCKWwpG6NdD1XI/xgQm0r4m2zK23XdXc3ZYi2ppsmLl7+K0hHvj2Tyik81jhEJd+6DLOuODMhoxlNkQoCcKJgwgmoalpxqwl7Svcko2TL+AVHVAeplEGNBhmkOZdB1GnlebgjufxbZdoW4reOscGBL6lCYq54pymrybN3QDxrjbCyXhDxKvWmpcefYHHf/ALlK9o7Wnjyk++h84VXUs+ltkQoSQIJx4imISmppmylnzXwy2UcfJFfNvBME3MsAa7CLoilhLtdRN1Yy++QXF4AiNksfyiDVjRKFY0VjeRkpvIkR3Nkmg99qq2Q+buMLGOVMPM3a7t8ug/PsRru14BYM3GU3nnb1xBJNYcCwBEKAnCiYsIJqFpaYaspWnTboUSyvUwI2FCiRh4RbRdCHa0woHJu0594gpD44w+/zoAfeedEbQ6iSw8Y2mScqHM2MAE4ViEUPjoHwPK9/FKdmDu7mjFatDNPz2cZvu3fkx6cALDNLjgAxdxzrs2NsUUrQglQTjxEcEkNCWNzlo6YtpNK8xohEg8itYKVcqAF6yGM8LxusYHeOUpvqVTl9O2elndPEsQ+JbGDo6jPJ9Ey9G9VtPM3e2phuVevfHs6zz8vZ/h2i7xlgRXfOIqlp+2oiFjmYoIJUE4eRDBJDQdjcxammnazYqHMSsVLu17qFIalA8EKd5mnQzeENyAD+54Ab/sEGlN0rPpdIxwpG4VNq006aE0xVyRVEfqqPv6toPv+kTbU0RbGmPuVr7PEz/ayfMPPgvAstOWc8XHryLRllzysUxFhJIgnHyIYBKaiiBrqbSkWUuBsdzBLZRw8oem3cLJ+DRztXLL6FKWqrk70V636IBJxl58k+LQOIZlsmLbBkLR6IITvKeST+dJj2RItCaOaJo7idYar2xjYDTU3F3MFHjg//yUodeDfnnnXrGJre/fhlnHpsK1IkJJEE5eRDAJTcOhrCVnSbKWjjbtdvi4tJ1HO8EUIVak4leq7427ODzB6POvAdB33plE21OYdRRL5aId+Jai4Vl9S5Pm7lAkTLS9cebugVcP8rP/8xNKuRLhaJjLPnIFazaubchYQISSIAgimIQmYSmzlo417TZtXKriV6qkdxuRBEb06E1o54NnO4FvSUPr6mW0ru7DikRnHNO8zu96jA+M47verFNx05K7G2Tu1lqz+2fP8uS/PY5Wmo7lnVz5yffQ1tu+5GOZHI8IJUEQQAST0AQsRdbStGm3QhnluDNOu007xndRxTRoBRhBvlIdG+lOHdvAYy/glWwiLQl6N58eVNjqlJ6ttSY9kqGQLpDqnE0sBSvhGmnudko2D33vZ7y1+00ATt96Jpf8+3cSbkDLFRFKgiAcjggmoeHoRc5a0r6iNJbByZeq027hlqNnDymnhC5ngx9MCzPejrFIImJ8z1sUBsYwLJPlVd9S/SIE8hN50kPpWX1LyvPxyjaRVIJoe2tDPELjB8fY/q0fkx3NYlomF/+7d7Du4vVL7p0SoSQIwmyIYBIaivJcvEXMWtJKUZrIYmcLhBLH7r2mtUaXc2i3FGwIReraRPdwiqNpRp4LfEu9m88IqjuRaF2SvAHsos34wAShSJhQ5Mj/7oFYcoikkkTbWxoill55Yi+P/uPD+K5HsiPFlZ98Dz2n9C7pGEQoCYJwLEQwCQ1jsbOWtNaU03nsdH5uYkn5Fb+SC4ARTWJEkotW5fBtl4O/2A1a07Kqj7Y1yzCjsbo01AXwPZ/xgXFcx52x9clkxlK0NUG0rWXJYwM81+Pxf/4Fe3a8CED/Wat418euJJZcOqO5CCVBEOZKwxtzfe1rX2PNmjXEYjG2bdvGzp07j7p/Op3md37nd1i+fDnRaJQzzzyTe+65Z4lGK9SLaVlLixAfMCmWyhPZuYklz0EVxitiycCMt2Mugrl76vgGdr6AV7QJp+L0nn8GZjiMWU/f0nCafKZAsv3IzKJALDlEW5MNEUtDbwzyo7/6QSCWDDjvmq2858b3LalYUkqRG81iGAZ9py5j1fpVdCzvFLEkCMKMNLTCdNddd3HzzTfzjW98g23btnH77bdzzTXXsHfvXnp7jyzJO47D1VdfTW9vL//0T/9Ef38/b731Fu3t7Us/eGHeLEXWkpMrYk9ksWKRo4olrTXaLaHLuWCDGcJMtGGYi/tfY+LlfeQPjGKYRiVvKVJX31IhUyA9nCHeEj/Ct3SospQi2pZaUrGUG8vyxI8e541ngmnIaCLKuz5+FSvPWrVkY4Cg+pYbz9Ha2ULP6t4joiQEQRAOx9Ba60ZdfNu2bVxwwQV89atfBYK/+FatWsVnPvMZPv/5zx+x/ze+8Q3+4i/+gj179hAOz+9Gm81maWtrI5PJ0NrauqDxC7WjtcYvFfEde9GylpxckeJIGjNsYR1lhVXgV8qi3TIARiiKEW9bdKNxaSzDW9ufBKXpO+9M2k9bgRWL1626ZJdsht4YQmlNPDU9hbwqlpY4vdsp2Tzz06d54efPoXwFBpy57Sy2vO9CEq2JJRnDJK7tUswUaO9tp/uUHqkoCYIwJxpWYXIch127dnHLLbdUt5mmyVVXXcWOHTtmPOaHP/whF198Mb/zO7/Dv/zLv9DT08NHPvIRfv/3fx9rFsOwbdvYtl39OZvN1veFCHNmKbKW3EKJ0lgaI2QeXSwpP4gMUB5AkK0UOfrKuXrgOxXfktK0rOylbe1yjHCkbmIp8C1N4NhH+paU6+HZLrH2FiKti+fNmnZNX7H3sZd46t4nKBcCYbrijH4u/OWL6ervXvTrH45dsrELZbpWdtPV31W3nCtBEE58GiaYRkdH8X2fvr6+adv7+vrYs2fPjMe8/vrrPPDAA3z0ox/lnnvu4dVXX+W3f/u3cV2XL3/5yzMec+utt/JHf/RHdR+/UDu+s7hZS17JpjiWAcMgFJu9B5327MDcrTUYgV/JCC1+z7rAt/QibqFMOBmnd8uZmOEwVqQ+19ZakxnJkJ/IHxFOudRiSWvN/j1vs/NfdpAemgCgrbedC3/pYlZtOKUhrVZKuSKe69OzupeOvo6G9MYTBOH45bhaJaeUore3l//9v/83lmWxZcsWDhw4wF/8xV/MKphuueUWbr755urP2WyWVauW1i8hgHJdlL14WUte2aE4kkb7ivAsxmGtNdopou18sMEMBf3gzKWpMqRf2U9+/wiYBiu2rScUiWCF6+lbKjIxnA58S1PiAZTj4TlLJ5bGD46x84c7OLB3PwDRZIzz37uVsy5e35CKjtaaQjqPaZksO205rV0yFS8IQu00TDB1d3djWRZDQ0PTtg8NDbFs2bIZj1m+fDnhcHja9Nv69esZHBzEcRwiM/ylHo1GiUbF0NlItPLxykGu0WJkLfm2S3E0jfJ8wqnZxJJClbLgBdOzRjiGEWtdskpHeTzL8DMvA9C78XRina1Y0QhGnXKPnLLD+MAYpmVNS8b2HRff9Yl1tBBpWVyxVMoV2XXvE7z82B601piWydmXncumq88n2iBTtVKK/HieaDJK7ym9JNqOXDEoCIIwFxommCKRCFu2bGH79u1cd911QPDhtn37dm666aYZj7n00kv5h3/4B5RS1ZU/L7/8MsuXL59RLAmNZ9K3pJW/KCvifNejOJZG2S6h2cSS76FKaVA+AEasBTOydEZj3/U48IvdaKVJ9ffQdtoKjHCkbsnhyleMD4zjlB1SHYd8S77tojyfWEeKSGrxxJLneLzw0HM8+9Once0gw2rNprVc8IFttHa3Lco154Lv+eTHcyQ7kvSu7iOaaEwjYUEQTgwaOiV3880384lPfIKtW7dy4YUXcvvtt1MoFLjhhhsAuP766+nv7+fWW28F4NOf/jRf/epX+b3f+z0+85nP8Morr/Cnf/qn/O7v/m4jX4ZwFJTroBwHMxyq+w1beT6l0XSlB1p8xvNrpVDFiaAfnGEGqd1L4FeqXl9rBne+hJsvEUrEWLblTKxQCKuOKwQzIxlyE3lS7Ydyo3zbQfmKWGdr0C9vEcSS1prXn36VJ370OIWJYJqz+5Qetv3yJSxbu7zu16sFz3EppAu09rbRs6q3If3oBEE4sWioYPrwhz/MyMgIX/rSlxgcHGTz5s3cd999VSP4vn37pmXIrFq1ih//+Mf8l//yX9i4cSP9/f383u/9Hr//+7/fqJcgHAXlefjlMlhm3U3eyvcpjWUCA3UqNrNY0jqoLGkV9INLdCyZX2mS9GsHyL09BIbBios2YEUidW19UsgWmRhKE08d8i35ZQelFLGOViKpxamkDb0xyOP/8gtG3hoGINmeZOsHtnHaeWfU7bXNF6dkU8qX6FzRSdfKHqw6JacLgnBy09AcpkYgOUxLQxBOWUB7Hma4vhUdrRSl0Qx2Nh9UlmYwkU/PWDIwk52L1jx3NsoTOd76yRNopejZeDqdZ67EjMaw5pkhdjiu7TL4xhCe61WzjKpiqbONSDJ+jDPUzuHBk6FIiE1Xncc5l29sijyjUr6Ea7t0r+ymc3mnrIQTBKFuHFer5ITjA611ECHg1T/JWytFaTyLnc0TSs4sloBgNVwlkNJMtC25WPJdj4O/2I1WiuTybtpPX4ERql/rE6UUYwPjlIs2LZ1BhIBXtkFr4p1thOsslpopeHI2Cuk8GLBs7XJau5fO0C8IwsmBCCah7mjPRTk2plVf39L0ZrqxaUvnp+3n2tXoACPaghFa2hVaWmuGntyDkysSikdZvnUdVihc19YnmZEsufEcyfbAzO2Vg9V/sc52wnU0Nzdb8ORMaKXJjWeJxKP0ru4l2Z469kGCIAg1IoJJqCtBhECl1Ugdp0O01tiZSjPd+Oz94YIVcZng+uE4RqT+01LHIvP6QbJvDVZ8S2djRcOYkUjdvD3FbJH00ASxZAzLsvBKZTAMYh1tdRNLzRg8ORPKD3rCJVqT9K7uJZZa+n9vQRBODkQwCXVjMSMEnFyR8ngWKxrBDM/8axusiEsDGqwwRqxlyW/sdjrP0FN7Aeg5Zy3xzlaMSLRuU3Gu7TI2MI4GIrEIbqmMaZjEOlsJxesjlpoteHI2PNejMJGntbuVnlN6CR8l3V0QBGGhiGAS6sZiRQg4+SLlsUzQTDcyi1iqrojzwbCCdidLLJaU5wd5S74iuayL9jNXYoRDdTN5K6WYGJygnC/T0tWCWyxjWlYglmILn3ZsxuDJ2XDKDqVskY4VnXT3d2PNIqIFQRDqhXzKCHUhiBAo1T1CwC2WKY1mwDKwojNXEIIVcTnwXcCotDtZ+tVRQ7v24GQLhGIRlm1dh2ladfUtZUezZMdzJNoSeEUbM2QR62olVIck+4mBcf7tq/+CXQy8UM0QPDkb5UIZp+TQc0oPHcu7ZvWyCYIg1BMRTMKC0Urh2yXQuq5TcV7JpjiaRqMJx2afbtJuCe0GrVfM+NKviNNaM/bim2TeGAADVlx0NqFYBCsarYtwU74iPZxhYniCSCyCdjzMUIh4V+usIrIWSrkS9//tvdhFm84VXVz8q+9oePDkbBQyBdCavrXLaOtpaxovlSAIJz4imIQFsVgRAp7tBGLJ94+6RF57dlBdAoxoCiO8xCvilGJo117Srx0AoOfc04l3t2GEI3XxLTllh/HBCXLjOWLJGIbvY0XCxDrqI5Y8x+Mnd9xHfjxHa3cr7/vtDxKbpXlxI9Fakx/PEYqG6V3dO60FjCAIwlIggklYEIsRIeA7LqWRNMr1CB3l5q19D1WcXBEXw1jC/nBwKGupMDAGQO/5Z9K+dgVGKIRVh96GhWyR8YPj2EWbZFsSv+xgResnlrTWPPz9Bxl5a4hIIsp7bry2KcWS8hW5sSzx1gS9a/qIy0o4QRAagAgmYd4sRoSAcj2Ko2l82yE0S384AK1VYPKurohb2qBCt1hm/0PPYKfzGJbJiovPIbWsCwywwgvzLSmlyIxkmRicwDANUp0pfNvBCoeIdbRh1akv2tP3PcnrT7+KaZlcdcN7aOttr8t564nvBbEBrZ0t9KzuJdJk5nNBEE4eRDAJ82IxIgSU51McO3oz3clrq2IGlH+ooe4SiqVyOs/+nz+NV7KxohFWXraJeHsLWiusaAxjASbkydiAySm4SCyC8jyUr0l0tdRNLL365Ms8ff8uAC790GUsP72/LuetJ67tUswU6OjroPuUHkKyEk4QhAYin0DCvKh3hEC1mW5+9ma6k2g7D74DUFkRt3TZQIXBMQ488hzK84m0Jlh52XlEEjG08it5S/MXNMVsMWh3UrBJtiexLAutNV7ZIdqaIpSoT3Vl8PUBHv7+gwBsvPI8ztx2Vl3OW0/soo1dLNO1spuu/q6myn8SBOHkRASTUDP1jhDQSlEey+LkioSTsaNO7ymniHaKwOSKuKVr+Jp+/QCDT+wJ+rX1tLPynZuwQqFALIUj885bUkqRHQ2m4DAMWjpTVcHolWxCsSiR1kRdhGl2NMNP7/wxyles2biWrddeuOBz1ptitojyfHpX99He15iICEEQhMMRwSTURL0jBLTWlCcmm+kefTpLe86UFXFJjPDSGJS11ozufp2xF98AoHX1MpZduAHTNFGeixkOY0Ui8xI0ru0yMThBdixLtDIFN4lyPQCibSnMOkQl2EWb+795L3ahTPcpPVz+0Svq1q6lHmityU/ksUIWy05bTktXa6OHJAiCUEUEkzBn6h0hEDTTzVGuNtOdfdpFK69i8gYjFMWIJBd8/bmgfMXgzheD3nBA14ZT6T53LQYGyvcqYunoU4izUcwFq+DKhTKJtiTWlP54Wik82yXW3lKXFG/l+2z/9v1khtMk21Nc/ZvvJRRZuurcsVBKkR/PEU3G6F3dR6J1aVc8CoIgHAsRTMKcqWeEQLWZ7ngWKzZ7M91g30qPOK3BDGEskcnbd1wOPPIcxeFgqmzZBWfRvjYwR2vPO5TkXWOVRilFdizLxMAEGkh1Htnzzi3ahONRIi0LFw5aax79p4cZeOUA4WiY99z4PhJtSyM454Lv+eTHcyQ7UvSu7iNaJ6+WIAhCPRHBJMyJekcIuPki5fEcVjR81D5gQY+4KSviEkvTI87Jl9j/0NM42SJmyKL/0o0kl3cFY/K8YCzzSPL2HI/xwXGyYzmi8SiR+JF5Sr7tYIUsom0tdXmvn3/wWV5+bA+GYfCuj19F54quBZ+zXniOSyFdoLW3jd5Tepuq6iUIgjAVEUzCMal3hICTL1EazWCETaxj3CC1nQdvaVfElcYy7H/o2SALKh5l5eWbibUHydLa8wGwotGaV26VciXGBsYp5UskD5uCm0R5Pr7rE++qT97Sm7vfYOe/PgbAtusu4ZSzVy/4nPXCKdmU8iU6+7vo6u+e8f0QBEFoFkQwCceknhECbrFMaSwNpkHoGGnVyilVV8QZS7QiLndghIO/2I32FdH2FCsv20w4UTGX+wrQWNFYTW1PtNJkxrJMDE2gfU3LDFNwQDVCIJKKH7UdzFwZfXuEn393O2hY/46z2fDOcxZ8znpRypdwbZfe1X10LOuQlXCCIDQ9IpiEo1LPCAGvXGmmq/UhETILwYq4LABGJIm5BCvixl/ex/BTLwOQXN7FikvOPTRdqDRaqyBrqYb4AM/1GB8YJzuaI5KIEG2Z3Z/jl21C0TCRttSChWkhnecnf3svnuOx8qxVXHTdpU3TqLaQzoMBy9Yup7V7aRPaBUEQ5osIJmFW6hkh4DsuxdHMMZvpBtf1A98SQCiKEV1cg7JWmuFnX2Fi7z4A2k/rp2/LukNVDx2MyQjVlrVUypcYH5igmC+RbEscdcpJeR5aQaQ1hbXApr2u7XL/395LMVukY3knV3ziaswFpI/Xi8kGuuFomJ7VfaQ6Uo0ekiAIwpwRwSTMSD0jBIIVcQV82yF8jMaph1bEKTBDi972RHk+Bx97nvz+EQB6Np1O51mrD11TcyhrKTq3rCWtNLmJHGMDEyjfp6Xj6BUjraakeS+wV5pSige/81PGD4wRS8W5+lPvm5bt1CiUr8iNZ0m0JOiRBrqCIByHiGASZqSeEQJesYyTKxCKH70pbbAiLgvKW5IVcV7ZYf/Dz1Aey2KYBsu3nU3r6mVTBkSQtRQKzTlryXM9JgbTZEYzRGIREi3HFgaH0ryTC369O3/4GPteeAsrbHH1f3gvLZ0tCzpfPZAGuoIgnAiIYBKOoJ4RAsrzKafzYBpHzVoC0HYBPBuotD1ZxBVxdrbA/p8/g1soYUZCrHzHJhK9HdPH43sYphmIpTlkLdlFm9EDYxRzRRKtiTk1i1WOi2EaRNtTC+6X9tKjL/DCz58D4LLfuILeNX0LOl89qDbQ7W2ne3WvNNAVBOG4RT69hGnUO0LAzhXwSjbhY1RalFtCOwUAjFgrRmjxppGKwxPsf+Q5lOMSTsZZeflmoq3TfVJB1pIRiKU5+H8812P0wBilfIlURwpzDkJT+QrPcYl1tBKKLqzqsn/P2+y4+xEAtlx7AWvPO31B56sHdsmmXIkN6F7ZLQ10BUE4rhHBJEzDd+y6RQh4ZQcnk8eKHd37o30XXZpcEZfAjCyevyX71iADj7+AVppYVysr37mZ0GEeH+1PZi3FjlkVg8CDNDGYppgrzhoZMBNeySacjBNJLSzNe2JwnAf+7idopTl965lsuur8BZ2vHpTyJTyJDRAE4QRCBJNQRXkeyi7XJUJAK4WdzqN9TShxlCRv5Qcmb4BQBCO6OCuntNaMv/QWI8+9CkBqZQ8rLjrnSEGkVLAqsIaspdxEjsxohkRrYs5iyS87WOEQ0dbUgsREKVfi/m/ei1t26Fu7nHd8+PKGL9OfjA3ok9gAQRBOIEQwCUB9IwQA3EIJp1A8at6S1npJVsRppRjatZf0awcA6Fh3Cr2bzjjSl6Q02lcYkcicxVIpX2JsYIJILDJnf47yfHzPJ97dfsyk86PhuR4/vfM+8uM5Wrtbueo3r2loWrZWmtx4jkg8Qu/qXpLtEhsgCMKJgwgmoa4RAgC+61GeyAfTerP4f7TW6FKmsiLOqKyIq/+0jdaagzueJ/f2MBjQe96ZdJ55ygw7glJ+EB8QmVt8QBBKGUQHzGU13OR4vLJNtCV5zPDOY53n4e8/yPCbQ0TiEa6+8VpiycUP95yNamxAa4Le1X3EJDZAEIQTDBFMQl0jBILMpTy+4x7V6K2dArq6Im7xesSNPPsqubeHMUyDFZecS8vK3hkGE0xHmuEQVvTo0QfVQ5RmfGCcYr5ESw0BjEGad2TBEQJP//hJXn/qVQzT5MobrqG9t33e51oo1diArhZ6Vvc1Re6TIAhCvRHBdJJTzwgBCIzMTrZIKDG78NBuOYgQYHFXxE28up/xPW8BsOzCDbOLJd/DDFlzzloCyIxlyY7mSLbN3bekPA+tIdqWqqkX3eG8uutlnv7xLgDe8WuXseKM/nmfa6FIbIAgCCcL8ul2ElPvCAHl+5TTOTCYdXWZ9t1q25PFXBGXHxhlaNdeALrPWUvbmuWzjMfDMOaetQSB0XpiaIJIIjJnz5BWKkjzbm8hFJ//1NnQ6wM8/L0HAdj47s2cue2seZ9rodglG7tQpmtlN139XRIbIAjCCY0IppOYekYIANjZIl7RnrX9ybQVcdbirYgrT+Q4+Ohu0JrWNcvpOvvUmcfj+YCBFZ1b1hKA53iMDYyjfX3URrpHHFeyCcVjC4oQyI5m+OmdP0b5ijUbT2Xr+7fN+1wLpZQr4TkuPat76eiT2ABBEE58RDCdpNQzQgDAsx2cbB4rFp6xUhO0PclUVsRZmInFWRHnFsvsf+gZlOeT6O1g+QXrZ76OrwCNFZtb1hIEfdrGB8cp5Us1tRzxbRfDMom1zT/N2y7Z3P/NeykXynSv6uHyj757zhWxehPEBhgsO205rd1tDRmDIAjCUiN/Fp6ETIsQsBaumbVS2BN5tKdmXCavtUaXs+C7gBGYvBdhRZxyPfY//CxeySbSmqD/HRtnrhwpjdYKIxKtaSoyO5YlO5Yj2TZ3w7byFb7rEWlNYkXn59XyXI/t37qfzHCaZHuSq//DewktII5gvmilyY5mscIhlotYEgThJEMqTCcZ9Y4QAHAL5aNmLmmniHYDY7mZaMOog0g74hpKcWDH89gTOaxohJWXnTdzxpHSgW8pEsUKz/31F3NFJgbTROPRufuWtD6U5p2c31Sc8n0e+PZPGHjlAOFomKs/9T4SbcljH1hnDsUGJOld3SuxAYIgnHSIYDrJqGeEAARVnfJEDjNszVjN0a6NtvMAGLEWjFD9O9VrrRl6+mUKB0cxLJOVl20iMtMNfXJFXA1ZSxCsBBs/OI7Wmkh87lUi366kebfNL81bKcWD332At198CytscfWn3kdXf3fN51kovueTH8/RIrEBgiCcxMiU3ElEvSMEtNaUK5lLM003ad87tCIuHMcIL05VYuLlfaRf2Q/AiovOId41w1TRNLE09/gApRQTgxOUC2USrXOvEinPQ/maaFsKax5L7bXSPHLXz3njmdcwLZOrbriG5aevqPk8C8W1XfLjOdqXddC3drmIJUEQTlpEMJ0kTI0QqNeU2NEyl7RWqFIa0GCFg+rSIpi8c/uHGX76FQB6Np9By6oZspYIxJtpWliRaE1m6exoluxYlkQNvqUgzdsh2hInNI80b601O+5+hFd27sUwDa64/mpWrp8hnXyRsUs2pVyRrpXd9ErGkiAsOu9617v4z//5Pzfs+m+++SaGYfDMM88s6XUffPBBDMMgnU4v6DyGYfCDH/xg1ucX+vrkE/Akod4RAkfLXAp6xGVA+WCYFZN3/cVSaSzDwR3PA9B++ko6180sKrRXab8SjdZUWStmi0wMThBNxmrq0eaVbEKx+aV5a6154l8f46VHXwADLv/Iu1mzceZYhMWklCvhuZ7EBgjCEnL33XcTrsFbuRA++clPkk6njyowhOmIYDoJqHeEAICTmz1zSdt58B2AoEfcItxsnXyJ/Q89i/YVyeVd9J1/5lHiA8CKxmpa0u/abpC3BDVNQynXAyDa1jKvFYjP3L+L3T97FoB3/NrlnLbljJrPsRC01hTSBQzTYNnaZbISThCWkM7OzkYPoWZ838cwDMyT4I+qE/8VnuTUO0IAAjOznZk5c0k5JbRTBMCIt2FY9f9ryXdc9j/0DL7tEG1PseKSc2cWZUqj1WR8wNxfu1KKsYFxygW7Jt+SVgrPdom2pgjFaje37/7Zszx135MAbLvuEtZdtL7mcywErTS5sSyhSIjlp68QsSQIS8zUKbmJiQmuv/56Ojo6SCQSvO997+OVV16p7vuHf/iHbN68edrxt99+O2vWrDnmdf7wD/+Qv/u7v+Nf/uVfMAwDwzB48MEHq8+//vrrXHHFFSQSCTZt2sSOHTuqz33729+mvb2dH/7wh2zYsIFoNMq+ffuwbZvPfe5z9Pf3k0wm2bZt27RzvvXWW3zwgx+ko6ODZDLJ2WefzT333DNtXLt27WLr1q0kEgkuueQS9u7dO+35v/7rv+a0004jEomwbt06vvOd7xz1de7cuZPzzjuPWCzG1q1befrpp4/53hwNEUwnMFMjBIw6RQhorSmn82jPP2LZvvbdIG8JMCJJzPD8W4DMen1fceDR3TjZAqF4lJWXbZ7ZVF0xeRvhcE3xAQCZkSy58RzJ9rn3idNa4xZtwvEo4Xmkeb/06Avs/GHwobTl2gs55/KNNZ9jIUyKpXhLnOWnryDZgOgCQRAO8clPfpInn3ySH/7wh+zYsQOtNddeey2u6y743J/73Of4tV/7Nd773vcyMDDAwMAAl1xySfX5L3zhC3zuc5/jmWee4cwzz+Q3fuM38Dyv+nyxWOTP/uzP+Nu//VteeOEFent7uemmm9ixYwff//73ee655/jQhz7Ee9/73qrI+53f+R1s2+ahhx5i9+7d/Nmf/Rmp1PRuD1/4whf4y7/8S5588klCoRC/+Zu/WX3un//5n/m93/s9PvvZz/L888/zn/7Tf+KGG27gZz/72YyvMZ/P84EPfIANGzawa9cu/vAP/5DPfe5zC3rfZEruBKbeEQIAbr6Eky8eYWae1vYkFMGI1v+Gq7Vm8MmXKA6NY4YsVl62eebsp2pD3VBg8q7htReyRdJDE8SSMawapvD8so0VDhNtb8GcY5uVSV55Yi+/+KeHAdh01Xlsvvr8mo5fKJNiKdGWoO/UZUTi9Y9+EARh7rzyyiv88Ic/5NFHH60Kmb//+79n1apV/OAHP+BDH/rQgs6fSqWIx+PYts2yZcuOeP5zn/sc73//+wH4oz/6I84++2xeffVVzjor6F3pui5f//rX2bRpEwD79u3jW9/6Fvv27WPFihXVc9x3331861vf4k//9E/Zt28fv/qrv8q5554LwNq1a4+47v/4H/+Dyy+/HIDPf/7zvP/976dcLhOLxfjKV77CJz/5SX77t38bgJtvvpnHHnuMr3zlK1xxxRVHnOsf/uEfUEpxxx13EIvFOPvss9m/fz+f/vSn5/2+SYXpBKXeEQIQeKHKmRxmyJomCo5oexJfnLYnYy++SeaNATBgxSXnEuuYuT3JfBrqAjhlh/GD42AYNfmWfDv4iy/WkZo5LPMovPHMa9VmuhveeQ5brr2wpuMXilKK7FiGRLuIJUFoFl566SVCoRDbth3qF9nV1cW6det46aWXFv36GzceqnAvXx40Lh8eHq5ui0Qi0/bZvXs3vu9z5plnkkqlql8///nPee211wD43d/9Xf77f//vXHrppXz5y1/mueeeq+m6L730Epdeeum0/S+99NJZ34+XXnqJjRs3Eosd+qP64osvntsbMAtSYToBmRohUK80b601diaPX3YJt8SnbZ/W9iSxOG1Psm8NMro7+I/Xd/5ZpFbMEuBYNXlH59xQF4Ik6/HBCeyiTapz7k2Blefhux7xzlZC8dqmIPe98BY/+852tNacue0sLrru0kURmrOhlCI3liXZngrEkmQsCcJxg2maaK2nbavHdB0wbaXe5GeSUqq6LR6PT/usyufzWJbFrl27jqjMT067fepTn+Kaa67h3/7t37j//vu59dZb+cu//Es+85nPzPm6jUYqTCcg1QiBUP2m4qqZS/HpCdlHtD0x66/BiyNpBh5/AYCOdafQccbKmXes9Igzo7GaTN4AmZEMuYk8iVp8S0oFeUutyZp9Swdf3s8D374frRSnnX86l/7aZUvaTHdSLKXaUywTsSQITcX69evxPI/HH3+8um1sbIy9e/eyYcMGAHp6ehgcHJwmmmrJF4pEIvi+X5fxnnfeefi+z/DwMKeffvq0r6lTfqtWreK3fuu3uPvuu/nsZz/LN7/5zTlfY/369Tz66KPTtj366KPV92Om/Z977jnKlZkWgMcee6zGVzYdEUwnGIsRIaB9RTmTR6MxpxistTel7Ul0cdqeOLki+x9+Fq00qZU99G6eZZm9BqV8jFCkZrFUyBSYGJogXoNvKTB5lwknE0RaUzUJ06HXB/jJHffhez6rz13DZR+5YkmX5Co/EEstHS30nbqMsIglQWgqzjjjDH75l3+ZG2+8kUceeYRnn32Wj33sY/T39/PLv/zLQLCibmRkhD//8z/ntdde42tf+xr33nvvnK+xZs0annvuOfbu3cvo6OiCqlNnnnkmH/3oR7n++uu5++67eeONN9i5cye33nor//Zv/wbAf/7P/5kf//jHvPHGGzz11FP87Gc/Y/36ua8E/q//9b/y7W9/m7/+67/mlVde4bbbbuPuu++e1cj9kY98BMMwuPHGG3nxxRe55557+MpXvjLv1wgimE4oFiNCAMDOFfAKJUJT/C3a94JwSsAIxzAi9W974tkOb//8aZTjEutsZcVF58wsTKaavKNz7xEHFd/SwDiGaRKOzn360isG4ZTR9lRNJu/Rt0f48TfvxXM8+s9axRXXX11TPtRCqYqlzhZ6RSwJQtPyrW99iy1btvCBD3yAiy++GK0199xzT3Xaav369Xz961/na1/7Gps2bWLnzp01rQK78cYbWbduHVu3bqWnp+eI6s18xnv99dfz2c9+lnXr1nHdddfxxBNPcMopQaCw7/v8zu/8DuvXr+e9730vZ555Jl//+tfnfP7rrruOv/qrv+IrX/kKZ599Nn/zN3/Dt771Ld71rnfNuH8qleJf//Vf2b17N+eddx5f+MIX+LM/+7MFvUZDHz4JeoKTzWZpa2sjk8nQ2tra6OHUDa01vl3Gt8uYoXDdpuJ82yU/NIZhUO0Xp7VCFcaDJG8rjJnoqLv3Rvk+b//sKUqjGcLJGKuvvmDWbCPteWCahGLxmgzuylcM7xsmn86T6ph76xa/HIRyxrvbZ+yhNxvjA+Pc89V/wS7aLDttOdf8x2sJ1WgSXwhVsdTVQu+aZTUJREEQhJMdqTCdICxGhEDQXDeHcrwpYqmyIq7a9qT+K+K01gw8/iKl0QxmOMTKyzbPLpYqc/BBj7i5/zprrUkPB76lZNvcp9SU66F8RbS9pSaxlBlJc99f/yt20abnlF6u/tT7llgs+WTHsrR2twbTcCKWBEEQakIE0wnAYkQIALiFEk6uSCg5ZSrOzoM3te1J/aeTRne/Rm7fEBgG/e/YSLRtllVrSgfTj/MweRcyRSaGJ4in4nOeUlOej2c7RNtSNTXVzY3nuPfrP6KUK9G5ootr/tP7l9RkHYilHG3drfSu6VtSoSYIQmOYurz/8K+HH3640cM7LpFYgeOcxYgQgErmUjpfyVwKRJFyy1PanrQuStuT9OsHGHvxTQCWXbCeZN8svZV0IBSNcO0m78C3NIZlWXOutGil8co2kVSCSMvcV9IVMgXu/et/pZDO09bbznt/6wNEE0uXdeR7PvnxHG29bfSu7iM0Uyq6IAgnHEdbMdff3790AzmBkE/P45xqhEC4flNxAHamgF92qplL2nfRpYrJO5LADNff5F0YHGPwiT0AdG04lfa1K2becVqSd20mb9/zGTs4jlN2SXXMLW9pckVcKBYl2p6acxWvlC9x31//iNxolpauVt736Q8Qb6n/+zYbU8VSj4glQTipOP300xs9hBMOmZI7jlmMCAGYzFwqYFUyl45sezL3YMe5YmfyHHj0OdCa1tXL6D73yNj8SbTvYZpWzW1PtNZkRjLkJ/Ik25I1mLxtrHCIWEfrnFcf2iWb+77xI9JDEyTbk7zvtz9Asr3+79tsTIql9t52qSwJgiDUgZo+RbPZLI8//jiO43DhhRfS09OzWOMSjsG0CIE6TsVppSincyitiYRDS9L2xCvZvP3zZ1CuT7ynnWUXbpj1GtrzAQOzRpM3TOYtpYm3zN235DsuWkO8o2XObU+cssOP/+Yexg+MEUvFee+nP0hL59KtyPQ9n9x4lo6+TnpO6Zm5ObEgCIJQE3P+JH3mmWe49tprGRoaQmtNS0sL//f//l+uueaaxRyfMANa62AqzvPqKpYA7FyxEsgYq7Q9yR1qexKvf9sT5fnsf/hZvGKZcEuCle/YOLuYUQrQWLEYZqg2s7ldshk/OI4VnrtvSXkevuMR62yZc9sTz/H46R33MfLWEJFElPd9+gO097bXNNaF4LkehYk8Hcs66TmlF6vG90kQBEGYmTnf/X7/93+fU089lUceeYRdu3Zx5ZVXctNNNy3m2IRZWIwIAQiqKXYmjxkJYZgm2i2h3RJQaXtSxzBMCIzUB3c8T3k8ixUNs+qyzbMv1dca7Qcm71rH4bke4wfHcWyXeGpuHqKpbU8iqeScjvE9n+3f/jEDrx4kHA3z3v/0fjpXdNU01oXgOR6FdJ72ZR0ilgRBEOrMnO88u3bt4v777+f8888H4M4776Szs5NsNntCBUA2O4sVIaC1DqbiHI9IawLtOUF1CTCiqUVpezL8zMvkD4xgmCb979hEpGWWfmw6qESZ4fC8TN7jB8fJZwo1m7zDyfic254oX/Hgd37K/pfexgqHeM9/vJaeU3rnPM6FMimWOlZ00rOqZ0nTwwVBEE4G5nzHHR8fZ+XKQ01P29vbSSaTjI2NLcrAhCOZGiFQ72qPWyjj5kqEklG08lClNDDZ9qS2xrJzYeLlt5l4+W0All+0gURP+6z7at/DtCysSKw2k7fSTAxNkBnNkmxPzrlfm1e0CUUjRNta5ux12nXPTt587g1My+Tq/3ANy9Yun/M4F4rnuBQyeTpFLAmC0OR87WtfY82aNcRiMbZt28bOnTtn3ffuu+9m69atVb2xefNmvvOd7yzhaKdT0133xRdfZHBwsPqz1pqXXnqJXC5X3bZx48b6jU6YxmJFCCjPp5zOQcjEMA1UYQK0BjOEEWutu8k7f2CEoaf3AtCz8TRaT1k2677a88AwMKNRDLO2FXHpkTQTQxkSbYk5N9X1yw6GZRDtaJmzWXrwtQGe+9kzALzrY1fSv27VnMe5UDzHpZAu0Lmii+5V3SKWBEFoWu666y5uvvlmvvGNb7Bt2zZuv/12rrnmGvbu3Utv75EV+c7OTr7whS9w1llnEYlE+NGPfsQNN9xAb29vQ/zTc+4lZ5pmsMT8KLsbhoFfaVXRrByvveSU5+EV84F4qHN1qTSepTyeIZSKo8tZ8Oyg7Umys+5J3uXxLG89sAvt+bStXcGyC9bPLsh8hdaqYvKuzdyeHcsy/PYosUR07iZv18NzPOJdbUSSc/M6OWWHf/6LfyQ/nuOMC9dx2W9cUdM4F4JruxQzBTr7u+he2VNTE2BBEISlZtu2bVxwwQV89atfBUApxapVq/jMZz7D5z//+Tmd4/zzz+f9738/f/Inf7KYQ52ROd9533jjjWPuM7XSJNSPxYoQgErmUiaPFY+CUwzEEgQr4uosltxCmf0PPYP2fBJ9nSzbetbsYklptFIY0WjNr7mQKTB2YIxINDx3seQHbU9i7a2Ea2h78vgPfkF+PEeqs4WLfuXSmsa5EFzbpZQt0rWym67+bhFLgnCSorUOYl8agWHOeQbCcRx27drFLbfcUt1mmiZXXXUVO3bsOObxWmseeOAB9u7dy5/92Z/Ne8gLYc6CafXq1TNuz+VyfO973+OOO+7gySefbPoK0/HGYkYITGYuaQ0WHsopAATTcHW+lu967H/omWDlWVuS/ks3zm5an0zyDkewwrWNo5QvMbp/DMM059yCRCuNV7IJ19j25M3db/Dy43vAgMs/8u4l6w/n2i7FbIHu/m46RSwJwsmNVkw8/3RDLt1xznlgzO0P69HRUXzfp6+vb9r2vr4+9uzZM+txmUyG/v5+bNvGsiy+/vWvc/XVVy9o3PNl3nM7Dz30EHfccQf/7//9P1asWMG/+3f/rlpmE+rHYkUIADj5Em6hTCgeQpUmgErbk0h923dopTn4i93YmTxWLMLKy87Diszyqzet7UltSd52yWb0wBi+55Nsn1sUAFBtexKrpe1Jrsijd/0cgI1XbGbZaUtj8nbKDqVcke5KZameKyUFQRCajZaWFp555hny+Tzbt2/n5ptvZu3atbzrXe9a8rHUJJgGBwf59re/zR133EE2m+XXfu3XsG2bH/zgB2zYsGGxxnjSslgRAhBkLpXTOcywiS4HPeKwFqftydiLb1AYGMOwTFZetplwcvYpL+17GIYZrIirweTtOR5jB8exi/ac4wMAvFI5aHvSPve2J1prHrnr55QLZTpXdHH++y6Y8/UWglN2KOdL9KzqoXNFl4glQRDAMINKT4OuPVe6u7uxLIuhoaFp24eGhli2bPaFP6ZpVvvibd68mZdeeolbb721IYJpzq/2gx/8IOvWreO5557j9ttv5+DBg/yv//W/FnNsJzWLGSGgtcZO51GOi6GKh9qeJOrf9qQ4PMHoC68DsOyC9cSP1iLED+bhrWgUo4ZpJt/zGT0wSjFTINk+9x5xqtL2JNregjVHrxPAy4/vYd8Lb2FaJpd/9N1LEhDpOV61siRiSRCESQzDwDCtxnzVcL+IRCJs2bKF7du3V7cppdi+fTsXX3zxnM+jlMK27Zreo3ox5zvxvffey+/+7u/y6U9/mjPOOGMxxySweBECAF6xjJMvYoU88Bav7YlvOxzc8TxoaF2znLY1R5m2UhqtFUYkihmau0BUSjE+MEFuIk+qPTXnrCXlBSviYh0tNZm8s6MZHvvnRwHY+v5tS5LkrbWuhlKKWBIE4Xjl5ptv5hOf+ARbt27lwgsv5Pbbb6dQKHDDDTcAcP3119Pf38+tt94KwK233srWrVs57bTTsG2be+65h+985zv89V//dUPGP+c70yOPPMIdd9zBli1bWL9+PR//+Mf59V//9cUc20mL8jyUXQbLXJTebeV0HnDAC6b7zPgitD3RmoHHX8Qr2URaEizbsu4oO4NSPmaoNpO31pr0UJrMSJpkW3LO5udpbU9a5u51Ukrx879/AM/xWHbacs65fGkyx4qZAvGWOJ3LRSwJgnD88uEPf5iRkRG+9KUvMTg4yObNm7nvvvuqRvB9+/ZN+6O3UCjw27/92+zfv594PM5ZZ53Fd7/7XT784Q83ZPxzzmGapFAocNddd3HnnXeyc+dOfN/ntttu4zd/8zdpaWlZrHHWjWbPYdJK4ZUKaC9YJVZvShNZymPjWAQ94oxoCjM6d9EwV8b37mP46ZcxTJPVV19ArGOW341pJu/afEvpkTSj+8eIpWKEI3MTWlpr3ELQXDjW0VpT0OOzP32KJ/9tJ+FomF/5/36Nls7F/313yg520WbFGStIzfYeCoIgCItOzX+uJpNJfvM3f5NHHnmE3bt389nPfpb/+T//J729vfzSL/3SYozxpGFqhEC9l/UDeGUbJ53FomIkDy1O25PyeJbhZ18BoPe8M2YXS1RM3qaJFa4tyTs/kWf84ATReHTOYgmC3KlQNFxpezJ3sTS6f5Rd9z4JwMW/+o4lEUtKKUrZIp3LOki219+MLwiCIMydBdX3161bx5//+Z+zf/9+vve979VrTCctixkhoJWiPJEFvwBU2p7E69/2xHc9DvxiNyhNqr+H9tNXzrqvrmR2WZHaTN7FXJHRg2OYIYtIfO5VON92MMza2p4AeK7Hz7+7Ha0Uazaeyulbz5zzsQuhkM6T7EjSsbyz7v9OgiAIQm3UxRBhWRbXXXcdP/zhD+txupOSxYwQAHDyRfxCGgMVtD1JtNdflGnN0JN7cPMlQokoyy/ccNQkb7TGjMZqMnnbRZuxA2MoXxFPzd2srTwP31NE21sIRecWaDnJk/+2k/TQBPGWOJd+6LIlES920ca0TLr6e2oSd4IgCMLiIA7SJmAxIwQgqPrYY6MYeEDF5F3nticA2TcHyL41CIbBiovPnX2pfsXkbYQjNYkl13YZPTCGXXJItM59KlH5Cq/sEmtLEU7UFsp58OX9vPDz5wB456+/i1iqvqGeM6F8n3KhROeKrppepyAIgrB4iGBqAqoRAqFFmIrTmtLIKPgVk3esFSNUfzO5nS0w+GQQb999zloSPe2zDGiqyTsy59fruR6jB8Yo5kqkOlJzPk5rjVcqE07Ga2p7AkFy+EPf+xkAZ128gVUbZm4PVG/yE3lau1pp721fkusJgiAIx0YEU4OZjBAwLKvuEQIATiaLX5xsexKve9sTCCoiB3+xG+0rEn2ddK1fM+u+2vcwTaumtifKV4wfHCefzpPqmHswJUyavCNEa2h7MsmO//cIhXSB1u5WLvzluQerLYRSvkQ4Gq70iFv8QExBEARhbohgaiBaKXy7BFpjLMLN0Xcc7LFBDKi0PVmclV3Dz7yCnc5jRcOsuOjsWVe7ac8HDMxIdM7iRSvN+NAEmbFskLVUg+jxbQfDMIIk7xqm/gBef/pVXtv1CoZhcPlHryRcQxL4fPFcD7fs0NXfTewo7WMEQRCEpacpBNPXvvY11qxZQywWY9u2bezcuXNOx33/+9/HMAyuu+66xR3gIrDYEQJaa4oH9wdtTwwz8C0tglk5t3+Y9Cv7AVh+0dmE4rMYqn0FaKxoFHOOrUS01qRHMqSH0iRaEjW1IFGeh+/6gck7VpvJu5Ap8Og/PQzApqvOo3dN3zGOWDiTad5tve20djdfPpggCMLJTsMF01133cXNN9/Ml7/8ZZ566ik2bdrENddcw/Dw8FGPe/PNN/nc5z7HO9/5ziUaaX1ZzAgBgNLgQbQX9NsxEx2LsvLOLZQYePxFADrPWk1qeffMO062PQlHMWqo9OQn8owPjhNNRAlF5n7coSTvBOFkbVOQWmse/v6DOEWb7pU9nHfNlpqOny/FbJFYKi6tTwRBEJqUhn8y33bbbdx4443ccMMNbNiwgW984xskEgnuvPPOWY/xfZ+PfvSj/NEf/RFr165dwtHWh8WOELDT43iFLLA4bU8gECUHf/E8yvWIdbXSs/G0mXdUOginDEewIuE5i8NCNshaCoVDRGJzN6lrrXGLNqF4jEjr3M3hk7z06Asc2PM2Vtji8o+9e0l8RK7t4ns+Xf3dNb1WQRAEYeloqGByHIddu3Zx1VVXVbeZpslVV13Fjh07Zj3uj//4j+nt7eU//If/cMxr2LZNNpud9tVIFjtCwCsVsUeHADDCCYzw4nhhRp9/ndJYBjNsseLic2cWflpX4wNqWRFXLpQZ2z8Kmpq9PL7tYIVDxNprS/IGSA+n2fnDxwC44AMX0d7XUdPx80ErTTFToGNZB6kOSfMWBOHEphYLzre//W0Mw5j2FYs1zt/ZUME0OjqK7/vVxnuT9PX1MTg4OOMxk02Av/nNb87pGrfeeittbW3Vr1WrVi143AthMSMElOtSHAj8RNoMY8QW5wZcGBxj7MU3AVh2wQYiM2UT6cBHZIZCWNG5r4hzyg6j+0dxHa/mDCLlemilA5N3De1SIFjp9/O/347veqw4s58N7zinpuPnSz6dJ9GWDKbiJM1bEIQTmPlYcFpbWxkYGKh+vfXWW0s44uk0fEquFnK5HB//+Mf55je/SXf3LH6Zw7jlllvIZDLVr7fffnuRRzk7ixkhoJWiOPA2KB/N4iR5Q9CP7uBjLwDQflo/rafMYIieFEvhcNBQt8aspXKxTLK9tobAyvfxbIdoa4pwova/QJ75ydOM7hshEo9w2W9cUVNfu/nilGxM06B7ZTchSfMWBOEEZz4WHMMwWLZsWfXr8ALLUtLQT+nu7m4sy2JoaGja9qGhIZYtW3bE/q+99hpvvvkmH/zgB6vblFIAhEIh9u7dy2mnTffSRKNRojW2wlgMpkUI1LDaa07n1prS8ADKsdEYGLG2mpbf13KdgcdewC87RNuS9J43Q0+1ajClFYilOQoP3/MZPTBGIVsk1V6b9ygIp7QJpxJEWmpPxh55a4hnfrILgEv+/WVL0uhW+YpSrkTP6l4SbbWJQ0EQhEm01ijXa8i1zfDcZ0omLTi33HLLoePnYMHJ5/OsXr0apRTnn38+f/qnf8rZZ5+94LHPh4YKpkgkwpYtW9i+fXs1GkApxfbt27npppuO2P+ss85i9+7d07Z98YtfJJfL8Vd/9VcNn26bjakRAuYiRAg4E2N4+cCbpc0EocjiGIfH97xFYXAcwzJZccm5R8YDaNCeh2lZWNG5iyWlFBODE+TGciQ7astaAvCKNqFYlFhb7eGUnuPy879/AK00a887ndPOP72m4+dLfiJHS1fLkvikBEE4cVGux5O3fbch195688fmbH84mgVnz549Mx6zbt067rzzTjZu3Egmk+ErX/kKl1xyCS+88AIrV87e2H2xaPg8wM0338wnPvEJtm7dyoUXXsjtt99OoVDghhtuAOD666+nv7+fW2+9lVgsxjnnTPeWtLe3AxyxvZlYzAgBt5DDHh8BQBEllFicakVpNMPIc68B0Hf+OqJtR1ZhtO+BZVbE0hyDKbUmPZQhPZIh0ZbAqtGo7dsOhmUEJu8awykBdv7rY2RGMiTaklzyq++o+fj5UM6XCEXCdPV315QtJQiCcDJx8cUXc/HFh7osXHLJJaxfv56/+Zu/4U/+5E+WfDwNF0wf/vCHGRkZ4Utf+hKDg4Ns3ryZ++67r6pC9+3btyjTS0vFYkYI+I5NafBgcB0zghlJLor3xndcDu7YDVrTckofbWtXHLGP9jwwjGAazpr768yN5xgfmiCWjNXs45kMp4x3t2FFa6+q7X9pHy89EvixLvuNdxFdgnRt3/OxSzbLTluxJI18BUE4sTHDIbbe/LGGXXuu1GrBmYlwOMx5553Hq6++WtM460XDBRPATTfdNOMUHMCDDz541GO//e1v139AdWJqhEC9p+K07wcmb63ACqP9KKEaV4bN6TpaM/jES7iFoIHtsq3rj6iSac8DDKxobM4p3gD5dIGxA2NEouGaW48cCqdMEU7ULjzKhTIPf/9BADa88xz61y3+dK7WmvxEjvaedlq7JM1bEISFYxhGzauCG0GtFpyZ8H2f3bt3c+211y7iSGenKQTTiUo1QqAGY9xc0FpTHDyAdl0M08LzI4QWqTqSfu0AubeHwTBYcck5WIclbmvfB8CKRWuaEivlS4weGMMwTaKJ2kz5k+GU4XmGU2qt+cU/PkQxW6Stt50LPrCtpuPnSylXIpqI0dnfhVlDFU4QBOFEoBYLDgSZixdddBGnn3466XSav/iLv+Ctt97iU5/6VEPGL4JpkVjMCAF7dBi/VADDQFtJTMtclBtwOZ1n+OmXAejZdDrxrrbpO/gKtMaMxmqqoNklm9H9YyjPrzk+AMAv24QiYaLtrfN63a899QpvPPs6hmly+UffvSiVucPxHBff9ehZvYLIbP32BEEQTmBqteBMTExw4403Mjg4SEdHB1u2bOEXv/gFGzZsaMj4Da21bsiVG0Q2m6WtrY1MJkNr6+JMi2il8IoFtO9hhuu7Ys3JpikPDwBgJdtxij7hVLz+IZiez5v378TJFkgu72LlZZunX0MptFIYkWhNq/Jc22V43wjlQolkjfEBAMrx8D2PRHc7oXjtVbX8RJ5//vP/i1N2OP99F3Deexa/V5xWmsxohq4VnfSs7pOASkEQhOMQmReoM4ciBFyMOvuWvFKR8nCQgB5KteOWNKHY3FuO1MLQU3txsgVCsQjLt519mFjSgVgKR7DCc3+NvuczdnCMUq44P7Hk+XiOS7QtNS+xpJXmoe/9DKfs0LO6l01XnlfzOeZDIVMg2ZaQNG9BEITjGBFMdaYaIRCae6PZuaA8l9LgfkATSqTwfAsMXdMqhbmSfWuQzOvB6rvlF59DaGpDWKWDPng19odTSjF2cIzcRH5eYklrjVe2iaTiRFK1h1MCvPDwbgZeOUAoEuLyj757SXxETtkBrenq716SqT9BEARhcRDBVEcWK0IgaHuyH+37mJEoRrwVv2TPq8pyLJxckcEnXgKg6+xTSfZ1ThkIQTPdULgmsQSQG8+THcuRbEvOS6h4xTKhWJRoe+3hlAATA+M8+aPHAbjwly6mrae95nPUivIVpWyRzhWdS5IeLgiCICweIpjqxNQIAcOqX9Wn2vbELmOYFtGuPpxsESsaqXvmkvYVB3c8j/J84t3tdJ996pQngypXrc10AcpFm4mhCSKxyLyCGv2yg2lZQTjlPN5b3/P5+d8/gO/5rFy/irMuWRrDYH4iT6ojRfuyzmPvLAiCIDQ1IpjqRDVCIFTfCAEnPV5texJbtgKnYKM9H6vG3KK5MPLcq5THs5iRECsuPudQJWeyP1yNzXQhqLJMDE7gOV7N8QFQCaf0FZH2lnmFUwI8de8TjB0YJZqM8c4Pv2tJfER2oYwVtuha1SNp3oIgCCcAIpjqwGJFCLiFPPbYMACxnj60MnFyRaxE/afi8gdHGd+7D4Dl284mPJnrNCmWrNqa6U6SHcuSzxRIzqPBbDWcsi1JeJ6v+c3n3uC5B54B4NIPXbYkjW59z6dcKNO1oou4pHkLgiCcEIhgWiBaKfxyCbTGqLEP2tHwHZvS0AEAwq3tWIkWyuk8Zsiqu1nZLZYZeDxoEdJx5ipa+nuCJ3TQH8405yeWyoUyE8NpYvFozWOuhlMm40RSyXlVhdJDEzz0Dw8AcPblGzl109qazzEfChN5WnvbaOttX5LrCYIgCIuPCKYFshgRAtr3KQ3sB6WwYnFiPctwsgX8soMVq2+uk1aagcdewLddoh0t9Gw6Y8o4PDBMzGi0pv5wEFRZxgcnUJ4iEq99zF7ZJhQNE21rmZdAdMoO2791P67tsuy05Vz4waVK8y4SiUfoWtEtad6CIAgnEPKJvgC0VijXwbTq51vSWlMcOoByHYxQiPiylfhlJzB6x+ufuTT24hsUhycwQhb9F59TvclXm+lGY5jzqJxlx7IU0gUSbbVHAPiOCxqibSmsecQmaK15+HsPkh6aINGW4N2fuHper6FWPMfDtV26VnbPy68lCIIgNC8imOpBHTWMPTaMXwzaniSWr8IwTErpHErreYmHo1EcnmD0hdcBWLblLCKtgb9He5X+cDU2052klCuRHkoTS8WmxdzPBeX5+I4373BKgN0PPMObz72OaZlc+clriLfML7epFrTSFNJ52vs6aOlsWfTrCYIgCEuLCKYmwslmcNLjAMR7V2BFY9i5Il6xTLjOFQvfdji443nQ0LpmOW2nLgcmm+lqrFispma61fN6PuNDE2gNkRqnD7UKwimjLQkiLfMzZx98eT9P/ttOAC76lUvpXdM3r/PUSj6dJ9GWpKu/q64ZXIIgCCcSX/va11izZg2xWIxt27axc+fOWfd917uCVc2Hf73//e9fwhEfQj7ZmwS/XKI8EvSIi3R0EW5pxbdd7GweKxKqbxCm1gzsfBGvZBNpSbBsy7rKIObXTHcqmZEMxWyReGvtq8PcSjhlpK32JHCA3HiOB/7PT9Fac8aF65Ysb8kulDEtg+5VPZLmLQiCMAt33XUXN998M1/+8pd56qmn2LRpE9dccw3Dw8Mz7n/33XczMDBQ/Xr++eexLIsPfehDSzzyABFMTYDyXIoD+0FrQskU0c4etNaUMzmU4807f2g2Jl55m/yBUQzTYMUl5wbtVZRC66CZ7nwqSwDFbJH0cIZ4Kl7zVJxXtrHCoUo4Ze3TgJ7r8cC37sculOla2c0lv/rOJclb8lyPcrFM98oeEq2LP/UnCIJwvHLbbbdx4403csMNN7Bhwwa+8Y1vkEgkuPPOO2fcv7Ozk2XLllW/fvKTn5BIJBommOrfiEyoiUNtTzzMSJR43woMw8DJl3BzJULJ+k7FlcezjDzzCgC9m88k1tES9IfzFUYkaKY7H6HhuR7jgxNgQLjGUE3leWhfE+tKzUscaq3Z8f8eYXT/CNFkjCtvuIZQZPF/tbXSFCbytC/roK2nbdGvJwiCcDhaa1zbbci1w9G53y8cx2HXrl3ccsst1W2maXLVVVexY8eOOZ3jjjvu4Nd//ddJJhc/T28mRDA1EK015ZHBatuTxPKVGKaF8nzK6RyEzLqu7vJdjwM7nkcrTaq/h/YzVs67me7hryM9kqGUL9VseFa+wiu7xNpbCM0znHLvjpd4+fE9GIbBFR+/cslM14FvKUFXf7f4lgRBaAiu7fLnH/rvDbn2//ePX5yzV3V0dBTf9+nrm+4r7evrY8+ePcc8fufOnTz//PPccccd8xprPZBP+QbipMdxcxkA4sv6McPBL56dLeCXbUJ1zlwa2rUHN1cklIiy/MINGBiVZrqhoDfdPKewitkimZEM8ZZ4TefQWuOVykE4ZUtiXtcffnOIHXc/AsCWay+kf92qms8xH6q+pZU9NVfUBEEQhNq44447OPfcc7nwwgsbNgapMDUIb0rbk2h3H6FEUGL0SjZOJo8Vr63B7bHIvHGQ7JuDYBisuPhcrEg4aKYbDmNFa+sPN+11OB4TgxOYpkm4RsOzV7IJRSNE21LzqtCUckW2f/t+lK9Yfe6pbLxyc83nmA+TvqW+NcuWpNWKIAjCbISjYf6/f/xiw649V7q7u7Esi6GhoWnbh4aGWLZs2VGPLRQKfP/73+eP//iP5zXOeiGCqQH4jkNxsu1JSxuRtg4g8DOV0zm0hlAdM5fsbIHBJ4OSZ/c5a0l0twf94UK1N9Oditaa9HCaUqFc8zSYb7sYhkG0vWVe+VLKVzzwdz+hmCnQ1tvOZR+5YklM3tN8S9L6RBBOWJRSeK5HODI/X+dSYRhGzREujSASibBlyxa2b9/OddddBwTv8fbt27npppuOeuw//uM/Yts2H/vYx5ZgpLMjgmmJCdqevH2o7Unvsup/Ridfwi2UCafq11xX+T4Hf7Eb7SsSvR10nbUmEEumhRWN1twfbiqFTIH0aJZEa23Tacrz8F2PeFcbodj8TO1P/OgxBl8bIBwNc9VvXrNkHxiFTJ54a+BbktYngnB8orXGcz1c18V1PVwn+O44DuWiTalUwnECI/Xp69bS2dXe2AGfINx888184hOfYOvWrVx44YXcfvvtFAoFbrjhBgCuv/56+vv7ufXWW6cdd8cdd3DdddfR1dXViGFXEcG0hGitKQ0dnNb2xDCCm67vuJTTOcxofTOXhp95BTudx4qGWXHROaB9DNMMpuEWcB3XdpkYTGOFrJqqYUE4pUO0NUk4WXtWE8BrT73K8w8+B8BlH7mC9r6OeZ2nVuyijWEGeUviWxKE5sX3/WlCyHVdXMfDtsuUijblUhnX9fA8D8/zUUoBGgOTUMgkFA4RCoXIZfMo32/0yzlh+PCHP8zIyAhf+tKXGBwcZPPmzdx3331VI/i+ffuOiKTZu3cvjzzyCPfff38jhjwNQ2utGz2IpSSbzdLW1kYmk6G1tXVB59Ja4eZzQfqoeezVbOXRYZz0GBgGyf7VWLF45Tya0kgaO1cgUsc2Hrn9wxx4JBAWKy/fTLKnHQwzSPFewOo7rTQj+0fIjmZJdbbUVF1y8iVC8SjxrrZ5jWF8YJx/vf1uPMdj45XnccEHlqapru/5FCby9KzppXN5Y//KEYSTGa31EULIdV0cx6VULFEqlXEdF8/1A0FUFTway7IIhUKEQlblKxBGs1WLBw8Os/G8DXT3yv95QSpMS4abywRiCYj3Lq+KJQCvWMbJFwnF65e55BbKDOx8EYDOs1ZXxNL8m+lOJZ/Okx3LEa9xKq4aTtk2v3BKu2Sz/c778ByPFWf2s+XaC2o+x3zQWpOfyNHe005779JUswThZMXzvCOqQ57rUSqVKZXKlEt2pTLk4Xs+WlX+5jeoCqBQ2CKejFVFkSDUA/lNWgL8conScKXtSXsX4ZZDIYfK8ylP5MA05tXodia0UhzcsRvleMQ6W+nesAaYfzPdqThlh4mhCUKRUE1Tccpx0UoT62rBmsd0llaan3/3AbKjWZIdKa74+FU1p4nPl0K6QLwlQddK8S0JwkJQSk2vDlWEkWM7FIslymUH13HwPB/P9fCVAoL+5taUqlAkEiaRiBMKWUv2OSAIIpgWGeV5FAcrbU8SKaJdPdOet7MFvLJNuI5TcaPPv05pNIMZtli+bQOGacy7me5UtNKkh9LYJZeWztScj1Ouh+d4xDpaCM8znPKZnz7F2y++hRWyuOqGa4il5ud/qhW7ZGMYBL6l42AliiA0Cq01nudXK0JThVGpGFSHbNvBq3qHPNAaMDBMY8pUWYhoNEIoHMKqY3CvICwUEUyLiNaK0uB+tOdhhiPVtieTeGUbJ5vHitUvc6kwOM7Yi28CsGzLeiLJ2IKa6U4ln86THc+RbJv7VJzyPDw7SPKOtMwvs+jtF9/iqfueAOCSf/9Oulf1HOOI+uB7PuVcid5T+0hK3pJwklMvI3U0GiGZihMKhZp6ub4gHI4IpkVCa015eBC/XALTJL58JcaUv5aqmUtK163vmVe2OfjY8wC0r11By8pujPD8m+lOxSk7jA9OEI6GseY4rac8r9r2JNKanNeHY3Y0w4Pf3Q4azrpkA2duO6vmc8yHqm+pV3xLwonPXJfZB9UhH8/3oGIdMk0zqAyFQ4TDFvF49KhGakE4XhHBtEg4mYlq25PEsn6syHRDt5Mv4ebrl7mktWbgsRfxyw6R1iQ9566t9IdbeOiaUorxwQlc26Glc24rC5XnV+IDUvMWS57jsv1b9+OUHHpW93HRr1xa8znmSyFdIJ6Ki29JOCGol5E6logRsiyskCXVIeGkQwTTIuAVC9ijQfx7tKuXUGK636eauRSpX+bS+J63KAyOYVgmK7ZtwIrH591M93DyE3nyE/k5twE5JJaSQduTeTb0feSunzN+cIxYKs6Vn7x6zpWthWKXbEB8S8LxwWQi9UKX2YuRWhCOjgimOqNcJzB5U2l70t457XmtNXamgHI9wnUyLpfGMow89xoAPZtOJ9bVFqR410Es2UWb8cE04VhkTgZM5Su8sk0klSDa1jJvQfjiw8/z2lOvYpgG7/7E1STb524yXwhV39KaviW7piAcC7tsY9vOgozU8WRYltkLwgKQ/zl1RCuf4sD+oO1JNEasZ9kRosUrlnFyBUJ1aq7rOy4Hf7EbtKZlZQ8dZ6xaUH+4qShfMTE0gee4c+oVp5XCK5UJpxJE21vnLZYGXxvg8X/ZAcCFv3Qxy09fMa/z1Mqkb6m1t23J0sMF4VgMD43y5mv7KBZK1WX2aAiFrWmrysRILQiLiwimOlFte+LYGFYoMHkfJhiU51NO5+uWuaS1ZvCJl4L+c8kYyy7YQCgaX1B/uKlkx7PkJvKk5lBp0UrhFsuEkwli7S3z9v0UMgUe+Lv70Uqx9rzTOfuyc+d1nvlQzAS+pe6VPeJbEhqO7/vs33eQN197m1DYoqunQ5bZC0IDkbtCnbDHR/AKeTAMEstXzriM384V8Ep23RK9M68dIPf2MBgGKy46h0hLqm5iqVwoMzGUIZqIHlM8aKVxizbheIxYR2reSeK+5/PAt++nlCvRsbyTd3z48iX7a9kp2WgNXSt7jovO38KJTbls8/JLr/Hq3jdIpuJ0dLaLWBJOCL72ta+xZs0aYrEY27ZtY+fOnbPu67ouf/zHf8xpp51GLBZj06ZN3HfffUs42umIYKoDbj6HMxG0PYn1TG97MolXdnAyBazYwletAdjpPENPvwxAz7mnkVrRVzcDue/5TAxOoDyf6DHEndYat1gmFIsQ62zFtOZftHz8B79g+M0hIrEIV91wzZI1uPU9n1K+ROeKTlId4lsSGks2k+Ol3Xs58PYg3b2dJJL1C7UVhEZy1113cfPNN/PlL3+Zp556ik2bNnHNNdcwPDw84/5f/OIX+Zu/+Rv+1//6X7z44ov81m/9Fr/yK7/C008/vcQjDxDBtEB826Y8MghApL2TSGvbEftopbDTebSvsCILFwHK8znwi91oX5Fc1kX3uWdg1HEKKTuWI58pkGg7+ge11hq3MCmW2haU9/TKzr289OgLAFz+sStp7TnyfVwMqr6lnjY6lolvSWgcWmuGBkd4/rk9pNM5lq3oIRxemj8aBGEpuO2227jxxhu54YYb2LBhA9/4xjdIJBLceeedM+7/ne98h//23/4b1157LWvXruXTn/401157LX/5l3+5xCMPEA/TAlCeS3noIGiNlUgS7eqdcT+3UMIpFOfdFuRwhp56GSdbwIpF6H/HJqwaerodi1K+RHo4TSwZO+rS4kNiKUyso21BYxh9e4RH/+khAM67ZgunnL163ueqlWKmQCwVp7u/e8FNiQVhvniex9tvHeTN198mGo3Qt6y70UMSjhO01pRK5YZcOx6f+wIjx3HYtWsXt9xyS3WbaZpcddVV7NixY8ZjbNsmFpt+34zH4zzyyCPzH/QCEME0T7RSFN56He17GOEwib7+GX9xfNejPJHHDIfqUgXK7hsk8/oBAFa+YzORVP1adviez8RQGqXUUX08Wmu8ok0oGibW3oa1gKTycqHM9m/9GN/1Wbn+FM57z9Z5n6tWnJKNVpruld1E6uQrE4RaKZXKvPHqWwwcGKK9o414nf6wEk4OSqUyF61/b0Ou/dhL95FIzC0eZ3R0FN/36evrm7a9r6+PPXv2zHjMNddcw2233cZll13Gaaedxvbt27n77rvxq1liS4tMyc0T5bko1wXDJN7XP63tySRB5lIe33Gx6uDHcfJFBne+BED3OafRsrLvGEfURmYkSyFTINF69Kk4r2RjhixiHa0Lel1KKR78zk/JT+Rp6WrlXR+7sm6m9WNe2/cp5Up09neS6jh2ZIIgLAaZdJYXd7/MwIEhenq7RCwJwhT+6q/+ijPOOIOzzjqLSCTCTTfdxA033NCwYFWpMM0TKxKl5fR1OOkJrMjM1RivZONki4QSC89c0r7i4KO7UZ5PvKeDvvPr21OtmCuSGUkTT8WP+svolcqYlkWsqxUrurDVZE/d+wQH9u7HCoe46v9v777j7Krr/I+/bu93ep9JJr1AIBCSEAzVQJAi6KKoixSluIIiWX9rQ2DXFdaykhUQxAIrgijrCq4gJcHQazChpU4ymWR6u72d8v39cWeGDClT7p2ZTPJ5Ph4DM+eec+53ktyZ9/22zxdW4vKOTy+PUopod5RgaZCiyuKhLxAiz5RStLd2smNbIxlNp6KqTHbXFqPi8bh5ddPErBzzeIYf8EtLS7HZbLS3tw863t7eTmVl5X6vKSsr49FHHyWVStHd3U11dTXf/OY3mT59ek7tHi0JTDmw2h37XREH2R6MVCgKFvKy51Ln29tJ9WbLqdSdenzeVsQB6JpOb1sIBQddmaan0lgsVtzFQeyu3MJN49s72bgmu9Lh5ItPpbi6JKf7jUQiksDtd1NaVybzlsS403Wd3Y3N7Nq5B5fbSXnF+P3bFwemlCIWjRMORfo+ouze1UJ5ZSml5Yfu35HFYhn2sNhEcjqdLFq0iLVr13LhhRcC2VGGtWvXct111x30WrfbTU1NDZqm8cc//pFPf/rT49DifUlgGiPpSAI9kc5L+ZNYcyc9W5oAqPnIQpz+/C0zVkoR7gyTiCYOupu3kcqAAldxELs7t7AUau/l+YeeBeCoUxYwY9GsnO43EplUBtMwKZ1eKfOWxLhLJJI0bm+itaWdouIC3CN4hy5GzjRMotHYByGoN0o4FCE0EIo+OB4JRzAMc597HL94AUcfO28CWn/4WbVqFZdddhknnHACS5YsYfXq1cTjca644goALr30UmpqarjtttsAeO2112hubmbhwoU0Nzdzyy23YJom//Iv/zIh7ZfANAb0dIZMJJbdcynHOTlaIkXra+8DUDy3noKpVflo4oBENEm4M4wn4DngsKGRzmCaJp7iwpxX+mVSGdbe9zRaWqNiehVLPn5iTvcbCdMwSEYSlE0pk3lLYtz19oRo2NpIOBShrKJEarqNkq7rRMKxQYEnEooODkF9wSgSiaJMNaL7+3xeCooCFBQGcblcFBTKz4p8ufjii+ns7OSmm26ira2NhQsX8uSTTw5MBG9qaho0NJ1KpbjxxhvZsWMHfr+fc845hwceeIDCwsIJab9FKTWyf02TXCQSoaCggHA4TDAYzOleSplosSgWiwWLNTu0o0yTREcILZ7EEcitd0kZiqZ160l2hnAXB5l+zvK8DO/10zWdth1taBn9gBO9jYyGqRu4i4M4c9xATynFs/c/Q+PbO/AWeLlg1UVDTjDPF6UU0a4IgZIAlTOqZChOjBulFG0tHezYtgvD0CkpK5Z6bx+iaRrhUHSvwBMZ/PVeH9FIfET3tlgs+AM+CgqD2Y+iIAWFAQr7vx44FiRY4B+091VbSwfHHDf/kB6SE+NH3uLkmRZP5WfPJQVd7zWQ7AxhtduoO3VRXsOSUopQe4hkPHXAoTgzo2NoBp48hCWAd57dQOPbO7DarJxx+VnjFpYgO2/J6XVRUivzlsT40TSdXTt3s7uxGY/XTVHJkfOLN51KDwo9ob4gFAlH9xkOi8cTI7q3xWohGAz0hZ3AQPDZNwQFCBYEpKyMyAsJTHlkanp2YrbDltueSwpibV10b2oEoGrZAlwF+S3ZEQ8nCHdF8Aa8+323a2o6ekbDXRTA4ct9HlbL1j28+Xi2ZtCJn/gIFfX7XxUxFtLJNKZhUjGtctxW4gmRiCfYsW0XbW2dFJcU4s5x7t9EU0qRSqYHhZ3QQXqDUsn0iO5vs9soKAjs0+tTUPihQFQUxO/3SYFsMe4kMOWJUopU355LOQ3FKdDjyex+SwoKZ9RSNKMufw0FtLRGb1svVrsN+342nTR1HT2t4S4M4Az4ch4+CHeGePY3a1BKMWvJHOaeND+n+42EntFJxZKUT6046KR2IfKppztEw9adRMJRyg/h+UpKKeLxRF/o+XDw2TcEZdLaiO7vcNg/CEB79frsfaywLxj5/Pt/8ybEoeLQfBVPQvnac8nUNdre2oKeTOMM+qg6cUEeW9k3FNcRJp1I4d9PgDB1HT2l4Sr04wzmHpaS0QRP3fM46XiK0toyTvqHk8fth6JpmMRDMYqqi6VOnBgXpmnS2tzOju27UEpRWV0+7iHANM2+5fEfHvqKDApDob7J0rquj+j+LrdrIPQUHqQ3qKAwgMd74MUkQkw2EpjyQBlmXvZcUrpOqKGFWEsXFquVulMX5bVOHEA8FCfcFcYT3PfdnKkb2bAU9OEK+nP+QZdJZXjq3ieI9kQJFAc486qP7bdHaywopYj1RAmUBCipKc3rvlVC7I+W0di5o4k9Ta34/V78gfyVLTINk0gkSrh37yXx0UFB6IO5QVFMc9/l8Qfj8br32+szKAD1HZvsQ4tCjJYEpjxIR3Pfc0npBqneGJ1vbwegcvF8PCUF+WoikB2K62nrwe60Y/9QEDMNAz2VzoalgtzDkqEbrL3vabr3dOH2uVn5pXPHdZJ3PBTH5XdTWle+z/cqRL7FYwkatjfS0dZJSUkRrjyFis6Obn79swfZ8NZ7I14e/8HKsP3NC+rvHQoQLAzidOZeukmIw538JsmRkdbIhOPYXKPfc0kZBqam0fr6+yhTEairoHhufV7bqUxFb1sv6aRGoHjwBHLTMLNDgH4vroJAzr0xylS88PA6Wrbuwe60c9ZVH6OgrDCne45EKpbEYoWyKeUyyVuMue7OHhq2NRKLxqmoLMvLiiylFH97+kUe+OUjA5XoLRYLgaB/nzlAew+H9Q+RBQsC8kZBiDyTV1QO+id6m4aB0zfKbQQME5Si4+0dZKIJHD43NcsX5n3cPxaKEemJ4isYPBSnTBM9mcLh9+IqDOZl6OqNx1+jYf02LFYLZ1x+FmVT81sk+GC0tEYmpVE5vRJfQf6GRIT4MNM0ad7Txs7tu7BaLFRUleXlddvd1cu9d/yGjevfA2D2vBlcde0lVNdVyvJ4ISaQBKYcKFNhpDVso+3ONk2UMons6SK8swUsUHvK8dhzLGr7YZlUhp62XhwuB7a95lgp00RLpHD4PLgLA3lZpvvuc2/zzrMbAFh+8anUzZuS8z2Hy9ANEuE4pbWlBMvyO5wpxN4y6QyNO5rY3dRKIOjD7889nCuleOHZV7n/3odJxJM4HHY+/fkLOfeCFbKEXohDgASmfBjNm0pToUyTTFKj/c1NAJQvnIMvz4U4TdOkp60XLZ0hUPzBzubKVNmw5HHjLgrkZTPHHX/fzmuPvQzAonOWMHvJ3JzvOVzKVMR6owTLCyiuKZGVOWLMxKJxtm/dSVdnN6WlxTjz8AYn1BvmF3f+lvWvbQRgxqx6vrzqCmrq8lsKSQgxehKYJoKpUKaBstpofeUtTN3AV1VK2YL8F6GN9caI9sQGDU8plQ1LdrcLV3EQqy33fwYt25p57sFnQcG8jxzFsSuOy/meIxHtieIN+iirK5edvMWY6WzvpmHbThLxFJWV5Tn3/CileOX5N/j1Pb8jFo1js9v41Oc+zvn/cJYMvwlxiJHANN4UmKaB1e6gc8M2Uj0RbG4ntScfl3Oh3g9LJ9L0tIVwepwDQ3FKKbR4Crvbibu4AFseNtTraelmza+fwjRM6o+Zxomf/Mi49vAkIgkcLjtlU8txuGS1j8g/wzBo3t1KY8NurDYrldVlOd8zEo7yy7se5PWX3wKgfkYdX77hCqbU1+Z8byFE/klgGk8quzGl1eEg3t5Lz+ZGAGqXL8y99tyHmIZJb3svekYb2OF6ICy5HLiLCvKyx1O0J8pTP38cLZWhYnoVp17y0UHVpsdaJpnG0A2qZlThyWFbByEOJJ1Ks7NhN827WwgWBPD5c98e47WX1vOrnz1EJBzFZrPyyc+cxwWfOvuQ3RFcCCGBafwoMA0dq8OBkVG0vJSdq1B61AwCtflfRRbpiRDrjeEr/GALAT2R/iAs5WEDyVQ8xVM/f5xEJEFhZRFnfvHscV3KrGd0kv1lT0qCQ18gxAhFwlF2bGuku7OXkvLinPcrikZi3Pfzh3n5uWxdxSn1NfzTDVcwbcb4LY4QQoyOBKbx0B+WbDasdidNz76CkdHwlBZSfnz+J0an4il628M4va6BORZaIoXVbsNdFMSWh2ErPaPzzC//SrgjhK/Qx8qrzx3XPY+k7IkYS0opOju6adjaSDKZoqKqLOf5Sm++toFf3PFbwqEIVquVCz51Np/8zLk4HDKMLMRkIIFprClQho7VasPmdNOxcSuJjl6sDjt1px6f9+XChm7Q2x7C0HS8gexQnJ5MYbXZcJcEseVhRY9pmPztgTV0NLbj9DhZefW5+Iv8Q1+YJ0plV8QFiqXsicg/wzDYvauFxoYmnC4HlVW5zVeKxeL85t4/8PyzrwBQU1fFl2+4ghmz6/PQWiHEeJHANMaUoYPFitXlIt7RQ+fb2wCoOekYnHmsNdUv0h0lFooNBBg9lQaLBXdRALsr9x4gpRQv//EFmt5txGa3ceYXP0ZRVXHO9x2JeCiOy+emdIqUPRH5lUql2bl9F827WyksLsDrzW1e3N/ffId7f/oAvT0hLBYL533iTD51yQVSikSISUh+24whpetgsWBzuTEzOnuez66GKZo9hYJpNXl/vmQsSagjhNvnxmq1YqQyoMBdXIDdk59J5RueXs+WVzaBBU77/EepnDG++8RI2RMxViLhKNu37qSnK0RZRUlOQ2WJRJIHfvkIf3v6RQAqq8v5pxuuYM68GflqrhBinElgGiNKNwCwudxYbFb2/O3v6Mk0rsIAVUuOyvvz9Q/FmYaJ0+3ESGcwTRNPcUHeVuBteXUTbz35JgDLPrmc+mOm5+W+w9Vf9qRCyp6IPFJK0d7WyY5tu8ikM1RWl+W00vOdDZv4+X/9N12dPVgsFs7++Bl85vMX5q0grxBiYkhgGgPKMACFze3GarfT9W4DseZOLDYrdacuwjoGS4fDnRHioTj+Yj9GRsM0TNzFQRy+/Cy1b3q3kZf+8DwAx644jvnLj87LfYfL0A0SkTglNaUUSNkTkSe6rrO7sZldO5txuR2UV5aO+l6pZIoH7/sjzzzxHADllaX809cuZ97Rs/PVXCHEBJLAlG99xXStLjdWu4NEZy9t67OlT6qWHo27KJD3p0xEE4Q7Q3gCHtBNDM3AUxTA6ct9vxiAjsZ2nv3NGpRSzFoyh0XnLMnLfYdroOxJWQElUvZE5ImW0WjYtos9TS0UFRfgyaEn9v13tnDP6v+mo70LgLPOPY3PXf5J3HkaChcfUEqhlMquPlZmdmENCqWy9TFV9iRMpUD1HUehzL7rANNUgOq719737L8ue41pmBP5rYpDjASmfOorpmtxurDa7RgZjd3PvQVKEayvpmhW/vda0TWd3rYQSoHNakFPa7iLAjjysLkeQKi9l6d/8QSGplM7r47lnz5l3ANLrLev7EltmZQ9EXmRSqXZvnkHbW0dOc1XSqfSPPybR/nrn9cCUFpWzDXXX8qChfPz2dxxZ5p7BRFTDQSSfYKIMgcCSbaKQTZg9AeQ/kAy6DrY654KlAWFiQULFoslG4L6CnT2/6RRkP25oxRYsp/3n2+xWMDKB19jyVZNsGSPWa19x61WrIDVasVitWCzWrHYrFgtVqxWCzarDYvVMvCY1WbDZrPiG4PFOWJyksCUL6ZCGSYWpxNb3w/f5pc3osUSOPweak46ZkyCRrgzQiKSwBv0ZMNSYQBnwJeX54qH4zz188dJJ9KUTinjjMvOGvfAkogksDv7yp64c98SQYhEPMHWzTvo7uyhvKJ01Ltrb9nUwN2330dbSwcAZ5y1nEuu/FTOK+v2J5lIYRjGvkEEle0tGQgi2R6Wvc/LdrkM1n/I0vexdz+KpS+QgAVrfyDpDykDQQWwfvC51WoFiyW715zFgtVmzV5rs2aDiAVsfY9ZbNmAYrVmA0n2vtaB582Gmw/C0Adt6Pt6r8cGf4DF2nc/PmhT/32tfY8JMVoSmPJA9RXTtTic2JxOLBYLPVt3EWlsBYuFulMXYRuDZcTxSHYozuVxYGZ0XIV+nMH8hKVMMs3T9z5BrDdGsDTIWVedM+512qTsici3SDjK1k0NhMMRKipHtxllJqPxh98+xuN/egalFMUlhVz91UtZuCj/8/p0Taersweny4nT6figl8Rmw2bt6zWx9geQbG+JxWbFZrNke05s1r2CwofChnVwABoIG30BqP/niHWv4/QHDxjotdk76IxnWSQhxpsEpjxQysRid2FzZcNSqjdK62vvAlC5aB7esvzvRJ0diuvBNBUWBa6gD1eeepYM3WDNfU/T09KN2+9h5TXnjXtg0TWdVCxF2dRyKXsi8qKnO8S2zQ0kEikqq8pH9VrZvmUnP7v9Plr2tAFwykeXcdlVF+elvtzelFJEwlESiRRVVeXU1dfg83s/GIISQow7CUy5soDV7sDmdGfH33Wd3c+tRxkm/poySo7K/9J7pRShzjDxSAKP24Er4MVV4M/LjtfKVDz/0N9o3daMw+Vg5dXnECwd38BiGibx3hhFVcUUVkjZE5G7jvYutm/egW4YVIxiJZymafzxd3/hsf95EmUqCouCXHndJZywdGHe25pJZ+ju6sXn93LUgjmUVZRgk7l7Qkw4CUw5sWC1Z+csWazZd32tr79HOhTF7nFRu/y4MXk3GA8n6G0L4bRbcQV8uAoDeSsP8tqfX2HH37djsVr56BVnUVqXW1mIkRpU9qS2NO+lY8SRRSlFa3M727fuxG63UVo28l3pd27fxc9uv4/du1oA+MipS7j8ms8QCOa3HJBpmoR6I+iaTk1dNVOm1YzJfCghxOhIYMqBxWIZFJbCO5vp3doEQO3Jx2H35H+jOi2t0dPag9IyeCpL8hqW3vnbRt577m0ATvnsadTMqcvLfUciHorj8rqk7InImWma7GlqYce2XXi87hEHHF3X+dPvn+DRPzyBYZgECwJ88cufY+lHFuW9rclEilBPmGBhgDnzZlJaXixDb0IcYuQ3Up5konGaX86GjbJjZuGvzn/PjFKK3vZeYt0himrKcBcG8rZqrWH9Nl7/c7Y46OLzT2TmCeO/2V4qnpKyJyIvDMOgcUcTjTv2UFDgxzvCPcmaGvfws9vvo7FhNwBLTjqeK6/9R4IF+d1HzTRMurt7sWChfmYdtXXVsiO4EIcoCUx5oAyT3c+9hanpeMuLKF84NmEj1hOjZ3cngbIiPMXBvIWl5i17eP53fwPgqFMWsOD0Y/Ny35HQ0hqZZJqK6VX4CvM71CGOLFpGY8f2vg0pSwpxjyCAGIbBn//4FP/z0P9h6Ab+gI8vfOmzLDtlcd57fOKxBOFwlNLSIqZMq6O4pDCv9xdC5JcEpjzoeHsbya4QNqeD2lOOz9sQ2d4yqQwdjW04/R78FcVYbfn5q+va08Xa+57CNEymLZzB0gtOGvehAEM3SITjlNRK2RORm3QqTcPWRlpa2igtK8E5gu08mne38rOf3EfDtkYAFi09lquuu4TCovz+m9R1na7OXpxOB7PmTKO6phLHGGw7IoTILwlMOYq1dNKzaScANR85FmeelxdDttu+Y2cbhqkoravAlqdadNHuCE/f+zhaWqNqZjWn/uMZA/OxxosyFdGeKAXlUvZE5CaRSLJtyw4627oprxz+hpSmYfL4o8/wh98+hqbpeH0eLr/mM5x8+ol5//cYCUeJxxKUV5YxdVpt3of4hBBj55BYgnTXXXdRX1+P2+1m6dKlvP766wc89xe/+AUnn3wyRUVFFBUVsWLFioOeP5YysQStr70DQPHceoJTq/L+HEopevZ0koilKJpSiT1P70STsSRP/vxxktEkxdUlrPjCSmz28V+6HOuN4ivwStkTkZNoJMamd7fR1d5NZVXZsMNSS3M7N3/jhzx43x/RNJ2Fi47mx3fdwilnLMtrWMpkNFqb2zGVYt7Rs5m/YLaEJSEmmQnvYfr973/PqlWruOeee1i6dCmrV69m5cqVbNmyhfLy8n3OX7duHZ/97Gc56aSTcLvd/OAHP+Css87ivffeo6amZtzarUyTHY+/gJHWcBUFqDxhbGpHxbvCRMNx/GXFuHz5KeSppTWe+cVfiXSG8RX5Oevqc3COwYq+oXxQ9qRCyp6IUQv1htm6uYFYNEFFVdmwd5veuP49fnLr3aTTGTweN5+/6tOcfuZH8hqUlFKEesOk0xmqayuZUl+b900uhRDjw6L6yzdPkKVLl7J48WLuvPNOILsUuK6ujq985St885vfHPJ6wzAoKirizjvv5NJLL93n8XQ6TTqdHvg6EolQV1dHOBwmGBz9hoyp3gjv//YJ9HSGaWcvw1ua/w0WU5EYPa1hMkBxTX5W3ZmGyZpfP8nu95tweV2c99ULJ2RzyEwyTTqRpmpmtezkLUatq6ObrZt3oGsaJWXDX4r/5msbWH3bvei6zvwFs/mnG66grLwkr21LpdL0dIUIFvqZOq2OsvISKR0ixCQ2oa/eTCbD+vXrWbFixcAxq9XKihUreOWVV4Z1j0QigaZpFBfvf0O62267jYKCgoGPurr87C3kLgpy1GXnU7t8Ia48b2AHoMWTJKIpMgoKKka+2d7+KKV46ZHn2f1+EzaHjTOv/NiEhCVd00lGk5TWlUlYEqOilKKtpYP339uKUial5cOf//bKC29y+633oOs6Sz9yPN/+t6/lNSyZpklXZw+RUJQp02pYsHB+tm6dhCUhJrUJfQV3dXVhGAYVFRWDjldUVNDW1jase3zjG9+gurp6UOja27e+9S3C4fDAx+7du3Nudz+Hz4NvFGUWhqIlUmTSGsmMiafQn7e5RW/99Q22vrYZi8XC6ZeeScW0yrzcdyRMU8qeiNwopdjT1MLm97bhdDgoKi4c9rXPr32Fn/7oFxiGyfLTl/LVf7kqrxukJhJJ2lo78Pl9LFg4j1lzpuPx5GcoXQgxsSZ8DlMu/uM//oOHH36YdevW4Xbv/4eSy+XC5Zo8G8HpyTSmYZDMKJTFkreit5teeo8Nz7wFwEkXnczUo+vzct+RUEoR65GyJ2L0DMOgaecedjQ0EQz6RzQfaM1fn+OXdz0IwBlnLefKay/J279BwzDo7uzFarcyY9Y0amorcbpkXp4Qh5MJDUylpaXYbDba29sHHW9vb6ey8uC9Hz/+8Y/5j//4D9asWcMxxxwzls0cN3oqjWmYaBYbyUQcf3F+VtE0vr2TV/74IgDHrVzE3JPGZoL6UBJhKXsiRk/TdHY27GJ3YzNFxQW4R9Bz88Rja/nNL34PwNnnn8GlV306b0NksWicaCRGaUUJU+tr875vkxDi0DChb/GdTieLFi1i7dq1A8dM02Tt2rUsW7bsgNf98Ic/5Hvf+x5PPvkkJ5xwwng0dczp6QymZmD1eohFkrh87rwMxbXtaGXdA2tQSjHnxHkct3Ji/rzi4ThYpOyJGJ1MOsP2LTtoamympLRoRGHpsUf+OhCWzv+HlVx29cV5CUu6ptPW0oGu6cyeP5OjFsyRsCTEYWzC3+avWrWKyy67jBNOOIElS5awevVq4vE4V1xxBQCXXnopNTU13HbbbQD84Ac/4KabbuKhhx6ivr5+YK6T3+/H75+cJTWMtIaR0XEXB+ntiqJndIKlvpzv29vWwzO//CuGbjDlqKmcdNHJ474xpDIVsd4odpeD8qnlUvZEjFgikWT71p10tnZRXlEy7N5JpRSPPPhn/vfhxwG46HPn8w+fPS/n14BSinAoSjKZoqqqnLr6mhEX9hVCTD4THpguvvhiOjs7uemmm2hra2PhwoU8+eSTAxPBm5qaBr0bvPvuu8lkMlx00UWD7nPzzTdzyy23jGfT88LIaOjpDJ6yIhKJDNHuKIGS3Ifi4qEYT/38CTLJDOX1FZx+6YpxnzNkGgbRnijeoJeyqRV5m48ljhyxaJytmxvo7Q5RXpUdwh8OpRQP3vdH/vK/TwPwucs/yccvOjvn9mTSGbq7evH5vRy1YA5lFSXDbpMQYnKb8H2YxlskEqGgoCDnfZggu6dRdHcbFqsF2yh24DY0HT2ZxlNSiHLYadnWjN3hyHnIKp1M8/gdj9Hb2kNBeSHnffVC3Hna9HK49IxOPBQjWBqkdEo5TtmYUoxQOBRh66YGopE45ZXD38PINE3u//nDPP34OgAuv+YznH3+GTm1xTRNQj1hdN2gqqaCuvoavF55AyDEkWTCe5iOVKauoydTuEsKcQR9tG5vwdRNXAW5hSVd01nzqyfpbe3BG/Sy8ppzxj0sZZJpUrEURdXFlNaUYpMJ3mKEujt72Lp5B5lMhoqq0mEPo5mGyb13PsC6Z17CYrFw5bWX8NGzT86pLclEilBvmGBBgDnTp1BaPvwNMoUQhw/5TTYBTN0gE0/jKS7AUxSkp7WbeG8s500cTdPkuQefpa2hFYfbyVlXn0OgeHw3hkxGk2gZjdIpZRRXFWORzfrECLW1drB9y05QakQbShqGwc9+ch8vPfc6FquFL99wBSeffuKo22EaJt3dvViwUD+jjtq6alxuWbAgxJFKAtM4Mw2DTDyJpyiIp6SAZDRJb2svnoAnpzlGSile+9PLNG7cgdVmZcUXVlJSk/9NNQ/2/PFQDIvVStWMKgIlQXkXLkZEKcWe3a3s2NqI0+WgoHD4YV/XdH76o1/w+st/x2az8pX/dxUnLl806rbEYwnC4SilpUVMmVZHcUnhqO8lhDg8SGAaR6ZhosWSuAsDuEsKs+9gm7swTZVz8du3127g/RffBeDUfzyD6lnjV4jYNE1iPVFcPjflU8rxFuS+wk8cWUzTZNfOPTQ2NOELePH7h/9vKJPRuP3Wu/n7m+9it9u54VvXsGjpsaNqh67rdHX24nQ6mD13OlXVFThGMT9RCHH4kcA0TpRposUSOIN+PKWFWG1Wulq6iIfiBEpzGzbb9sYW3nz8NQCWXngS04+bmY8mD4uhZ1fC+Yv8lE+tkD2WxIjpus6O7bvYvauFwsIgHu/w59ylUml+/L27eHfjZpwuB1+/8VqOOW50G7NGwlHisQTllWVMnVZLsCA/G8cKIQ4PEpjGgTIV6WgCV9CHt6wIq81GPBTLDsUFvTltordnUxMvPPwcAAtOP5ajTx2/Xc+1tEYiHKeovJDSKWXY5Z24GKFMOkPDtkaa97RRUlI4ojlCiUSSH9xyB1ve347b4+JfbrqO+QvmjLwNGY2erl7cXjfzjp5NRVWZbBUghNiHBKYxpkxFJhrH6ffiLS3CarehZzS6m7vAYslpuX1nUwdr738aZZrMWDSLxeeNfoLrSKXjKdLJNCW1pZTUlGCVXzBimAzDIJlIkUgk6WjtpK2tg7LyEhyO4QfuWCzObTf9Fw1bG/H6PHzrX69n1tzpI25LNBIjHk9QVVPBlPraEdWmE0IcWSQwjSGlFJloAofPg7e8GKvDjlKKntYeEuEEwdLRl1GIdIZ5+hdPoGd0qmfXcPJnTsNiHZ9J1vFwHGUqyusrKKwoksnd4qA0TSeZSBKPJYiEo4TDUVLJFFpGw2azUVE5sh6dSDjKrd9dTeOO3QSCPr79b19j2sypI25XJBwlncowd/4sKqvL81ZbTghxeJLANEYGwpLXjbe8eGAvongoRqitF2+Bb9QBJxlN8uS9j5OKpSipKeWjV6zMS925oShTEe2J4nA7KJ9ejr9I5niIfaVSaRLxJIl4knBvmGg0RiqZxjAMbHYbbreLYEEA5yiGcHt7Qnz/xtvZ09RKQWGQG//9BurqR77AIRKOkklrzJ43g6qaihFfL4Q48khgGgNKKbRYArvbhae8aGAXcC2t0b2nC6vNisM1uvk+Wlrj6XufINoVIVAc4KyrzxmXXbSlzInYH6UUyUQ2HMXjCXp7wiTiSdKpNEopHE4HbreL4tJC7Pbcftx0dXTz79+5nbbWDopLCrnx+6uorq0c8X3CoQiapjN73gwqq8tzapMQ4sghgWkMaLEkNqcTb3kRdlc2zCil6G3tJhlNEiwb3VCcaRisvf9puvZ04va5WXnNuXiDYz/nYu8yJ2VTynFImZMjlmEY2d6jRJJYNEaoJ0IymSKdzmABXG4nbrebYIE/r0Nc7W2dfO/bP6Gro5uyihJu/P4qKirLRnyfUG8E3egLS1USloQQwyeBKc8ysQRWhx1veTH2vVb8xHqihNpD+Ap9o5rzo5TihYefo3nzbuxOO2dd9TEKygvz2PL9yyTTJGNJiquLKZEyJ0ccLaOR6OtBioSjhEMRUsk0mqZhtVlxu134fB6KigvGbC5by542vvftn9DbE6Kyupwbv7+K0rLiEd8n1BvGMEzmzJs5qrAlhDiyyW+/PNLiSaw2WzYs7bURZSaVobu5C5vdNuql928+/jrb39yKxWrhjMvOpGzq2M+7SEaT6BmN8qkVFFUWSZmTI8De849CvWGikRipVBrTMLA77LjdLgqKAiNa0ZaLpsY9fP/G2wmHotROqebG799AYdHIe2h7e0IoBXPmz6S8Yvx2wBdCHD4kMOWJlkiBxYK3vBjHXhvvKdOkp6WbVDw16lVx7z3/Dm+v/TsAyz99KnXzR74iaCT2LnNSKWVODmtaRiMWixOPJenu7iEeTZBKpUAxMP+otKxoQvYl2rl9F9//7mpi0Tj10+v49ve+NqrNJHu6Q1iwMGfeDMoqhl+bTggh9iaBKQ/0VAarzYq3ogSHb/Bk6GhPlHBHCF+Bf1ShY+eGBl599CUAFp2zmNlL5+alzQciZU4Ob4ZhEI8lsrXSQhFCvWGSyRTKVDidDjxeT97nH43G1k0N/MctPyURTzJzzjS++a9fHVG5lH49Xb1YrVZmz5tB6QgK+QohxIdJYMoDi9WKp6wY54c2vcsk03Tv6cLhcmB3jvyPunV7M+t+uxYUzPvIURy74vh8NXm/pMzJ4ad/FVusbw+k3u4QyUQKTdNwOOy4vW5Ky4oPqZ2t33t7Cz/8tztJp9LMPWoW/3LzdXi9I1+V2d3Vi81mY868GZSMYs6TEELsTQJTDiwWsNrtuIuCuIKD3/0q06SnuZt0Mj2qobielm7W/OopTMOk/phpnPjJj4zpsJiUOTl8pFNpYrEEsWiM7q7egWX+VpsNj2d85yCN1Ma33uPH//4ztIzGgoXz+Ocbv4x7BOVS+nV19mB32JkzbyYlpUVj0FIhxJFGAlMOLFYrvsoSrPvZNDLSFSHUGcJfFBhx0In1Rnnq3sfJpDJUTKvk1H/86JgOkfSXOSmtLaVYypxMOpqmk4gniEXj9HSH+iZqp1BK4fG4x3wVW76sf20jt9/2c3Rd57jFC7jhW18a1eaWXR3dOJxO5syfSXFJYf4bKoQ4IklgytH+wlI6kaK7uQunxzXiHbjT8RRP/fwJEuEEhRVFnHnlx0Y1nDdc8XAclKJiWiUF5YWH/C9VkZ1n9uF5SIlECtMwcLqceLz53wdprL364pvc8aNfYhgmS046nq/+vyuxj2ILi86OblyubFgqKi7Mf0OFEEcsCUx5Zhom3S3daGltxENxekbnmV89Sag9Wzpl5TXnjtk8okFlTqZKmZNDnVKKnq5ewqEIPd0hEokkmqZht9vxeNwTtpItH55/9hXuXn0/ylQsP20p/3TD5SP+XpRSdHZ04/G4mTN/5qi2HhBCiIORwJRn4c4QkY4w/uKRBRDTNFn32zW072zD6XGy8ppz8Rf5x6SNe5c5KZ9agVvKnBzyOju62fzuNnTDwOt1j7oW26FmzZPP86u7HkQpxelnLeeqay/BahtZz5hSis72brw+D3Pmz6SgMDhGrRVCHMkkMOVRKpakp6Ubl889oqE4pRSv/PFFdr3TiM1uY8UXz6a4amxW9UiZk8knGonRsLURu8NGafnhsdorFo3zzF+f4/e/eRSAleedzmVXXzziYcT+sOTze5kzf+ao9mkSQojhkMCUJ6Zh0N3chZ7WCZaNbL+YDc+8xeaX3wcLnHrJR6maUT0mbZQyJ5NPJp2hYVsjyWSKyqrJW87DNE12bm9iw/p32fDmu2zfthNlKgDO/+RZfO6Kfxjx/DmlFB3t3fglLAkhxoH8xsyTUEeIaE+UwAiH4ra8uom3/voGAMs+sZxpx04fi+ZJmZNJyDRNdjY00d3RQ8UkDEuRcJS333qfDevfZeNb7xGNxAY9Xje1mo+efQorzzt9VGGpva2LQMAnYUkIMS4kMOVBMpqgp6Ubt88zoiX5Te/t4qVHngfg2BXHMf/ko/Petv4yJ1ablDmZbJp3t7KnqYWS8uIRz+uZCKZhsn3rTja+9R4b3nyXHdt3oZQaeNzjdbNg4TwWLjqaY44/alQFdCEbJDvaugkW+JkzfyaB4NjM9RNCiL1JYMqRoRt07+nC0Ex8BcNf0daxq51n//sZlKmYtXg2i85Zkve2SZmTyau7s4edDU0ECvyH9OTuUG+EjW+9y8b17/H2398nFo0PenzqtFoWLjqahScczay507Hbc/uRkw1LXRQUFTBn3gz8Afk3LYQYHxKYchRq7yXWGyNQMvyVOaGOEE//4q8Ymk7t3DqWX3xq3nt9pMzJ5BWPJWjY3ojVYhlV/bSxZBgG2zbvyA6zrX+PnQ1Ngx73+bwsOO6DXqR8bhxpmibtbZ0UFRcyZ95MfB8qRSSEEGNJAlMODN0g0hXB5XMPe8gkEY7z1M8fJx1PUVpXxhmXn5X3nbWlzMnkpWU0GrY3Eo3EqKwqn+jmANkCthvfeo8N69/lnQ2bSMSTgx6fPnMqxy46ioWLjmbmnGljsh/U3mFp7vyZeH0SloQQ40sCU46UUsPeQiCTyvDUL54g1hMlWBrkrKvOweHKb5hJxVNkkmlK60oprpYyJ5OJUopdjXvoaOukorJswuaa6brOlvcbBuYiNTXuGfS4P+DjmOOPYuGiozjmuKMoLBrbfY9Mw6SjvYuSkiJmz5shYUkIMSEkMI0TQzdY++un6Gnuxu33sPKac/EE8rthpJQ5mdzaWjpoatxDccn47tptmibNTa1sfn87b//9fd7dsIlkMjXwuMViYcbseo49/igWnnA0M2bWj9skdNPI9iyVlBVnw5JXNlkVQkwMCUzjQJmK53/3N1q2NeNwOVh59TkjLpsy1P2jPVGcbgdlUuZkUgr1htmxbRderwe3e2znm6VTaRq2NbJlUwNb39/O1k07iMcTg84JFgQ49vijOHbRURxz3PwJWba/d1iaM38mHo973NsghBD9JDCNg9f/71V2vLUdi9XKGZefRWld/vbU+aDMiY/yqeVS5mQSSiZTbN+yE93QKSopyfv9Q70Rtm7azpb3G9iyaTs7t+/CMMxB57jcLmbOnsb8BbNZeMLRTJsxZUKL9xqGQUdbF6UVJcyeO0PCkhBiwklgGmPvrNvIu+s2AnDyZ06jdm5d3u4tZU4mP13X2bltF+FQhMrq3Cd5m6ZJy562gXC09f0G2lo79jmvqLiQOfNnMGf+TObMn8nUabWHTPFewzBob+2ivKqU2XNnjHmPmxBCDIcEpjHU8NY2Xn/sFQAWn7eUWYtn5+3eg8qc1JaNqHadODQopdi9q4WW5nbKK0pGNecsk9Fo2No40IO0dXPDPnshWSwW6qZWM3vezIGQVFY+uucba7qu09neTUVVGbPmTpewJIQ4ZEhgGiMtW/fw/EN/A2D+yUez4IyFebu3lDk5PHS0d9G4YzdFxQXYh1nXLxKOsuX97WzZ1MCW97ezY/suDN0YdI7T5WDm7GnMmT+T2fNmMHvujEmxZ5Gu63S2fRCWXBKWhBCHEAlMY6C7uYs1v34K0zCZdux0TrzwI3l5Nz+ozMnMaoIj2CxTHFoi4SgN2xpxuZx4vAefn6OU4s9/fIp1z7xEa3P7Po8XFAY/GF6bN5P6GXU576g93nRNp6O9i6rqCmbNnY7TJcPLQohDy+T6qToJRHsiPPXzJ9DSGlUzqznlH8/AYs09LEmZk8NHOpWmYetO0qkMFZWlBz3XNEx+dfeDrH3yhYFjtVOqBg2vTeSeTfmgazodHV1U11Qyc840CUtCiEOSBKY8SsWSPHXP4ySjCYqqilnxhZXDHmo5mP4yJ4EiP2VS5mRSMwyDnQ276ekKUVF18NWSuq5z9+3389Jzr2OxWPj8lZ/mlDNOPKzqp/WHpZraKmbOnoZDdqUXQhyiJDDliZ7RePqXTxLuDOMr8rPy6nNwenIPNlpaIxGRMieHi+bdrTTvaaWkvPigmz9qmsZ//eBe3nx1IzablWv/+YucdMricWzp2MpkNJKJJPF4QsKSEGJSkMCUB6Zhsu6Bv9G5qx2n18XZ15yLr9Cf830HypzUSpmTw0FXRzeNDbsJBv04DxIOUqk0//n9n/HO3zfhcNj52re+xKIlx4xjS/PPMAySiRSJRBLDMHA4HHi9HmbMmkbtlGoceeiJFUKIsSQ/pXKklOL1x15h9/u7sDlsnHXlxyisKMr5vgNlTqZXUVBWMKnnqAiIReM0bGvEarUcdMVaIp7gB/96B1veb8DldvH/vnstRx87dxxbmh+maZJKpUkmUmgZDYvVitfrpqq6goKiID6fF5/fO6GbYwohxEhIYMrRO89uZPubW7FYLJz++RVUTKvM6X5S5uTwo2U0GrY3Eo8lDjpvKRKOcttN/8XOhiZ8Pi/f/NevMmvu9HFsaW7SqTTJZKqvDp0Fj8dNYVEBxSWF+PxefH6f9CQJISYt+emVg78/9ebALt4nXXQyUxdMy+l+Uubk8GOaJjt3NNHZ3nXQ1Ww93SFu/e7t7GlqJVgQ4Nvf+xr10/O3K/xY0DWdRCJJMplCmQqH04HP76Wmrgp/wI/P75WNJ4UQhw0JTKPUvaeLp+59AoBjzljI3JPm53Q/KXNyeGpr6WBPUyslJUUHLD3S0dbFv9/4EzrauiguKeQ7/34DNXVV49zSoZmGme1BSiTRNB273Y7H56F2SjUFhUH8fi8er0eGj4UQhyUJTKNUUlvKymvOZfubWzlmxXE53UvKnByeentC7Ni+C5/Pc8Bdq5t3t/L9G2+npztEeWUpN35/FeUVB9+babwopUgls8Ns6VQaq82K2+2mtLyEouL+YTbvIVODTgghxpIEphwcd9Yiiqtzq8mVjCbQM7qUOTnMJBJJtm/ZiWkYBEoK93tO447d3Prd1UTCUWqnVPHt791A8QHOHS+ZdIZEIkUqmUah8LhdBIJ+6qfX4fN78ft9svxfCHFEksA0QaTMyeFL03R2bG0kEo5SWV2+33O2bmrgB7fcQTyeYNqMKXzr364nWDB+E/yVUmiaTiadIZVKo2s6SikcLgc+r5eq6nICQT++gA+P5+ClW4QQ4kgggWkC9Jc5cfvclEmZk8OKUoo9u5ppb+ukrGL/vY/vbtzMj753F+lUmjnzZ/CNm7+C1zd2xXGVUmgZjXQ6QzqdyYYjwOG043a5KCktoqAwiNvtwuP14PG6Zbm/EEJ8iASmcSZlTg5v7W2d7Nq5h6Ligv0WwF3/+tusvu0eNE1nwXHz+OfvfDmvK8k+HI60jAYWy0A4Ki0rJlgQwONx4/a4cXtcMgdJCCGGQQLTOJIyJ4cvpRQ93SF2bNuFy+3EvZ9hrJeff4O7/vNXGIbJ4hMX8tVvXIXDMfp/A0opMn3BKJPOoOtGNhw57LjcLsrKSwgEA3g8LglHQgiRIwlM4yRb5iQjZU4OQ5FwlJY97XS0dQJQWl68zznPPv0iv7jjAZRSLD9tKV/62mX77YE6mP75Rpl0Bk3TwWLB6XTgcrsoryzDH/Dj8bjweN243BKOhBAinyQwjYN4KAZAxfRKKXNyGEnEE7S2tNOyp51MJkNxceF+tw944rE1/OYXfwBgxdmn8IUvf25Ec4QMw6C7qxerxYrb66aishx/0Ifb4x7oPZI5R0IIMbYkMI2hwWVOKvAX5V6QV0y8VCpNe2sHzbvbSCaSFBQFKSndt36gUor/ffhxHnnwzwCc98mz+Mcr/mFEgTkWjRONxCgtL2FKfQ0FhUEJR0IIMQEkMI0R0zCIdEfxFUiZk8OFltHoaO9iT1ML0WiMYDBAVU3Ffs9VSvHQfX/k//73aQA+9Y8f55OfOXfYYUnTNLo7e3G7XcyeP5PKqnKpwyaEEBNIfgKPgf4yJwVS5uSwoOs6XR097N7VTCQcxef3UlVdccDwY5omv777d6z563MAXHrVpznnghXDei6lFOFQhFQqQ2VVOXX1NQSC0jMphBATTQJTnkmZk8OHaZp0d/bSvLuF7u4QbreTiqqygw6JGYbB3avv58W/vYbFYuGq6y7hjJUnD+v5Uqk0PV0hAkEf8xfMpryiVIbfhBDiECGBKY+kzMnhQSlFb0+Y5t2tdHZ04XA4KK8oGXLVmaZp/PSHv+SNV/6OzWbl2lVf4KRTlwz5fKZp0tMdwjRMpkyroW5qjeyuLYQQhxgJTPmgspO7bXYpczLZhUMRWva00d7aCRYoLS3GPoy5Q6HeMD/7yX28/ff3cTjsfO2b17Bo6bFDXpeIJwiFIhSXFDG1vpbi0iJZRSmEEIcgCUx5EAvF8Rf6KJtagTc4diUuxNiJReO0NLfR1tqBnjEoLinA6Tr43DPTNHlnwybWPvk861/biGGYuFxOvv7da1mwcN5Br9V1ne6uEHa7jRmzplFTWznk8wkhhJg4EphyZLVaKCwroHRKuZQ5mYQSiSTtLR207GknnU5TWBTEXXrw4bBQb5h1z7zMs0+9QEd718DxWXOnc+lVn2bWnOkHvT4SjhKPJSirLGVqfS0FhdIjKYQQhzoJTDmw2qyU1JTiCXqHNWwjDh3pVLpvi4BWErEEwcIARSUFBzzfNE3e3biZNX99nvWvbcAwTAC8Pg+nnLGMM1YuZ0p97UGfM5PR6O7qweP1MPeoWVRUlY14t28hhBATQ35a58BisRCQ+UqTiqbpdLZ30by7lXA4QiDgp7Km/IDzhkK9EZ5b8xJrn3qBjrbBvUkfPfsUli1ftN/dvfemlCLUGyadzlBdU8mU+lp8fhm6FUKIyUQCkzgiGIZBV2cPe5paCfWE8Hg9VFaV73fZvmmavPd2tjfpzVcH9yadfPqJfPTsk4fsTeqXSqbo7Q4TLAwwc850yspLZKsAIYSYhCQwicOOUopUKk0qmSKZSBGLxgmHIkSjcZwOOxWVZVht+4aWUG+E59Zm5ya1t3YOHB9Jb1I/0zDp6e5FKZg6o47aKdW4h3mtEEKIQ48EJjHppVNpkskUqWSaWCxOOBQlnUyRSqdRpsLusONyOSktK9pnzlB/b9LaJ1/gjVc3YOgGAB6vu6836RSmThteb1K/eCxBOBylpKSQKdPqKC4plK0ChBBikpPAJCYVLaORTKZIJlMkYgnCoQiJRIp0OoNpGNhsNlxuJ26Pi2Bh4IDDX+FQhHVr9tObNGc6Hz37ZE48+YQR9whlMho93SGcTgez5kyjuqYSh9OR0/crhBDi0CCBSRyydF0nmciGo2QiSSgUIRFLkklnMAwDLBbcbidOl5Ng0L/fYba9ZXuTtrD2qRd445W/79ubtPJkpk6vG3b7TMMkkUySTKTQdT27I3h5CVOm1RIsCOT0vQshhDi0SGAShwTDMEgl0yQTSVKpNKHeCPFYnHQqg67rKEW258jtxOcvGPZyfE3TaNndxsa33uPZp16krbVj4LGZc6bx0ZUns+yUxcPqTVJKkU5nSMSTpFNprDYrHo+bisoyCosK8Pm9+PxemdQthBCHIQlMYtyZppmdkJ1Mk0ykiEaiRKNxUqkUWloDCzidTlxuJwVFARyOoYe1TNOks6Ob3Y3N7N7VTFPf/1ub2wdWucHIe5N0TSeRSJJMpjENA7fbjT/gY+q0WvwBH36/T4bdhBDiCCCBSeSdUgpdN9B1HV3T+/5voGka0UiMSDhKOp0hnc5ggYFJ2cFgAIfDPuQE6Ug4SlNjNhTt2dVM065m9jS1kEqm93u+z+elfkYdy09bOmRvUn+YSyRSaBkNu92Ox+ehbmo1wYIA/oAPj8ctk7iFEOIII4FJDJtpmh8EIN1AGwhDOpqmk06mSaXTpNMZDN3AMAxMw0Q3dFDZe9jsNlwuJz6fh6LigoMGj3QqzZ6mVpoa97B7V8tAz1E4FNnv+Xa7ndopVdRNraFuajV19TVMqa8dcpVaJp0hkUiRSqbAAm6Pm5KSIopKCvEHfHh9HtmRWwghjnDyW0AMBCB9rwDU30OUTqdJJbMhaOC4oWPqJoZpMhBDLGC32bDZbdhsNhwOG263c+DrgwUWwzBoa+nYayithd2NzbS3daKU2ud8i8VCeWUpU6bWUDu1hin12Y/K6nJsNtuQ369hGCQTKRKJJIZu4HA58Pl8VNdWEgj68fu9w95vSQghxJFBAtNhyjRNDN1A+1AAyvYGaaRTGVLpNJm+SdWGbmIYBoZpYJr9IUVhs34Qgux9vUNeuwe7zTbkqrQPU0rR2x2iaVczu/uG1HY3NdPc1Iqm6fu9pqAwkO0xqq+hbmpNX0ga2SaQuq6TyWik+rYfsNpseL1uqqorKCgK4vdne5FksrYQQogDkcA0yRiGsW8A6p8jlMmQSqVJp9Jk+nqLDN3A0A1MZQ4MiwGDQpDNZsPpcg70EB2sN0gpRTqVJhSJZSdDJ1Ik4kmSySSJeLLv8+yx7OPJgc/bWzuJxxL7va/L5aR2ajVT6muzw2l9PUcFhcOv1adrOplMhkwmGwp1TQeLBbvNhsPlIFAYoL6kGH/Ai8/vwyEFk4UQQgyT/MY4BBxoknR2qEzvC0EZ0qn0QAjSjewcoYERK6WwWC2DQ5DTgd3jHghHuq4PBJpYNJ4NM32Bpn+Iau/Pk/EEiUSq77wUyXiSRDKJMvcdJhsuq9VKVU1FtsdoSjVT6rO9R+UVpcPq4VFKoWk6WkZD0zQyaQ3TNFGAw27H4XTg9rgoLSvG6/MO7NPkcjllmE0IIcSoSWAaQ4aR7d0ZySTp/v9bAGUBZYLVZsHQDTIZLduD0rfCLJ3KZFd0HaBXZ1AISibJpLW8fW9WqxWP143X58Hr9eDx9v//Q8d8HxwvKSumurYS5zCW4Sul0DIaGU3L/j+TDUZgweGw43Q68Ho9lFWU4vN5cbmywcjtdskyfyGEEHl3SASmu+66ix/96Ee0tbVx7LHHcscdd7BkyZIDnv/II4/w3e9+l8bGRmbNmsUPfvADzjnnnHFs8Qci4SiZdOaAk6TTqQzRWIx4LEkiniCdzJBKpQYCTDb4pAeu66+Jls9enQ9zuZx4fdlA0x9wPJ7B4ab/cW9f6PF43Xt97sHlcuZlab1pmn29RTqZdIaMpqEUWCzgcDhwOh34A34CAR8er2cgFDldThlSE0IIMW4m/DfO73//e1atWsU999zD0qVLWb16NStXrmTLli2Ul5fvc/7LL7/MZz/7WW677TbOO+88HnroIS688ELeeustjj766HFrt1KKO3/8K3Y27CISipJKp0klUqRS2UCUSqZJJVNkMvnt1dknvPQHHZ8Hj2dw0PH4PHj7zvXsFXyGs5JsNJRSKFOhUNnVbYq+zwGlsuFIy07A1jI6CoWlb5NKp9NBsChIIODH43H3BaNsr5Es6RdCCDHRLGp/67bH0dKlS1m8eDF33nknkO1xqKur4ytf+Qrf/OY39zn/4osvJh6P85e//GXg2IknnsjChQu55557hny+SCRCQUEB4XCYYHD4E4r3Z/Gcs0in9r9Z4oe53C68Xveg4LL3UFZ/4Ok/7va6s1/3HXN7PTj7elSUyoYQhYJBn/c/pgafp8yB0KL6jg/+nL1CjoVBs8Ppu3ffBgKWviNgyf7X8sH52c8tWPo+t1gs2Qss2aM2qxW704HP58Ef8OFyuwZ6i1wu55gFOSGEECJXE/rWPZPJsH79er71rW8NHLNaraxYsYJXXnllv9e88sorrFq1atCxlStX8uijj+73/HQ6O9zVLxLZ/6aHo/GZSz9Be2snNrsVr9eDy+3E43Hjcrtxe5x4PJ6+r519S/A/CB0WwNzrXpa+/+w3dFizmytqGQ0LFrKnWAaCiMXywbkWqxUr2T9Hi9WCte9Y9nMrFkv2MZvVClYrVms2yFj6Ph94zn3u+8Fjez8n/cf2Pnefj2x7rVYrTqdDlu8LIYSYdCY0MHV1dWEYBhUVFYOOV1RUsHnz5v1e09bWtt/z29ra9nv+bbfdxr/+67/mp8EfsurbX2LXzj0Yhp4NIx8KHR/+YO9QcYDQYbVaB+YG7S90fHA9AwFpf2FFCCGEEPlz2E8O+da3vjWoRyoSiVBXN3TR1eGwWCzUD6OAqxBCCCEmtwkNTKWlpdhsNtrb2wcdb29vp7Kycr/XVFZWjuh8l8uFyyX77wghhBBi9CZ0MonT6WTRokWsXbt24Jhpmqxdu5Zly5bt95ply5YNOh/gmWeeOeD5QgghhBC5mvAhuVWrVnHZZZdxwgknsGTJElavXk08HueKK64A4NJLL6WmpobbbrsNgOuvv55TTz2V//zP/+Tcc8/l4Ycf5s033+Tee++dyG9DCCGEEIexCQ9MF198MZ2dndx00020tbWxcOFCnnzyyYGJ3U1NTYNWVZ100kk89NBD3HjjjXz7299m1qxZPProo+O6B5MQQgghjiwTvg/TeMvnPkxCCCGEODLIhjhCCCGEEEOQwCSEEEIIMQQJTEIIIYQQQ5DAJIQQQggxBAlMQgghhBBDkMAkhBBCCDEECUxCCCGEEEOQwCSEEEIIMQQJTEIIIYQQQ5DAJIQQQggxBAlMQgghhBBDmPDiu+Otv3ReJBKZ4JYIIYQ4kgQCASwWy0Q3Q4zSEReYotEoAHV1dRPcEiGEEEcSKfo+uVlUf5fLEcI0TVpaWkaU9BcvXswbb7wxoucZ6TXDPX+o8yKRCHV1dezevfuIemGO5u9orIxHW/L5HLnea7TXj+S6fL0+4Mh8jcjrY2Lv13+99DBNbkdcD5PVaqW2tnZE19hsthH/YB3pNcM9f7jnBYPBI+aXAYzu72isjEdb8vkcud5rtNeP5Lp8vz7gyHqNyOtjYu93KP35i9GTSd/DcO211475NcM9fzRtORIcSn8u49GWfD5Hrvca7fUjuU5eH7k5lP5cJtvrIx/3O5T+/MXoHXFDcoe7SCRCQUGBjJULcQDyGhFCjIb0MB1mXC4XN998My6Xa6KbIsQhSV4jQojRkB4mIYQQQoghSA+TEEIIIcQQJDAJIYQQQgxBApMQQgghxBAkMAkhhBBCDEECkxBCCCHEECQwHWE+8YlPUFRUxEUXXTTRTRHikLJ7925OO+005s+fzzHHHMMjjzwy0U0SQhxCZFuBI8y6deuIRqP893//N//zP/8z0c0R4pDR2tpKe3s7CxcupK2tjUWLFrF161Z8Pt9EN00IcQiQHqYjzGmnnUYgEJjoZghxyKmqqmLhwoUAVFZWUlpaSk9Pz8Q2SghxyJDANIk8//zznH/++VRXV2OxWHj00Uf3Oeeuu+6ivr4et9vN0qVLef3118e/oUJMgHy+PtavX49hGNTV1Y1xq4UQk4UEpkkkHo9z7LHHctddd+338d///vesWrWKm2++mbfeeotjjz2WlStX0tHRMc4tFWL85ev10dPTw6WXXsq99947Hs0WQkwSModpkrJYLPzpT3/iwgsvHDi2dOlSFi9ezJ133gmAaZrU1dXxla98hW9+85sD561bt44777xT5jCJw9ZoXx/pdJozzzyTq666is9//vMT0XQhxCFKepgOE5lMhvXr17NixYqBY1arlRUrVvDKK69MYMuEmHjDeX0opbj88ss544wzJCwJIfYhgekw0dXVhWEYVFRUDDpeUVFBW1vbwNcrVqzgU5/6FE888QS1tbUSpsQRYTivj5deeonf//73PProoyxcuJCFCxfyzjvvTERzhRCHIPtEN0CMrzVr1kx0E4Q4JC1fvhzTNCe6GUKIQ5T0MB0mSktLsdlstLe3Dzre3t5OZWXlBLVKiEODvD6EELmSwHSYcDqdLFq0iLVr1w4cM02TtWvXsmzZsglsmRATT14fQohcyZDcJBKLxdi+ffvA1zt37mTDhg0UFxczZcoUVq1axWWXXcYJJ5zAkiVLWL16NfF4nCuuuGICWy3E+JDXhxBiLMm2ApPIunXrOP300/c5ftlll3H//fcDcOedd/KjH/2ItrY2Fi5cyE9/+lOWLl06zi0VYvzJ60MIMZYkMAkhhBBCDEHmMAkhhBBCDEECkxBCCCHEECQwCSGEEEIMQQKTEEIIIcQQJDAJIYQQQgxBApMQQgghxBAkMAkhhBBCDEECkxBCCCHEECQwCSGEEEIMQQKTEDk47bTT+NrXvjbRzZhUGhsbsVgsbNiwIaf71NfXs3r16nF/XiHEkUkCkxBiUnrjjTe4+uqr83rP+++/n8LCwrzeUwhxeLBPdAOEEGI0ysrKJroJQogjiPQwCZEjXde57rrrKCgooLS0lO9+97v017Tu7e3l0ksvpaioCK/Xy8c+9jG2bdsGQGdnJ5WVldx6660D93r55ZdxOp2sXbt2yOe95ZZbWLhwIb/+9a+ZMmUKfr+fL3/5yxiGwQ9/+EMqKyspLy/n+9///qDrQqEQV155JWVlZQSDQc444ww2btw48HhDQwMXXHABFRUV+P1+Fi9ezJo1awbdo76+nltvvZUvfOELBAIBpkyZwr333juiP7cdO3Zw+umn4/V6OfbYY3nllVcGPf7iiy9y8skn4/F4qKur46tf/SrxeHxQG/Yektu8eTPLly/H7XYzf/581qxZg8Vi4dFHHx3W865bt44rrriCcDiMxWLBYrFwyy23jOh7EkIcxpQQYtROPfVU5ff71fXXX682b96sfvvb3yqv16vuvfdepZRSH//4x9W8efPU888/rzZs2KBWrlypZs6cqTKZjFJKqccff1w5HA71xhtvqEgkoqZPn65uuOGGYT33zTffrPx+v7rooovUe++9p/785z8rp9OpVq5cqb7yla+ozZs3q1//+tcKUK+++urAdStWrFDnn3++euONN9TWrVvVP//zP6uSkhLV3d2tlFJqw4YN6p577lHvvPOO2rp1q7rxxhuV2+1Wu3btGrjH1KlTVXFxsbrrrrvUtm3b1G233aasVqvavHnzkO3euXOnAtTcuXPVX/7yF7VlyxZ10UUXqalTpypN05RSSm3fvl35fD51++23q61bt6qXXnpJHXfcceryyy8f1Ibbb79dKaWUrutqzpw56swzz1QbNmxQL7zwglqyZIkC1J/+9KdhPW86nVarV69WwWBQtba2qtbWVhWNRof1dyGEOPxJYBIiB6eeeqqaN2+eMk1z4Ng3vvENNW/ePLV161YFqJdeemngsa6uLuXxeNQf/vCHgWNf/vKX1ezZs9XnPvc5tWDBApVKpYb13DfffLPyer0qEokMHFu5cqWqr69XhmEMHJszZ4667bbblFJKvfDCCyoYDO7zHDNmzFA///nPD/hcRx11lLrjjjsGvp46daq65JJLBr42TVOVl5eru+++e8h29weXX/7ylwPH3nvvPQWoTZs2KaWU+uIXv6iuvvrqQde98MILymq1qmQyOdCG/sD017/+VdntdtXa2jpw/jPPPLPfwHSw573vvvtUQUHBkN+DEOLII0NyQuToxBNPxGKxDHy9bNkytm3bxvvvv4/dbmfp0qUDj5WUlDBnzhw2bdo0cOzHP/4xuq7zyCOP8OCDD+JyuYb93PX19QQCgYGvKyoqmD9/PlarddCxjo4OADZu3EgsFqOkpAS/3z/wsXPnThoaGgCIxWJ8/etfZ968eRQWFuL3+9m0aRNNTU2DnvuYY44Z+NxisVBZWTnwPMOx9/VVVVUAg9p5//33D2rjypUrMU2TnTt37nOvLVu2UFdXR2Vl5cCxJUuWjPh5hRDiQGTStxATrKGhgZaWFkzTpLGxkQULFgz7WofDMehri8Wy32OmaQLZMFRVVcW6dev2uVf/6rCvf/3rPPPMM/z4xz9m5syZeDweLrroIjKZzJDP3f88I217f+Dcu53XXHMNX/3qV/e5bsqUKcN+jpE+rxBCHIgEJiFy9Nprrw36+tVXX2XWrFnMnz8fXdd57bXXOOmkkwDo7u5my5YtzJ8/H4BMJsMll1zCxRdfzJw5c7jyyit55513KC8vH5O2Hn/88bS1tWG326mvr9/vOS+99BKXX345n/jEJ4BseGlsbByT9hzI8ccfz/vvv8/MmTOHdf6cOXPYvXs37e3tVFRUANltB0bK6XRiGMaIrxNCHP5kSE6IHDU1NbFq1Sq2bNnC7373O+644w6uv/56Zs2axQUXXMBVV13Fiy++yMaNG7nkkkuoqanhggsuAOA73/kO4XCYn/70p3zjG99g9uzZfOELXxiztq5YsYJly5Zx4YUX8vTTT9PY2MjLL7/Md77zHd58800AZs2axf/+7/+yYcMGNm7cyOc+97lx74H5xje+wcsvv8x1113Hhg0b2LZtG4899hjXXXfdfs8/88wzmTFjBpdddhlvv/02L730EjfeeCPAoOHSodTX1xOLxVi7di1dXV0kEom8fD9CiMlPApMQObr00ktJJpMsWbKEa6+9luuvv35gQ8X77ruPRYsWcd5557Fs2TKUUjzxxBM4HA7WrVvH6tWreeCBBwgGg1itVh544AFeeOEF7r777jFpq8Vi4YknnuCUU07hiiuuYPbs2XzmM59h165dAz0zP/nJTygqKuKkk07i/PPPZ+XKlRx//PFj0p4DOeaYY3juuefYunUrJ598Mscddxw33XQT1dXV+z3fZrPx6KOPEovFWLx4MVdeeSXf+c53AHC73cN+3pNOOokvfelLXHzxxZSVlfHDH/4wL9+PEGLysyjVt2GMEEIcRl566SWWL1/O9u3bmTFjxkQ3RwgxyUlgEkIcFv70pz/h9/uZNWsW27dv5/rrr6eoqIgXX3xxopsmhDgMyJCcEIeoo446atCy+r0/HnzwwYlu3gHdeuutB2z3xz72sTF73mg0yrXXXsvcuXO5/PLLWbx4MY899tiYPZ8Q4sgiPUxCHKJ27dqFpmn7fayiomLQ/kuHkp6eHnp6evb7mMfjoaamZpxbJIQQuZPAJIQQQggxBBmSE0IIIYQYggQmIYQQQoghSGASQgghhBiCBCYhhBBCiCFIYBJCCCGEGIIEJiGEEEKIIUhgEkIIIYQYwv8Hqbv5o6wD1cYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "data = ap.copy()\n", "data[\"box_mean_height\"] = data[\"box_height\"].apply(lambda x: x.mid)\n", @@ -3155,7 +886,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "id": "b576b5df", "metadata": { "ExecuteTime": { @@ -3164,18 +895,7 @@ }, "scrolled": true }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8UAAAXWCAYAAAAaeXzhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZfrG8XsmvfeEkE7vNQlNxQJiFyuoq1h3de26trWudVd31XV119XfCpZVwV7XhlIElNB7QkmHdNLLJDPv74+E0QgKKslJ+X6uKxfJOWdm7klC3pnznPd5bcYYIwAAAAAAAAAAAAAAeiC71QEAAAAAAAAAAAAAAOgoFMUBAAAAAAAAAAAAAD0WRXEAAAAAAAAAAAAAQI9FURwAAAAAAAAAAAAA0GNRFAcAAAAAAAAAAAAA9FgUxQEAAAAAAAAAAAAAPRZFcQAAAAAAAAAAAABAj0VRHAAAAAAAAAAAAADQY1EUBwAAAAAAAAAAAAD0WBTFAaATXXzxxZo5c6bVMQAAAAAA+FHJycl68sknrY7xi/HeGwAAAD9EURzogu677z6NGTPG6hidxmaz6d1337U6xi+Wk5Mjm82mdevWWR0FANAJGKd7PsZ2AOh8jK89W2cX2f/+979r3rx5nfZ4ANAbMXYD6G4oigM4qObmZqsjyOFwWB2h2+B7BQC9C+P04dWTngsA4JdjfO18TqdTLpfrsNxXSEiIQkNDD8t9AQC6B8bun68rfM+AzkRRHOgALpdLjz76qAYMGCAfHx8lJibqoYcecu+/7bbbNGjQIPn7+6tfv366++673QPQvHnz9Kc//Unr16+XzWaTzWZzX91cWVmpyy+/XFFRUQoODtaxxx6r9evXt3vsBx98UNHR0QoKCtLll1+u22+/vd0Vey6XS/fff7/i4+Pl4+OjMWPG6JNPPnHv3zczav78+Zo6dap8fX313HPPKTg4WG+++Wa7x3r33XcVEBCgmpqan/x+OBwOXXPNNYqNjZWvr6+SkpL0yCOPSGq9WlySzjjjDNlsNvfX+640/L//+z+lpKTI19f3kL//P9dbb72l4cOHy8fHR8nJyfrb3/7Wbv+BrgIMDQ11/1xSUlIkSWPHjpXNZtPRRx8tqfUN/U033aTQ0FBFRETo1ltvlTGm3f00NTXpuuuuU3R0tHx9fXXEEUcoIyOj3TGLFy9Wenq6fHx8FBsbq9tvv10tLS3u/UcffbSuueYa3XDDDYqMjNSMGTMOw3cFAHouxun2uvI4nZubq1NPPVVhYWEKCAjQ8OHD9fHHH0uSFi1aJJvNpo8++kijRo2Sr6+vJk6cqE2bNrW7j4ON88nJyXrggQd00UUXKTg4WL/97W9/dGxftGiR0tPTFRAQoNDQUE2ZMkW5ubkd8twBoLthfG2vK4+vkvT111/ryCOPlJ+fnxISEnTdddeprq7uR48/lJ/DBx98oLS0NPn6+ioyMlJnnHGGpNb3rLm5ubrxxhvdP1+p9eceGhqq999/X8OGDZOPj4/y8vK0d+9eXXTRRQoLC5O/v79OPPFEbd++3f04+2736aefaujQoQoMDNQJJ5ygPXv2uI/5Yfv0g/1+AkBvxNjdXlceu/eNfe+++64GDhwoX19fzZgxQ/n5+e2Oe++99zRu3Dj5+vqqX79++tOf/tTuPLLNZtO//vUvnXbaaQoICNBDDz2kvXv36oILLlBUVJT8/Pw0cOBAzZ07132bjRs36thjj5Wfn58iIiL029/+VrW1te79+8bcv/71r4qNjVVERISuvvpqCu7omgyAw+7WW281YWFhZt68eWbHjh1m6dKl5vnnn3fvf+CBB8yyZctMdna2ef/9901MTIz5y1/+Yowxpr6+3tx8881m+PDhZs+ePWbPnj2mvr7eGGPMtGnTzKmnnmoyMjJMVlaWufnmm01ERIQpLy83xhjzyiuvGF9fX/PCCy+YzMxM86c//ckEBweb0aNHux/78ccfN8HBwea1114z27ZtM7feeqvx8vIyWVlZxhhjsrOzjSSTnJxs3nrrLbNr1y6ze/duc8UVV5iTTjqp3fM87bTTzEUXXXTQ78djjz1mEhISzJIlS0xOTo5ZunSpefXVV40xxpSUlBhJZu7cuWbPnj2mpKTEGGPMvffeawICAswJJ5xg1qxZY9avX3/A+87NzTUBAQE/+fHQQw/9aLZVq1YZu91u7r//fpOZmWnmzp1r/Pz8zNy5c93HSDLvvPNOu9uFhIS4j1m5cqWRZL744guzZ88e98/jL3/5iwkLCzNvvfWW2bJli7nssstMUFCQOf300933c91115m+ffuajz/+2GzevNnMmTPHhIWFue+joKDA+Pv7m9///vdm69at5p133jGRkZHm3nvvdd/H1KlTTWBgoLnlllvMtm3bzLZt2w76MwGA3oxxur2uPE6ffPLJZvr06WbDhg1m586d5oMPPjCLFy82xhjz1VdfGUlm6NCh5rPPPjMbNmwwp5xyiklOTjYOh8MYc2jjfFJSkgkODjZ//etfzY4dO8yOHTsOOLY3NzebkJAQ84c//MHs2LHDbNmyxcybN8/k5uYe9HsMAL0B42t7XXl83bFjhwkICDBPPPGEycrKMsuWLTNjx441F198sfuYpKQk88QTT7i/PtjP4cMPPzQeHh7mnnvuMVu2bDHr1q0zDz/8sDHGmPLychMfH2/uv/9+98/XGGPmzp1rvLy8zOTJk82yZcvMtm3bTF1dnTnttNPM0KFDzZIlS8y6devMjBkzzIABA9zj+77bTZs2zWRkZJjVq1eboUOHmvPPP9+dd86cOe3eex/s9xMAeiPG7va68ti9b+xLTU01y5cvN6tWrTLp6elm8uTJ7mOWLFligoODzbx588zOnTvNZ599ZpKTk819993nPkaSiY6ONi+88ILZuXOnyc3NNVdffbUZM2aMycjIMNnZ2ebzzz8377//vjHGmNraWhMbG2vOPPNMs3HjRrNw4UKTkpJi5syZ477POXPmmODgYHPllVearVu3mg8++MD4+/ub55577qDfc6CzURQHDrPq6mrj4+Pzs95cPfbYY2b8+PHur++99952LwKMMWbp0qUmODjYNDY2ttvev39/8+9//9sYY8yECRPM1Vdf3W7/lClT2t1X37599xtg09LSzO9//3tjzHcvKJ588sl2x3z77bfGw8PD7N692xhjTHFxsfH09DSLFi066PO79tprzbHHHmtcLtcB9x+o6HzvvfcaLy8v9wuMH9Pc3Gy2b9/+kx/7XnAdyPnnn2+mT5/ebtstt9xihg0b9pP5vl8U3/c9W7t2bbtjYmNjzaOPPtoua3x8vPuNeW1trfHy8jL//e9/3cc4HA7Tt29f9+3++Mc/msGDB7f73j3zzDMmMDDQOJ1OY0xrUXzs2LE/+X0CALRinN5fVx6nR44c2e4N/PftK4q//vrr7m3l5eXGz8/PzJ8/3xhzaON8UlKSmTlzZrtjDjS2l5eXG0mH9D0FgN6G8XV/XXl8veyyy8xvf/vbdtuWLl1q7Ha7aWhoMMa0L4ofys9h0qRJ5oILLvjRx/xhkd2Y1hP8ksy6devc27Kysowks2zZMve2srIy4+fnZxYsWNDudjt27HAf88wzz5iYmBj3198viv+S308A6OkYu/fXlcfufWPfN9984962detWI8l8++23xhhjjjvuOPcFafu8/PLLJjY2tt1zuOGGG9odc+qpp5pLLrnkgI/73HPPmbCwMFNbW+ve9tFHHxm73W6KioqMMa1jblJSkmlpaXEfc84555hZs2b95PcEsIJnx89FB3qXrVu3qqmpSccdd9yPHjN//nw99dRT2rlzp2pra9XS0qLg4OCfvN/169ertrZWERER7bY3NDRo586dkqTMzEz9/ve/b7c/PT1dX375pSSpurpau3fv1pQpU9odM2XKlP1a2KSmpu53P8OHD9eLL76o22+/Xa+88oqSkpJ01FFH/WRuqbWFyvTp0zV48GCdcMIJOuWUU3T88ccf9HZJSUmKior6yWM8PT01YMCAg97Xj9m6datOP/30dtumTJmiJ598Uk6nUx4eHr/ofquqqrRnzx5NmDChXdbU1FR3C/WdO3equbm53c/Dy8tL6enp2rp1qzvfpEmT3O3l9uWrra1VQUGBEhMTJUnjx4//RTkBoLdhnN5fVx6nr7vuOl111VX67LPPNG3aNJ111lkaNWpUu2MmTZrk/jw8PFyDBw9uN44eyjj/w+/ngYSHh+viiy/WjBkzNH36dE2bNk3nnnuuYmNjf/HzA4CegvF1f115fF2/fr02bNig//73v+5txhi5XC5lZ2dr6NCh+x1/sJ/DunXrdMUVV/zsLN7e3u3G9q1bt8rT07Pde+mIiIh247sk+fv7q3///u6vY2NjVVJScsDHOJTfTwDobRi799eVx+5995GWlub+esiQIQoNDdXWrVuVnp6u9evXa9myZe1a4DudTjU2Nqq+vl7+/v6S9v+eXXXVVTrrrLO0Zs0aHX/88Zo5c6YmT54sqfX3ZPTo0QoICHAfP2XKFLlcLmVmZiomJkaSNHz48Hbn0WNjY7Vx48Zf9XyBjsCa4sBh5ufn95P7V6xYoQsuuEAnnXSSPvzwQ61du1Z33nmnHA7HT96utrZWsbGxWrduXbuPzMxM3XLLLYfzKUhSu4Fun8svv9y9NszcuXN1ySWXtCvW/phx48YpOztbDzzwgBoaGnTuuefq7LPP/kUZfigvL0+BgYE/+fHwww8f9H5+is1m228t8K62JsqhfK8AAIzTB9KVx+nLL79cu3bt0oUXXqiNGzcqNTVV//jHPw76uD/XoY6jc+fO1YoVKzR58mTNnz9fgwYN0jfffHPY8wBAd8P4ur+uPL7W1tbqd7/7Xbvv6fr167V9+/Z2hebvH3+wn8PBfgd+jJ+f3yF9P3/Iy8ur3dcHet/+/ccAALTH2L2/rjx2H4ra2lr96U9/avd937hxo7Zv395urfMf5j3xxBOVm5urG2+8Ubt379Zxxx2nP/zhDz/rsQ80Lrtcrl/+ZIAOwkxx4DAbOHCg/Pz8tHDhQl1++eX77V++fLmSkpJ05513urfl5ua2O8bb21tOp7PdtnHjxqmoqEienp5KTk4+4GMPHjxYGRkZuuiii9zbMjIy3J8HBwerb9++WrZsmaZOnerevmzZMqWnpx/0uf3mN7/RrbfeqqeeekpbtmzRnDlzDnqb7z/2rFmzNGvWLJ199tk64YQTVFFRofDwcHl5ee33fA9V3759tW7dup88Jjw8/Ef3DR06VMuWLWu3bdmyZRo0aJD76raoqCjt2bPHvX/79u2qr693f+3t7S1J7Z5DSEiIYmNj9e2337qvRGxpadHq1as1btw4SVL//v3l7e2tZcuWKSkpSVJrsT0jI0M33HCDO99bb70lY4z7xduyZcsUFBSk+Pj4n3zeAID9MU4fWFcdpyUpISFBV155pa688krdcccdev7553Xttde693/zzTfuzil79+5VVlaWe4bboYzzB3KgsX2fsWPHauzYsbrjjjs0adIkvfrqq5o4ceJPPgcA6OkYXw+sq46v48aN05YtWw55xtqh/BxGjRqlhQsX6pJLLjng/gP9fA9k6NChamlp0bfffuuepVZeXq7MzEwNGzbskPL+0MF+PwGgN2LsPrCuOnZLreeWV61a5f4eZGZmqrKy0v3+d9y4ccrMzPxFM9KjoqI0Z84czZkzR0ceeaRuueUW/fWvf9XQoUM1b9481dXVuYvpy5Ytk91u1+DBg3/24wBWoygOHGa+vr667bbbdOutt8rb21tTpkxRaWmpNm/erMsuu0wDBw5UXl6eXn/9daWlpemjjz7SO++80+4+kpOTlZ2drXXr1ik+Pl5BQUGaNm2aJk2apJkzZ+rRRx/VoEGDtHv3bn300Uc644wzlJqaqmuvvVZXXHGFUlNT3TOYNmzYoH79+rnv+5ZbbtG9996r/v37a8yYMZo7d67WrVvXrm3ajwkLC9OZZ56pW265Rccff/whF2Uff/xxxcbGauzYsbLb7XrjjTfUp08fhYaGup/vwoULNWXKFPn4+CgsLOyQv9+/tvXMzTffrLS0ND3wwAOaNWuWVqxYoaefflr//Oc/3ccce+yxevrppzVp0iQ5nU7ddttt7a5+i46Olp+fnz755BPFx8fL19dXISEhuv766/XnP/9ZAwcO1JAhQ/T444+rsrLSfbuAgABdddVVuuWWWxQeHq7ExEQ9+uijqq+v12WXXSZJ+v3vf68nn3xS1157ra655hplZmbq3nvv1U033SS7nWYfAPBzMU7vryuP0zfccINOPPFEDRo0SHv37tVXX321X0vX+++/XxEREYqJidGdd96pyMhIzZw5U9KhjfMHcqCxvaKiQs8995xOO+009e3bV5mZmdq+fXu7EzkA0Fsxvu6vK4+vt912myZOnKhrrrlGl19+uQICArRlyxZ9/vnnevrpp/c7/lB+Dvfee6+OO+449e/fX7Nnz1ZLS4s+/vhj3Xbbbe7nu2TJEs2ePVs+Pj6KjIw8YLaBAwfq9NNP1xVXXKF///vfCgoK0u233664uLj9lkQ5VAf7/QSA3oixe39deeyWWmdjX3vttXrqqafk6empa665RhMnTnQXye+55x6dcsopSkxM1Nlnny273a7169dr06ZNevDBB3/0fu+55x6NHz9ew4cPV1NTkz788EP3++4LLrhA9957r+bMmaP77rtPpaWluvbaa3XhhRe6W6cD3YqlK5oDPZTT6TQPPvigSUpKMl5eXiYxMdE8/PDD7v233HKLiYiIMIGBgWbWrFnmiSeeMCEhIe79jY2N5qyzzjKhoaFGkpk7d64xxpjq6mpz7bXXmr59+xovLy+TkJBgLrjgApOXl+e+7f33328iIyNNYGCgufTSS811111nJk6c2C7bfffdZ+Li4oyXl5cZPXq0+d///ufen52dbSSZtWvXHvC5LVy40EgyCxYsOOTvx3PPPWfGjBljAgICTHBwsDnuuOPMmjVr3Pvff/99M2DAAOPp6WmSkpKMMcbce++9ZvTo0Yf8GL/Gm2++aYYNG+b+WT322GPt9hcWFprjjz/eBAQEmIEDB5qPP/7YhISEuH8uxhjz/PPPm4SEBGO3283UqVONMcY0Nzeb66+/3gQHB5vQ0FBz0003mYsuusicfvrp7ts1NDSYa6+91kRGRhofHx8zZcoUs3LlynaPv2jRIpOWlma8vb1Nnz59zG233Waam5vd+6dOnWquv/76w/1tAYAei3G6va48Tl9zzTWmf//+xsfHx0RFRZkLL7zQlJWVGWOM+eqrr4wk88EHH5jhw4cbb29vk56ebtavX9/uPg42ziclJZknnnhiv8f+4dheVFRkZs6caWJjY423t7dJSkoy99xzj3E6nR32/AGgO2F8ba8rj6/GGLNy5Uozffp0ExgYaAICAsyoUaPMQw895N7/w/HxUH4Ob731lhkzZozx9vY2kZGR5swzz3TvW7FihRk1apTx8fEx+05Hzp07t93vwD4VFRXmwgsvNCEhIcbPz8/MmDHDZGVlufcf6HbvvPOO+f5pzjlz5rR7732w308A6I0Yu9vrymP3vrHvrbfeMv369TM+Pj5m2rRpJjc3t91xn3zyiZk8ebLx8/MzwcHBJj093Tz33HPu/ZLMO++80+42DzzwgBk6dKjx8/Mz4eHh5vTTTze7du1y79+wYYM55phjjK+vrwkPDzdXXHGFqampce//4ZhrjDHXX3+9+xw50JXYjPmRBXcA9AjTp09Xnz599PLLLx+W+3v55Zfd64vsay0KAAB+GcbpX27RokU65phjtHfvXveV+wAASIyvAAB0N4zdP23evHm64YYb2nUhBfDz0T4d6EHq6+v17LPPasaMGfLw8NBrr72mL774Qp9//vlhue89e/boz3/+s373u9/1iBcTAAB0JsZpAAAOP8ZXAAC6F8ZuAFZhQVqgB7HZbPr444911FFHafz48frggw/01ltvadq0ab/6vh999FENGTJEffr00R133NFu38MPP6zAwMADfpx44om/+rEBAOgJGKcBADj8GF8BAOheGLsBWIX26QB+tYqKClVUVBxwn5+fn+Li4jo5EQAA2IdxGgCAw4/xFQCA7oWxGwBFcQAAAAAAAAAAAABAj0X7dAAAAAAAAAAAAABAj0VRHAAAAAAAAAAAAADQY/W6orgxRtXV1aJrPAAA1mJMBgCga2BMBgDAeozHAAB0rF5XFK+pqVFISIhqamqsjgIAQK/GmAwAQNfAmAwAgPUYjwEA6Fi9rigOAAAAAAAAAAAAAOg9KIoDAAAAAAAAAAAAAHosiuIAAAAAAAAAAAAAgB6LojgAAAAAAAAAAAAAoMeiKA4AAAAAAAAAAAAA6LEoigMAAAAAAAAAAAAAeiyK4gAAAAAAAAAAAACAHouiOAAAAAAAAAAAAACgx6IoDgAAAAAAAAAAAADosSiKAwAAAAAAAAAAAAB6LIriAAAAAAAAAAAAAIAei6I4AAAAAAAAAAAAAKDHoigOAAAAAAAAAAAAAOixKIoDAAAAAAAAAAAAAHosiuIAAAAAAAAAAAAAgB6LojgAAAAAAAAAAAAAoMeiKA4AAAAAAAAAAAAA6LEoigMAAAAAAAAAAAAAeiyK4gAAAAAAAAAAAACADmeMseRxPS15VAAAAAAAAAAAAABAj1bV0KzVuRVamb1XGTkVigv101Pnje30HBTFAQAAAAAAAAAAAAC/WnF1o1ZmVygjp0IrsyuUWVyj708OzymrkzFGNputU3NRFAcAAAAAAAAAAAAA/CzGGGWX1bUVwFtngudV1O93XHKEv9KSw5WWEq705HALklIUBwAAAAAAAAAAAAAcRIvTpa17apSRU+H+KKt1tDvGbpOGxga3FsGTw5WWEqboIF+LEn+HojgAAAAAAAAAAAAAoJ3GZqfW5VcqI7tCK3MqtDavUrVNLe2O8fa0a0x8qNJSwpSWHK5xSWEK9vWyKPGPoygOAAAAAAAAAAAAAL1cVUOzVud+1wp9Y0GVHE5Xu2OCfDw1Prm1AJ6eEq6RcSHy9fKwKPGhoygOAAAAAAAAAAAAAL1McXWjVmZXtK0JXqHM4hoZ0/6YqCAfpSeHKy05TGkp4RrSJ1gedps1gX8FiuIAAAAAAAAAcAgaHE6V1DSquLpJJTWNKqluUmVDs0L9vBQR6K2oQB9FBPooMtBbYf7esnfDE8YAAKBnMsYou6yurQDeOhM8r6J+v+OSI/zb1gIPV3pyuJIi/GWzdf/XNBTFAQAAAAAAAPRqdU0tKqlpUnF1o0pqmlTyvX/dBfCaJtU0thz8ztrYbVJ4QGuBPLKtUN5aMPdxF9D3fR4R6C0fz67fdhQAAHQfLU6Xtu6pUUZOhfujrNbR7hi7TRoaG+xuhZ6aHKboIF+LEncsiuIAAAAAAAAAehxjjGq/V+wurWlSSfV3hW/3tpom1TYderHbz8tD0cE+ignyVVSwj0L9vFTV0Kyy2iaV1zpUVtukvfXNchmprLZJZbVNkmoOer9Bvp5tM8293cXyyLbCeaR7W+vngT6ePWLGFgAAOHwam51al1+pjOwKrcyp0Nq8yv1e43h72jUmPlRpKa1rgo9LClOwr5dFiTsXRXEAAAAAAAAA3YYxRtWNLSr9QRvz73++b2Z3vcN5yPcb4O2h6GBfRQf5uP+NCfZRdJCvor/3b9AhFKSbnS7trXOo9HuF8n3//nBbeV2Tmp1GNY0tqmls0a6yuoNm9fG0/6Bw/t0s9MgfFNXD/L275bqfAADgp1U1NGt17net0DcWVMnhdLU7JsjHU+OTw9wzwUfGhcjXq3d2p6EoDgAAAAAAAMByxhhVNTR/18a8uqndjG53a/OaRjU2uw5+h22CfDwV1TazOzrYRzFtBe+ooO8+jw72VaDP4TtV6uVhby2sBx+8/agxRtUNLSptm1X+XcG8SaW1DpW3bS9r+7zO4VRTi0uFlQ0qrGw46P23tnFvXyiPCPBRZJC3Itv+bf3aRxEB3r32RDkAAF1dcXWjVmZXtK0JXqHM4hoZ0/6YqCAfpSeHKy05TGkp4RrSJ5iL49pQFAcAAAAAAABgiaYWpz5cv0cvf5OrLXuq5Wg59GJ3sK9na1H7B7O53bO7g3wUHewjf++ufQrUZrMpxN9LIf5eGhAdeNDjGxxOd1t2dwG9zqHSmv237a13tLVxd+y3huiPCfLxdBfIfzgb/fst3CODDm3WPAAA+PmMMcouq2srgLfOBM+rqN/vuJTIgNYCeNtM8MRwf8bmH9G1XxECAAAAAAAA6HFKqhv1yrd5evXb3P2KtaH+Xu5Z3d+fze2e1d22r7fOaPbz9lBCuL8Swv0PemyL06WKeofKavYVyptaP2/7t7yufSG92WlU09SimqYWZR9CG3dvT7siA7zdhfIftnD/flE9PIA27gAA/JgWp0tb99QoI6fC/fHD10h2mzQ0NthdAE9NDlN00MG70qAVRXEAAAAAAAAAnWJ9fqXmLsvWRxv3qNnZ2u+zT7CvLpyUpFNGxSom2LfXFrs7gqeHvW3W/KG3cW8tmLfONN/Xtr2stv228lqHapta5GhxaXdVo3ZXNR70/m02Kdzf+3szz39iFnpg773oAQDQOzQ2O7Uuv1IZ2RVamVOhtXmVqm1qaXeMt6ddY+JDlZbSOhN8XFKYgn29LErc/VEUBwAAAAAAANBhmp0u/W9TkeYuy9bavEr39vFJYbpkSrJmDO8jLw+7dQEhqX0b9/5Rh9bGvXWmuaOtYP69Avr31kIvr3Woot4hY6TyOofK6xzKKq496P0H+ni2K5r/cBZ6REBrC/fIAB8F+9HGHQDQtVU1NGt17net0DcWVMnhbL9sTJCPp8Z/rxX6yLgQLhI7jCiKAwAAAAAAADjsymub9NrKPL38Ta6Kq5skSV4eNp06qq8unpKsUfGh1gbEr+Ln7aF4b3/Fhx16G3f3eue1P5iF/v210Gsdcjhdqm1qUW1Ti3LL918/9Ye8PeyKCPxuFnpEgI8ig7wV2fZvREBrQb1fVADFBQBApyiubtTK7Iq2NcErlFlcI2PaHxMV5KP05PDWNcFTwjWkTzBLjXQgiuIAAAAAAAAADpvNu6s0b1mO3lu/W46W1hlQkYE++s3ERJ0/IZG1L3uhn93GvbGlbab5vkJ5k0p/MPt8X1G9tqlFDqdLe6oatecgbdzfvXqKxiSEHqZnBQBAK2OMssvq2grgrTPB8yr2v6grJTKgtQDeNhM8MdyfTiediKI4AAAAYKH31hVqSVaZooN91CfYVzHBvooN8VWfEF9FBvpwhTAAAOgWWpwufbG1WC8sy9HK7Ar39lHxIbpkSrJOGhkrH09m6OLgbDabQvy8FOLnpX5RBz++sdm530zz0naF8+8+jwz07vgnAADo8VqcLm3dU6OMnAr3R1mto90xdps0NDbYXQBPTQ7jwkCLURQHAKCHampxctIJ6OJKahr1hzfWq9lpDrjfw25TdJCPu1AeE9xaLHd/3vY1LSABAIBVquqb9XpGnl5akavCygZJra9hThzRR5dMSdG4xFBmQKFD+Xp5KD7s0Nq4AwDwSzQ2O7Uuv1IZ2RVamVOhtXmVqm1qaXeMt6ddY+JDlZbSOhN8XFKYgn29LEqMA6EoDgBAD1LvaNGHG/bo9ZV5igz00XMXpVodCcBPeOWbPDU7jQZGB2rKgEgVVTWqqLpRRVWNKqlplNNl3G0g1+X/+P2E+nu5C+Tf/zemrYDeJ9hXIX5enJAGAACHzfbiGs1dnqN31hSqodkpSQrz99L5ExL1m4lJig3xszghAADAL1PV0KzVud+1Qt9YUCWH09XumCAfT43/Xiv0UfEhTFDq4iiKAwDQA2wqrNJrK/P0/rrdqmm7StHH067qxmauSAS6qMZmp/77Ta4k6YZpg3TyqNh2+1ucLpXVOtxF8qKqBhVVN6m4ulF7qhpUXN2kPVUNamx2qbK+WZX1zdpWVPOjj+frZXe3Z09LDtflR6Yo1J/2kQAA4NC5XEZfZZZo7rIcfb2jzL19SJ8gXTolRaeN6UsHGwAA0O0UVzdqZXZF25rgFcosrpH5QVO/qCAfpSeHt64JnhKuIX2CWfKum6EoDgBAN1XT2Kz31u3W6xl52lRY7d6eFOGvWWkJOnt8PAVxoAt7f/1uldc51DfEVzOGx+y339PD3jrjO8RXSjjwfRhjVN3QoiJ3obxRRVVNKqpuaJt13qSiqgbtrW9WY7NLOeX1yimv17fZFXppRY6uOnqALp6cLD9vTl4DAIAfV9PYrDdWFejFFTnKLa+X1LpO5vRhMbpkSoompITTkQYAAHQLxhhll9W1FcBbZ4LnVdTvd1xKZEBrAbxtJnhiuD+vd7o5iuIAAHQjxhityavU6yvz9OGGPe42hd4eds0Y0UfnpSVoYr8I2blKEejSjDF64etsSdKcycny9LD/ovux2WwK8fdSiL+XBvcJ+tHjGpudbQXzRuVW1OuFr7O1rahGf/lkm+Ytz9YN0wbpnPHxvzhHd7artFYbCqoUG+KrlMgARQX58CYXAIA22WV1enF5jt5Yla86R+t7j2BfT81OT9SFE5OUEM4azgAAoGtrcbq0dU+NMnIq3B9ltY52x9ht0tDYYHcBPDU5TNFBvhYlRkehKA4AQDewt86ht9cWan5GnrKKa93bB0QHanZags4cF6/wANogA93Fil3l2lZUIz8vD81OS+zwx/P18lBSRICSIgI0oV+EzhoXr3fXFurxz7NUWNmgO97eqOeX7tKtMwZrxvA+Pb4o3Njs1CebivTqyjytzK5oty/A20PJkQFKjgxQSkSAUvZ9HhmgMH/WZQcA9HzGGC3dXqa5y7L1VWape/uA6EBdPDlZZ46Lk783pxQBAEDX1Njs1Lr8SmVkV2hlToXW5lWqtm25yX28Pe0aEx+qtJTWmeDjk8IURMfNHo9XsAAAdFHGGK3YVa7XV+brk81FcrS4JLWuC3zKqL46Lz1B4xLDKNAA3dALX+dIks4eH68Q/85/0+Vht+ms8fE6ZXSsXvkmT09/uV27Sut05StrNCYhVLedMEST+kd0eq6OlllUo9dW5umdtYWqamiW1Ho1+Kj4UFXUOVSwt151Dqc2767W5t3V+90+xM+rrVju7y6U7yuas1wFAKC7q3e06K01hXpxeY52lHx3Ie6xQ6J1yZRkHTEgkvceAACgy2lxurQuv1KLs0q1fGe5NhZUyeF0tTsmyMdT47/XCn1UfIh8PFlKrrehKA4AQBdTWtOkN1cXaH5GnnLKv1vPZnjfYM1OT9TpY/pSfAG6sZyyOi3cVixJunhKsqVZfDw9dNkRKTonNV7PL9ml/1uarXX5lTrv+W80dVCUbj1hsIb3DbE0469V72jRh+v36LWMPK3Nq3Rvjwv107mpCTo3LV6xIX6SpKYWp/IrGpRTVqfssjpll9cpp6z1Y3dVo6oamrU+v1Lr8yv3e5zIQG8lRwS0L5ZHBCg50p/ZdACALi2/ol4vrcjR/Ix8VTe2zqIK9PHU2ePjNWdyslIiAyxOCAAA0F5xdaMWZ5VqcWaplm4vdb+G2ScqyEfpyeGta4KnhGtIn2B5sNxkr8fZGQAAugCny2jp9lK9vjJfX2wtVovLSGo9GXXamL46Ly1RI+O7d2EKQKt5y3NkjHTM4Cj1jwq0Oo4kKdjXSzcfP1gXTkrSPxbu0Gsr81rfXGaVauaYvrr5+MHdbs3QjQVVei0jT++v2+1uk+Zpt2na0BjNTk/QkQOj9ntD7OPpoQHRgRoQvf/PpcHhVG5Fa4F8V9m+Ynm9ssvrVFrTpLJah8pqHVqVu3e/2/YJ9lVypH+7YnlKZIASI/y5Mh0AYAljjL7ZVaG5y7L1xdZitb39UHKEv+ZMTtbZ4+NpIQoAALqMZqdLq3P3anFWqRZllmrrnvbd3UL9vXTkwCgdOTBSE1LClRjuT4cb7MdmjDFWh+hM1dXVCgkJUVVVlYKDg62OAwDo5fZUNWhBRoEWrMpXYWWDe/vYxFCdl5aok0fFKsCnZ17DxpiM3qi6sVmTHl6oOodTL1+WriMHRlkd6YByyur0t8+z9MH63ZIkLw+bLpiQpGuOHaDIQB+L0/246sZmvbdut15fmdeu/XlyhL9mpSXqrPFxig7yPeyPW9PYrNzy+tbZ5W0F832zzPfWN//o7ew2qW+oX7tC+b527PFhfvLysB/2rMCBMCYD1qiqb1ZVQ7McTqeaWlxy7Ptwtv/8p/Y5Wr633+mSo8W533FNBzi2qcWpxubv2ooeOTBSl0xJ1tGDomVnFhVgCcZjAGhvT1WDFmW2zgZftqNMNd9bF9xmk0bFhWjq4GhNHRSlMQmhzATHQVEUBwCgkzU7XfpqW4lez8jXoswS96yMED8vnTE2TuelJ2pwnyBrQ3YCxmT0Rv+3dJce/GirBkYH6rMbj+ryVy1vLKjSo59u09LtZZKkAG8PXX5kP11xVD8FdpELdowxWpO3V6+tzNdHG/aoodkpSfL2sOuEEX00Oz1BE1MiLDvBX1nvaC2Ul9cpu7RO2eX17vbstU0tP3o7T7tNCeH+So7wV0pkoFIiW9cxT44IUN9QP97s47BiTAY630cb9ujqV9dYmsHPy0NnjovTxZOTNTCm57//ALo6xmMAvZ2jxaVVORVa1NYWPbO4pt3+8ABvHTUwUkcPjtaRAyMV0YUv2kfXRFEcAIBOklder9cz8vTm6gKV1DS5t09ICdd56Yk6YUQf+Xr1nja6jMnobZwuo6mPfaWCvQ165MyROi890epIh2zZjjL95ZNt2lBQJUmKCPDWNccO0PkTEi1r/723zqG31xbq9ZV52l5S694+MDpQs9MTdebYOIUFeFuS7VAYY1RW62gtln9/hnlbAf37s/d+yNvTrqTw1iL5xH4ROmNsnMK78HNF18eYDHSuBodTx/x1kYqqG+XjaZevl4e8Pe3y9rDLx9Pe+nnb1wf63Ge/fR7y8TrYMT/c56HIIG/5e3eNi9wAMB4D6J0K9tZrUWZrS/TlO8tU73C699lt0piEUE0dFK2jB0dpZFwIHW3wq1AUBwCgAzW1OPXZ5mK9npGnZTvK3dsjArx19vh4zUpLUL8usqZwZ2NMRm/zyaYiXfnKaoX5e2nFHcd1u4tgjDH6eGORHvt0m3LK6yVJCeF+unn6YJ02um+nvDE1xmjFrnK9vjJfn2wukqOltXDs62XXKaP66rz0BI1LDOvyM/APxuUyKq5pbCuU1yu7rFbZZfXKKa9TXnm9HM72BXMvD5umD4vRuakHXisdOBjGZKBzPbVwux7/PEtxoX5aePPUbveaAEDHYDwG0Bs0Nju1MruibW3wEu0srWu3PzLQR1MHRWnq4CgdOSCyS1/sju6Hy0EBAOgAO0pq9frKPL29tlAVdQ5JrWvdHDkwSuelJei4oTHy9mStWKA3eWFZtiTp/AmJ3fLkt81m08mjYnX88BjNz8jX3xduV35Fg26Yv07/XrJLt54wWEcPiuqQgnRpTZPeXF2g+Rl57oK8JA2LDdZ5ExJ1+pi+Cvb1OuyPaxW73abYED/Fhvhpcv/2+5wuo92VDcouq1NWcY3eW7dbGwur9PHGIn28sUixIb46e3y8zhmfoMQIf2ueAADgRxVXN+pfi3ZKkm4/cUi3fE0AAADwc+SW17WuDZ5VqhU7y93LnkmSh92mcYmhOrptbfBhscHMBkeHYaY4AACHSYPDqY837tHrGXnKyNnr3t4n2FfnpsbrnNQEJYRToNiHMRm9yabCKp3yj6/labfp69uOVZ8QX6sj/Wr1jhbNXZajZxftVE3b2tgTUsJ1+4lDNDYx7Fffv9NltHR7qV5fma8vtharxdX6tiXA20OnjYnTeekJGhkX0u1nhR8OW3ZXa8GqfL27rlCV9c3u7ZP6RWhWWkKvW54DPx9jMtB5bn1zvRasKtDYxFC9fdVkxjEAbozHAHqKxmanVuwq1+K2Qnh2WfvZ4NFBPjp6cJSmDorWEQMjFeLXcy5yR9dGURwAgF9py+5qvZ6Rp3fWFqqmsbUw5GG36ZjB0TovPUFTB0XJ04NZ4T/EmIze5KYF6/T2mkKdPqav/j57rNVxDqu9dQ79c9EOvbgi193O/IThffSHGYM1IPrnLw+xp6pBCzIKtGBVvgorG9zbxySE6rz0BJ0yqq8CfGh4dSBNLU59vqVY8zPy9fWOMu17pxfk66nTx/TVualcSIADY0wGOsemwiqd+vTXMkZ6+/eTNe4wXEQGoOdgPAbQXRljlF3WOht8UVapvt1VrqaW75b98rTbND4pzD0bfGhsEO9LYQmK4gAA/AK1TS16f91uvZ6Rpw0FVe7t8WF+mp2WoHNSExQT3P1ngnYkxmT0FiU1jZry5y/V7DR69+opGpMQanWkDlFY2aAnPs/S22sK5DKS3Sadm5qgG6YNOujM+BanS19uK9HrGflalFmitknhCvb11Jnj4jU7PUFD+vB34ucorGzQm6sK9MbqfBXs/e7igiF9gjQrLUEzx8SxNhvcGJOBjmeM0fnPf6sVu8p16ui++sd5PesiOQC/HuMxgO6k3tGiFTvL2wrhJcqvaGi3PzbE1z0bfMqACAX1oCXP0H1RFAcA4BAZY7Quv1Kvr8zXBxt2q97Ruv6Nl4dNxw/ro9npCZrSP5J1bw4RYzJ6i8c/z9JTC7drfFKY3rpqstVxOlxWcY0e/SRTX2wtliT5eNp1yZQUXTW1v0L8278Jzq+o1/yMfC1Yla+Smib39vSUcJ2XnqATR8TS9vtXcrmMVuwq1/yMfH2yucg9m9/bw67pw2N0bmqCjhgQKQ/Grl6NMRnoeJ9vKdYVL62St6ddX948VfFhLKsEoD3GYwBdmTFGO0pqtTirVIsyS7Uyu0IO53ezwb08bEpLDtfRg6N09OBoDYwOZDY4uhz6DgIAcBBV9c16Z22BXs/I17aiGvf2flEBmp2WoLPGxSsi0MfChAC6qsZmp/77Ta4k6dIpKRan6RyDYoL0f3NStSqnQn/5ZJsycvbq2cU79eq3ufr9MQN0/oRELc0q0+sZeVq6vcx9u/AAb509Pl6z0hLUP+rnt13HgdntNk0ZEKkpAyJVVd+s99YXasGqfG0qrNZHG/boow171DfEV2ePj9c5qQlKCKdIAwCHm6PFpYc/3ipJuvyIFAriAACgW6htatGyHWVanFWqxZml7ZY4k6S4UD93EXxy/wiWOkOXx0xxAAAOwBijldkVej0jXx9v3ONeB8fH066TRsZqdlqC0lPCueLxV2BMRm+wYFW+bn1zg/qG+GrJrcfI08NudaROZYzRwq0levTTbcoqrpUk2WzS99+BHDkwUrPTEjV9WIy8PXvX98dKm3dX6Y1VBXpnbaGqGprd2yf3j9CstATNGN6HWfq9CGMy0LHmLsvWnz7YoshAb331h6NpHwrggBiPAXQFtU0teu3bPH25rUSrcivU7PzuDby3p10TUsI1dVBrIbx/VADnRtGtcNkGAADfU17bpLfWtM4K31Va594+pE+QzktP1Mwxcfu1/wWAAzHG6IWvsyVJcyYn97qCuCTZbDZNGxajY4ZE6521hXri8ywVVjYoOshH56TGa1ZqohIjmC1nheF9QzT8tBDdfuIQfbalWG+sytfXO8q0fGe5lu8sV7Cvp04fE6dZaQkaERdidVwA6LYq6x168ovtkqSbpg+mIA4AALokY4w+2LBHD364pd3yZkkR/jp6UJSmDo7SxH4R8vemrIjui99eAECv53IZLdtZptdX5uuzLUXuKyD9vT102ui+mp2eqNHxIVz5COBnWbGrXNuKauTn5aHZaYlWx7GUh92ms8fH65RRscqvqFdKZECvvEigK/L1ah3rThvdVwV76/Xm6gK9sapAhZUNevmbXL38Ta6GxQbr3NR4zRwbp1B/b6sjA0C38tTCHapqaNbgmCCdmxpvdRwAAID97Cip0T3vbdbyneWSWgvhF09O1tGDo5USGWBxOuDwoSgOAOi1iqoa9ebqfM1fla/8iu/WxBkdH6LZ6Yk6dXRfBbIWDoBf6IWvcyRJZ4+Pp8NEG18vDw2MCbI6Bn5EfJi/bpg2SNcdO1DLd5Zr/qp8fbqpSFv2VOu+D7bo4Y+36fjhMZqVlqAp/SNlt3OxGAD8lF2ltXppRY4k6c6Th3JBGAAA6FLqmlr01Jfb9Z+l2WpxGfl42nX1MQP026P6sZwWeiTO9AMAepUWp0uLMkv1ekbr2jiutmVxgnw9dcbYOM1OS9SwvqzdBeDXySmr08JtxZKki6ckWxsG+JnsdpuOGBipIwZGqrLeoffW7db8jHxt2VOtDzfs0Ycb9igu1E9nj4/X2ePjlRBOC3wAOJA//2+bWlxGxwyO0lGDoqyOAwAAIKm1Vfr/NhXpgQ+3aE9VoyTpuCHRuvfU4Sxxhh6NojgAoFfIr6jXglX5emNVgYqqG93b05LDNDstUSeNjJWfN1dAAjg85i3PkTHSMYOj1D8q0Oo4wC8W6u+tOZOTNWdysjYVVmnBqny9u7ZQhZUN+vvC7Xrqy+2a0j9S56TGa8bwPswmAIA2K3aW67MtxfKw2/THk4ZaHQcAAEBSayebe9/frKXbyyRJ8WF+uu/U4Zo2LMbiZEDHoygOAOixHC0ufbG1WK+tzNPXO8pk2maFh/l76axx8ZqdnqAB0bTxBXB4VTc2641V+ZKkS49IsTgNcPiMiAvRiLgQ/fGkofp0c5EWrMrXsh3l+npHmb7eUaYQPy/NHNNX56QmaERciNVxAcAyLpfRgx9tkSSdn57I0iEAAMByDQ6nnvlqh55bsksOp0veHnZdObWffn/MAC5uRq9BURwA0OPsKq3V/Ix8vbWmQGW1Dvf2IwZEanZ6gqYPi5GPJy/2AHSMBRn5qnM4NTA6UEcMiLQ6DnDY+Xp56PQxcTp9TJzyK+r1xuoCvbkqX7urGvXiily9uCJXw/sG69zUBM0cE6cQfy+rIwNAp3prTYE2765WkI+nbpg20Oo4AACgFzPG6LMtxbr/gy0qrGyQJE0dFKU/nTZcyZEBFqcDOhdFcQBAj9DY7NQnm4r02so8fZtd4d4eHeSjc1LjNSs1kTVxAHQ4p8to3vIcSa2zxG02m7WBgA6WEO6vm6YP0vXHDdSyHWWavypfn28u1ubd1br3/c166OOtOmF4H52bmqDJ/SNkt/N/AkDPVu9o0WOfZkqSrjl2gCICfSxOBAAAeqvc8jrd9/5mfZVZKkmKC/XT3acM04zhMZyvQK9EURwA0K1lFtXotZV5emdtoaoamiVJdpt09OBozU5L0LFDouXpYbc4JYDe4vMtxSrY26Awfy+dMTbO6jhAp/Gw23TUoCgdNShKe+scenddoeZn5GtbUY3eX79b76/frbhQP52TGq9zUhMUF+pndWQA6BD/XrxLJTVNSgj308VTkq2OAwAAeqHGZqf+tWin/rV4pxwtLnl52HTFkf10zbED5O9NWRC9l+W//c8884wee+wxFRUVafTo0frHP/6h9PT0Hz3+ySef1L/+9S/l5eUpMjJSZ599th555BH5+vp2YmoAgJXqmlr04Ybdej0jX2vzKt3b40L9dG5qgs5JjVdfTrYDsMALy7IlSedPSGRNLvRaYQHeumRKii6enKxNhdWavypP763brcLKBj35xXb9feF2HTEgUuemJuj44SxpAqDnKKpq1L+X7JQk3XHiUP6+AQCATvfltmLd9/4W5VXUS2pdTvJPpw9X/6hAi5MB1rO0KD5//nzddNNNevbZZzVhwgQ9+eSTmjFjhjIzMxUdHb3f8a+++qpuv/12vfDCC5o8ebKysrJ08cUXy2az6fHHH7fgGQAAOosxRhsLq/Taynx9sH63aptaJEmedpumDY3R7PQEHTkwSh60ZQVgkU2FVVqZXSFPu00XTky2Og5gOZvNppHxIRoZP1J3nTxMn2wq0oJV+Vq+s1xLt5dp6fYyhfp7aeaYOJ2bmqBhfYOtjgwAv8pjn2aqsdml1KQwnTiij9VxAABAL5JfUa/7P9yiz7cUS5L6BPvq7lOG6aSRfWiVDrSxtCj++OOP64orrtAll1wiSXr22Wf10Ucf6YUXXtDtt9++3/HLly/XlClTdP7550uSkpOTdd555+nbb7/90cdoampSU1OT++vq6urD/CwAAB2purFZ760t1Gsr87Vlz3d/w5Mj/DUrLVFnj49XVBDr9HUHjMno6fbNEj95VKz6hNDFCPg+Xy8PzRwbp5lj45RXXq83VufrzdUF2lPVqHnLczRveY5GxAVrVmqCThsdpxB/L6sj92iMycDht7GgSm+tKZAk3XXKME4+AzgoxmMAh0NTi1PPLd6lp7/aoaYWlzztNl12RIquO26gAnwsbxYNdCmW/Y9wOBxavXq17rjjDvc2u92uadOmacWKFQe8zeTJk/XKK69o5cqVSk9P165du/Txxx/rwgsv/NHHeeSRR/SnP/3psOcHAHQcY4xW5+7Vayvz9dHG3WpsdkmSvD3sOmFEH81OT9CkfhGcaOpmGJPRk5XUNOqD9bslSZdMSbE4DdC1JUb46+bjB+uGaYO0dHup3lhVoM+2FGlTYbU2FW7Wgx9t1Qkj+mhWaoIm9ouQnS4whx1jMnB4GWP0wEdbJEkzx/TVmIRQawMB6BYYjwH8WouzSnXve5uUU97aKn1iv3A9cPoIDYwJsjgZ0DXZjDHGigfevXu34uLitHz5ck2aNMm9/dZbb9XixYt/dPb3U089pT/84Q8yxqilpUVXXnml/vWvf/3o4xzoiruEhARVVVUpOJj2fADQlVTUOfT2mgLNz8jX9pJa9/ZBMYGanZaoM8bGKSzA28KE+DUYk9GTPf55lp5auF3jk8L01lWTrY4DdDsVdQ69u7ZQC1bla1tRjXt7QrifzhmfoLPHx6tvqJ+FCXsWxmTg8PpkU5GufGW1fDzt+vIPRyuOv1cADgHjMYBfandlgx74cIv+t6lIkhQd5KM7Tx6q00b3ZRIR8BO6Ve+ERYsW6eGHH9Y///lPTZgwQTt27ND111+vBx54QHffffcBb+Pj4yMfH9rqAkBX5XIZfbOrXK9l5OvTTUVyOFtnhft5eeiUUbGanZ6ocYmhvKDrARiT0VM1Njv1329yJUmXMksc+EXCA7x16REpumRKsjYUVGnBqny9v2638isa9PjnWXriiywdOTBKs1ITNG1YtHw8PayO3K0xJgOHj6PFpUf+t1WS9Nuj+lEQB3DIGI8B/FyOFpf+83W2nlq4XQ3NTnnYbbp4crJumDZQQb4sQQUcjGVF8cjISHl4eKi4uLjd9uLiYvXp0+eAt7n77rt14YUX6vLLL5ckjRw5UnV1dfrtb3+rO++8U3a7vcNzAwAOj5KaRr2xqkALVuUrt63FjySNiAvW7LREnTamr4J5MQegG3h//W6V1znUN8RXM4bHWB0H6NZsNptGJ4RqdEKo7jp5mD7ZvEfzM/L1za4KLckq1ZKsUoX5e2nm2Didm5qgobHMogJgrZdW5Ci3vF5RQT66cmp/q+MAAIAeatmOMt393ibtKq2TJKUlh+n+00fwngj4GSwrint7e2v8+PFauHChZs6cKUlyuVxauHChrrnmmgPepr6+fr/Ct4dH6wwBi7rAAwB+BqfLaElWqV5bmaeF20rkdLX+7Q708dTpY/rqvPREjYgLsTglABw6Y4xe+DpbkjRncrI8PbhIEzhc/Lw9dMbYeJ0xNl655XV6Y1WB3lxdoKLqRs1dlqO5y3I0Kj5E56Qm6LTRfRXix8V0ADrX3jqHnlq4XZL0h+MHKcCnWzVkBAAA3UBRVaMe/GiLPtywR5IUGeitP540VGeMjaOzJvAzWfpq/aabbtKcOXOUmpqq9PR0Pfnkk6qrq9Mll1wiSbrooosUFxenRx55RJJ06qmn6vHHH9fYsWPd7dPvvvtunXrqqe7iOACg6ymsbNCCjHy9sSpfu6sa3dvHJYZqdnqiThkVK39vTiAB6H5W7CrXtqIa+Xl5aHZaotVxgB4rKSJAf5gxWDdOH6Ql20u1ICNfX2wt1oaCKm0oqNKDH27RiSP66Ny0BE1MiZDdzskhAB3v7wu3q7qxRUP6BOns8QlWxwEAAD1Is9Olecty9OQXWapzOGW3SRdNStaN0wdxQTDwC1lagZg1a5ZKS0t1zz33qKioSGPGjNEnn3yimJjWtpN5eXntZobfddddstlsuuuuu1RYWKioqCideuqpeuihh6x6CgCAH9HsdGnh1hK9npGnxVml2tfQI9TfS2eMjdN56YkaFBNkbUgA+JVe+DpHknT2+HiF+POmFOhoHnabjhkcrWMGR6u8tknvrC3UglX5yiqu1bvrduvddbuVGO6vc8bH6+zUeMWGsLYvgI6xo6RWL3+TK0m6+5Rh8uBiHAAAcJh8s6tc97y3SVnFtZJaJxY9MHOEhvelwybwa9hML+s7Xl1drZCQEFVVVSk4mLUWAOBwyy2v0+sZ+XpzdYFKa5rc2yf2C9d56YmaMbyPfL3o7gHGZHR/OWV1OuZvi2SMtPDmqeofFWh1JKBXMsZofUGV5mfk64P1u1Xb1CJJstukowZF6dzUBE0bGiNvT5Y3+DGMycDPd/mLGfpia4mmDY3W/81JszoOgB6A8RhASU2jHv5oq95dt1uSFB7grdtPGKKzx8fTDQs4DOhVCwD41ZpanPp0c7FeX5mn5TvL3dsjA7119vgEzUpLUEpkgIUJAeDwm7c8R8ZIxwyOoiAOWMhms2lMQqjGJITqnlOG6eONezR/Vb5WZldoUWapFmWWKjzAWzPHxGlWWoIG96FTDYBfZ9mOMn2xtUSedpvuOGmo1XEAAEA31+J06aUVuXri8yzVNLXIZpMumJCoPxw/WKH+3lbHA3oMiuIAgF9se3GNXluZr7fXFqiyvlmSZLNJRw2M0nnpCTpuaIy8PJiVBaDnqW5s1hur8iVJl0xJsTgNgH38vD101vh4nTU+XtlldXpjVWv3mpKaJr2wLFsvLMvW6PgQnZuWoFNH91WwL8seAPh5nC6jBz/aKkn6zcQkLowDAAC/yqqcCt317iZtK6qRJI2OD9EDM0doVHyotcGAHoiiOADgkDldRuW1TVqcVarXM/K1Oneve19siK/OSU3Quanxig/ztzAlAHS8BRn5qnM4NSA6UEcOjLQ6DoADSIkM0K0nDNFN0wdpyfZSLcgo0Bdbi7W+oErrC6r0wIdbdNKIWJ2TmqCJ/cJls9GOEMDBvbW6QFv3VCvY11PXHzfQ6jgAAKCbqqhz6M//26oFqwokSaH+XrrthCGalZpAq3Sgg1AUBwC0FrvrmlRS3aSSmkYVVzepuLpRJTVNKqn+7uuy2ia5zHe387DbdOyQaJ2XnqCpg6LlwQs2AL2A02U0b3mOJOnSKSkU0oAuztPDrmOHxOjYITEqq23Su2sLNT8jX9tLavX22kK9vbZQSRH+Ojc1QWeNi1efEF+rIwPoomqbWvTYZ5mSpOuOG6iwANqZAgCAn8flMnpjdb4e+d82d+fN2WkJuvWEIQrntQXQoSiKA0AP5nIZVdQ7WgvcPyh4F1c3qbTt69LaJjm/X+3+CXablBwZoLPGxevs8fGKCebEMYDe5fMtxSrY26BQfy+dMTbO6jgAfobIQB9dfmQ/XXZEitbmV+qNVfn6YP0e5ZbX67FPM/W3zzI1dVCUzk1tXQbG25NlYAB859+Ld6q0pklJEf66cFKS1XEAAEA3s62oWne+s8ndfXNInyA9dMZIjU8KszgZ0DtQFAeAbsjlMtpb71BJTZO74L1vZndxdaOK22Z4l9Y0qeUQi902W+uJ4phgH8UE+So62EfRQb6KCfZVjPtzH0UE+jAjHECv9sKybEnS+emJ8vP2sDgNgF/CZrNpXGKYxiWG6e5ThunjjUVakJGvlTkV+iqzVF9llioiwFtnjI3TuWkJGhQTZHVkABbbXdmg55bskiTdceJQ+XjyGgAAAByauqYW/X3hdv3n62w5XUb+3h66afogXTw5WZ4eXIgLdBaK4gDQhRhjVFnfrOKa/QvdJdVN7u0lNY1qdh56sTsiwEfRQW0F72BfRQf7tn3t694WEeDNizAAOIhNhVVamV0hT7uNGWJAD+Hv7amzx7d2wNlVWqs3VhfordUFKqlp0v99na3/+zpbYxJCdW5qgk4dHasgXy+rIwOwwGOfZqqpxaX0lHDNGB5jdRwAANANGGP06eZi3f/BZu2uapQknTiij+45dZhiQ/wsTgf0PhTFAeAwMcbI4XSpweFUQ7NT9Q6n+/MGR+vXjfu2NzvV4GhRWa2jrZX5vvW7m+Rwug75MSMCvBXtnsn9XcE7JsjHvT0y0EdeFLsB4LDYN0v8pJGxvIEFeqB+UYG67YQhunn6IC3OKtX8jHx9ua1E6/IrtS6/Uvd/uFknjYzVrNQEpaeEy2ajew7QG6zPr9Q7awslSXefPIz/+wAA4KDyK+p13/ubtXBbiSQpIdxP9582QscMibY4GdB7URQH0Gs4XcZdlP5+cbre0aLGZqcaHC735/XfK2Y3/PBrh1P1zU41fm9fY9v9HGKn8oMKD/BW9L7CtrvY/V0L85hgX0UG+rDOJQB0opKaRn2wfrck6dIjUixOA6AjeXrYddzQGB03NEalNU16Z22B5mfka2dpnd5eU6i31xQqOcJf56Qm6Ozx8YoJ9rU6MoAOYozRAx9ukSSdOS5OI+NDLE4EAAC6MkeLS88v3aV/fLldjc0ueXnY9Luj+uvqYwawBBtgMYriAHo0l8vozdUFeuKLLO1pa1HTGbw8bPLz8pCft4f8vT3l6+Uhf28P9zY/r9aPiEBvdwvzqKB9//qwPh0AdEGvfJOnZqfRuMRQjUkItToOgE4SFeSj3x7VX1cc2U9r8iq1ICNfH27YrZzyej32aab+9lmmjh4crXNTE3TskGguWgR6mP9tKtKq3L3y9bLrlhmDrY4DAAC6sG92leuudzdpR0mtJGliv3A9OHOEBkQHWZwMgERRHEAPtqmwSne9u0nr8iv32+fXVqT2dReuPQ5YuP7ua0/5edlbC9zeHvJvO+b7t/H39pBv2+e0KweAnqWx2an/fpMriVniQG9ls9k0PilM45PCdM+pw/TRxj1akJGvVbl79eW2En25rUQRAd46c1ycZqUlcOIL6AGaWpx65H9bJUm/O6o/S6cAAIADKqtt0sMfb9Xba1qXW4kM9NadJw/VzDFxLLsCdCEUxQH0OJX1Dv31s0z999s8GSMF+njqhmkDdcbYuLZZ23ZejABAN9PgcCqnvE79owItmYX5/vrdKq9zqG+Ir04Y3qfTHx9A1xLg46lzUxN0bmqCdpbWasGqfL21ulBltU16fmm2nl+arbGJoZqVmqBTRvdVoA9vvYHu6MXlOcqvaFB0kI9+N7Wf1XEAAEAX43IZvZ6Rr798sk1VDc2y2aTz0xN164whCvH3sjoegB/gnTmAHsPlMlqwqvVFyN76ZknS6WP66o8nDWWdRwDopspqm/TS8hy99E2uKuubFeDtockDIjV1UJSmDopSQrh/h2cwxuiFr7MlSRdNTpYn3UAAfE//qEDdceJQ/eH4wVqUWaoFq/L15bYSrc2r1Nq8Sv3pgy367VH9dOP0QVZHBfAzlNc26R8Ld0iSbpkxWP7enEIDAADf2by7tUvp2rxKSdLwvsF6cOYIjU0MszYYgB/FK3oAPcKGgkrd/d5mrW9rlT44Jkh/On24JvaLsDYYAOAXyS6r0/NLd+mt1QVqanFJkrw97KpzOPX5lmJ9vqVYktQvKsBdIJ/YL0K+Xh6HPcuKXeXaVlQjPy8PzU5LOOz3D6Bn8PKwa/qwGE0fFqOSmka9vaZQC1bla1dpnfy9D//fJgAd6+8Lt6umqUXD+wbrrHHxVscBAABdRG1Tix7/LEvzlmfL1dal9ObjB+nCiUlcRA90cRTFAXRre+sceuyzTL228rtW6TdOH6SLJiWxrjcAdENr8vbq34t36rMtxTKmddvohFBdeVQ/TR8Wo21FNVqcVarFmaVanbdXu0rrtKu0TnOX5cjH064J/SI0dVCUjh4cpX6RAYdluYwXvs6RJJ01Pk6h/t6/+v4A9HzRQb66cmp//e6oflqdu1cpkQFWRwLwM2wvrtF/v82TJN158lDZ7Sy/BQBAb2eM0f82Fen+D7aoqLpRknTyqFjdc8owupQC3QRFcQDdkstlNH9Vvh79Xqv0M8bG6Y4ThyiaFyEA0K24XEYLt5XouSU7lZGz1739uCHR+u1R/ZSeEu4ubo+IC9GIuBBdfcwAVTU0a8XOMi3KLNXirFLtqWrUkqxSLckq1QMfSvFhfu5Z5JMHRP6iNX1zyuq0cFvrrPSLJ6ccnicMoNew2WxKTQ63OgaAn+nhj7fK6TKaPixGk/tHWh0HAABYLLe8Tve8t1mLs0olSUkR/rr/9BGaOijK4mQAfg6K4gC6nfX5lbrnvU1aX1AlSRrSJ0h/Om24JtAqHQC6laYWp95dW6jnluzSztI6SZKXh01njI3TFUf208CYoJ+8fYifl04YEasTRsTKGKPtJbVa3FYgX5ldoYK9Dfrvt3n677d58rTblJocpqmDojV1UJSGxgYd0izyectzZIx09OAoDYgOPCzPGwAAdF1Lskr1VWapPO02/fGkoVbHAQAAFmpqceq5xbv09Fc71NTikreHXVce3V+/P7p/hyzfBqBjURQH0G3srXPo0U8z9XpGa6v0oO+1Sme9FgDoPqrqm/XKt7matzxHpTVNkqQgX09dMCFJl0xJ/kVtx2w2mwbFBGlQTJCuOKqf6h0t+mZXubtInlNer292VeibXRX6yyfbFB3ko6PaZpEfOTDygG3Rqxub9caqfEnSpVOYJQ4AQE/ndBk99NFWSdJFk5JZ+gAAgF5s+Y4y3fXeJu1qu4j/iAGRuv/04eoXxQXzQHdFURxAl+d0Gb2ekafHPs1UZVur9DPHxun2k4YoOohW6QDQXRRWNug/S7M1PyNPdQ6nJCk2xFeXHZGiWWkJCvL1OmyP5e/tqWOHxOjYITGSWtugL9neuhb58p3lKqlp0purC/Tm6gLZba3rlu9rtT4qPlQedpsWZOSrzuHUgOhAHTmQ1qkAAPR0C1blK7O4RiF+XrruuAFWxwEAABYorWnSQx9t0bvrdkuSooJ8dNfJQ3Xa6L6H1HEOQNdFURxAl7aurVX6hu+1Sr//9BFKT2FtRgDoLrbsrtZzS3bqgw175HQZSa1/z397VD+dOrqvvDqh20dyZICSIwN00aRkNbU4tSpnrxZntRbJM4trtDavUmvzKvXkF9sV6u+lIwdGaVVOhaTWWeK88QUAoGfLK6/X3z7LlCRdf9zAA3aRAQAAPZfTZfTqt7l69NNM1TS2yGaTLpqYpJtnDFbwYbyIH4B1KIoD6JIq6hx69JNtmr8q390q/abjB+nCibRKB4DuwBijr3eU6bklu7R0e5l7++T+Efrd1P46amCkZYVmH08PTRkQqSkDIvXHk4ZqT1WDlmS1tllfur1MlfXN+mB96xXhof5eOmNsnCU5AQBAx3O6jOYtz9FfP81UQ7NT/SID9JuJSVbHAgAAnWhjQZXuenej1rdNzBoZF6KHzhihUfGh1gYDcFhRFAfQpThdRq+tbG2VXtXQ1ip9XJxuP5FW6QDQHTQ7Xfp44x79e/EubdlTLUmy26STR/XV747qpxFxIRYn3F9siJ9mpSVqVlqiWpwurcuv1OKsUq3J26tzUxPk5+1hdUQAANABthfX6Na3NmhtXqUkaWK/cD129mh5e3IhNgAAvcXTX27X459nydU2MeuWEwbrgglJ8rDTMQ7oaSiKA+gy1ubt1T3vbdbGwtYr8obGBuuB04crNZlW6QDQ1dU1tej1jHy98HW2CisbJEl+Xh6alZagy45IUUK4v8UJD42nh12pyeGMPQAA9GCOFpeeXbxTT3+5Qw6nS0E+nrrjpKGanZYgOyfAAQDoNeZn5Omvn2VJkk4b3Vd3nTxU0cFMzAJ6KoriACxXXtukRz/J1PxV+ZKkIF9P3Tx9kH5Dq3QA6PJKahr14vIcvfJNnrvDR0SAty6enKzfTExSWADrcQIAgK5jQ0Glbn1zg7YV1UiSjhsSrQfPGKHYED+LkwEAgM60fGeZ7nxnkyTp+uMG6sbpgyxOBKCjURQHYBmny+jVlXn66/dapZ81Ll63nzhEUUE+FqcDAPyUnaW1en7JLr29plAOp0uSlBIZoMuPTNFZ4+Ll60XLcQAA0HU0Njv1xBdZen7JLrmMFB7grXtPHabTRveVzcbscAAAepOdpbW68uXVanEZnTa6r26YNtDqSAA6AUVxAJZYk7dX97y3SZsKW9ebHRYbrAdmDtf4JNrVAkBXtiqnQv9eskufbyl2bxubGKrfHdVf04fFsOYWAADocr7dVa7b396o7LI6Sa3tUe89dZgiArkYGwCA3mZvnUOXzstQdWOLxiWG6tGzR3GBHNBLUBQH0KnKa5v0l0+2acGqAkmtrdL/cPxgXTAhkVbpANBFOV1Gn28p1nNLdmpNXqV7+7ShMfrd1H5KTQrjDSQAAOhyahqb9ZdPtumVb/IkSTHBPnpo5khNGxZjcTIAAGCFphanfvfKauWW1ys+zE/PXZRKpzugF6EoDqBTOF1G//02V3/9NFPVjS2SpHPGx+u2E4cokqvzAaBLamx26u01hXp+6S73zCpvD7vOGBunK45K0YDoIIsTAgAAHNhXmSW68+2N2l3VKEk6Lz1Bd5w0VMG+XhYnAwAAVjDG6I9vb9LK7AoF+XjqhYvTOC8N9DIUxQF0uG1F1brtzQ1aX1AlaV+r9BEanxRmcTIAwI9pcbp07r9XaEPb3+5gX0/9ZmKSLp6crOhgX4vTAQAAHNjeOoce+HCL3l5bKElKDPfXn88cqckDIi1OBgAArPTPRTv11poCedhtevqCcRoUw4X+QG9DURxAh2lqceqZr3bqn1/tUIvLKMjXU7fMGKwLJiSx5iwAdHFvry3UhoIqBfl66vrjBmp2eqICfXjpCAAAuiZjjD7auEf3vrdZ5XUO2W3SpVNSdPPxg+XnTVtUAAB6s4837tFjn2ZKku47bbimDoqyOBEAK3BmE0CHWJu3V7e9tUFZxbWSpOOHxeiBmSMUw+xCAOjyHC0u/f2L7ZKka48doMuP7GdxIgAAgB9XUt2ou97dpM+2FEuSBkYH6tGzR2lsIt3JAADo7dblV+rG+eskSZdMSdaFE5OsDQTAMhTFARxWDQ6n/vZZpl5Yli2XkSICvPWn04fr5JGxstmYHQ4A3cGCVfkqrGxQVJCPLpyYbHUcAACAAzLG6I1VBXrgoy2qaWyRp92m3x8zQFcf018+nswOBwCgtyusbNDlL65SU4tLxw6J1l0nD7M6EgALURQHcNgs31mm29/aqLyKeknSGWPjdM8pwxQW4G1xMgDAoWpsdurpL3dIkq4+uj/tRgEAQJeUX1GvO97eqK93lEmSRsWH6C9njdLQ2GCLkwEAgK6gtqlFl83LUFltk4b0CdJT541lSU+gl6MoDuBXq25s1iMfb9NrK/MkSbEhvnr4jJE6Zki0xckAAD/Xq9/mqai6UbEhvpqdnmh1HAAAgHacLqOXVuTo0U8y1dDslI+nXTcfP0iXTkmRp4fd6ngAAKALcLqMrnttrbYV1Sgy0Ef/uThNgT6Uw4Dejr8CAH6VhVuLdec7m1RU3ShJumBCom4/cYiCfL0sTgYA+LnqHS3656LWWeLXHjtQvl7MEgcAAF3HjpIa3frmBq3Jq5QkpaeE6y9njVJKZIC1wQAAQJfy4Edb9OW2Evl42vV/c1IVF+pndSQAXQBFcQC/SHltk+7/cIveW7dbkpQc4a8/nzVKE/tFWJwMAPBLvbQiV2W1DiWE++mc1Hir4wAAAEiSmp0u/XvxTj21cIccTpcCfTx1+4lDdH56ouy0QQUAAN/z8je5mrssR5L0xKwxGpMQamkeAF0HRXEAP4sxRh9s2KP73t+sijqH7Dbp8iP76cZpg1h3FgC6sZrGZj27eKck6frjBsmL9qMAAMBixhgt21Guhz7eqq17qiVJxwyO0kNnjFRfZnwBAIAfWJxVqvve3yxJumXGYJ00MtbiRAC6EoriAA5ZUVWj7np3k77YWixJGtInSH85a5RGc7UdAHR7c5flqLK+Wf0iAzRzTF+r4wAAgF6surFZb60u0Mvf5GpXaZ0kKczfS/eeOlynj+krm43Z4QAAoL2s4hpd8981crqMzhoXr98f3d/qSAC6GIriAA7KGKP5Gfl66OOtqmlskZeHTdccM1BXHd1f3p7MJASA7q6qvlnPL90lSbph+iB5MkscAABYYFtRtV5akat31xaq3uGUJAX6eOqscXG69riBigz0sTghAADoispqm3TpvAzVNLUoPSVcj5w5kovoAOyHojiAn5RXXq/b396g5TvLJUmjE0L16FmjNLhPkMXJAACHy/NLd6mmsUWDY4J0Cq3FAABAJ2p2uvTJpiK9/E2uVmZXuLcPjA7URZOSdMa4eAX6cPoKAAAcWGOzU799aZUK9jYoOcJf//7NeCZyATgg3lUAOCCny2je8hz99dNMNTQ75etl1x+OH6xLpqTIw85VdgDQU5TXNmnusmxJ0o3TB8nO33gAANAJiqsb9d9v8/TayjyV1jRJkjzsNs0YHqMLJyZrYr9wZngBAICfZIzRrW9u0Jq8SgX7euo/F6cpLMDb6lgAuiiK4gD2s724Rre+tUFr8yolSRP7hevPZ45ScmSAtcEAAIfdv5fsUp3DqRFxwZoxPMbqOAAAoAczxuibXRV6+Zscfbq5WE6XkSRFBfnovPREnZ+eqD4hvhanBAAA3cWTX2zX++t3y9Nu07MXjlf/qECrIwHowiiKA3Brdrr0r0U79fSXO+RwuhTo46k/njRUs9MSmDkIAD1QSXWjXlqRI0m6afogZmMBAIAOUdvUonfWFOjlb3KVVVzr3p6eHK4LJyVpxvA+tDkFAAA/y3vrCvX3hdslSQ+dMUKT+0danAhAV0dRHIAkaWNBlW55c722FdVIko4dEq2Hzhih2BA/i5MBADrKPxftVGOzS2MTQ3XM4Gir4wAAgB5mR0mNXl6Rq7fWFKq2qUWS5O/toZlj43TRpCQN6RNscUIAANAdrcqp0C1vbJAk/W5qP81KS7Q4EYDugKI40Ms1Njv15Bfb9fzSXXK6jML8vXTfacN12ui+zBgEgB5sd2WDXv02T5J08/TB/M0HAACHRYvTpS+2FuulFblavrPcvb1fVIAunJiks8bHK9jXy8KEAACgO8srr9dvX14th9OlGcNjdNuMIVZHAtBNUBQHerGV2RW6/a0N2lVWJ0k6dXRf3XvqMEUG+licDADQ0f7RtlTGhJRwTRkQYXUcAADQzZXWNOn1lXl6dWWe9lQ1SpLsNmna0BhdNClZUwZEcBEeAAD4VaoamnXpixmqqHNoRFywnpg1hmU/ARwyiuJAL5NXXq/PthTps83FWplTIUmKCfbRgzNHavqwGIvTAQA6Q155vd5YlS9Juvl4ZokDAIBfxhij1bl79dKKXP1v0x41O40kKSLAW7PTE3T+hCTFhbIkFwAA+PWanS5d8+oa7SipVZ9gX/1nTpr8vSlxATh0/MUAejhjjDbvrtZnW4r12eYi95rh+8xOS9AdJw1ViB/t6wCgt/j7wu1qcRkdOTBS6SnhVscBAADdTL2jRe+t262XVuRq655q9/ZxiaG6aFKyThzZRz6eHhYmBAAAPYkxRve9v1lLt5fJz8tD/zcnVTHBvlbHAtDNUBQHeqAWp0sZOXvdM8ILKxvc+zzsNk1ICdfxw2I0fXgfrtoHgF5mZ2mt3llbIKl1ljgAAMChMsbo6S936Lmlu1TT2CJJ8vWy6/TRcbpwUpJGxIVYnBAAAPRELyzL0X+/zZPNJj113lhecwD4RSiKAz1Eg8OpJdtL9dnmYi3cVqzK+mb3Pl8vu6YOitLxw/ro2CHRCgvwtjApAMBKT36xXS4jTRsarTEJoVbHAQAA3cgr3+bpb59nSZKSIvx14cQknT0+XqH+vMcEAAAdY+HWYj340RZJ0h9PHMoSoAB+MYriQDe2t86hhdtK9NnmIi3ZXqrGZpd7X5i/l44bGqPjh8XoyIFR8vOmdR0A9HaZRTX6cMNuSdKN0wdZnAYAAHQnmwqr9MAHrSekb5kxWFdN7S+73WZxKgAA0JNt2V2ta19bK2Ok89ITdfmRKVZHAtCNURQHupmCvfX6fEuxPttcrJU5FXK6jHtfXKifZgzvo+OHxyg1KUyeHnYLkwIAuponPs+SMdJJI/toeF9ajQEAgENT3dis3/93jRxOl6YPi9Hvj+4vm42COAAA6Dgl1Y267MUM1TucOmJApO4/fTivPwD8KhTFgS7OGKPM4hp9trlYn24u0ubd1e32D40N1vHDYnT88BgNiw3mhQEA4IA2FVbpk81FstmkG6YxSxwAABwaY4xue3OD8irqFR/mp7+ePZr3nQAAoEM1OJy6/KVV2lPVqP5RAXrmgnHyYgIYgF+JojjQBTldRmvy9urTTUX6bEux8irq3fvsNik1Oby1ED6sjxIj/C1MCgDoLh5vW//z9NF9NSgmyOI0AACgu3hpRa7+t6lIXh42PXP+OIX4e1kdCQAA9GAul9GN89dpQ0GVwvy99MLFaQrx4/UHgF+PojjQhRhj9I8vd+jF5Tkqr3O4t3t72nXUwEgdP7yPjhsSrYhAHwtTAgC6m9W5e/XlthJ52G26nlniAADgEG0oqNSDH7WuI/7Hk4ZqdEKotYEAAECP989FO/TJ5iJ5e9j13EWpSooIsDoSgB6CojjQhbzybZ57Jl+wr6emDW1ti37kwCgF+PDfFQDwyzzRNracNS5OKZG8mQQAAAdX1dCsq19do2an0QnD++jiyclWRwIAAD1cdlmdnlq4Q5L04BkjlJYcbnEiAD0JVTagi1iXX6n7P9gsSbpp+iBddXR/1kkBAPxq3+wq19c7yuTlYdO1xw60Og4AAOgGjDG69c31yq9oUEK4n/5y9ijWEQcAAB3KGKN73tskh9OlowZF6Zzx8VZHAtDDUBQHuoCKOod+/8pq9xX41x47gBMOAIBfzRijxz9rnSV+bmqCEsL9LU4EAAC6gxeW5ejTzcXy9rDrn+ePZx1PAADQ4T7csEdLt5fJ29Ou+08bzvlxAIcd01ABizldRte/vla7qxrVLzJAj53DFfgAgMNj6fYyrcypkLenXdccO8DqOAAAoBtYm7dXj3y8VZJ01ylDNTI+xOJEAACgp6tpbNYDH26RJP3+6P5KZuk3AB2Aojhgsb9/kaWl28vk5+Whf/1mvIJ8uQIfAPDrGWP0t7a1xC+YkKjYED+LEwEAgK6ust6ha15dqxaX0ckjY3XhxCSrIwEAgF7g8c+zVFLTpOQIf105tb/VcQD0UBTFAQt9ua1YT325Q5L0yJkjNbhPkMWJAAA9xcKtJVqfXyk/Lw9ddTRvKAEAwE8zxugPb6xXYWWDkiL89eezRtLFDAAAdLhNhVV6cXmOJOmBmSPk6+VhbSAAPRZFccAi+RX1uuH1dZKkiyYlaebYOGsDAQB6DJfL6PG2WeIXTU5SdJCvxYkAAEBX939Ls/XF1hJ5e9r1zPnj6GIGAAA6nMtldNe7m+Qy0imjYnXkwCirIwHowSiKAxZobHbqyldWq7qxRWMSQnXXycOsjgQA6EE+2VykLXuqFejjqSuPYpY4AAD4aatz9+ovn2yTJN1zyjCNiGMdcQAA0PFey8jTuvxKBfp46u5TOEcOoGNRFAcscO97m7V5d7XCA7z1zwvGyduT/4oAgMPD6TJ6om2W+KVTkhUW4G1xIgAA0JXtrXPo2lfXqMVldOrovrpgQqLVkQAAQC9QVtukv/yv9aK8m48fpJhgutwB6FhU4oBONj8jT/NX5ctuk56aPVZ9Q/2sjgQA6EE+3LBb20tqFezrqcuO7Gd1HAAA0IW5XEY3LVin3VWN6hcZoEfOZB1xAADQOR75eJuqG1s0LDZYF05MsjoOgF6AojjQiTYVVunu9zZLkm4+frCOGBhpcSIAQE/S4nTpyS+2S5J+e1Q/hfixFigAAPhx/16yS19llsrH065nLhinQB9PqyMBAIBe4Ntd5XprTYFsNumhM0bI04NSFYCOx18aoJNU1jt05Sur5WhxadrQaF01lTVeAQCH19trC5VdVqfwAG9dPCXF6jgAAKALy8ip0F8/y5Qk3XfacA2NDbY4EQAA6A0cLS7d9e4mSdJ56YkamxhmcSIAvQVFcaATtLakW6+CvQ1KDPfX384ZI7udlnQAgMPH0eLS39tmiV85tR8zvQAAwI8qr23Sta+uldNlNHNMX81OS7A6EgAA6CX+83W2tpfUKiLAW7fNGGJ1HAC9CEVxoBM889UOfbmtRD6edv3rN+MU4k87WwDA4bVgVb4KKxsUFeSjCycmWx0HAAB0US6X0Y0L1quoulH9owL00BmsIw4AADpHwd56PbWw9YL+P540lPPkADoVRXGggy3dXqrHv8iSJD0wc4SG9w2xOBEAoKdpbHbq6S93SJKuPrq//Lw9LE4EAAC6qn8t3qklWaXy9bLrnxeMVwDdZQAAQCe57/0tamh2Kj0lXGeOi7M6DoBehqI40IEKKxt03WtrZYx0XnqCzk2lJR0A4PB79ds8FVU3qm+Ir86bkGh1HAAA0EV9s6tcf2tbR/z+00docJ8gixMBAIDe4vMtxfpia7E87TY9OHMEnWoAdDqK4kAHaWpx6vf/XaO99c0aERese08dbnUkAEAPVO9o0T8Xtc4Sv+bYgfLxZJY4AADYX2lNk657ba1cRjprXDwXbQMAgE5T72jRfe9vliRdfmQ/DYrhwjwAnY+iONBBHvxwq9bnVyrEz0v/umC8fL0oUgAADr+XVuSqrNahhHA/nZMab3UcAADQBTldRjfOX6eSmiYNjA7UAzO5aBsAAHSef3y5Q4WVDYoL9dN1xw2wOg6AXoqiONAB3llboJe/yZXNJj05e4wSwv2tjgQA6IFqGpv17OKdkqTrjxskLw9e2gEAgP09/eUOfb2jTH5eHvrnBePk78064gAAoHNsL67R80t2SZLuO204r0MAWIYzp8Bhtq2oWne8vVGSdO2xA3XM4GiLEwEAeqq5y3JUWd+sfpEBmjmmr9VxAABAF7R8R5meXJglSXpw5ggNpF0pAADoJMYY3fXuJrW4jKYNjdH0YTFWRwLQi1EUBw6j6sZmXfXKGjU2u3TkwEhdf9xAqyMBAHqoqvpmPb+09UrrG6YPkiezxAEAwA+U1DTqutfXyRjp3NR4nTWepVYAAEDneXtNob7NrpCvl133njrM6jgAejnOngKHiTFGt7yxXtlldYoL9dPfZ4+Vh91mdSwAQA/1/NJdqmls0eCYIJ0yMtbqOAAAoItxuoyuf22dymqbNDgmSH86bYTVkQAAQC9SVd+shz/eKkm67riBLDEKwHIUxYHD5Lklu/Tp5mJ5e9j1zwvGKTzA2+pIAIAeqry2SXOXZUuSbpw+SHYuwgIAAD/w94XbtWJXufy9PfTMBePk5+1hdSQAANCLPPrpNpXXOTQwOlCXH9HP6jgAQFEcOBxW7CzXXz7ZJkm697RhGp0Qam0gAECP9u8lu1TncGpEXLBmDGc9LgAA0N7S7aX6x5fbJUkPnzFSA6IDLU4EAAB6k3X5lXp1ZZ4k6YGZI+TtSSkKgPUs/0v0zDPPKDk5Wb6+vpowYYJWrlz5k8dXVlbq6quvVmxsrHx8fDRo0CB9/PHHnZQW2F9xdaOufW2tXEY6c1yczk9PtDoSAKAHK6lu1EsrciRJN08fLJuNWeIAAOA7xdWNuqFtHfHz0hM0c2yc1ZEAAEAv0uJ06c53Nsq0nS+f2C/C6kgAIEnytPLB58+fr5tuuknPPvusJkyYoCeffFIzZsxQZmamoqOj9zve4XBo+vTpio6O1ptvvqm4uDjl5uYqNDS088MDkpqdLl393zUqq23SkD5BemjmSIoTAIAO9c9FO9XY7NLYxFAdPTjK6jgAAKALaXG6dO1ra1Ve59DQ2GDde+pwqyMBAIBe5uVvcrV5d7WCfT31x5OGWh0HANwsLYo//vjjuuKKK3TJJZdIkp599ll99NFHeuGFF3T77bfvd/wLL7ygiooKLV++XF5eXpKk5OTkzowMtPPIx9u0Knevgnw89exvxrNGGwCgQ+2ubNCr37a2H/vD8cwSBwAA7T35xXatzK5QgLeHnjl/rHy9eI8KAAA6T0l1o/72WZYk6dYThigy0MfiRADwHcvapzscDq1evVrTpk37LozdrmnTpmnFihUHvM3777+vSZMm6eqrr1ZMTIxGjBihhx9+WE6n80cfp6mpSdXV1e0+gMPhww279cKybEnS384dreTIAIsTAUDXxpj86/3jyx1yOF2akBKuyf1pPwYA+GUYk3umxVmlembRDknSI2eNUr8o1hEHgK6M8Rg90QMfbVVtU4tGJ4SyzCiALseyonhZWZmcTqdiYmLabY+JiVFRUdEBb7Nr1y69+eabcjqd+vjjj3X33Xfrb3/7mx588MEffZxHHnlEISEh7o+EhITD+jzQO+0oqdFtb26QJF05tb+OH97H4kQA0PUxJv86eeX1emNVviTpZmaJAwB+BcbknmdPVYNunN+6jvgFExJ12ui+VkcCABwE4zF6mqXbS/XB+t2y26SHZo6Q3c55CwBdi2VF8V/C5XIpOjpazz33nMaPH69Zs2bpzjvv1LPPPvujt7njjjtUVVXl/sjPz+/ExOiJ6ppadOUra1TncGpSvwj94fhBVkcCgG6BMfnX+fvC7WpxGR05MFLpKeFWxwEAdGOMyT1Li9Ol615bq4o6h4b3DdbdpwyzOhIA4BAwHqMnaWx26p73NkuSLpqUrBFxIRYnAoD9WbameGRkpDw8PFRcXNxue3Fxsfr0OfCs29jYWHl5ecnD47s1sYYOHaqioiI5HA55e3vvdxsfHx/5+LBuBQ4PY4xue2uDdpTUKibYR0+dN1aeHt3q2hIAsAxj8i+3s7RW76wtkNQ6SxwAgF+DMbln+etnWcrI2atAH089c/441hEHgG6C8Rg9yb8X71J2WZ2ig3x0M5PIAHRRllXzvL29NX78eC1cuNC9zeVyaeHChZo0adIBbzNlyhTt2LFDLpfLvS0rK0uxsbEHLIgDh9u85Tn6cMMeedpt+ucF4xQVxAtXAEDHe/KL7XIZadrQaI1JCLU6DgAA6CK+3FasZxfvlCQ9evYoJUcGWJwIAAD0NjlldXpm0Q5J0t2nDFOQr5fFiQDgwCyd4nrTTTfp+eef14svvqitW7fqqquuUl1dnS655BJJ0kUXXaQ77rjDffxVV12liooKXX/99crKytJHH32khx9+WFdffbVVTwG9yKqcCj300VZJ0p0nD9X4JFrXAgA63raian24Ybck6cbpXG0NAABaFVY26KYF6yVJcyYl6aSRsRYnAgAAvY0xRve8v1mOFpeOGBCpU0bxegRA12VZ+3RJmjVrlkpLS3XPPfeoqKhIY8aM0SeffKKYmBhJUl5enuz27+r2CQkJ+vTTT3XjjTdq1KhRiouL0/XXX6/bbrvNqqeAXqK0pklXv7pGLS6jU0bF6uLJyVZHAgD0Ek98niVjpJNG9tHwvqzJBQAApGanS9e+ukaV9c0aGReiP5481OpIAACgF/rfpiItySqVt4dd958+XDabzepIAPCjLC2KS9I111yja6655oD7Fi1atN+2SZMm6ZtvvungVMB3WpwuXffaWhVXN2lAdKD+ctYoBncAQKfYVFilTzcXy2aTbpjGLHEAANDqsU8ztSavUkG+reuI+3iyjjgAAOhctU0tuv+DLZKkK4/ur35RgRYnAoCfZmn7dKA7+OtnWVqxq1wB3h569jfjFeBj+bUkAIBe4vHPsyRJp4/uq0ExQRanAQAAXcEXW4r13JJdkqTHzh6txAh/ixMBAIDe6InPs1RU3aikCH/9/uj+VscBgIOiKA78hIycCj27eKck6dGzR2tANFe7AQA6x+rcvfpyW4k87DZdzyxxAAAgqWBvvW5+o3Ud8UumJOuEEX0sTgQAAHqjLburNW95jiTp/tNHyNeLrjUAuj6K4sBPeHlFriTp7PHxOnlUrMVpAAC9yRNts8TPGhenlMgAi9MAAACrOVpcuvrVtapqaNbohFDdcSLriAMAgM7nchnd9e5GOV1GJ4+M1dRBUVZHAoBDQlEc+BF76xz6ZFORJOniycnWhgEA9Crf7CrX1zvK5OVh07XHDrQ6DgAA6AL+/L9tWp9fqWBfTz193lh5e3JKBwAAdL4Fq/K1Jq9SAd4euvuUYVbHAYBDxjso4Ee8s7ZQDqdLI+KCNSIuxOo4AIBewhijxz9rnSU+Ky1BCeGsEwoAQG/3yaYivbAsW5L013NG8/oAAABYoqLOoT9/sk2SdOP0QeoT4mtxIgA4dBTFgQMwxmh+Rr4kaVZaosVpAAC9ydLtZVqZUyFvT7uuOYZZ4gAA9Ha7Smt1y5ut64hffkSKjh/OOuIAAMAaj3y8VZX1zRoaG0x3VQDdDkVx4ADW5Vcqs7hGvl52nTa6r9VxAAC9hDFGf2tbS/w3E5K44hoAgF6uuLpRF/5npWoaWzQ2MVS3nTjE6kgAAKCXysip0BurCyRJD84cIU8PyksAuhf+agEHsG+W+EkjYxXi52VxGgBAb7Fwa4nW51fKz8tDVx3d3+o4AADAQlX1zbroPytVWNmg5Ah/PXdhqrw4+QwAACxQXtukO97eKEk6Lz1B45PCLE4EAD+fp9UBgK6mtqlF76/fLUmaTet0AEAncbmMHm+bJT5ncrKignwsTgQAAKzS4HDqshczlFlco6ggH7182QReGwAAAEvkltdpzgsrlVNer8hAH906g841ALoniuLAD3y4frfqHU71iwpQWjJXvAEAOscnm4u0ZU+1An089buj+lkdBwAAWKTZ6dLVr67Rqty9CvL11EuXpish3N/qWAAAoBfaUFCpS+dlqKzWofgwP714abrCArytjgUAvwhFceAHXm9rnT47LUE2m83iNACA3sDpMnqibZb4pUek8AYTAIBeyuUyuu2tDfpyW4l8PO36z5w0DY0NtjoWAADohb7KLNHV/12jeodTw2KDNe+SNEUH+1odCwB+MYriwPdsK6rWuvxKedptOnNcvNVxAAC9xAfrd2t7Sa2CfT112REpVscBAAAW+fMn2/T2mkJ52G165vxxSk8JtzoSAADohd5Yla/b394op8voyIGR+ucF4xTk62V1LAD4VSiKA9/z+srWWeLTh8UoMpD12gAAHa/F6dLfF26XJP1uan+F+PEmEwCA3ujfi3fquSW7JEl/PnOkpg2LsTgRAADobYwxevrLHfpbWze7M8bG6S9njZK3p93iZADw61EUB9o0Njv1ztpCSdKstASL0wAAeou31xYqu6xO4QHeunhystVxAACABRasytcj/9smSbrjxCE6J5X3pAAAoHO1OF265/3NevXbPEnSVUf3160zBrPEKIAeg6I40ObTzUWqamhWXKifjhwYZXUcAEAv4Ghx6e9ftM4Sv3JqPwX48NIMAIDe5vMtxbrj7Y2SpN8e1U+/m9rf4kQAAKC3aXA4de1ra/XF1mLZbNJ9pw7XHC7cB9DDcOYVaDM/o7V1+jmp8fKwc/UbAKDjLViVr8LKBkUF+ejCiclWxwEAAJ1sZXaFrnl1jZwuo7PGxev2E4ZYHQkAAPQyFXUOXfZihtbmVcrb066nZo/RCSNirY4FAIcdRXFAUm55nZbvLJfNJtrUAQA6RWOzU09/uUOSdPXR/eXn7WFxIgAA0Jm27qnWZS9mqKnFpeOGROvPZ42UnQu0AQBAJ8qvqNecF1ZqV1mdQvy89H9zUpWWHG51LADoEBTFAX03S/yogVGKC/WzOA0AoDd49ds8FVU3qm+Ir86bkGh1HAAA0InyK+p10QsrVdPYotSkMD19/jh5editjgUAAHqRTYVVunhuhspqmxQX6qcXL03TgOggq2MBQIehKI5er8Xp0hurCyRJs9OYJQ4A6Hj1jhb9c1HrLPFrjh0oH09miQMA0FuU1Tbpwv98q9KaJg2OCdJ/5qTRMQYAAHSqJVmluuqV1apzODWkT5BevDRdMcG+VscCgA5FURy93leZpSqtaVJkoLeOGxpjdRwAQC/w0opcldU6lBjur3NS462OAwAAOklNY7MunrtSOeX1igv100uXpSvE38vqWAAAoBd5e02Bbn1zg1pcRpP7R+jZC8cr2JfXIwB6Pori6PXmZ+RJks4aFy9vT9rVAQA6Vk1js55dvFOSdN1xA2mVCgBAL9HY7NRvX1qtTYXVigjw1suXMSMLAAB0HmOM/rV4px79JFOSdNrovvrrOaM5Jw6g16Aojl6tqKpRX24rkSSdS+t0AEAnmLssR5X1zeoXFaCZY/paHQcAAHQCp8voxvnrtGJXuQK8PTTvknT1iwq0OhYAAOglnC6jP32wWS+tyJUk/e6ofrrthCGy220WJwOAzkNRHL3am6vz5TJSenK4+nNCAgDQwarqm/X80l2SpBumDZIns8QBAOjxjDG6+71N+t+mInl72PX8RakaGR9idSwAANBLNDY7df3ra/Xp5mLZbNLdJw/TpUekWB0LADodRXH0Wi6X0fxV+ZKkWcwSBwB0gueX7lJNY4sGxwTplJGxVscBAACd4InPs/Tqt3my2aQnZ4/R5AGRVkcCAAC9RGW9Q5e/uEqrcvfK28OuJ2aN0cmjOB8BoHeiKI5ea8WucuVXNCjI11MnUZgAAHSw8tomzV2WLUm6cfogWpQBANALzFuWrae+3CFJeuD0Ebz3BAAAnaZgb73mvLBSO0vrFOTrqecvStXEfhFWxwIAy1AUR6/1ekbrLPGZY+Lk5+1hcRoAQE/37yW7VOdwakRcsGYMj7E6DgAA6GDvrSvUfR9skSTdNH2QfjMxyeJEAACgt9iyu1oXz12pkpomxYb4at4l6RrcJ8jqWABgKYri6JX21jn06aYiSbROBwB0vJLqRr20IkeSdPP0wbLZmCUOAEBPtjirVDcvWC9JumhSkq49doDFiQAAQG+xbEeZfvfyatU2tS7fNu/SNMWG+FkdCwAsR1EcvdLbawvlcLo0Ii5YI+JCrI4DAOjh/rlopxqbXRqXGKqjB0dZHQcAAHSgtXl7ddUrq9XiMjplVKzuO3U4F8QBAIBO8d66Qv3hjfVqdhpNSAnXcxelKsTPy+pYANAlUBRHr2OM0fyMPEnSrLREi9MAAHq63ZUNevXb1nHn5uOZJQ4AQE+2o6RGl87LUL3DqSMHRurxc8fIbmfsBwAAHcsYo+eW7NIj/9smSTp5VKweP3e0fDxZNhQA9qEojl5nbX6lsopr5etl1+lj+lodBwDQw/3jyx1yOF2akBKuyf0jrI4DAAA6yO7KBl30n5XaW9+s0fEh+tdvxsvb0251LAAA0MM5XUYPfLhF85bnSJIunZKiu04eyoV5APADFMXR68xfmS9JOnlkXwX70joGANBx8srr9caq1nGHWeIAAPRce+scuuiFldpd1ah+UQF64eI0BfpwygUAAHSsxmanblqwTh9vLJIk3XXyUF1+ZD+LUwFA18Q7NPQqtU0t+mDDbknS7PQEi9MAAHq6vy/crhaX0ZEDI5WeEm51HAAA0AHqHS26ZF6GdpTUqk+wr166NF0RgT5WxwIAAD1cVX2zrnh5lVZmV8jLw6a/nTtGp42mMyoA/BiK4uhVPli/W/UOp/pFBSg1KczqOACAHmxnaa3eWVsgqXWWOAAA6HkcLS5d+coarcuvVIifl166LF3xYf5WxwIA/D979x0eRbm+cfze9J4AIQ0CoYYOAgmCBVAUGyqKYqXZj6hHPGIX9agcUREL/qyA4KHY8KgoKAhSVAgdKaETSgohkEra7vv7IxCJtCBJZrP7/VwXl+7s7Oy9C7PP7jzzvgO4uP25Rbr1o9+1OT1Pwb5eev/2LurRPNzqWADg1GiKw61MTyqbwvamhFimsAUAVKtxc7fIYaQ+rSPUKTbM6jgAAKCKORxGj36xRgs375eft4cmDElQy8hgq2MBAAAXZ4zRE1+t0+b0PEWG+GrS0ES1jg6xOhYAOD2a4nAbG1NztGb3IXl72nRd54ZWxwEAuLBNaTn67sjlOh6+pKXFaQAAQFUzxuiF7zbof6v3ycvDpv+7rYu6MBsZAACoAd+s2ae5G9Pl7WnTJ8MS1SqKhjgAVIaH1QGAmjLjyCjxS9pEKpzruwEAqtEbP22WMdIV7aPUNibU6jgAAKCKvbtgmyb9ulOS9OoNHdQ7PsLaQAAAwC1k5BZq1DfrJUkPXtSChjgAnAGa4nALhSV2zVy1V5I0MKGRxWkAAK7sj73ZmrM+XTab9HAfRokDAOBqpi1L0atzkiVJz1zVRv3PYSYyAABQ/YwxeubrP3SooERtY0J0b69mVkcCgFqFpjjcwpz1aco+XKIGYf46v3m41XEAAC5s7E+bJUnXdIxRC64rCgCAS5n9R6qemrlOkvSPXs10x/lNLE4EAADcxXdrUzVnfbq8PGx6dUBHeXvS3gGAM3FG1xTPycnR0qVLVVxcrMTERNWvX7+6cgFVavqysqnTb+jaUJ4eNovTAABc1YpdB/Xzpgx5etj0EKPEAQBwKb9uy9SD01bLYaSBXWP1aN94qyMBAAA3cSCvqHza9Pt7N1ebGKZNB4AzVemm+OrVq3XFFVcoPT1dxhgFBwfrs88+U9++faszH3DWdmbm67ftB2SzSTd2jbU6DgDAhb1xZJT49Z0bqEl4oMVpAABAVfljb7bunrxCxXaHLm0TqZf6t5PNxgnXAACgZjz7zXpl5RerVVSw7u/d3Oo4AFArVXp+jccee0xNmjTR4sWLtWLFCl188cUaPnx4dWYDqsRny8tGifdsWV8xYf4WpwEAuKrftx/Q4q2Z8va06YGLWlgdBwAAVJGdmfkaMnGZ8opK1a1JXb118znyYrpSAABQQ35Yl6pZa1Pl6WHTazd0lI8X30MA4O+o9EjxFStW6Mcff1Tnzp0lSRMmTFDdunWVk5OjkBCm6oBzKrU79PmKPZKkmxIYJQ4AqB7GGI39sWyU+MCEWMXWDbA4EQAAqAoZOYUaNGGZMvOK1To6RB8O7io/b0+rYwEAADeRlV+sZ/73hyTpvp7N1K5BqMWJAKD2qvQpRVlZWWrYsGH57bCwMAUGBurAgQPVEgyoCj9vytD+3CKFB/noolaRVscBALioRVsytWxnlny8PDS8N6PEAQBwBdmHSzR4YpJSsgrUqG6APhmWoBA/b6tjAQAAN/LcN+uVmVeslpFBeuBipk0HgLNR6ZHikrRhwwalpaWV3zbGaOPGjcrNzS1f1qFDh6pLB5ylGUllU6df37kh08oAAKqFMUavH7mW+G3dGisq1M/iRAAA4GwVlth11+Tl2piao/AgX025I1ERwdR4AABQc+asT9M3a/bJwya9OqCjfL2YrQYAzsYZNcUvvvhiGWMqLLvqqqvK/99ms8lut1dNMuAspWUXan5yhqSyqWwBAKgO8zZmaM3uQ/L39tR9vZpZHQcAAJylUrtDD0xbpWU7shTs66VPhiWocb1Aq2MBAAA3cqigWE/NLJs2/Z6ezdQxNszaQADgAirdFN+xY8dp1zl2xDhgtS9W7JbDSIlN6qpp/SCr4wAAXJDDYTT2yCjxwT3iVD/Y1+JEAADgbBhj9OTMdfppQ7p8vDz04eCuahvDtTsBAEDNeuHbDcrMK1LziCA9dDGXaQOAqlDppnjjxo1PuDw3N1fTpk3Txx9/rOXLlzNSHE7B4TCasbxs6vSbGCUOAKgms9enaUNqjoJ8vXTPhU2tjgMAAM7SmDnJ+mz5HnnYpLdvPkfnNq1ndSQAAOBm5m1M11er9srDJo0Z0EF+3kybDgBV4W9fZHnhwoUaPHiwoqOj9dprr6l37976/fffqzIb8Lf9uu2AdmcdVrCfly5vF211HACAC7I7jN44Mkp82PlNVCfQx+JEAADgbHy0aLv+b8E2SdLo69qrb9soixMBAAB3k11QoidnrpMk3XlBU3VuVMfiRADgOs7omuJpaWmaNGmSPv74Y+Xk5OjGG29UUVGRvv76a7Vp06a6MgJnbHpSiiTp2k4N5O/DmXQAgKr37Zp92pKRpxA/L91xfhOr4wAAgLPw1co9enHWRknSyMviNTChkcWJAACAO/r3rA1KzylS0/BAjbikpdVxAMClVHqkeL9+/RQfH6+1a9dq3Lhx2rdvn95+++3qzAb8LVn5xfpxfbok6aZEpk4HAFS9UrtDb87bIkm6p2czhfp7W5wIAAD8XT9vStejX6yVJN1xfhPd17OZxYkAAIA7mp+coS9W7JHNJr16A9OmA0BVq/RI8R9++EEPPvig7rvvPrVo0aI6MwFnZeaqvSq2O9S+QajaxoRaHQcA4IK+WrVXOzLzVTfQR0N6xFkdBwAA/E0rdmXpH/9dKbvDqP85DfTUFa1ls9msjgUAANxMTmGJnviybNr0Yec1UZfGdS1OBACup9IjxRcvXqzc3Fx16dJF3bp10zvvvKPMzMzqzAacMWOMpi8rmzp9YAKjxAEAVa+41KE355aNEr+vZzMF+p7R1WgAAICTSE7L1dCJSSoscahXfH2NGdBBHh40xAEAQM17edZGpeUUKq5egP51abzVcQDAJVW6KX7uuefqww8/VGpqqu655x5Nnz5dMTExcjgc+umnn5Sbm1udOYFKWZlySFsy8uTv7amrO8VYHQcA4II+W75bew8dVv1gX912bmOr4wAAgL9hz8ECDZqwVDmFpercKEzv3tpZ3p6VPkQCAABQZRZu3q/pSbslSa9c30H+PkybDgDV4Yx/8QUGBmrYsGFavHix1q1bp0ceeUT/+c9/FBERoauvvro6MgKVNiOpbJT4lR2iFeLH9V0BAFWrsMSud37eKkka3rs5P1QBAKiFDuQVadDHy5SeU6QWEUGaMCRBAT7M/AIAAGpebmGJnviqbNr0IT3i1K1pPYsTAYDrOqvToOPj4zVmzBjt2bNH06ZNq6pMwN+SW1iib9ekSpJuYup0AEA1mLo0RWk5hYoJ9dNNidQaAABqm7yiUg2dlKTtmflqEOavyXckKizAx+pYAADATY3+YZP2Hjqs2Lr+GnkZ06YDQHWqkrnBPD09de211+qbb76pis0Bf8t3a1N1uMSuZvUD1aVxHavjAABcTEFxqd5dUDZK/IGLW8jXi1HiAADUJkWldt0zZbnW7slWnQBvfTIsUdGh/lbHAgAAbmrJ1kxNXVo28+kr13dg5hoAqGZcMAsuY/qysi8QNyU0ks1mszgNAMDVTP5tlzLzitWoboAGdGlodRwAAHAG7A6jETPWaMnWAwrw8dTEoYlqHhFkdSwAAOCm8otK9diXayVJt53bSD2ahVucCABcH01xuIQN+3K0Zk+2vD1tuq5zA6vjAABcTG5hid77ZZsk6aGLW8jbk69QAADUFsYYPffNes1alypvT5vev72LOsWGWR0LAAC4sVdmb9Keg4fVIMxfj1/e2uo4AOAWOKILl/DZ8t2SpEvbRKlekK/FaQAArmbikp06VFCipvUDde05nHwFAEBt8ua8LZry+y7ZbNLYGzvpghb1rY4EAADc2G/bDmjyb7sklU2bHuTLtOkAUBNoiqPWKyyx66uVeyRJAxNiLU4DAHA12QUl+nDRdknSP/u0lKcHl+gAAKC2mPLbTo2bu0WS9Fy/turXMcbiRAAAwJ0VFP85bfrNiY10fgumTQeAmkJTHLXenPVpyiksVYMwf53fnC8RAICq9eGi7cotLFV8ZLCuah9tdRwAAFBJ363dp2e/WS9JevDiFhrcI87aQAAAwO29OidZKVkFign105NXtLI6DgC4FZriqPWmLUuRJN3YNVYejN4DAFShA3lFmrBkhyTp4UtaUmcAAKglFm/J1MMzVssY6dZujfRwnxZWRwIAAG4uaWeWJv26U5I0+voOCvbztjYQALgZmuKo1XZk5uv37VnysEk3dG1odRwAgIt5f+F2FRTb1a5BiPq2jbQ6DgAAqIQ1uw/p7inLVWI3uqJ9lF64pp1sNk5sAwAA1jlcbNfIL9bKGOnGrg3Vs2V9qyMBgNuhKY5a7bPluyVJPVvWV0yYv8VpAACuJCOnUJN/2ylJeuSSeA6mAwBQC2zbn6ehk5JUUGxXj2b19MbATvJkphcAAGCx139M1o7MfEWF+OmpK9tYHQcA3BJNcdRaJXaHvlixR5I0MKGRxWkAAK7m3QXbVFjiUOdGYeoVzxncAAA4u7TsQg36eJmy8ovVvkGoPhjUVb5enlbHAgAAbm7Frix9fOTSbKOva69Qf6ZNBwAr0BRHrTV/U4b25xYpPMhHF7eOsDoOAMCF7Dt0WFOXpkiSHrmUUeIAADi7QwXFGjRhqfYeOqwm4YGaODRBQb5eVscCAABurrDErkePTJt+feeG6t2K49gAYBWa4qi1pieVTZ1+fZeG8vbknzIAoOq8/fNWFdsdOrdpXfVoVs/qOAAA4BQOF9t1xyfLtTk9TxHBvpo8LFHhQb5WxwIAANAbczdr+/58RQT76tmrmDYdAKxEJxG1Umr2YS1IzpAkDewaa3EaAIArSTlQoM+Xl514xShxAACcW4ndofunrtSKXQcV4uelyXckKrZugNWxAAAAtCrloD5cuF2S9HL/9goNYNp0ALASTXHUSl8s3yOHkbo1qaum9YOsjgMAcCFvztuiUofRhS3rKyGurtVxAADASTgcRo99sVY/b8qQr5eHJgxJUKuoEKtjAQAAqLDErpFfrJXDSNd2ilGfNpFWRwIAt0dTHLWOw2E048gIvpsSGSUOAKg62/bnaeaqPZKkEZe0tDgNAAA4GWOMXv5+o75atVeeHja9e2tndeVkNgAA4CTemrdFWzLyFB7kq1H92lodBwAgmuKohX7ddkB7Dh5WsJ+XLm8XbXUcAIALGTd3ixxG6tM6Up1iw6yOAwAATuL9hdv10eIdkqQx13fQxa0ZfQUAAJzD2j2H9P6RadNfvLad6gT6WJwIACDRFEctNC0pRZLU/5wG8vP2tDgNAMBVbErL0Xdr90lilDgAAM7ss6Td+s8PmyRJT13RWtd3aWhxIgAAgDJFpXY9+vla2R1GV3WI1mXtoqyOBAA4gqY4apWs/GL9uD5NkjQwganTAQBV542fNssY6cr20WoTw/VIAQBwRj9tSNfjX62VJN3Ts6nuurCpxYkAAAD+NP7nrUpOz1W9QB89fzXTpgOAM6Epjlrlq5V7VGI36tAwVG1jQq2OAwBwEev2ZGvO+nTZbNI/+7SwOg4AADiBpdsPaPjUlXIY6YYuDfX4Za2sjgQAAFDuj73ZGr9gmyTphWvaqV6Qr8WJAADHoimOWsMYoxlJuyUxShwAULXG/pQsSbqmY4xaRAZbnAYAAPzVhn05unPychWVOtSndaRGX9deNpvN6lgAAACSpOJShx79omza9CvaR+nKDtFWRwIA/AVNcdQaK1MOaUtGnvy9PXV1xxir4wAAXMSKXQc1P3m/PD1seqgP1xIHAMDZpBwo0OCJy5RbWKqEuDp655Zz5OXJ4QwAAOA83l2wVRtTc1QnwFsvXNPO6jgAgBPgVyRqjenLUiRJV3aIVrCft8VpAACu4o2fNkuSru/cQE3CAy1OAwAAjrU/t0i3T1iq/blFahUVrI8GJ8jP29PqWAAAAOU27MvROz9vlSQ9f007hTNtOgA4JZriqBVyC0v03dpUSdJNTJ0OAKgiv28/oMVbM+XtadMDF3EtcQAAnElOYYkGT1imXQcK1LCOvyYPS1SoPydIAwAA51Fid+jRL9ao1GF0aZtI9WPadABwWjTFUSt8uyZVh0vsah4RpC6N61gdBwDgAowxGvtj2SjxgQmxiq0bYHEiAABwVGGJXXdPXq4NqTkKD/LRlDu6KSLEz+pYAAAAFbz/yzat35ejUH9vvdi/nWw2m9WRAAAn4RRN8fHjxysuLk5+fn7q1q2bli1bVqnHTZ8+XTabTddee231BoTlZiSVTZ1+U0IsXywAAFVi0ZZMLduZJR8vDw3vzShxAACchd1h9ND0Vfp9e5aCfL00aWgilzgBAABOJzktV2/O2yJJeu7qNooI5gQ+AHBmljfFZ8yYoREjRmjUqFFauXKlOnbsqL59+yojI+OUj9u5c6f+9a9/6YILLqihpLDKhn05WrMnW96eNvU/p4HVcQAALsAYo9ePXEv8tm6NFRXKD1cAAJyBMUZPf71Oc9any8fTQx8M6qJ2DUKtjgUAAFBB6ZFp00vsRn1aR+jaThy3BgBnZ3lTfOzYsbrrrrs0dOhQtWnTRu+9954CAgI0YcKEkz7Gbrfr1ltv1fPPP6+mTZvWYFpY4ego8UvbRKlekK/FaQAArmDexgyt2X1I/t6euq9XM6vjAACAI17/cbOmLdstD5v01s2d1KNZuNWRAAAAjvPhoh1auydbIX5eeql/e2Y3BYBawMvKJy8uLtaKFSv0xBNPlC/z8PBQnz599Ntvv530cS+88IIiIiJ0xx13aNGiRad8jqKiIhUVFZXfzsnJOfvgqDGFJXbNXLVXUtn1XgEAtZez1GSHw2jskVHig3vEqX4wJ1wBANyLs9Tkv5qweIfemb9VkvTite11WbtoixMBAFB9nLUe4/S2ZuTqjSPHFZ7t11aRIcw+BwC1gaUjxTMzM2W32xUZGVlheWRkpNLS0k74mMWLF+vjjz/Whx9+WKnnGD16tEJDQ8v/xMbSWK1NZv+RppzCUjUI89f5zRkhAAC1mbPU5Nnr07QhNUdBvl6650JmnAEAuB9nqcnH+nrVXr3w3QZJ0r8ubalbujWyOBEAANXLGesxTs/uMPrX52tVbHeoV3x9Xd+ZadMBoLawfPr0M5Gbm6vbb79dH374ocLDK9cgfeKJJ5SdnV3+Z/fu3dWcElVp+pGp0wcmxMrDgyloAKA2c4aabHeY8rO5h53fRHUCfWo8AwAAVnOGmnysBckZ+tfnayRJQ3rE6f7ezS3NAwBATXC2eozK+Xjxdq3efUjBvl4afR3TpgNAbWLp9Onh4eHy9PRUenp6heXp6emKioo6bv1t27Zp586d6tevX/kyh8MhSfLy8lJycrKaNat4XVBfX1/5+jItam20IzNfv2/PkodNGtClodVxAABnyRlq8rdr9mlLRp5C/b11x/lNLM0CAIBVnKEmH7Uy5aDu+3SlSh1GV3eM0bNXteHgMgDALThTPUblbNufp9d/LDvR/umrWis61N/iRACAM2HpSHEfHx916dJF8+bNK1/mcDg0b948de/e/bj1W7VqpXXr1mn16tXlf66++mr17t1bq1evZooZFzMjqezsyJ4t6ysmjC8YAICzU2p3aNzcsh+vd1/YVKH+3hYnAgDAvW1Jz9WwSUk6XGLXBS3C9doNHZkhDAAAOKVDBcW679MVKip16IIW4bqxK70IAKhtLB0pLkkjRozQ4MGD1bVrVyUmJmrcuHHKz8/X0KFDJUmDBg1SgwYNNHr0aPn5+aldu3YVHh8WFiZJxy1H7VZid+iLFXskSQMTuJYcAODsfbVyr3YeKFDdQB8N6RFndRwAANzavkOHNWjCMh0qKFHH2DC9d1sX+XjVqiu8AQAAN3G42K47P1muzel5igzx1ZgBHZjZBgBqIcub4gMHDtT+/fv17LPPKi0tTZ06ddLs2bMVGRkpSUpJSZGHBz+M3c3PmzKUmVek8CBfXdw6wuo4AIBarrjUoTfnbZEk3dezmQJ9Lf8KBACA2zqYX6zbP16q1OxCNasfqIlDEqjNAADAKZXaHXpg2kot33VQIX5emjysG9OmA0At5RS/OocPH67hw4ef8L4FCxac8rGTJk2q+kCw3NGp0wd0aShvT06KAACcnc+W79beQ4dVP9hXt53b2Oo4AAC4rfyiUg2dlKRt+/MVHeqnyXd0U91AH6tjAQAAHMcYoydnrtPcjRny9fLQR4MTFB8VbHUsAMDfRLcRTic1+7AWJGdIkgYmcG0WAMDZKSyx652ft0qShvduLn8fT4sTAQDgnopLHbrvvyu1evchhQV4a/KwRDUIY6QVAABwTq/9mKzPlu+Rh016++ZzlNikrtWRAABngaY4nM5Hi3bIYaRuTeqqSXig1XEAALXc1KUpSsspVEyon25K5GQrAACs4HAY/evzNVq4eb/8vT01YUiCWkQy0goAADiniUt2aPz8bZKkl/u316VtoyxOBAA4WzTF4VRmrtqjjxfvkCQNO7+JxWkAALVdQXGp3l1QNkr8gYtbyNeLUeIAANQ0Y4xe+G6DvlmzT14eNv3fbZ3VuVEdq2MBAACc0Ddr9umF7zZIkv51aUvdlNjI4kQAgKpAUxxOY9mOLD32xTpJ0r09m6kvZ98BAM7S5N92KTOvWI3qBmhAl4ZWxwEAwC2Nn79Vk37dKUl6/caO6hUfYW0gAACAk1i8JVOPfLZaxkiDuzfW/b2bWx0JAFBFaIrDKezMzNc9U5ar2O7QZW2jNLJvvNWRAAC1XG5hid77pWyqs4cubiFvT772AABQ06YuTdFrP26WJI3q10bXdGpgcSIAAIATW7cnW/dMWa4Su9GVHaL1bL+2stlsVscCAFQRjg7DcocKijVsUpIOFpSoY8NQvTGwkzw8+LIBADg7E5fs1KGCEjWtH6hrz+EAPAAANe2Hdal6+uuy2cCG926uoedxiSwAAOCcdmTma8jEZcovtqtHs3oae2NHeXKMGgBcCk1xWKq41KF7P12h7Zn5ahDmrw8Hd5W/D9d7BQCcneyCEn24aLsk6eE+LfkhCwBADft1W6Yemr5aDiPdnBirRy5taXUkAACAE8rILdSgCUt1IL9YbWNC9P7tXeTrxTFqAHA1NMVhGWOMnpy5Tr9vz1KQr5c+HtJVEcF+VscCALiADxdtV25hqVpFBevK9tFWxwEAwK38sTdbd09eUX55rBevbc/UowAAwCnlFJZo8IQk7c46rMb1AjRpaKKC/bytjgUAqAY0xWGZdxds0xcr9sjDJr19yzlqFRVidSQAgAs4kFekCUt2SJIevqQll+QAAKCGrdh1UHlFpTq3aV2Nu6kTM7YAAACnVFhi192Tl2tjao7Cg3w0eVii6gf7Wh0LAFBNvKwOAPc0a22qXp2TLEl6/uq26h0fYXEiAICreH/hdhUU29W+QagubRNpdRwAANzO4B5xigj21fktwuXnzdSjAADA+dgdRiM+W10+i+mkoYlqXC/Q6lgAgGpEUxw1bmXKQY34bLUkaeh5cbq9e5yleQAAriMjp1CTf9spSRpxaUumagUAwCKXc/kSAADgpIwxeu6b9fp+XZp8PD30we1d1K5BqNWxAADVjOnTUaN2ZxXo7snLVVTq0MWtIvT0lW2sjgQAcCHvLtimwhKHOjcKU6+W9a2OAwAAAAAAnMzbP2/VlN93yWaTxg7sqB7Nw62OBACoATTFUWNyCkt0xydJyswrVpvoEL118zlcWw4AUGX2HTqsqUtTJEn/ujSeUeIAAAAAAKCCactSNPanzZKk5/q11VUdYixOBACoKUyfjhpRYnfo/v+u1Ob0PEWG+OrjIV0V6Ms/PwBA1Qn199ZDfVpo3Z5szvIGAAAAAAAVzFmfpqdmrpMkPXBRcw3uEWdtIABAjaIriWpnjNGob9Zr0ZZM+Xt76uPBCYoO9bc6FgDAxQT6eun+3s2tjgEAAAAAAJzM0u0H9MC0VXIY6aaEWI24pKXVkQAANYzp01HtPl68Q1OXpshmk968qZPaNQi1OhIAAAAAAAAAwA1sSsvRnZOXq7jUoUvaROrFa9txyTUAcEM0xVGtflyfppe+3yhJeuqK1rq0bZTFiQAAAAAAAAAA7mB3VoEGfbxMuYWlSoiro7dvPkdenrRFAMAd8emPavPH3mw9NH21jJFu7dZId5zfxOpIAAAAAAAAAAA3kJVfrMETlikjt0jxkcH6aFCC/Lw9rY4FALAITXFUi9Tsw7rjkyQdLrHrghbheu7qtkxJAwAAAAAAAACodvlFpRo6KUnbM/PVIMxfnwxLVGiAt9WxAAAWoimOKpdfVKo7Ji1Xek6RWkYGafytneXNlDQAAAAAAAAAgGpWYnfovv+u1Jrdh1QnwFufDEtUVKif1bEAABajU4kqZXcYPThtlTak5ig8yEcfD05QiB9n4AEAAAAAAAAAqpfDYTTyi7VauHm//L09NWFIgppHBFkdCwDgBGiKo0q9OGuD5m3KkK+Xhz4Y1FWxdQOsjgQAAAAAAAAAcAOjf9iomav2ysvDpv+7rbPOaVTH6kgAACdBUxxVZvJvOzVxyU5J0tgbO6kzXzgAAAAAAAAAADXgg4Xb9OGiHZKkMQM6qFd8hMWJAADOhKY4qsSC5Aw99816SdKjfeN1ZYdoixMBAAAAAAAAANzBlyv26OXvN0mSnrqita7r3NDiRAAAZ0NTHGdtU1qOhk9dJYeRBnRpqH/0amZ1JAAAAAAAAACAG5i/KUMjv1wrSbrrgia668KmFicCADgjmuI4Kxm5hRo2MUl5RaU6t2ldvdy/vWw2m9WxAAAAAAAAAAAubmXKQf3jvytldxj1P6eBnri8tdWRAABOiqY4/rbDxXbd9cly7csuVNPwQL13Wxf5ePFPCgAAAAAAAABQvbZm5GrYpCQdLrGrZ8v6GjOggzw8GLAFADgxOpj4WxwOoxGfrdaaPdkKC/DWhCEJCgvwsToWAAAAAAAAAMDFpWYf1qCPl+lQQYk6xobp3Vs7y9uTdgcA4OSoEvhbxsxJ1g9/pMnH00Mf3N5VceGBVkcCAAAAAAAAALi47IISDZ6wrGwG0/qBmjgkQYG+XlbHAgA4OZriOGMzklL03i/bJEmvDGivxCZ1LU4EAAAAAAAAAHB1hSV23fFJkjan5ykyxFeThyWqbiAzmAIATo+mOM7Ikq2ZemrmH5KkBy9uof7nNLQ4EQAAAAAAAADA1ZXaHRo+dZWW7zqoYD8vfTIsUQ3rBFgdCwBQS9AUR6VtzcjVvZ+uUKnD6OqOMXq4TwurIwEAAAAAAAAAXJwxRk/N/ENzN6bLx8tDHw9OUKuoEKtjAQBqEZriqJQDeUUaNmm5cgtL1aVxHY0Z0EE2m83qWAAAAAAAAAAAF/f6j5s1Y/luedikt28+h0t6AgDOGE1xnFZhiV13T1mhlKwCxdb11we3d5Gft6fVsQAAAAAAAAAALm7Skh16Z/5WSdJL/durb9soixMBAGojmuI4JWOMRn6xViuOXKdl4pAE1QvytToWAAAAAAAAAMDFfbtmn57/boMk6ZFLWurmxEYWJwIA1FY0xXFK4+Zu0Tdr9snLw6b3buui5hHBVkcCAAAAAAAAALi4xVsyNeKz1TJGGtS9sYZf1NzqSACAWoymOE5q5qo9enPeFknSi9e203nNwy1OBAAAAAAAAABwdX/szdY9U5arxG50ZftojerXVjabzepYAIBajKY4TmjZjiw99sU6SdI9PZvqJqalAQAAAAAAAABUs52Z+RoycZnyi+3q0ayexg7sKE8PGuIAgLNDUxzH2ZmZr3umLFex3aHL2kbpsb6trI4EAAAAAAAAAHBxGbmFGjRhmTLzitUmOkTv395Fvl6eVscCALgAmuKo4FBBsYZNStLBghJ1aBiqNwZ2kgdn4QEAAAAAAAAAqlFuYYmGTEhSSlaBGtUN0KRhCQr287Y6FgDARdAUR7niUofu/XSFtmfmKybUTx8N6ip/H87CAwAAAAAAAABUn6JSu+6evEIbUnMUHuSjycMSFRHsZ3UsAIALoSkOSZIxRk/OXKfft2cpyNdLE4YmKCKELx0AAAAAAAAAgOpjdxg9PGO1ftt+QIE+npo0NFFx4YFWxwIAuBia4pAkvbtgm75YsUceNuntW85Rq6gQqyMBAAAAAAAAAFyYMUbPf7te369Lk7enTR8M6qp2DUKtjgUAcEE0xaFZa1P16pxkSdJzV7dV7/gIixMBAAAAAAAAAFzdOz9v1eTfdslmk94Y2EnnNQ+3OhIAwEXRFHdzK1MOasRnqyVJQ8+L06DucZbmAQAAAAAAAAC4vmnLUvT6T5slSaOuaqOrOsRYnAgA4Mpoirux3VkFunvychWVOnRxqwg9fWUbqyMBAAAAAAAAAFzcnPVpemrmOknS8N7NNeS8JhYnAgC4OpribiqnsER3fJKkzLxitYkO0Vs3nyNPD5vVsQAAAAAAAAAALmzp9gN6YNoqOYw0sGusHrm0pdWRAABugKa4GyqxO3T/f1dqc3qeIoJ99fGQrgr09bI6FgAAAAAAAADAhW1Ky9Gdk5eruNShPq0j9VL/drLZGKwFAKh+NMXdjDFGo75Zr0VbMuXv7amPBycoOtTf6lgAAAAAAAAAABe2O6tAgz5eptzCUiXE1dE7t5wjL09aFACAmkHFcTMfL96hqUtTZLNJb97USe0bhlodCQAAAAAAAADgwrLyizV4wjJl5BapZWSQPhqUID9vT6tjAQDcCE1xN/Lj+jS99P1GSdJTV7TWpW2jLE4EAAAAAAAAAHBl+UWlGjopSdsz89UgzF+Th3VTaIC31bEAAG6Gprib+GNvth6avlrGSLd0a6Q7zm9idSQAAAAAAAAAgAsrsTt0339Xas3uQwoL8NYnwxIVFepndSwAgBuiKe4GUrMP645PknS4xK4LWoTr+avbymazWR0LAAAAAAAAAOCiHA6jkV+s1cLN++Xv7amJQxLUPCLI6lgAADdFU9zF5ReV6o5Jy5WeU6QWEUEaf2tneXvy1w4AAAAAAAAAqD6jf9iomav2ytPDpndv66xzGtWxOhIAwI3RHXVhdofRg9NWaUNqjsKDfDRhSIJC/LhWCwAAAAAAAACg+nywcJs+XLRDkjTm+g7qHR9hcSIAgLujKe7CXpy1QfM2ZcjXy0MfDOqq2LoBVkcCAAAAAAAAALiwr1bu0cvfb5IkPXlFK13fpaHFiQAAoCnusib/tlMTl+yUJL1+Y0d1ZmoaAAAAAAAAAEA1mp+coZFfrJUk3XVBE919YTOLEwEAUIamuAtakJyh575ZL0l6tG+8ruoQY3EiAAAAAAAAAIArW5VyUP/4dKVKHUb9z2mgJy5vbXUkAADK0RR3MZvScjR86io5jDSgS0P9oxdn4gEAAAAAAAAAqs/WjDwNm5SkwyV29WxZX2MGdJCHh83qWAAAlKMp7kIycgs1bGKS8opK1a1JXb3cv71sNr54AAAAAAAAAACqR1p2oQZPWKaDBSXqGBumd2/tLG9PWg8AAOdCZXIRh4vtuuuT5dqXXaim4YF6//Yu8vHirxcAAAAAAAAAUD2yC0o0eMIy7T10WE3rB2rikAQF+npZHQsAgOPQNXUBDofRiM9Wa82ebIUFeGvCkASFBfhYHQsAAAAAAAAA4KIKS+y6c3KSktNzFRniq8nDElU3kOPSAADnRFPcBYyZk6wf/kiTt6dNH9zeVXHhgVZHAgAAAAAAAAC4qFK7Q8OnrlLSzoMK9vPSJ8MS1bBOgNWxAAA4KZritdyMpBS998s2SdKYAR2U2KSuxYkAAAAAAAAAAK7KGKOnv/5Dczemy8fLQx8PTlCrqBCrYwEAcEo0xWuxJVsz9dTMPyRJD17cQv3PaWhxIgAAAAAAAACAKxv702ZNT9otD5v09s3nMFALAFAr0BSvpbZm5OreT1eo1GF0dccYPdynhdWRAAAAAAAAAAAu7JNfd+rtn7dKkl7q315920ZZnAgAgMqhKV4LHcgr0rBJy5VbWKoujetozIAOstlsVscCAAAAAAAAALio79bu03PfrpckPXJJS92c2MjiRAAAVB5N8VqmsMSuu6esUEpWgWLr+uuD27vIz9vT6lgAAAAAAAAAABe1ZGumHp6xWsZIg7o31vCLmlsdCQCAM0JTvBYxxmjkF2u1YtdBBft5aeKQBNUL8rU6FgAAAAAAAADARf2xN1v3TFmhErvRle2jNapfW2YuBQDUOjTFa5Fxc7fomzX75OVh03u3dVHziGCrIwEAAAAAAAAAXNSuA/kaMnGZ8opK1aNZPY0d2FGeHjTEAQC1D03xWmLmqj16c94WSdKL17bTec3DLU4EAAAAAAAAAHBV+3OLdPvHy5SZV6w20SF6//Yu8vXiUp4AgNqJpngtsGxHlh77Yp0k6Z6eTXVTYiOLEwEAAAAAAAAAXFVuYYmGTFymlKwCNaoboEnDEhTs5211LAAA/jaa4k5uZ2a+7pmyXMV2hy5rG6XH+rayOhIAAAAAAAAAwEUVldp1z5QVWr8vR+FBPpo8LFERwX5WxwIA4KzQFHdihwqKNWxSkg4WlKhDw1C9MbCTPLheCwAAAAAAAACgGtgdRiNmrNGv2w4o0MdTk4YmKi480OpYAACcNZriTqq41KF7P12h7Zn5ign100eDusrfh+u1AAAAAAAAAACqnjFGz3+7XrPWpcrb06YPBnVVuwahVscCAKBK0BR3QsYYPTlznX7fnqUgXy9NGJqgiBCmpwEAAAAAAAAAVI/x87dq8m+7ZLNJbwzspPOah1sdCQCAKkNT3Am9u2CbvlixRx426e1bzlGrqBCrIwEAAAAAAAAAXNT0ZSl67cfNkqRRV7XRVR1iLE4EAEDVoinuZGatTdWrc5IlSc9d3Va94yMsTgQAAAAAAAAAcFU/rk/TkzPXSZLu791MQ85rYnEiAACqHk1xJ7Iy5aBGfLZakjT0vDgN6h5naR4AAAAAAAAAgOtatiNLD0xbJYeRbuzaUP+6NN7qSAAAVAunaIqPHz9ecXFx8vPzU7du3bRs2bKTrvvhhx/qggsuUJ06dVSnTh316dPnlOvXFruzCnT35OUqKnXoolYRevrKNlZHAgAAAAAAAAC4qE1pObrzkyQVlTrUp3WEXu7fXjabzepYAABUC8ub4jNmzNCIESM0atQorVy5Uh07dlTfvn2VkZFxwvUXLFigm2++WfPnz9dvv/2m2NhYXXrppdq7d28NJ686OYUluuOTJGXmFat1dIjeuvkceXrw5QMAAAAAAAAAUPX2HCzQ4AnLlFNYqq6N6+jtmzvLy9PydgEAANXGZowxVgbo1q2bEhIS9M4770iSHA6HYmNj9cADD+jxxx8/7ePtdrvq1Kmjd955R4MGDTrt+jk5OQoNDVV2drZCQkLOOv/ZKrE7NGxSkhZtyVREsK/+N/w8RYf6Wx0LAIBq52w1GQAAd0VNBgDAejVZj7PyizXgvV+1fX++WkYG6bN7uisswKdanxMAAKt5WfnkxcXFWrFihZ544onyZR4eHurTp49+++23Sm2joKBAJSUlqlu37gnvLyoqUlFRUfntnJycswtdhYwxGvXNei3akil/b099PDiBhjgAwGU5c00GAMCdUJMBALCeVfW4oLhUQyclafv+fMWE+umTYYk0xAEAbsHS+VAyMzNlt9sVGRlZYXlkZKTS0tIqtY3HHntMMTEx6tOnzwnvHz16tEJDQ8v/xMbGnnXuqvLx4h2aujRFNpv05k2d1L5hqNWRAACoNs5ckwEAcCfUZAAArGdFPS6xO3Tfpyu1ZvchhQV4a/IdiQzSAgC4jVp9kZD//Oc/mj59umbOnCk/P78TrvPEE08oOzu7/M/u3btrOOWJ/bg+TS99v1GS9NQVrXVp2yiLEwEAUL2ctSYDAOBuqMkAAFivpuuxw2E08ou1+mXzfvl5e2jCkAQ1jwiu1ucEAMCZWDp9enh4uDw9PZWenl5heXp6uqKiTt0kfu211/Sf//xHc+fOVYcOHU66nq+vr3x9faskb1X5Y2+2Hpq+WsZIt3RrpDvOb2J1JAAAqp0z1mQAANwRNRkAAOvVdD3+z+xNmrlqrzw9bPq/W7uoc6M6NfbcAAA4A0tHivv4+KhLly6aN29e+TKHw6F58+ape/fuJ33cmDFj9O9//1uzZ89W165dayJqlUnNPqw7PknS4RK7LmgRruevbiubzWZ1LAAAAAAAAACAC/pg4TZ9sHC7JGnM9R3Uu1WExYkAAKh5lo4Ul6QRI0Zo8ODB6tq1qxITEzVu3Djl5+dr6NChkqRBgwapQYMGGj16tCTplVde0bPPPqupU6cqLi6u/NrjQUFBCgoKsux1VEZ+UanumLRc6TlFahERpPG3dpa3Z62ewR4AAAAAAAAA4KS+WrlHL3+/SZL0xOWtdH2XhhYnAgDAGpY3xQcOHKj9+/fr2WefVVpamjp16qTZs2crMjJSkpSSkiIPjz8bx//3f/+n4uJiDRgwoMJ2Ro0apeeee64mo58Ru8PowWmrtCE1R+FBPpowJEEhft5WxwIAAAAAAAAAuKD5yRka+cVaSdKd5zfR3Rc2tTgRAADWsRljjNUhalJOTo5CQ0OVnZ2tkJCQGnve579dr4lLdsrXy0PT7j6Xa7YAANyeVTUZAABURE0GAMB6VV2PS+wO9Rn7i3YdKNC1nWI09sZO8vDgMp4AAPfF3N01YPJvOzVxyU5J0us3dqQhDgAAAAAAAACoNt6eHpoyrJtuTmykMQM60hAHALg9y6dPd3ULkjP03DfrJUmP9o3XVR1iLE4EAAAAAAAAAHB1jeoFaPR17a2OAQCAU2CkeDXalJaj4VNXyWGk6zs31D96NbM6EgAAAAAAAAAAAAC4FZri1SQjt1DDJiYpr6hU3ZrU1ejr2stmY4oaAAAAAAAAAAAAAKhJNMWrweFiu+76ZLn2ZReqSXig3r+9i3y8eKsBAAAAAAAAAAAAoKbRqa1iDofRiM9Wa82ebIUFeGvCkASFBfhYHQsAAAAAAAAAAAAA3BJN8So2Zk6yfvgjTd6eNn1we1c1CQ+0OhIAAAAAAAAAAAAAuC2a4lVoRlKK3vtlmyTples7KLFJXYsTAQAAAAAAAAAAAIB7oyleRZZszdRTM/+QJD14UXNd17mhxYkAAAAAAAAAAAAAADTFq8DWjFzd++kKlTqMru4Yo4cvaWl1JAAAAAAAAAAAAACAaIqfNYfDaPjUVcotLFXnRmEaM6CDbDab1bEAAAAAAAAAAAAAAKIpftY8PGx67YaOSoyrqw8HdZWft6fVkQAAAAAAAAAAAAAAR3hZHcAVtGsQqhn3nMsIcQAAAAAAAAAAAABwMowUryI0xAEAAAAAAAAAAADA+dAUBwAAAAAAAAAAAAC4LJriAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFk0xQEAAAAAAAAAAAAALoumOAAAAAAAAAAAAADAZdEUBwAAAAAAAAAAAAC4LJriAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFk0xQEAAAAAAAAAAAAALoumOAAAAAAAAAAAAADAZdEUBwAAAAAAAAAAAAC4LJriAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFk0xQEAAAAAAAAAAAAALoumOAAAAAAAAAAAAADAZdEUBwAAAAAAAAAAAAC4LJriAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFk0xQEAAAAAAAAAAAAALoumOAAAAAAAAAAAAADAZdEUBwAAAAAAAAAAAAC4LJriAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFk0xQEAAAAAAAAAAAAALoumOAAAAAAAAAAAAADAZdEUBwAAAAAAAAAAAAC4LJriAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFk0xQEAAAAAAAAAAAAALoumOAAAAAAAAAAAAADAZdEUBwAAAAAAAAAAAAC4LJriAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFk0xQEAAAAAAAAAAAAALoumOAAAAAAAAAAAAADAZdEUBwAAAAAAAAAAAAC4LJriAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFleVgeoacYYSVJOTo7FSQAAqJ2Cg4Nls9nOejvUZAAAzg41GQAA61GPAQBwDqeryW7XFM/NzZUkxcbGWpwEAIDaKTs7WyEhIWe9HWoyAABnh5oMAID1qMcAADiH09Vkmzl6CpqbcDgc2rdv3xmfwZeQkKCkpKS/9Zx/57Fn+pjKrJ+Tk6PY2Fjt3r27Sr6ouYKz+XutblZkq47nrKptsg+6JmfeB6Waz1ddz1cV2z12G1V1Frwr1uTKrsvnQUV8FtTM81GT/8Q+eDxn3g/ZB0++HStr8tm+HmeoyXwWHM+ZPwskPg+qcjvsg86JfbBmnq+q90F+I5/9+nweHM+ZPw84bl1122EfdF7OvA9KrlGTrfiN7HYjxT08PNSwYcMzfpynp+ff/jD4O48908ecyfohISF8sB1xNn+v1c2KbNXxnFW1TfZB1+TM+6BU8/mq6/mqYrvVkc0Va/KZbp/PgzJ8FtTM81GTj8c++Cdn3g/ZB6tnO8f6OzX5bHM4U03ms+BPzvxZIPF5UJXbYR90TuyDNfN8zrAPnogr/kY+0/X5PPiTM38ecNy66rbDPui8nHkflFyjJluxD3qc9bO5ifvvv79GH3umjzmbfO7Mmd83K7JVx3NW1TbZB12Ts79vNZ2vup6vKrbrTH9Xzvx54EzvU23i7O8bnwVVtx1qsvNy5veNfbB6tnO2zjYHNdk5Ofv7xudB1W2HfdA5Ofv7xj5YPds5W878WfB3nwPO/b5x3LrqtsM+6Lyc/X1zhZpsxT7odtOnu7OcnByFhoZW2XVuAJwZ9kEAR/F5AFiLfRCAxGcBYDX2QQBH8XkAWIt9EO6CkeJuxNfXV6NGjZKvr6/VUQC3xD4I4Cg+DwBrsQ8CkPgsAKzGPgjgKD4PAGuxD8JdMFIcAAAAAAAAAAAAAOCyGCkOAAAAAAAAAAAAAHBZNMUBAAAAAAAAAAAAAC6LpjgAAAAAAAAAAAAAwGXRFAcAAAAAAAAAAAAAuCya4gAAAAAAAAAAAAAAl0VTHOX69++vOnXqaMCAAVZHAdzO7t271atXL7Vp00YdOnTQ559/bnUkABahHgPWoR4DOBY1GbAONRnAsajJgHWoyXAlNmOMsToEnMOCBQuUm5urTz75RF988YXVcQC3kpqaqvT0dHXq1ElpaWnq0qWLNm/erMDAQKujAahh1GPAOtRjAMeiJgPWoSYDOBY1GbAONRmuhJHiKNerVy8FBwdbHQNwS9HR0erUqZMkKSoqSuHh4crKyrI2FABLUI8B61CPARyLmgxYh5oM4FjUZMA61GS4EpriLmLhwoXq16+fYmJiZLPZ9PXXXx+3zvjx4xUXFyc/Pz9169ZNy5Ytq/mggIuqyn1wxYoVstvtio2NrebUAKoa9RiwFvUYwFHUZMBa1GQAR1GTAWtRk4E/0RR3Efn5+erYsaPGjx9/wvtnzJihESNGaNSoUVq5cqU6duyovn37KiMjo4aTAq6pqvbBrKwsDRo0SB988EFNxAZQxajHgLWoxwCOoiYD1qImAziKmgxYi5oMHMPA5UgyM2fOrLAsMTHR3H///eW37Xa7iYmJMaNHj66w3vz58831119fEzEBl/V398HCwkJzwQUXmMmTJ9dUVADViHoMWIt6DOAoajJgLWoygKOoyYC1qMlwd4wUdwPFxcVasWKF+vTpU77Mw8NDffr00W+//WZhMsA9VGYfNMZoyJAhuuiii3T77bdbFRVANaIeA9aiHgM4ipoMWIuaDOAoajJgLWoy3A1NcTeQmZkpu92uyMjICssjIyOVlpZWfrtPnz664YYb9P3336thw4Z88QCqSGX2wSVLlmjGjBn6+uuv1alTJ3Xq1Enr1q2zIi6AakI9BqxFPQZwFDUZsBY1GcBR1GTAWtRkuBsvqwPAecydO9fqCIDbOv/88+VwOKyOAcAJUI8B61CPARyLmgxYh5oM4FjUZMA61GS4EkaKu4Hw8HB5enoqPT29wvL09HRFRUVZlApwH+yDACQ+CwCrsQ8COIrPA8Ba7IMAjuLzALAW+yDcDU1xN+Dj46MuXbpo3rx55cscDofmzZun7t27W5gMcA/sgwAkPgsAq7EPAjiKzwPAWuyDAI7i8wCwFvsg3A3Tp7uIvLw8bd26tfz2jh07tHr1atWtW1eNGjXSiBEjNHjwYHXt2lWJiYkaN26c8vPzNXToUAtTA66DfRCAxGcBYDX2QQBH8XkAWIt9EMBRfB4A1mIfBI5h4BLmz59vJB33Z/DgweXrvP3226ZRo0bGx8fHJCYmmt9//926wICLYR8EYAyfBYDV2AcBHMXnAWAt9kEAR/F5AFiLfRD4k80YY6qv5Q4AAAAAAAAAAAAAgHW4pjgAAAAAAAAAAAAAwGXRFAcAAAAAAAAAAAAAuCya4gAAAAAAAAAAAAAAl0VTHAAAAAAAAAAAAADgsmiKAwAAAAAAAAAAAABcFk1xAAAAAAAAAAAAAIDLoikOAAAAAAAAAAAAAHBZNMUBAAAAAAAAAAAAAC6LpjgAAAAAAAAAAAAAwGXRFAcAAAAAAAAAAAAAuCya4gAAAAAAAAAAAAAAl0VTHAAAAAAAAAAAAADgsmiKAwAAAAAAAAAAAABcFk1xAAAAAAAAAAAAAIDLoikOAAAAAAAAAAAAAHBZNMUBAAAAAAAAAAAAAC6LpjgAAAAAAAAAAAAAwGXRFAcAAAAAAAAAAAAAuCya4gAAAAAAAAAAAAAAl0VTHAAAAAAAAAAAAADgsmiKA0AVGTJkiK699tpTrhMXF6dx48ZVanuTJk1SWFjYWecCAMBd2Ww2ff311y7zPAAA1DbH1sidO3fKZrNp9erVlmYCAKC2ON3x4QULFshms+nQoUN/+zmqYhtAbUFTHHBizz33nDp16mR1jBrjDgeUk5KSdPfdd1sdAwDwN1CXa5/U1FRdfvnlVscAAFQCddb1xcbGKjU1Ve3atbM6CgDgLFCznUePHj2Umpqq0NBQSQyyAk6HpjiASispKbE6goqLi62OcFbq16+vgIAAq2MAAFwAdfn0oqKi5Ovra3UMAEAtRJ2tep6enoqKipKXl5fVUQAALsSda7aPj4+ioqJks9kseX6gtqEpDlQjh8OhMWPGqHnz5vL19VWjRo300ksvld//2GOPqWXLlgoICFDTpk31zDPPlBfxSZMm6fnnn9eaNWtks9lks9k0adIkSdKhQ4d05513qn79+goJCdFFF12kNWvWVHjuF198UREREQoODtadd96pxx9/vMIZfA6HQy+88IIaNmwoX19fderUSbNnzy6//+i0ZjNmzFDPnj3l5+enDz74QCEhIfriiy8qPNfXX3+twMBA5ebmnvL9KC4u1vDhwxUdHS0/Pz81btxYo0ePllQ2rbgk9e/fXzabrfz20TMPP/roIzVp0kR+fn6Vfv8rKycnR/7+/vrhhx8qLJ85c6aCg4NVUFAgSdq9e7duvPFGhYWFqW7durrmmmu0c+fO47b32muvKTo6WvXq1dP9999f4YvZX6dPP3TokO655x5FRkbKz89P7dq103fffXfSrP/73//UuXNn+fn5qWnTpnr++edVWlp6dm8AALgJ6nJFzlqXJenAgQO6+eab1aBBAwUEBKh9+/aaNm1ahXV69eqlBx98UCNHjlTdunUVFRWl5557rsI6J5qy9bPPPtMFF1wgf39/JSQkaPPmzUpKSlLXrl0VFBSkyy+/XPv37y/fRlJSki655BKFh4crNDRUPXv21MqVK6vldQNAbUadrcgV6uzw4cM1fPhwhYaGKjw8XM8884yMMeXrxMXF6d///rduvvlmBQYGqkGDBho/fvxJn/ev06fb7XbdcccdatKkifz9/RUfH68333yzwmOOXqbsVL+zi4qK9Nhjjyk2Nla+vr5q3ry5Pv744/L7//jjD11++eUKCgpSZGSkbr/9dmVmZp7NWwgAtRo1uyJnrtl/tX//fnXt2lX9+/dXUVFRhanPFyxYoKFDhyo7O7v87+bob+TT1UpJWrFihbp27aqAgAD16NFDycnJFe4/3XFpm82mjz76SP3791dAQIBatGihb775ptrfE+CMGADVZuTIkaZOnTpm0qRJZuvWrWbRokXmww8/LL//3//+t1myZInZsWOH+eabb0xkZKR55ZVXjDHGFBQUmEceecS0bdvWpKammtTUVFNQUGCMMaZPnz6mX79+JikpyWzevNk88sgjpl69eubAgQPGGGM+/fRT4+fnZyZMmGCSk5PN888/b0JCQkzHjh3Ln3vs2LEmJCTETJs2zWzatMmMHDnSeHt7m82bNxtjjNmxY4eRZOLi4syXX35ptm/fbvbt22fuuusuc8UVV1R4nVdffbUZNGjQad+PV1991cTGxpqFCxeanTt3mkWLFpmpU6caY4zJyMgwkszEiRNNamqqycjIMMYYM2rUKBMYGGguu+wys3LlSrNmzZoTbnvXrl0mMDDwlH9eeumlk2YbMGCAue222yosu/7668uXFRcXm9atW5thw4aZtWvXmg0bNphbbrnFxMfHm6KiImOMMYMHDzYhISHm3nvvNRs3bjTffvutCQgIMB988EH5Nhs3bmzeeOMNY4wxdrvdnHvuuaZt27bmxx9/NNu2bTPffvut+f77740xxkycONGEhoaWP3bhwoUmJCTETJo0yWzbts38+OOPJi4uzjz33HOnfe8BANTlv3Lmurxnzx7z6quvmlWrVplt27aZt956y3h6epqlS5eWr9OzZ08TEhJinnvuObN582bzySefGJvNZn788cfydSSZmTNnVngPW7VqZWbPnm02bNhgzj33XNOlSxfTq1cvs3jxYrNy5UrTvHlzc++995ZvY968eWbKlClm48aNZsOGDeaOO+4wkZGRJicn54TPAwDuijpbkSvU2aCgIPPQQw+ZTZs2mU8//fSEv2+Dg4PN6NGjTXJycvl2TleLV61aZYwp+5397LPPmqSkJLN9+/by55gxY0b54yvzO/vGG280sbGx5quvvjLbtm0zc+fONdOnTzfGGHPw4EFTv35988QTT5iNGzealStXmksuucT07t37tH+HAOCqqNkVOXPNPvb4cEpKiomPjzeDBw82paWlxhhj5s+fbySZgwcPmqKiIjNu3DgTEhJS/neTm5trjDl1rTy6jW7dupkFCxaY9evXmwsuuMD06NGjPEdljktLMg0bNjRTp041W7ZsMQ8++KAJCgoq//sHnAFNcaCa5OTkGF9f3wpfKE7n1VdfNV26dCm/PWrUqApfCowxZtGiRSYkJMQUFhZWWN6sWTPz/vvvG2OM6datm7n//vsr3H/eeedV2FZMTMxxBTchIcH84x//MMb8+QVj3LhxFdZZunSp8fT0NPv27TPGGJOenm68vLzMggULTvv6HnjgAXPRRRcZh8NxwvtPdEB51KhRxtvbu/wLx8mUlJSYLVu2nPLPqQrwzJkzTVBQkMnPzzfGGJOdnW38/PzMDz/8YIwxZsqUKSY+Pr5C9qKiIuPv72/mzJljjCn7sd64cePyLyXGGHPDDTeYgQMHlt8+tik+Z84c4+HhYZKTk0+Y6a9N8Ysvvti8/PLLFdaZMmWKiY6OPuV7AwCgLp+IM9flE7nyyivNI488Un67Z8+e5vzzz6+wTkJCgnnsscdO+BqOvocfffRR+f3Tpk0zksy8efPKl40ePdrEx8efNIfdbjfBwcHm22+/PeHzAIA7os4ezxXqbOvWrSvkf+yxx0zr1q3Lbzdu3NhcdtllFbYzcOBAc/nll5/wdf61KX4i999/v7n++uvLb5/ud3ZycrKRZH766acTbu/f//63ufTSSyss2717t5F00t/iAODKqNnHc+aaffT48KZNm0xsbKx58MEHK+Q8til+7PrHOl2tPLqNuXPnli+bNWuWkWQOHz5sjKnccWlJ5umnny6/nZeXZySVH18HnAEX8QGqycaNG1VUVKSLL774pOvMmDFDb731lrZt26a8vDyVlpYqJCTklNtds2aN8vLyVK9evQrLDx8+rG3btkmSkpOT9Y9//KPC/YmJifr5558llU0Xvm/fPp133nkV1jnvvPOOm9Kma9eux22nbdu2+uSTT/T444/r008/VePGjXXhhReeMrdUNu3ZJZdcovj4eF122WW66qqrdOmll572cY0bN1b9+vVPuY6Xl5eaN29+2m2dzBVXXCFvb2998803uummm/Tll18qJCREffr0kVT2vm/dulXBwcEVHldYWFj+vktS27Zt5enpWX47Ojpa69atO+Fzrl69Wg0bNlTLli0rlXHNmjVasmRJhemM7Ha7CgsLVVBQwLXKAeAUqMvHc+a6bLfb9fLLL+uzzz7T3r17VVxcrKKiouNqXYcOHSrcjo6OVkZGxim3fexjIiMjJUnt27evsOzYbaSnp+vpp5/WggULlJGRIbvdroKCAqWkpPzt1wcAroY6ezxXqLPnnntuhWuUdu/eXa+//rrsdnv5797u3btXeEz37t0rXDLsdMaPH68JEyYoJSVFhw8fVnFxcYVpdKVT/85evXq1PD091bNnzxNuf82aNZo/f76CgoKOu2/btm2V/j0OAK6Cmn08Z67ZUtl7eMEFF+iWW245oxp71Olq5VHH/laOjo6WJGVkZKhRo0aVPi597DYCAwMVEhJy2t/oQE2iKQ5UE39//1Pe/9tvv+nWW2/V888/r759+yo0NFTTp0/X66+/fsrH5eXlKTo6WgsWLDjuvrCwsLNIfGKBgYHHLbvzzjs1fvx4Pf7445o4caKGDh1a4YfyyXTu3Fk7duzQDz/8oLlz5+rGG29Unz59jrveS2Uy/FVKSoratGlzynWefPJJPfnkkye8z8fHRwMGDNDUqVN10003aerUqRo4cKC8vMo+JvPy8tSlSxf997//Pe6xx3758fb2rnCfzWaTw+E44XOe7t/IX+Xl5en555/Xddddd9x9NXXdGgCorajLx3Pmuvzqq6/qzTff1Lhx49S+fXsFBgbqn//8p4qLiyusdyZ190SPOfo+/XXZsdsYPHiwDhw4oDfffFONGzeWr6+vunfvflwWAHBn1NnjuUKdrW7Tp0/Xv/71L73++uvq3r27goOD9eqrr2rp0qUV1jtVvT/dv728vDz169dPr7zyynH3HT3gDwDuhJp9PGeu2ZLk6+urPn366LvvvtOjjz6qBg0anPZ5j1XZY9An+q18tN5W9rj03/mNDtQkmuJANWnRooX8/f01b9483Xnnncfd/+uvv6px48Z66qmnypft2rWrwjo+Pj6y2+0VlnXu3FlpaWny8vJSXFzcCZ87Pj5eSUlJGjRoUPmypKSk8v8PCQlRTEyMlixZUuEMsSVLligxMfG0r+22227TyJEj9dZbb2nDhg0aPHjwaR9z7HMPHDhQAwcO1IABA3TZZZcpKytLdevWlbe393Gvt7JiYmK0evXqU65Tt27dU95/66236pJLLtH69ev1888/68UXXyy/r3PnzpoxY4YiIiJOe2ZkZXXo0EF79uzR5s2bK3V2eufOnZWcnHzWZxcCgDuiLp+Ys9blJUuW6JprrtFtt90mqeyH+ObNm097MKE6LFmyRO+++66uuOIKSdLu3buVmZlZ4zkAwJlRZ0+sttfZvzanf//9d7Vo0aLCqO3ff//9uHVat25dmZehJUuWqEePHhVGDR47E1tltG/fXg6HQ7/88kv5TG/H6ty5s7788kvFxcWVn/QOAO6Mmn1izlqzJcnDw0NTpkzRLbfcot69e2vBggWKiYk54bon+rs5Xa2sDI5Lw1XwbRCoJn5+fnrsscc0cuRI+fj46LzzztP+/fu1fv163XHHHWrRooVSUlI0ffp0JSQkaNasWZo5c2aFbcTFxWnHjh3l02wHBwerT58+6t69u6699lqNGTNGLVu21L59+zRr1iz1799fXbt21QMPPKC77rpLXbt2VY8ePTRjxgytXbtWTZs2Ld/2o48+qlGjRqlZs2bq1KmTJk6cqNWrV59wJPRf1alTR9ddd50effRRXXrppWrYsGGl3pOxY8cqOjpa55xzjjw8PPT5558rKiqq/GzBuLg4zZs3T+edd558fX1Vp06dSr/fVTEVzYUXXqioqCjdeuutatKkibp161Z+36233qpXX31V11xzjV544QU1bNhQu3bt0ldffaWRI0dW+j04Vs+ePXXhhRfq+uuv19ixY9W8eXNt2rRJNptNl1122XHrP/vss7rqqqvUqFEjDRgwQB4eHlqzZo3++OOPCg18AMDxqMvHc+a63KJFC33xxRf69ddfVadOHY0dO1bp6emWNMVbtGihKVOmqGvXrsrJydGjjz56xrO9AICro84ezxXqbEpKikaMGKF77rlHK1eu1Ntvv33cSMElS5ZozJgxuvbaa/XTTz/p888/16xZsyqdY/LkyZozZ46aNGmiKVOmKCkpSU2aNKn0a4mLi9PgwYM1bNgwvfXWW+rYsaN27dqljIwM3Xjjjbr//vv14Ycf6uabb9bIkSNVt25dbd26VdOnT9dHH31UocEPAO6Amn08Z67ZR3l6euq///2vbr75Zl100UVasGCBoqKijlsvLi5OeXl5mjdvnjp27KiAgIDT1srK4Lg0XIbVFzUHXJndbjcvvviiady4sfH29jaNGjUyL7/8cvn9jz76qKlXr54JCgoyAwcONG+88YYJDQ0tv7+wsNBcf/31JiwszEgyEydONMYYk5OTYx544AETExNjvL29TWxsrLn11ltNSkpK+WNfeOEFEx4eboKCgsywYcPMgw8+aM4999wK2Z577jnToEED4+3tbTp27Gh++OGH8vt37NhhJJlVq1ad8LXNmzfPSDKfffZZpd+PDz74wHTq1MkEBgaakJAQc/HFF5uVK1eW3//NN9+Y5s2bGy8vL9O4cWNjjDGjRo0yHTt2rPRznK2RI0caSebZZ5897r7U1FQzaNAgEx4ebnx9fU3Tpk3NXXfdZbKzs40xxgwePNhcc801FR7z0EMPmZ49e5bfbty4sXnjjTfKbx84cMAMHTrU1KtXz/j5+Zl27dqZ7777zhhjzMSJEyv8ezDGmNmzZ5sePXoYf39/ExISYhITE80HH3xQJa8dAFwddbkiZ67LBw4cMNdcc40JCgoyERER5umnnzaDBg2qUGd79uxpHnrooQqPu+aaa8zgwYPLb0syM2fONMac+D2cP3++kWQOHjxYvuyv9XflypWma9euxs/Pz7Ro0cJ8/vnnx9XzY58HANwVdbYiV6iz//jHP8y9995rQkJCTJ06dcyTTz5pHA5H+TqNGzc2zz//vLnhhhtMQECAiYqKMm+++WaF5zpVLS4sLDRDhgwxoaGhJiwszNx3333m8ccfr/AeVOZ39uHDh83DDz9soqOjjY+Pj2nevLmZMGFC+f2bN282/fv3N2FhYcbf39+0atXK/POf/6zwWgDAnVCzK3Lmmv3X36clJSXmuuuuM61btzbp6ekn/E177733mnr16hlJZtSoUcaYU9fKE21j1apVRpLZsWNH+bLTHZc+0e/i0NDQ8n8fgDOwGWNMzbXgAVjlkksuUVRUlKZMmVIl25syZYoefvhh7du3Tz4+PlWyTQAA3AV1GQCA6kOdPXu9evVSp06dNG7cuJOuExcXp3/+85/65z//WWO5AACuhZoNoCYxfTrgggoKCvTee++pb9++8vT01LRp0zR37lz99NNPVbLt1NRU/ec//9E999zDlwsAAE6DugwAQPWhzgIAUDtQswFYzcPqAACqns1m0/fff68LL7xQXbp00bfffqsvv/xSffr0OettjxkzRq1atVJUVJSeeOKJCve9/PLLCgoKOuGfyy+//KyfGwCA2oi6DABA9aHOAgBQO1CzAViN6dMBVJmsrCxlZWWd8D5/f381aNCghhMBAOC+qMsAAFQf6iwAALUDNRvAUTTFAQAAAAAAAAAAAAAui+nTAQAAAAAAAAAAAAAuy+2a4sYY5eTkiAHyAABYi5oMAIBzoCYDAGA96jEAANXL7Zriubm5Cg0NVW5urtVRAABwa9RkAACcAzUZAADrUY8BAKhebtcUBwAAAAAAAAAAAAC4D5riAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFk0xQEAAAAAAAAAAAAALoumOAAAAAAAAAAAAADAZdEUBwAAAAAAAAAAAAC4LJriAAAAAAAAAAAAAACXRVMcAAAAAAAAAAAAAOCyaIoDAAAAAAAAAAAAAFwWTXEAAAAAAAAAAAAAgMuiKQ4AAAAAAAAAAAAAcFk0xQEAAAAAAAAAAAAALoumOAAAAAAAAAAAAADAZdEUBwAAAAAAAAAAAAC4LC+rAwAAAAAAzsz+3CJN/m2nDhYUK8DHS37engrw8ZS/t6f8j/z32NsBPl5/3ndkuaeHzeqXAQAAAAAAUCNoigMAAABALVFYYteEJTv07vxtyisqPatt+Xh5nLCRfrTBfspme4WGu6f8vb3K///oY7w9mZgMAAAAAAA4B5riAAAAAODkjDGatS5V//lhk/YcPCxJ6tAwVL3iI1RYYldBcakOFzt0uKRUh4vtKii2H1lu1+ESuw4f/W+JXcaUbbO41KHiUocOqaRaMnt52E7YbPc/0kSv0Gz38VTAX0ay//kYr7804Mv+39fLQzYbo90BAAAAAMDp0RQHAAAAACe2evchvfjdBi3fdVCSFBXip5GXxevaTg3kcYZToBtjVFTqUEFxWSO9vHFebFdBiV2Fxcc30svuLy3//xM12wuKjzy2xC67o6zrXuowyi0sVW7h2Y1oPxkPm46bEt7fx0v+3h5ljfQTTCN/XLPdx6PCKPdjm+9+Xp5n/P4CAAAAAADnRFMcAAAAAJzQvkOHNWb2Jn29ep+ksgbwPT2b6u4LmyrA5+/9lLPZbPLzLmsK1w30qcq4ksqa7sV2hwqLHSo4zaj1P5eXVlznmPVO9Nhiu0OS5DBSfrFd+cX2Kn8dR/l5exxppHvJ72iz/QSj1sub7RVGvHuVL4+tE6BG9QKqLScAAAAAADg1muIAAAAA4ETyi0r1/i/b9MGi7SosKWsAX9+5oR7tG6+oUD+L052azWaTr5enfL08FSrvanmOUrvj+JHsR29XGPFeqsMlDh0+0nQ/6WMqLC8tf88lqbDEocIShw4WnN0U83df2FRPXtH6bF86AAAAAAD4m2iKAwAAAIATcDiMvly5R6/OSVZGbpEkKTGurp65qo3aNwy1OJ3z8PL0ULCnh4L9qqfp7nAYFZZWZtR66THTy5+6QR8V4twnMwAAAAAA4OpoigMAAACAxX7ffkD//m6D1u/LkSQ1qhugJy5vpcvaRclm47rWNcnDw6YAH6+/PUU9AAAAAABwPvzKBwAAAACL7MzM1+gfNmrO+nRJUrCvlx64uLkG94iTr5enxekAAAAAAABcA01xAAAAAKhh2YdL9M7PWzTp150qsRt52KRbujXSw31aql6Qr9XxAAAAAAAAXApNcQAAAACoIaV2h6YuS9EbP23WwYISSdKFLevr6Stbq2VksMXpAAAAAAAAXBNNcQAAAACoAfOTM/TSrI3ampEnSWoeEaSnr2ytXvERFicDAAAAAABwbTTFAQBwIQXFpcrIKVJGbpFK7A6d1zzc6kgA4PaS03L10vcbtXDzfklSnQBvjbikpW5ObCQvTw+L0wEAAAAAALg+muIAANQC+UWlSs8pVEZuWcM748j/p+cUKiOnSOm5hdqfU6TcotLyx8TW9deikRdZmBoA3NuBvCKN/Wmzpi1LkcNI3p42DT2vie7v3Vyh/t5WxwMAAAAAAHAbNMUBALCIMUZ5RaXlze39xzS5/7osv9he6e0G+HgqIthXsXUDqjE9AOBkikrtmrRkp975eWv5yUqXtY3SE1e0UuN6gRanAwAAAAAAcD80xQEAqGLGGOUWlZaN5j4yijsjp0jpOUXKyD3a9C4b6V1wBs3uIF8vRQT7KiLEVxHBfooI9lVkiN+ft0PKbgf5Ut4BwArGGP3wR5pG/7BRu7MOS5LaNQjR01e20blN61mcDgAAAAAAwH1x1BwAgEoyxijncGl5kzsjt/C4RvfR24UljkpvN9jXq7yxHRniq4gQvyPN72Ma38G+CqTZDQBOa+2eQ3rxu41atjNLkhQR7KtH+8br+s4N5eFhszgdAAAAAACAe+PoOgDA7RljdKig5M9rdB8zdfmxje70nCIVl1a+2R3i56WIkCON7mC/io3vYL/yUd8BPpRjAKitUrMP69U5yfpq5V5Jkp+3h+6+sJnuubApJzMBAAAAAAA4CY7SAABcljFGBwtKjmt0p/9lWvP9uUUqtle+2R0W4F3W0D5Bo/vYBrift2c1vjoAgJUKikv1/i/b9f7CbeWzg/Q/p4Ee7RuvmDB/i9MBAAAAAADgWDTFAQC1jsNhlFVQXN7s3p9TcYR3Rm6RMnIKtT+vSCV2U+nt1gnwVmSIn+ofM2X5X6/bXT+YZjcAuDOHw2jmqr16dU6y0nIKJUldG9fR01e1UafYMGvDAQAAAAAA4IRoigMAnIbdYXQgv6j8+twZOUV/XrP7SKM7I7dsZHepo/LN7nqBPhUa3X82uf+8bnf9YF/5etHsBgCc3LIdWXpx1gat3ZMtSWpYx19PXN5aV7SPks3GdcMBAAAAAACcFU1xAEC1K7U7dCC/uLzZfew1uvcfczszr1j2Sja7bbayZvfRqcojj05l/pcR3uFBvvLx8qjmVwgAcGUpBwo0+oeN+uGPNElSkK+X7u/dXEPPi2P2EAAAAAAAnMD+3CLlFZWqSXig1VHgpGiKAwD+tlK7Q5l5xcdNXb7/L43vA3lFquzAbg+bVC/I989rcx8zmvvYkd71gnzk7UmzGwBQfXIKSzT+562auGSniu0OedikmxIb6eE+LVU/2NfqeAAAAAAAQNK3a/bp8S/XKr/YrivbR2vEpS3VrH6Q1bHgZGiKAwBO6XCxXdv252nb/jxtSc/T1ow8pWQVKCO3SAfyi2TOoNldP7is0R0Z4qv6wcc3uiNCfFUv0EdeNLsBABYqtTs0LWm33vhps7LyiyVJF7QI11NXtlarqBCL0wEAAAAAAEkqLLHrxVkb9OnvKeXLZq1L1ez1abqxa0M9eHELRYf6W5gQzoSmOABAUtlouK0ZeRX+bMnI1Z6Dh0/Z+Pb0sKn+kZHd9Y80vMunND/m/+sF+srTg+utAgCc2y+b9+ulWRu0OT1PktS0fqCevrK1esdHcN1wAAAAAACcxM7MfN0/daXW78uRJA3v3VyXt4/SGz9t1tyNGZq2bLe+WrlXQ3rE6b5ezRQW4GNxYliNpjgAuJkDeUVHGt4Vm9/pOUUnfUxYgLdaRASpeUSwmkcEqUl4wJER3n6qF+gjD5rdAIBabmtGrl6ctVELkvdLKqt9D/dpqVu6NeJyHQAAAAAAOJFZa1P12JdrlVdUqrqBPnpjYCf1bFlfkvTR4AQt35mlV2ZvUtLOg3p/4XZNXZaie3s209Dz4hTgQ2vUXdmMqezEt64hJydHoaGhys7OVkgIUx8CcE3GGKXlFJY1vNPztHV/nrYe+e/RaWBPJDLEV80jgtQiIljNIoKONMKDVC/Qh9FxqHLUZADO4GB+sd6Yu1n/XZoiu8PIy8OmwT3i9OBFLRQa4G11PKBGUJMBALAe9RgATq+o1K6XZm3U5N92SZIS4urorZvPOeEU6cYYLUjer1dmb9KmtFxJUniQrx66uLkGJjSSjxcnwLsbTocAgFrM7jDac7CgwsjvLRl52paRp7yi0pM+Lrauv5rXD1KLyGA1rx+k5pFBalY/SKH+HPwHALiPH9en6cmZfygzr2y2lEvaROrJK1qrSXigxckAAAAAAMCxdh0omy79j71l06Xf16uZHrmkpbxOMrubzWZT71YR6tmyvr5du0+v/7hZKVkFeuZ/6/Xhoh165NKW6tchhllQ3QhNcQCoBYpLHdp1IP+45vf2/XkqKnWc8DGeHjY1rhegFkdGfjc/Muq7Wf0g+ft41vArAADAeWQXlOj5b9frq1V7JUnNI4L0wjVt1aNZuMXJAAAAAADAX/2wLlUjv1ir3KJS1Qnw1tiBndQ7PqJSj/XwsOmaTg10ebtozUhK0Zvztiolq0APTV+t937ZrpF949Urvj4zpboBmuIA4EQOF9u1bX+etu0/Mu35ket97zpQoFLHia924ePloabhgeWjvltEljW/4+oFMgUMAAB/sSA5Q499uVbpOUXysEl3XdhUD/dpKT9vThgDAAAAAMCZFJXaNfr7TZr0605JUtfGdfT2LSeeLv10fLw8dHv3OF3fpaEmLtmp9xZs08bUHA2dlKTEuLoaeVm8usbVreJXAGfCNcUBwAIOh9H6fTnamJajbUdGfW/JyNWeg4d1sk/lQB/PI6O9g49c97us+R1bN0CeTPGCWoiaDKAm5RaW6KVZGzU9abckqUl4oF67oaO6NK5jcTLAetRkAACsRz0GgIpSDhRo+LSVWrsnW5J0b89meuTSlvI+yXTpZ+pgfrHe+2WbJv26s3w21j6tI/SvvvFqFcXnsCtipDgA1BBjjP7Ym6Nv1+7TrLWp2nvo8AnXCwvwPtLwrtj8jg71YwoXAAD+hiVbMzXyi7XltXfoeXEa2bcVlxMBAAAAAMAJzf4jVY9+sVa5haUKC/DW2Bs76qJWkVX6HHUCffTEFa015Lw4vTVviz5bvkdzN2Zo3qYM9e/UQA9f0lKxdQOq9DlhLUaKA0A125yeq2/X7NO3a/Zp54GC8uWBPp7q1ChMLSKC1eyY5ne9QB+a33AL1GQA1S2/qFT/+WGTpvy+S5IUW9dfrw7oqHOb1rM4GeBcqMkAAFiPegwAUnGpQy9/v7F8uvTOjcL0zi2dFRN25tOln6lt+/M09sfNmrUuVZLk7WnTrd0a6/7ezVU/2Lfanx/Vj6Y4AFSDHZn5+m7NPn23NlXJ6bnly/28PXRxq0j16xitXvERXL8Ubo2aDKA6LduRpX99vkYpWWUnpN3arZGevKK1An2ZLAv4K2oyAADWox4DcHe7swo0fOpKrTkyXfo9FzbVv/rGV9l06ZW1ds8hvTonWYu2ZEqSAnw8def5TXTXhU0V7Oddo1lQtTgiBABVZO+hw5q1dp++XZOqdXuzy5d7e9rUs2WE+nWMVp/WkRyMBwCgGhWW2PXqnGRNWLJDxkgxoX56ZUAHXdCivtXRAAAAAADACcxZn6ZHP1+jnMJShfp76/UbOqpPm6qdLr2yOjQM05Q7umnJ1kyNmb1Ja/Zk662ft2rK77t0f+/muu3cxgx2q6UYKQ4AZyEjt1Dfr03Vt2tTtWLXwfLlnh429WhWT/06xqhvmyiFBnAGGfBX1GQAVW1VykE98vkabd+fL0m6sWtDPX1VG4VwJjdwStRkAACsRz0G4I6KSx16ZfYmfbx4hyTpnCPTpTeogenSK8MYoznr0/TqnGRtO3KsISbUT//s01LXdW4grxoexY6zw3BFADhDB/OLNXt9mr5ds0+/bz8gx5FTi2w2KTGurvp1jNHl7aJUL4jrjAAAUBOKSu0aN3eL3v9lmxxGigj21X+ub6+LWllzVjkAAAAAADi13VkFGj5tldbsPiRJuuuCJnq0byv5eDlPo9lms+mydmUzwH61cq/emLtZ+7ILNfLLtXp/4TY92jdefdtGyWazWR0VlUBTHAAqIaewRD+tT9e3a/dp8ZZMlTr+nGTjnEZh6tchRld2iFZkiJ+FKQEAcD/r9mTrkc9Xa3N6niSp/zkNNKpfG4UF+FicDAAAAAAAnMhPG9L1yGerlVNYqhA/L71+YyddYtF06ZXh5emhGxNidXWnGH36+y69M3+rtu3P172frlTH2DA91jdePZqHWx0Tp0FTHABOoqC4VPM2Zui7tfs0P3m/iksd5fe1iQ5Rv44xuqpDtGLrBliYEgAA91Rc6tA787dq/PytsjuMwoN89OK17XVZuyirowEAAAAAgBMosTv0yg+b9NGR6dI7xobpnZvPqTXH2P28PXXnBU11Y0KsPlq4XR8t3qE1uw/plo+W6oIW4RrZt5XaNwy1OiZOgqY4AByjqNSuX5L369u1qZq7IV2HS+zl9zWrH6irOzbQVR2j1ax+kIUpAQBwbxtTc/TIZ2u0ITVHknRl+2i9cE1bLl0CAAAAAICT2nOwQA9MW6VVKYckSXec30SPXeZc06VXVoift0ZcGq/bu8dp/Pyt+u/SXVq0JVOLtizWle2jNeLSlvQQnJDNGGNOv5rryMnJUWhoqLKzsxUSEmJ1HABOoMTu0JKtmfpubarmrE9TbmFp+X2N6gboqg7R6tcxRq2igrk2CFCFqMkAzlSp3aH3ftmmN+dtUYndKCzAW/++pp36dYyxOhpQq1GTAQCwHvUYgCubtzFdIz5bo+zDJQr289JrN3RU37auM9Pb7qwCvfHTZs1cvVfGSJ4eNt3YtaEeurilokK55KqzoCkOwC3ZHUbLdmTp27X79MO6VB0sKCm/LyrEr7wR3qFhKI1woJpQkwGcia0ZuXrkszVasydbktSndaRevq6dIoL5cQmcLWoyAADWox4DcEUldodenZOsDxZulyR1bBiqd27pXGumSz9Tm9Jy9NqcZM3dmCFJ8vXy0JAecbqvVzOFBfhYnA5Mnw7AbRhjtDLlkL5ds0+z1qVqf25R+X3hQT66on20ruoQo66N68jDg0Y4AADOwO4w+njxdr3242YVlzoU7Oel5/q11XWdG3DiGgAAAAAATmrfocMaPnWlVh6ZLn3oeXF64vLWtXK69MpqFRWijwYnaPnOLL0ye5OSdh7U+wu3a+qyFN3bs5mGnhenAB9as1ZhpDgAl3e42K7x87dq5qq92nvocPnyUH9vXdY2Sv06xujcpnXl5em6xRhwRtRkAKezIzNfj36+Rst3HZQkXdiyvl65vr2iQ/0tTga4FmoyAADWox4DcCU/byqbLv1QQdl06a8O6KDL2kVbHatGGWO0IHm/Xpm9SZvSciVJ4UG+euji5hqY0MilTw5wVpyOAMCl7c4q0D1TVmhDao4kKdDHU5e2jVK/jtE6v3l9Cg8AAE7I4TCa/NtO/Wf2JhWWOBTo46mnr2qjmxJiGR0OAAAAAICTKrE79NqPyXr/l7Lp0ts3CNX4WzqrUT3XnC79VGw2m3q3ilDPlvX17dp9ev3HzUrJKtAz/1uvDxft0COXtlS/DjHMWluDaIoDcFm/bs3U/VNX6mBBieoF+mjU1W11aZtI+Xl7Wh0NAACcxO6sAo38Yq1+235AktS9aT2NGdDBZa83BgAAAACAK9h36LAenLaqfLa3IT3i9MQVreTr5d7H4z08bLqmUwNd3i5aM5JS9Oa8rUrJKtBD01frvV+2a2TfePWKr88ggBpAUxyAyzHG6OPFO/Ty9xvlMFKHhqF677YuigljqlUAAJyVMUbTlu3WS7M2KL/YLn9vTz1xRSvd1q0xZ00DAAAAAODE5idnaMSM1TpYUKJgXy+9MqCDrmjvXtOln46Pl4du7x6n67s01MQlO/Xegm3amJqjoZOSlBhXVyMvi1fXuLpWx3RpXFMcgEs5XGzXE1+t1der90mSru/cUC/1b8focMAJUZMBHLXv0GE99uVaLdqSKUlKiKujVwd0VFx4oMXJAPdATQYAwHrUYwC1Uandodd/2qz/W7BNktSuQYjG39JZjevxe/50DuYX671ftmnSrztVVOqQJPVpHaF/9Y1XqyjqQHVgpDgAl3Hs9cM9PWx65srWGtwjjmlHAABwUsYYfbFij174doNyi0rl6+WhR/vGa+h5TeTJ6HAAAABUoVK7Q16eHlbHAACXkZZdqAemrVTSzrLp0gd1b6ynrmzt9tOlV1adQB89cUVrDTkvTm/N26LPlu/R3I0ZmrcpQ/3PaaCH+7TkUnJVjJHiAFzCkq2ZGn7M9cPH39pZ5zatZ3UsAKdATQbcW0ZOoZ74ap3mbcqQJHWKDdNrN3RU84ggi5MB7oeaDABwZSkHCvTR4u36ZfN+/fjwhU7brKEeA6hNFiRnaMRna5SVX6wgXy+9cn0HXdmB6dLPxrb9eRr742bNWpcqSfL2tOnWbo11f+/mqh/sa3E612D5qXHjx49XXFyc/Pz81K1bNy1btuyU648bN07x8fHy9/dXbGysHn74YRUWFtZQWgDOxhijjxZt1+0fL9XBghJ1aBiqbx84n4Y4AABOyhij/63eq0veWKh5mzLk4+mhkZfF64t7u9MQBwAAQJVZs/uQ7v/vSvV6bb4m/7ZLuw4UaO6GDKtjAUCtVmp36NU5mzRkYpKy8ovVJjpE3z1wPg3xKtCsfpDG39pZ3ww/Txe0CFeJ3WjSrzvV89X5GvtjsnILS6yOWOtZOn36jBkzNGLECL333nvq1q2bxo0bp759+yo5OVkRERHHrT916lQ9/vjjmjBhgnr06KHNmzdryJAhstlsGjt2rAWvAICVDhfb9fhXa/U/rh8OAIDTM8ZoU1qu3pq3RT/8kSZJahsTorE3dlJ8VLDF6QAAAOAKHA6jBZsz9P4v27V0R1b58p4t6+ueC5uqezMGUQDA35WeU6gHpq3SsiOfr7ed20hPX9mG4/FVrEPDME25o5uWbM3UmNmbtGZPtt76eaum/L5L9/durtvObcx7/jdZOn16t27dlJCQoHfeeUeS5HA4FBsbqwceeECPP/74cesPHz5cGzdu1Lx588qXPfLII1q6dKkWL15cqedkGhrANXD9cKD2oyYDrq+guFS/bj2gn5MztGBThvZll83w5OVh0/CLmuv+3s3lzXUdActRkwEAtV1RqV3/W71PHy7cri0ZeZLKvnNe3SlGd1/YVK2inL++UY8BOLOFm/fr4RmrdeDIdOmjr2uvfh1jrI7l8owxmrM+TWPmJGv7/nxJUkyon/7Zp6Wu69xAXhxTOSOWjRQvLi7WihUr9MQTT5Qv8/DwUJ8+ffTbb7+d8DE9evTQp59+qmXLlikxMVHbt2/X999/r9tvv/2kz1NUVKSioqLy2zk5OVX3IgBYguuHA7UTNRlwD7uzCvTzpgz9vClDv20/oOJSR/l9vl4eOr95uB6+pKXaNQi1MCXg3qjJAABXkVNYoqlLUzRxyQ6l55TVtiBfL93SrZGGnhen6FB/ixOeHPUYQG1gdxiNm7tZ78zfKmOk1tEhevfWzmoSHmh1NLdgs9l0Wbto9Wkdqa9W7tUbczdrX3ahRn65Vu8v3KZH+8arb9soBgtWkmVN8czMTNntdkVGRlZYHhkZqU2bNp3wMbfccosyMzN1/vnnyxij0tJS3XvvvXryySdP+jyjR4/W888/X6XZAVjDGKOPF+/Qy99vlMNIHRqG6r3buigmzHl/4AD4EzUZcE0ldoeSdmZp/pFG+LYjZy4f1SDMXxe1ilDvVvXVvWm4/H2Y4guwGjUZAFDb7Tt0WBOX7NC0ZbuVV1QqSYoM8dXQ85rolm6NFOLnbXHC06MeA3B2GTmFenD6Kv2+vWy69Fu6NdKzVzFduhW8PD10Y0Ksru4Uo09/36V35m/Vtv35uvfTleoYG6bH+sarR/Nwq2M6PcumT9+3b58aNGigX3/9Vd27dy9fPnLkSP3yyy9aunTpcY9ZsGCBbrrpJr344ovq1q2btm7dqoceekh33XWXnnnmmRM+z4nOuIuNjWUaGqCW4frhQO1HTQZcx/7cIi1IztD85Awt2pyp3CMHIiXJ08OmLo3r6KJWEbqoVYRaRARxxjLgZKjJAIDaamNqjj5cuF3frNmnUkfZYe2WkUG664KmuqZTA/l41Z5pZKnHAJzZ4i2Z+ueMVcrMK1agj6devq69runUwOpYOCKnsEQfLdyujxbvUEGxXZJ0QYtwjezbSu0bMjPfyVg2Ujw8PFyenp5KT0+vsDw9PV1RUVEnfMwzzzyj22+/XXfeeackqX379srPz9fdd9+tp556Sh4ex3/p8fX1la+vb9W/AAA1huuHA66BmgzUXg6H0bq92fp5U1kjfO2e7Ar31wv0Uc/4+uodH6ELW9RXaIDzj8wB3Bk1GQBQmxhj9Ou2A3p/4XYt3Ly/fPm5TevqngubqVd8/Vp5jIh6DMAZZeYV6ZNfd5ZPl94qKljjb+2sZvWDrI6GY4T4eWvEpfG6vXucxs/fqv8u3aVFWzK1aMtiXdkhWo9c0lJN+Ts7jmVNcR8fH3Xp0kXz5s3TtddeK0lyOByaN2+ehg8ffsLHFBQUHNf49vQsGyVq0YB3ANWM64cDAGCNnMISLd6SqZ83ZWhB8n5l5hVVuL9dgxBdFB+h3q0i1KFhmDw9at+BSAAAADivUrtDs9al6sNF2/XH3rLrbXvYpMvbR+ueC5uqQ8MwawMCgAvIKyrVsh0HtGTrAS3ZmqlNabnl992cGKtR/doyW6sTqx/sq+eubqs7zm+iN37arJmr92rW2lTN/iNNN3aN1UMXt1BUqJ/VMZ2GZU1xSRoxYoQGDx6srl27KjExUePGjVN+fr6GDh0qSRo0aJAaNGig0aNHS5L69eunsWPH6pxzzimfPv2ZZ55Rv379ypvjAFwD1w8HAKBmGWO0bX9++bXBk3ZmlU9JKUmBPp66oEV99W5VX73iIxQZwo8qAAAAVL38olJ9tny3Plq0Q3sPHZYk+Xl76Mausbrz/KZqVC/A4oQAUHsVlzq0KuWglmw7oF+3Zmr17kMVfvtLUuvoEN3bsynTpdcisXUDNHZgJ93ds6lem5OsuRszNG1Zir5auUdDesTpvl7NFBbgY3VMy1naFB84cKD279+vZ599VmlpaerUqZNmz56tyMhISVJKSkqFkeFPP/20bDabnn76ae3du1f169dXv3799P/s3XV4lGfaxuFrZuIeYoQIISQhuDulpdBChcrWBYpUl8pWtrLW3f12t926bw0rddt6oYUW9+CWEJIQN0LcZ97vj1C2QlskyTuT/M7j4FgYvWApz8x7P899//Of/zTrtwCgDTA/HACA9lHfZNf6jEP6dl+xvk0tUXZZ7Q/ujw/11YQjs8GHx3VxqRmNAAAAcC0lVS0texetP6iKuiZJLWN6po+O07TR3dXFl4v5AHCiHA5DewoqtfZAqdakH9LGzDLVNdl/8JjYLj4amxCqsQkhGh0fohA/Rju4quSuAXr1uuHanFWmfy/ep01Zh/XSygy9uTFbN5/eUzPHxsnHw9TSsKksRifrO15ZWanAwEBVVFQoICDA7DgAfoT54UDnwZoMmCO/vE7fphbr233FWpN+6Adfhj1sVo2M76IJvVoK4XGhviYmBdBeWJMBAGY6UFKtV1dl6IMteWpsdkiS4kJ8dP1p8bp0aHSnOSTBegygNRiGoYOHarXmQKnWph/S2gOlOlzb9IPHhPp5aHTPUI1LCNGYnqGK6UIHjo7IMAwtTy3RvxfvO9oWP9TPU3dMTNAVw2M75cGHzrsdAIDTYX44AACtr77Jrk1ZZVqRWqKV+0uUVlT9g/sjAjx1ZnK4JvQK19iEUPl68hUBAAAAbW9zVpleWpmhpXuL9N2xrcGxQbppfLzO6tNVNisHJADgeJRUNRw5Cd5yGvy70RPf8fWwaWR8iMb0DNG4xFD1ivDnEFonYLFYNCE5XKcnhenTHfl6/Ks0ZZfV6s8f79YrqzJ199lJmjqgm6ydaL3lihcA0zE/HACA1mMYhrIO1WpFarFWpJVoXcYh1Tc5jt5vtUiDYoJaCuHJ4eoTGcCXYQAAALQLh8PQV3uK9PLKA9qSXX709km9I3TT6fEa1j2Yz6YA8Cuq6pu0IaPs6Gnw1KKqH9zvbrNocGywxvYM1bjEEA2IDpK7rfOdCkYLq9WiCwdF6Zx+kXpnU7aeXpau7LJa3fH2Nr24IkP3TumlM5LCOsX6S1EcgKl+PD/80qHR+sdFzA8HAOBEVDc0a92BQ1qRVqyVaaU/mQ0eEeCp8YlhOr1XmMYlhCrIh3mMAAAAaD/1TXZ9uCVPr67KUEZpjaSW0T2/GRKl60+LV0K4n8kJAcB5NTTbtTW7/MhJ8FJtz62Q3fG/ycgWi9QnMkBjE0I1pmeIRvTo0qnnRuPYPNysmjY6TpcMjdb8NVl6cfkB7S2o1Mz5mzSiRxfdN6WXhnbvYnbMNsVMcQCm+f78cDerRX8+v4+mj+7eKXYkAWBNBk6FYRjaV1ilFWklWpFaos0Hy9Rk/9/HenebRcPjuuj0pJZCOK3RAPwS1mQAQFspr23UonUHtXBdlkqrGyVJAV5uunZUd80YE6fwAC+TEzoP1mMA33E4DO0pqNSa9FKtTi/VpqyyH3SAk6S4EB+NSQjV2J6hGt0zRF182fyOE3O4plEvrjigBWuz1NDc8vdrUu8I/X5yL/Xq6m9yurbBVhEApvjx/PAXrhmikcwPBwDgZ5XXNmrV/lKtTCvRirQSFVc1/OD+2C4+OqNXmMYnhml0zxBmgwMAAMA0OWW1mrs6U+9sylFdk12SFBXkrVnjeuiK4THy47MqABz13Ri0NemlWnugVGsPHFJ5bdMPHhPq56mxCSEa2zNUYxJCFB3sY1JadBTBvh564NzemjE2Tk8v3a93N+do6d4iLdtXpIsHR+nOSUmK6dKx/p5xUhxAu2J+OIDvsCYDv8zuMLQjt7zlNHhaibbnlOt73dHk7W7T6J4hLafBk8IUF+prXlgALo01GQDQWnbmVuillQf0xc6Co59d+0QG6KbT43Vu/0hm2v4C1mOg86msb9Kji1O1bG+R8ivqf3Cfn6ebRsV30ZieoRqbEKqkCD86wKFNpRdX64mvU/XFzkJJLV0IrxnZXXMmJCjM39PkdK2DLXkA2g3zwwEA+GXFlfVaub9UK9JKtGp/yU92hveK8NfpR06DD4sLZg0FAACA6QzD0PK0Er28IkPrMg4dvf20xFDdNL6nxiaEUMgBgB+pa7Rr9oJN2pR1WJLkYbNqcGyQxiWEakxCqAZGB8qNjURoRwnhfnrhmqHakVuuR5ekatX+Ui1Ym6V3N+fo+nE9dMP4ePl7uZsd85RQFAfQLvYVVuqud7YzPxwAgB/JKKnWu5tztSKtRHsLKn9wX4CXm8Ylhur0pDCNTwpTZCCdVQAAAOAcGpsd+nR7vl5emaHUoipJks1q0dQBkbphfLz6dgs0OSEAOKcmu0O/fSNFm7IOy9/LTU9cPkjjEkLl7cHGd5hvQHSQFs0eqTXppXpk8T5tz63QM9+ka9H6g5ozIUHXjurusoc0aJ8OoM0crmnUpzvy9X5KrnbkVkgS88MBHMWaDEgHD9Xo/GdXq6q+WZJksUgDogJbWqL3CtPA6CB2hgNoc6zJAIATUVXfpLc2Zmve6iwVVra0+/X1sOnKEbGaNa6HohiRd1JYj4HOweEwdOe72/Txtnx5uVv1+uyRGhbXxexYwDEZhqEluwv1yJJUZZTUSJK6BXrpd2cl6TeDo1zumhUnxQG0qia7QyvTSvR+Sq6W7i1Sk71l342b1aJJvSP0l6l9mB8OAIBaWqXd/PoWVdU3q2+3AN04Pl7jEkIV4tcx5jQBAACgYymsqNf8NZl6c0O2qhpaNnWG+Xtq5tg4XTOyuwK9XbulKgC0NcMw9NdPd+vjbflys1r04rVDKYjDqVksFk3pF6lJvSP04ZY8Pbk0TfkV9br3/R16eWWG7jm7lyb3jXCZjsAUxQG0ir0FlfogJVcfbctTaXXj0dv7RAbo0qHRunBQNy7yAwBwhGEY+tNHu7S3oFKhfh6ae91wdQ30MjsWAAAA8BOphVV6eWWGPtmed/TwQ0K4n248LV4XDu4mTzfXbKEKAO3tya/T9Nq6g7JYpCeuGKQzeoWbHQk4Lm42qy4fHqMLBnXT6+sP6rlv05VeXK2bX0/RwJgg3Tell8b0DDU75q+iKA7gpJXVNOrjbXl6PyVXu/P/NwM11M9DFw6K0iVDotWnG+2eAAD4sTc3ZuuDLbmyWqRnrhpMQRwAAABOxTAMrcs4pJdXZmh5asnR20f06KKbxsdrQq9wWa2ucSoMAJzB3NWZeuabdEnS3y/spwsGdjM5EXDivNxtuv60eF0+PEavrMzQq6sytT2nXFe/skGnJYbq3snJ6h8daHbMn0VRHMAJabI79O2+Yr2fkqtvU4uP7hB2t1k0MTlClw6N1um9wuTuYrMkAABoL9tzyvW3T/ZIku6dkuwSO2kBAADQOTTbHVq8u1Avr8zQjtwKSZLVIk3p11U3nBavwbHBJicEANfzQUqu/u+zlusA95ydpGmjupucCDg1AV7uuvvsXpo+Ok7PfbNfb27M1qr9pVq1f7XOGxCpu89KUnyYn9kxf4KiOIDjsju/Qu+n5Orjbfkqq/lfe/T+UYG6dGi0LhjYTcG+HiYmBADA+ZXVNOq3b2xRo92hyX0jdNP4eLMjAQAAAKptbNZ7m3P16uoM5ZTVSZI83ay6bFi0rh8Xr7hQX5MTAoBr+npPke79YIck6fpxPTRnQoLJiYDWE+bvqb9d2E+zx8XryaVp+mhbnj7fUaDFuwp1+bAY3TEx0am6I1IUB/CzSqsb9NHWlvbo+wqrjt4e5u+piwe3tEfv1dXfxIQAALgOu8PQHW9vVV55nXqE+urRywbKYqHlJAAAAMxTWt2g19Zm6bX1B1Ve2yRJCvZx1/TRcZo+urtC/DxNTggArmvdgUOa8+YW2R2GLh0arT+e15vrAOiQYkN89OQVg3Tj+Hg9tiRVy/YV662N2fpwS65mjI3TLaf3VJCP+YcqKYoD+IHGZoe+2Vek91NytTy1RM2OlvboHjarzurT0h79tMRQudEeHQCAE/L00jSt2l8qb3ebXrx2qAK83M2OBAAAOiHDMPTsN+nKLqvVzLFx6tvNeec+ou1kltbolVUZ+iAlVw3NDklSbBcf3XBaD106NEbeHjaTEwKAa9uZW6EbXtusxmaHzu4ToYd/05+CODq83pEBmjtjuDZnlenfi/dpU9ZhvbQiQ29uyNbNp/fUzLFx8vEwrzRtMQzDMO3dTVBZWanAwEBVVFQoICDA7DiAUzAMQ7vyKvV+So4+3p5/dGewJA2MCdKlQ6M1dUCkU+zkAdBxsCajM/lmX5FmLdgsSXrqikG6aHCUyYkA4H9Yk4HO5dPt+brtra1Hf31Wnwjdfmai+kdTHO8MtmQf1ksrDuirPUX67qrwwJgg3TQ+XpP7dpXNSsHGLKzHQMeRXlyty19ap7KaRo2OD9H8mcPl5c5mI3QuhmFoeWqJ/r1439FOxGH+nrp9YqKuHB4jdxMOXlIUBzqx4sp6fbStpT16WlH10dsjAjx18eBoXTo0SgnhtEcH0DZYk9FZZB+q1fnPrlJlfbOmj+6uv1/Yz+xIAPADrMlA51FS1aCzn1yhw7VN6hMZoL2FlUcLo2cmh+u2MxM0ODbY3JBodQ6HoWX7ivXyygPalHX46O0Tk8N14/h4jejRhdOLToD1GOgY8srrdOl/1qqgol4DogP15g2j5OdJ02Z0Xg6HoU935Ovxr9KUXVYrSYoL8dHnt58m33b+b4P/EoFOKL24Ws9/m65PtufLfqQ9uqebVWf37apLh0ZrXEIoO4MBAGgF9U123fJGiirrmzU4Nkh/Oq+P2ZEAAEAnZRiG/vzRLh2ubVLvyAB9NGessstq9cK36fpoW56+2Vesb/YVa3xSmO6YmKCh3buYHRmnqL7Jro+25umVVRk6UFIjSXK3WXTRoCjdOD5eiREchACA1lRa3aBpr25QQUW9eob5asHMERTE0elZrRZdOChK5/SL1NubsvXMsnT1jw5q94K4RFEc6FT2F1Xp2W/S9emO/KM7wYfEBunSoTE6b0CkAr2ZbQoAQGv6y8e7tDu/Ul18PfTCNUPk4db+raEAAAAk6dMdBVq8u1BuVoseu2yAPNysSgj30xNXDNJtExP1/Lfp+u/WPK1MK9HKtBKNTQjR7WcmamR8iNnRcYIqapv0+oaDmr8mS6XVDZIkfy83XTOyu2aOjVNEgJfJCQGg46mqb9KM+RuVUVqjqCBvvX79SHXxZRwp8B0PN6umj47TpUOjVdNgNyUDRXGgE9hXWKlnv0nXFzsLjhbDmRkGAEDbentjtt7dnCurRXr2qsGKDPQ2OxIAAOikSqoa9ODHuyRJcyYkqG+3H14L6BHqq8cuG6jbz0zUC8vT9X5KrtakH9Ka9EMa2aOL7piUqNHxIbTYdnK5h2s1d3Wm3tmUo9rGlovNkYFemj2uh64cEctpRQBoI/VNdl2/cLN25VUqxNdDi2aP4BoA8DN8PNzk42HOZxI+CQEd2J78Sj2zbL8W7y48etuUvl1128SffgEGAACtZ2duhf7yyW5J0t1n99LYhFCTEwEAgM7qx23T50xI+NnHxob46OFLBujWMxP0n+UH9O7mHG3ILNPVr2zQ8Lhg3T4xUeMSQimOO5ldeRV6eWWGPt9ZcHRMXnJXf910erzOH9BN7ja6FQFAW2myO3Trm1u0IbNM/p5uWjhrhOLD/MyOBeAYKIoDHdCuvAo9vWy/vt5TJEmyWKRz+0XqtokJSu4aYHI6AAA6tsM1jbr59RQ1Njs0qXeEbjm9p9mRAABAJ3astum/JjrYR/+8uL/mTEjQSysO6K1NOdqUdVjT5m7U4Ngg3T4xUWckhVEcN5FhGFq1v1Qvr8zQ6vTSo7ePSwjVjePjdVoimxcAoK05HIbue3+Hlu4tlqebVa9eN0z9ojiMBjgriuJAB7I9p1zPLNuvZfuKJbUUw88f0E23nZmgpAh/k9MBANDxORyGfvfONuWV16l7iI8ev3ygrFYuRgIAAHP8Wtv0X9MtyFt/u7CffjshQS+uOKA3N2Rra3a5Zs7fpIHRgbp9YqLOTA6n+NqOmuwOfbYjXy+vzNTegkpJks1q0fkDInXDafEUYwCgnRiGob9/tkcfbs2TzWrRC9cM0cj4ELNjAfgFFMWBDmBL9mE9s2y/lqeWSJKsFunCQVGaMyFBCeG0agEAoL08881+rUgrkZe7Vf+5ZqgCvd3NjgQAADopwzD0p492Hlfb9F8TEeClB6f21S1n9NQrKzP0+vpsbc+t0OyFm9W3W4Bun5ios3pHsBmwDVU3NOvtjdmatzpT+RX1kiQfD5uuGB6j2eN6KDrYx+SEANC5PLMsXQvWZkmSHr9soCb2jjA3EIBfRVEccGGbs8r09LL9WrW/pU2WzWrRRYOiNGdCT+aWAADQzpanJPK6AwABAABJREFUFuvpZfslSf+8qL/6dGNkCQAAMM+nOwq0ZHfRCbVN/zXh/l7643l9dNPpPfXqqky9ti5Lu/MrddOiFCV39dftExM1pW9XiuOtqKiyXvPXZOmNDQdVVd8sSQr189TMsXG6ZmSsgnw8TE4IAJ3PwrVZenJpmiTpr1P76KLBUSYnAnA8KIoDLmhDxiE9881+rUk/JKmlGH7JkCj99owExYX6mpwOAIDOJ6esVne8vU2GIV0zMlaXDI02OxIAAOjEvt82/dYzT7xt+q8J9fPU/eck68bx8Zq3OlML1mZpX2GVfvvGFiVF+OnWMxN1Xv9I2SiOn7T9RVV6eWWGPtqWpya7IUmKD/PVjafF66LBUfJyt5mcEAA6p4+25unBT3ZLkn43KVEzxvYwORGA40VRHHARhmFoXcYhPbNsv9ZnlEmS3KwWXTYsWr89I0ExXWiTBQCAGeqb7PrtG1tUUdekgTFB+svUPmZHAgCg1VXWN+mr3UVavKtQ0cHeenBqH+ZIO6kft03/7Rkn3zb913Tx9dA9k3vp+tN6aN6aLM1fk6m0omrd/tZWPb00TbedmajzB0TKzXbqp9Q7A8MwtDGzTC+vzNCyfcVHbx8eF6wbx/fUxORwTuEDgImW7S3S3e9tlyTNGBOnOyYmmpwIwImgKA44OcMwtCa9pRi+MaulGO5us+jyYTG65YyezIwCAMBkf/t0t3bmVSjYx10vXDNEnm6c2gEAdAw1Dc1aurdIn+0o0IrUEjXaHUfvO7tvhMb0DDUxHX7OJ9vzW71t+q8J8vHQXWclafa4Hlq4NktzV2fqQEmNfvfONj29bL/mTEjQRYO6URz/GXaHoSW7C/XSygxtzymXJFks0tl9InTj+J4a2j3Y3IAAAG3IOKTfvrFFdoehiwdH6S/ns0EQcDUUxQEnZRiGVu4v1TPL9ivl4GFJkofNqitHxOjm03uqW5C3yQkBAMC7m3P01sYcWSzS01cOVhTrMwDAxdU32bU8tVifbi/Qsn1Fqm/6XyE8MdxPfl5u2ppdrgVrsjpUUby0ukHXL9yssQkhuufsXi57kbukquFoS9e2aJv+awK93XX7xETNHBun19Yd1KurMpRZWqN73tuuZ5bt15wJPfWbIdFypzguSaprtOv9lBy9ujpTBw/VSpI83Ky6dGi0rh/XQ/FhfiYnBABI0q68Cl2/cLMamh2a1Dtcj1w6gM4dgAuiKA44GcMwtDy1RE8v269tR3YHe7pZddWIWN18ek91DfQyNyAAAJDU8qX4zx+1zOq8a1KSxieFmZwIAICT09js0Or0En26vUBf7S5UTaP96H1xIT6aOrCbzh/QTb26+iu9uEqTnlipr/cWKaestsOM8nptbZa25ZRrW065Qv08NdMF54N+1za9vLZJfSIDNGdC27VN/zX+Xu6aMyFBM8bE6fX1B/Xyygxll9Xqvg926pll6ZozIUGXDI3qtB12DlU36LV1B7Vo/UGV1TRKkoJ83DV9VHdNHxOnUD9PkxMCAL6TUVKt6+ZtVFVDs0b06KLnrh7C5i7ARVEUB5xIRW2Tbn49ResyDkmSvNytumZkd900Pl7hARTDAQBwFhW1TbrljRQ1NDs0MTnc1IvOAACcjGa7Q+syDumz7QVavLtQFXVNR++LCvLW+QMidf6AbuoXFfCDU9MJ4f46LTFUq/aXauHaLP3p/D5mxG9Vjc0Ovbkx5+iv/++zPeoR6qszeoWbmOrE/bBt+kCnuGDv6+mmm07vqWmju+vNDdl6aWWG8srr9If/7tRz3+zXLWf01GXDYuTl3jmK41mlNXp1dYbeT8k92oUhpou3rh8Xr8uGRcvHg0u1AOBMCirqNG3uRh2qaVTfbgF69bphnWbNAjoiPmkBTqK4ql7T527UvsIqebvbNG10d91wWrzC/NkdDACAM3E4DP3una3KKatTTBdvPXH5INqmAQBcgsNhaFNWmT7dka8vdxbq0JETqpIU5u+p8/pHaurASA2OCf7FtW3m2Dit2l+qdzbn6M6zkuTr6dqXl5bsLlRpdYPC/D01PjFMH2zJ1W1vbtV/54xRQri/2fGOS3FV/Q/apvfpFmByoh/y8XDT9afF69pR3fXWxmy9uOKA8ivq9eePd+u5b9N18+k9ddWI2A5baNiWU66XVx7Ql7sKZRgttw2IDtSN4+M1pW9XZq0DgBMqq2nUtLkblVdep/hQXy2cNUIBXu5mxwJwClz7WwvQQeSU1erauRt08FCtwvw9tWj2CCV3da4vsAAAoMXz36br29QSebpZ9Z9rhirQhy/FAADnZRiGtuWU69PtBfpiZ4EKK+uP3hfs465z+kdq6oBuGtGji2zHucnrjKRw9Qj1VWZpjT7ckqtpo+PaKH37WLT+oCTpqhGxmjOhp3LKarUxq0yzFmzWx3PGKtjXw+SEv8wwDP3pv7ucom36r/Fyt2nm2B66akSs3tucoxeWH1BBRb3+9ukePf/tAU0dGKlQP08FeLsr0NtdQd/9r0/L//p7uR/331OzORyGvk0t1ksrM7Qxs+zo7RN6henG8T01Kr6Ly86uB4COrrqhWTPmb1R6cbUiA7302uwRjLYAOgCK4oDJ0oqqNG3uBhVVNiimi7denz1S3UN8zY4FAACOYWVaiZ5YmiZJ+r+L+qlfVKDJiQAA+CnDMLSnoFKfbi/QZzvylXu47uh9/l5umty3q6YO7KYxPUNOqsW21WrRdaO766+f7tH8tVm6ZmR3l+2aklpYpY2ZZbJZLbp6RKw83Wz6z7VDdNELa5RdVqubX0/Rotkj5eHmvCd5P9mer6/2OFfb9F/j5W7TtNFxunx4jD5IydPz36Yrr7xO89dk/eLzLBbJ39NNgT7fFc09FOjtfvTX3y+k//h2P0+3dilCNzTb9fHWfL28KkPpxdWSJHebRRcMjNKN4+PVq6trdB8AgM6qvsmuG1/brB25FQr2cdei2SMUHexjdiwArYCiOGCibTnlmjF/o8prm5QU4adFs0cqgtnhAAA4pdzDtbrj7a0yDOmqETG6fFiM2ZEAAPiB/UVV+nRHgT7bnq+M0pqjt/t42DSpd4SmDuym8Umh8nQ79RbVlwyN1mNfpSmjpEar0kt1elLYKb+mGV4/ckr87D4R6hrY8n08xM9Tc68brt+8sFYbMsv0l4936aHf9HfKU73fb5t+25mJTtc2/dd4utl09chYXTYsWp/tyNfegipV1DapvK5RFXVNqqhrVkVty89rGu0yDKmyvlmV9c3KUd2vv8H3uFktCjhSNA/40Qn07/8I8vH43s9b/vd42rpX1DXpjQ0HtWBNloqrGiS1FPCvHhmrmWN7HP37BQBwXs12h25/a6vWHjgkXw+bFs4a4TKjVAD8OorigEnWppfqhtc2q6bRroExQVowY7jTt2QDAKCzami2a84bW3S4tkn9owL14NS+ZkcCAECSlFVao8925OuzHQXaV1h19HZPN6vOTA7X+QO66czkcHl7tO6sZn8vd102LFrz12Rp/ppMlyyKV9U36cMtuZKkaaO6/+C+pAh/PXvVYM1euElvb8pRYoS/Zo/rYUbMn/Xjtum/ndDT7Egnzd1m1cWDo3Xx4J9/TGOzQ5X1Taqoa1J5bZMq6777eaMq6pqPFtIrj9xf8d39dU1qbHao2WGorKZRZTWNJ5zPw836k1buAd87qX64tlHvbc5RTaNdktQ1wEuzxsXpyhGxzJ8FABdhGIYe+HCnvtpTJA83q165bpgGRAeZHQtAK6IoDphgye5C3fbmVjXaHRqbEKKXpw2Tryf/OQIA4Kz+/ukebc+tUJCPu164ZshxnRYCAKCt5JXX6fMjhfAduRVHb3e3WTQ+MUxTB3bTpD4R8mvj75nXjY7TgrVZWp5aooySasWH+bXp+7W2j7bmqabRrvgwX43uGfKT+yckh+sP5/bWPz7fq39+vkfxob6akBxuQtJjc8W26afCw82qUD/Pk5rpWt9kP1pM/18hveknP75fTP/uh91hqLHZoeKqhqMnwH9Orwh/3Tg+XlMHdnPqlvsAgB8yDEP//Hyv3kvJldUiPXvVYI3pGWp2LACtjCoc0M7eT8nVve9vl8OQJveN0DNXDW6V1nUAAKBtfJCSqzc2ZMtikZ66YpBiujBLDADQ/oqr6vXFjgJ9tqNAmw8ePnq7zWrRmJ4hmjqgmyb37apAn/Y7lRoX6qsze4Vr2b5iLVybpb9d2K/d3vtUGYahRUdap08b1f1nW6PPHtdD6cXVentTjm57a6s+/O0YJUWY30bV1dumtzcvd5u83G0nPLLOMAxVNzT/r0j+oxPo3xXSm+0OnTsgUmckhTllm30AwC97YfkBvbo6U5L070sGaHLfriYnAtAWKIoD7Wje6kz9/bM9kqRLh0br4d/0l1sH38kNAIAr25NfqT/8d6ck6Y6JiTqjl/OcDgMAdA6V9U26651t+mZfsRxGy20WizQ8roumDuymc/p1PamTs61l5tgeWravWO+n5Oruyb1cplX0xswypRVVy9vdpkuGRv/s4ywWi/5+YT9lltZoQ2aZZi/cpI/njFMXE8efdaS26c7OYrHI38td/l7uig42Ow0AoC28tTFbjy5JlST96bzeumxYjMmJALQVqnFAOzAMQ098nXa0ID57XA89cskACuIAADixirom3fJGihqaHTqjV5huPzPR7EgAgE7o1VWZWrq3pSA+KCZIfz6/j9bdP1Hv3jRa00Z1N7UgLkljE0KUGO6nmka73tuca2qWE/HdKfGLBkf9aiHfw82q/1w7VLFdfJRTVqebF6WosdnRHjGPqbO1TQcAoK1szynXXz7eJUm67cwEXX9avMmJALQlPjUDbczhMPS3T/fomWX7JUl3n5WkP53XW1Yr7bQAAHBWzXaH7n53uw4eqlVUkLeeumIQazcAoN3VN9n1xpHi7dNXDtJHc8Zq9rge6hp4Yi2g25LFYtGMsXGSpIVrs2T/7ji7EyuuqtfiXYWSpGtHxR7Xc7r4emjudcPk7+mmjVll+uN/d8ow2v/3Stt0AABaR0Vdk259a4ua7Iam9O2qu85KMjsSgDZGURxoQ012h+5+b7sWrM2SJP3tgr66bWIi86UAAHBSdoehj7bmadITK7R0b5E83Kx68dqhCvIxr0UqAKDz+mRbvg7VNCoqyFvn9Y80O87PunhwlAK93ZVdVqtv9hWbHedXvb0xR80OQ0O7B6tvt8Djfl5ihL+evXqwrBbpvZRcvboqsw1T/pRhGPrjkbbpfbvRNh0AgJNlGIYe+HCHcsrqFB3srX9fOoBr9kAnQFEcaCP1TXbd8voW/XdrnmxWi566YpCuGxNndiwAAHAMDoehL3YWaMpTK/W7d7Yp61Ctuvh66OkrBql/9PFfLAcAoLUYhqF5a1qKrteN6e7U47d8PNx05fCW+ZsL1rZvofhENdsdenNDtiRp2qjuJ/z8M3qF60/n9ZEk/evLvVq2t6hV8/2ST7bn62vapgMAcMpeX39QX+wslLvNoueuHqJA718epQKgY+DTM9AGquqbNGP+Ri3dWyRPN6teunaoLhocZXYsAADwI4ZhaOmeIp3/7Gr99o0t2l9crQAvN/1+ci+tuneCznHiU3kAgI5t3YFD2ldYJR8Pm64Ydnwtvs00bXR3WS3SmvRDSi2sMjvOz1q6t1iFlfUK8fXQOf27ntRrzBwbp6tGxMowpNvf2touv98ft03vHUnbdAAATsbu/Ar932d7JUn3TUnWoJggcwMBaDcUxYFWVlbTqGte3aD1GWXy83TTwlkjNKlPhNmxAADA9xiGoVX7S3TRC2t1/WubtaegUn6ebrp9YqJW3Xem5kxIkK+nm9kxAQCd2HenxC8dGq1AH+c/vRQd7KPJfVuKzN+NEHNGrx+Z0X7F8Bh5utlO6jUsFov+fmFfjYrvoppGu2Yv3KRD1Q2tGfMHaJsOAEDrqG5o1q1vblWj3aGJyeGaPa6H2ZEAtCOK4kArKqio02UvrtWO3Ap18fXQWzeM0qj4ELNjAQCA79mQcUhXvLxe0+Zu1Paccnm5W3Xz6T216t4JuuusJNqmAQBMl1lao2VHZnPPcKExXN9l/e/WXJXXNpob5hgOlFRrdXqpLBbp6pGndvre3WbVf64Zqu4hPso9XKebX09RQ7O9lZL+0Hdt091ttE0HAOBkGYahP3y4U5mlNeoW6KXHLhvIHHGgk+FTNNBKMktrdOl/1ulASY0iA7307k2jmUEKAIAT2Zp9WNPmbtAVL6/XxswyebhZNXNsnFbeO0H3n5OsYF8PsyMCACBJWrg2S4YhnZkcrvgwP7PjHLcRPbqoT2SA6pscemtjjtlxfuK7U+ITk8MVHexzyq8X7OuhudcNl7+XmzZlHdYf/7tLhmGc8ut+H23TAQBoHe9uztEn2/Nls1r0zFWDuQYAdEIUxYFWsDu/Qpe9uFZ55XXqEeqr924erYRw17lwAQBAR7Yrr0KzF2zSxS+s1ar9pXKzWnTNyFit+P0ZenBqX4X7e5kdEQCAoyrqmvTu5paC8qyxrtXS02KxaMbYOEnSonVZarY7zA30PbWNzXo/JVeSdO2o7q32ugnhfnr+6iGyWS16PyVXL6/MaLXX/nHb9FvOoG06AAAnI7Ww6ugms7vPTtKwuC4mJwJgBoriwCnalFWmK19er9LqRvWJDNB7N49ulR3nAADg1OwvqtJv30jR+c+u1rJ9xbJapMuGRuvbe87QPy/ur8hAb7MjAgDwE+9tzlFto11JEX4am+B647guGNhNIb4eyq+o11d7isyOc9Qn2/JVVd+s7iE+Gp8Y1qqvPT4pTH8+r7ck6eHF+/R1K/2+P95G23QAAE5VbWOz5ry5RfVNDo1PCtPN49lkBnRWfJoGTsG3qcWaNneDquqbNTwuWG/fNEqhfp5mxwIAoFPLLK3R797eqrOfWqkvdhbKYpEuHNRNS+86XY9eNlAxXdi8BgBwTs12h+avyZLUckrcFedcernbjs7rnr8m0+Q0LQzD0GvrWlqnXzuyu6zW1v9zvW5MnK4ZGSvDkH739lbtLag8pdejbToAAK3jLx/vVnpxtcL9PfXE5QPb5HMAANdAURw4SZ9uz9cNCzervsmhM3qF6bVZIxXg5W52LAAAWk2z3aHy2sZWn43ZVnLKanXv+9s16YkV+mhbvgxDmtK3qxbfMV5PXznYpWayAgA6p6V7i5RXXqdgH3ddNDjK7Dgn7dpR3eVmtWhT1mHtyqswO4625pRrT0GlPN2sunRodJu8h8Vi0V8v6KsxPUNU02jX9Qs3q6Sq4aRe67u26RV1TeoXRdt0AABO1gcpuXo/JVdWi/T0lYM50AZ0cm5mBwBc0RsbDupPH+2SYUjnD4jUE5cPkocbe0wAAB1Hk92hC55bo70FlfLxsCk62FtRQd6KDvZRVLD3D34d6udh6km2wop6Pf9tut7elK0me0sB/8zkcN11VpL6RQWalgsAgBM1b3WWJOmakd3l5W4zN8wpiAjw0rn9I/XJ9nzNX5Olxy8faGqeRUdOiU8d2E3Bvh5t9j7uNqteuGaILnp+jbIO1erm11P05g0j5el2Yv9ffr9t+qOX0jYdAICTkV5crT9/vEuSdMfEJI3u6XpjaQC0LoriwAl6YXm6HlmcKkm6ZmSs/n5hP9louQIA6GDe3ph9tO1nbaNdaUXVSiuqPuZjPd2sivpekTz6R0XzcH/PNmlPVlrdoP8sP6BF6w+qsdkhSRqXEKo7z0rS0O7Brf5+AAC0pZ25FdqYVSZ3m0XTRnc3O84pmzk2Tp9sz9en2/P1wLnJpp3MOlTdoM93FEiSpo1q+z/XIB8PzZ0xXBc9v0YpBw/rgQ936vHLBh73BsLiStqmAwBwquqb7Lr1zS2qbbRrTM8Q3XpmgtmRADgBiuLAcTIMQw8v3qeXVmRIkn57Rk/9fnIvl5zxBgDAL6lpaNbTy/ZLkv58fh9N6BWm3MN1yiuvU+7hWuUdrjv668LKejU0O5RRUqOMkppjvp6HzarIIK8fnjYPOlI4D/ZW1wAvuZ3ACajy2ka9tDJDC9Zkqa7JLkkaHhesu87qxc5vAIDLmndk/vb5A7opIsDL5DSnbnBssAbGBGl7Trne3JCt2ycmmpLj3c25arQ7NCA6UANjgtrlPXuG+emFa4ZoxvxN+nBLnhLD/Y+rBbphGPoDbdMBADhlf/9sj/YVVinUz0NPXTGIQ20AJFEUB46L3WHoj//dqbc35UiSHjgnWTedzpdTAEDH9OqqTJVWNyouxEfTR3eXu836s/O4G5sdKqyoV+7hWuWWHymWHz5SPC+vU0FFvRrtDh08VKuDh2qP+Ro2q0VdA7yOFsmjg30U/b2ieWSgtzzcrKqsb9K81ZmauypTVQ3NkqSB0YG6++xeOi0xlI1qAACXVVRZr8925EuSZo3tYXKa1jNrbJzueHubFq0/qJtP79nuY8fsDkNvbGhpnd4ep8S/77TEMD04tY/+8vFuPbJkn+LDfDW5b9dffM7H2/K1dG9L2/THLqNtOgAAJ+PT7fl6c0O2LBbpySsGKbwDbDYE0DooigO/oqHZrrve2a7PdxbIapH+dXF/XTki1uxYAAC0iUPVDXp55QFJ0t1n9/rVi7EeblbFhvgoNsTnmPc32x0qqmpQblntkZPmR4rm5S0nzvPK69RkN5RX3vJzZf70NSwWKcLfS7WNzaqsbymG944M0N1nJWli73CK4QAAl/f6+oNqshsaHhes/tGBZsdpNef0i9Q//fequKpBX+4q0IWDotr1/VekFSv3cJ0Cvd01dWC3dn1vSZo+Ok77i6q1aP1B3fnONr1/8xj16Xbsdujfb5t++5mJSu5K23QAAE5UVmmNHvhwp6SWTq+nJYaZnAiAM6EoDvyC+ia7blyUopVpJXK3WfT0lYN1bv9Is2MBANBmnv0mXTWNdvWPCtR5rbDmudmsigpqaZt+LA6HoZLqhpaT5t9ry557+H+t2huaHSqsrJck9Qzz1V1n9dI5/bq2yZxyAADaW32TXW9syJbUsU6JSy2b564d1V1PfJ2meWuy2r0ovmhdyynxy4dFy8vd1q7v/Z2/TO2jzNIarU4v1fULN+mjW8cq3P+HJ9Z+3Db9ZtqmAwBwwhqa7br1rS2qbmjW8Lhg3TkpyexIAJwMRXHgF7yyMkMr00rk7W7TS9OGanwSO8sAAB1X9qHaoy1G7z8nuV2KzlarRREBXooI8NLQY3Q1NQxDpdWNyiuvU0OTXcPiujALDADQoXy8LU9lNY2KCvLWWX0izI7T6q4eGavnvknX9pxybck+rCGxwe3yvtmHarU8rUSSdM3I9m2d/n3uNquev3qILn5hjTJKa3TTohS9dcOoHxTpP9qWR9t0AABO0UNf7NOuvEoF+7jrmasGy431FMCP8K8C8DNKqxv04oqW9rEPX9KfgjgAoMN74utUNdkNnZYYqrEJoWbHkSRZLBaF+XtqUEyQRsaHUBAHAHQohmFo3uosSdKMMXEd8uJtqJ/n0dblC9Zktdv7vrHhoAxDGp8UprhQ33Z732MJ9HHXq9cNU4CXm7Zml+v+D3bIMAxJLW3T//rJHkm0TQcA4GQt3lWoBWuzJEmPXz5QkYHH7lYHoHPreN+2gFby7LL9R9vHTh3Q/rPHAABoT7vyKvTRtnxJ0n1Tkk1OAwBA57D2wCGlFlXJx8Omy4fHmB2nzcwcGydJ+mJngQor6tv8/eqb7Hpnc44kafoo806Jf198mJ/+c+1Q2awWfbQtXy8sP0DbdAAAWkFOWa3ufX+7JOnG8fE6M7njdd4B0DooigPHkFVac3Sm2wPt1D4WAAAzPbIkVZJ0wcBu6hcVaHIaAAA6h3mrMyVJlw2NVqC3u8lp2k6/qECNiOuiZoeh19cfbPP3+3xHgcprmxQV5K0JyeFt/n7Ha2xCqP52QV9J0qNLUnXv+ztomw4AwClobHbotre2qrK+WYNjg/T7yb3MjgTAifFpGziGR79KVbPD0OlJYRrjJO1jAQBoK2vTS7UyrUTuNovuOZsvkAAAtIfM0hot21csSZoxtofJadrejCOnxd/cmK36JnubvteiI4X3q0fGOt3olWtHddd1o1tOr7+XkiuJtukAAJysx75K1baccgV4uemZKwezwQzAL+JfCOBHtuWU6/MdBbJYpPvPoX0sAKBjMwxDDy/eJ0m6ekSsYkN8TE4EAEDnsGBNyynxicnh6mHyzOv2cHafCHUL9FJZTaM+2Z7fZu+zM7dC23LK5W6z6AonbUn/5/P76LTElg34tE0HAODkfLOvSC+vzJAkPXrZQMV04XoGgF9GURz4HsMw9NAXeyVJvxkcrd6R7NQGAHRsX+ws1I7cCvl62HTbxESz4wAA0ClU1DUdPSU8a1zHPyUuSW42q6aNjpMkLViTJcMw2uR9Fq3PkiSd2z9SoX6ebfIep8rNZtWL1w7Vo5cO0GuzRnKqDQCAE1RQUae73m2ZIz5jTJwm9+1qciIAroBP3cD3fJtarA2ZZfJws+qus5PMjgMAQJtqsjv06JKWU+I3jI932gvHAAB0NO9sylZto13JXf01pmeI2XHazVUjYuTlbtWegkptzCxr9devqG3Sx9taTqFPP9Ki3Fn5errpsmEx6uLrYXYUAABcSrPdodvf2qry2ib1jwrUA+fS7RXA8aEoDhxhdxj695epkqSZY+IUFeRtciIAANrW25tylHWoVqF+Hrr+tHiz4wAA0Ck02x1auLZl5vWssT1ksTjXzOu2FOTjoYsHR0uS5q/JavXXfy8lRw3NDvWODNCQ2OBWf30AAGC+J5emaVPWYfl5uum5qwfL081mdiQALoKiOHDEB1tylVpUpUBvd/32jASz4wAA0KZqGpr19NL9kqTbzkyUn6ebyYkAAOgcvtpTpLzyOnXx9dAFg7qZHafdzRgTJ0n6ak+hcg/XttrrOhyG3tiQLUmaNqp7p9psAABAZ7EyrUQvLD8gSXr4kv7qHuJrciIAroSiOCCprtGuJ75KkyTNmdBTgT7uJicCAKBtzVudqdLqBsV28dFVI2LNjgMAQKcxb3WmJOnakbHycu98J5t6dfXX2IQQOQxp0bqDrfa6aw6UKrO0Rv6ebrqwE242AACgoyuurNed72yTYUhXj4zV+QNY7wGcGIrigKT5azNVWFmvqCBvTR8dZ3YcAADa1KHqBr20MkOSdM/kXvJw4yMhAADtYXtOuTYfPCx3m0XXjnLumddtaeaYHpKktzZmq7axuVVe87UjBfZLhkbLlw44AAB0KHaHoTve3qZDNY1K7uqvv5zfx+xIAFwQV0DR6R2uadR/jrRcufvspE65Ux8A0Lk89226qhua1S8qQOf3jzQ7DgAAncb8NS2nxKcO6KbwAC+T05hnQnK4Yrv4qLK+Wf/dmnfKr5dXXqdle4skSdeOogMOAAAdzXPfpGtdxiH5eNj0/DVDuIYP4KRQFEen99y36aqqb1bvyABdNCjK7DgAALSpnLJavb6+5STVfVOSZbUybxMAgPZQVFmvz3YUSJJmju1hchpz2awWXXdktviCNVkyDOOUXu+tDdlyGNKYniFKCPdvhYQAAMBZrDtwSE8vaxl9+s+L+6lnmJ/JiQC4Kori6NRyymqPzjC7/xwKAwCAju+Jr9PUZDc0LiFUpyWGmR0HAIBOY9G6g2p2GBoR10X9owPNjmO6y4ZFy9fDpv3F1VqTfuikX6ex2aG3N2VLkqZ14pb0AAB0RKXVDbrj7a1yGNJlQ6N18eBosyMBcGEUxdGpPfZVqhrtDo1LCNX4xFCz4wAA0Kb25Ffqo20tLUrvm5JschoAADqP+ia73tjQsiF71rg4c8M4iQAvd106tOXC9ndt5U/G4t2FKq1uVESApyb1iWiteAAAwGQOh6E739mm4qoGJYb76W8X9jU7EgAXR1EcndauvAp9vC1fUsspcYuFU+IAgI7tkSX7ZBjS1IHdOKEGAEA7+mhrng7XNik62Ftn9elqdhyn8V0L9W9Si5VVWnNSr7FoXZYk6aoRsXK3cZkLAICO4sWVB7Rqf6m83K16/poh8vFwMzsSABfHtwV0Wg9/uU+SdOGgbuoXRWEAANCxrT1QquWpJXKzWnT3WUlmxwEAoNMwDEPzjpyEnjEmTjbGdh0VH+anM3qFyTCkhUeK2ydib0GlNmUdlpvVoqtGxLZ+QAAAYIrNWWV6/KuWOeJ/u6CvkiL8TU4EoCOgKI5OaWVaiVanl8rDZtU9Z/cyOw4AAG3KMAz9+8hmsKtHxiou1NfkRAAAdB6r00uVVlQtXw+bLh8eY3YcpzNzbA9J0nubc1VV33RCz319fUtL+sl9uyoiwKvVswEAgPZ3uKZRt721VXaHoYsGddPlw/j8BKB1UBRHp+NwGHroSGHg2lHdFdPFx+REAAC0rS93FWp7boV8PGy67cxEs+MAANCpzFvdckr8smExCvByNzmN8xmfGKqeYb6qbmjW+ym5x/28qvom/XdrnqSW7/YAAMD1bcsp1yX/WauCinrFh/rqHxf3Z+wpgFZDURydzkfb8rS3oFL+Xm667cwEs+MAANCmmuwOPbYkVZJ0w2nxCvP3NDkRAACdx4GSan2bWiKLpaV1On7KYrEc/bNZuDZLDodxXM/779Y81TbalRDup1HxXdowIQAAaGvNdoeeXrpfl/xnrTJKa9Q1wEsvXDtEfp7MEQfQekwvij///POKi4uTl5eXRo4cqY0bN/7i48vLyzVnzhxFRkbK09NTSUlJ+uKLL9opLVxdfZP96CySW87oqWBfD5MTAQDQtt7dnKOM0hqF+HrohvHxZscBAKBTWbAmS5I0MTmC8SW/4DdDouXv5aasQ7Vanlb8q483DEOL1rW0Tp82qjsnyAAAcGGZpTW69MV1enJpmuwOQ1MHdtOS341XctcAs6MB6GBMLYq/8847uuuuu/Tggw9qy5YtGjhwoCZPnqzi4mN/AWpsbNRZZ52lrKwsvf/++0pNTdUrr7yiqKiodk4OV7Vo3UHlldepa4CXZh2ZWwYAQEdV29isp5bulyTddmYCO6wBAGhHFbVNR9uBzxoXZ24YJ+fr6aYrjswLnX9kI8EvWZ9Rpv3F1fLxsOniIVwTAgDAFRmGoTc2HNS5T6/Stpxy+Xu56ekrB+nZqwYr0IeRMwBan6lXRp944gndcMMNmjlzpiTpxRdf1Oeff6558+bp/vvv/8nj582bp7KyMq1du1bu7i3/KMbFxbVnZLiwitomPfdtuiTprrOS5OVuMzkRAABta97qTJVUNSimi7euHsmsTQAA2tPbm7JV12RXcld/jY4PMTuO07tuTJzmrcnUqv2lSi+uUkK4/88+9vX1LafELx4cxZx2AABcUHFVve7/YKe+2ddyQHJMzxA9dtlAdQvyNjkZgI7MtJPijY2NSklJ0aRJk/4XxmrVpEmTtG7dumM+55NPPtHo0aM1Z84cRUREqF+/fvrXv/4lu93+s+/T0NCgysrKH/xA5/TCinRV1DUpKcJPlwyNNjsOAHQ6rMntq6ymUS+tyJAk3XN2L3m4mT41BwDgJFiT216z3aGFa7MkSbPG9aC993GI6eKjSb0jJP3yafGiynot2V0oSbp2FJv+ALgu1mN0Vkt2F2rKU6v0zb5iebhZ9efz++j12SMpiANoc6ZdHS0tLZXdbldERMQPbo+IiFBhYeExn5ORkaH3339fdrtdX3zxhf785z/r8ccf1z/+8Y+ffZ+HHnpIgYGBR3/ExMS06u8DriGvvO7ol+r7z0mWzcoFCQBob6zJ7ev5b9NV1dCsPpEBmjqgm9lxAABOhDW57S3ZXaT8inqF+HrogoGsw8drxtg4SdKHW/JUUdt0zMe8vTFHzQ5Dw+OC1TuSWaMAXBfrMTqb6oZm3fv+dt20KEVlNY3qHRmgT28dp9njesjK9XoA7cCljgw5HA6Fh4fr5Zdf1tChQ3XFFVfoj3/8o1588cWffc4DDzygioqKoz9ycnLaMTGcxRNfpamx2aGRPbpoQq9ws+MAQKfEmtx+cspqtWhdS1vR+89J5sslAOAHWJPb3rw1mZKka0Z1Z3TXCRgdH6Lkrv6qa7Lrnc3ZP7m/ye7QmxtbPuNwShyAq2M9RmeyOatM5zy9Uu9uzpXFIt18ek99NGeMenX9+XEpANDaTJspHhoaKpvNpqKioh/cXlRUpK5dux7zOZGRkXJ3d5fN9r8vlL1791ZhYaEaGxvl4eHxk+d4enrK09OzdcPDpewtqNSHW3MlSQ+c25u2dQBgEtbk9vPk12lqtDs0NiFEpyWGmh0HAOBkWJPb1raccqUcPCx3m0XXjoo1O45LsVgsmjk2Tvd9sFML1x7UrLE95Gb733mOpXuKVFTZoFA/D03pd+xrRwDgKliP0Rk0Njv01NI0vbjigByGFBXkrSevGKQRPbqYHQ1AJ2TaSXEPDw8NHTpUy5YtO3qbw+HQsmXLNHr06GM+Z+zYsUpPT5fD4Th6W1pamiIjI49ZEAck6d+L98kwpPP6R2pQTJDZcQAAaFN7Cyr13215kqT7piSzGQwAgHY2/8gp8akDuync38vkNK7nwkFRCvZxV155nZbuLf7BfYvWt5wSv3J4rDzdOIEPAIAz219UpYtfWKMXlrcUxC8ZEq3FvzuNgjgA05jaPv2uu+7SK6+8ooULF2rv3r265ZZbVFNTo5kzZ0qSpk+frgceeODo42+55RaVlZXpjjvuUFpamj7//HP961//0pw5c8z6LcDJrU0v1fLUErlZLfr95F5mxwEAoM098t1msAGRGhAdZHYcAAA6lcKKen2+o0CSNGtsD5PTuCYvd5uuGtFywv67DQaSlF5cpbUHDslqka4ayQl8AACclcNhaP6aTJ3/7Grtzq9UsI+7/nPNED1++UD5e7mbHQ9AJ2Za+3RJuuKKK1RSUqK//OUvKiws1KBBg7R48WJFRERIkrKzs2W1/q9uHxMToyVLlujOO+/UgAEDFBUVpTvuuEP33XefWb8FODGHw9BDX+6TJF0zMlZxob4mJwIAoG2tO3BI3x7ZDHbP2WwGAwCgvb22LkvNDkMje3RRv6hAs+O4rGmju+ullRnakFmm3fkV6tstUK+vb5kxPrF3hKKCvE1OCAAAjqWwol6/f3+7Vu0vlSSdnhSmRy8doPAAuucAMJ+pRXFJuvXWW3Xrrbce877ly5f/5LbRo0dr/fr1bZwKHcFnOwu0M69Cvh423TYx0ew4AAC0KcMw9PDils1gV42IVQ82gwEA0K7qGu16c2NL4XbWOE6Jn4rIQG9N6ddVn+8o0MK1WfrrBX31QUquJGnaqO4mpwMAAMfy6fZ8/emjXaqoa5KXu1V/PK+Prh0Zy1g3AE7D9KI40BYamx16bEmqJOmm03sq1M/T5EQAALStJbsLtT2nXN7uNt02McHsOAAAdDr/3Zqn8tomxXTx1qTeEWbHcXmzxsbp8x0F+mhbvrqH+KqqoVlxIT4alxBqdjQAAPA9FXVN+svHu/TxtnxJ0sDoQD1xxSD1DPMzORkA/BBFcXRIb2w4qOyyWoX5e+r609ihDwDo2JrtDj2yuGUz2A2n9VC4P23JAABoT4ZhaN6R+dczxvSQzcqJqFM1JDZY/aMCtTOvQo991fI559pR3WXlzxYAAKexNr1Ud7+3XQUV9bJZLZozIUG3nZkgd5v1158MAO2Mf5nQ4VTWN+nZb9IlSXdOSpKPB3s/AAAd27ubc5VRWqMuvh66YXy82XEAAOh0Vu0vVXpxtfw83XT5sGiz43QIFotFM8fGSZIMQ/Jyt+qyoTHmhgIAAJKk+ia7/vHZHl396gYVVNQrLsRH7908WnedlURBHIDT4l8ndDgvrTigsppG9Qzz5WIEAKDDq2u066mlaZKk285MkL+Xu8mJAADofL47JX7ZsGjW4lZ03oDIo+PQLhjYTYE+/NkCAGC2PfmVuvC5NXp1dcvnn6tGxOrz20/TkNhgk5MBwC/jCC06lMKKes09shjfOyVZbuxKAwB0cPPWZKq4qkHRwd66emSs2XEAAOh00ourtTy1RBaLNGNMnNlxOhRPN5v+MrWPXlubpVsnJJodBwCATs3uMPTKqgw9/lWqmuyGQv089O9LBmhi7wizowHAcaEojg7lqaVpqm9yaGj3YJ3dh8UYANCxHa5p1IvLD0iS7jm7lzzdbCYnAgCg81mwtmVj9qTeEeoe4mtymo7ngoHddMHAbmbHAACgU7M7DM1csEkr00oktXzuefiS/kc7ugCAK6Aojg5jf1GV3t2cI0n6w7nJslgsJicCAKBtPf9tuqoamtU7MoCLxQAAmKC8tlEfpORJkmaN7WFyGgAAgLbx3uYcrUwrkbe7TX+9oI8uHxbD9XcALoeiODqMfy9OlcOQJveN0NDuXcyOAwBAm8o9XKvX1h2UJN1/TrKsVr6MAgDQ3t7elKO6Jrt6RwZoVDzfQwEAQMdT09Csx79OkyTdfXaSrhjO6DYAromBy+gQNmaWaeneItmsFt07JdnsOAAAtLknv96vRrtDo+NDND4x1Ow4AAB0Ok12hxauzZIkzRobx2kpAADQIb204oBKqhrUPcRH00Z3NzsOAJw0iuJweYZh6KEv90qSrhgeo55hfiYnAgCgbe0rrNSHW3MltZwS5yI8AADtb8nuQhVU1CvUz0NTGWMCAAA6oIKKOr28KkOSdP+UZHm62UxOBAAnj6I4XN7iXYXaml0ub3ebfjcx0ew4AAC0uUcWp8owpPP6R2pgTJDZcQAA6JTmrs6UJF07qru83LlADAAAOp7HlqSpvsmh4XHBmtKvq9lxAOCUUBSHS2uyO/TIklRJ0g2n9VB4gJfJiQAAaFsbMg7pm33FslktumdyL7PjAADQKW3JPqyt2eXysFl1zUjaiAIAgI5nV16FPtjS0qXuj+f1oUsdAJdHURwu7e1NOcosrVGIr4duPL2n2XEAAGhThmHo4cX7JElXDo9Rj1BfkxMBANA5zV+TJUm6YFA3hfl7mhsGAACglRmGoX98vkeSdMHAbhpElzoAHQBFcbis6oZmPb00TZJ0x6RE+Xm6mZwIAIC2tWR30dGRIXcwMgQAAFMUVNTpi50FkqSZY+PMDQMAANAGlu4t1vqMMnm4WXXvFLrUAegYKIrDZb2yMkOl1Y2KC/HRVSNizY4DAECbarY79MiSllPi1zMyBAAA07y27qDsDkOj4ruob7dAs+MAAAC0qia7Qw99sVeSNHtcD0UH+5icCABaB0VxuKTiqnq9sipDkvT7yclyt/FXGQDQsb2fkquMkhoF+7jrxvHxZscBAKBTqmu0680N2ZKkWWN7mJwGAACg9b25IVsZR0aW/vYMRpYC6DioJMIlPbNsv2ob7RoYE6Rz+3c1Ow4AAG2qrtGuJ4+MDLn1zET5e7mbnAgAgM7pw625qqhrUmwXH03sHWF2HAAAgFZVUdekp45cf/jdWUlcfwDQoVAUh8s5UFKttzbmSJIeOCdZFovF5EQAALSt+WszVVTZoKggb107ipEhAACYweEwNG91piRpxpg42ax8FwUAAB3L89+m63BtkxLC/XTV8Biz4wBAq6IoDpfz6OJU2R2GJiaHa1R8iNlxAABoU+W1jfrP8gOSpHsmJ8nTzWZyIgAAOqdV6aU6UFIjP083XTYs2uw4AAAArSqnrFYL1mRJkv54bm+5MbIUQAfDv2pwKSkHD2vx7kJZLdJ95ySbHQcAgDb3wvIDqqpvVnJXf104MMrsOAAAdFrfnRK/fFgMrUQBAECH8/DifWq0OzQuIVRn9AozOw4AtDqK4nAZhmHo4S/3SpIuHRqtpAh/kxMBANC28srrtGBtlqSWzWBW2rQCAGCK9OIqrUgrkcXS0jodAACgI0k5eFif7yiQxSL94dzejCwF0CFRFIfLWLq3WJuyDsvL3ao7z0oyOw4AAG3uya/T1Njs0Kj4LjojiV3aAACYZf6RVqJn9Y5QbIiPuWEAAABakWEY+sfneyRJlw2NVp9uASYnAoC2QVEcLqHZ7tC/F++TJM0a20ORgd4mJwIAoG2lFlbpwy25kqT7z2GXNgAAZjlc06gPjqzJs8f1MDkNAABA6/psR4G2ZpfL292mu8/uZXYcAGgzFMXhEt5LyVV6cbWCfdx18xk9zY4DAECbe3TJPjkM6Zx+XTUoJsjsOAAAdFpvbcpWfZNDfbsFaESPLmbHAQAAaDX1Tfajh9FuPr2nIgK8TE4EAG2HojicXm1js578Ok2SdOuZiQrwcjc5EQAAbWtjZpmW7i2WzWrRPZPZpQ0AgFma7A69tvagpJauZXRuAQAAHcnCtVnKPVyniABP3TCejjgAOjaK4nB681ZnqriqQdHB3rp2VKzZcQAAaFOGYejhL/dKkq4YHqOeYX4mJwIAoPP6clehCivrFernqfMHRpodBwAAoNWU1TTquW/TJUn3nN1LPh5uJicCgLZFURxO7VB1g15ckSFJ+v3kXvJ0s5mcCACAtvX1niJtOTLL63cTE82OAwBApzZvdaYkadqo7nwfBQAAHcrTS9NUVd+sPpEBumRItNlxAKDNURSHU3v2m3RVNzSrf1Sgpg7oZnYcAADaVLPdoUeWpEqSZo2LUzizvAAAMM2W7MPallMuD5tV19C1DAAAdCDpxdV6fUO2JOlP5/WW1cqIGAAdH0VxOK2Dh2r0xoaW2W33n5PMwgwA6PA+2JKr9OJqBfm466bTe5odBwCATu27U+IXDuqmUD9Pk9MAAAC0noe/3Cu7w9DE5HCNSQg1Ow4AtAuK4nBajy5JVZPd0PikMI1lYQYAdHD1TXY9+fV+SdKtExIU4OVuciIAADqv/PI6fbmrUJI0c2wPk9MAAAC0nrUHSrV0b7FsVoseOLe32XEAoN1QFIdT2p5Trs92FMhike6fkmx2HAAA2tyCtVkqrKxXVJC3po3ubnYcAAA6tdfWHZTdYWh0fIj6dAswOw4AAECrcDgM/fPzvZKka0bGKiHcz+REANB+KIrD6RiGoYe/3CdJunhwFBcgAAAdXnlto174Nl2SdNdZSfJ0s5mcCACAzqu2sVlvbWyZsTlrHKfEAQBAx/Hh1jztzq+Uv6eb7piYaHYcAGhXFMXhdL5NLda6jEPycLPq7rN7mR0HAIA295/lB1RZ36zkrv66aHCU2XEAAOjUPtySp4q6JnUP8dGZyeFmxwEAAGgVtY3NemxJqiRpzpkJCvHzNDkRALQviuJwKlmlNbr73e2SpBlj4hQV5G1yIgAA2lZ+eZ3mr82SJN03JVk2q8XcQAAAdGIOh6H5azIlSTPHxLEuAwCADuOVlZlHx7bNGBNndhwAaHcUxeE0ymsbNWvBJh2ubdKA6EDdOSnJ7EgAALS5p5amqbHZoZE9uuiMXmFmxwEAoFNbsb9EB0pq5O/ppkuHxZgdBwAAoFUUV9brpZUHJEn3n5MsL3fGtgHofCiKwyk0Njt08+spyiitUbdAL706fZi8PViYAQAdW1pRld5PyZUk3XdOsiwWTqMBAGCmeatbTolfMTxGfp5uJqcBAABoHY9/labaRrsGxwbp/AGRZscBAFNQFIfpDMPQAx/u1PqMMvl5umnezOEKD/AyOxYAAG3ukcWpchjSlL5dNSQ22Ow4AAB0amlFVVq1v1RWi3QdLUUBAEAHsbegUu+m5EiS/nRebzbkA+i0KIrDdM9/m64PtuTKZrXouasHK7lrgNmRAABoc5uzyrR0b5FsVot+P6WX2XEAAOj05q/JkiSd3aerYrr4mBsGAACgFRiGoX9+vleGIZ3XP1JDu3cxOxIAmOaEeoFVVlZqw4YNamxs1IgRIxQWxtxLnJpPt+frsa/SJEl/vaCvzugVbnIiAADanmEYevjLfZKky4fFqGeYn8mJAADo3A7XNOrDLS0jTWaN62FyGgAAgNaxPLVEq9NL5WGz6r4pyWbHAQBTHXdRfNu2bTr33HNVVFQkwzDk7++vd999V5MnT27LfOjAUg6W6e73tkuSZo/roWmjupucCACA9rF0b7E2HzwsL3erfjcp0ew4AAB0em9uzFZDs0P9ogI0PI6RJgAAwPU12x365xd7JUkzxsYpNoROOAA6t+Nun37fffepR48eWr16tVJSUjRx4kTdeuutbZkNHVj2oVrd8FqKGpsdmtQ7Qn84t7fZkQAAaBd2h6FHFrecEp81tociArxMTgQAQOfWZHfotXVZklrWZuZsAgCAjuDtTTlKL65WsI+75kxIMDsOAJjuuE+Kp6Sk6KuvvtKQIUMkSfPmzVOXLl1UWVmpgABmQOP4VdQ2aeaCjSqraVS/qAA9c9Ug2axcdAAAdA4fbMnV/uJqBfm466bTe5odBwCATu+LnQUqqmxQmL+nzhsQaXYcAACAU1ZV36Qnv24ZW3rHxEQFerubnAgAzHfcJ8XLysoUHR199NdBQUHy9fXVoUOH2iQYOqbGZodueSNFB0pqFBnopbnXDZePxwmNtgcAwGXVN9mPfimdc0YCX0oBADCZYRiatzpTkjRtVHd5utlMTgQAAHDq/rP8gA7VNCo+1FfXMLYUACSdwElxSdqzZ48KCwuP/towDO3du1dVVVVHbxswYEDrpUOHYhiG/vTRTq09cEi+HjbNvW44LWMBAJ3KwrVZKqioV7dAL00bzZdSAADMtiW7XNtzK+ThZtXVI2PNjgMAAHDKcg/X6tUjm/7uPydZ7rbjPhsJAB3aCRXFJ06cKMMwfnDb+eeff/TnFotFdru9dZKhw/nPigN6d3OurBbpuauHqE832u4DADqPitomPf9tuiTprrN7ycudk2gAAJht3pqWC8YXDeqmUD9Pk9MAAACcukeXpKqx2aFR8V10Vp8Is+MAgNM47qJ4Zmbmrz7m+yfGge/7fEeBHlmcKkl6cGpfTUgONzkRAADt6z8rDqiyvlm9Ivx18eAos+MAANDp5ZXXafGulm54s8b1MDkNAADAqduWU66Pt+XLYpH+dF4fWSwWsyMBgNM47qJ49+7HbvFZVVWlt956S3PnztXmzZs5KY6f2JJ9WHe9u02SNGNMnK4bE2dqHgAA2ltBRZ3mHzmJdu+UXrJZ+VIKAIDZXlubJbvD0NiEECV3pZMZAABwbYZh6J+f75EkXTw4Sv2iAk1OBADO5aSHSaxcuVLXXXedIiMj9dhjj2nChAlav359a2ZDB5BTVqsbX9ushmaHJiaH68/n9zE7EgAA7e6pr/erodmhEXFddCbdUgAAMF1NQ7Pe2pgtSZo1llPiAADA9S3ZXahNWYfl5W7V7yf3MjsOADidE5opXlhYqAULFmju3LmqrKzU5ZdfroaGBn300Ufq04diJ36ooq5JsxZsUml1o/pEBuiZqwZzMg4A0OnsL6rSeyk5kqT7zkmmdRkAAE7gwy25qqxvVlyIjyb0YsMaAABwbY3NDj305T5J0g2nxSsy0NvkRADgfI77pPjUqVPVq1cv7dixQ0899ZTy8/P17LPPtmU2uLAmu0Nz3tii/cXVigjw1NwZw+TreUJ7MAAA6BAeXZIqhyFN7huhod2DzY4DAECn53AYmr8mS5I0c2wPWdm8DQAAXNxr67J08FCtQv08ddPpPc2OAwBO6birlF9++aVuv/123XLLLUpMTGzLTHBxhmHoLx/v0ur0Uvl42DT3uuHsTAMAdEopB8v01Z4iWS2idRkAAE5iRVqJMkpr5O/lpkuHRpsdBwAA4JSU1zbq2W/SJUn3nJ0kPw6nAcAxHfdJ8dWrV6uqqkpDhw7VyJEj9dxzz6m0tLQts8FFvbwyQ29tzJHVIj1z5WD1iwo0OxIAAO3OMAw9fKR12eXDYpQQ7m9yIgAAIEnz1mRKkq4cHkNHMwAA4PKeWZauiromJXf112XDYsyOAwBO67iL4qNGjdIrr7yigoIC3XTTTXr77bfVrVs3ORwOff3116qqqmrLnHARi3cV6OHFLQWAP53XR5P6RJicCAAAcyzbW6xNWYfl6WbV7yYlmR0HAABISiuq0qr9pbJapOmj48yOAwAAcEqySmu0aH2WJOkP5/aWjbEwAPCzjrso/h1fX1/NmjVLq1ev1s6dO3X33Xfr4YcfVnh4uC644IK2yAgXsT2nXL97Z5sMQ5o+urtmjo0zOxIAAKawOww9sqRlk9iscT3UNdDL5EQAAECS5h85JT65b1fFdPExOQ0AAMCpefjLfWqyGzo9KUzjk8LMjgMATu2Ei+Lf16tXLz3yyCPKzc3VW2+91VqZ4IJyD9dq9sLNqm9y6IxeYfrL+X1ksbArDQDQOX24JVdpRdUK9HbXzaf3NDsOAACQVFbTqA+35Elq2bQGAADgyjZmlmnx7kJZLdIfz+ttdhwAcHqnVBT/js1m00UXXaRPPvmkNV4OLqayvkmzF2xWaXWDkrv667mrh8jN1ip/tQAAcDn1TXY9+XWaJGnOhJ4K9HY3OREAAJCktzZmq6HZof5RgRrWPdjsOAAAACfN4TD0j8/3SJKuHBGrpAh/kxMBgPOjcolT0mx36NY3tyq1qErh/p6aN2O4/DzdzI4FAIBpFq07qPyKenUL9GJWKQAATqKx2aHX1mVJkmaNi6OzGQAAcGkfb8/TjtwK+XrYdOekJLPjAIBLoCiOk2YYhh78ZLdWppXI292mudcNV7cgb7NjAQBgmoq6Jj33bbok6c6zkuTlbjM5EQAAkKQvdxWoqLJB4f6eOq9/N7PjAAAAnLTqhmY99MU+SdJvJyQozN/T5EQA4BooiuOkzV2dqTc2ZMtikZ6+cpD6RweaHQkAAFO9uOKAKuqalBThp98MiTY7DgAAUMuG7rmrMyVJ00d3l4cbl0IAAIDreu6bdBVXNah7iI9mj+thdhwAcBl8E8RJWbK7UP/8Yq8k6Y/n9tbZfbuanAgAAHMVVtRr3pEL7vdOTpbNSltWAACcQcrBw9qRWyFPN6uuGhFrdhwAAICTlllao7mrMyRJfz6vDx3qAOAEUBTHCduZW6Hfvb1NhiFdMzKW3WgAAEh6elmaGpodGh4XrIm9w82OAwAAjpi3pmXT2sWDoxTiR3tRAADguv7vsz1qshs6o1cY1x4A4ARRFMcJyS+v0+yFm1TXZNf4pDD97YK+slg4CQcA6NzSi6v1zqYcSdL95ySzNgIA4CRyD9dq8a5CSdLMsWzoBgAAruubfUX6Zl+x3G0W/fn8Plx7AIATRFEcx626oVmzFmxScVWDekX46/mrB8vNxl8hAAAeXbJPDkM6q0+EhnbvYnYcAABwxGvrDsphSOMSQtWrq7/ZcQAAAE5KQ7Nd//dZyzjTWWN7qGeYn8mJAMD1UNHEcWm2O3Trm1u0r7BKoX6emjtjmPy93M2OBQCA6VIOHtaS3UWyWqR7J/cyOw4AADiipqFZb23MliTNGhdnbhgAAIBTMG91ljJLaxTm76lbz0wwOw4AuCSK4vhVhmHo75/t0fLUEnm5WzX3umGKDvYxOxYAAKYzDEP//nKfJOmyoTFKjOAEGgAAzuKDLbmqqm9Wj1BfnZHEzE0AAOCaiirr9ew3+yVJ909J5rAaAJwkiuL4VfPXZOm1dQdlsUhPXTFIA2OCzI4EAIBT+Da1WBuzyuTpZtXvzko0Ow4AADjC4TA0f02WJGnm2DhZrczcBAAArunhL/epttGuwbFBunhwlNlxAMBlURTHL1q6p0j/9/keSS270Kb0izQ5EQAAzsHuMPTvL1MlSTPGxiky0NvkRAAA4DvL04qVWVojfy83XTIk2uw4AAAAJ2VzVpn+uzVPFov0twv6stEPAE4BRXH8rF15Fbr97a0yDOmqETG6cXy82ZEAAHAa/92ap9SiKgV4uem3pzPPCwAAZzJvdZYk6aoRsfL1dDM3DAAAwEmwOwz99dPdkqQrhsVoQHSQuYEAwMVRFMcxFVTUafbCTapttOu0xFD9/cJ+sljYhQYAgCTVN9n15NdpkqQ5ExIU6MM8LwAAnEVqYZVWp5fKZrXoujFxZscBAAA4Ke9uztGuvEr5e7npnsm9zI4DAC6Pojh+oqahWbMXbFZRZYMSw/30/DVD5G7jrwoAAN95ff1B5ZXXKTLQi4vtAAA4mflrMiVJU/p2VVQQ400AAIDrqaht0qNLWka23TkpSaF+niYnAgDXR6UTP2B3GLr9ra3aU1CpUD8PzZsxXAFenH4DAOA7lfVNeu7bdEktX0y93G0mJwIAAN85VN2gD7fmSZJmjYszNwwAAMBJenJpmspqGpUY7qdpo7ubHQcAOgSK4viB//tsj5btK5anm1WvTB+mmC4+ZkcCAMCpvLTigMprm5QY7qffDIkyOw4AAPieNzdkq7HZoYHRgRoSG2x2HAAAgBO2r7BSi9YflCQ9OLUvXVwBoJXwrymOWrg2SwvWZkmSnrxikAZzAQEAgB8oqqzX3NUtLVnvnZIsN76YAgDgNBqbHXrtyAXkWeN6yGKxmJwIAADgxBiGob99skd2h6EpfbtqXGKo2ZEAoMPgSi4kSd/sK9LfPt0tSbp3Si+d2z/S5EQAADifp5buV32TQ8O6B2tS73Cz4wAAgO/5fGe+SqoaFBHgqXP68Z0WAAC4ni93FWpdxiF5uln1x/N6mx0HADoUiuLQnvxK3fbmVjkM6YphMbrl9J5mRwIAwOkcKKnWu5tzJEn3nZPM6TMAAJyIYRhHu7lMHx0nDzcudwAAANdS12jXPz/fK0m6+fSejDYFgFbGt8ROrqiyXrMXblJNo11jeoboHxf34yI/AADH8NiSVNkdhib1jtDwuC5mxwEAAN+z+eBh7cqrlKebVVeNiDU7DgAAwAl7ccUB5ZXXKSrIWzdzcA0AWh1F8U6strFZsxduUkFFvXqG+eo/1wyVO7NRAQD4iS3Zh/XlrkJZLS1jRgAAgHOZd+SU+G+GRKmLr4fJaQAAAE5MTlmtXlxxQJL0x/N6y9vDZnIiAOh4qIB2UnaHodvf2qZdeZUK8fXQ/BkjFOjjbnYsAACcjmEYevjLfZKkS4ZEKynC3+REAADg+3LKarVkd6EkaebYHianAQAAOHH/+mKvGpodGh0fonP6dTU7DgB0SBTFO6l/fbFXS/cWycPNqpenD1NsCPNJAAA4luWpJdqYWSYPN6vuPCvJ7DgAAOBHXluXJYchnZYYyuY1AADgctakl+rLXYWyWS168II+jDcFgDbiFEXx559/XnFxcfLy8tLIkSO1cePG43re22+/LYvFoosuuqhtA3Ywi9Yf1NwjreUev2yghnYPNjkRAADOye4w9O/FLafEZ46JU7cgb5MTAQCA76tuaNbbm3IkSbM4JQ4AAFxMk92hv36yW5I0bVR3JXcNMDkRAHRcphfF33nnHd1111168MEHtWXLFg0cOFCTJ09WcXHxLz4vKytL99xzj0477bR2StoxLE8tPrrI3nN2kqYO7GZyIgAAnNfH2/K0r7BKAV5uuuWMnmbHAQAAP/JBSq6q6psVH+ar05PCzI4DAABwQhatO6j9xdUK9nHXnZPoTgcAbcn0ovgTTzyhG264QTNnzlSfPn304osvysfHR/PmzfvZ59jtdl1zzTX629/+pvj4+HZM69r2FVbq1je3yu4wdMmQaM2ZkGB2JAAAnFZ9k12Pf5UmSbrljAQF+XiYnAgAAHyfw2Fo/pqWLmgzx/aQ1UqrUQAA4DpKqxv05NKW6w6/n5ysQB93kxMBQMfmZuabNzY2KiUlRQ888MDR26xWqyZNmqR169b97PP+/ve/Kzw8XLNnz9aqVat+8T0aGhrU0NBw9NeVlZWnHtwFFVfWa9b8TapuaNao+C566Df9mU0CAGhXrrYmv77+oPLK69Q1wEszx8aZHQcAgFbjamvyz/lmX7GyDtUqwMtNlwyJMjsOAAAnpKOsxzh5jy1JVVV9s/pFBeiK4TFmxwGADs/Uk+KlpaWy2+2KiIj4we0REREqLCw85nNWr16tuXPn6pVXXjmu93jooYcUGBh49EdMTOdbXGobm3X9a5uVX1Gv+FBfvXjtUHm4md4kAADQybjSmlxZ36Tnv02XJN15VqK83G0mJwIAoPW40pr8S+YdOSV+1chY+XiYuucfAIAT1lHWY5ycHbnlemdzjiTpr1P7ykbHGwBocy5VGa2qqtK0adP0yiuvKDQ09Lie88ADD6iiouLoj5ycnDZO6VwcDkN3vrNNO3IrFOzjrvkzh9P+FQBgCldak19ekaHDtU1KCPfTJUOizY4DAECrcqU1+efsLajU2gOHZLNaNH10nNlxAAA4YR1hPcbJcTgM/fWT3TIM6eLBURoW18XsSADQKZi6lTo0NFQ2m01FRUU/uL2oqEhdu3b9yeMPHDigrKwsTZ069ehtDodDkuTm5qbU1FT17NnzB8/x9PSUp6dnG6R3DQ8v3qclu4vkYbPq5enD1D3E1+xIAIBOylXW5OLKer26OkOS9PvJveRmc6k9hAAA/CpXWZN/yXezxKf066qoIG+T0wAAcOI6wnqMk/PfrXnakl0uHw+b7j8n2ew4ANBpmHqV18PDQ0OHDtWyZcuO3uZwOLRs2TKNHj36J49PTk7Wzp07tW3btqM/LrjgAk2YMEHbtm2jxcyPvLkhWy+vbLmo/+hlAzScHWcAAPyqp5btV32TQ0Nig3R2n4hffwIAAGhXpdUN+mhbviRp1tgeJqcBAAA4flX1TXp48T5J0m1nJioiwMvkRADQeZg+dOuuu+7Sddddp2HDhmnEiBF66qmnVFNTo5kzZ0qSpk+frqioKD300EPy8vJSv379fvD8oKAgSfrJ7Z3dyrQS/fnjXZKkOycl6cJBUSYnAgDA+WWUVOudTS0t6+4/p7csFmZ6AQDgbN7ckK3GZocGxgRpSGyQ2XEAAACO23PfpKukqkFxIT6aNS7O7DgA0KmYXhS/4oorVFJSor/85S8qLCzUoEGDtHjxYkVEtJzMys7OltVK29ITkVpYpTlvbJHdYeg3g6N0+8QEsyMBAOASHvsqVXaHoYnJ4RrRgw4rAAA4m4ZmuxatPyhJmjU2jg1sAADAZRwoqda8IyNg/jK1jzzdbCYnAoDOxfSiuCTdeuutuvXWW4953/Lly3/xuQsWLGj9QC6spKpBsxZsUlVDs0b06KKHLunPRQIAAI7DtpxyfbGzUBaLdO8UZnoBAOCMPt9RoJKqBkUEeOrc/pFmxwEAADguhmHo75/uUZPd0JnJ4TozmXFtANDeOILdgdQ12nX9a5uVV16nHqG+eunaoew2AwDgOBiGoYe/3CtJumRItHp19Tc5EQAA+DHDMDR3dcvpqumj4+Ru45IGAABwDd/sK9aKtBK52yz68/l9zI4DAJ0S3yA7CIfD0F3vbtP2nHIF+bhr3ozhCvb1MDsWAAAuYUVaidZnlMnDzao7z0oyOw4AADiGTVmHtTu/Ul7uVl09ItbsOAAAAMelodmuv3+2R5I0e1y8eoT6mpwIADoniuIdxCNLUvXlrkK52yx66dqhLKwAABwnh8PQw1/ukyRdN7q7ooK8TU4EAACOZd6RU+K/GRLNJnAAAOAy5q7O1MFDtQr399StZyaYHQcAOi2K4h3A2xuz9eKKA5KkRy4doJHxISYnAgDAdXy8PU/7Cqvk7+Wm357Bl1MAAJxRTlmtvtpTKEmaOSbO3DAAAADHqbCiXs99ky5JeuDcZPl5upmcCAA6L4riLm5Neqn+9NEuSdLtExN18eBokxMBAOA6GprtevyrNEnSLWf05NQZAABOasHaLDkMaXxSmBIj/M2OAwAAcFwe+nKvahvtGhIbpIsGRZkdBwA6NYriLmx/UZVufj1FzQ5DFw7qpjsnJZodCQAAl/LG+mzlHq5TRICnZo7pYXYcAABwDFX1TXpnU44kadbYOHPDAAAAHKdNWWX6eFu+LBbpbxf0k8ViMTsSAHRqFMVdVGl1g2Yu2KSq+mYN6x6sf18ygEUVAIATUFnfpGe/2S9J+t2kJHl72ExOBAAAjuX9lFxVNzSrZ5ivxieGmR0HAADgV9kdhh78eLck6crhMeofHWhyIgAARXEXVN9k1w2vbVbu4Tp1D/HRy9OHycudC/kAAJyIV1Zm6HBtk+LDfHXZUMaPAADgjOwOQwvWZkmSZo7tIauVzeAAAMD5vb0pW3sKKhXg5aZ7zu5ldhwAgCiKuxyHw9Dd723X1uxyBXq7a96M4erC/FMAAE5IcVW9Xl2VKUm6d3Ky3Gx8JAIAwBl9s69YBw/VKtDbXb8ZwhxOAADg/MprG/XYklRJ0l1nJSnEz9PkRAAAiaK4y3n861R9vqNA7jaLXrx2qHqG+ZkdCQAAl/PMsv2qa7JrcGyQJveNMDsOAAD4GfNWt2xiu2pErHw83ExOAwAA8Oue/DpNh2ublBThp2tHdTc7DgDgCIriLuTdzTl6/tsDkqSHfjNAo3uGmJwIAADXk1FSrbc25kiS7p+SLIuFNqwAADijPfmVWpdxSDarRdNHc0EZAAA4v70FlVq0/qAk6a9T+9KZDgCcCP8iu4i1B0r1hw93SpJunZCgS5l9CgDASXn8qzTZHYbOTA7XyHg2mAEA4Kzmr2k5JX5Ov67qFuRtchoAAIBfZhiG/vrJbjkM6dz+XTUmIdTsSACA76Eo7gLSi6t186IUNTsMnT8gUnedlWR2JAAAXNL2nHJ9vrNAFot075ReZscBAAA/o7S6QR9vy5ckzRrXw+Q0AAAAv+7znQXakFkmTzer/nBub7PjAAB+hKK4kztU3aBZCzapsr5ZQ2KD9NhlA2W10uYVAIATZRiGHv5ynyTpN4Ojldw1wOREAADg57yxPluNdocGxwZpSGyw2XEAAAB+UW1js/71+V5J0i1n9FR0sI/JiQAAP0ZR3InVN9l146IUZZfVKqaLt16ZPkxe7jazYwEA4JJW7i/VuoxD8rBZdedZiWbHAQAAP6Oh2X50FuessZwSBwAAzu/F5QeUX1GvqCBv3Xx6T7PjAACOgaK4kzIMQ/e+v0MpBw/L38tN82cMV4ifp9mxAABwSQ6HoX8fOSU+fXR3dmwDAODEPt1eoNLqBkUGemlKv65mxwEAAPhFOWW1enFlhiTpz+f35mAbADgpiuJO6smv0/TJ9ny5WS166dqhSgj3NzsSAAAu69Md+dpTUCl/TzfNmZBgdhwAAPAzDMPQvNWZkqTpo+PkbuOyBQAAcG7/+HyPGpsdGpsQosl92dAHAM6Kb5dO6IOUXD3zTbok6V8X99eYhFCTEwEA4Loamu16dEmqJOnmM3oq2NfD5EQAAODnbMgs056CSnm5W3XViBiz4wAAAPyiVftLtGR3kWxWix6c2lcWi8XsSACAn0FR3Mmszzik+z/cIUm65Yyeunw4FwEAADgVb27IVu7hOoX7ezKXFAAAJ/fdKfFLhkQryIeNbAAAwHk12R366ye7JbWMakuKoNsrADgziuJO5EBJtW5alKImu6Hz+kfq92f3MjsSAAAuraq+Sc8e6b7yu0lJ8vZgrhcAAM4q+1Ctvt5bJEmaOTbO3DAAAAC/YuHaLB0oqVEXXw/9blKS2XEAAL+CoriTKKtp1KwFm1RR16RBMUF6/PKBslpptQIAwKl4ZVWmymoaFR/qq8uHRZsdBwAA/IIFa7NkGNLpSWFKCOekFQAAcF4lVQ16eul+SdK9k3sp0Nvd5EQAgF9DUdwJNDTbddOizTp4qFbRwd56Zfoweblzkg0AgFNRXFWvV1dlSJJ+P7mX3Gx87AEAwFlV1Tfp3c05kqRZ4xh3AgAAnNujS/apqqFZA6IDdfkwRqACgCvg6rDJDMPQve/v0Kasw/L3dNP8GcMV5u9pdiwAAFzes8vSVdto18CYIE3p19XsOAAA4Be8tzlX1Q3NSgj30/jEULPjAAAA/KxtOeV6d3OuJOnBqX3p+AoALoKiuMmeWrpfH2/Ll81q0QvXDlFiBC3iAAA4VVmlNXprY7Yk6YFzkmWx8AUVAABnZXcYWrA2S1LLLHHWbQAA4KwcDkN//WS3JOk3Q6I0tHuwyYkAAMeLoriJ/rs1V08va5k78o+L+um0xDCTEwEA0DE89lWqmh2GJvQK06j4ELPjAACAX7Bsb5Gyy2oV5OOu3wyONjsOAADAz/pwa5625ZTL18Om+6ckmx0HAHACKIqbZGNmme57f6ck6abx8bpqRKzJiQAA6Bh25Jbrsx0Fslike/mCCgCA05u3JlOSdPWIWHl72ExOAwAAcGyV9U16+Mt9kqTbJyYqPMDL5EQAgBNBUdwEmaU1unHRZjXaHZrSt6vu44I9AACt5t+LW76gXjwoSr0jA0xOAwAAfsnu/AqtzyiTm9WiaaO7mx0HAADgmAzD0D8/26vS6gbFh/pq5tgeZkcCAJwgiuLt7HBNo2Yt2KTy2iYNjA7Uk1cMktXKvDQAAFrDqv0lWpN+SB42q+48K8nsOAAA4FfMW50lSTq3f6QiA73NDQMAAPAznlmWrnc258hikf56QV95uFFaAQBXw7/c7aih2a6bXk9RZmmNooK89cp1w2gNBwBAK3E4jKNtzKaN7q6YLj4mJwIAAL+kuKpen27PlyTNGsdpKwAA4JxeX39QTy5NkyT97YK+Gp8UZnIiAMDJoCjeTgzD0AMf7NTGzDL5ebpp3ozhCvdn5ggAAK0lo7RGOWW18vd005wJCWbHAQAAv+KN9dlqtDs0JDZIg2KCzI4DAADwE1/uLNCfP94lSbr9zARNHx1nbiAAwElzMztAZ/HsN+n6cGuebFaLnr9miHp19Tc7EgAAHUpCuJ9W3jtBu/Mr1cXXw+w4AADgF9Q32fXGhoOSOCUOAACc07oDh3TH29tkGNJVI2IZ0wYALo6T4u3g4215euLr/7VXOZ32KgAAtIkgHw+NTQg1OwYAAPgVn27PV2l1o7oFemlK365mxwEAAPiB3fkVuvG1zWq0OzS5b4T+cVE/WSwWs2MBAE4BRfE2tjmrTL9/b4ck6fpxPXTtqO4mJwIAAAAAwDyGYWjemixJ0vQxcXKzcWkCAAA4j+xDtbpu3iZVNTRrRI8uevrKwbJZKYgDgKvjm2cbOnioRjcuSlGj3aGz+kTogXN7mx0JAAAAAABTrc8o096CSnm723Tl8Biz4wAAABxVUtWgafM2qLS6Qcld/fXK9GHycreZHQsA0AooireRitomzVywSWU1jeofFainrxzEbjIAAAAAQKc3b02mJOmSoVEK8vEwOQ0AAECLqvomzZi/UQcP1So62FuvzRqhQG93s2MBAFoJRfE20Njs0E2vb1ZGSY0iA7306nXD5OPhZnYsAAAAAABMdfBQjZbuLZIkzRjTw+Q0AAAALRqa7bppUYp251cqxNdDi2aPVHiAl9mxAACtiKJ4KzMMQ3/4706tzyiTr4dN82YMVwSLJwAAAAAAWrA2S4YhndErTAnhfmbHAQAAkN1h6K53tmvtgUPy9bBpwcwR6hHqa3YsAEAroyjeyl5YfkDvp+TKapGeu3qIekcGmB0JAAAAAADTVdU36b3NuZKk2eM4JQ4AAMxnGIb+9ulufb6zQO42i16aNkz9owPNjgUAaAMUxVvRp9vz9eiSVEnSXy/oqwnJ4SYnAgAAAADAOby7OVfVDc1KDPfTuIRQs+MAAADouW/S9dq6g7JYpCcuH6RxiXxGAYCOiqJ4K0k5eFh3v7ddkjRzbJymj44zNxAAAAAAAE7C7jC0YG2mJGnWuB6yWCwmJwIAAJ3dmxuy9fjXaZKkB8/vo6kDu5mcCADQliiKt4LsQ7W68bXNamx2aFLvcP3pvD5mRwIAAAAAwGl8vadIOWV1CvZx18WDo8yOAwAAOrnFuwr1p492SpJunZCgGWMZ7QIAHR1F8VPkcBi65Y0UHappVN9uAXr6ysGyWdnxDgAAAADAd+ataTklfvXIWHm520xOAwAAOrP1GYd0+9tb5TCkK4fH6O6zk8yOBABoBxTFT5HVatHfLuirPpEBmnvdcPl6upkdCQAAAAAAp7Err0IbM8vkZrVo2qg4s+MAAIBObE9+pW5Y2NL19aw+EfrHRf0Y6wIAnQQV3FYwLK6LPr99HIsnAAAAAAA/8t0p8fMGRKproJfJaQAAQGeVU1ar6+ZvVFVDs0bEddGzVw2Wm41zgwDQWfAvfiuhIA4AAAAAwA8VV9Xr0+35kqSZzOoEAAAmKa1u0LS5G1RS1aDkrv565bphjHQBgE6GojgAAAAAAGgTr6/PVpPd0NDuwRoUE2R2HAAA0AlVNzRr5vxNyjpUq6ggby2cNUKB3u5mxwIAtDOK4gAAAAAAoNXVN9n1xvqDkqRZnBIHAAAmaGx26OZFKdqZV6Euvh5aNHuEIgIY5wIAnRFFcQAAAAAA0Oo+2Z6vQzWNigry1uS+EWbHAQAAnYzDYeju97ZrdXqpfDxsmj9juOLD/MyOBQAwCUVxAAAAAADQqgzD0LzVmZKk68Z0l5uNyw8AAKD9GIahv3+2R59uz5eb1aIXrx2qgYxyAYBOjW+lAAAAAACgVa3LOKR9hVXy8bDpimGxZscBAACdzAvLD2jB2ixJ0uOXD9T4pDBzAwEATEdRHAAAAAAAtKp5q7MkSZcOjVagj7u5YQAAQKfy9sZsPbokVZL0l/P76MJBUSYnAgA4A4riAAAAAACg1WSV1mjZviJJ0owxceaGAQAAncpXuwv1h//ulCTdckZPzRrXw+REAABnQVEcAAAAAAC0mo+35cswpDOTwxUf5md2HAAA0ElszCzTbW9tlcOQLh8WrXsn9zI7EgDAibiZHQAAAAAAAHQct09M0ODYIAXRNh0AALSTfYWVmr1wkxqaHZrUO1z/uri/LBaL2bEAAE6EojgAAAAAAGg1FotF45PCzI4BAAA6iZyyWk2fu1FV9c0a1j1Yz141RG42muQCAH6IlQEAAAAAAAAAALicQ9UNum7eRhVXNSgpwk9zrxsubw+b2bEAAE6IojgAAAAAAAAAAHApNQ3NmrVgkzJKaxQV5K3XZo1UIONbAAA/g6I4AAAAAAAAAABwGY3NDt38eoq251Yo2MddC2eNUNdAL7NjAQCcGEVxAAAAAAAAAADgEhwOQ79/f7tW7S+Vt7tN82YMV0K4n9mxAABOjqI4AAAAAAAAAABweoZh6B+f79XH2/LlZrXoP9cO0eDYYLNjAQBcAEVxAAAAAAAAAADg9F5ckaF5azIlSY9eNkBn9Ao3OREAwFVQFAcAAAAAAAAAAE7t3c05+vfifZKkP53XWxcPjjY5EQDAlVAUBwAAAAAAAAAATmvpniI98OFOSdJNp8fr+tPiTU4EAHA1FMUBAAAAAAAAAIBT2pxVpjlvbpHdYeiSIdG6f0qy2ZEAAC6IojgAAAAAAAAAAHA6qYVVmrVgkxqaHTozOVwPX9JfFovF7FgAABdEURwAAAAAAAAAADiV3MO1mj5vgyrrmzUkNkjPXz1E7jZKGgCAk8MKAgAAAAAAAAAAnEZZTaOmz9uoosoGJYb7ad6M4fL2sJkdCwDgwiiKAwAAAAAAAAAAp1Db2KyZCzYpo6RG3QK99NrsEQry8TA7FgDAxVEUBwAAAAAAAAAApmuyO3TL61u0PadcQT7uem32CEUGepsdCwDQAVAUBwAAAAAAAAAApnI4DN37/g6tSCuRl7tV82YMV0K4v9mxAAAdBEVxAAAAAAAAAABgGsMw9K8v9uq/W/Nks1r0n2uGakhssNmxAAAdCEVxAAAAAAAAAABgmpdXZujV1ZmSpEcuGaAJyeEmJwIAdDQUxQEAAAAAAAAAgCneT8nVQ1/ukyT94dxkXTI02uREAICOiKI4AAAAAAAAAABod9/sK9J9H+yQJN04Pl43ju9pciIAQEdFURwAAAAAAAAAALSrlINl+u0bW2R3GPrN4CjdPyXZ7EgAgA6MojgAAAAAAAAAAGg3+4uqNGvBZtU3OXRGrzD9+9IBslotZscCAHRgFMUBAAAAAAAAAEC7yC+v0/R5G1VR16TBsUF64ZohcrdRqgAAtC1WGgAAAAAAAAAA0OYO1zRq+ryNKqioV88wX827brh8PNzMjgUA6AQoigMAAAAAAAAAgDZV29isWQs3Kb24WpGBXnpt9kgF+3qYHQsA0Ek4RVH8+eefV1xcnLy8vDRy5Eht3LjxZx/7yiuv6LTTTlNwcLCCg4M1adKkX3w8AAAAAAAAAAAwT5PdoTlvbNHW7HIFertr4awRigryNjsWAKATMb0o/s477+iuu+7Sgw8+qC1btmjgwIGaPHmyiouLj/n45cuX66qrrtK3336rdevWKSYmRmeffbby8vLaOTkAAAAAAAAAAPglDoeh+z7YoW9TS+TlbtW8GcOUFOFvdiwAQCdjMQzDMDPAyJEjNXz4cD333HOSJIfDoZiYGN122226//77f/X5drtdwcHBeu655zR9+vRffXxlZaUCAwNVUVGhgICAU84PAABODmsyAADOgTUZAADzdeT1+KEv/p+9+w6PqkzfOH7PTHpPSA8p1ISOVBG7IKBgW3dZG6xt/amrrg11V8XeC+uqu7prW/uuXZoIoiggIL0mhBYgFUJ6n3l/fwQGIiAgSc5k8v1cVy7JOTPnPDPjmSdz7nnfs16vzNssh92mV68YqLN6xFldEgCgHfKxcud1dXVaunSp7rnnHvcyu92uESNGaOHChUe1jaqqKtXX1ysqKuqQ62tra1VbW+v+vays7PiKBgAAvwo9GQAAz0BPBgDAeu2lH/9r3ma9Mm+zJOmJi/oQiAMALGPp9Om7du2S0+lUXFzTRhgXF6f8/Pyj2sZdd92lxMREjRgx4pDrH3/8cYWHh7t/kpOTj7tuAABw7OjJAAB4BnoyAADWaw/9+JNlO/To9PWSpLvHZOi3g7zvMQIA2g7Lryl+PJ544gl98MEH+vTTTxUQEHDI29xzzz0qLS11/2zfvr2VqwQAABI9GQAAT0FPBgDAet7ej+dmFmrSR6skSVef3EnXndrZ4ooAAO2dpdOnR0dHy+FwqKCgoMnygoICxcfH/+J9n3nmGT3xxBOaPXu2+vbte9jb+fv7y9/fv1nqBQAAvx49GQAAz0BPBgDAet7cj5fl7NEN7yxTg8vogv6J+us5PWSz2awuCwDQzlk6UtzPz08DBw7UnDlz3MtcLpfmzJmjYcOGHfZ+Tz31lB5++GHNnDlTgwYNao1SAQAAAAAAAADAL8guLNdVby5Rdb1Tp3aP0VMX95PdTiAOALCepSPFJem2227TxIkTNWjQIA0ZMkRTpkxRZWWlrrzySknShAkTlJSUpMcff1yS9OSTT+r+++/Xe++9p7S0NPe1x0NCQhQSEmLZ4wAAAAAAAAAAoL3KK63WhNcWq6SqXv2SI/SPywbIz6dNX8EVAOBFLA/Fx48fr6KiIt1///3Kz89X//79NXPmTMXFxUmScnJyZLfvb5z/+Mc/VFdXp4svvrjJdiZPnqwHHnigNUsHAAAAAAAAAKDdK6mq04TXFiu3tEadY4L1xh8GK9jf8vgBAAA3mzHGWF1EayorK1N4eLhKS0sVFhZmdTkAALRb9GQAADwDPRkAAOu15X5cXefU5a8t0tJtexQX5q+Prz9JHSODrC4LAIAmmLsEAAAAAAAAAAAcs3qnS396b5mWbtujsAAf/eeqoQTiAACPRCgOAAAAAAAAAACOiTFG93yyWnM2FMrfx67X/jBY6fGhVpcFAMAhEYoDAAAAAAAAAIBj8uTMTH20dIccdptevHSABqdFWV0SAACHRSgOAAAAAAAAAACO2r+/36x/frdJkvT4hX00smecxRUBAPDLCMUBAAAAAAAAAMBR+Wz5Tj0ybb0k6c5R6frd4GSLKwIA4MgIxQEAAAAAAAAAwBF9l1WkO/63UpJ05fA03XB6F4srAgDg6BCKAwAAAAAAAACAX7Rie4muf2epGlxG5/VL1H3n9pTNZrO6LAAAjgqhOAAAAAAAAAAAOKzswgpd+cZiVdU5dUq3aD3z236y2wnEAQBtB6E4AAAAAAAAAAA4pPzSGk18fbH2VNWrb8dw/ePygfLzIVoAALQtdC4AAAAAAAAAAHCQ0qp6TXx9sXaWVKtzdLDe+MNghfj7WF0WAADHjFAcAAAAAAAAAAA0UVPv1NVvLVFmQbliQ/311lVD1CHE3+qyAAD4VQjFAQAAAAAAAACAW4PTpT+9t0w/bduj0AAfvXXVECVHBVldFgAAvxqhOAAAAAAAAAAAkCQZY/SXT1dr9vpC+fnY9drEweqREGZ1WQAAHBdCcQAAAAAAAAAAIEl6+qtM/fenHbLbpBcvOUFDOkVZXRIAAMeNUBwAAAAAAAAAAOj1H7bo5W83SZIeu7CPzu4Vb3FFAAA0D0JxAAAAAAAAAADauc9X7NRDU9dJku44u7t+PyTF4ooAAGg+hOIAAAAAAAAAALRj87KKdMf/VkqS/nBSmm48o6vFFQEA0LwIxQEAAAAAAAAAaKdWbi/R/72zVPVOo7F9E3T/2J6y2WxWlwUAQLMiFAcAAAAAAAAAoB3aXFShK99coqo6p07uGq1nf9dPdjuBOADA+xCKAwAAAAAAAADQzhSU1eiK1xaruLJOfZLC9c8rBsrfx2F1WQAAtAhCcQAAAAAAAAAA2pHS6npNfH2xdpZUK61DkN64crBC/H2sLgsAgBZDKA4AAAAAAAAAQDtRU+/UtW/9pA355YoJ9dfbVw9VdIi/1WUBANCiCMUBAAAAAAAAAGgHGpwu3fz+ci3eWqxQfx+9deUQJUcFWV0WAAAtjlAcAAAAAAAAAAAvZ4zRvZ+t0ax1BfLzsetfEwepZ2KY1WUBANAqCMUBAAAAAAAAAPByz32dpQ+WbJfdJr3w+/46sXMHq0sCAKDVEIoDAAAAAAAAAODF3py/RX//JluS9MgFfTS6d4LFFQEA0LoIxQEAAAAAAAAA8FJfrszVg1PXSZJuG9ldlw5NsbgiAABaH6E4AAAAAAAAAABe6IeNu3Tbf1fIGGnCsFTddGZXq0sCAMAShOIAAAAAAAAAAHiZ1TtKdd3bP6neaXRunwRNHtdLNpvN6rIAALAEoTgAAAAAAAAAAF6k3unSDe8tVWWdUyd16aDnxveTw04gDgBovwjFAQAAAAAAAADwIr4Ou174/Qk6pVu0XrlioPx9HFaXBACApXysLgAAAAAAAAAAADSvE1Ii9fbVQ60uAwAAj8BIcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDX8rG6gNZmjJEklZWVWVwJAABtU2hoqGw223Fvh54MAMDxoScDAGA9+jEAAJ7hSD253YXi5eXlkqTk5GSLKwEAoG0qLS1VWFjYcW+HngwAwPGhJwMAYD36MQAAnuFIPdlm9n0FrZ1wuVzKzc095m/wDR48WEuWLPlV+/w19z3W+xzN7cvKypScnKzt27c3yx9q3uB4XteWZkVtLbHP5tomx6B38uRjUGr9+lpqf82x3QO30VzfgvfGnny0t+X9oCneC1pnf/Tk/TgGD+bJxyHH4OG3Y2VPPt7H4wk9mfeCg3nye4HE+0Fzbodj0DNxDLbO/pr7GOQz8vHfnveDg3ny+wHnrZtvOxyDnsuTj0HJO3qyFZ+R291Icbvdro4dOx7z/RwOx69+M/g19z3W+xzL7cPCwnhj2+t4XteWZkVtLbHP5tomx6B38uRjUGr9+lpqf82x3ZaozRt78rFun/eDRrwXtM7+6MkH4xjcz5OPQ47BltnOgX5NTz7eOjypJ/NesJ8nvxdIvB8053Y4Bj0Tx2Dr7M8TjsFD8cbPyMd6e94P9vPk9wPOWzffdjgGPZcnH4OSd/RkK45B+3HvrZ248cYbW/W+x3qf46mvPfPk582K2lpin821TY5B7+Tpz1tr19dS+2uO7XrSa+XJ7wee9Dy1JZ7+vPFe0HzboSd7Lk9+3jgGW2Y7x+t466AneyZPf954P2i+7XAMeiZPf944BltmO8fLk98Lfu0+4NnPG+etm287HIOey9OfN2/oyVYcg+1u+vT2rKysTOHh4c12nRsAx4ZjEMA+vB8A1uIYBCDxXgBYjWMQwD68HwDW4hhEe8FI8XbE399fkydPlr+/v9WlAO0SxyCAfXg/AKzFMQhA4r0AsBrHIIB9eD8ArMUxiPaCkeIAAAAAAAAAAAAAAK/FSHEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhSH24UXXqjIyEhdfPHFVpcCtDvbt2/X6aefrp49e6pv37763//+Z3VJACxCPwasQz8GcCB6MmAdejKAA9GTAevQk+FNbMYYY3UR8AzffvutysvL9dZbb+mjjz6yuhygXcnLy1NBQYH69++v/Px8DRw4UFlZWQoODra6NACtjH4MWId+DOBA9GTAOvRkAAeiJwPWoSfDmzBSHG6nn366QkNDrS4DaJcSEhLUv39/SVJ8fLyio6NVXFxsbVEALEE/BqxDPwZwIHoyYB16MoAD0ZMB69CT4U0Ixb3EvHnzNG7cOCUmJspms+mzzz476DYvvfSS0tLSFBAQoKFDh2rx4sWtXyjgpZrzGFy6dKmcTqeSk5NbuGoAzY1+DFiLfgxgH3oyYC16MoB96MmAtejJwH6E4l6isrJS/fr100svvXTI9R9++KFuu+02TZ48WcuWLVO/fv00atQoFRYWtnKlgHdqrmOwuLhYEyZM0KuvvtoaZQNoZvRjwFr0YwD70JMBa9GTAexDTwasRU8GDmDgdSSZTz/9tMmyIUOGmBtvvNH9u9PpNImJiebxxx9vcru5c+ea3/zmN61RJuC1fu0xWFNTY0455RTzn//8p7VKBdCC6MeAtejHAPahJwPWoicD2IeeDFiLnoz2jpHi7UBdXZ2WLl2qESNGuJfZ7XaNGDFCCxcutLAyoH04mmPQGKM//OEPOvPMM3XFFVdYVSqAFkQ/BqxFPwawDz0ZsBY9GcA+9GTAWvRktDeE4u3Arl275HQ6FRcX12R5XFyc8vPz3b+PGDFCv/3tbzV9+nR17NiRPzyAZnI0x+D8+fP14Ycf6rPPPlP//v3Vv39/rV692opyAbQQ+jFgLfoxgH3oyYC16MkA9qEnA9aiJ6O98bG6AHiO2bNnW10C0G6dfPLJcrlcVpcBwAPQjwHr0I8BHIieDFiHngzgQPRkwDr0ZHgTRoq3A9HR0XI4HCooKGiyvKCgQPHx8RZVBbQfHIMAJN4LAKtxDALYh/cDwFocgwD24f0AsBbHINobQvF2wM/PTwMHDtScOXPcy1wul+bMmaNhw4ZZWBnQPnAMApB4LwCsxjEIYB/eDwBrcQwC2If3A8BaHINob5g+3UtUVFQoOzvb/fuWLVu0YsUKRUVFKSUlRbfddpsmTpyoQYMGaciQIZoyZYoqKyt15ZVXWlg14D04BgFIvBcAVuMYBLAP7weAtTgGAezD+wFgLY5B4AAGXmHu3LlG0kE/EydOdN/m73//u0lJSTF+fn5myJAh5scff7SuYMDLcAwCMIb3AsBqHIMA9uH9ALAWxyCAfXg/AKzFMQjsZzPGmJaL3AEAAAAAAAAAAAAAsA7XFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQAAAAAAAAAAAACA1yIUBwAAAAAAAAAAAAB4LUJxAAAAAAAAAAAAAIDXIhQHAAAAAAAAAAAAAHgtQnEAAAAAAAAAAAAAgNciFAcAAAAAAAAAAAAAeC1CcQA4Bp999pm6du0qh8OhP//5zy22nzfffFMREREttn0AAAAAAPZprc+6Ep93AQD4tZqrh55++ukt3u8BT0QoDrRxDzzwgPr37291Ga3GZrPps88+s2z/1113nS6++GJt375dDz/8sGV1AACaB30UAADPRI9uXa35WXf8+PHKyspy/97eXmsA8Dbt7X3cyp798x4K4NgQigNoVvX19VaXoLq6uhbZbkVFhQoLCzVq1CglJiYqNDS0RfYDAGi/vLmPtifGGDU0NFhdBgCgGXlzj26uz7pHW19gYKBiY2N/1T5+Cf0XACB5d89uqR7aEji3AE9EKA5YzOVy6amnnlLXrl3l7++vlJQUPfroo+71d911l7p3766goCB17txZ9913n7uxv/nmm3rwwQe1cuVK2Ww22Ww2vfnmm5KkkpISXXPNNYqJiVFYWJjOPPNMrVy5ssm+H3nkEcXGxio0NFTXXHON7r777ibf6nO5XHrooYfUsWNH+fv7q3///po5c6Z7/datW2Wz2fThhx/qtNNOU0BAgF599VWFhYXpo48+arKvzz77TMHBwSovL//F56Ourk5/+tOflJCQoICAAKWmpurxxx+XJKWlpUmSLrzwQtlsNvfv+76N+O9//1udOnVSQEDAUT//R+vbb791nxg488wzZbPZ9O2330qSPv74Y/Xq1Uv+/v5KS0vTs88+2+S+e/bs0YQJExQZGamgoCCNGTNGGzdubHKbN998UykpKQoKCtKFF16o3bt3N/tjAABvRB9tylP7qCTt3r1bl1xyiZKSkhQUFKQ+ffro/fffb3KbI72eO3bs0CWXXKKoqCgFBwdr0KBBWrRokXv9559/rgEDBiggIECdO3fWgw8+6D45bozRAw88oJSUFPn7+ysxMVE333yz+74vv/yyunXrpoCAAMXFxeniiy92r6utrdXNN9+s2NhYBQQE6OSTT9aSJUvc67/99lvZbDbNmDFDAwcOlL+/v9555x3Z7Xb99NNPTR7jlClTlJqaKpfL1TxPLAB4KHp0U57aow/3WfdQo/6mTJnirk2S/vCHP+iCCy7Qo48+qsTERKWnp7ufu08++URnnHGGgoKC1K9fPy1cuNB9vwOnfj3ca71vOytWrHDfr6SkpMln8UP13x9++EEul0uPP/64OnXqpMDAQPXr1++g1w0AsB89uylP7dnSwdOn79vv22+/rbS0NIWHh+v3v/99k8dYWVmpCRMmKCQkRAkJCQedu5aO7vz1kc6Bp6Wl6eGHH9aECRMUFhamP/7xj8374IHmYABYatKkSSYyMtK8+eabJjs723z//ffmX//6l3v9ww8/bObPn2+2bNlivvjiCxMXF2eefPJJY4wxVVVV5vbbbze9evUyeXl5Ji8vz1RVVRljjBkxYoQZN26cWbJkicnKyjK333676dChg9m9e7cxxph33nnHBAQEmNdff91kZmaaBx980ISFhZl+/fq59/3cc8+ZsLAw8/7775sNGzaYSZMmGV9fX5OVlWWMMWbLli1GkklLSzMff/yx2bx5s8nNzTXXXnutOeecc5o8zvPOO89MmDDhiM/H008/bZKTk828efPM1q1bzffff2/ee+89Y4wxhYWFRpJ54403TF5eniksLDTGGDN58mQTHBxsRo8ebZYtW2ZWrlx5yG1v27bNBAcH/+LPo48+esj71tbWmszMTCPJfPzxxyYvL8/U1taan376ydjtdvPQQw+ZzMxM88Ybb5jAwEDzxhtvNHnsPXr0MPPmzTMrVqwwo0aNMl27djV1dXXGGGN+/PFHY7fbzZNPPmkyMzPN3/72NxMREWHCw8OP+HwBQHtHH23KU/uoMcbs2LHDPP3002b58uVm06ZN5oUXXjAOh8MsWrToqF7P8vJy07lzZ3PKKaeY77//3mzcuNF8+OGHZsGCBcYYY+bNm2fCwsLMm2++aTZt2mRmzZpl0tLSzAMPPGCMMeZ///ufCQsLM9OnTzfbtm0zixYtMq+++qoxxpglS5YYh8Nh3nvvPbN161azbNky87e//c1d180332wSExPN9OnTzdq1a83EiRNNZGSk+/+HuXPnGkmmb9++ZtasWSY7O9vs3r3bjBw50txwww1Nnoe+ffua+++//4ivJQC0dfTopjy1Rx/us+7kyZObPGfGGPP888+b1NRU9+8TJ040ISEh5oorrjBr1qwxa9ascT93GRkZZurUqSYzM9NcfPHFJjU11dTX1xtjjHnjjTfcn3cP91rv287y5cvd+9uzZ4+RZObOnWuMOXz/feSRR0xGRoaZOXOm2bRpk3njjTeMv7+/+fbbb4/4OgFAe0TPbspTe7YxTXvovv2GhISYiy66yKxevdrMmzfPxMfHm7/85S/u21x//fUmJSXFzJ4926xatcqMHTvWhIaGmltuuaXJc/NL56+P5hx4amqqCQsLM88884zJzs422dnZR3yugdZGKA5YqKyszPj7+zf5I+NInn76aTNw4ED374f6oPr999+bsLAwU1NT02R5ly5dzCuvvGKMMWbo0KHmxhtvbLJ++PDhTbaVmJh4UBMePHiw++Tuvj86pkyZ0uQ2ixYtMg6Hw+Tm5hpjjCkoKDA+Pj5H9QH0pptuMmeeeaZxuVyHXC/JfPrpp02WTZ482fj6+rr/CDmc+vp6s3Hjxl/82fdH2aH8/AO4McZceumlZuTIkU1ud+edd5qePXsaY4zJysoyksz8+fPd63ft2mUCAwPNf//7X2OMMZdccslBf6SNHz+eUBwAjoA+ejBP7qOHcu6555rbb7/dGHPk1/OVV14xoaGhh93HWWedZR577LEmy95++22TkJBgjDHm2WefNd27d3d/qD/Qxx9/bMLCwkxZWdlB6yoqKoyvr69599133cvq6upMYmKieeqpp4wx+0/Kf/bZZ03u++GHH5rIyEj3/0tLly41NpvNbNmy5ZCPAQC8BT36YJ7cow/1WfdoQ/G4uDhTW1vrXrbvufv3v//tXrZ27Vojyaxfv94Yc+gT+j/f17GE4gf235qaGhMUFOT+0tw+V199tbnkkksO+xwAQHtFzz6YJ/fsQ/XQoKCgJp9l77zzTjN06FBjTOOXy/38/NznoY0xZvfu3SYwMNAdih/N+esjnQM3pjEUv+CCC37x8QNWY/p0wELr169XbW2tzjrrrMPe5sMPP9Tw4cMVHx+vkJAQ3XvvvcrJyfnF7a5cuVIVFRXq0KGDQkJC3D9btmzRpk2bJEmZmZkaMmRIk/sd+HtZWZlyc3M1fPjwJrcZPny41q9f32TZoEGDDtpOr1699NZbb0mS3nnnHaWmpurUU0/9xbqlxunXVqxYofT0dN18882aNWvWEe8jSampqYqJifnF2/j4+Khr166/+BMVFXVU+9tn/fr1h3yONm7cKKfTqfXr18vHx0dDhw51r+/QoYPS09Pdz+P69eubrJekYcOGHVMdANAe0UcP5sl91Ol06uGHH1afPn0UFRWlkJAQffXVV+7X40iv54oVK3TCCSccdh8rV67UQw891OQ1u/baa5WXl6eqqir99re/VXV1tTp37qxrr71Wn376qXtq9ZEjRyo1NVWdO3fWFVdcoXfffVdVVVWSpE2bNqm+vr7Ja+nr66shQ4Yc8bW84IIL5HA49Omnn0pqnOrujDPOaDL1LAB4I3r0wTy5Rx+PPn36yM/P76Dlffv2df87ISFBklRYWNgiNRz4OmVnZ6uqqkojR45s8v/If/7zH/f/IwCA/ejZB2trPTstLc19KRSpse/u67mbNm1SXV1dk3PPUVFRSk9Pd/9+tOevf+kc+D4/fx0AT0MoDlgoMDDwF9cvXLhQl112mc455xxNnTpVy5cv11//+lfV1dX94v0qKiqUkJCgFStWNPnJzMzUnXfe2ZwPQZIUHBx80LJrrrnGff2YN954Q1deeaVsNtsRtzVgwABt2bJFDz/8sKqrq/W73/2uyTU9j6WGn8vJyWnyR9ihfh577LEjbgcA4Bnoowfz5D769NNP629/+5vuuusuzZ07VytWrNCoUaPcr8eRXs8jra+oqNCDDz7Y5DVbvXq1Nm7cqICAACUnJyszM1Mvv/yyAgMDdcMNN+jUU09VfX29QkNDtWzZMr3//vtKSEjQ/fffr379+qmkpOSIz8uBfv48+vn5acKECXrjjTdUV1en9957T1ddddUxbRMA2iJ69ME8uUcfit1ulzGmybJ91489mvp8fX3d/973/LhcrmPav6QmNRxq/z+voaKiQpI0bdq0Jv+PrFu3juuKA8Ah0LMP1tZ69oE9V2rsu8fSc5vT0TwHgJV8rC4AaM+6deumwMBAzZkzR9dcc81B6xcsWKDU1FT99a9/dS/btm1bk9v4+fk1+TaW1Ni48/Pz5ePjc9iRSOnp6VqyZIkmTJjgXrZkyRL3v8PCwpSYmKj58+frtNNOcy+fP3/+Qd/gO5TLL79ckyZN0gsvvKB169Zp4sSJR7zPgfseP368xo8fr4svvlijR49WcXGxoqKi5Ovre9DjPVqJiYlasWLFL97mWL+J16NHD82fP7/Jsvnz56t79+5yOBzq0aOHGhoatGjRIp100kmSpN27dyszM1M9e/Z0b2PRokVNtvHjjz8eUx0A0B7RRw/NU/vo/Pnzdf755+vyyy+X1HhiPCsry90Pj/R69u3bV//+97/dj+XnBgwYoMzMTHXt2vWwNQQGBmrcuHEaN26cbrzxRmVkZGj16tUaMGCAfHx8NGLECI0YMUKTJ09WRESEvvnmG40aNUp+fn6aP3++UlNTJTWelF+yZIn+/Oc//+LzITWeiOndu7defvllNTQ06KKLLjrifQCgraNHH5qn9uhDiYmJUX5+vowx7gDhSPv4tQ71Wu8baZeXl6cTTjjhqPffs2dP+fv7Kycnp8nrCwA4NHr2obWlnv1LunTpIl9fXy1atEgpKSmSpD179igrK8v9nB7t+etfOgcOtBWE4oCFAgICdNddd2nSpEny8/PT8OHDVVRUpLVr1+rqq69Wt27dlJOTow8++ECDBw/WtGnT3NNv7pOWlqYtW7ZoxYoV6tixo0JDQzVixAgNGzZMF1xwgZ566il1795dubm5mjZtmi688EINGjRIN910k6699loNGjRIJ510kj788EOtWrVKnTt3dm/7zjvv1OTJk9WlSxf1799fb7zxhlasWKF33333iI8tMjJSF110ke68806dffbZ6tix41E9J88995wSEhJ0wgknyG6363//+5/i4+MVERHhfrxz5szR8OHD5e/vr8jIyKN+vvdNT9Ocbr/9dg0ePFgPP/ywxo8fr4ULF+rFF1/Uyy+/LKnxD8vzzz9f1157rV555RWFhobq7rvvVlJSks4//3xJ0s0336zhw4frmWee0fnnn6+vvvpKM2fObNY6AcAb0UcP5sl9tFu3bvroo4+0YMECRUZG6rnnnlNBQYH7Q/aRXs9LLrlEjz32mC644AI9/vjjSkhI0PLly5WYmKhhw4bp/vvv19ixY5WSkqKLL75YdrtdK1eu1Jo1a/TII4/ozTfflNPp1NChQxUUFKR33nlHgYGBSk1N1dSpU7V582adeuqpioyM1PTp0+VyuZSenq7g4GBdf/31uvPOOxUVFaWUlBQ99dRTqqqq0tVXX33Ex92jRw+deOKJuuuuu3TVVVcdcSQGAHgDevTBPLlHH8rpp5+uoqIiPfXUU7r44os1c+ZMzZgxQ2FhYc26H+nQr3VgYKBOPPFEPfHEE+rUqZMKCwt17733HnFboaGhuuOOO3TrrbfK5XLp5JNPVmlpqebPn6+wsLBjCkQAoD2gZx+srfXsXxISEqKrr75ad955pzp06KDY2Fj99a9/dc/IIh3d+esjnQMH2gyLr2kOtHtOp9M88sgjJjU11fj6+pqUlBTz2GOPudffeeedpkOHDiYkJMSMHz/ePP/88yY8PNy9vqamxvzmN78xERERRpJ54403jDHGlJWVmZtuuskkJiYaX19fk5ycbC677DKTk5Pjvu9DDz1koqOjTUhIiLnqqqvMzTffbE488cQmtT3wwAMmKSnJ+Pr6mn79+pkZM2a412/ZssVIMsuXLz/kY5szZ46RZP773/8e9fPx6quvmv79+5vg4GATFhZmzjrrLLNs2TL3+i+++MJ07drV+Pj4mNTUVGOMMZMnTzb9+vU76n38Wnv27DGSzNy5c5ss/+ijj0zPnj3dr9/TTz/dZH1xcbG54oorTHh4uAkMDDSjRo0yWVlZTW7z2muvmY4dO5rAwEAzbtw488wzzzR5nQEAh0YfbcqT++ju3bvN+eefb0JCQkxsbKy59957zYQJE8z555/vvs2RXs+tW7ea3/zmNyYsLMwEBQWZQYMGmUWLFrnXz5w505x00kkmMDDQhIWFmSFDhphXX33VGGPMp59+aoYOHWrCwsJMcHCwOfHEE83s2bONMcZ8//335rTTTjORkZEmMDDQ9O3b13z44Yfu7VZXV5ubbrrJREdHG39/fzN8+HCzePFi9/q5c+caSWbPnj2HfOyvvfaakdTkPgDg7ejRTXlyjz7cZ91//OMfJjk52QQHB5sJEyaYRx991F2bMcZMnDixSR835tDP3c+3/8YbbxzVa71u3TozbNgwExgYaPr3729mzZrVZDuH678ul8tMmTLFpKenG19fXxMTE2NGjRplvvvuu1//JAGAF6NnN+XJPfvnPfRQ+33++eeb9Ovy8nJz+eWXm6CgIBMXF2eeeuopc9ppp5lbbrnFfZujOX99pHPgqamp5vnnn2+mRwq0DJsxP7tAEIB2a+TIkYqPj9fbb7/dLNt7++23deuttyo3N1d+fn7Nsk0AADwVfRSH8/DDD+t///ufVq1aZXUpANAu0aMBAGgb6NkAWhLTpwPtVFVVlf75z39q1KhRcjgcev/99zV79mx9/fXXzbLtvLw8PfHEE7ruuuv4gwMA4HXoozgaFRUV2rp1q1588UU98sgjVpcDAO0CPRoAgLaBng2gtdmPfBMA3shms2n69Ok69dRTNXDgQH355Zf6+OOPNWLEiOPe9lNPPaWMjAzFx8frnnvuabLuscceU0hIyCF/xowZc9z7BgCgNdBHcTT+9Kc/aeDAgTr99NN11VVXWV0OALQL9GgAANoGejaA1sb06QBaVXFxsYqLiw+5LjAwUElJSa1cEQAAbQd9FAAAz0SPBgCgbaBnA+0XoTgAAAAAAAAAAAAAwGsxfToAAAAAAAAAAAAAwGsRigMAAAAAAAAAAAAAvFa7C8WNMSorKxOzxgMAYC16MgAAnoGeDACA9ejHAAC0rHYXipeXlys8PFzl5eVWlwIAQLtGTwYAwDPQkwEAsB79GACAltXuQnEAAAAAAAAAAAAAQPtBKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9FKA4AAAAAAAAAAAAA8FqE4gAAAAAAAAAAAAAAr0UoDgAAAAAAAAAAAADwWoTiAAAAAAAAAAAAAACvRSgOAAAAAAAAAAAAAPBahOIAAAAAAAAAAAAAAK9leSj+0ksvKS0tTQEBARo6dKgWL178i7efMmWK0tPTFRgYqOTkZN16662qqalppWoBAAAAAAAAAAAAAG2JpaH4hx9+qNtuu02TJ0/WsmXL1K9fP40aNUqFhYWHvP17772nu+++W5MnT9b69ev12muv6cMPP9Rf/vKXVq4cAAAAAAAAAAAAANAW+Fi58+eee07XXnutrrzySknSP//5T02bNk2vv/667r777oNuv2DBAg0fPlyXXnqpJCktLU2XXHKJFi1adNh91NbWqra21v17WVlZMz8KAABwNOjJAAB4BnoyAADWox8DANC6LBspXldXp6VLl2rEiBH7i7HbNWLECC1cuPCQ9znppJO0dOlS9xTrmzdv1vTp03XOOeccdj+PP/64wsPD3T/JycnN+0AAAMBRoScDAOAZ6MkAAFiPfgwAQOuyGWOMFTvOzc1VUlKSFixYoGHDhrmXT5o0Sd99991hR3+/8MILuuOOO2SMUUNDg/7v//5P//jHPw67n0N94y45OVmlpaUKCwtrvgcEAAB+ET0ZAADPQE8GAMB69GMAAFqXpdOnH6tvv/1Wjz32mF5++WUNHTpU2dnZuuWWW/Twww/rvvvuO+R9/P395e/v38qVAgCAn6MnAwDgGejJAABYj34MAEDrsiwUj46OlsPhUEFBQZPlBQUFio+PP+R97rvvPl1xxRW65pprJEl9+vRRZWWl/vjHP+qvf/2r7HbLZoMHAAAAAAAAAAAAAHggy1JkPz8/DRw4UHPmzHEvc7lcmjNnTpPp1A9UVVV1UPDtcDgkSRbNAg8AAAAAAAAAAAAA8GCWTp9+2223aeLEiRo0aJCGDBmiKVOmqLKyUldeeaUkacKECUpKStLjjz8uSRo3bpyee+45nXDCCe7p0++77z6NGzfOHY4DAAAAAAAAAAAAALCPpaH4+PHjVVRUpPvvv1/5+fnq37+/Zs6cqbi4OElSTk5Ok5Hh9957r2w2m+69917t3LlTMTExGjdunB599FGrHgIAAAAAAAAAAAAAwIPZTDubd7ysrEzh4eEqLS1VWFiY1eUAANBu0ZMBAO2BMUZOl5GPw7Krlx0RPRkAAOvRjwEAaFme+6kcAAAAAIA2yBijldtL9Oi0dTr5ybmatjrP6pIAAAAAAGjXLJ0+HQAAAAAAb2CM0drcMk1dladpq3O1vbjavW7WugKd3z/JwuoAAAAAAGjfCMUBAAAAAPgVjDHakF+uaavyNHVVrrburnKvC/R16KwesRrbN1Gnp8dYWCUAAAAAACAUBwAAAADgGGwsKNeXq/I0bVWuNhVVupcH+Np1Zkaszu2TqDMzYhXo57CwSgAAAAAAsA+hOAAAAAAAR7CpqMI9IjyroMK93M/HrtO7x2hsv0SdlRGrYH8+ZgMAAAAA4Gn4tA4AAAAAwCFs212pqavyNHVVntbnlbmX+zpsOrVbjMb2S9CIHnEKDfC1sEoAAAAAAHAkhOIAAAAAAOy1vbhK01bnadqqPK3eWepe7mO36eRu0Tq3T4LO7hWv8ECCcAAAAAAA2gpCcQAAAABAu5ZbUq3pq/P05ao8rdxe4l7usNt0UpcOGts3QWf3jFdksJ91RQIAAAAAgF+NUBwAAAAA0O4UlNVo2qo8TVudp6Xb9riX223S0E4dNLZfgkb3ileHEH8LqwQAAAAAAM2BUBwAAAAA0C4Ulddqxpo8TV2ZpyXbimVM43KbTRqcFqWxfRM0une8YkMDrC0UAAAAAAA0K0JxAAAAAIDX2l1Rq5lr8zV1ZZ4Wbdktl9m/bmBqpMb2TdCY3gmKDycIBwAAAADAWxGKAwAAAAC8yp7KOn21Nl/TVudpwabdch6QhPdPjtDYvgk6p0+CEiMCLawSAAAAAAC0FkJxAAAAAECbV1pdr1lr8zV1VZ7mZ+9SwwFBeJ+kcHcQnhwVZGGVAAAAAADACoTiAAAAAIA2qbymXl+vK9C0VXmat7FI9c79QXiPhDCN7Zugc/skKC062MIqAQAAAACA1QjFAQAAAABtRmVtg2avL9DUVXn6LqtIdQ0u97r0uFCd2zdB5/ZNUJeYEAurBAAAAAAAnoRQHAAAAADg0arqGjR3Q5GmrsrVNxsKVXtAEN45Jlhj+yZqbN8EdY8LtbBKAAAAAADgqQjFAQAAAAAep6beqW8zCzV1VZ7mrC9Udb3TvS6tQ5DG9k3UuX0TlBEfKpvNZmGlAAAAAIDWUFXXoNySGuWVViu3pPqAf9cot7RaxkhdYoLVJTZE3WJD1TU2RF1ighUa4Gt16fAAhOIAAAAAAI9Q2+DUvKxdmroqV7PXFaiybn8QnhwVqHP7NI4I75UYRhAOAAAAAF6k3ulSfmmNckuqlVfaGHLnlTT+nlvaGH6XVNUfcTtbdlVq9vrCJsviwwLULS5EXWJC1DW28adbbIg6hPi31MOBByIUBwAAAABYpq7BpR+yizR1VZ6+Xlug8toG97qkiMDGa4T3SVDfjuEE4QAAAADQBrlcRrsqaxtHdu8NuRvD772jvEuqVVRRK2OOvK0Qfx8lRgQoITxQiRGBSgwPUMLe/xpJ2YUV7p+NhRXaVVGr/LIa5ZfV6PuNu5psKzLI1x2Sd4kJUbe4xtHlieEBfP70QoTiAAAAAIBWVe90acGm3Zq2KldfrS1QafX+b/vHhwXonD4JOrdvgk5IjpDdzokIAAAAAPBUxhiVVTc0juw+IOTOK903yrta+aU1qnceOfH2c9iVEBGghPCAvYF3oBIimv477AhToQ/vGt3k99KqemUXlTeG5AUVyi5qDMx37KnWnqp6Ldm6R0u27mlynyA/R2NIHhuiLrH7R5enRgXJx2E/9icJHoFQHAAAAADQ4hqcLi3aUqypq3I1c02+9hww7V1MqL/O6R2vsf0SNTAlkiAcAAAAADxETb3THXLvLGmc0jyvtLrx36WNI78PvPTV4dhtUmxoQOMo730jvPeN9t478rtDsF+zfx4MD/LVwNQoDUyNarK8us6pTUUVTUaWZxdVaOuuSlXVObV6Z6lW7yxtch9fh02dooMbQ/KYEPe1yzvHBCvA19GsdaP5EYoDAAAAAFqE02W0eEuxpq1uDMJ3VdS513UI9tOYPvE6t0+ihnSKkoMgHAAAAAAsVVXXoH9+t1nrcsuUV9oYehdX1h35jmqcijwxInBv0B2w9997R3lHBCo21F++HjTKOtDPod5J4eqdFN5keb3TpW27K5tMwZ5dWKFNRRWqqXcpq6BCWQUVTe5js0nJkUHua5UfOLr8SCPb0XoIxQEAAAAAzcblMlqas0dTV+Zq+pp8FZXXutdFBPlqTO94je2bqKGdoph2DgAAAAA8yENfrtMHS7YftDzIz7E/5N47ujshYt+/G0d5B/p5x0hpX4ddXWND1TU2tMlyl8toZ0l14/TrBftHlmcXVqi0ul45xVXKKa7SNxsKm9wvLszfPbK8MShvvG55dIgf1y1vZYTiAAAAAIDjYozR8u0lmroyT9NX5ym/rMa9LizAR6N6NU6NflKXDh41MgAAAAAA0GhZzh53IH7X6Aylx4c0jvoOD1RYoE+7D3DtdpuSo4KUHBWkM9Jj3cuNMSqqqG0cTX7ANOwbCypUWF6rgrLGn/nZu5tsLzzQ1x2Wd4vbO7o8JkRJEYFcUqyFEIoDAAAAAI6ZMUardpRq2uo8TVuVp50l1e51of4+GtkrTmP7JujkrjHy8yEIBwAAAABP5XQZ3f/5GknSxQM76vrTu1hcUdths9kUGxqg2NAAndQlusm60ur6g69bXlih7XuqVFpdr6Xb9mjptj1N7hPo61CX2OADRpY3ji5P7RDEl8yPE6E4AAAAAOCoGGO0NrdMU1fladrqXG0v3h+EB/s5NKJnnMb2TdQp3aIV4OsdU+cBAAAAgLd7b3GO1uwsU2iAj+4ek2F1OV4jPNBXA1IiNSAlssnymnqnOyzfdMA07Ft2Vaq63qk1O8u0ZmdZk/v42G1Ki94flneLC1GXmMYfb5m6vqURigMAAAAADssYow355Zq2Kk/TVudpy65K97pAX4fO7BGrcX0TdHp6LEE4AAAAALQxuytq9cxXmZKkO0elKzrE3+KKvF+Ar0O9EsPVKzG8yfJ6p0s5xVUHjSzfVFShqjqn+3et3X8fm01KighUt9gDR5aHqGtMqMKDfFv5kXk2QnEAAAAAwEE2FpTry1V5mrYqV5uK9gfh/j52nZkRq3P7JujMjFgF+fGxEgAAAADaqqdmZqq0ul69EsN02dBUq8tp13wddvfo71G99i93uYzyymq0saDcHZJnF1ZoY2GFSqrqtWNPtXbsqdbczKIm24sJ9W8yDfu+4Dwm1L9dXiOesxcAAAAAAEnS5qKKxqnRV+Ups6DcvdzPYddp6TEa2zdBZ/WIU4g/HyUBAAAAoK1blrNHH/60XZL00Pm95bC3v6C0LbDbbUqKCFRSRKBOT491LzfGaHdl3UEjy7MLK5RfVqOi8loVlddq4ebdTbYXGuDTJCTfN7K8Y2Sg7F78/wBnMgAAAACgHdu2u1JTV+Vp6qo8rc/bf80yX4dNp3aL0bl9EzSiZ5zCAph2DQAAAAC8hdNldN9nayRJvx3YUQNTI49wD3gam82m6BB/RYf468TOHZqsK6+p16aiysbR5UV7r11eWKGc4iqV1zRoeU6JlueUNLmPv0/jSPUDp2HvFhui1A7B8vOxt+IjaxmE4gAAAADQzmwvrtK01Y0jwlfvLHUv97HbNLxrtM7tm6BRPeO5/hgAAAAAeKn3Fm3T2twyhQX46K4xGVaXg2YWGuCr/skR6p8c0WR5Tb1TW3ZV7h9VXlSh7IIKbdlVqdoGl9bllWndAV+YlySH3abUDkHqGhOibnH7R5Z3iQ1uU5dUazuVAgAAAAB+tdySak1fnacvV+Vp5fYS93K7TTqpS7TG9k3QqF7xigz2s65IAAAAAECL21VRq6e/ypQk3TkqXdEh/hZXhNYS4OtQj4Qw9UgIa7K8wenS9j3Ve69Vvvfa5XuD88o6pzYXVWpzUaVmrStocr+kiMAmI8v3jS6PCPK8cwuE4gAAAADgpQrKajR9dePU6Eu37XEvt9mkEzt10Ll9EzS6dzwnQAAAAACgHXlyxgaV1TSoV2KYLh2aanU58AA+Drs6RQerU3SwRvaMcy83xii/rEYbCw4YWb43LC+urNPOkmrtLKnWd1lFTbYXHeLnnoq98drloeoaG6K4MH/ZbNZct5xQHAAAAAC8SFF5rWasaQzCl2wtljGNy202aXBqlMb2awzCY0MDrC0UAACgBThdRtX1TtXUO1Vdt/e/e//dt2OEAv0cVpcIAJZauq1Y/1u6Q5L08AW95bBbE1CibbDZbEoID1RCeKBO7R7TZF1xZZ07ID9wdHluaY12VdRpV0WxFm0pbnKfUH8f9U+J0NtXD23NhyGJUBwAAAAA2rzdFbWauTZfU1fmadGW3XKZ/esGpERobN9EndMnQfHhBOEAAMAaLpdRbYOrMaA+RGB9cJDtarJs3/1qDvj3z7dRU+9SndN12Bq+vvVUdYsLbcVHDQCexekyuu+ztZKk8YOSNSAl0uKK0JZFBftpSKcoDekU1WR5ZW2DNhVVNI4u3zuyfFNhhbburlR5bYPKaxosqZdQHAAAAADaoJKqOn21Nl9TV+Vpwabdch6QhPdLjtDYPgk6p2+CkiICLawSAAB4OmMaw+ra+qaB9SED6cMG1C53QO0OqX8WYNfUHz6sbimBvg4F+Nob/+vnkDnyXQDAq727aJvW5ZUpPNBXk0anW10OvFSwv4/6doxQ344RTZbXNji1dVeVauqdltRFKA4AAAAAbYQxRj9uLtZ7i3P01Zr8JiOheieFaWzfRJ3bJ0HJUUEWVgkAAJpLvdN1yNHR+wPq/aOpfznAdh1+hHW90325ldbi59MYVAf6OhTo51CAr0OBvnYF+jn2Btn71wX6OuS/7/e9t/n5+oAD/r1vub+P3bJrlgKAJ9pVUaunv8qUJN05Kl0dQvwtrgjtjb+PQ+nx1s3YQigOAAAAAB6uuLJOHy/dofcX52jzrkr38oz4UI3r1xiEp0UHW1ghAADtkzFG+WU1qqhpODiw/llofbgpwGsOEVrv+3eDq3XTal+H7dCB874R1wcG0k0C7V8KqO3y92m6nuvXAkDre2LGBpXXNKh3UpguGZJidTlAqyMUBwAAAAAPZIzR4i2No8JnrN4/KjzYz6Hz+ifpsqEp6p0UbnGVAAC0X0u3FevJGZlavLW4xfdlt0lBfj4K8LU3CaEPH1DbDwqo94fbTUPrgANu6+uwt/hjAQC0vp+2FuujpTskSQ+f35svJ6FdIhQHAAAAAA9SUlWnj/aOCt9UtH9UeO+kMF06JFXn9U9UiD8f5QAAsEpWQbmempmp2esLJEkOu03hgb5NRlMfagrwAN9fDq33Xff6UCG3r8PGVOAAgF+lwenSfZ+vlST9fnCyTkiJtLgiwBqcSQEAAAAAixlj9NO2PXpvUY6mrc5TXUPjqPAgP4fO65eoS4emqG/HCGuLBACgndtZUq3nv87SJ8t2yGUaR2//blCybhnRTQnhgVaXBwDAIb3z4zatzytTeKCvJo3OsLocwDKE4gAAAABgkdKqen2yfIfeW5SjjYUV7uU9E8J06dAUnd8/UaEBvhZWCAAAiivr9PLcbP3nx23uL66N7hWvO0alq2tsiMXVAQBweEXltXp2VpYkadLodEUF+1lcEWAdQnEAAAAAaEXGGC3L2aN3F+Vo2qo81e49uR7o69C4fgm6dGiq+nUMZ4pUAAAsVlXXoNe+36JX521WeW2DJOnEzlG6a3QGU88CANqEx2esV3ltg/p2DNfvB6dYXQ5gKUJxAAAAAGgFpdX1+mz5Tr23KEeZBeXu5Rnxobp0aIouOCFJYYwKBwDAcvVOlz5YnKO/zcnWropaSY2zuEwana7TusfwxTUAQJuwZGuxPlm2Uzab9PD5veWw07/QvhGKAwAAAEALMcZo+fYSvb8oR1+uylVNfeOo8ABfu8b2bbxW+AnJEZxcBwDAA7hcRlNX5+nZWZnatrtKkpQSFaTbz+6ucX0TZSdMAAC0EQ1Ol+77bI0k6feDU9QvOcLaggAPQCgOAPBYxhi5jOR0GblM44/TZeRySc69v7tcRs6jWO4yjb+7XI3LnMbI7N32gctdRvv3s/e/Ttfe2/5sucvoZ/vZW+8B+z/Udvctb/y96XLj3mfTOn7+2Btr2rfv/XUc+NhjQwP08fUnWf0yAkC7VFZTr8+X79S7i3K0IX//qPDucSG6dEiKLhzQUeGBjAoHAMATGGP0/cZdenLmBq3NLZMkRYf46eazuun3g1Pk52O3uEIAAI7N2z9u04b8ckUE+WrSqHSrywE8AqE4AOCo5ZZU671FOVqTW+oOixtD2KaBsevnQe2+AHjfbQ8KgPeH3wcudxmrH3HbVt/AEwgArckYo1U7SvXeohx9sTJX1fVOSZK/j13n9k3QZUNTNCAlklHhAAB4kBXbS/TkjA1auHm3JCnE30fXndpZV53cScH+nDoFALQ9heU1em5WliRp0qgMRQb7WVwR4Bn4yw4A8IuMMVq4abfeWrhVX68r8Lig2m6THHab7LbGn8Z/Ny47aLldcthssu9dvu/fjkMuP9R29972F5bb9t7/wOX2ffs54L8Ouxpv22S59tdgb1rfwftrfJz7t3fwcn9GMwBAq6iobXBfK3xdXpl7edfYxlHhFw1IUkQQJyEAAPAkm4oq9MxXmZqxJl+S5Oew64phqbrxjK6KIjwAALRhT0zfoPLaBvXrGK7xg5OtLgfwGITiAIBDqqht0KfLduithduUXVjhXj6scweN7ZegQF/Hz4LY/WH0gUGtzab9oe3Pl/8sKLYfEEb/Ukh94P4YbQcAsMrqHaV6b/E2fb4iV1V1jaPC/XzsOrdPgi4dmqJBqYwKBwDA0+SX1uhvc7L03592yOkystmki07oqFtHdlPHyCCrywMA4Lgs2rxbnyzfKZtNeuj83nLY+UwK7EMoDgBoIruwQm8v3KqPl+1URW2DJCnIz6GLBiRpwrA0dY8LtbhCAACsU1nboC9W5uq9RTlavbPUvbxzTLAuHZKi3wzoyNR0AAB4oNKqev3ju016Y/4W1Ta4JEkjesTqzlEZSo/ncy4AoO2rd7p0/+drJUmXDElRv+QIawsCPAyhOABATpfRnPUF+s/Cbfohe5d7eefoYE0YlqqLBnZUWICvhRUCAGCtNTtL9d7iHH2+fKcq940Kd9g1une8Lh2aoqGdohgVDgCAB6qpd+rNBVv18txsldU0fvF7UGqk7hqTocFpURZXBwBA8/nPwm3KLChXZJCv7jw73epyAI9DKA4A7VhxZZ0+WJKjd3/M0c6SakmN1+g+q0ecJgxL1fAu0bIzxQ4AoJ2qqmvQl3tHha/cccCo8OhgXTIkRb8Z2JFrjgIA4KEanC79b+kOTZmdpYKyWklSelyoJo1O15kZsXyZDQDgVQrLavT811mSpLtGZzCDGXAIhOIA0A6t2lGitxZs05erclW3d9q4yCBfjR+cosuGpig5iuuoAQDar3W5ZXpv8TZ9tjzXfSkRX4dNo3o1jgof1rkDJ9IBAPBQxhjNXJOvp2dlanNRpSQpKSJQt43srgtOSOLaqgAAr/TY9PWqqG1Qv+QI/W5QstXlAB6JUBwA2onaBqemrcrTWwu3aeX2EvfyPknhmjAsVeP6JSrA12FdgQAAWKi6zqkvVzWOCl9xQJ9M6xCkS4ak6OKBHdUhxN+6AgEAwBEtyN6lJ2ducM/wEhnkqz+d2U2Xn5gifx8+7wIAvNOizbv12Ypc2WzSI+f3ZuZP4DAIxQHAy+WWVOvdRdv0weLt2l1ZJ6nxGqjn9k3QhGGp6p8cwWg3AEC7tXVXpd6Yv0WfLN+p8r3XGfWxNx0VzgkFAAA825qdpXpy5gZ9v3GXJCnIz6FrTu6ka0/trNAAX4urAwCg5dQ7Xbr/87WSpMuGpqhPx3CLKwI8F6E4AHghY4wWbt6t/yzYplnr8uUyjcsTwgN02dAUjR+cophQRrsBANqv/NIa/W3ORv33p+1y7m2UKVH7R4XTJwEA8HzbdlfqmVlZ+nJlrqTGy51cOiRFfzqzG70cANAuvLVgqzILyhUZ5Ks7zk63uhzAoxGKA4AXqaht0KfLdug/C7dpY2GFe/mwzh008aRUjegRJx+H3cIKAQCwVklVnf7x7Sa9uWCrahtckqTT02N09cmdNLxLNKPCAQBoAwrLa/T3Odl6f3GOGvZ+ue38/om6fWS6UjoEWVwdAACto6CsRlNmb5Qk3T0mQxFBfhZXBHg2QnEA8ALZhRV658dt+mjpDlXUNk79GuTn0EUDkjRhWJq6x4VaXCEAANaqrG3QG/O36JV5m93TpA9KjdSk0Rka0inK4uoAAMDRKKup17/mbda/v9+i6nqnJOm07jGaNDpdvRKZLhYA0L48Nn29Kmob1D85Qr8dmGx1OYDHIxQHgDbK6TKas75A/1m4TT9k73Iv7xwdrAnDUnXRwI4K49ppAIB2rq7BpfcX5+jv32zUroo6SVJGfKgmjU7XGemxstkYGQ4AgKerqXfqnR+36aW52dpTVS9J6pccobtHZ2hYlw4WVwcAQOtbuGm3Pl+RK5tNeuSC3sx6BhwFQnEAaGOKK+v04ZLteufHbdpZUi1Jstuks3rEacKwVKZ+BQBAjV8e+3zFTj33dZZ27GnslylRQbr97O4a1zeRXgkAQBvgdBl9smyHpsze6P782zkmWJNGpWtUr3i+3AYAaJfqnS7d//kaSdLlQ1PVO4nZUoCjQSgOAG3Eqh0lemvBNn25Kld1e6+BGhnkq/GDU3TZ0BQlR3HdNAAAjDH6el2BnpmVqayCCklSTKi/bj6rm8YPSpafj93iCgEAwJEYYzR7faGe/mqDu5/HhwXo1pHd9JsBHeXjoJ8DANqvN+dv1cbCCkUF++mOs9OtLgdoMwjFAcCD1TY4NX11nt5asE0rtpe4l/dJCteEYaka1y9RAb4O6woEAMCDLNy0W099tUHLc0okSWEBPrr+9K76w0lpCvSjXwIA0BYs2VqsJ2Zs0NJteyRJ4YG+uuH0Lpp4UhqffwEA7V5BWY2mzM6SJN09JkPhQVw+EzhahOIA4IFyS6r17qJt+mDxdu2ubLz+qZ/DrnP7JmjCsFT1T45gmjgAAPZas7NUT32VqXlZRZKkAF+7rhreSded2oUTBAAAtBFZBeV6csYGzdlQKKmxn185vJP+77QuCg+knwMAIEmPTluvyjqnBqRE6OIBHa0uB2hTCMUBwEMYY7Rw8279Z8E2fb2+QE6XkSQlhAfosqEpGj84RTGh/hZXCQCA59hUVKHnZmVp2uo8SZKP3aZLhqTopjO7KjYswOLqAADA0fpwSY7u+2yt6pwuOew2/W5Qsv48opvi6OcAALgt2LRLX6zMld0mPXR+b9ntDJoCjgWhOABYrKK2QZ8u36n/LGi8Fsw+wzp30MSTUjWiRxzXSwMA4AB5pdX62+yN+t/SHXK6jGw26YL+Sbp1RHeldAiyujwAAHCUahucevDLdXpvUY4k6Yz0GN07tqe6xIRYXBkAAJ6l3unS/Z+vlSRdfmKqeieFW1wR0PYQigOARTYVVejthdv00dIdqqhtkCQF+Tl00YAkTRiWpu5xoRZXCACAZ9lTWaeXv83WWwu3qa7BJUka0SNWd4xKV0Z8mMXVAQCAY1FQVqPr31mqZTklstmkO85O1/WndWHUGwAAh/DG/C3KLqxQh2A/3T4y3epygDaJUBwAWtn24io9OytTn63IdS/rHB2sCcNSddHAjgoL4FppAAAcqLK2Qa/9sEX/mrdZ5Xu/SDakU5TuGp2ugalRFlcHAACO1dJtxfq/d5apqLxWYQE++tslJ+iM9FirywIAwCPllVZryuyNkqS7x2QoPIjzx8CvQSgOAK1kd0Wt/v5Ntt5dtE31zsbrhY/oEauJJ6VpeJdovg0PAMDP1DY49e6POXppbrZ2V9ZJknomhGnS6HSd1j1GNhu9EwCAtsQYo/cW5+iBL9aq3mmUHheqV64YqLToYKtLAwDAYz06bb2q6pwamBqp3wzoaHU5QJtFKA4ALayytkH//n6LXp23SZV1TknSKd2iddfoDK79AgBoVTX1Tl3z1k/KK61Wz8Rw9UoM2/sTrqhgP6vLc3O6jD5ZtkNTZm/UzpJqSVKn6GDdNrK7zu2TwBfJAABog2obnJr8+Vp9sGS7JOncPgl66uK+Cvbn9CQAAIczP3uXpq7Kk90mPXR+Lz4PA8eBvzoBoIXUNbj0/uIc/f2bjdpV0Ti6rU9SuO4ek6HhXaMtrg4A0B69vXCbfsjeJUnaVFSpL1fuv5RHQniAeiWGNQnLkyICW3U0tjFGX60t0DOzMpVdWCFJigvz1y1ndddvB3WUr8PearUAAIDmk1darevfWaYV20tkt0mTRmfoulM7M+sLAAC/oK7Bpfs/XyNJmjAsTb0SGWAFHA9CcQBoZi6X0dTVeXrmq0zlFFdJktI6BOmOUek6pzej2wAA1iirqddL32ZLkq4/vYtC/H20LrdMa3NLtXV3lfJKa5RXWqPZ6wvd9wkP9G0ymrxXYpg6x4TI0QK9bEH2Lj35VaZWbi9x7/uG07to4klpCvB1NPv+AABA61i8pVg3vLtUuyrqFB7oq79fcoJO7R5jdVkAAHi8N+Zv0aaiSkWH+OnWkd2tLgdo8wjFAaAZfb+xSE/M2KC1uWWSpOgQf90yopt+PziZ0W0AAEv9a95mlVTVq2tsiG4f2V0+B/Sl8pp6rc8r19rcUq3NLdPa3DJtLChXaXW9FmzarQWbdrtvG+BrV0Z806A8PT70VwfXK7eX6OmvMt0j2AN9Hbr65E669tTOCg/0Pb4HDQAALGOM0ds/btNDX65Tg8soIz5Ur14xSCkdgqwuDQAAj5dXWq2/zdkoSbpnTA8+HwPNgFAcAJrBqh0lenLmBs3PbgwNQvx9dN2pnXXVyZ24PhoAwHKF5TX69/dbJEl3nJ3eJBCXpNAAXw3pFKUhnaLcy2obnNpYUNEkKF+fV6aqOqdWbC/Rir0juiXJYbepa0zI3unXG8Pynolhv/ihPbuwQs/OytSMNfmSJF+HTZcNTdWNZ3RVTKh/Mz56AADQ2mrqnbr3szX6aOkOSdJ5/RL1xG/6KMiPz8cAAByNR6atV1WdU4NSI3XRgCSrywG8An+JAsBx2LKrUs/MytS0VXmSJD+HXZefmKo/ndlVUcF+FlcHAECjF7/JVnW9U/2TIzSqV9xR3cffx6HeSeHqnbT/mmVOl9HW3ZV7Q/LSvdOvl6m4sk6ZBeXKLCjXJ8t3um+fHBWoXgl7r1Ge1BiWN7iM/jY7Sx8t3SGXkWw26cITknTriO5KjmLkGAAAbd3Okmpd/85SrdpRKrtN+ss5PXT1yZ24fjgAAEfph427NG1Vnuw26aHze9NDgWZCKA4Av0JheY1emLNRHyzergaXaTyh3z9Jt47khD4AwLNs212p9xblSJLuGp1xXB+mHXabusSEqEtMiM7rlyipcWrU/LIard1Z5g7L1+aWaWdJtbYXN/7MXJt/yO2N7BmnO85OV3p86K+uCQAAeI6Fm3brxveWqbiyTpFBvnrx0gEa3jXa6rIAAGgz6hpcuv+LNZKkCcPS1DMxzOKKAO9BKA4Ax6C8pl6vztusf3+/RdX1TknSGekxmjQ6Qz0S+AMFAOB5nvs6Sw0uo1O7x2hYlw7Nvn2bzaaE8EAlhAdqRM/9o9BLqurcI8n3BeWbiirkMtKJnaM0aXSGBqRENns9AACg9Rlj9Mb8rXp0+no5XUa9EsP0yhUD1TGSL40DAHAsXvthizYXVSo6xF+3juxudTmAVyEUB4CjUNvg1Ds/5ujFbzZqT1W9JKl/coTuHpOhEzs3f8AAAEBzWJtbqs9X5EqSJo1Kb9V9RwT56aSu0TrpgNFhNfVO7amqU3xYANO/AQDgJarrnPrLp6v16d5LqFx4QpIev6iPAnwdFlcGAEDbkltSrRfmbJQk/eWcDIUH+lpcEeBdCMUB4Bc4XUafr9ipZ2dlaWdJtSSpc0ywJo3K0KhecZzQBwB4tKe/ypQkjeuX2OTa4FYJ8HUoITzQ6jIAAEAz2V5cpf97Z6nW5pbJYbfp3nN76A8npfFZGQCAX+GRaetUXe/U4LRIXXhCktXlAF6HUBwADsEYo28zi/TkzA3akF8uSYoL89etI7rr4oEd5eOwW1whAAC/7MfNu/VtZpF87DbdzpRrAACgmf2wcZduen+Z9lTVq0Own168dECLXKoFAID24PuNRZq+Ol8Ou00Pnd+bL5gBLcDyVOell15SWlqaAgICNHToUC1evPgXb19SUqIbb7xRCQkJ8vf3V/fu3TV9+vRWqhZAe7AsZ4/Gv/qjrnxziTbklys0wEd3jc7Qt3ecod8PSSEQBwB4PGOMnpy5QZL0+yHJSosOtrgiAADgLYwx+te8zZrw+iLtqapX347h+vKmkwnEAQD4lWobnJr8+VpJ0sRhaeqREGZxRYB3snSk+IcffqjbbrtN//znPzV06FBNmTJFo0aNUmZmpmJjYw+6fV1dnUaOHKnY2Fh99NFHSkpK0rZt2xQREdH6xQPwOtmFFXr6qw36am2BJMnPx64rT0rT9ad3UUSQn8XVAQBw9L5eV6DlOSUK8LXr5jO7WV0OAADwElV1Dbrr49X6cmWuJOnigR31yAW9uX44AADH4bUftmjzrkrFhPrrzyP5DA+0FEtD8eeee07XXnutrrzySknSP//5T02bNk2vv/667r777oNu//rrr6u4uFgLFiyQr6+vJCktLe0X91FbW6va2lr372VlZc33AAB4hfzSGk2ZnaX//rRdLiPZbdJvBnTUrSO7KzGC654CzYWeDLQOp8u4ryV+1fBOig0LsLgiAJ6Gngzg18jZXaU/vv2TNuSXy8du0+RxPXX5ialM7wr8SvRjAJK0s6Raf5+TLUn6yzkZCgvwtbgiwHtZNgdwXV2dli5dqhEjRuwvxm7XiBEjtHDhwkPe54svvtCwYcN04403Ki4uTr1799Zjjz0mp9N52P08/vjjCg8Pd/8kJyc3+2MB0DaVVtXriRkbdNrTc/XBksZAfGTPOM3886l6+rf9CMSBZkZPBlrHJ8t2aGNhhcIDfXXdaV2sLgeAB6InAzhW32UVadyLP2hDfrmiQ/z03rUn6ophaQTiwHGgHwOQpEemrlN1vVND0qJ0Qf8kq8sBvJrNGGOs2HFubq6SkpK0YMECDRs2zL180qRJ+u6777Ro0aKD7pORkaGtW7fqsssu0w033KDs7GzdcMMNuvnmmzV58uRD7udQ37hLTk5WaWmpwsK4LgPQHtXUO/XWgq16+dtNKq2ulyQNSo3U3WMyNCgtyuLqAO9FTwZaXk29U2c9+512llTrnjEZhOIADomeDOBoGWP0z+826+mvNshlpH7JEfrn5QOUEM6XyIHjRT8GMC+rSBNeXyyH3aZpN5+sjHiOfaAlWTp9+rFyuVyKjY3Vq6++KofDoYEDB2rnzp16+umnDxuK+/v7y9/fv5UrBeCJGpwufbJsp56fnaW80hpJUve4EE0alaGzesTyDXeghdGTgZb37qIc7SypVnxYgCaelGZ1OQA8FD0ZwNGorG3QnR+t1PTV+ZKk3w9O1oPn95K/D9cPB5oD/Rho3+oaXHrgi7WSpInD0gjEgVZgWSgeHR0th8OhgoKCJssLCgoUHx9/yPskJCTI19dXDsf+P7579Oih/Px81dXVyc/Pr0VrBtB2zV5XoCdnbtDGwgpJUmJ4gG4d2V0XDegoh50wHADQ9pXX1OuluY3XIfvziG4K8OWENQAA+HW27qrUH9/+SVkFFfJ12PTgeb116dAUq8sCAMBrvD5/izbvqlR0iL/+PLKb1eUA7YJl1xT38/PTwIEDNWfOHPcyl8ulOXPmNJlO/UDDhw9Xdna2XC6Xe1lWVpYSEhIIxAEcUm2DU3/5dLWu+c9P7uur/vWcHvrmjtP120HJBOIAAK/xr++3qLiyTp1jgnXxwI5WlwMAANqouRsKNe7FH5RVUKGYUH998McTCcQBAGhG+aU1emHORknSPWMyFBbga3FFQPtg6fTpt912myZOnKhBgwZpyJAhmjJliiorK3XllVdKkiZMmKCkpCQ9/vjjkqTrr79eL774om655RbddNNN2rhxox577DHdfPPNVj4MAB4qv7RG17+7VMtzSmSzSdee0lk3ntFV4YH8kQEA8C5F5bX69/ebJUl3np0uH4dl330FAABtlMtl9PK32Xr26ywZIw1IidA/Lh+ouLAAq0sDAMCrPDp9varqnBqUGqmLBiRZXQ7Qblgaio8fP15FRUW6//77lZ+fr/79+2vmzJmKi4uTJOXk5Mhu339CLzk5WV999ZVuvfVW9e3bV0lJSbrlllt01113WfUQAHioxVuKdcO7y7SrolZhAT762+9P0BkZsVaXBQBAi3hpbraq6pzq2zFco3sf+lJEAAAAh1NR26Db/7tCX61tvMzhZUNTNHlcL/n58EU7AACa08JNu/XlylzZbdKD5/eSzcZMpkBrsRljjNVFtKaysjKFh4ertLRUYWFhVpcDoJkZY/Tmgq16dNp6NbiMMuJD9coVA5XaIdjq0gD8DD0ZaB7bi6t05rPfqt5p9O41QzW8a7TVJQFoY+jJQPu2qahC1729VNmFFfJz2PXQ+b30+yFMlw60Nvox4P3qnS6NfeEHZRaU64oTU/XwBb2tLgloVywdKQ4Azam6zqm/frpanyzfKUka1y9RT/6mj4L8eKsDAHiv577OUr3T6JRu0QTiAADgmMxeV6BbP1yh8toGxYcF6B+XD9AJKZFWlwUAgFd6e+E2ZRaUKzLIV7ef3d3qcoB2h6QIgFfYXlyl695eqnV5ZXLYbbpnTIauPrkT088AALza+rwyfbai8ctgk0ZlWFwNAABoK1wuoxe+2agpszdKkganReqlywYoNpTrhwMA0BKKymv1/NdZkqRJozMUEeRncUVA+0MoDqDNm5dVpJs/WK6Sqnp1CPbT3y89QSd1YaQcAMD7Pf1VpoyRzu2boD4dw60uBwAAeLhdFbWatbZAnyzboZ+27ZEkTRyWqr+e25PrhwMA0IKemLFB5bUN6tcxXOMHJVtdDtAuEYoDaLOMMXr52016ZlZjINCvY7j+cflAJUYEWl0aAAAtbvGWYn2zoVAOu023j2TaNQAAcGiF5TX6ak2+pq/O16Itu+Uyjcv9fOx69ILe+i0n5gEAaFFLtxXr42U7JEkPnt9bdjuzmwJWIBQH0CZV1Dbojv+u1My1+ZKk8YOS9eD5vRTg67C4MgAAWp4xRk/N3CBJ+t2gZHWOCbG4IgAA4EnyS2s0c02epq/J15KtxTJm/7o+SeEa0yde4/omKjkqyLoiAQBoB5wuo/s/Xyup8Rx2/+QIawsC2jFCcQBtzqaiCl339lJlF1bI12HTA+f10qVDUrh+OACg3ZizvlA/bdsjfx+7/jyim9XlAAAAD5BbUq0Za/I1fXWelu6dGn2f/skROqdPvMb0TiAIBwCgFb2/OEdrc8sUFuCjSaPTrS4HaNcIxQG0KbPW5uu2/65URW2D4sL89Y/LB2pASqTVZQEA0GqcLqOnv8qUJF05vJPiwgIsrggAAFhle3GVZqzJ0/TV+VqxvaTJuoGpkRrTO15j+iQoicuMAQDQ6vZU1umZWY2f328/O10dQvwtrgho3wjFAbQJTpfRlNlZ+vs32ZKkIWlRevGyExQbShAAAGhfPlu+U5kF5QoL8NH1p3WxuhwAANDKtu6qdI8IX72z1L3cZpMGp0XpnN7xGt07QfHhfF4GAMBKT32VqZKqevVICNNlQ1OsLgdo9wjFAXi80qp63fzBcn2XVSRJ+sNJafrruT3k67BbXBkAAK2rtsGp577OkiRdf3pXhQf5WlwRAABoDZuKKjRjdeOI8HV5Ze7ldps0tFMHndMnXqN6xSuWGWQAAPAIq3aU6IMlOZKkh87vJR/OZQOWIxQH4NHW55XpureXKqe4Sv4+dj3xmz668ISOVpcFAIAl3luUo50l1YoL89cfTkqzuhwAANCCNhaUa/rqxhHhmQXl7uUOu00ndemgMb0TdHavOEUzFSsAAB7F5TK6//O1Mka68IQkDU6LsrokACIUB+DBPl+xU3d9vEo19S51jAzUPy8fqN5J4VaXBQCAJSpqG/Ti3suI3HJWdwX6OSyuCAAANCdjjDILyjV9VZ6mr8lXdmGFe52P3abhXaN1Tp94nd0zXpHBfhZWCgAAfslHy3ZoxfYSBfs5dM+YDKvLAbAXoTgAj1PvdOmJGRv02g9bJEmndIvWC78/gQ/9AIB27d/fb9buyjp1ig7WbwcxawoAAN7AGKO1uWWasSZPM1bna/OuSvc6P4ddp3SL1pg+CRrZI47LpgAA0AaUVtfryRkbJEl/HtGdS5sAHoRQHIBH2VVRqxvfXaZFW4olSdef3kV3nJ0uh91mcWUAAFhnV0Wt/jVvsyTpjrPT5cu1yAAAaNOq65x6aW62vlyVq227q9zL/XzsOq17jM7pE6+zesQpLIAgHACAtuT5r7O0u7JOXWND9IfhaVaXA+AAhOIAPMaK7SW6/p2lyiutUbCfQ8/8tp/G9EmwuiwAACz30txsVdY51ScpXGN6x1tdDgAAOE4PTV2r9xdvlyQF+Np1RnqsxvRJ0JkZsQrx53QdAABt0fq8Mv1n4VZJ0oPn9eIL7YCH4a9sAB7hg8U5uv/ztapzutQ5OlivXDFQ3eJCrS4LAADLbS+u0rs/5kiSJo1Ol53ZUwAAaNNW7SjRB0saA/EnLuqjcf0SFUwQDgBAm2aM0eTP18plpHP7JGh412irSwLwM/zFDcBStQ1OPfDFOr2/uPFk/8iecXr2d/2YIg4AgL2en52lOqdLw7t20CndYqwuBwAAHAeXy+iBL9bKGOmC/on6/ZAUq0sCAADN4IuVuVq8tViBvg795dweVpcD4BAIxQFYJq+0Wte/s0wrtpfIZpNuG9FdN57RlRFwAADslZlfrk+X75QkTRqVYXE1AADgeH26fKeW5ZQoyM+hu8dwwhwAAG9QUdugR6etlyT96cyuSooItLgiAIdCKA7AEos279aN7y3Troo6hQX46G+XnKAz0mOtLgsAAI/y9FcbZIw0pne8+iVHWF0OAAA4DuU19Xp8xgZJ0k1ndlN8eIDFFQEAgObwwpyNKiyvVVqHIF1zSierywFwGITiAFqVMUZvLtiqR6etV4PLKCM+VK9cMVCpHYKtLg0AAI/y09ZizV5fKIfdpjtGpVtdDgAAOE5//yZbuypq1Sk6WFednGZ1OQAAoBlkF5br9R+2SJImn9dL/j4OiysCcDiE4gBaTXWdU/d8skqfrciVJJ3XL1FP/KaPgvx4KwIA4EDGGD05s3Ek2W8HdlSXmBCLKwIAAMcju7DCfcL8/rE9OWEOAIAXMMbogS/WqcFlNKJHHDOhAh6OJApAi6upd2p5TokemrpO6/PK5LDbdM+YDF19cifZbFw/HACAn5ubWaglW/fI38euW0Z0s7ocAABwHIwxevDLtWpwGZ2VEaszMjhhDgCAN5i5Jl8/ZO+Sn49d94/taXU5AI6AUBxAsyuurNPSbXv009ZiLdlarNU7S1XvNJKkDsF+evHSARrWpYPFVQIA4JlcLqOnZmZKkv5wUpoSwgMtrggAAByPr9cV6PuNu+TnsOs+TpgDAOAVquucenjqOknS/53WRSkdgiyuCMCREIoDOC7GGOUUV2nJ1sYQ/Kdte5RdWHHQ7WJC/XVSlw66a3SGEiM4uQ8AwOF8vnKnNuSXKzTAR9ef3sXqcgAAwHGoqXfq4WmNJ8yvOaWT0qKDLa4IAAA0h5fmZiu3tEYdIwN1A5/dgTaBUBzAMWlwurQ+r1xLthbrp23FWrJ1j4rKaw+6XdfYEA1Oi9Sg1CgNTotSclQgU6UDAHAEdQ0uPTsrS1LjN80jgvwsrggAAByPV+dt1vbiasWHBejGM7paXQ4AAGgGW3dV6tV5myVJ943tqQBfh8UVATgahOIAflFlbYOW55S4Q/DlOSWqqnM2uY2vw6Y+SeEanBalQWlRGpgaqahgTuIDAHCs3l+cox17qhUT6q8rh6dZXQ4AADgOO0uq9fK32ZKkv5zbQ8H+nIYDAMAbPDR1neqcLp3aPUZn94yzuhwAR4m/xgE0UVhWo5+27WkMwbfu0bq8MjldpsltQgN8NCg1UoPSGkeB9+0YzrfhAAA4TpW1Dfr7NxslSbec1U1BfvypDgBAW/bYtPWqqXdpSKcojeubYHU5AACgGcxZX6BvNhTK12HT5HE9mR0VaEM40wa0Y8YYbSqq0JKt+0PwnOKqg26XFBGoQWn7QvBIdY8Nld1OswcAoDm99sMW7aqoU2qHII0fnGx1OQAA4DgsyN6laavzZLdJD4zrxQlzAAC8QE29Uw9+uU6SdPXJndUlJsTiigAcC0JxoJ0pq6nXvKwizV5XoO+yirSnqr7JeptNyogPa7weeFqUBqVGKjEi0KJqAQBoH4or69zXI7v97HT5OuwWVwQAAH6tBqdLD3y5VpJ0+Ymp6pkYZnFFAACgObw6b7NyiqsUHxagm87sanU5AI4RoTjQDuzYU6U56ws1e32Bfty8W/XO/dOh+/vY1T85Yu/1wCM1IDVSYQG+FlYLAED789LcbFXUNqhXYpjG9mF6VQAA2rK3f9ymrIIKRQb56raR3a0uBwAANIPtxVV6aW62JOmv5/ZQsD/xGtDWcNQCXsjlMlqTW6rZ6wr09fpCrc8ra7K+c0ywRvaI01k94tQ/OUJ+PoxGAwDAKjtLqvX2wm2SpEmjM7hECQAAbdiuilo993WWJOmOUemKCPKzuCIAANAcHp22XrUNLp3YOUpj+/JldqAtIhQHvERNvVMLNu3S7PWFmrO+QAVlte51dps0KDVKI3rG6qwecVzrBAAAD/L811mqc7o0rHMHndot2upyAADAcXjmq0yV1zTO/vL7wSlWlwMAAJrBvKwizVybL4fdpgfP6y2bjS+zA20RoTjQhu2uqNWcDYWava5A32/cpep6p3tdsJ9Dp3aP0YgecTojI1ZRwXw7HQAAT/PT1mJ9tHSHJGnS6HQ+WAMA0Iat2lGiD3/aLkl68LxecjD7CwAAbV5dg0sPfLlWkvSHk9KUHh9qcUUAfi1CcaANMcZoU1GFvl7XeH3wZTl7ZPZfHlwJ4QEa0SNOI3rG6cTOUfL3cVhXLAAA+EV1DS7d88lqSdJvB3bUCSmRFlcEAAB+LZfL6P7P18oY6cITkjQoLcrqkgAAQDN4ff4WbS6qVHSIv24Z0c3qcgAcB0JxwMM1OF36adsezV5XoNnrC7R1d1WT9b2TwhqD8B5x6pUYxggzAADaiFfnbdLGwgp1CPbTX87pYXU5AADgOHyyfKdWbC9RsJ9Dd4/JsLocAADQDPJLa/TCnI2SpHvGZCgswNfiigAcD0JxwAOV19RrXtYuzV5foG82FKq0ut69zs9h17AuHTSiZ5zOyohVYkSghZUCAIBfY8uuSr3wTbYk6b6xPRXJZU4AAGizymrq9cSMDZKkm87qpriwAIsrAgAAzeGx6etVVefUwNRIXXhCktXlADhOhOKAh7nvszX6YEmO6p3750WPCPLVmRmxGtkjTqd0j1GIP4cuAABtlTFGf/10teoaXDqlW7TO759odUkAAOA4vDB7o3ZV1KpzdLCuGt7J6nIAAEAz+HHzbn2xMld2m/Tgeb1ktzNDK9DWkawBHmTrrkq9/eM2SVKn6GCN7Nk4LfqAlAj5OOwWVwcAAJrDx8t2asGm3fL3seuRC3pz6RMAANqw7MJyvblgqyTp/nE95efDZ3cAANq6BqdLkz9fK0m6bGiqeieFW1wRgOZwTKF4WVmZFi1apLq6Og0ZMkQxMTEtVRfQLs1Yky9JOrlrtN65ZqjF1QAAgOZWXFmnR6etkyTdMqKbUjsEW1wRAAD4tYwxevDLdWpwGY3oEavT02OtLgkAADSD/yzcpsyCckUG+er2s7tbXQ6AZnLUofiKFSt0zjnnqKCgQMYYhYaG6r///a9GjRrVkvUB7cqMNXmSpDF94i2uBAAAtIRHpq3Tnqp6ZcSH6tpTOltdDgAAOA5frS3Q9xt3yc/HrvvG9rS6HAAA0AyKymv1/NdZkqRJozMUEeRncUUAmstRz+l01113qVOnTvrhhx+0dOlSnXXWWfrTn/7UkrUB7cqOPVVataNUdpt0dk9CcQAAvM387F36ZNlO2WzS4xf1kS+XRgEAoM2qqXfqkb2zv/zxlM7M/gIAgJd4cuYGldc2qG/HcP1uULLV5QBoRkc9Unzp0qWaNWuWBgwYIEl6/fXXFRUVpbKyMoWFhbVYgUB7MXPv1OmD06IUE+pvcTUAAKA51dQ79ZdPV0uSrjgxVSekRFpcEQAAOB6vfLdZO/ZUKyE8QDec0cXqcgAAQDNYum2PPlq6Q5L04Hm95LDbLK4IQHM66uEpxcXF6tixo/v3iIgIBQcHa/fu3S1SGNDeTF/dOHX6OX0SLK4EAAA0t79/s1HbdlcpLsxfd45Kt7ocAABwHHbsqdLL32ZLkv5yTg8F+R31mBMAAOChnC6jyV+skSSNH5TMl9kBL3RMf7WvW7dO+fn57t+NMVq/fr3Ky8vdy/r27dt81QHtRH5pjZbllEiSRvVi6nQAALxJZn65XvlusyTpwfN6KzTA1+KKAADA8Xhs+nrVNrg0tFOUxvbli+0AAHiD9xfnaM3OMoUF+GjSaL7MDnijYwrFzzrrLBljmiwbO3as+982m01Op7N5KgPakZlrGkeJD0yNVHx4gMXVAACA5uJyGf3l09VqcBmN7Bmn0b358hsAAG3Z/Oxdmr46X3ab9MB5vWSzMa0qAABt3Z7KOj0zK1OSdPvZ6eoQwuVNAW901KH4li1bjnibA0eMAzh6M/ZeT3wMJ8oBAPAq7y3O0dJtexTs59CD5/WyuhwAAHAc6p0uPfDFWknSFSemqkdCmMUVAQCA5vD0rEyVVNUrIz5Ulw1NsbocAC3kqEPx1NTUQy4vLy/X+++/r9dee00//fQTI8WBY1RUXqvFW4slidFjAAB4kYKyGj05Y4Mk6Y5R6UqMCLS4IgAAcDzeXrhNGwsrFBXsp9tGMq0qAADeYPWOUr2/OEeS9ND5veXjsFtcEYCW8quP7nnz5mnixIlKSEjQM888ozPOOEM//vhjc9YGtAuz1uXLGKlvx3B1jAyyuhwAANBMHvxyrcprG9SvY7gmDEuzuhwAAHAcdlXU6vnZWZKkO0elKzzI1+KKAADA8Sqtqtcd/1spY6QLT0jSkE5RVpcEoAUd0zXF8/Pz9eabb+q1115TWVmZfve736m2tlafffaZevbs2VI1Al5txup9U6cnWFwJAABoLnPWF2j66nw57DY9dlEfOexcbxQAgLbsqZkbVF7ToN5JYfrdoGSrywEAAMepqq5BV765WJkF5YoN9dc9YzKsLglACzvqkeLjxo1Tenq6Vq1apSlTpig3N1d///vfW7I2wOvtqazTws27JXE9cQAAvEVlbYPu+2yNJOmakzupV2K4xRUBAIDjsWJ7if770w5J0oPn9ebLbgAAtHG1DU5d9/ZSLcspUXigr96+eqhiwwKsLgtACzvqkeIzZszQzTffrOuvv17dunVryZqAduPrdQVyuox6JIQpLTrY6nIAAEAzeHZWlnJLa9QxMlC3jODvZgAA2jKXy2jyF2slSRcNSNLA1EiLKwIAAMfD6TK69cMV+n7jLgX5OfTmlYOVHh9qdVkAWsFRjxT/4YcfVF5eroEDB2ro0KF68cUXtWvXrpasDfB6M9bkSZLOYZQ4AABeYfWOUr25YIsk6ZELeivI75iuVgQAADzMR8t2aOX2EoX4++ju0UyrCgBAW2aM0V8/Xa3pq/Pl57Dr1SsG6YQUvvAGtBdHHYqfeOKJ+te//qW8vDxdd911+uCDD5SYmCiXy6Wvv/5a5eXlLVkn4HVKq+v1Q3bjF0vG9CEUBwCgrWtwunT3J6vkMtJ5/RJ1enqs1SUBAIDjUFZTr6dmbpAk3XxWV6ZVBQCgjXti5gZ9sGS77DbphUv66+Ru0VaXBKAVHXUovk9wcLCuuuoq/fDDD1q9erVuv/12PfHEE4qNjdV5553XEjUCXumbDQWqdxp1iw1R11imZwEAoK17c8FWrc0tU1iAj+4b29PqcgAAwHH62+yN2lVRp84xwfrDSZ2sLgcAAByHf3y7Sa98t1mS9MRFfTW6d4LFFQFobcccih8oPT1dTz31lHbs2KH333+/uWoC2oXpq/MlSWOYOh0AgDZve3GVnp2VJUn6yzk9FBPqb3FFAADgeGwsKNdbC7ZKkiaP6yU/n+M6hQYAACz07qJtenLv7C/3nttDvxucbHFFAKzQLH/ROxwOXXDBBfriiy+aY3OA16uobdB3WUWSpDF9+EYaAABtmTFG93++RtX1Tg1Ji9LvBvHhGgCAtswYowe+XKsGl9HInnE6rXuM1SUBAIBf6cuVubr3szWSpD+d0VXXnNLZ4ooAWIWvuQIWmLuhUHUNLqV1CFJGPFOnAwDQlk1bnae5mUXyc9j12EW9ZbfbrC4JAAAch6/W5mt+9m75+dh137lcEgUAgLbq28xC3frhChkjXX5iim4/u7vVJQGwEKE4YIGZa/ZOnd4nQTYbJ84BAGirSqvr9eCX6yRJ15/eRV1j+bIbAABtWXWdUw9PXS9Juu7UzkrpEGRxRQAA4Nf4aWux/u+dpWpwGZ3XL1EPndebc/FAO0coDrSy6jqnvtlQKInriQMA0NY9OXODispr1TkmWDec0cXqcgAAwHF6Zd4m7SypVmJ4gG44vavV5QAAgF9hXW6ZrnxziWrqXTozI1bP/q4fs7oBIBQHWtt3WUWqrncqKeL/27vv6KjK/I/jn5n0HkggtEBogYQWQhMUC6IIqFhQsFHWtiqKoisWrLsIVnAVG7vYCzZsFBUERIrUQCAkoYeShIRAepuZ+/sDYfW3ulKSPJOZ9+ucnEMmM/d+Es6935n7vc/zBKlL8wjTcQAAwClas7tAH/ycJUl66vIuCvD1MZwIAACcjr0FZXp1yQ5J0sNDExXkT20HAKC+2ZVfqlGzflZxhUO94xpqxrXJ8vOhFQaApjhQ5+ZvzpZ0dJQ407UAAFA/VTlceujzVEnS1T1b6Iw2UYYTAQCA0zV57lZVOlzq2yZKQ7owsxsAAPVNdmG5rv/Xz8ovqVJi03D9a0xPbnIDcBxNcaAOVTqcWrT1l6nTuzQ1nAYAAJyq15fu0LaDJYoK8ddDQxJMxwEAAKdpxfZ8LdiSIx+7TY9f2omb2AEAqGcKSqt0w79Xa/+RcrWJDtE7N/ZWeKCf6VgA3AhNcaAO/bQtXyWVDsWEB6h7bKTpOAAA4BTszCvRS4u3S5IevSRRkcH+hhMBAIDT4XRZevKbNEnS9X1aqkOTMMOJAADAySipdGjMm6u1/WCJmkYE6p0beys6NMB0LABuhqY4UIfmb86RJA3u3FR2O3edAwBQ31iWpYfnbFaVw6X+7aN1abdmpiMBAIDTNHvNXqXnFCsiyE93D4w3HQcAAJyEimqnbn57rTbtK1TDEH+9e2MftWgQbDoWADdEUxyoI9VOl75Py5UkXdSZtckAAKiPPl23Tyt3HlKgn12TL+vC1KoAANRzRRXVev67DEnS3QPbq0EIM8AAAFBfOJwu3fnhBq3ceUihAb56e2xvtWscajoWADdFUxyoIyt3HFJhebWiQ/3VK66h6TgAAOAkHSqp1OR5WyVJdw+MV8so7jwHAKC+m/HDdh0qrVKbRiG6/oxWpuMAAIAT5HJZuv+zTfo+LVf+vnb9a3RPdWkRYToWADdGUxyoI/M3Z0uSLuzURD5MnQ4AQL0zee5WHSmrVscmYbrxrNam4wAAgNO0O79Us5bvkiQ9MjRRfj5cJgMAoD6wLEtPfpOmz9fvl4/dpleuTdYZbaJMxwLg5ni3D9QBh9Ol77YcnTp9SOemhtMAAICT9dO2fH2+Yb9sNmnqlV25aA4AgAd4at5WVTstnR3fSOd2aGQ6DgAAOEH/XLRdb63YLUl67qquGpgYYzYQgHqBq3lAHVi9u0CHSqsUGeynPm2YOh0AgPqkotqph79IlSSNOqOVkmIjzQYCAACnbcX2fH2Xlisfu02PDE2QzcaMbgAA1AdvLd+laQszJUmPX5Koy7u3MJwIQH1BUxyoAws250iSLkyMYWQZAAD1zD8XbdOeQ2VqEh6o+wZ1MB0HAACcJqfr6JSrknR9n5ZqHxNmOBEAADgRczbs0+NfH63h9wyM15gzWdoMwImjOwfUMpfLOt4UH8zU6QAA1CvpOUV648edkqQnhnVSWKCf4UQAAOB0fbx2r9JzihUe6Ku7B8abjgMAAE7A92m5uu+TTZKksWfG6a7z2xlOBKC+oSkO1LL1WYd1sLhSYYG+6tcuynQcAABwglwuSw99niqHy9KFiTEa1KmJ6UgAAOA0FVVU67lvMyRJdw+MV4MQf8OJAADAn1m545Du+GC9nC5LVya30CNDE1n6BMBJoykO1LJ5qUdHiQ9MiFGAr4/hNAAA4ES9vzpL67OOKDTAV08M62Q6DgAAqAEzFm/XodIqtWkUohv6tjIdBwAA/IlN+47o5nfWqsrh0gWJMXr6yi6y22mIAzh5NMWBWmRZlhZszpYkDe7M6DIAAOqLLQcK9cz8dEnSfRfGq2lEkOFEAADgdO05VKo3f9otSZo0NEF+PlwWAwDAnW0/WKzRs1arpNKhvm2i9NI13eVL/QZwinxNBwA82cZ9hTpQWKFgfx+dHd/IdBwAAPAnHE6XXv9xp6YvzFS101JSbKRu6BtnOhYAAKgBU+alq8rpUv/20TqvQ2PTcQAAwP+w73CZbvj3ah0uq1a3FhGaObqnAv2YiRXAqaMpDtSi+alHR4kP6NiYgg0AgJvbnV+qCR+naH3WEUnSoE4xmnJFV/kwLRsAAPXeyh2HtGBLjuw26ZGLWYcUAAB3lldcqRv+vVrZhRVq1zhUb47trdAA2lkATg9nEaCWWJal+ZuPric+pEtTw2kAAMAfsSxL7/+cpclzt6q82qmwAF89fmknXZHcnAvmAAB4AKfL0t+/SZMkXdenleJjwgwnAgAAf6SwvFqjZ63WrvxSNY8M0rs39lbDEH/TsQB4AJriQC3ZcqBIWQVlCvSz69wOTJ0OAIA7yi2q0P2fbtLSzDxJUt82UXr2qq5q0SDYcDIAAFBTPl23V2nZRQoL9NU9F8SbjgMAAP6Ay2Xpzg83KC27SNGhAXrvpj5qGhFkOhYAD0FTHKglC34ZJX5ufGMF+3OoAQDgbr7eeECTvtiswvJqBfjaNfGijhrTL052pksHAMBjFFdU69lvMyVJ489vz0gzAADc2MuLt+vHzDwF+tn11theah0dYjoSAA9Cpw6oBZZlad7mo+uJD+7SxHAaAADwa0fKqvTol1v01cYDkqQuzSM0bUQ3tWvMVKoAAHiaGYt3KL+kUq2jQzSqb5zpOAAA4A8s356vaQuP3sj292Gd1bl5hOFEADyN3XQASZoxY4bi4uIUGBioPn36aPXq1Sf0uo8++kg2m02XXXZZ7QYETtK2gyXamVcqfx+7BnRsbDoOAAD4xdLMPA2a/qO+2nhAPnabxp/fXp/f3o+GOAAAHijrUJlm/bRLkvTwkAT5+7rFZTAAAPD/5BRWaPxHG2RZ0oiesbqqZ6zpSAA8kPGR4rNnz9aECRP02muvqU+fPpo+fboGDRqkjIwMNW78x83E3bt367777lP//v3rMC1wYualHh0l3r99tMIC/QynAQAAZVUOPTVvq95blSVJahMdohdGJCkpNtJsMAAAUGumzN+qKqdLZ7WL1vkJ3LAOAIA7qna6dOeH65VfUqWEpuF6Ylgn05EAeCjjt8i+8MILuvnmmzV27FglJibqtddeU3BwsGbNmvWHr3E6nbruuuv0xBNPqE2bNnWYFjgxx9YTH9ylqeEkAABg3Z7DGvLisuMN8TH94jT3rv40xAEA8GCrdh7S/M05stukRy5OlM1mMx0JAAD8jue+zdCa3YcVFuCrV65LVqCfj+lIADyU0ZHiVVVVWrdunR588MHjj9ntdg0cOFArV678w9c9+eSTaty4sW688UYtW7bsf+6jsrJSlZWVx78vKio6/eDA/7Azr0TpOcXytdt0QUKM6TgA4DaoyahrVQ6XXlyUqVeX7JDLkppGBOrZ4d10Vvto09EAwChqMjyd02Xp79+kSZKu7dNSHZqwTAoA90M9BqTvtuTo9R93SpKevaqrWkeHGE4EwJMZHSmen58vp9OpmJjfNg5jYmKUk5Pzu6/56aef9O9//1szZ848oX1MmTJFERERx79iY1mLArVr/i+jxPu1i1ZEMFOnA8Ax1GTUpYycYl02Y7lmLD7aEL+8e3MtuPtsGuIAIGoyPN9n6/Zpy4EihQX66p6B8abjAMDvoh7D22UdKtO9n2yUJN14Vmtd1JlZVwHULuPTp5+M4uJi3XDDDZo5c6aio0/sguaDDz6owsLC41979+6t5ZTwdvM3H11PfHDnJoaTAIB7oSajLjhdlmb+uFOXvPST0rKL1CDYT69cl6xpI5IUEcTNagAgUZPh2UoqHXrm2wxJ0vjz2ysqNMBwIgD4fdRjeLOKaqdue3+diiscSm4ZqQcGdzQdCYAXMDp9enR0tHx8fJSbm/ubx3Nzc9WkyX83FHfs2KHdu3frkksuOf6Yy+WSJPn6+iojI0Nt27b9zWsCAgIUEMAHINSNvQVl2ry/SHabdGEiU6cDwK9Rk1Hb9hYcvct89a4CSdKAjo019couahwWaDgZALgXajI82SuLtyu/pFJxUcEa1TfOdBwA+EPUY3izJ79J05YDR29kf/naZPn51KvxmwDqKaNNcX9/f/Xo0UOLFi3SZZddJulok3vRokUaN27cfz2/Y8eOSk1N/c1jkyZNUnFxsV588UWmmIFxx0aJ92kdxd3oAADUEcuy9MnafXri6y0qrXIqxN9Hj1ycqBG9YmWz2UzHAwAAdWRvQZn+9dMuSdLDQxPl78sFdgAA3M2cDfv0wc9Zstmk6SO7q1lkkOlIALyE0aa4JE2YMEGjR49Wz5491bt3b02fPl2lpaUaO3asJGnUqFFq3ry5pkyZosDAQHXu3Pk3r4+MjJSk/3ocMOHYeuJDujB1OgAAdSGvuFIPfp6qhVuPzjzUK66Bnr8qSS2jgg0nAwAAdW3q/HRVOVw6s12UBiY0Nh0HAAD8P5m5xXro882SpDsHtNc58Y0MJwLgTYw3xUeMGKG8vDw9+uijysnJUVJSkhYsWKCYmKNTT2dlZclu585euL/swnJtyDoim00a1ImmOAAAtW3B5hw9NCdVBaVV8vex694L43VT/zbysTM6HAAAb7N6V4HmpmbLbpMmDU1kthgAANxMaaVDt723TuXVTp3VLlrjz29vOhIAL2O8KS5J48aN+93p0iVpyZIl//O1b731Vs0HAk7Bgl9Gifds1UCNw1m7FACA2lJUUa0nvkrTZ+v3SZISmoZr2ohu6tgk3HAyAABggstl6clvtkiSRvZuqYSmvCcAAMCdWJalBz9P1Y68UsWEB2j6yCRuaAdQ59yiKQ54gvmpR5viF3VuajgJAACea8X2fN33yUYdKKyQ3Sb99Zy2Gj+wvQJ8fUxHAwAAhny6fp827y9SWICvJlwQbzoOAAD4f977OUtfbTwgH7tNM65NVnRogOlIALwQTXGgBhwsrtCaPQWSpIs6M3U6AAA1raLaqacXpOvN5bslSa2igvX8Vd3UM66h2WAAAMCokkqHnv02Q5J05/ntuMgOAICb2bTviP7+dZok6YGLOvI5HoAxNMWBGvDtllxZltQtNlLNI4NMxwEAwKPsyCvRHe+vV3pOsSTpuj4t9dCQBIUE8FYWAABv9+qS7corrlSrqGCN7hdnOg4AAPiVwrJq3f7+elU5XbowMUY39W9tOhIAL8aVRKAGLNicLUkawihxAABq1Jcp+/XQ56kqrXIqOjRAz17VVed1aGw6FgAAcAN7C8o0c9kuSdJDQxJYTgUAADficlma8HGK9h0uV8uGwXr2qm6y2VhHHIA5NMWB01RQWqVVO49OnT6Y9cQBAKgRFdVO/f2bNL3/c5Yk6Yw2DfXPa7qrcVig4WQAAMBdTF2QriqHS33bROnCxBjTcQAAwK+8/uNOLUo/KH9fu165LlkRQX6mIwHwcjTFgdP0fVqOnC5LnZqFq2VUsOk4AADUe7vzS3XHB+u15UCRbDbpzvPaafzAePnYuaMcAAActWZ3geZuypbdJj16SSIjzwAAcCOrdh7Sc99lSJKeuLSTOjePMJwIAGiKA6dtXmqOJGkwU6cDAHDa5qVm6/5PN6mk0qGGIf6aPiJJZ8c3Mh0LAAC4EZfL0pNfp0mSRvRqqYSm4YYTAQCAYw4WV+jODzfI6bJ0RffmGtkr1nQkAJBEUxw4LYVl1VqxI1+SNLgLU6cDAHCqKh1OPTV3q95euUeS1CuugV66JllNIpguHQAA/NbnG/YrdX+hQgN8de+F8abjAACAXzicLo3/MEV5xZWKjwnVPy7vzGwuANwGTXHgNCzcmqtqp6X4mFC1bRRqOg4AAPXS3oIy3fHBem3aVyhJuu3ctrr3gnj5+tgNJwMAAO6mtNKhZxakS5LuHNBO0aEBhhMBAIBjpi3M1MqdhxTi76NXruuhYH9aUADcB2ck4DTM33xs6nRGiQMAcCq+25Kj+z7ZqKIKhyKD/TTt6iSd17Gx6VgAAMBNvbZ0hw4WV6plw2CNOTPOdBwAAPCLxekHNWPxDknSlCu7ql1jBpEBcC80xYFTVFLp0I/b8iRJQ5g6HQCAk1LtdOnp+en610+7JEnJLSP10rXJah4ZZDgZAABwV/sOl+mNH3dKkh4akqAAXx/DiQAAgHS0Rt/zcYokaVTfVrq0WzOzgQDgd9AUB07RD+kHVeVwqU10iOJjuOsNAIATtf9IucZ9sF4bso5Ikm7u31r3X9RRfkyXDgAA/oenF2So0uHSGW0aalCnGNNxAACApCqHS3d8sEFHyqrVrUWEHh6aYDoSAPwumuLAKZqfmi1JGtyliWw2m+E0AADUDz+k52rCxxt1pKxa4YG+eu6qbrqwUxPTsQAAgJtbu7tAX288IJtNeuTiRD6HAwDgJp6at1Ub9x5RRJCfXr42mZlcALgtmuLAKSircmhJxtGp01lPHACAP1ftdOn57zL12tKj64t1axGhl69NVmzDYMPJAACAu3O5LD35TZokaUTPWHVqFmE4EQAAkKSvNx7QWyt2S5KmjejGZ3wAbo2mOHAKlmbkqbzaqdiGQerULNx0HAAA3FpOYYXu/HC91uw+LEka0y9ODw7pyN3jAADghMzZsF+b9hUqNMBX917YwXQcAAAgaUdeiR74bJMk6fZz22pAR5Y2AeDeaIoDp2De5hxJR0eJM2UbAAB/bGlmnu6ZnaKC0iqFBfjq6eFdNaQLs6wAAIATU1rp0DPfpkuS7jivnRqFBRhOBAAAyqucuv299SqtcqpP64aacEG86UgA8KdoigMnqaLaqR+25kqSBndmDVQAAH6P02Vp+sJMvbx4uyxLSmwarleuS1ZcdIjpaAAAoB55dckO5RZVKrZhkMaeGWc6DgAAXs+yLE36YrMycosVHRqgl67pLl8fu+lYAPCnaIoDJ2nZtnyVVjnVNCJQ3VpEmo4DAIDbOVhUobs+2qBVOwskSdf1aalHLk5UoB/TpQMAgBOXmVus13/cIUl6eEgC7yUAAHADH6/dq8/W75PdJr10TXc1Dg80HQkATghNceAkzd+cLUm6qHMT2e1MnQ4AwK+t2J6vuz5KUX5JpUL8ffTUFV00LKm56VgAAKCecbosTfxsk6qdlgYmxGhQJ2ZqAwDAtC0HCvXIl1skSfde2EF920YZTgQAJ46mOHASqhwufZ92bOp01kMFAOAYp8vSyz9s1/RFmbIsqWOTMM24LlltG4WajgYAAOqh91bt0YasIwoN8NXfL+skm42b0gEAMKmoolq3v79eVQ6XBnRsrNvOaWs6EgCcFJriwElYsSNfxRUONQoLUI9WDUzHAQDALeSXVOruj1L00/Z8SdLIXrF6/NJOTHEKAABOyf4j5XpmQbokaeJFHdQ0IshwIgAAvJvTZem+jzdqz6EyNY8M0gtXd2MWVQD1Dk1x4CTMT82RJA3qFCMfij4AAPp55yHd+eEGHSyuVJCfjyZf3llXJLcwHQsAANRTlmVp0pxUlVY51aNVA13Xp5XpSAAAeDWny9K9H6fou7Rc+fnY9Mp1yYoM9jcdCwBOGk1x4AQ5nC59l3a0KT6EqdMBAF7O5bL06tIdev67DLksqX3jUL1yXbLax4SZjgYAAOqxrzdla3FGnvx97Jp6RRdGoQEAYJDD6dK9n2zUlykH5Gu36Z8ju6tbbKTpWABwSmiKAyfo510FOlxWrQbBfurduqHpOAAAGFNQWqV7ZqdoaWaeJOmK5Ob6x2WdFezPW0sAAHDqDpdW6YmvtkiS7jivHTfbAQBgkMPp0j0fb9TXG482xF++trsuYrAYgHqMK5fACZq/OVuSNKhTE/n62A2nAQDAjLW7C3TnhxuUXVihAF+7/j6ss67q2UI2G6O4AADA6fnH3K06VFql+JhQ3XZuW9NxAADwWg6nS+Nnp2jupmz52m2acV2yBnVqYjoWAJwWmuLACXC6LC3YnCtJuqgzxR8A4H0sy9LMZTv19IIMOV2W2kSHaMZ1yUpoGm46GgAA8ADLtuXps/X7ZLNJU67oKn9fbkYHAMCEaqdLd3+Uormp2fLzsWnGtcm6kIY4AA9AUxw4Aev2HFZ+SaXCA33Vr2206TgAANSpI2VVuu+TjVq49aAk6dJuzfTUFV0UGsBbSQAAcPrKq5x6aE6qJGl03zj1aNXAcCIAALxTtdOluz7coPmbc+TnY9Or1/XQwMQY07EAoEZwJRM4AfNSj06dPjAxhrvVAQBeZUPWYY37YIP2HymXv69dj12SqGt7t2S6dAAAUGOmLczU3oJyNYsI1H2DOpiOAwCAV6pyuHTnh+v17ZZc+fvY9er1yTo/gYY4AM9BUxz4Ey6XpW+35EiShnRuajgNAAB1571Ve/TE11tU7bTUKipYM65NVufmEaZjAQAAD5K6r1D/WrZTkvSPyzszEw0AAAZUOVwa98F6fZd2tCH++g09dF7HxqZjAUCN4pMG8CdS9h1RdmGFQvx9dFZ7pk4HAHiH+anZmvTFZknSkC5NNPXKrgoP9DOcCgAAeJJqp0sTP9sklyVd0q2ZBnRkNBoAAHWtyuHS7e+v18KtufL3teuNG3ro3A40xAF4HpriwJ9YsPnoKPHzE2IU6OdjOA0AALUv7UCRJny8UZI0pl+cHrskkenSAQBAjfvXsl1Kyy5SZLCfHrsk0XQcAAC8TqXDqTveX6+FWw/K39eumaN66pz4RqZjAUCtoCkO/A+WZR1fT3xw5yaG0wAAUPsKSqt08ztrVV7tVP/20Zo0NIGGOAAAqHG78ks1fWGmJGnS0ERFhwYYTgQAgHepdDh123vr9UP6QQX80hA/m4Y4AA9GUxz4A5Zlafaavdp3uFxBfj5MGQMA8HjVTpduf3+d9h8pV6uoYL10TXf5+thNxwIAAB7Gsiw9+PkmVTpcOqtdtK5Mbm46EgAAXqWi2qnb3lunxRl5CvC169+je7F0KACPR1Mc+B3ZheV6eM5m/ZB+UJJ0WfdmCvJn6nQAgGd78us0rdpZoNAAX/1rVE9FBvubjgQAADzQx2v3atXOAgX62fXU5V2YlQYAgDpUUe3Ure+u09LMPAX6HW2In9mOhjgAz0dTHPgVy7L00Zq9emruVhVXOuTvY9dd57fTree0NR0NAIBa9cHPWXp31R7ZbNL0EUlqHxNmOhIAAPBAB4srNHnuVknSvRd0UMuoYMOJAADwHhXVTt38zlot25avQD+7Zo3ppX5taYgD8A40xYFfZB0q0wOfb9KKHYckSUmxkXp2eFeaAgAAj7d6V4Ee/XKzJOneC+I1MDHGcCIAAOCpnvgqTUUVDnVpHqGxZ8aZjgMAgNf4dUM8yM9Hs8b0Ut+2UaZjAUCdoSkOr+d0WXprxW49922GyqudCvSz674LO2jsma3lY2cKNwCAZ9t/pFy3vbdODpeloV2b6o7z2pmOBAAAPNR3W3I0NzVbPnabpl7ZRb4+dtORAADwCuVVRxviP23PV7C/j94c00t92tAQB+BdaIrDq20/WKz7P92k9VlHJEl920Rp6pVd1CoqxGwwAADqQHmVU7e8s1aHSquU2DRczw7vypqeAACgVhRVVOuRX2amueXsNurULMJwIgAAvEN5lVM3vr1GK3YcUrC/j94a21u9Wzc0HQsA6hxNcXilaqdLb/y4Uy8u3KYqp0uhAb56aEiCRvaKlZ3R4QAAL2BZlv726UZtOVCkqBB/zRzdU8H+vDUEAAC145kF6cotqlRcVLDGn9/edBwAALxCWZVDN761Vit3HlKIv4/e+ktv9YqjIQ7AO3HlE15ny4FC3f/pJm05UCRJOq9DI02+vIuaRQYZTgYAQN15ZckOfbMpW752m169voeaUwcBAEAtWbO7QO+typIkPXVFFwX6+RhOBACA5yurcmjsm2v0864ChQb46u2/9FKPVjTEAXgvmuLwGpUOp15atF2vLd0hh8tSZLCfHr04UZd3b85UsQAAr7IwLVfPfZchSXpiWCemTQMAALWm0uHUA59tkiSN6Bmrfm2jDScCAMDzlVY6NPatNVp9vCHeWz1aNTAdCwCMoikOr7A+67Du/3STth8skSQN6dJET1zaWY3CAgwnAwCgbm3LLdbds1NkWdL1Z7TUdX1amY4EAAA82IzFO7Qjr1TRoQF6aEiC6TgAAHi80sqjI8RX7y5QWICv3r6xt5Jb0hAHAJri8GhlVQ49922m3lyxS5YlRYcG6O/DOmlwl6amowEAUOcKy6p18ztrVVLpUJ/WDfXYJZ1MRwIAAB4sI6dYry7ZLkl6clgnRQT7GU4EAIBnK6l0aOybq7Vm92GFBfrq3Rv7KCk20nQsAHALNMXhsVbsyNcDn6Uqq6BMknRFcnM9enGiIoP9DScDAKDuOZwujftwvXYfKlPzyCC9cl2y/HzspmMBAAAP5XRZmvjZJlU7LV2QGKPBnZuYjgQAgEcrrqjWmDfXaN2eow3x927so240xAHgOJri8DjFFdWaMj9dH/ycJUlqGhGop67oovM6NDacDAAAc6bOT9eybfkK8vPRzFE9FRXKEiIAAKD2vLtyt1L2HlFYgK/+PqyzbDab6UgAAHis4opqjZ61Wuuzjig80Ffv3dRHXVtEmo4FAG6Fpjg8yuL0g3poTqqyCyskSdf1aakHBndUWCBTtAEAvNdn6/bpXz/tkiQ9f3U3JTYLN5wIAAB4sv1HyvXMtxmSpImDO6pJRKDhRAAAeK6iXxriG7KOKCLIT+/f1Eedm0eYjgUAboemODzC4dIqPflNmuZs2C9JahUVrKlXdFXftlGGkwEAYNaGrMN6cE6qJOmuAe00pEtTw4kAAIAnsyxLk+akqqzKqV5xDXRt75amIwEA4LEKy6s1atZqbdx7RJHBfnrvRhriAPBHaIqj3puXmq1Hv9ys/JIq2W3SX85srXsv7KAgfx/T0QAAMCq3qEK3vrtOVQ6XLkiM0d0D401HAgAAHu6rjQe0OCNP/j52Tbmiq+x2pk0HAKA2FJZXa9S/f9bGfYWKDD46QrxTMxriAPBHaIqj3jpYXKFHv9iiBVtyJEntG4fqmeFd1b1lA8PJAAAwr6LaqVveXaeDxZWKjwnVtBFJXJQGAAC16nBplZ78Ok2SNG5AO7VrHGo4EQAAnim7sFy3vrtOm/YVqkGwn96/6QyWSgOAP0FTHPWOZVn6fP1+PflNmgrLq+Vrt+m2c9tq3IB2CvBldDgAAJZl6aE5qcenT5s5qqdCA3jbBwAAatc/5m7VodIqxceE6q/ntDUdBwAAj1NR7dS/lu3UjMU7VF7tVMMQf71/Ux8lNKUhDgB/hqujqFf2HynXQ5+namlmniSpU7NwPTu8G3fBAQDwK//+aZc+X79fPnabZlybrFZRIaYjAQAAD7dsW54+W79PNps09cqu8ve1m44EAIDHsCxLC7ce1N+/SVNWQZkkqWerBpp6ZVdmZgGAE0RTHPWCy2Xp/dVZmjpvq0qrnPL3tWv8+e11y9lt5OfDB20AAI5Zmpmnp+ZtlSRNGpqgM9tFG04EAAA8XVmVQw/NSZUkje4bp2SWNQMAoMZsP1iiJ79J04+/DBSLCQ/QQ0MSdGm3ZrLZWCYNAE4UTXG4vd35pZr42Sb9vKtAktSjVQM9zR1wAAD8l135pbrzg/VyWdLVPVtoTL8405EAAIAXmPZ9pvYWlKt5ZJDuG9TBdBwAADxCcUW1/rlom95cvlsOlyV/H7tu6t9ad5zXTiEskQYAJ40zJ9yW02Vp1k+79Pz3GaqodinIz0f3X9RBo/rGycfOHXAAAPxacUW1bn5nrYoqHEpuGam/X9aZO8YBAECt27TviP790y5J0j8u76xQLtIDAHBaXC5Ln2/Yr6nz05VfUilJGpjQWJOGJioumuXRAOBU8UkFbikzt1j3f7pJKXuPSJL6tY3S1Cu6qmVUsNlgAAC4IafL0t0fpWj7wRI1CQ/Uazf0UICvj+lYAADAw1U7XZr4WapcljQsqZnO69DYdCQAAOq1jXuP6LGvthy/Lt4mOkSPXJJIjQWAGkBTHG7F6bL0xo879cL3Gap2WgoL8NXDQxM0olcso90AAPgDz3+XoUXpBxXga9cbo3qocVig6UgAAMALzFy2U1uzi9Qg2E+PXpxoOg4AAPVWXnGlnv02XR+v3SdJCvH30V3nt9fYM1vL39duOB0AeAaa4nAb2YXlmjB7o1buPCRJOr9jY/3j8s5qGhFkOBkAAO7rq40H9MqSHZKkp6/sqq4tIs0GAgAAXmFXfqmmL9wmSZo0NFFRoQGGEwEAUP9UO116Z+UeTf8+U8WVDknSFcnN9cBFHdU4nBveAaAm0RSHW1iwOVsTP0tVYXm1gvx89Pilibq6J6PDAQD4XzbvL9T9n26UJN16dhtd1r254UQAAMAbWJalBz/fpCqHS/3bR+uKZN6DAABwsn7alq/Hv96i7QdLJEldmkfo8Us7qUerBoaTAYBnoikOo8qqHHry6zR9tGavpKOF/8WRSWrTKNRwMgAA3FtecaVueWetKqpdOrdDI91/UUfTkQAAgJf4eO1erdpZoCA/Hz11eRduaAcA4CTsLSjTP+am6dstuZKkhiH+un9QB13VM1Y+dmoqANQWmuIwZvP+Qt314QbtzC+VzSbdenZbTbggnjVSAAD4E1UOl257b50OFFaoTaMQvTiyOx+cAQBAnThYVKHJc7dKku69MF6xDYMNJwIAoH4or3Lq1aU79PrSHap0uORjt2lU31a6e2C8IoL8TMcDAI9HUxx1zuWyNHPZTj33XYaqnZZiwgM07eok9WsXbToaAABuz7IsPfbVZq3dc1hhAb6aOaonH54BAECdsCxLj365RUUVDnVtEaEx/eJMRwIAwO1ZlqV5qTmaPDdNBworJEn92kbp8Us7KT4mzHA6APAeNMVRp3IKK3TvJylavv2QJGlQpxhNvaKrGoT4G04GAED98N6qPfpw9V7ZbNI/r+mutiw5AgAA6siLi7ZpwZYc+dhtmnpFV/n6MNMbAAD/S3pOkR7/aotW7SyQJDWPDNIjFydoUKcmLD8CAHWMpjjqzHdbcjTxs006XFatQD+7Hr24k67pHUvxBwDgBK3ccUhPfJ0mSZp4UUed17Gx4UQAAMBbfPBzlqYv3CZJeuLSTkpsFm44EQAA7utIWZWmfZ+pd1ftkcuSAnztuu3ctrr17LYK8vcxHQ8AvBJNcdS68iqn/j43TR/8nCVJ6tQsXC+O7K52jRnZBgDAidpbUKbb318nh8vSZUnNdOvZbUxHAgAAXuL7tFxN+iJVknTXgHa6/oxWhhMBAOCenC5Ls9fs1bPfputwWbUkaUiXJnpoSIJaNAg2nA4AvBtNcdSqzfsLNf6jDdqRVypJuuXsNrr3wngF+HI3HAAAJ6q00qGb31mrw2XV6toiQlOv7MpMKwAAoE6s21OgcR+sl8uSRvSM1T0XxJuOBACAW1q7u0CPfbVFWw4USZLiY0L1+CWd1K9dtOFkAACJpjhqictladbyXXp6QbqqnZYahwXo+au7qX/7RqajAQBQr7hclu77ZKPSc4oVHRqg12/ooUA/bi4DAAC1b/vBYt349lpVOlw6v2NjTb68MzfmAQDw/+QUVmjq/K36IuWAJCks0FcTLojX9We0kp+P3XA6AMAxNMVR4w4WVejeTzZq2bZ8SdLAhBg9M7yrGob4G04GAED989IP2zV/c478fex6/YZkNY0IMh0JAAB4gdyiCo2etUZHyqqVFBupl67tLl8u7AMAcFylw6lZP+3WSz9sU1mVUzabNLJXrO67sIOiQgNMxwMA/D80xVGjFqbl6v7PNqmgtEqBfnZNGpqo6/q05E5yAABOwYLNOZq2MFOS9I/LOqtHq4aGEwEAAG9QWF6t0bNWa/+RcrWJDtGsMb0U7M8lJAAAjvkhPVdPfp2m3YfKJEnJLSP1xKWd1aVFhOFkAIA/wica1IiKaqcmz92qd1ftkSQlNA3XS9ckqV3jMMPJAACon9JzijTh4xRJ0ph+cbq6V6zZQAAAwCtUOpy69d21Ss8pVqOwAL39l97M/AYAwC925pXo79+kaXFGniSpUViAHhzcUZclNZfdzsAwAHBnNMVx2rZmF+muDzdo28ESSdKNZ7XW/Rd1UIAv650CAHAqCkqrdPM7a1VW5VS/tlGaNDTBdCQAAOAFXC5LE2Zv1KqdBQoN8NVbY3sptmGw6VgAABjncLr08uLtmrF4u6qdlvx8bPrLWa1154D2Cg2gzQIA9QFna5wyy7L05vLdmjo/XVVOl6JDA/TC1fDkNcIAADGxSURBVN10dnwj09EAAKi3qp0u3fH+eu0tKFfLhsGacW0y63cCAIBaZ1mWnvwmTXNTs+XnY9MbN/RQp2ZMAQsAwK78Ut0zO0Upe49Iks7t0EiPXpyoNo1CzQYDAJwUmuI4JXnFlbrvk41amnl0mpjzOzbWM8O7Kio0wHAyAADqt8lzt2rlzkMK8ffRzFE91YDpSgEAQB14/cedemvFbknS81cnqV+7aLOBAAAwzLIszV6zV09+k6ayKqfCAn31j8s6a1hSc9PRAACngKY4TtoP6bn62yebdKi0SgG+dj08NEE3nNFKNhtrpgAAcDpmr8k6fjF62ogkdWgSZjYQAADwCp+v36ep89MlSZOGJujSbs0MJwIAwKxDJZWa+FmqFm7NlST1bROl56/upmaRQYaTAQBOFU1xnLCKaqemzk8/frG+Y5Mw/fOa7oqP4YI9AACna+3uAk36YrMkacIF8bqwUxPDiQAAgDdYmpmn+z/dJEm65ew2uql/G8OJAAAwa3H6Qf3t003KL6mUv49dfxvUQTee1Vp2O4PCAKA+oymOE5KRU6y7PtygjNxiSdLYM+M08aKOCvTzMZwMAID678CRcv31vfWqdloa0qWJ7hzQznQkAADgBTbtO6Lb3lsnh8vSZUnN9MBFHU1HAgDAmPIqpybPS9N7q7IkSfExoZo+orsSm4UbTgYAqAk0xfE/WZalt1fs1lPz01XlcCk61F/PXtVN53VobDoaAAAeoaLaqVvfXaf8kkp1bBKmZ4d3Y0kSAABQ63bnl2rsm2tUVuXUWe2i9czwboyAAwB4rU37juju2SnamVcqSbrxrNb626AODAoDAA9CUxx/KL+kUn/7ZKMWZ+RJks7t0EjPDu+mRmEBhpMBAOAZLMvS/Z9uUur+QjUM8dfMUT0VEsDbMwAAULvySyo1+s3VOlRapU7NwvXaDT3k72s3HQsAgDrndFl6dcl2TV+4TQ6XpZjwAD1/VZLOah9tOhoAoIZx1RW/a0nGQd33yS/rpvja9dDgjhrdL46RawAA1KDXlu7UVxsPyNdu0yvXJSu2YbDpSAAAwMOVVjo09s012nOoTLENg/Tm2F4K5aY8AIAX2ltQpntmp2jtnsOSpKFdmmry5Z0VGexvOBkAoDbwqQe/UVHt1DMLMjRr+S5JR9dN+ec13dWxCeumAABQkxanH9Qz36ZLkh67tJPOaBNlOBEAAPB01U6Xbnt//fFZat75Sx81Dgs0HQsAgDplWZY+XbdPj3+1RaVVToUG+OrJYZ10effmDAoDAA/mFnNjzZgxQ3FxcQoMDFSfPn20evXqP3zuzJkz1b9/fzVo0EANGjTQwIED/+fzceK25RbrshnLjzfER/dtpa/GnUVDHACAGrb9YInu+nCDLEu6pndLXd+npelIAADAw1mWpYmfbtKPmXkK8vPRrDG91Do6xHQsAADq1OHSKt3+/nr97dNNKq1yqndcQ80f319XJLegIQ4AHs54U3z27NmaMGGCHnvsMa1fv17dunXToEGDdPDgwd99/pIlS3TNNddo8eLFWrlypWJjY3XhhRdq//79dZzcc1iWpXdX7tbFL/2k9JxiRYX4a9aYnnpiWGcF+vmYjgcAgEcpLK/WLe+sVXGlQ73jGuqJSzvxwRsAANS6pxdk6PMN++Vjt+mV65OVFBtpOhIAAHXqx8w8DZr+o+ZvzpGv3ab7L+qgD285g6XMAMBL2CzLskwG6NOnj3r16qWXX35ZkuRyuRQbG6s777xTDzzwwJ++3ul0qkGDBnr55Zc1atSoP31+UVGRIiIiVFhYqPBwRkAfKqnUxM82aeHWozchnB3fSM9d1ZXp0wAAtc4ba7LTZekvb63R0sw8NY8M0pfjzlR0aIDpWAAAL+eNNdnbvLl8l574Ok2S9OzwrrqqZ6zhRACA/496XHsqqp2aOj9db63YLUlq2yhEL47srs7NI8wGAwDUKaNrildVVWndunV68MEHjz9mt9s1cOBArVy58oS2UVZWpurqajVs2PB3f15ZWanKysrj3xcVFZ1eaA+ybFueJny8UXnFlfL3sWvi4I4a2y9Odjuj1QAANY+aLD29IF1LM/MU6GfXG6N60BAHABhBTfYu32w6oCe/OdoQ/9ugDjTEAcBNUI/rxub9hbpndoq2HSyRdHTJ0AcGJyjInxlSAcDbGJ0+PT8/X06nUzExMb95PCYmRjk5OSe0jYkTJ6pZs2YaOHDg7/58ypQpioiIOP4VG8uHv0qHU//4Jk03/Hu18oor1a5xqL6440zdeFZrGuIAgFrj7TV5zoZ9euPHnZKk567qpk7NuCMdAGCGt9dkb7JyxyFNmL1RliWN6ttKt5/b1nQkAMAvqMe1y+my9NrSHbr8leXadrBEjcIC9ObYXnpiWGca4gDgpYxOn37gwAE1b95cK1asUN++fY8/fv/992vp0qX6+eef/+frp06dqmeeeUZLlixR165df/c5v3fHXWxsrNdOQ7P9YLHu+jBFadlH7zy8/oyWenhIIm8EAAC1zptr8sa9R3TV6ytV5XDpjvPa6m+DOpqOBADwYt5ck73J1uwiXf3aShVXOjS4cxO9fG2yfLgRHgDcBvW49uw7XKZ7P96on3cVSJIuTIzR1Cu7qmGIv+FkAACTjE6fHh0dLR8fH+Xm5v7m8dzcXDVp0uR/vva5557T1KlTtXDhwj9siEtSQECAAgKYmtSyLH2wOkt//yZNFdUuNQj20zPDu+mCxJg/fzEAADXAW2vywaIK3fLuWlU5XBqY0Fj3XtDBdCQAgJfz1prsTfYfKdeYN1eruNKh3q0batqIJBriAOBmqMc1z7IsfZlyQI98sVnFlQ6F+PvosUs66aqeLWSzUQcBwNsZbYr7+/urR48eWrRokS677DJJksvl0qJFizRu3Lg/fN0zzzyjyZMn69tvv1XPnj3rKG39VVBapYmfbdL3aUdvPjirXbSev7qbYsIDDScDAMCzVVQ7det765RbVKn2jUM1bUQSS5UAAIBadbi0SqP+/bNyiyoVHxOqmTf0VKAfs8MBADxbYVm1Hv4iVd9sypYkJbeM1LQRSWoVFWI4GQDAXRhtikvShAkTNHr0aPXs2VO9e/fW9OnTVVpaqrFjx0qSRo0apebNm2vKlCmSpKefflqPPvqoPvjgA8XFxR1fezw0NFShoaHGfg93tXx7vu6ZnaKDxZXy87Hp/kEdWTscAIA6YFmWJn2xWRuyjig80FczR/VUWKCf6VgAAMCDVVQ7ddM7a7Ujr1RNIwL19l96KyKY9x8AAM+2Ynu+7v1ko7ILK+Rjt2n8+e11+7lt5etjNx0NAOBGjDfFR4wYoby8PD366KPKyclRUlKSFixYoJiYo9N6Z2VlyW7/T/F69dVXVVVVpeHDh/9mO4899pgef/zxuozu1qocLj3/XYbeWLZTliW1bRSiF0d2V+fmEaajAQDgFd5cvlufrtsnu016+dpkxUVzdzoAAKg9DqdL4z7YoHV7Dis80Fdv/6W3mkYEmY4FAECtqXQ49dy3GZq5bJckqXV0iKaNSFJSbKTZYAAAt2SzLMsyHaIuFRUVKSIiQoWFhQoPDzcdp1bsyCvR+I82aPP+IknStX1a6pGhiQryZ7o0AID78OSa/NO2fI1+c7WcLkuThibopv5tTEcCAOAPeXJN9haWZemhOZv14eosBfja9d5NfdQrrqHpWACAk0A9PjnpOUW6+6MUpecUSzp6DXzS0AQF+xsfBwgAcFNUCA9iWZZmr9mrJ75OU3m1U5HBfpp6RVdd1LmJ6WgAAHiN3fmluuOD9XK6LF2Z3EI3ntXadCQAAODh/rlouz5cnSW7TXpxZHca4gAAj+VyWZq1fJeeWZChKqdLUSH+evrKrhqYGGM6GgDAzdEU9xBHyqr0wGepWrDl6Brr/dpG6YWrk9QkItBwMgAAvEdJpUM3v7NWheXVSoqN1OTLO8tms5mOBQAAPNiHq7M0bWGmJOnJYZ25MR4A4LGyC8t178cbtWLHIUnS+R0ba+qVXdUoLMBwMgBAfUBT3AOs2JGvCbM3KqeoQr52m/42qINu7t9GdjsX4QEAqCsul6V7Zqdo28ESNQ4L0Os39FCgH0uXAACA2vN9Wq4enpMqSbpzQDtdf0Yrw4kAAKgd32w6oIc+T1VRhUNBfj6adHGCru3dkhvRAQAnjKZ4PVblcGnawky9tnSHLEtqEx2iF0d2V5cWEaajAQDgdaYtzNT3abny97XrjVE9FRPObC0AAKD2rNtzWHd+uF4uS7q6ZwtNuCDedCQAAGpcUUW1Hvtyi+Zs2C9J6tYiQtNGJKlNo1DDyQAA9Q1N8XpqV36pxn+0QZv2FUqSRvaK1aOXJCrYn/9SAADq2txN2Xrph+2SpKlXdFFSbKTZQAAAwKNtP1iiG99eo4pqlwZ0bKynLu/CSDkAgMf5eechTfh4o/YfKZfdJo0b0F53DmgnPx+76WgAgHqIDmo9Y1mWPlm7T49/vUVlVU5FBPlp6hVdNLhLU9PRAADwSlsOFOq+TzZKkm7u31pXJLcwnAgAAHiy3KIKjZ61WkfKqpUUG6mXr+0uX5oDAAAPUuVw6YXvM/X6j0dnSG3ZMFjTRiSpR6sGpqMBAOoxmuL1SGFZtR6ak6q5qdmSpDPaNNQLVyepWWSQ4WQAAHinQyWVuuWddSqvdqp/+2g9MDjBdCQAAODBiiqqNXrWau0/Uq420SGaNaYXM8YBADzKttxi3T07RVsOFEk6ukTIo5d0UmgA9Q4AcHqoJPXEqp2HNGF2ig4UVsjXbtOEC+N169lt5WNnejQAAEyocrh02/vrtf9IuVpHh+jla5KpywAAoNZUOpy65Z21Ss8pVqOwAL39l95qGOJvOhYAADXCsiy9vWK3psxPV6XDpQbBfppyRVdd1LmJ6WgAAA9BU9zNVTtdmr4wU68sOTpVTFxUsF4c2V3dWKsUAACjnvh6i1bvKlBogK9mjuqhiGA/05EAAICHcrksTfh4o1btPPre462xvRTbMNh0LAAAakRuUYX+9ukm/ZiZJ0k6J76Rnh3eVY3DAw0nAwB4EpribmzPoVLd9VGKNu49Ikm6qkcLPX5pJ4UwVQwAAEa9t2qP3v85Szab9M9rktSucZjpSAAAwENZlqW/z03T3E3Z8vOx6fUbeqhTswjTsQAAqBELNmfrwc9TdbisWgG+dj08NEE3nNFKNhszsQEAahbdVTdkWZY+W79fj325WaVVToUF+mrKFV10cddmpqMBAOD1ft55SI9/tUWS9LdBHTSgY4zhRAAAwFNtyDqsyXO3au2ew5Kk569O0pntog2nAgDg9JVUOvTEV1v0ybp9kqROzcL14khuOgcA1B6a4m6msLxaD89J1TebsiVJveMaatrIJDWPDDKcDAAA7DtcptveXy+Hy9Il3ZrptnPamo4EAAA80N6CMj29IP34tYFAP7sevbiTLu3GzfIAgPpv3Z4C3TN7o7IKymSzSbed01Z3D4yXv6/ddDQAgAejKe5GVu8q0D2zU7T/SLl87DbdM7C9bju3nXzsTBUDAIBpZVUO3fzOOhWUVqlz83A9c2VXpnMDAAA1qrC8Wq8s3q43l+9WldMlm00antxC917YQU0iWFcVAFC/VTtd+ueibZqxeLtcltQ8MkjTRiSpd+uGpqMBALwATXE34PjlzcDLv7wZaNkwWC+OTFL3lg1MRwMAADq6tMnfPtmkrdlFig711xs39FSQv4/pWAAAwENUO116f9Uevbhomw6XVUuSzmwXpYeGJLB+OADAI+zIK9E9s1O0aV+hJOmK5OZ6/NJOCg/0M5wMAOAtaIoblnWoTONnb9CGrCOSjr4ZeOLSTgrjzQAAAG5jxuLtmpuaLT8fm167voeasawJAACoAZZl6bu0XE2dn65d+aWSpHaNQ/XwkASd26ERs9IAAOo9y7L0/s9Z+sfcNFVUuxQR5KfJl3fWxV1ZEgQAULdoihs0Z8M+PfLFFpVUOhQW4KvJV3RhfTAAANzM92m5eu67TEnSk8M6q2cc07oBAIDTt2nfEU2eu1U/7yqQJEWF+OueC+I1slesfH1YUxUAUP/lFVdq4meb9EP6QUnSWe2i9dxV3VgSBABgBE1xA4oqqvXIF5v1ZcoBSVLPVg00bUSSYhsGG04GAAB+LTO3WHd/tEGSNKpvK13Tu6XhRAAAoL47cKRcz36boTkb9kuSAnztuql/a/31nLbMGgcA8Bjfp+Xqgc826VBplfx97Zp4UUeN7Rcnu51ZUAAAZtAUr2Pr9hRo/Ecp2ne4XD52m+4a0F53nNeWu8ABAHAzR8qqdPM7a1Va5VTfNlF65OJE05EAAEA9VlxRrVeX7NC/f9qlSodLknR59+a6b1AHNWdpFgCAhyitdOgfc9P04eq9kqSOTcI0fWSSOjYJN5wMAODtaIrXEYfTpZd+2K6XftgmlyW1aBCkF0d2V49WDUxHAwAA/4/D6dK4DzZoz6EytWgQpBnXJcuPG9gAAMApcDhd+mjNXk1fmKn8kipJUu/WDTVpaIK6tog0Gw4AgBq0Ieuw7pmdot2HymSzSTf3b6N7L4xXgK+P6WgAANAUrwt7C8p09+wUrdtzWJJ0WVIzPXlZZ4UzLRoAAG7pqXnp+ml7voL9ffSv0T3VMMTfdCQAAFDPWJalxRkH9dS8dG0/WCJJahMdogcGd9QFiTGy2Zg+FgDgGRxOl2Ys3qF//rBNTpelphGBev7qburXNtp0NAAAjqMpXsu+TNmvSXM2q7jSodAAX/3jss66rHtz07EAAMAf+GTtXs1avkuS9MLV3ZjiDQAAnLQtBwr11LytWr79kCSpQbCf7h4Yr2v7tGT2GQCAR9mdX6p7Pk7RhqwjkqRLujXTP4Z1VkQwA8IAAO6FpngtKa6o1qNfbtGcDfslScktI/XiyO6KbRhsOBkAAPgj6/Yc1sNzNkuSxp/fXhd1bmo4EQAAqE9yCiv03HcZ+mz9PlmW5O9j19gz43T7ee0UEURzAADgOSzL0uw1e/XkN2kqq3IqLPDogLBhSQwIAwC4J5ritWB91mGN/2iD9haUy26Txg1or7sGtJMvd4MDAOC2cgor9Nf31qnK6dKgTjEaf35705EAAEA9UVrp0Os/7tTMH3eqvNop6ehIufsHdeDmeACAxzlUUqkHPk/V92m5kqQ+rRvqhRFJah4ZZDgZAAB/jKZ4DXK6LM1YvF0vLjq6dkrzyCBNH5mkXnENTUcDAAD/Q0W1U7e8u1Z5xZXqEBOmF65Okt3OOp8AAOB/c7osfbJ2r57/PlN5xZWSpB6tGmjS0AR1b9nAcDoAAGre4oyD+tsnm5RfUik/H5vuu7CDburfRj58hgYAuDma4jVk3+Ey3TM7RWt2H5b0y9opl3VmejQAANycZVl68PNUbdpXqMhgP80c1VMhAbxFAgAA/9uPmXl6at5WpecUS5JaNgzWA4M7anDnJrLZaAwAADxLeZVTT83bqndX7ZEktW8cqukjk9SpWYThZAAAnBiu+NaArzce0ENzUlVc4VCIv4+eHNZZVyQ350MwAAD1wMxlOzVnw3752G165dpktYxiilMAAPDHMnKK9dS8rVqamSdJigjy050D2umGvq0U4OtjOB0AADUvdV+hxs/eoJ15pZKksWfGaeJFHRXoR90DANQfNMVPk2VZ+nB1loorHEqKjdSLI5PUKirEdCwAAHAClmQc1NT56ZKkRy9OVL920YYTAQAAd3WwuELTvs/U7DV75bIkPx+bRvWN050D2iky2N90PAAAapzTZem1pTs07ftMOVyWYsID9NxV3dS/fSPT0QAAOGk0xU+TzWbTC1cn6eO1e3XbuW3l52M3HQkAAJyAnXkluvPDDXJZ0shesRrVt5XpSAAAwA2VVzk1c9lOvbZ0h8qqnJKkwZ2baOJFHRUXzU3xAADPtLegTBM+/s9yoUO6NNHky7qoQQg3ggEA6iea4jWgSUSg7jq/vekYAADgBBVVVOumd9aquMKhnq0a6MlhnVn2BAAA/IbLZenzDfv13LcZyimqkCQlxUZq0tAE9YxraDgdAAC1w7IsfbZ+vx7/aotKKh0KDfDVE5d2YrlQAEC9R1McAAB4FafL0vgPj66F1jQiUK9e30P+vsz0AgAA/mPF9nz9Y+5WpWUXSZKaRwZp4uCOuqRrUxoCAACPdbi0Sg9/kap5qTmSpJ6tGmjaiCTFNgw2nAwAgNNHUxwAAHiVZ7/N0OKMPAX42vXGDT3VKCzAdCQAAOAmth8s0ZR5W7Uo/aAkKSzAV3cMaKcx/eIU6OdjOB0AALVn2bY83ffJRuUWVcrXbtM9F8Trr+e0lY+dm8EAAJ6BpjgAAPAaX6bs12tLd0iSnhneVV1aRBhOBAAA3MGhkkpNX7hNH6zOktNlyddu03V9Wmr8wHg1ZO1UAIAHq6h26ukF6Xpz+W5JUptGIXpxRHc+LwMAPA5NcQAA4BVS9xXq/k83SZJuO7ethiU1N5wIAACYVlHt1Kzlu/TK4h0qqXRIki5IjNEDgzuqbaNQw+kAAKhdaQeKdPfsDcrMLZEk3XBGKz00JEFB/syOAgDwPDTFAQCAxztYXKFb3l2rSodLAzo21n0XdjAdCQAAGORyWfp60wE9syBD+4+US5I6Nw/Xw0MS1bdtlOF0AADULqfL0r+W7dRz32Wo2mkpOjRAzw7vqvM6NjYdDQCAWkNTHAAAeLRKh1O3vbde2YUVatsoRNNHJrEmGgAAXmz1rgJNnpumjfsKJUlNIwJ1/0UdNKxbc9l5jwAA8HD7j5Tr3o9TtGpngaSjM6RMvaKLokIDDCcDAKB20RQHAAAey7IsPfrFFq3bc1hhgb6aOaqnwgP9TMcCAAAG7Mov1dT5W/XtllxJUoi/j24/r51uPKu1Av2YJhYA4Pm+TNmvSV9sVnGFQ8H+PnrskkRd3TNWNhs3hQEAPB9NcQAA4LHeWblHs9fuld0mvXxtstqwNigAAF7ncGmVXly0Te+t2iOHy5LdJo3s3VL3DIxXozBGxQEAPF9hWbUe+XKzvtp4QJKUFBup6SOSFBcdYjgZAAB1h6Y4AADwSCu25+vJb9IkSQ8OTtA58Y0MJwIAAHWp0uHUOyv26KUftqmowiFJOq9DIz00JEHtY8IMpwMAoG6s2JGvez/eqOzCCvnYbbpzQDuNO6+dfH3spqMBAFCnaIoDAACPk3WoTLd/sF5Ol6XLuzfXTf1bm44EAADqiGVZmpuaracXpGtvQbkkKaFpuB4ekqCz2kcbTgcAQN1wOF165tsMzVy2U5YlxUUFa9qIJHVv2cB0NAAAjKApDgAAPEpJpUM3v7NWR8qq1a1FhKZc0YX10QAA8BLr9hzW5LlpWp91RJLUOCxA9w3qoCuTW8jHzvsBAID38LHbtDOvVJYlXdO7pSYNTVBIAO0AAID3ogoCAACP4XJZuvfjFGXkFqtxWIBev6GnAv18TMcCAAC1LOtQmZ7+Nl1zN2VLkoL8fPTXc9rq5rNbK9ifSx8AAO9js9n09JVdtCErVgMTY0zHAQDAOD4ZAgAAj/Hiom36dkuu/H3seu2GHmoSEWg6EgAAqEWFZdV6efE2vb1ij6qcLtls0tU9YnXvhfFqHM77AACAd4sKDaAhDgDAL2iKAwAAj7A1u0gvLtomSZp8eWcls04aAAAeq8rh0nur9uifP2zTkbJqSVL/9tF6aEiCEpqGG04HAAAAAHA3NMUBAIBHSGgarmeGd9WOvBJd1TPWdBwAAFALLMvSt1tyNXX+Vu0+VCZJio8J1UNDEnROfCPZbKwbDgAAAAD4bzTFAQCAx7iaZjgAAB5r494jmjx3q1bvLpAkRYcG6N4L43VVjxby9bEbTgcAAAAAcGc0xQEAAAAAgNvad7hMz36boS9TDkiSAv3surl/G916TluFBnBZAwAAAADw5/j0CAAAAAAA3E5RRbVeXbJD//5pl6ocLtls0uXdm+tvgzqoaUSQ6XgAAAAAgHqEpjgAAAAAAHAb1U6XPlqdpekLt+lQaZUkqW+bKD08NEGdm0cYTgcAAAAAqI9oigMAAAAAAOMsy9KirQc1Zf5W7cgrlSS1aRSihwYn6PyExrLZbIYTAgAAAADqK5riAAAAAADAqM37CzV57lat3HlIktQwxF/3DGyvkb1bys/HbjgdAAAAAKC+oykOAAAAAACMyC4s13PfZurzDftkWZK/r103ntVat53bVuGBfqbjAQAAAAA8BE1xAAAAAABQp0oqHXp96Q7NXLZTFdUuSdKwpGb626AOatEg2HA6AAAAAICnoSkOAAAAAADqhMPp0ifr9un57zKVX1IpSeoV10APD01UUmyk2XAAAAAAAI9FUxwAAAAAANS6JRkHNWVeujJyiyVJcVHBemBwggZ1ipHNZjOcDgAAAADgyWiKAwAAAACAWpOeU6TJc7dq2bZ8SVJksJ/uGtBe15/RSv6+dsPpAAAAAADegKY4AAAAAACocQeLKvT8d5n6ZN1euSzJ38eu0f1aadx57RUR7Gc6HgAAAADAi9AUBwAAAAAANaasyqGZP+7S6z/uUFmVU5I0tGtTTRzUUS2jgg2nAwAAAAB4I5riAAAAAACgxryyeIdeXrxdktS9ZaQmDU1Uj1YNDKcCAAAAAHgzmuIAAAAAAKDG3NS/tZZm5unWc9poaJemstlspiMBAAAAALwcTXEAAAAAAFBjIoP99dW4M2mGAwAAAADcht10AAAAAAAA4FloiAMAAAAA3AlNcQAAAAAAAAAAAACAx6IpDgAAAAAAAAAAAADwWDTFAQAAAAAAAAAAAAAei6Y4AAAAAAAAAAAAAMBj0RQHAAAAAAAAAAAAAHgsmuIAAAAAAAAAAAAAAI9FUxwAAAAAAAAAAAAA4LFoigMAAAAAAAAAAAAAPBZNcQAAAAAAAAAAAACAx6IpDgAAAAAAAAAAAADwWDTFAQAAAAAAAAAAAAAei6Y4AAAAAAAAAAAAAMBj0RQHAAAAAAAAAAAAAHgsmuIAAAAAAAAAAAAAAI9FUxwAAAAAAAAAAAAA4LF8TQeoa5ZlSZKKiooMJwEAoH4KCwuTzWY77e1QkwEAOD3UZAAAzKMeAwDgHv6sJntdU7y4uFiSFBsbazgJAAD1U2FhocLDw097O9RkAABODzUZAADzqMcAALiHP6vJNuvYLWhewuVy6cCBAyd9B1+vXr20Zs2aU9rnqbz2ZF9zIs8vKipSbGys9u7dWyNv1DzB6fy/1jYT2WpjnzW1TY5Bz+TOx6BU9/lqa381sd1fb6Om7oL3xJp8os/lfPBbnAvqZn/U5P/gGPxv7nwccgz+8XZM1uTT/X3coSZzLvhv7nwukDgf1OR2OAbdE8dg3eyvpo9BPiOf/vM5H/w3dz4fcN265rbDMei+3PkYlDyjJpv4jOx1I8XtdrtatGhx0q/z8fE55ZPBqbz2ZF9zMs8PDw/nxPaL0/l/rW0mstXGPmtqmxyDnsmdj0Gp7vPV1v5qYru1kc0Ta/LJbp/zwVGcC+pmf9Tk/8Yx+B/ufBxyDNbOdn7tVGry6eZwp5rMueA/3PlcIHE+qMntcAy6J47ButmfOxyDv8cTPyOf7PM5H/yHO58PuG5dc9vhGHRf7nwMSp5Rk00cg/bT3puXuOOOO+r0tSf7mtPJ583c+e9mIltt7LOmtskx6Jnc/e9W1/lqa381sV13+r9y5/OBO/2d6hN3/7txLqi57VCT3Zc7/904BmtnO6frdHNQk92Tu//dOB/U3HY4Bt2Tu//dOAZrZzuny53PBae6D7j3343r1jW3HY5B9+XufzdPqMkmjkGvmz7dmxUVFSkiIqLG1rkBcHI4BgEcw/kAMItjEIDEuQAwjWMQwDGcDwCzOAbhLRgp7kUCAgL02GOPKSAgwHQUwCtxDAI4hvMBYBbHIACJcwFgGscggGM4HwBmcQzCWzBSHAAAAAAAAAAAAADgsRgpDgAAAAAAAAAAAADwWDTFAQAAAAAAAAAAAAAei6Y4AAAAAAAAAAAAAMBj0RQHAAAAAAAAAAAAAHgsmuIAAAAAAAAAAAAAAI9FUxzHXX755WrQoIGGDx9uOgrgdfbu3atzzz1XiYmJ6tq1qz755BPTkQAYQj0GzKEeA/g1ajJgDjUZwK9RkwFzqMnwJDbLsizTIeAelixZouLiYr399tv69NNPTccBvEp2drZyc3OVlJSknJwc9ejRQ5mZmQoJCTEdDUAdox4D5lCPAfwaNRkwh5oM4NeoyYA51GR4EkaK47hzzz1XYWFhpmMAXqlp06ZKSkqSJDVp0kTR0dEqKCgwGwqAEdRjwBzqMYBfoyYD5lCTAfwaNRkwh5oMT0JT3EP8+OOPuuSSS9SsWTPZbDZ98cUX//WcGTNmKC4uToGBgerTp49Wr15d90EBD1WTx+C6devkdDoVGxtby6kB1DTqMWAW9RjAMdRkwCxqMoBjqMmAWdRk4D9oinuI0tJSdevWTTNmzPjdn8+ePVsTJkzQY489pvXr16tbt24aNGiQDh48WMdJAc9UU8dgQUGBRo0apTfeeKMuYgOoYdRjwCzqMYBjqMmAWdRkAMdQkwGzqMnAr1jwOJKsOXPm/Oax3r17W3fcccfx751Op9WsWTNrypQpv3ne4sWLrSuvvLIuYgIe61SPwYqKCqt///7WO++8U1dRAdQi6jFgFvUYwDHUZMAsajKAY6jJgFnUZHg7Rop7gaqqKq1bt04DBw48/pjdbtfAgQO1cuVKg8kA73Aix6BlWRozZowGDBigG264wVRUALWIegyYRT0GcAw1GTCLmgzgGGoyYBY1Gd6GprgXyM/Pl9PpVExMzG8ej4mJUU5OzvHvBw4cqKuuukrz5s1TixYteOMB1JATOQaXL1+u2bNn64svvlBSUpKSkpKUmppqIi6AWkI9BsyiHgM4hpoMmEVNBnAMNRkwi5oMb+NrOgDcx8KFC01HALzWWWedJZfLZToGADdAPQbMoR4D+DVqMmAONRnAr1GTAXOoyfAkjBT3AtHR0fLx8VFubu5vHs/NzVWTJk0MpQK8B8cgAIlzAWAaxyCAYzgfAGZxDAI4hvMBYBbHILwNTXEv4O/vrx49emjRokXHH3O5XFq0aJH69u1rMBngHTgGAUicCwDTOAYBHMP5ADCLYxDAMZwPALM4BuFtmD7dQ5SUlGj79u3Hv9+1a5dSUlLUsGFDtWzZUhMmTNDo0aPVs2dP9e7dW9OnT1dpaanGjh1rMDXgOTgGAUicCwDTOAYBHMP5ADCLYxDAMZwPALM4BoFfseARFi9ebEn6r6/Ro0cff85LL71ktWzZ0vL397d69+5trVq1ylxgwMNwDAKwLM4FgGkcgwCO4XwAmMUxCOAYzgeAWRyDwH/YLMuyaq/lDgAAAAAAAAAAAACAOawpDgAAAAAAAAAAAADwWDTFAQAAAAAAAAAAAAAei6Y4AAAAAAAAAAAAAMBj0RQHAAAAAAAAAAAAAHgsmuIAAAAAAAAAAAAAAI9FUxwAAAAAAAAAAAAA4LFoigMAAAAAAAAAAAAAPBZNcQAAAAAAAAAAAACAx6IpDgAAAAAAAAAAAADwWDTFATd37rnn6u677zYdo17ZvXu3bDabUlJSTms7cXFxmj59ep3vFwDgnqjJJ4+aDACoDdTkk0dNBgDUNOrxyaMeA2bRFAeAP7BmzRrdcsstNbrNt956S5GRkTW6TQAAPB01GQAA90BNBgDAPOoxcGp8TQcAAHfVqFEj0xEAAICoyQAAuAtqMgAA5lGPgVPDSHGgHnA4HBo3bpwiIiIUHR2tRx55RJZlSZIOHz6sUaNGqUGDBgoODtbgwYO1bds2SVJeXp6aNGmip5566vi2VqxYIX9/fy1atOhP9/v4448rKSlJs2bNUsuWLRUaGqrbb79dTqdTzzzzjJo0aaLGjRtr8uTJv3ndkSNHdNNNN6lRo0YKDw/XgAEDtHHjxuM/37Fjh4YNG6aYmBiFhoaqV69eWrhw4W+2ERcXp6eeekp/+ctfFBYWppYtW+qNN944qb/bzp07dd555yk4OFjdunXTypUrf/Pzn376Sf3791dQUJBiY2N11113qbS09DcZfj0NTXp6us466ywFBgYqMTFRCxculM1m0xdffHFC+12yZInGjh2rwsJC2Ww22Ww2Pf744yf1OwEAzKImU5MBAO6BmkxNBgCYRz2mHgP1igXArZ1zzjlWaGioNX78eCs9Pd167733rODgYOuNN96wLMuyLr30UishIcH68ccfrZSUFGvQoEFWu3btrKqqKsuyLGvu3LmWn5+ftWbNGquoqMhq06aNdc8995zQvh977DErNDTUGj58uLVlyxbrq6++svz9/a1BgwZZd955p5Wenm7NmjXLkmStWrXq+OsGDhxoXXLJJdaaNWuszMxM695777WioqKsQ4cOWZZlWSkpKdZrr71mpaamWpmZmdakSZOswMBAa8+ePce30apVK6thw4bWjBkzrG3btllTpkyx7Ha7lZ6e/qe5d+3aZUmyOnbsaH3zzTdWRkaGNXz4cKtVq1ZWdXW1ZVmWtX37diskJMSaNm2alZmZaS1fvtzq3r27NWbMmN9kmDZtmmVZluVwOKwOHTpYF1xwgZWSkmItW7bM6t27tyXJmjNnzgntt7Ky0po+fboVHh5uZWdnW9nZ2VZxcfEJ/V8AAMyjJlOTAQDugZpMTQYAmEc9ph4D9Q1NccDNnXPOOVZCQoLlcrmOPzZx4kQrISHByszMtCRZy5cvP/6z/Px8KygoyPr444+PP3b77bdb8fHx1rXXXmt16dLFqqioOKF9P/bYY1ZwcLBVVFR0/LFBgwZZcXFxltPpPP5Yhw4drClTpliWZVnLli2zwsPD/2sfbdu2tV5//fU/3FenTp2sl1566fj3rVq1sq6//vrj37tcLqtx48bWq6+++qe5jxX5f/3rX8cf27JliyXJ2rp1q2VZlnXjjTdat9xyy29et2zZMstut1vl5eXHMxx7czF//nzL19fXys7OPv7877///nffXPyv/b755ptWRETEn/4OAAD3Q00+ipoMADCNmnwUNRkAYBL1+CjqMVB/MH06UA+cccYZstlsx7/v27evtm3bprS0NPn6+qpPnz7HfxYVFaUOHTpo69atxx977rnn5HA49Mknn+j9999XQEDACe87Li5OYWFhx7+PiYlRYmKi7Hb7bx47ePCgJGnjxo0qKSlRVFSUQkNDj3/t2rVLO3bskCSVlJTovvvuU0JCgiIjIxUaGqqtW7cqKyvrN/vu2rXr8X/bbDY1adLk+H5OxK9f37RpU0n6Tc633nrrNxkHDRokl8ulXbt2/de2MjIyFBsbqyZNmhx/rHfv3ie9XwBA/UZNpiYDANwDNZmaDAAwj3pMPQbqE1/TAQDUvh07dujAgQNyuVzavXu3unTpcsKv9fPz+833Npvtdx9zuVySjr5xaNq0qZYsWfJf24qMjJQk3Xffffr+++/13HPPqV27dgoKCtLw4cNVVVX1p/s+tp+TzX7szdmvc95666266667/ut1LVu2POF9nOx+AQDejZpMTQYAuAdqMjUZAGAe9Zh6DNQlmuJAPfDzzz//5vtVq1apffv2SkxMlMPh0M8//6x+/fpJkg4dOqSMjAwlJiZKkqqqqnT99ddrxIgR6tChg2666SalpqaqcePGtZI1OTlZOTk58vX1VVxc3O8+Z/ny5RozZowuv/xySUcL/e7du2slzx9JTk5WWlqa2rVrd0LP79Chg/bu3avc3FzFxMRIktasWXPS+/X395fT6Tzp1wEA3AM1ueZRkwEAp4KaXPOoyQCAk0U9rnnUY6D2MH06UA9kZWVpwoQJysjI0IcffqiXXnpJ48ePV/v27TVs2DDdfPPN+umnn7Rx40Zdf/31at68uYYNGyZJevjhh1VYWKh//vOfmjhxouLj4/WXv/yl1rIOHDhQffv21WWXXabvvvtOu3fv1ooVK/Twww9r7dq1kqT27dvr888/V0pKijZu3Khrr722zu9ImzhxolasWKFx48YpJSVF27Zt05dffqlx48b97vMvuOACtW3bVqNHj9amTZu0fPlyTZo0SZJ+M0XQn4mLi1NJSYkWLVqk/Px8lZWV1cjvAwCoG9TkmkdNBgCcCmpyzaMmAwBOFvW45lGPgdpDUxyoB0aNGqXy8nL17t1bd9xxh8aPH69bbrlFkvTmm2+qR48euvjii9W3b19ZlqV58+bJz89PS5Ys0fTp0/Xuu+8qPDxcdrtd7777rpYtW6ZXX321VrLabDbNmzdPZ599tsaOHav4+HiNHDlSe/bsOX6n2gsvvKAGDRqoX79+uuSSSzRo0CAlJyfXSp4/0rVrVy1dulSZmZnq37+/unfvrkcffVTNmjX73ef7+Pjoiy++UElJiXr16qWbbrpJDz/8sCQpMDDwhPfbr18//fWvf9WIESPUqFEjPfPMMzXy+wAA6gY1ueZRkwEAp4KaXPOoyQCAk0U9rnnUY6D22CzLskyHAID6aPny5TrrrLO0fft2tW3b1nQcAAC8FjUZAAD3QE0GAMA86jHw+2iKA8AJmjNnjkJDQ9W+fXtt375d48ePV4MGDfTTTz+ZjgYAgFehJgMA4B6oyQAAmEc9Bk4M06cDXqxTp04KDQ393a/333/fdLw/9NRTT/1h7sGDB9fafouLi3XHHXeoY8eOGjNmjHr16qUvv/yy1vYHAPAe1OSTQ00GANQWavLJoSYDAGoD9fjkUI+BE8NIccCL7dmzR9XV1b/7s5iYGIWFhdVxohNTUFCggoKC3/1ZUFCQmjdvXseJAAA4PdRkAADcAzUZAADzqMcAagNNcQAAAAAAAAAAAACAx2L6dAAAAAAAAAAAAACAx6IpDgAAAAAAAAAAAADwWDTFAQAAAAAAAAAAAAAei6Y4AAAAAAAAAAAAAMBj0RQHAAAAAAAAAAAAAHgsmuIAAAAAAAAAAAAAAI9FUxwAAAAAAAAAAAAA4LH+D0T+BvG6XO0RAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "g = sns.relplot(\n", " data=data[data[\"iou_threshold\"] == 0.5],\n", @@ -3210,7 +930,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "id": "a85310dd", "metadata": { "ExecuteTime": { @@ -3218,18 +938,7 @@ "start_time": "2023-06-22T09:38:50.592336Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAJaCAYAAABuozBfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wT9f/HX5+sNkkHLV2MQtl7FUSmOJCloH6V4QAXqIiA4h7gQEEcoCiggsrQnywVUYYoCkLZlALKnoWWDmjpSFfG/f643iVpk44kzV2S95PHPbi7XO7eGU3eeY/Xm3Ecx4EgCIIgCIKQFIXUBhAEQRAEQRDklBEEQRAEQcgCcsoIgiAIgiBkADllBEEQBEEQMoCcMoIgCIIgCBlAThlBEARBEIQMIKeMIAiCIAhCBpBTRhAEQRAEIQNUUhvgbSwWC9LT0xEaGgrGmNTmEARBEATh53Ach4KCAjRs2BAKhfN4WMA5Zenp6YiPj5faDIIgCIIgAoxLly6hcePGTm8POKcsNDQUAP/EhIWFSWwNQRAEQRD+Tn5+PuLj40UfxBkB55QJKcuwsDByygiCIAiC8BrVlU1RoT9BEARBEIQMIKeMIAiCIAhCBpBTRhAEQRAEIQPIKSMIgiAIgpAB5JQRBEEQBEHIAHLKCIIgCIIgZAA5ZQRBEARBEDKAnDKCIAiCIAgZQE4ZQRAEQRCEDCCnjCAIgiAIQgaQU0YQBEEQBCEDyCkjCIIgCIKQAeSUEQRBEARByAByygiCIAiCIGQAOWUEQRAEQRAygJwygiAIgiAIGUBOGUEQBEEQhAyQ1Cn7559/MHz4cDRs2BCMMaxbt67a+2zbtg2JiYkICgpCy5YtsXTp0jq3kyAIgiAIoq6R1CkzGAzo0qULFixYUKPjz58/jzvuuAO33HILUlJS8Oyzz2L8+PH4/fff69hSgiAIgiCIukUl5cWHDh2KoUOH1vj4L774As2aNcPHH38MAGjXrh127tyJefPmYfDgwXVlZq0wlhlx/WQmAEAbDDAGQC2sOEGtANPpnB6j1jKwqu7v5yiVyoB+/ARBEERgIKlTVlt2796NgQMH2u0bPHgwnn32Waf3KS0tRWlpqbidn59fV+YBAPbu34onw5ryGyXlO4sLPHoNNUx4qeATDC39w6PnlStKpRKhISESXZ0DV28YLA1flOj6VmTrnCrDAUblqQRBEO7iU05ZRkYGYmNj7fbFxsYiPz8fxcXF0Gq1le4ze/ZsvP32294yEWWWMhxTt6vz63wXci8e4L6p8+vIhmLpLs2K/4PiyofSGeALdN4PhPaQ2gqCIAifxqecMld49dVXMW3aNHE7Pz8f8fHxdXa95i0TMWblPABA7/ZmKNP28Dc06Vs5mmBhaHyoAQDgetoaFI7oC06lFG/mLEDuX7yjGT2oDFFB9bBd3QwLtL2wSTMMmkhTnT0O0QbOAnAcTEoNXgo6i3aKqqN+VcZxlHwatiaxHgaA4zicO38epSXueWQMXPXHODiEMTM61vsNABDO5eFW419Qoe6fc5/kSE8ACiC4mcunYOCqf2+YDYC+ExBxh8vXsb+oEogcAQQ18cz5CIIg3MCnnLK4uDhkZmba7cvMzERYWJjDKBkABAUFISgoyBvmAQCi6zXG6nXPAQCWPGaA/qPytNdDywCN3u5YrsSMgvlJ5VvPAJ9UceIU/r+GDdT4erIZJWoljExZxR08hM01PihtUffXq0h0F+9f046xEl8/sLjBtA9dTIcBAGXQYKhxE7qaUtDGctLqsF3PAK57MHV/bjKgbmDdthiAeoOBuCeB8FsoNUsQhNfwKaesd+/e2Lhxo92+P/74A71795bIIjcJUkDZRg/zSUON79LpigFn3t6DgiAvOGTl7GsahqW9GkDBVR1xqj4eBXA1qImq2XlqcFCNz1X5ZEynhLJlCACGv4tqdi3CffaremK/qqe4vTz4YXG9hdIAmPLtGmJyoUcwjLgBZ2t1nXzooDXnokPZLscHFAM4fxDAQUDfDQi/DWAKmDmgpQbo6fg3YLW4WhHo6v2aqIH63vuoIAjCTSR1ygoLC3HmzBlx+/z580hJSUFkZCSaNGmCV199FWlpaVi+fDkA4KmnnsLnn3+Ol156CY899hj++usvrF69Ghs2bJDqIbgFYwzat9ogu15Th7dzAP5s8jWu6rt51zAbVJpkhGSNwcMHa9eswFgZGDOhuHAMyoruxh1Roaiv8anfAAhZ0QssmP9GK7AApTXx8GqDRlEnhfscx8FsMbt0v7///ht5eXlu2xAeHo5bbrmlxo/PxAGrDUqUlHvbZ43ANxXMOGvWA0zv4N7AL4isvZFKYKO2X/XHWQDk1v70coEBiFQCHAfkWIBhDp7Cc0bg3lAgyOblMnFAXx0wyPFTThBEHcA4rprwRx2ybds23HLLLZX2P/zww1i6dCkeeeQRXLhwAdu2bbO7z3PPPYdjx46hcePGmD59Oh555JEaXzM/Px/h4eHIy8tDWFiYBx6FPYZiIGxI+bXWG6D/qLxrcHphpfQlwH8R5vYfBGPSbofn4wCYmIs/yyXkWIcCpDcutdunRLDb52VKFfo/v9zt8zhDpdAi9CNdnZ3fFmW7MOjmdJFVRyXHcTCbHTt0HMdhy5YtyM2tGw8lIiICgwYNqvR8nCoDrjkwqZRjOFoGaGv59BVYgCNlDNFVRZA4M1B6EYrcdeKuEhaMBcHPIN6cWvOL2TwWjgOgiQWYplb2uvoBnebB8scwBZBv4dd7OvkzPmsExoUBehezvcUcEKsEmqmt+zgA/XVAnG/9niOIStTU95DUKZMCuTllAP9lhyLHObKBR8fiQmkaVrX5FN1DO3ncXk/DGQzIjm2Oa5FmnLq3GcxGe8eM44C8Gn5bKDUMITFKMAAFGefqwFrHDI1dB+21CK9cyzYaV2OC6ibCVhOqctqE2+vScZMCnfIagpTWSHFERAR69+pd+TUoSweufA7k7wQshVWcsCMQeQ8Q1gfQNHR8TFBTQBXult0mDjhTZnXqjpYCRZbKx+0vAUo4QG3zcPItwA91qx5UK7QMeKT86cg1A3Ni+NQsQfgK5JQ5QY5OWVX0OzwK50svYV27L3BDqNRF79XDGQzICuFlS6Izz4HpKzQ3cBxWPlGA9CM1c8ym7GsEjU4BU1kJkuY9BkPWRY/bLGC4ehmGrFTEtO+H1rdNQERCJ0Q27+zx63AlZhSO3ePy/eUYYbOlOsfN0fG+5sjdd999UKnswzd2OnLGHMBsk/LPXAJcfrd2F9G2A5ShACyAMgyIeQTQtgFCe1Z3T49xycin7S0ATpQCCidvuUMlQLrJ3rGrDdfMwI4i+yjZdQtwpNT5fSbW4/8vsgAfxPCOm6p8UcK5rQQhBeSUOYGcsrrF1ilzegwqp2TVvXsiYst6gDEYizksGpAOwOqUeYP/fp6H/V9Ns9sX27E/VMHuCdc27XMPWg+dIG5zHIeilw/DfNz1UETo6r5gWv+p4K6tIycFJpMJa9eudXq7s/Sr6KyVXgIuvQuUnAby/gbUcY5PZMyomUGx1vcUOCMQ0gMIuRHQtgRU9Wp2DpmTZwbeuQqEln8EfJfPp0lrAgM/R9AM4LFwoK0GaBcENFRZzwcAEQogitKjRB1TU9+D3oqEZ9HpoO7b22mNHMB/WKq5Ctpju7ZDjRIwnR7873IeYzEHtZbzSlQoof8oXDt9EKUFOUg7sAkAkPnvDrfPm3ZgE5RB9nVqwaOiENfuFiiUNXesbCNshmeTof8kEQiWLpXpSRhjlSJPckOpVCI6OhrZ2dkOb8/NzcWqVasq7RedNWUDIGGBeC6nr5vxKlBQHknlLEDaHEAZAlzfYn9c5mL77ayl1nVNY0DTgI+2OYMrA6IfBCLvdH6MxIQrgY9tfuO9FQ1sKgT2ln98vH3N+X058A4ZULlpxBHfNwDuCbUOhA4iJRRCAihS5mHqKlI2PnY0mgY1qtF9uoS0Q/eQjrW+lqeoqkau0rHlNWiANd1pLOYw/2ZrKiumrRpjlse4ZVNt54fmp59B1n9J1R9YBUW5V5D87atOb7/5tTVI6H9fjc/HcRwMzybDcs4qoaJorof+/a6ONRMkrD3zVxxF9FxJvzqLqlV9cTNQcgbs+mbAYv37YubrUFyZC04TD1Z2qebnE1BFAj0zASZvp9gZHMc7XyYOMAn/l6+vLQD+KQJ+LQQaq4AzRiDcxtnKc1BjZ0u3IGBqJPBAmOupWYIAKH3pFF9zym47+iBOFNeuyD2YaXA0cTN0Svl3bTpKd3IAtnRejyxzK49dp1E3DcYsj/G6k5K87A1cPbnPbl/O+cMouZ6FbmPfQcvbH63V+TgLB8s7aUBqWfUHN9FA8UrDSg6bQqWBtl40v0GOm0fwlLPmLlrldcQF/4eYsOto3qqrXfenLawsHYqMT+32cU1mg4U4kN8JcizZw98WDyh9VzPDwgG3XwL+qsFvSBX4OjUl+GiagvH/C/VrV81A92A+NdqmvMH2mhlopQFilEBvLXCj/D+SiTqCnDIn+JpT9tf13Vh7dRMsqOYnHQAOHH7L+QsAcKTbRtRXe6eD0B2cSYJwACKyMrBqYiGyTtSwiKQaJm5vCLWNfkJto2eeYtvs0bjwz2q3zqGEFgOUn6Eec89xVTTTQ/d+FzDbqmhy1DxGRWdNTk0NKlaCMQkTqj+wOur/D2j9f4DCe5NT6gIjBxSXf8zuLwHmXAP+qAPh6JPNgda1U0Uh/AByypzga05ZbeA4Do339wHgO04ZYJ/utE1nxhRmAjodjMWuv0VtmwYqIlX07Oxf32HP509XkgtxBWfab/0xD/XQ0qVzOkyJkqPmMeqyqaG2Tp+ClSExYiVahW5DntFeniMy6CI4hRZgjt9jzGxzjeCWQEhPoNGLQEhXV82XJXlmXkPNUp4mtYBft6B8mwMuGoGTZcB5Iy/UCwAXjMBlE6/xtraC9vboUL7T9BY9MFBHnaKBABX6Ez4DYwzQO3ZYGWPQ6Fz/xFJrOTTqpkHaocrpvrRDZTAWc26d3xVa3PoQWtz6UJ1eg+M4oLRydPXamUP4443BMJUWO420Wc4ZUDDKvp5O0VwP/bxE+4ga4RJ13dQwbNiwWkqSjMVmF6J3WuV13NtkMr9RcoZfrv4fOG1bsMjhgCbefkC9vhtQw7pYORGuBKpTjGsbBAyu4vZcMzD0ErC3hN9eVe6kvZ/D/z9Iz6c9x4YBw0Kofi2QIaeM8GsYYxizPMYu2mYbPeP3V58adoRU6c+awBgDHIjSRnXsgZGr02AuLQbHcVj3aDsYi/IR2SIRqiAdOl0cj5DSBpXuZzlngGHiAb7jk4EiZzLGFafP1pGrabSt2FwPv1z6APH6g6gfdA5N9fv56xefANJOOL+jOoZ30GABwIC4p4HI4X49+D1CCexJAI6UAHNygJQS4JjN78Qt5b07P5Y7a7fqgFGhQLdgfnZpAxXgJWUgQmLIKSP8nsrRNqsT5iy1WROkSn+6i0oTDJWGT0kFR0ej5GIWss/yg7mv4E8xJdq4xzBEtemJZjtuhSW9GJb0YjGCJqY4/USSI9Cp6MjVJNomOG/Hcnknfr/yOrpFrIaSlSFOewyFxujyc3OoH3TeekdjFnD9d+u2IPXRx+K0McFf6BwMfG+TJd5bDGw28NMTTto4aX8VOW4+aK8BEtTAW1HADdQ04JeQU0YEHGotc5rSrA1SpT89yaBZf9hJf5z541tc3r8RAHDxwE+4eOAnFAyegHaWB6HMsD5OIcVpjuNQMt4MMKBeQicEh7kwGNwWisDJgppG2ypH2Jo5jLApYEKoOgONwtPRrVsP3vfK+BIo2GU9aJcCCL8VaPI2EFaDQfF+wI3lHZlvRvHbR0qAxzKAf0v5SQqhCn5Wq8CxMn7ZWB5ZWxAL3KTjpxlEKflUK+HbUKG/h6FCf/eoNKYpOrpOvqQ5jnO5gcA2/RnRVIWxa3h75ZzOrClmYxku7/sNpYW52PXJeLvb+Aga80jXpzMoAufbOJMG2bhxIwoK+NxcaGgohg0bJr6+yn2hYFxJ5ZOpo4EuKYDSRnhZGe730bSKFFv4tOahEuBgCbC9uOrjIxTAK/WB9kF8k0EvLaAJrKdMllD3pRPIKZM3FXXL1H17I2LHFll9QXMchxUjMytJdfhqOtMZlw9sxvbZo6GPjrf/IuQAJReExOznEGqMr5NrVymKK0BRNZ+B4zisX79edMxsYTCjofYo2oVvRJz2ePUnC2oGRAzh/48cAWhbB5SjVmwBRqYBGwxAnJIXyb1aTV/HU/WAj2OoLk1KyClzAjll8saRbllMYWalweZSw1k4rBhV2TGrqIUmB+oqgmfb4VlmyEfBlbNOjz3yw7tIS/4d2nqxCG3YAr2fWQR9TFMwpgBTKAAOMLySYjetoDpq5LjZQk6cpAgRs6obCDiEqLJwV7OPwEw1nAGqigI67+ZnfgYwu4uBCVf4Qe4lHC9cW5HTzYGWpJEmCeSUOYGcMvnDcRy47Gz78Ut1lMZ0ByEFWpUWmhyQQwTv0PIZOPzDzEr7NSERGDLnb0Q278I7eSWWWjtnNaWSE0dOmtepSqOt4sD3yIhQDB0yxPoalZwBctYDRf8C2d9XPkGLL4C4J+vCbJ9lTT4wqsJH05hQoFMQ8Gr9gAowSg45ZU4gp8w38IU0pgDHcVg5LsvtxoG6ZMq+RtBImLuwmM3IPr4bx9Z9gotJP1a6/fZ3+W48bUQsIpp1dqixJuJCVM0RtY60CZAzVycI3Zy2A9+F+jOVSlX5OTdeA07dD1z/w7ovADo4XWHEZX7+Z0UG6YHVDalBwBuQU+aEQHHK5jZ7HaHKkGrv0zw4Hm11LerULlfwlTSmgDuNA3VFxYaEx36Nk4X4q7G4EBaTEbs/f8rhuKm4LrcgrtMA1GvSHvWadqx0e3C9GASFRlbtuNniISdOwGVnriLk3FWC4ziYTCa7xgDAfoC7Uqm0f96yV/LOmUDseKDxq0Bwcy9aLn+2GXjHbK6D7PGRBKCT48ENhIcgp8wJ/u6UNdnfr0ZzMgUUUOBA118Qq4mqQ8tcw1fSmHKlYkNCTFs1xq6Jlc3zZzGb8dc7d8Fw9TIAIPfc4RrdT6FSY8TCI6gX37bG17KbcOBhJ81VPOLc+aljV1X9WUREhF33JgAgyclzoOsMBCcACR8B2rrpGPY1Ci3ApznAG1cr3/ZBNPB8JI19qgvIKXOCPztlALAgfQX+uL6zRsemGI7ByJnwe4dl6KhvXceWuYYvpTHlCGfh8M3wDOReNAGoWSOCVNIeuRf/w8kNX6DMcB3n/vqOj4ZVoMyQB85iRuf730DHe1+ERu/a37CzMVRV30kezpwtdo6dnzloQtTM0XSBirIasJRCmfMD2NkqBqy3Wc13a/r44HRPwXFAz4vAAQdqJNuaAAN0lfcTrkNOmRP83SmrDd0PDUeG8aq8nTIfS2PKkbIiC+b3TKvx8XJoDHDGxhf6I+u/qn90tB0+CTdO/KzOO05dP0ndOHf+OkheaA6oqHdWEbsIWsFe4PpWIPNLoDTV/sB2G4DIYV6w3Hd4Kxt4+5r9vrI2NIPTk5BT5gRyyqz4glMGUBrTXVxpRLCNqMlJFPfirnXY/9VzKMy8UOVxyiAtbnzyU8T3GgFtRGyVx0qB285dDR07Zbsw6OZ0kc3r5y7VyWrYRtCUSiUYOODEPXzXZkXi3wJCewKhvQFVvTq121eYmgnMt3lqB+sBNYC1jYAg0jhzC3LKnEBOmRVfccqAymlMVdfOldOYOp3ffPl4mpo0IjiT9ohpq8aY5TEA5OOgmcpKYCzKt9tXdC0dvz7TrdKx+pgmAABdZEMMnr0VqmD/yMuIjl01Dlro6r5gWv9pr6soq+EsghYdHS02BwAAMpYAVaU36w0GmApgSsB4lZfY0Heqi4cgaxqfAdJMlffrGXCtFTlnrkJOmRPIKbMiOGX9w25AuCoUQUyDCXFjqr1fiFKHZsF1o+TuDEdpzIo4dNRsIaetSmoSUZNzahMAjCUGJC99Dam7f4Eh66LDYzr8bxpU2lBwJiMadBtod5tSE4yo1j2hUPqWE1Mx8saVmFE4dg8AQNFQC/2iHrLovK0rnEXQ7rvvPgQFBVnfr5wFuPwekD4PsBQDFgcFVbZ0+AsI6Q6oPP9dIWf2FAPJJcCkzMq3vRMFTJdfX5jsIafMCeSUWRl4dCyOF59x6b7zm7+Je6OGeNiiquE4DpzBgNz+g2BKOVLr+1OTQPVUjKitHJdV7dQCuUTPKlKYlYqS61kAgD0LnsbVU/trfF9tRJy4rtaF4pbpP6Nek/ayfJyO4DgOhmeTxehZoDhmZrO5kghtlXIaFiNQkASUpQOciV+yfwDy/rQ/eXBzQKEDSs7yzQL1BgEhPQB9Zy89OmmwcMAfBmDIZfv948OBfAvQSgO8HQUo/fdt5THIKXMCOWVWzpVcwj95+wBw+Cx9OQAO1fXn55sLUWQpxtiYezA+dnSl2+M0UQhR1r30B4qK7LZr6qhRk0DtqMnUAtv0poAcHbX0Q38iddfPAIBz236ANiKOH/FUzvWL/1V5/xa3jUX/F5bXqY2ehLNwMEw8AEs6P8Fa0VAL/SeJftmpaYsjEVqBSilNZ1x4BchaBhirGfXUYDLQfL4b1voOe4qB3g6Cz2/UB2ZGe98eX4OcMieQU+YeMy7Ow9eZlQU/BcKUIdjT5SeEq0K9aFVlR83uNoNBbBIgp8w1atssIPc0pzMKs1JRVmhNge1f8gKuHLJGTTqPeR0d73sRam2onUMnVyo6ZgL+LKUBVC2nMXr0aKjV6pqdyFwIFJ/iU535O4GcXwGmBvK3WY/pGzhfoRsLgcOlwLkyYEmedT9Xc8nAgIWcMidI5pS9nCl/p0ytq3ZEyY68/Zh2/j0UmSs7QNfNfKHtlo7L0UEnH6FG2yYBcspcx1GzgKP0psDE7Q2hi/T9L/zCrFSsfbhppf2Jj8xCdLveiO3QHwDAFPJ8rJyFg+G5ZKeNAP7WoWmLo5RmRY2zSinNmlD0H3DIZtpEtxOAro2nzPYJns0EPrXxd8kxqxpyypwgmVPmCzTpC4zf4fLsuG6H7kSW8RpWtf0MbbTNwQDUV0VI/mFv65RFZ57jnTIq+vcIFR21imnOiqlNOaY1a8K1sykOOzttadRjCAa+s1GWj6+6Ts2QFb3AwtWytN0T1HpCQE2oOEWgVyFQx6UbciLbBMTYlCSrAdymBxbFAgkaycySLeSUOcGrTtkmDvrv+wOpSR6/Tp3hRppVcMpsuSvydixs+Y4nLHOZinIaABX91xXVpTl9Na0J8I/NYizDub+/R+Z/O3Dmj6WVjhk060807Hab942rBYKDZtuhCfiv+KxAVY5ZlYPPnVGWBfx7E1B8kt+OfRJo+YUHLZY/Jg5Qn6y8n4RnK0NOmRO86pRtBvTBHGB0XOskG8oMwJxyp8UNp+zVCx/iu6x14Mr/AUCsOgrr2n9Z63M10sRCyTwjS+BMTkOMmjmDomkuIUTPnKU2p+xrBI1O/vVY1cFZLCgtzIW5tBhrxlklYhIfnY2wBi2hCamHuM63yFZeg+M4FL18GObj+U6PUTTXQz8v0W+6Nm01zhzpmwmdmrVyzmwjZt2OA7rAyuOZOCClBHgmE9hbrjAyoz7wNhX/20FOmRO87pRpPX4Jz1NmAGY6qX2rQZ2ZI44YTmDof4+6bFLv0G5Y226hy/eviNAIYFv0Xx0UTXMP29SmbVozoqkKj/0a5zdf9ABw6vevseuT8dUe1/G+F6EJjUS74c9ArZW+tIHjOKDEUqX4rF3Xpi1+EEVzFj2rcZcmAOTt4CNmAuoGQPhNQMRwIGokoAicXB47YV23tHG5EsYvIafMCeSUOcDWKauIi3VmxZYS3HPsKZwpcSzg6QyOs6CEK4NOocXpHn/V6r41O3/1IrS2UGOAZ+A4DitGZoqRs4imKoxd43z8kS/Wnl3YsQaHV74HjS4cmf/+U+WxN0z4GB3+N81LllVPpbFPHHidswpdm7b4SxTNWadmrbo0z00Brnzm+LYuB4GQRA9YKn+mZwPvllewRCuBLPn0e0kOOWVOIKfMARwHLKmi9s2Lch6ppenoffjeOnPKgKrlMwCS0KgrOAuHb4ZnIPeigxkuFYhpq8bY1bE+/YVfWngdFmMpAODCP6tRmHUR//30sXh7UFh9xHboj2Y3349mN42SykynVNe1CdhE0YL9I2pWWlpq16U5YsSImj+uknNAxmLg+u+A4VDl2wOkEcA2WnasGdAuSDpb5AQ5ZU4gp8wJXIXaN9s6Mw+lNGuCN5yy6qjUrUnDzz0GZ+GwYlSmUxkNW4Romi9GzZxxbttK/DPn/kr7b5jwMdrdNVV29WcOB6c7iKKJTQI+7pxVTGe61AAgcOFVIO19+30tvgSUYUDEML8d3XTRCCSctW6TVAYPOWVOIKeshtRBSrMmyM0pA6i2zNNUNxx9xchMu2iaL3dsOqK08Dou7f4FJflXcWDJC+L+W2esQ5Ped0loWc1xFkXzB+eM4zisX7++UgOAS7IZnAnY5SAFGvMY0OprNy2VL70uWIv+f2gIjPFP/7NW1NT38P0WKKJuUOt458sRqUl13lFaYinFw6deEJdp595FjjGv+jt6Ap0O6r69xU1j0u4q051E7WCMQaNTOF0e+zUOMW2tX2Rph8pQlGNBWZEF/vAbMiikHlre/jA63vs8hnywXdxfnFvNSB8ZwRQM+k8SEbq6LxTNrVF0yzkDCkYlwfBsMjiLb75WjDGMGDECERER4r7c3FysX7++9u8/pgJ6XALiJgFRYwB9eW1Z1jdAyXkPWi0vtjaxrt+fzidiiJpBkTIP4zeRMqDqlGYd1ZldN+Wj66E7YOQq1x3NbfYGRkff4fFrOoLjOHDZ2VRbJhEcx6Eox1Jp3qajOZuO8KWU51/v3IPU3esQ0bwL7py3F0qNbxXhOOvg9PV6M6EBwFY2w3YagEuTAK7/Dfx3q3W7+1l+2Lkf8s114PHy3xlNVMCeBKCBSkqLpIXSl04gp8wNbFOadVj8n1J4DCeKrUUJ32SuwX9Fp9ErtCtaaZshRl0fExs8CK0iuE6uL+BwEgBA+mVeorbzNm1x5rzJ0Vn7Z86DOLft/8TtiOZdEBKbAFgsaNRjKNrc8ZTsbHaE6Jw5qjfz4S5NR+lMwEVNMwA4cR9w7Ud+3c/TmLZF//eFAmsaSWeL1JBT5gRyytzAS05ZRaaefQdrr22y27e45WwMi7y5Tq/raBIAQDVm3sS2/qyqOZs1RY5dndcvncC6J9o5vb3FbWPR/4XlXrTIPRzVmyma66H/JNFn/2aqmgZQK00zgSN9gIJyWZ64SUCzeYCihvIbPkSJBdCe4tfHhwOLG0hrj5SQU+YEcsrcwNYpe6MACPKO+GVaaSZ+urYZRs6EtVc34WJpGm4I6YwmQQ2RWpqOG0I7Q8PsP9A4cOgdmojeYVXPK7SFgdlNEahK08zpNACKotUZ1TUICFTnvMW0VWPsmlhZvU4cxyH7+G5cO3sISpUGxuIC7F/8PAAgrFEr/G/JKYktrB2Oomaha/qCBcuru7Q2CNMAOI5zT9MMAAqTgcPd7fcFNQHarQf0XTxksTyYdRV4/So5ZeSUOYGcMjewdcriugJPJ3tdsvnpMzPwS84fdXLuYKbBgpbvYEjEAHGfraZZTaYBqLp25qNoer2svvQDCWfOm21Xpy+Mesr8dyc2vdjfJ50yAa7YjIJRvP5hyIpe9k6ZD08EqKhp5lJ3ZtEx4FCHyvvj3waazPCQpdIjOGXD9MCG+OqP91dq6nsEcNkdUWvUOt4Zy0jhF2OR11KYAjOaTEb3kI4wciacKj4HFVNVipKZYMaKrJ9rfe4SrgyfpH2L5ML/oFfqMDb6HkSqwwGbWjJ1395VTgMwpRxBdmgcOWcSwnd3Vn7Ox66JxfyeaRJY5B6G7Ev48807cdNL30OjD5fanNph8zLYDj8HfLvWjDGGoKAgREREIDc3F7m5uTCbzVCpavGVqmsP9DEBWcuBSzOB0vJuzEtv+pVTJvw+2uN8OARhA0XKPIxfR8oAoLQQeDeUX/diXVltMXNm5JsLa3z8t5lr8XHaErt9seooTGn4MACgaVAj3FKvt9NpAEKq05RyxG6/6JwJjhmlNyWjrMgiOmW+ECnLTz+Dnx63zqkJbdAC935zRkKLak91Q899vUPTaDRi1apVAFxIYVYkawVwehy/fkM6oPGPXJ/QhdlOAxzzz0bTGkHpSyeQU+YmFYeX66P9YupsjjEPS7PWIt9UiMWZKx0es63TD2ilTXB6Do7jwBkMDp0zATsnjRw0r2LrlPnKUPTsk/uw4dkbxe2+075Fk153ISg0oop7yYuazNUURWcZfCqtaTKZsHIl/3lR67FMFeEswC6b9G679UDkcA9YKS0bC4E7LvPrZW0AtW+8tB6HxGOJumdOLD8z0w/8+kh1OKY1ehxvNZ2K3V1+xJioO3Fn5K24M/JW6BU6AECO6XqV52CMQRESgsjkJEQXZEDVtXOlY4T0ZlZILHL7D/ILMVRfQa1loiht7kUTvhmegbIii7jI8bWIbtMT//v6tLidNPdR/PPBAxJaVHsYY2DBSuuiVUK/qIdD0dmCkeXCs8VmWb4eFVEqlaLIbEFBgWsCswJMAYT1t24fHwFcXesBK6Wlu41y0b+l0tnhK1CkzMP4faTM0fByGacxPcFNR0bjbEkqfmq3CDeGdq3x/eyaBJykN512cdYEirTVmqqGostRLkPg6Oo5OPjtK9Ydtq87x+GuhUcQ0ayT9w1zA2eiswLKdmHQzeki+/d4RR0zl0cyCWT/H3DqQft9XY8Aet96fW3RneRry/Y3BXr423diDaH0pRPIKfMAHAcYsutc3V8uCE6ZiimhKA8uj4wahg+avVLNPe0RnLSadHHWBNJLc42qhqLLUS5DoCjnCn5+oh2MhsrjxnRRjTFqxSUJrHIfMb3JoZKDFrKiF1i4Wpavhy0VHTO368tyfuUjZbbouwNdD7hhpXTEnQYyzcCCWOBp38m8exRKXxJ1B2P2TliZwS9SmM7opufb1k2cGWWcEWWcEetz/qz1eRhjfDdmdLTdbE1XMSbtBpedDc5gsC5+/Dp4CqZgGLsmFlP2NRKXiKZ811zWCSOKcuSZytRFNsDo769glM3StN99AICiq5dx+cBmiS10DTG9qVVC/0kiQlb0Em8rHLvHJ+ZoMsYwbNgwcXvjxo3uvYcihwN9LECkzYB6w0Hg0iw3rJSObDP/v0revrUsoEiZhwmISBlgX/AP8MPLx+/wi6L/inAch0zjVVjA4VJpOv53fCJClXqc6F57x8z2nK4OOa8q0qbq2hmRB3eCKej3Vm2wbQIAgEbdNBizPEb2EZri3EyseiBO3O4zdTFaDX5c9nZXhaOOTV+YCFBR9d/tNKZ4YhOwyybqFjEUaL/RvXN6mbsvA78UAg+EAd83lNoaaaBIGVG3qHW8IyaQmmQ/vNyPYIwhThONhpoYxKjre+ycTK93baki0mZKOYKc7v1kGemRM2otQ6NuGnE77VAZinIssm8E0EbE4ubXVovbuz6dgP+7Nxy5F/9DaUGOhJa5DmMMujldELq6LxQN+V+1lnMGfmaPjBGiZaGhvGRQbm4uTKbKtYu1P7GKrykTyN0EnBjt/nm9SF75S5dcIq0dvgA5ZYRrMMZHxl7OlNqSgIMxhogdWxBTmCku0QUZULZqCYB3zDhD5cJpwjmMMYxZHoOJ260/4xcNSMf8nmnisnJcliwds4T+I3HbW7+K28biAvzyVEf8MKo+9i9+HhazBxwDL8MYE9OZAoZXUmT5/NviKI1pNBphMpncs13fCUi00ai7thq4+qMblnqXR8o1j0PI46gWeooI1wmw2jI5UTHSxktx7BRvJ7mN2sMYgy5SYRcxsyXtUFmNZm9KQfyNd+KBtXmol9DRbv9/P83F2oeborTwujSGuUuwQpTO8IVoGQCoVCo7mYxVq1Zh5cqVooPm8t+ltgVwwxXr9sn7gCuLPGBx3RNdLr9WLP+XT3KopszDBExNmUAA1ZYBwPmSS+h3ZBQAIF7TAG11LfB1q/ftBplLBcdxyEnsK8puRBdkQBHinaHx/kTF2ZnGYg6LBqQD8B3R2fy009jwXC8xhXnL9J8R1ao7FCoNtBGxEltXO2znZyoaaqFf1EP2z3/F+jJb3K41y/kNOG4jKusD6v+/FQLDA1xAlmrKCO8QQLVlABCtjkRIuZjspbIr+OP6TpwrkYcUgZDWFMhJ7AdLYaF9dyZ1aFYLPztTIS66SEUl0Vm5dwOGNWqF0T9kIiSuGQDg75n3YM24Jlj1QBwO//CexNbVEttoWXoxDBMPyP75F9KYY8aMwejRo8XIGcDXmrnVnRl5J9DaZurI/obA9a1uWly33GAjIDsjWzo7fAFyygj3CLDashClHru7/Ijf2i9BqJL/oph1aaHEVllher04ScB8+ow4PcB2odRm7WCMYezqWFE2I/eiCStGZcr+OVQoVWh202go1EFQqDRgCj6ae/XkXoktqx2MMejnJVqL/gXHTOaq/4wxqFQqqNVqDBs2DKNHj7ZrAjCbza6fPGIYEHaTdTvnFzetrVtibea0X6gsD0jYQE4Z4T4BVlsWqa6HbiEdEKrkU4OHDP9JbJEVxhgiD+50OOJJwJi022U5jkCFKRge+zXOJ/TMbOn+6GyMW1+Ccb+WoveUL6U2x2WYgvGjmWwcs4JRST6hYQbwf5eCcybgVvG/KhTotB2IfojfvvIZkLul6vtIzCuR/P9/0EdPlZBTRnieObHAwkSgtJB30Ly9eOmL8ptWcwAADPIqkGAKBSKTk+y6M2MKMxGdeU48htKYtUcQnRVYNCBdth2Z/ojomFWYmekL6UwB2zqytWvXYsuWLe69fyLusK4fG+yGZXWPEC1r6cagg0BAVf0hBFEDhNoyYSZmRgrwbqg0tnip2UAo7jdxZuQYryNSXa9Or1cbGGNAFTM1s2Obk9CsCwh6ZmmHygBYOzI1Onk55lVxae+vOLdtJZrfPEZqU2oNUzBeJqPEAsOzybCkF/PpzOeSZS8uC/ADzKOjo5GdzRdWZWdnw2QyuT6SKXoMUPQvcLm8TjB3Ey8uK0NalD/EvaRVViX0aUx4BqG27I0CIK6rtLZ4udkgx3QdXQ/dieRC+aQxHaLT2YnOmlKO4FrbRL4ZgKI9NcKRnpmvUC++nbh+avNXElriHqKGmW0685wBXJ4bchNegjGGQYMG4b777hP3uT2SqfGr1vVjw4CyK86PlZBImwZ1ksZwDkXKCM/BGBAUAjydLE0HZpnBOiTdC7QMboobQjrjkOE/mDgzThWfQ2JIB69dv7YI3ZmcwYCcxH4wnz4jNgOouna2H26u08k+6iAVjDGotb733MS074Nu42bi0PLpyDj8N0oLchEU6rvToYWomSCXUTh2Dz+OaV6irCUzGGMICgpCREQEcnNzUVBQgPXr12PYsGFQqVS1/7tT6oGms4CLr/Hb+xvyjlpTec3J7GkjD3WiDOgW7PzYQIYiZYTnEQr/pVi8iEahxrr2X+Lm8F7VHywTGGNQhISg/olku2YAU8oRu05N6tCsOcZizm4ck1xHMgFAswH3i+uG7FQJLfEQwQoo21k1nyznDDA8lyzb51+g4kgmQWTW5RqzRi8BoX2s25dnA8ZrHrLWM6gZEFTubx6kFKZTyCkjCA+xMWcbDhcel9qMGiE0A0QXZDjs1KQOzZpTcRzT/J5pWDEyU5bF52ENW0AbyQuNHl//Gc5t+0Fii9zD6ZzMUvnnxxhjGDFihJ2GWXZ2tmtSGUwJdE4Cutl8/mR84QErPYvgcFCKzjnklBGEm+jLxWS35u3CCxdmS2xNzRGiZradmrYdmoRzKg4wr0jWCaNstcxUwXxE+fTvX+OfOQ/gj+nDcD3VN35MOMLRnEyuxGxdZPgaCAgRM9saM7fs1bW1rqe+ARQecsM6z3OLTmoL5A85rAThJi80ngAVU+LHa5txrOg0DhceR5eQdtXfUSY469TkDAaqLXOCUPDvaBbmipGZyL1oQtYJoyw7M/s++zVSd/2MY+s+AQCkHdiE4Hox6P/8Ukntchubp7lw7B5xXe51ZoLIrMCWLVvcG8PU9kfgxL38+uFyR7WPRVaj7zLc0M31dyhSRhBu0jw4Hi81fkLcXpH9s4TWeI7s2ObISezreFQTjW6qNI5JWGy1zORIXKeb0PPJeRix8DDie98FAMg+vgsnfpPPZAqXCLKvLxPwhTozpVIppjHdVvuv/z+g6Qf2+wQnTWKulj+sf0ultUPOkFNGEB6gcVAD3BV5OwDgh+xfcbbYR4uoHchmOBrVVHERnTcZf/ER9kQ264wmve8GwA8w37NgEpYOZVj3VEdx+fmJ9jCVFktraA0R68vW9OWXinVmJfKtMxOkMgTc/jtq/CLQx2TdzvkZKDrp3jk9QPNyrbII8jycQk8NQXiIsTF3i+tHi05IZ4gbCLIZzhoAnCE4b9S1aY/cOzMT+o/EDRM+ttt3/eJ/4pJ36Ti+u1uHCzvWSGRh7WCMgQUr+aVCnZncRzLZpivd1i4D+OL/bjafQ6dGu3c+D9DSeRkmUQ7j5PQJ4QXy8/MRHh6OvLw8hIVVDnW7i6EYCBtSfq3NgF5b9fGEBykzADP5eZSYXuh1iQwA+N/xidhbkIJ4TQNEqMIBALmmPIyPc/yBWE8VhuGRtyFIIb9PK47jqu3A5DgOuf0HwZRyRNwXU5gJVsU0AX+nrMiC+T3TnN7eqJsGY5bHyKpWj+M45Jw7jLKCHHHfn2/eAXOZvXaBMkiLLg/MQOdRr3jbRJfgOI5X/j9nAFBeXyZT5X+O47Bx40bk5uYCAEJDQzFixAj3bT02Asj9lV9v/T0Q/YCblrrO9Gzg3WvAM/WAz+IkM0MSaup7UKE/QXiQpkGNsLcgBZfKruCSjbL2m6mfOL2PmTNjdPSdXrCudlQ3qgnga6sjk5PAZWcjO7a5dwyTORVHMVUk7VAZinIsogCtWsskdxIYY6jfoqvdvrG/FOPEbwuxZ8EkcZ+5tBjJ376K1oMeR3C9aC9bWXsYY9DPS4Rh4gF+JJMglxGsrP7OXkboxFy/fj0KCgpQUFCAjRs3ulf0DwAtFwP7yz2g639J6pQR1UORMg9DkTIJsY2UvZxZdaRMrauTbqRiSwn2FxyBkePrOdZd+wNmzuxwZPnBwn9Fx+1cj+2yjJbVFM5gQFYIX+Ae6JEygI96VOzMNBZzWDQgvdKxcoyc2cJxHPLTTiPv8gn89TbfGNBx5Mvo8dj7EltWc7his6j8H7KiF5itUxakkNVzz3Gc6JgBwOjRo12fjSlwcQZweSa/3vMaoI5000rXoEgZRcqIQKW6cUt1NLRcqwjGTeE9xe3b6vVxeuwXV77HzEufAwBOFZ9HJ30bj9oiFRzHOXRCAwm+M9P+WVBrOYcRNNvImRyiZhVhjCG8cWuEN24NXf1GKLqWBnOZbxT/iziRywAAZbsw6OZ0kc3zLkTMVq1aBcADEhkAoLIZp7WvPtA3oGIxPgU5ZYT/oNbxzlZqUvXHCkPLJag7E3iqwYOiU3a6+EKVxzIwtNU1h4rJ/082t/8gRCYnyeZLTi5U1DazjZwJ/8s9atby9kdwZOV7UptRe8rlMszH8yvdZD6ez3dmauWT0lSpVOJsTEEiw1bLrNY0nAxcmGbdLrsCaBq4byjhceT/CU8QNYUxPvpV1TB0Lw8tr46Gmlikl2Vi8rm3qj22nbYFVrddgEh1eN0bVlt0Oqi6doYp5QhMKUfAGQxgISFSWyU7bCNojiJnaYfKZCk4W5Hjv8xHWeF1RDbvAjCGmPZ9Ed2mZ/V3lAhBLsN2/BJXYhajZoZXUmTVACBIZAjRMvc7MVVAHyOwqzwNmvEF0ORtN60k6gJyygj/QhiG7iM8FHM3VmT9XOWHboYxGwBwvPgsElPuxNaO36OFtom3TKwRgpRGdihfKJKT2A/1TySDKUh1xxm2kTNn9WZyQxfVWFw/u3U5zm613hbX+Wb0GP8Rolp1l8Cy6mGM2Rf4BymgaK6H5ZxBlg0Atg6iR1KYTAUoQgBLIXDpHSB2AhDUuPr71QFHSDzWKeSUEYFLmaHOCv5rytSGj2Bqw0eqPCbfVIjRJybjSNEJGDkTHjn9InZ0XuUdA2sB0+vFaJn59BnkdO9HacxqsEbOrBEcYzEHtZaT5fPWesgEqLWhuLBjNdS6MFhMZbjwz2oAQMaRbfhtSg80v/kB3DhpAYJC6klrbDUwxqB/v6vYAMCVmGVV9C+o/AspTJPJ5H7Bf5M3gQsv8usH4r1eW5ZX/jb/x8dKEr0J/YwlApc5scCS/oDMG5DDVCHY1PFbDK53EwDgXEkqis0l1dzL+zDGEHlwJ5StWgKAmMYkaseiAelYMTJTlmKzCqUSLW59ELe9+QtuenEFbn51FYZ/fggtb39EPObctv/D6d+/ls7I2lChAaDo5cOyeb4rqvxv2bLFfdsaPg8ogq3bFu9+jnQPrv6YQIecMiKwEJoBBISCfx/g4+aviesc5PHFURGmUCAyeae4nZPYzzo7UyZfdnJE0DYTyDphxPyeaZjfMw0rRmbKWom+fouu6DftW4xYeFjcV5h5XkKLakGFeZnm4/l2dWdSIxT8Ax6YiQnwWYEbMq3bFsdaenXFgHKJqCB5BCNlCTllRGAhNAO8nFn9sTIjmAVJbUKNENKYAGA+fUacnUkjmJwj1JdN2dcIMW3tU1RZJ4z4ZniG7KJmFYls1hlth/NCsyd+XYBLe36V2KLqERoAQlb0ktoUh1SMlplMJvffAwqbz5Ej3n3cSnLGqoVqyojAw8eaARzx1Jk37OQxEoIb4Y34Z6Bg0v/OEtKYOd372Y1fMibt5sc2BbiwrDOE+rKxa2JF2YwVIzORe9GE3IsmzO+Zhpi2aoxZHiNLPTMAaHzDHTjx6wIAwLWzyYjvNVxii6qnUgOAzLB9ndeuXYvo6GgMGjTI9dff1ikrOeemdYSnIaeMIHwEFVMhVKlHgdmArXm7Kt2+tyAFnfXtAAAapsa4mP9J1qXJpzGTgKIicAaDOIJJrDHT6WTpVMgBW9mMx36Nw4pRmcg6YQRgTWvGtFVj7OpYMIW8nsPGNwxFmzsm4uSGRVKb4joyC0YqlUpER0cjO5vvws7OznZft6zzHj5KppKhvE6AQ04ZQfgIaoUKP7ZbhEOF/9ntf/nCHABAiuE4UgzHxf2rrv6GfxM3SyY462h2puCcqbp2RuTBnSSZUQ1MYY2crRyXZeecrRiVibFrYmXr3OaeP8pPd5Cpfc6Qq2ZZaWkp1q5dC8ADumUKHf+/MctN6whPQ04ZQfgQHXSt0EHXym5fYkhHbM7dLn5Q/1/2emQYs1FgNuC7rF/wSOy9UphqRaeDum9vPn1ZjinlCElm1JCKaU0hpZl1wihLoVnh9byY9COW3aHEyGUXoY+Ol9iqaqigWcblGa0pTRnIZDDG7CJjGzduxIgRI1y3i9mka0ndX1bQz1SCKDNYFxkXUjujva4lpjV6HM83Ho/nG4/HHx1XiLe9fvEjLM5YiTxTgWT2CcKyMYWZiC7IsJPMQJFvdL7KAd45U2DsGvlMpHBEs5sfsG5wHNaMa4LUPeulM6gGCJplAoVj96BgZBIKRibJRiZD0C0DgIKCAmzcuNF1u7RtretF/3rAOsJTkFNGEHNigZkh/OIDumXVEakOx7LWH4nbb6V+ik/Sv5XQIv5Lj+n1UISE2ElmEP5HbIe+eHiDGWGNWov7kuY+KqFFNSTYXh5DQJyNKTHCoPLQ0FAAbkpkMAXAyiVYcjZ4yMKaU+rbH7F1CjllRGBSUa9MwId0y6piYL2+WNhiJtpp+ajUNWOuxBZZsU25yCEC4csIIrNyex6ZQoH/LTmJtsOfAQCUFuRg6VCG/LTTElvmHEEeI3RNX4Su6Wsnk2F4JUUWz7HgmHkEIVp2bY1nzlcDNDbZ1gyT1y7rU5BTRgQmgl7Z9EJ+sdUt8+FUpi131R+I+6KGSG1GleQk9gNnkT4K4UuotUzUMhOkMuQqMNvj8Q/stn8a3xppB39HmSFPIouqhjEGFqzkl3A1FM35RhXLOYMsomUAPFffFlkuVxKU4Jnz1YBYmyr2a27q4Por5JQRgYugVyYsAkI60w9SmbJEp7MTl73WNpEcs1rAGMPY1bF2IrNCN6Ycojm2qIK0GPebCc0GjBH3/fHGEPzfffVgMRkltKx6KtaZySVa5jFCekhy2Sj5SsLJAsmdsgULFiAhIQHBwcG48cYbsW/fviqP/+STT9CmTRtotVrEx8fjueeeQ0mJ/OYAEj6Go3Smn6Qy5UbFGZnC8HK/+sKrYwSpjCn7GiGiKR9+yDphRFGO/FKZCqUSA175AfE3Dud/CJVzvnyQuawJVthHy2Q0gsnXoboyx0jqlK1atQrTpk3Dm2++ieTkZHTp0gWDBw9GVpZj7ZT/+7//wyuvvII333wTx48fx9dff41Vq1bhtddec3g8QdQY23SmD45gqo4fr23GxZI0qc0QYQoF6p9Ith9enp3Nz8h0ZZGZI+INHHVjLhqQjpXjsmT5fNz21no8stHq1JTkZUtoTc2oGC3jSsyyem7lZEtNySlPW6ZQLMUhkjplc+fOxYQJE/Doo4+iffv2+OKLL6DT6fDNN984PH7Xrl3o27cvHnjgASQkJGDQoEG4//77q42uSYWhBDAUO1588G/J/7FNZ/oJ7W00zfYWpEhniAMqDi/Pjm2OrJBYl5acxL784PMA/MOqOMw87VCZOKZJjjS7+X4AwP6vnoPhqnx+KDjFpoSrcOwe2UhkAMCWLVvct6Vgl1e/kELLvQ61vOT1ZINkTllZWRkOHjyIgQMHWo1RKDBw4EDs3r3b4X369OmDgwcPik7YuXPnsHHjxiq7UUpLS5Gfn2+3eIsGdwNhQxwvAyaTY0bUPTeF90TX8tFLcoTp9VD37e32eUwpR5AdGoecxL4BV58mDDOfuL2h1KbUCF39RuL6mrGN8f199bB/yYsSWlQNQfZSGebj+eDyjJJFzWz1ytySxdBaJUtg9t73Yi+t1y7lk0jmlF29ehVmsxmxsfZCiLGxscjIyHB4nwceeADvvPMO+vXrB7VajRYtWuDmm2+uMn05e/ZshIeHi0t8fN0qS+uCgb6dqj8u6ShQROFbwgtEquoBACyQn7NiKyzryhJdkCE2DQC8cxaIjQOMMai11tCDXFOYANBt3EzEdhogbhsNefjvx49wcuNXElrlHEEqw1YiQxCXlSJqJoxdEnD5+sEtrOucvJsuAgnJC/1rw7Zt2zBr1iwsXLgQycnJ+Omnn7BhwwbMnDnT6X1effVV5OXliculS5fq1EbGgO2fAfmbHS9X1tXp5QlPI9MvNld4/vwsGC3yEwcShGVdWXgx2iS7SQGB2jhgK5UhjGCSIypNMIZ+sA33LbuIoR9Z09e7P3sSeZdPSmiZcxhjYOHqSuKy5uP5khT/28piuJzCtB21dH2rB6wiPIFkTllUVBSUSiUyM+2LqjMzMxEXF+fwPtOnT8fYsWMxfvx4dOrUCffccw9mzZqF2bNnw+Lkl3FQUBDCwsLslrqGMUCvdbIEW4+rquaM6s9kgh/IYtwcbv2Fn2W8JqEldQNjDIqQkEqNA4E2wklIYwoYizlZO6YhMU0Q26Ev7pi3R9z384S22DX/SQmtco6tuKxt1EwKPJLCZDaiYVmO67gJ7yOZU6bRaNC9e3ds3Wr10C0WC7Zu3YrevR3XmBQVFUGhsDdZqeS9fTl/+Dijqpozqj+TELUOiOvKr2ekAIZsn34BHo8bBRXzf3Ggio0DgdyZCci7E9OW6LY3ouPIl8XtU5u+wtKhDAVXzklolWNsxWWltsM2heky9crPcX0LwJGaqxyQNH05bdo0LF68GMuWLcPx48cxceJEGAwGPPooPydt3LhxePXVV8Xjhw8fjkWLFmHlypU4f/48/vjjD0yfPh3Dhw8XnTO5U9OaM1uo/szLCPIYAnNifT5ipgT/95Fvlm4wuTewTesI3Zy5/QfJ3jHxFL7WiSnQ47H3cc/iE3b71j/TTSJraolET69HxpU1esG6bjjipkWEJ1BVf0jdMXr0aGRnZ2PGjBnIyMhA165dsXnzZrH4PzU11S4y9sYbb4AxhjfeeANpaWmIjo7G8OHD8d5770n1EGqNUHNWEyfLUMJH0wgJ0Oh5MdnUJH5bEJL1UbkMI8fXkg38dywu9NgBtULSP/26Q6eDum9vGJOsHdzGpN18KlPvm69dbRBSmEU5FiwakC61ObUivHEbPLzRgj+mD0X6wd9hLMrHyY1fos0weaYzBQzPJkP/SSIvnRGk8NwYpFqwZcsWDBs2rPbXrne7dZ2TX71pIMK4QPkJWU5+fj7Cw8ORl5fnlfoydzAU8+lLgG8S0FMrsXfhOD51Oae8Q3h6oc86ZRNOv4qNudsAAC82egLPNnpUWoPqEI7jgKIicAYDsmObAwCiCzKgCAmR2DLvUVZkwfyevAbYlH2NoNH5Tk/X9UsnsO4Jq4xLbMebMPTD7RJaVBmO42B4NplX+bdB2S4MujldvOKYcRyHjRs3Ijc3FwAwZswYqFQu/Ng60BQoTQUi7wba/exZIx0w5BLwuwF4ORJ4P6b64/2FmvoevvOXShDeRhCTFfDh3y8LW1g7lDflbsOcy1+Ky7bre6q4p+9h280pEEgpzIr4Ql2ZLfXi26Lf88vE7cx//8G5bSsltKgyjDHo5yWKI5gEvNmN6TFpjNJU/v+cde4bVQPOlfH/5wWWak2NIaeMIGrKokSgtNAnnTO1QoUZ8VMAAP8WncL89KXi8viZV2QpleE2NoPPxTFOPvjauYKvyGM4o+XAcRj3m/U9uXfhJAmtcQxTMOg/SazcjenFp9oj0hht11nXTXVfczqkPGAdRIr+DiGnjCCqwrYT89pp4N1QYGG5c1ZmcLzI9It/ZNQwPNvwUTwWOxKPxY7EQ9F3AwBKLKUwwf+cMkGYViA7tnnARMwqymOsGJkJzuJbj1uhVKLH4x8CAEoLclBakCOxRZVx1I1peCXFa+8xj0hjRN5hXfeCiGwoeR1V4qfVvgThIRgDJh4EFnXn5TEA/v93Q53fJ64rfx+FvD59ItXheLHxE+K2wVyE77LXSWeQFxDGOAmF/4FU9C9Ey7JOGJF70YQVozIxdk2sJIXortK0/3048DU/gulKylYk9B8psUVOCFJA0VwPyzkDX2dWagG8IJshpDBXrVrlzlk8Zg/hPvL61iAIOaJQAE8nA28UWKNmVZGRAsxv61OpzpYHbkHfwyNxy9EH8E/ePpj9RLNIiJZFZ8pP86quYYxh7OpYRDTlf3v7YhozNDYBuvr8TE+LqzMevQBjDPr3u0p2bY/BlXnuXIRLUKSMIGoCY0BQCO+cGZ0oxXMcX3d27bQ11dmkL695JsPohE6hRYy6vqjyf6H0MgDg/pNT0TOkC0ZFD3N4vyAWhEER/RCi9I1oE2PMLjLGcVzAxAaYgmHsmlixE9MXCW/cFkXX0rHjwwex8+OH0WnUK+g29m2pzaqMz76pbAzP/weIGiWdKQQ5ZQRRKyp2ZFZkygn7VKeM9c0YYzjYdT1OFZ9HgbkQn6Yvxd95fCfmvsLD2Fd42Ol9J8Y9iDeaPOMtUz1Kbv9BiExO8qk0XiAT3a43rhz+C5zFAs5ShsP/9w7a3z0VQaGRUpvmHF8KSDKbhJmFBpNLDTllBOFJhFSnrb6ZjFEwBdrqWgAAvmszDyeLzuGT9G9RbHGsbnyh5DJOl1zAtrw9UF9W292mghL3RA1GQlAjKJjMKiPKOzFNKUf4TkyDASyAdMsEVo7L8rm6ssSH30W7EZORd/kkNr80AACw8fl+GPDKD4hs3kVi6xxjeDYZ+kU9wBQ+8jzXux24/ofUVhAgp4wgPE910TQZ00bXHItaznR6+9LMH/H6xY9wvPgsjhefrXT73PSv0U3fAb+2XyyrL36htiw7NA4AkJPYD5HJO6026nSysteT2Bb8Z50woijHAl2kNMrzrqKNiIU2IhZhjdsg//JJ5F06jvWTuuLhjRb5PA7bYv/0Yhie45X+ZWMf4RPI7OcsQRBy5p76g/B8o/F4PHaU3dIiuIl4zCHDfyiVYcEw0+tF3TLz6TPIDo1DVkgsskJikZPYF5zFP9UsK8pjLBqQ7pMSGQBwyxs/IqrNjeL22oebykbiRBSUbciPXhG7MH0B4Tm8Ki+R3kCEImUEQdSYcFUopjV63OFt+aZCtEu+3eFtcoAxhsiDO5HTvR9MKfbDl00pR3CtbaLfRs+EQeVph3hnOeuEEd8Mz8DYNbFQa5nPPM6Iph0w7KMdWD6cH7puyL6EZcMUGPebCQpl3UtQVIcgKFswKklqU2qHOZ//Xynv0YOBAEXKCKKukbGgrCdR+MAXO1MoEJmchJjCTMQUZiK6IAPKVi0BVI6e+ZPQrBAtm7KvkSiRkXvRhPk903xuDJNCpcb9q6/Z7Vt+pwppB3+XyKIK2P4Z+MrTGn2/1BYQ5ZBTRhB1zZxYYEn/gHDMfAHb2ZiKkBDUP5EspjVtMSbtBmcwODiDb8IYg0anwGO/xokjmAAg7VCZz+mXBYVGYtyvZXZSM3+8MQSmMscNKlLhTXV/wj8gp4wg6gK1jtcoE0hN4jsyfWQkUyBRKXpmIzSbk9jP72rNBO2yidsbivt8LVoG8BGzRzZa0HnM6+K+7+7SYvmIYPz301zpDCsv+AfK68pKvPf+8bXXkKgMOWUEURcwxovGvpxp3TcnFpgZYr9QBE0W2EbPWHS0XUPAtbaJsBQWgjMY+MUPXi/GGHSRCp8eWi7Q8b6XEB7fTty2GEuxf/HzKMm7Kok9FdX9vRktc3kouYh//QDxRcgpI4i6gjFAH20fMauIIC5LyAahIcDfa80qdmX6Khp9GO756hge+tmAQbOsWlt/vnmndEYFV4iW1WEXZsWh5CaTqfYnoe5L2UBOmY9gKKGAik8iRMymF9ovthE0P2R3frLUJrgFUyiqrDVDkf850r6YwrRFFaxDw24DEdX6Bn47SCuZLZVmYdbh0yoMJRdwKVoW1Ij/X1nPc4YRLkFOmY/Q4G5gwGRyzHwSQUy24iLgJ7VlGqYR1x86NQ3nSi5JaI37VFVr5i8IwrKAb6cwbelw7wtSm8Bj04VZ1ylMlUplFy0z13Z4u06ekxECEXLKZIwuGOjbybqddBQokldzEeEJ/KQ7U6NQY1pDq4ZZ/yOjcKHksoQWuY9drZneN6c0VEXFFOaKkZkoK7KgrMji01EzAMg4sg3GEgm7ZysW/NdhCrNitMzl18583TMGES5DTpmMYQzY/hlwZZ3UlhAex1F3ph/Ulo2PG41bw/tAw/joS1qZf6dp/QHbaJmgXeaL+mUC4Y3biOs5Z6RLo1dMYXIl5jp9Pm0FgGudwmQ2wrulqR60iqgt5JTJHMYAfbDUVhAex1F3ph8QrgrFijYfIyG4MQBgb0GKtAYR1cIYw9jVsXbaZQCvX1aU43tRs8jmXaDWhwMANr14E8oM+dIZY5PCLBy7B4Znk+tsvFXFgv9apTCDW1jXs1d52DKiNpBTRhBS4cODy6uDlX8bfZy2RGJL6gZfclJqgqBdNmVfIzv9skUD0n0yatYo0ZrK+7/7wpFz7rA0hgQpoGxnHV1kOWeA4bnkOnkuK6Ywa3ln6/rldz1jEOES5JQRBOFxXmr8BACrc+Zv+Isshi2C4r8uUoFG3TR2twlRM195zDe/thpN+90nbq+f1BUl17O9bgdjDLo5XRC6uq9XBpW7NcO08Rv8/+Z8gKtlowDhMcgpIwjC43QP4TtUOHB4N/Vz7Cs4jEOF/8Hsyx/2Op0okWFKOeJXI5hssZ2TWTFq5ksRs1teX4Puj80Rt/OvnJXEDsYYmFYJ/SeJXr1urV+n+ndb13PWe9QWouaQU+Zj+MjnIeEKfvTihih14vqijO9xz/GncOex8Wiyvx/u+O8xlFmMElrnGowxROzYIm774wgmAWdRM1+LmHUa+RJC45pLbQaPl4PGtS7219s4jeYCzxtE1AhyynwM0irzYxYlAn7yJa9VBGNTh28RpYpAs6B4u9tSDMdxtuSiRJa5B9Pr7UYw5XTv5zMOiisIUTNfjpgJcBb5RGnrqhPTrWJ/xoB6QzxuE1E7yCnzAXTBQFd+4gtSzpBWmV+h1gFxXfn1a6eBRd39xuvurG+Lw4kbsbPLaqT13I3/En9HhIrvikstTZfYOteoOILJlHLEL9X9bRHmZFaMmPmK0Kyl3BnbOfcRaQ2xoa46Md0q9rfl9MMA5x8/EH0Ncsp8AEGvjPBDGAMmHgTqt+K3M1L8Qq/MEfVUYWJ0YNo53+3w4pX+d0pthldxFDEzFnM+ES3TRsQBAArSz6DomoQ/BrzUielWsT9nU1ZQsMd9Y4haQ06Zj+DO3xkhcxQKYKJvz4qsKQ/H/g8AcN1cgH/y9vnEl7oj3Pri81EYY1BrrY/bV9KYt735i7huuCrdhAlvd2K6RIfN1vW0D6SzI4Ahp4wg5ECAfMlPiBsjrt9/cioa7++DxEPD8cu1P8VlX8Fh2X/R28IZDPziQza7ilrLfC6NqY2IRUhsgtRmAJCuE7PGMBUQ1JRfp0iZJKikNoAgiMAhQhWORS1mYuLZ6eK+TONVPG2zLRx3qOtvUCvk/xGVHct396m6dkbkwZ1gCv/9rSukMYtyLFg0wDfrAmWBnH+DNX4NOPskoGlY/bGEx/HfTw8/JgB+kBN+zIj6A3Gm+99I6bYBd0Xejj6h3cVFINeUh/FnXpHQymrQ6aDu29tulynlCK61TfRbmQyBimlMwk3k9nkuRMoISSCnzAchWQzC19EqgxGtjsTClu9gTbvPxeV097/EY/68noT7jj+NSWdm4Jdrf6LEUiqhxfYImmUxhZmILsgQuzEDQSajIr5QVybYd2TVLIktqYzhlZQ6e/7k/roQlSGnzEcgWQwiENAptdja8Ttxe3fBIazL+QNPn52OFgduRrFZPm98xhiYXg9FSAjqn0gOKJkMtZaJA8yzThhlX1fGmfmuwku7f8GxX+ZLbA2AIAUUzfm5t3VZ7F9rAVlbDIc8awxRI8gp8xFIFiOACPBft211LbC67eeYEDsGHXWt7W47bDgukVVVE2gyGUJtma8w9MMd4nr6wd8ltISHMQb9+13r5NxuCcgCQFBj67rR+/NCAx1yynyIAGnQI5b0D3jHrG9Yd7zVdCp+77gMl2/YJe7nZFeAY8VWJiPQ0kYrRmZ6XAjVk4Q2aI4+U74CAFzevxFFORkSWwT7Yn8PPnVuC8jqOljXfXAcmq9DThlByAFbZf+MFKDMP4dduwJjDK2CEwAAFhk7Zbb481xMAdsUZu5FE1aMypS1MxpczxrZW/1gA5iNZRJaY4+n68o8pqOX/49nzkPUGHLKfBQZf/YRrsAYMN6aYvGnOZieQMWUAIAPLn8psSVVoNPZzcW81jYRlsJCv9UxY4xh7OpYRDTlZUvkXlvWuOcdqJfQUdy+nnpMQmtQua6sRIZ/75ZiqS0IOMgp81GoA9MP0ej9dg6muzwYcxcA4EDhUUw5+7a4vHnxE1w35UtsHU/FuZjm02eQHRqHrJBYZIXEIiexr985aUzBMHZNrNRm1AiFUoW7Fx217pD4+a9YV1YXszBdJuIOqS0IWMgp8yGoA9PPCaA5mLXlvqhhUDM+IvPjtc3isiRzFZ468waOF52RhZPDFArUP5EsRsxsMaUcsXPScvsPkoXNgYauPi+K+uvkROSeP1rN0XVMsE20LL24TmZh0nvMtyCnzIegDswAIIDmYNaGUKUe/9fmU0yPnywuAjvy92Pgv2PReH8ffHx5CT6+vATLs36C0WKSxFa+EzMJMYWZoo6ZIyfNmLTb76Uz5IhGX09c/+Xpzlj7aHOc3PiVJLYwxqCfl1inszDdksUgvI78Z5gQdlAHZgBAL7JD+oQlok+YdWZgj5BOuOv4E3bHzE3/WlxvoI7B7RH9vGafLYwxQM9HQBiAyOQk0QHjDAZxNBPhfe764l9snz0aF3asAQAUZpzH7s+exJGV72Lk8lSv28MUDPpPElEwKonf4QH/SZDFyM3NFWUxVCr6uvcFKFJGEIRP0iO0E9J67saJ7n/i2YaP4uGY/+HhmP8hTh0NACgwy6eDVRCaFRYBf6kt8yUYY7j5tdW4Z/FJ9Jm6WNxvyL6EwsyLEhllXfVEJ6bbshiEZJDrTBCETxOq1OPFxtaI2bmSS8jwEdHL7NjmUHXtjIgdW3iHjaKkXiO8cWuEN26NFreOxYq7ggEAZqNEhbrlnZiWcwZrCjNY6dYp6b3km1CkzIcxlEjeQEQQsuWP6ztxuviC1GZUpsIwc6EBwB8K/+UuIusIpSYImpB6ktpQlwr/hG9BTpkP0+BuksYgiIpoFXzUY33On7j56P0wc7UcM1PHCMPMKzYA+Grhf0UR2W+GZ6CsyOKTDmZ++hnpLk6BLQLklPkcumCgbyfrdtJRksYgCFteaDwBbbXWQvqvMn6Q0BrHMMagCAlBZHISojPPift9scasoohs7kUT5vdMw8pxWT7zWMoKrwMAzv65TFpD6ghfeR0Icsp8DkEW48o6qS0hvEKZofJCH7BV0kHXChs7fCtu/3h1s2y/lIQGAIHs2OZWkVmZ2uwIpmB47Nc4MWIGAGmHymSt8G9L85sfAABc2LEG2+c8ILE18OgsTIBkMXwJcsp8EMYAfbDUVhBeYU4sMDPEfllII5iqI0ihwQuNxgMAjhefxY78/RJbVAV+UmMmqPtP3N5Q3Gcs5nziMbQe9qS4fn7bDyi+niWhNZ7pwBRkMQCIshiE/KHuSz/ABz7ziNqg1gFN+gKpSY5vz0jhRzA9nUyaZlVwT/3B+ChtCQDg/pNT0SOkE3QKLRgYlEyBHqH2gq4apsLd9QehgSbG0enqDKHGjDMYkNt/EEwpRwDwNWacwQAWEuJVe9yBMQa11vqeXDQgHY26aTBmeYysuwHjOt2E+5ZdxNqHmwIAfnmqI8as9LJj5uEOTEEWY9WqVR40kqhryCnzAwZMBg4soe9nv0EYTl5xxBLH8YPKr53mHbMyAxDkO1/Y3iYhuDE+THgVL16YDYCfm2nLX3m7K93n8/TlOJy4ESrm3Y9GxhhYeY0Zl50tisvm9h+EyOQkWTs0FVFrGRp10yDtUBkAaxpTo5P3YwiJaQJNSD2UFV5HSV42zm9fhWYDRnvt+kIHpigi66FzEr4FOWU+ijAHM+WMdQ6mXiu1VYTHYIwfUF6RicnAu6H8+qJEYMoJfjQT4ZAHYkbgtnp9cNhwHGWcEYVmA7bk7kR9dT2741Zf3QATZ8Z1cwE25mzDiPoDJbGXMQZER0PVtTNMKUf4qFlRkTgdwBdgjGHM8hgU5ViwaEA6AD6NqdZysncSRq1Iw3f38M/1pX2/edUpA2DfgUkZkICEnDIfRSj4Dx8qtSWEV9HogbiufKTs2mlKY9aAWE0UBmn6i9tjoodXOua1+KfRMXkIAOCaKddrtjlCSGdmh8ZJaoc7+GoaUxWsQ+cxr+PIyvfAFO6Jt7qL4ZUU6D9JlPXzRXge+ontw9DfagDCGDDxIFC/Fb+dkQIYsqkz000iVOEYHnkbAOCNi3MlG2Yu4A9fxEIaU8BXujE1+nDpLl5eVwaUDycvoYaeQIOcMoLwNRQKPo0pYNuhuaQ/OWYu0l7XUlxPONAfaaWZElpjxRe6Fx0hpDFtuzF9SbtMCioq+3uiC9Mtcn+T7toBCjllBOGLaPR8h2ZFUpP4iBlRa6Y0fAQaZtXZ+uyKPIREcxL7gfNRCRTGGHSRClG/LOuE0SeiZZISXCFaVirBa1+W7v1rEgDIKSMI30To0JxeyC8v20R1KFrmMse7/wF1eeflhZLL0hmi04kjmMynzyCnez+fjTAJETMBX5mPefbPZbBIoO0lizmYsY+Xr5CL4G3oGScIX0Xo0NToAX003wAAUJ2ZGwQrgvB6/CQAwI78/ThY+K8kdjDGEHlwJ5St+JSqKeUIuOxsn3XMKs7HXDEqU7aPJbJ5V3F9/+LnpTFC8i5M369p9FXIKSMIf0CInAlQnZnL3BTWU1xfeGWFZHYwhQKRyTvF7ezY5j6n8i9QcT6mnNOYDRNvF9evnT4goSU8kteVEV6FnDKC8BeqqjOrKERLOKWNrrnYibk59x/kGK9LZgvT6+1GMBmTdvO6ZT6IMIbJF+gx/iMAQNaxJBTlZHjfgIpdmFLUlRGSQE4ZQfgLVdWZEbViWqPHxfVP0r+t4si6RdAsi848J5kNgUjTfveK66sfbABTWYlXr1+prowCZQEDOWUE4U/Y1pk5mghA1IjW2mYIYrzG1ubcfyS1hTEGZqPozxkMlM6qY0JjE9BuxGRxuzT/mveNsCnrohRm4EBOGUEQhAOWteZTWGllGdiUs002X4q+XFvmS9w4cT4UKnX1B9YVlMIMSMgpIwiCcEADjVXGYfyZV7G/8Ih0xuh0flNbJuBLQrLmsmKvX1MW0hiE1yGnzE8wlFCDHUF4kpbapnip8ZPidnqZdDV6/lJbZiuNIecOTAGLyQgAOP7LfGkMIGWKgIOcMj+hwd1Aj/FAYRFgKK68kMMW4JBemUtMbfgI+oX1kNoMAJVry3yRikKyckcX1RgAcGbrcoktIQIFcsp8GF0w0LeTdTvlDBA+FAgbUnkZMJm+kwOaObHAwkSgtJAcND/BHwr+V4zMRFmRRbaPo+N9LwIAjIY8lBZel9YYIiAgp8yHYQzY/hmQtwno2rLqY5OOAtnXKXoWUKh19rplGSnAu6G8oOzCRMBH5ylKxQvnZ2Ne2tdSmyGSHdscOYl9fW4uZkV1//k902RbX9Zy4MPiuiHrooSWEIECOWU+DmNAiA44sATI31x5ubLOemyDuyl6FlAIumVvFFhHMAlkpACLutMboAZ00LUCABRbSvBR2hIMPDoWO/L2S2NMhYJ/U8oRn5uLKaj7C44ZAKQdKpNlfZlGHy6un9r0lYSWgLTKAgRyyvwExgC9tvISXc8+xWlL0lGgyLuaiIS3YQwICgGeTuYFZd8oAOrzTgYyUkjpvwZMj5+MDe2tEbLjxWfwyKkXUGop87otYsF/QYb9XEyDweu2uIOg7j9xe0OpTamWqDb82K0Tvy2U1A7SKgsMyCnzc4QUp7PomaGEmgICAkFUNigEmJgstTU+BWMMXUPaI7nrr3g8dhQAoIQrg5EzSmaPIiTEbi6mL+qWMcag1sq/vbD10CfEdUP2Je9eXGqtsmtrvXs9gpyyQKBSFC3YelvFlGbYEPsuTh/7nCdqApP/F6EcidVE4bX4p6U2Q4Tp9VB17QyAj5b5um6ZXGk58BFxfe0jzXBu2w9eu7Zk45aUIeUGBHnpgoQAOWUBSMWuzYrYdnFS3ZmfQ52YLjP+9Kv4LH0Zlmb+CBNn8vr1hVSmgK9FynwFhVKJ+F4jAACcxYysY0neNUCKcUth/cuvraz7axF2kFMWgDhKaeZvdtzFSXVnfs6cWGBJf3LMaojK5ktqR/5+vH/5C7x+8SN0TB4iWY2ZQE5iP1gKC3mpDNvFR15buXZgAsBtb/6Czve/AQDgzGbvXlzqFCbhVcgpC1AcNQbYdnHa1p0RfkZFqYzUJCr4ryEqpsLP7b5Av7AeGBN1p7i/wGzAyuzfvG+QTiemMM2nzyA7NA5ZIbF2S05iX95Zk6HD40sK/6w8ZHVy4xeweNExo3FLgQU5ZYQdorMWXP2xhI8iSGW8bDM2SIZf2HKlZ2gXrGr7GT5u/jpOd/9L3P/axQ+RWXbVq7YwxhB5cKfomDnClHIE2aFxstQ08yWF/9hON4nrF3d6uQCeykADBnLKiGqhDk0/ROjGFKAUpkvolFrMb/6muJ2YMhzXjLletYEpFIhMTkJMYabdEl2QYeesmVKO4FrbRNk5ZrYYizlZRvQAoEHX28T17e+PkfXzSPgu5JQR1eKoQ5MaAPwAtc4qKkuaZS5zb9QQPBpzn7jd+dAw5Bive9UGYS6m7cLLZiTZaZqZT5/BtbaJsk1nLhqQLtvaMsYYbpn+s7hdZsiTxhD5PTWEByGnjHBIdR2a1ADgBwhpTMJt3k14HjeGdhW3Ox0aCqPF+x2ZFRE0zeqfSLZzzLJD42SjbabWMjTqphG35aruDwDxN1rrCNc/0xW7Pn2iiqPrBhKR9W/IKSMc4qxDkxoA/AzSLPMYq9t+hmZB8eJ2woH+2JIrD6eXKRSofyLZLp1pTNoti0kAQl2ZL6j7M4USoXHNAQCGrFSc2rwY2Sf21v2FqQMzYCCnjHCKw9FN1ABAEA5RMRX+6bwS7bQtxH1rrm6S0CJ7hNqz6Mxz4j65RMt8Rd2fMYYRC1Iw7GOrVtmFHWu8cl3qwAwMyCkjXEYGn+WEJykzkJismyiYAn92+g4vNBpfvkdezyVjDCw6WvaTAORaVwYAal0oYtr3QbMBY7x7Yfn7rIQHIKeMcBkq9vcz5sQCM0OoE9MD1FdHAAB2FxzCGxc+lpWDIddJAL6kWQYA+ugmUptA+CHklBG1QhdsVf1POUPF/j5PRSFZgMRkPUCcOhoAkGvKw7dZa3Gh9LLEFtljOwlATilMX9Ess+W/nz7G+X9Wy+I5JHwfcsqIWiE0ABB+gtCBOb3QXkyWcIuB9fpibdsF0Cm0AIB+R0ZhX8Fhia2ywWYSgCnliCwK/n0NbWQDcX377NH4bWpPCa0h/AVyyohaY9uwRz8O/QBBSNZWTJZwCwVToHdYIjroWon7lmf9JKFF9lRMYYpzM+kPusa0G/EMuj/6vrh97fQBWExG71ycXia/hZwywi2orowgnPNzuy8wNGIAv35tC+alfY2NOdtwoOCo5A4Q0+srzc2U4ygmuaJQqtBp1MsY9X26uM9bzx1plfkvkjtlCxYsQEJCAoKDg3HjjTdi3759VR5//fp1TJo0CQ0aNEBQUBBat26NjRs3eslaAqhcV5Z9nUYw+R30InoExhieintQ3P4obQkmnHkVdx1/AvsLj0homeO5maaUI8jp3k8WX/hy7sC0RRVkjTBfOfxXFUe6CWmVBQSSOmWrVq3CtGnT8OabbyI5ORldunTB4MGDkZWV5fD4srIy3H777bhw4QLWrl2LkydPYvHixWjUqJGXLQ9sKtaVVRzDRNEzP4A6MD1Gj9BO+L71PPQK7YobQjojVMl/sV4py5bYMhvtMptRTFLKZPhaByYAqLUh4nrmv//U2XVIqywwUEl58blz52LChAl49NFHAQBffPEFNmzYgG+++QavvPJKpeO/+eYb5OTkYNeuXVCr+T/chIQEb5pcY4rKnI9YUTCGYLWyzo8tLjODc1J8wMCg1bh2bInRDKbk0KuDEnv+qyyeI4xg0mv5Yy1VfLnrNNa3oCeP1aqVYodZqckMs8UzxwarlFAo+GPLTBaYqkhX1ObYIJUSSheONZotMJqdH6tRKqBSKmp2rCIYqriu/BzMjBQUGfKd1pmplQqoy89rMltQVsV5bY81WziUmsxOj1UpFNCoan+sxcKhxEPHKhUMQSr+/c5xHIqN7h/bU9cD37e8AcFqJUYefwa7Cg7i6bPT0ULdHM2DK0sreP0zQhMM7Z5tKKzfWDyHQm126zPC1b/lu5ZEYnE/vumk2GiCBhqnx9bmvBXx5GdEyzuexpkNC3F09fuI7/M/xLS5AYDnPyMUNh+3RWUmMIVjm20/I2yPVzk4vaPPCGY0QQu+dK3Y5v1ke2xt/u5tjzWaFQAUMJotKCqzVDpWqs8I2/eOlEhmRVlZGQ4ePIhXX31V3KdQKDBw4EDs3r3b4X3Wr1+P3r17Y9KkSfjll18QHR2NBx54AC+//DKUSqXD+5SWlqK0tFTczs/P9+wDcUL7Gb87ve2WNtH49lFrp073mX86/TC/sVkkVj3ZW9zuN+dv5BjKHB7buXE41j/TT9weOHc70q4XOzy2VUwI/pg2QNwe8flOnM4qdHhso3paJL1yq7g96svdOHI5D1wo0Kin9XnnLEqkH7jd7r4Pf7MPe8/nODyvVq3E8ZlDxO2J3x3E3yedRw8uvH+HuD5tdQo2Hs1weuyxdwaLf2Sv/fQvfkx2Lklw8I2BqB8SBAB497fjWLHnotNjd7x0C+IjdQCAj7acxFf/nHN67JbnbkLr2FAAwIK/z+DTraedHvvLpL7oEl8PAPBt0nnM3nTC6bE/TOiF3i3q8+v7UjHjl/+cHvvNIz1wa9tYAMC6Q2l4ca3zlNmCBxJxx/gdwLu8zd3f/RPFcDzC4cP7OmNkD36k0D+ns/HY0gNOz/vOXR0wrncCAGDf+Rzcv3iP02NfHdoWTw7gFfH/TcvDXQuSnB479bZWeO721gCAM9mFGDTPeZTiiZua47Vh7QAAadeL0f+Dv50eO7ZXU8y8uyMAIMdQhu7v/un02HsTG+PjUV0AAMVGc5V/98M6xWHhg91RTxUm7ht84kGwS+35jaAisOymUJzsh1vbxHj9MyK4rATbba4X3zjK7c8IR0TqNUiebv2cqPgZoTIxPAV+8G6/9//G0dmDxdvk+hnRJ6sYg8rXNz7bE51Gv4ruj8zy+GdE5+hQcbvHu3+i2Emuy/YzQqD7zD9h5Cr/iHb0GdFYm4GdA3lH3PY9veCBRNzRme86/f2/TEz6v2Sn9jr7jMjt1gbo0hIr9lzEhn3HAMjjM8L2vSMlkqUvr169CrPZjNjYWLv9sbGxyMhw/Id07tw5rF27FmazGRs3bsT06dPx8ccf491333V6ndmzZyM8PFxc4uPjnR5L1A7GAIXSLC5M4fxXCOEj0CzMOuedps8iIaixuM3FH+OXmAuwdNgOLuKKhNbx0LugduyOvge7ou8Wt4+umu0T9XCE/GCcRO+c9PR0NGrUCLt27ULv3tZfeS+99BK2b9+OvXsrD3lt3bo1SkpKcP78eTEyNnfuXHz44Ye4csXxB5mjSFl8fDzy8vIQFhbm8D6ewN/Tl47SAoZiIG4E/8szfzOlL30ufalUQGUu5lX9ARRNSwPUDtKXah3UKiWlL2t5rO3fJ8dx+O3qP0gr4z+3soxX8WXW9wCApS3moX/YDV7/jOAMBhRG8vW5rGULhBw9AF2w2uGxFfFk+tJYbMHivnz68pE/YxAWpoZay8AYk/1nRN7Ff/H7lG4AgIc3mGG0wLPpyzILCkbykSHl9zeCBTvOEAmfESaTCStXrgQAjPjffVCpKifHHKYvS89De6Q1OIUOxd3zHB7ravryrRwFPryuwNNhFnwYFTjpy/z8fISHh1fre0iWvoyKioJSqURmpr1gZWZmJuLi4hzep0GDBlCr1Xapynbt2iEjIwNlZWXQaDSV7hMUFISgoCDPGl8DavMC19Wxth+SnjzW9kPdFs7B+93ZsbU5r7vHCl+anj5Wo1JAU8Ngc10da/th5pFjbV5D3VwnDTRN+vKCs+WobD6oq0OpYDV+D9fmWEUdHctY3R07PHqA3b5/CvbiePEZBKkUld7f3viM4NRhKOnamReTPXMWxb0HQJucJDojnviMqMmxZSbrF/3SgXzTV0xbNcaujpX9Z4Qyzlof+NvUGzD8s4Me/bu3dQV1GhVYLV4TnUbl0CmzRfyMsPDHMTh/P9Xm7972WOFlUSsV0Gkq318OnxFSIln6UqPRoHv37ti6dau4z2KxYOvWrXaRM1v69u2LM2fOwGLza+LUqVNo0KCBQ4eMkA5DCTXv+SSOxi5VhMYw+SWCRIbUXZhqLUOjbvaf51knjFgxKlP2KcGg0Ehx/doZ5/VWBOEMSSUxpk2bhsWLF2PZsmU4fvw4Jk6cCIPBIHZjjhs3zq4RYOLEicjJycHUqVNx6tQpbNiwAbNmzcKkSZOkegiEExrcDfQYD5AOpY9hO3ap4mI7hknmX46Ea/ASGTultaF8BuaUfY0wZV8jRDTloxu+IpExcvklcf3Snl8ltMQeuTu0BI+kTtno0aPx0UcfYcaMGejatStSUlKwefNmsfg/NTXVrlYsPj4ev//+O/bv34/OnTtjypQpmDp1qkP5DML76IKBvp2s2ylngBsm0Pe3z2E7dqniIkA6Zn4Lk0GzB2MMGp0CGp0CY9dYm8F8QVBWF2VN+187e0hCS+zZsmWL7J87QmKdMgB45pln8Mwzzzi8bdu2bZX29e7dG3v2OG+XJaRDEJU1FAM9JgCnL/OOmaBZRvg4ah1go2MGQzagj6aOTT+GMxgAnU5SR00QlM06YRSjZRqdfN9zjDG0GfYUTm78AinfvYlOo16BUi1NeY1SqURERARyc3ORm5sLs9lcbV0ZIS2Sj1ki/AvGgBAdcGCx1JYQHkdIbQrMiaWImZ+THdscuf0HSRphEdKZvoTKRuX/zB9LJbODMYZBgwZVfyAhG8gpI+oECp74KRq9fSNAahIfMSsz8As5aL6PTgd1X2uzlTFpt2Rjl3yVLvdPF9dL8hyPDfQWckhHEzWHnDKCIGqOEC2zLfqfE8trm80MARYmUneHm5gcact4EcYYInZsQXSmcyV6omo0+jC0HvqE1GYQPgg5ZQRB1A7G+FoyR9IZGSnAou4UMXMJ/jkbe2qa5AXZjDEwveO5pwRB1B3klBEEUXsqSme8UQDUb8XflpFCOmYucFO4ddblngL5dO0R7nFo+fTqDyKIcsgpI+ocCpr4KbbSGUEhwEQSy3SHFxtb0133nZiEU8XnJbSGcJfg8Ghx/cKOtRJaQvgS5JQRdc6AyeSYBQRUUOwWWkUwpsdPFrdvOfoArhpzJLTICmcwSJ5SFfAFrTIA6DZuprh+ajO1oxM1g5wyok7QBQNd+WktSDkDZF/n9csMxeSgBQT0IrvEE3Fj8GjMfeL226nzsSB9BQrNBgmt4qUxchL7wlJYKIlDJGiVAb6j7M8YQ6vBjwMA0pO3SGwN4SuQU0bUCYKQrECDu4GwIfxCkbMAgPTLXELBFHg34Xl00PH1eT9d+x2zLi/Eumt/eN+YCtIYppQjyA6Nk0S3zBe1ygCITplCpZbYEsJXIKeMqDP0WvuxSwJJR3mVf8LPEBT/Aaviv6BfRjpmtWJOwst4Ku4BtApOAAAUmr3fOCFKYxRkQNW1s7hfDrplvpLC1EfFS20C4WPQvAWizhCiZYIDZijhI2aEnyJ0ZL4bym/Pia18TJO+/DFUf1Yl3UI6oFtIB2Qbc3C65AJmXvoMj8WOhEbh3YgLYwwsJASRyUngsrORHdvcq9e3xdfGLRGEK1CkjKhTGOMjZnotoA+W2hqizqmo+F+R1CSSy6gFbbRWJ+ibzNWS2SEH3bKKKUxfiZYBgMVkhKmE3vdE9ZBTRhCE56ioXyYsthMAiBrzdIOHxPWP0pZIaIk9UnVj+lrBv1IdJK6f/WuFhJYQvgI5ZYQkGEqoG9NvsdUvs12IWsMYw2fN3xK3/7q+G2aJxzAB0g0q97WC/+B6Vq2y0gJ5yJsQ8oacMkISbLsxe4yncYkBRcXif2oAqJLuIR0BAMWWEow9NQ1bcndIY4iDQeWcQVqpDl9IYbYa9BgAgLNI70wT8sflQv/Tp0/j77//RlZWFiwVvlFnzJjhtmGE/6EL5rsxk47a7085A9wwATiwhOq/AwJHDQBxXfm0p0ZPb4IKNAlqiKcbPITV2Rtw1ZSLLIkEZYVuTNuC/9z+gxCZnATmxdesYsF/UY4FukiFV22oDYLTeGj5dHS5/w1Z2ELIF5ciZYsXL0a7du0wY8YMrF27Fj///LO4rFu3zsMmEv6C0I2Zv5lf8jYBrRrzt6Wc4VOZhJ+i1lXdAJCRwndtkr5ZJRhjeD1+EnqGdgUAHCg8gl9ztqLI7P0/GMYYWHS0KJFhSjnidXmMiinMRQPSZR0xi2zRFQCgsKkvk4otW7bI9nkieFyKlL377rt477338PLLL3vaHsLPEboxBQ4sBsKH8usDJlO0zG8RGgAqdl5yHO+IZaTw20J3JtWgVSKoXA7jp2u/46drv2Ni3IN4o8kzXrdDiJhlh8Z5/doCai1Do24apB0qAwCkHSqTrURGk953Y98XUyW7vlKpREREBHJzc5Gbmwuz2QyVitSw5IpLkbLc3FyMHDnS07YQAYheaz+OiURl/RhHDQBBIcDTydSdWQOeinsQ/6s/WJTJyDJek8wWqVOFQrRs4vaGktpRGyzGUhTlZHjuhDUMeDHGMGjQIM9dl6hTXHLKRo4ciS1baJYX4T4VxzERAYjgrBFV0lHfGp+1eAujou4AAPx4bTOKzYH7K4YxBrVWfpGxiqh1YeL6+e0rPXZewyspNU5FSu1EEzXHpRhmy5YtMX36dOzZswedOnWCWm2vMj1lyhSPGEcEBvR5QRA1J0wZIq7/mZeE4ZG3SWgNUR1BIfUQHt8WeZdO4MI/q9DhnmfdOJkCiuZ6WM4ZYDlnAEotQLDSY7YS0uOSU/bVV18hJCQE27dvx/bt2+1uY4yRU0a4jMHmh78umBw2gqjI3fVvx4sXZgMAigI4UuZLRLfthbxLJ5B9Yg+MJQaog12LDDPGoH+/KwpGJXnYQkIuuOSUnT9/3tN2EAQA+9mYfTvxqU1yzAjCik6pxa3hvfFX3m6pTQHAyyzI4U905bgsjF0TK8tUXYd7X8CZP5YCAM7//X9oPXSC6yeT38MjPIjb4rEcx1GLLeEWgn5ZRZKOUuE/QcgdKZT9BXxl7FJE0w7i+q75T0hoCSF3XHbKli9fjk6dOkGr1UKr1aJz585YsYJmexG1p6J+2ZV1UltEEL7B4owfpLmwTiepVpmAL41d6nL/dAAAU1ANGOEcl5yyuXPnYuLEiRg2bBhWr16N1atXY8iQIXjqqacwb948T9tIBACCfpleC+iDpbaGIORNPVU4AOB48VlclUDhX9AqI2pOy9sfAcCPW9ryxhBpjSFki0s1ZZ999hkWLVqEcePGiftGjBiBDh064K233sJzzz3nMQMJgggwysrnKap1VFDohDebTMZP1zYDAE4VX0CUOtLrNtjWbsmlrkzO6KIaQ6kJhrmsBOkHf8eVw3+jQZdbpDaLkBkuRcquXLmCPn36VNrfp08fXLlyxW2jCIIIYObEAjNDgIWJNKneCbZO2MgTk3Cm+IJ0xgDISewHTgav1YqRmeAs8qwrU6o1eGBtnridcy5FOmMI2eKSU9ayZUusXr260v5Vq1ahVatWbhtFEESA4Wg2ZkYKML8tOWZOeL7ReHF9edbP3jfApq7MfPoMcrr3k6Tg37bYP/eiCd8Mz5C1Y9b85gekNoOQMS6lL99++22MHj0a//zzD/r25T9Ik5KSsHXrVofOGkEQRJXYzsbkOGBRInDtNL8s6s6PYqJUph3TGj2OnfkHsLcgBV9nrsb0+MlQK7w305AxhsiDO3GtbSLMp89YC/713p3OwBjD2NWx+GZ4BnIvmpB70YQVozJlK48hwJlNUptAyBCXImX33nsv9u7di6ioKKxbtw7r1q1DVFQU9u3bh3vuucfTNhIEEQgI45aCQoApJ4D65VH3jJTKg8wJAMDgejeJ6wkH+uOnq7979fpMoUBk8k6vXtOxHQyP/RqHiKa8UypneQyufGjlga9fIjkpohIuS2J0794d3333HQ4ePIiDBw/iu+++Q7du3TxpG0EQgYpCAUxMtm6XGewX+jIDAIyKHma3PfncW9iUs82rNsglGsUUDGPXxIrbK8dlydLpqd/C+j2ZumuddIYQsqTGTll+fr7delULQRCE29h+2QvF/8KypD85ZgAiVOE42f1PfJDwirhv/JlXsSA9MDUjfUFMtsO9L4jrhuxUCS0h5EiNnbKIiAhkZWUBAOrVq4eIiIhKi7CfIDwFfe8GMI6K/wVSkyilWU6IUo8HY+7Cly3fE/fNurwQpZYyCa2SBl8Qk2WModmAMVKbQciUGleF/vXXX4iM5Nuw//777zoziCBs6TEBOLaCz2YRAYZt8b9AmYGPmgnrAOmZlXNn5K1Y1+4L3H38KQCAhfN+16rc9MrkPA+TIBxRY6dswIABDtcJwtPogoGuLYGUM8Dpy8ANE4ADS+h7NyARiv8dIThnTfryzhu9QdBeJ60kUW7/QYhMTpLUCRJSmFknjGIKU6OT53vjwo41aH/3VKnNIGSES/GHzZs3Y+dOa8fNggUL0LVrVzzwwAPIzc31mHFEYMIYsH8x0Koxv51yhgaTE+U4SmlSKlNaZDIHU8AXUphceRTz6qn9EltCyA2XnLIXX3xRLOg/evQopk2bhmHDhuH8+fOYNm2aRw0kAhOFAjiw2LptKAEMxVRjFvAIKc3phcDLmVJbI2v2FR72ynVoDmbtaX8XHx1TBXtX042QPy45ZefPn0f79u0BAD/++COGDx+OWbNmYcGCBdi0aZNHDSQCF9sMSIO7gbAhwIDJ5JgFPEJK01laM4BRM7W4/sDJZ7Ez/4BXrltxDqackKM0hibUQ7NK5fWwCA/gklOm0WhQVB6i/vPPPzFo0CAAQGRkJEliEB5DFwz07WS/L+kokH2dj5pR5Iwg7NEo1FjY4h1xe2eed5wyW3L7D5LcCaoojVGUY5HcprrA8EqKXz6uQMYlp6xfv36YNm0aZs6ciX379uGOO+4AAJw6dQqNGzf2qIFE4MIYsP0zIH8zcGWddb8QNaPIGSFCgrIid9W/HQ9G3+Xdi8q8rmzRgHRZDisvK8xF3uWTtbtTkAKK5nyU2HLOAJTSbFh/wiWn7PPPP4dKpcLatWuxaNEiNGrUCACwadMmDBkyxKMGEoENY4BeC0TXqxw1A/jIGTUBEJgTS4KyNgQrgrx6PTnWlam1DI26acTtrBNG2Qwr10U2FNfXPdWxVvdljEH/flcPW0TIBZem1zZp0gS//fZbpf3z5s1z2yCCcIQQNRMcMEMJHzEjAhihEzM1id9OTQIM2YA+muQxJEBuWmBCtMxYzGHFyExZDSvX6MPQuOcduLxvAzizCenJf6Bh4u01P4G8nmrCg9CYJcJnEKJmei2gD7buN5RQgCQgEToxbbsw58QCCxOB0kJKaQL47Moy5JkKpDZDMhhj0OgUshxWfsvrP4rreWmnJLSEkBM0ZonweRrcDfQYD1iotCLwYIyPjNlql2WkAO+GBvSMzM76tuL6D9nrJbREHlQcVi4HlJogNO13HwDg+PrPJLaGkAs0ZonwSYTOzKSj/HbKGaD9WBrJFJAIEbMyA++EZaRYbxOEZQNMPuO+qKF499LnyDbmYOalz/FUgwelNomogvzLJ7Fn4WT0epqcs0CHxiwRPolQY2Yo5udjnr7ML+SYBSiMAUEhwNPJvBNmOyMzQHm7yXN4+ux0AECeqQDhqlCJLSIq0mfqYlzcuRYAcOLXz9HziblQqNTV3IvwZ1z66vr222+xZs2aSvvXrFmDZcuWuW0UQdQExoAQHe+ECSOZhFmZAZixIgASlrVhQHhPcf31ix959dqknVUzgkLqYfhnyeJ26u5fJLSGkAMudV/Onj0bX375ZaX9MTExeOKJJ/Dwww+7bZjUmM1mGI1Gqc0gakjyYuCOl4CLmUBuPpCbx6c4CR61Wg2lUim1GYQXqacKQ4vgJjhbkoorZVmwcBYomHdCyHIYTO4rRLboKq6XFlyTzhBCFrjklKWmpqJZs2aV9jdt2hSpqaluGyUlHMchIyMD169fl9oUopZ8PhG4xPei4Eo6oKDvAzvq1auHuLg4+qIMIJ5vNB5Pn52BPQUpiN/fF/GaBngi7n48FjfS8xcrF5A1pRyxCsjq5RmxXDkuS3JZDAHGGJr0uQepu36W2hRCBrjklMXExODIkSNISEiw23/48GHUr1/fE3ZJhuCQxcTEQKfTyeKPlqgZZgtQXP5yJSQASqorA8D/0CgqKhK7pxs0aCCxRYS36KRvi3BlKPLMvCzGpbIrmJ46F9NT5+Jcj+0IUmiqOUPNEQRks0PjAPDvOzl9egqjl7JOGEVZDI1OThYShItO2f33348pU6YgNDQUN910EwBg+/btmDp1KsaMGeNRA72J2WwWHTJfdy4DEbMFYpVkcBBA2TorWq0WAJCVlYWYmJjASmUGcH1T8+B4HO62EVnGa/jzehJeu/iheNuSjFXorG+LvmHdPZbWtP0Rm5PYD/VPJIPJpOtGEJOd3zNNalMIwiku/bXMnDkTN954I2677TZotVpotVoMGjQIt956K2bNmuVpG72GUEOm0+kktoRwl5OXAvq72CHC+zrgaiUXJQa0iJ1aoUKjoFg8HPs/pPXcDQ3ju/tmXV6IMSen4I/rOz13MZsZmObTZ5DTvZ9si/5XjsuSrW1E4OKSU6bRaLBq1SqcOHEC33//PX766SecPXsW33zzDTQaz4XDpYJSlr6JglmL+4tKABmMuJMVAfW+VuuAuK78+rXTwKLu5KWXMyfhZfQL64FIVT0AQKbxqsfOzRhD5MGdULZqCUAew8ltEVKYgHyU/W05sORFqU0gJMatuHJCQgI6d+6MIUOGoGnTpp6yiSBcgjGgTbzUVhCygDFg4kGgfit+OyOFn4tZZgj48Uujou/Aqraf4cbQLnVyfqZQIDLZg9E3DyKkMAWMxZwsomXaCL4OT6UNkdgSQmpccsqKiorw+OOPQ6fToUOHDmLH5eTJk/H+++971EDCc9x888149tlnJbn2W2+9ha5du7p1jm3btoExVnVnrE0wyGIBZrzJX1cGn7uEt1EogIlWDSjMieVHLwXw+CVHpJVmePycvhKVXTQgXRZpzDbDnpT0+oR8cMkpe/XVV3H48GFs27YNwcFWMaiBAwdi1apVHjOOIGzp06cPrly5gvDw8Bodf/gMkHENKCqtusZMSmeVqGM0evu5mALC+KUAhpV//H9+ZQV25h+Q2BrvodYyNOpmLbNJO1QmuzQmEbi45JStW7cOn3/+Ofr162f3i6hDhw44e/asx4wjCFs0Gk21OluKcpX/ihQWUY1ZQCLMxZxeyC8vZ1pvC/BI2diYu8X1qWffls4QLyOkMCdubyjuk0O0jCAAF52y7OxsxMTEVNpvMBh8JmwdqJhMJjzzzDMIDw9HVFQUpk+fLn4Y5ebmYty4cYiIiIBOp8PQoUNx+vRpAPxrHhcXZ9ddu2vXLmg0GmzdurXG11+xYgUSEhIQHh6OMWPGoKCgQLzNYrFg9uzZaNasGbRaLbp06YK1a9eKtztKXy5evBjx8fHQ6XS45557MG/eXPTqXA/dWgPdWgOxkfxxG39ZgRbNK1/3kUcewfbt2/Hpp5+CMQbGGC5cuFDbp5WQM7ajl2zHLwV4CvOm8J54rfHTAADmJaV/ucAYgy5SIbui/+KcK1KbQEiMS3+JPXr0wIYNG8RtwRFbsmQJevfu7RnLiDph2bJlUKlU2LdvHz799FPMnTsXS5YsAcA7KAcOHMD69euxe/ducByHYcOGwWg0Ijo6Gt988w3eeustHDhwAAUFBRg7diyeeeYZ3HbbbTW69tmzZ7Fu3Tr89ttv+O2337B9+3a7GsTZs2dj+fLl+OKLL/Dff//hueeew0MPPYTt27c7PF9SUhKeeuopTJ06FSkpKbj99tvx3nvvAeCFY5UK/vs4LfUstm1dh0+//A2//mp/3U8//RS9e/fGhAkTcOXKFVy5cgXx8dQt4LfYdmVmpAR8CvMmm/mYgUbFon8psXWKlw5lyD6xV0JrCClxSTx21qxZGDp0KI4dOwaTyYRPP/0Ux44dw65du5x+gRLyID4+HvPmzQNjDG3atMHRo0cxb9483HzzzVi/fj2SkpLQp08fAMD333+P+Ph4rFu3DiNHjsSwYcMwYcIEPPjgg+jRowf0ej1mz55d42tbLBYsXboUoaGhAICxY8di69ateO+991BaWopZs2bhzz//FB375s2bY+fOnfjyyy8xYMCASuf77LPPMHToULzwwgsAgNatW2PXrl347bffxGMYAI6z4M3ZS6HXh6Jba/vrhoeHQ6PRQKfTIS4uztWnlfAVhHTmu6FSW0IQIuFN2tttJ817DHd/+Z9E1hBS4lKkrF+/fjh8+DBMJhM6deqELVu2ICYmBrt370b37t09bSPhQXr16mWXYu7duzdOnz6NY8eOQaVS4cYbbxRvq1+/Ptq0aYPjx4+L+z766COYTCasWbMG33//PYKCgmp87YSEBNEhA/hxP8LonzNnzqCoqAi33347QkJCxGX58uVO6xRPnjyJnj3tf+lX3GYMaNYsAXq94+sSAQiVWFTiSlkWis0lUpsRsCiUSjy80YJGPYYCAIzFBdXcg/BXah0pMxqNePLJJzF9+nQsXry4LmwiZMzZs2eRnp4Oi8WCCxcuoFOnTjW+r1qttttmjMFSrrReWFgIANiwYQMaNWpkd1xtHL/aXpcgAhkVs47bmpf+DV6Lf9rj1+AMBsAH5ghLPaScMYZu42Yi7cAmSa5PyINaR8rUajV+/PHHurCF8AJ799rXKuzZswetWrVC+/btYTKZ7G6/du0aTp48ifbt+dB6WVkZHnroIYwePRozZ87E+PHjPRZxat++PYKCgpCamoqWLVvaLc5qvNq0aYP9+/fb7au4XRM0Gg3MZrNLdhM+TgAX+gNAG21zcf27rHUwc57/O8iObY7c/oNk2d0od4V/IvBwKX159913Y926dR42hfAGqampmDZtGk6ePIkffvgBn332GaZOnYpWrVrhrrvuwoQJE7Bz504cPnwYDz30EBo1aoS77roLAPD6668jLy8P8+fPx8svv4zWrVvjscce84hdoaGheOGFF/Dcc89h2bJlOHv2LJKTk/HZZ59h2bJlDu8zefJkbNy4EXPnzsXp06fx5ZdfYtOmTVX+0rVYrNIYwndEQkIC9u7diwsXLuDq1asURQskArwDU8EUeLvJswCAPHMBRp+YjCJzsfsn1umg7mtt+jIm7ZbVuCUBORX7EwTgolPWqlUrvPPOO7jvvvswe/ZszJ8/324h5Mu4ceNQXFyMnj17YtKkSZg6dSqeeOIJAMC3336L7t27484770Tv3r3BcRw2btwItVqNbdu24ZNPPsGKFSsQFhYGhUKBFStWYMeOHVi0aJFHbJs5cyamT5+O2bNno127dhgyZAg2bNiAZs2aOTy+b9+++OKLLzB37lx06dIFmzdvxnPPPWcnaFyRw2eAy1lAmdEqKPvCCy9AqVSiffv2iI6OFidUEH4KdWDaMSJyoLi+u+AQWh28FSWWUrfOyRhDxI4tiM485655BBFQMM6FmLKzL0mA/2M8d06+f4j5+fkIDw9HXl4ewsLC7G4rKSnB+fPn0axZsyq/2An5MmHCBJw4cQI7duwQ93Ec74AVOvju7dYKUCor7/dH6P1tQ2mhtQPzjQIgKLBnDv5rOIXB/z0sbr/QaDyea/S42+flDAZkhcQCAGIKM8H0+mru4X3KiiyY3zMNADBlXyNodNJptl09fRC/TekBfXQ8Ri53/uOQKzGjYGQSACB0TV+w4Ko/xEwmE1auXAkAGDNmDFSqasrJS84DB5sDCh3Q21C7B1ENr2cDs64BUyOAT2I9empZU5XvYYtLkhjnz58X1wWfTu5FnIR/8tFHH+H222+HXq/Hpk2bsGzZMixcuNDuGGFQuZC2tFj4iBkAHL8ItGsKu5mZtigYNev5JbYv6pL+wNPJAf1Cd9S3xsUbdqDp/v4AgI/SluCJuPuhVzoYj+EiHMc5+zOTDVIX+xOEyz8Jvv76a3Ts2BHBwcEIDg5Gx44dRRFSIvDo0KGDnZSF7fL999/X2XX37duH22+/HZ06dcIXX3yB+fPnY/z48ZWOY8wqKKtSArryQFFJGXDoNHDolOOlqpmZhA9TMYVZ5tlogC+iYiq8n/CSuO3peZhU7E8Q1eNSpGzGjBmYO3cuJk+eLAp97t69G8899xxSU1PxzjvveNRIQv5s3LgRRqPR4W2xsXUXo169enWt78MYHx07fhEoqkaaSZiZqaQfzv5FRRFZipYBAMZEDccrFz4AAOSa8tw/oU4HVdfOMKUcgSnlCF/sL7MUplDsL6QwCUJKXHLKFi1ahMWLF+P+++8X940YMQKdO3fG5MmTySkLQJo2bSq1CbVCcMycDSm3TXESfopGz0fLMlKsBf8aeTkM3katUKFXaFfsKUjB8+dn4d76Q6FWuPQ1AcBa8J8dStMyCKImuJS+NBqN6NGjR6X93bt3h8lkctsogvAGtinNiosisOYzByZCtIyw476ooeL6wozv3D6fbX2WHNOXBCEnXPrqGTt2rEMZhK+++goPPvig20YRBEF4hQBPVzpiTNRwcf2Dy1/iX8NJj51brnVlBCEXXI5Lf/3119iyZQt69eoFgFeKT01Nxbhx4zBt2jTxuLlz57pvJUFIiMVCXZgBATkLAPjI1sb232DYMV4Y+udrW9BR38b1E/pAXRlByAWXnLJ///0XiYmJACAOi46KikJUVBT+/fdf8ThqKyb8gcNngBAdL6tBb2k/hor9RbqEtMOgev2x5foOfJHxf5ja8FGEqVzTcqtYV+YL0hgEIRUuOWV///23p+0gCFmhYLwjJgjOUhemnyJIY1CxfyUGRfTDlut8zd3+wiO4rV4fl89l+wM9J7Ef6p9IBqPCTacYsi+htCAXQaERUptCeBn6qyDcYtu2bWCM4fr16x49VmoEwdkuLaW2hKhTqNjfKWOihiNYEQQAmHhmunsnK09hAoD59BnkdO9HtWUO0NazzuG8vH+DhJYQUkFOGeEWffr0wZUrVxAeHu7RYz2B0WjEV199hYEDB6JRo0aIi4tDnz598NFHH6HIwXBkjuMwY8YMNGjQAFqtFrffPhBnz54Wb7dYHJcdpaWl4aGHHkL9+vWh1WrRqVMnHDjgWeFNog6xTVeWGfiFHAYwxnBHxC0AAIOlyK15mIwxRB7cCWUr/leOWFsmQ1aOy5LMYdRHxyMorD4AwGJyrPtI+DfklAUwZWVlbp9Do9EgLi6uRvWDtTnWXc6dO4fExEQsWLAA9913H9asWYMtW7bg2WefxdatW9GhQwecOnXK7j4ffPAB5s+fjy+++AJ79+6FXq/HsKGDUVrKK8wePsMLzprN1u/s3Nxc9O3bF2q1Gps2bcKxY8fw8ccfIyKC0g4+yZxYYGYIsDCRn48Z4M7ZrIQXxPV3Uue7dS6mUCAyeae7JtUJclL1j27LN8+lfP+WZDYQ0kFOmZ9w880345lnnsEzzzyD8PBwREVFYfr06Xa/+BISEjBz5kyMGzcOYWFheOKJJwAAO3fuRP/+/aHVahEfH48pU6bAYLCOnSktLcXLL7+M+Ph4BAUFoWXLlvj6668BVE5JXrx4EcOHD0dERAT0ej06dOiAjRs3OjwWAH788Ud06NABQUFBSEhIwMcff2z3uBISEjBr1iw89thjCA0NRZMmTfDVV19V+Vzk5eVh8ODBuOeee5CSkoKnnnoKffr0QefOnTFq1Chs2rQJr732GgYNGoTc3FwAfJTsk08+wRtvvIG77roLnTt3xvLly5Geno49O9aJ5y4q4ccyCeOX5syZg/j4eHz77bfo2bMnmjVrhkGDBqFFixa1ewEJ6VDrgCZ97fdlpPBq/wsT+RBpgKJX6MDKy/L/LTpVzdHVI9fmL0HVXw6ogl1rqCD8A3LKakhRmcnpUmI0e/xYV1i2bBlUKhX27duHTz/9FHPnzq00j/Sjjz5Cly5dcOjQIUyfPh1nz57FkCFDcO+99+LIkSNYtWoVdu7ciWeeeUa8z7hx4/DDDz9g/vz5OH78OL788kuEhDj+4Jg0aRJKS0vxzz//4OjRo5gzZ47TYw8ePIhRo0ZhzJgxOHr0KN566y1Mnz4dS5cutTvu448/Ro8ePXDo0CE8/fTTmDhxIk6edK6d9P7776N79+545513kJeXhwcffFBMXc6fPx9Dhw7FhAkT0L9/f3zyyScAgPPnzyMjIwMDBw4UzxMeHo4bb7wRF0/tRrdW1nmZgLXwf/369ejRowdGjhyJmJgYdOvWDYsXL3ZqGyFDhLqy6YXAGwXWmZgA75wt6h6wETPGGJa0mi21GQFFx/89DwAwZKXCXOZ6ypjwTVyfnxFgtJ/xu9PbbmkTjW8f7Slud5/5J4orOF8CNzaLxKone4vb/eb8jRxD5TTihffvqLWN8fHxmDdvHhhjaNOmDY4ePYp58+ZhwoQJ4jG33nornn/+eXF7/PjxePDBB/Hss88CAFq1aoX58+djwIABWLRoEVJTU7F69Wr88ccfosPSvHlzpzakpqbi3nvvRadOnao9du7cubjtttswfTpfRNy6dWscO3YMH374IR555BHxuGHDhuHpp58GALz88suYN28e/v77b7Rp41g7acWKFdi8eTMA4Pnnn8f58+fxyy+/ICsrC0888YR4v0ceeQSvv/463n77bWRkZACoPKczNjYWmZkZUCr5sUwms834JY5Pky5atAjTpk3Da6+9hv3792PKlCnQaDR4+OGHnT52QmYwZu26fDqZrytblAhcO01dmYRXUWmtP2Iv79+Apn3/J6E1hLehSJkf0atXL7v0QO/evXH69GmYzVYHseJ4rMOHD2Pp0qUICQkRl8GDB8NiseD8+fNISUmBUqnEgAEDamTDlClT8O6776Jv37548803ceTIEafHHj9+HH372qeN+vbtW8nmzp07i+uMMcTFxSErK8vhOXNyclBQUICOHTsCAH799Vd89NFHuPHGGzF8+HC7CGCDBg3E9GVNYMx+/NLxi4DFYkFiYiJmzZqFbt264YknnsCECRPwxRdf1Pi8hMxgDAgKASYmS22JrDhTfFFqE7yGsZiTrNg/PL6t1Y6iAklsIKSDImU15Ng7g53epqhQJ3Fw+kAnR1Y+dufLt7hnWC3RV1DSLiwsxJNPPokpU6ZUOrZJkyY4c6Z2U7nHjx+PwYMHY8OGDdiyZQtmz56Njz/+GJMnT3bZZrVabbfNGIPFSZ2PyWRCcLA1z1hWVmb3mG1TqcnJyWjZku8Gi4vjhS0zMzPRoEED8ZjMzEx07dpV3FYwPo1ZVAKUlAFR0Q3Qrl17OxvatWuHH3/8sZaPkpAdMq1/8jZCTVmeuQBrr26ym43prywakI5G3TQYszzG63VwjDE06jEUaQc2efW6hDygSFkN0WlUTpdgtdLjx7rC3r177bb37NmDVq1aQalUOrkHkJiYiGPHjqFly5aVFo1Gg06dOsFisWD79u01tiM+Ph5PPfUUfvrpJzz//PNOa6zatWuHpKQku31JSUlo3bp1lTZXRVRUFMrKypCZmQkA6NevHz744AMUFxcjLS1NtGXXrl14/fXXxZFgzZo1Q1xcHLZu3SqeKz8/H3v37kXv3tZ0M2N8GjNYw2937tYXKUdO2nVknjp1Ck2bNnXJfoKQGz1Du4jrG3O2eey8nMEgK60ytZahUTeNuJ12qEzSLkwiMCGnzI9ITU3FtGnTcPLkSfzwww/47LPPMHXq1Crv8/LLL2PXrl145plnkJKSgtOnT+OXX34R03wJCQl4+OGH8dhjj2HdunU4f/48tm3bhtWrVzs837PPPovff/8d58+fR3JyMv7++2+0a9fO4bHPP/88tm7dipkzZ+LUqVNYtmwZPv/8c7zwwgsOj68JCoUCI0aMwMKFCwEAn376KQ4dOoSQkBB06tQJt99+O7Zv347HHnsMn376KW677TYA/K/TZ599Fu+++y7Wr1+Po0ePYty4cWjYsCHuvvtu8fy33XYbFiz4HB2a8Y7Z/Q8/h8MpezDlhVnYsuMMvv/+//DVV19h0qRJLj8GgpATEapwjI8dDQD4/fo/OFdyySPnzY5tLqsB5UIH5sTtDaU2hQhgKH3pR4wbNw7FxcXo2bMnlEolpk6dKspeOKNz587Yvn07Xn/9dfTv3x8cx6FFixYYPXq0eMyiRYvw2muv4emnn8a1a9fQpEkTvPbaaw7PZzabMWnSJFy+fBlhYWEYMmQI5s2b5/DYxMRErF69GjNmzMDMmTPRoEEDvPPOO3ZF/q4wY8YM9OzZE7169cLQoUNx7NgxZGRkICIiAhaLBa+//jqioqIq3e+ll16CwWDAE088gevXr6Nfv37YvHmzXTr07NmzuHr1KhgDOjQDFIob8OH8n7Fg3qtYsvAdNG/eDJ988gkefPBBtx4DQciJkVFDsSRzFQDgSlkWmgfHu3YinQ7qvr1hTNoNAPz/MhpQzhiDWktpa0JCOBnw+eefc02bNuWCgoK4nj17cnv37q3R/X744QcOAHfXXXfV+Fp5eXkcAC4vL6/SbcXFxdyxY8e44uLiGp9PLgwYMICbOnWq1GbIht9//52LiIjgJk+ezB05coQzm82c2WzmUlJSuIceeoh77rnnPHIdi4Xjyowct/84v5jMHjltneDL729JKC3kuDfAL6WFUlsjObcceYBruLcXtzPvgFvnsVgsnDkzk8uAnsuAnrMUyuu5LTWYuQ87pHIfdkjllt17hbNYLF63YcsbQ7lvh4A7vWWpw9stxSYu787tXN6d2zlLsana8xmNRm7FihXcihUrOKPRWL0Bxec4bic4bpeutqZXy2tZHIfjHDc1w+OnljVV+R62SJ6+XLVqFaZNm4Y333wTycnJ6NKlCwYPHuy0u07gwoULeOGFF9C/f38vWUr4EoMGDcLBgwdRUFCA/v37Q6PRQKPRYOjQoWjcuDHeeustj1ynYkcmQRBVwxgDk0lkzBFyUvcnAg/Jv07mzp2LCRMm4NFHH0X79u3xxRdfQKfT4ZtvvnF6H7PZjAcffBBvv/12lTpYRGDTrFkzfPvtt8jJycGlS5eQlpaG9PR0zJ49G2FhYVKbRxCEDJGTur/F5P4oPMK3kNQpKysrw8GDB+1U1BUKBQYOHIjdu3c7vd8777yDmJgYPP7449Veo7S0FPn5+XaLP7Jt2zZRnZ6wR6FQoEGDBpWEYQmCqD0Tz0yX2gS/h7PwOo37vnxWWkMIryOpU3b16lWYzWaHKuqCwnpFdu7cia+//rrGo2xmz56N8PBwcYmPd7FAlSAIIoBpGczLvFwz1VxwuSZwMum+lBMRCbz4dXAE/ZAMNCRPX9aGgoICjB07FosXL3bYPeeIV199FXl5eeJy6ZJn2rkJggggyHHAewm8VI0gJusp5CSLIRcS+o+S2gRCIiSVxIiKioJSqRSFPgUyMzNFhXVbzp49iwsXLmD48OHiPkHZXaVS4eTJk2jRooXdfYKCghAUFFQH1hMEETAs6c/PxCSVf8+g00HVtTNMKUdgSjkCzmAAs5m2QfAUZpyHxWyCQknqVYGCpJEyjUaD7t2726moWywWbN261U5FXaBt27Y4evQoUlJSxGXEiBG45ZZbkJKSQqlJgiA8h1oHxHXl14Wh5IRHYIwhYscWcZuiZfYoNVZtxPSDW6o4kvA3JHe/p02bhocffhg9evRAz5498cknn8BgMODRRx8FwAuiNmrUCLNnz0ZwcLA4aFqgXr16AFBpP0FIgTCSU8EoqOLzMAaM3wG8Gyq1JX4J0+vtomVyEpGVmohmncX10oJrElpCeBvJnbLRo0cjOzsbM2bMQEZGBrp27YrNmzeLxf+pqalQkBAU4SMcLp/fHqID2sSTY+bz0AtYZwjRsuzQyqUqgQ5jDA27D0b6wd+lNoXwMrLwdp555hlcvHgRpaWl2Lt3L2688Ubxtm3btmHp0qVO77t06VKsW7eu7o30Aa5du4aYmBhcuHBBalMCCgXjnTBbCosAC8eLHDPGwBhD165dJbGP8BBlBn4J8DQbBw5PnH4NBrP76VxGTi9B2CELp4zwDO+99x7uuusuJCQkiPtSU1Nxxx13QKfTISYmBi+++CJMJlOV5zl16hTuuusuREVFISwsDP369cPff/9td4zgaNguK1eutDtmwYIFaNeuHbRaLdq0aYPly5fX+jH99NNPGDRoEOrXrw/GGFJSUuxuz8nJweTJk9GmTRtotVo0adIEU6ZMQV5enlvnBfjGknvuuQfR0dEICwvDqFGjKjWlAMDGjRvw8Mgb0b+bFrf3jsALz9wt3hYfH48rV67g+eefr/VjJ2TGnFhgZgiwMBEoLQw4By1EYf3lsSH3b6y5uklCa7yHsZijejfCa5BT5icUFRXh66+/thPUNZvNuOOOO1BWVoZdu3Zh2bJlWLp0KWbMmFHlue68806YTCb89ddfOHjwILp06YI777yzknbct99+iytXrojL3XffLd62aNEivPrqq3jrrbfw33//4e2338akSZPw66+/1upxGQwG9OvXD3PmzHF4e3p6OtLT0/HRRx/h33//xdKlS7F58+ZqhYWrO6/BYMCgQYPAGMNff/2FpKQklJWVYfjw4WLHLwD8+OOPGDt2LB599FEcPnwY/+xIwuA7HhBvVyqViIuLQwh1lvkmah3QpK/9vowUvs5sZgjflRkgX9haZTA2dfhW3M43F0hojfdYNCAdK8dlkWNGeAXJa8oIz7Bx40YEBQWhV69e4r4tW7bg2LFj+PPPPxEbG4uuXbti5syZePnll/HWW29Bo9FUOs/Vq1dx+vRpfP311+jcmS82ff/997Fw4UL8+++/dlIl9erVcyhdAgArVqzAk08+idGjRwMAmjdvjv3792POnDl2kibVMXbsWABwmpLt2LEjfvzxR3G7RYsWeO+99/DQQw/BZDJBpXL8Fq/uvElJSbhw4QIOHTokjmRatmwZIiIi8Ndff2HgwIEwmUyYOnUqPvzwQ9EJNFuAUlX7Gj8+QuYIxf7GIt75WtKfd8oEUpP42zSBUaDeWd8W90cPxw/ZvyLbmCO1OXWGWsvQqJsGaYf4MUdph8pgLOag0Xk/3Xr5wCa0uG2s169LSANFyqqB4wBDsTRLbX6Y7dixA927d7fbt3v3bnTq1MluYsLgwYORn5+P//77z+F56tevL6YaDQYDTCYTvvzyS8TExFQ6/6RJkxAVFYWePXvim2++sfslWVpaiuDgYLvjtVot9u3bB6PRWPMH5gJ5eXkICwtz6pDVhNLSUjDG7DTugoOD8f/t3XdcFEf/B/DPHfXovYogYAQMSFNEYhSjokEDT/IEY8WGGjG2SJTYUCOK3STGBirBQjSCGoMFNSiIChZURFEQ8ScCNqRLudvfH/ew4aQdit55fN+v171yOzs7O7tL8MvM7AyXy0VSUhIA4OrVq8jLywOXy4WTkxOMjY3h/flgZN1NByB8E5P/v4+A/sj+cHE4wqBLSU04V9nCMmBuw27s9qJu8tgdhQfwpLrt3gyUppaouvUvvz1rIrE68KsqAQAF1/9pISeRJdRS1oKKV4DGIMmcu+Q4oMoTL29ubi5MTER/gRQUFDS6hFXdvsZwOBycOnUKvr6+UFdXB5fLhYGBAY4fPw5tbW0239KlS9GvXz+oqKjg5MmTmDp1KsrKyjB9+nQAwuAvPDwcvr6+cHZ2xpUrVxAeHo6amho8e/YMxsbG4t6GVnn27BmWLVuGSZMmvVU5PXv2hKqqKubOnYvQ0FAwDIN58+aBz+cjPz8fAHD//n0AQEhICNatWwcLCwusWbMWU/z74uCxu7iepcOWV/AcqKoRBto0tvkDVhegtWNf6PTH3qdHAABOaUNwxfEIjBT137rcot4DoXP1vNQM/udwOFDgSa4udv+ZhcL0c5BXbt8/b+0NtZTJiMrKygYtU2+CYRgEBgbCwMAAiYmJSElJga+vL4YOHcoGIwCwcOFCeHh4wMnJCXPnzsUPP/yA1atXi+wfPHgwevbsCQUFBfj4+MDf3x8A3tkUJyUlJfD29oadnR1CQkLeqix9fX0cOHAAf/31F9TU1KCpqYmXL1/C2dmZrX/d2LL58+fjq6++gouLC3bu3Akul4PTJw40KJNazIgs6K3ZHd1UbdntlY+2vHlh/5vZH8C/c5URAACP1r1sl6ilrAUqysIWK0mdW1x6enooKhJdKNjIyAgpKSkiaXVvDzY1FuzMmTM4evQoioqK2LFUv/32G+Lj4xEZGYl58+Y1epybmxuWLVuGqqoqKCkpgcfjYceOHdi6dSsKCwthbGyMbdu2QV1dHfr6b/9X9etKS0sxaNAgqKurIzY2FgoKCm9d5sCBA5GdnY1nz55BXl6eHUNnaWkJAGxrn53dv2PIlJWV0NnaEkzVQzh9JEyr914AITLhoO1v6Hy5HxgweFlb8sbl0FxlhIiilrIWcDjCLkRJfFrTiu/k5ISMjAyRNHd3d9y8eRNPnjxh0+Lj46GhoSESSNRX8b+/VF9vzeJyuSJvHb4uLS0N2traDdYZVVBQQIcOHSAnJ4fo6GgMGTKkzVvKSkpKMHDgQCgqKuLIkSNt0mJYn56eHrS0tHDmzBk8efIEX3zxBQDAxcUFSkpKyMzMZPPW1NTgwYMH6GRhDjkuIMcFaO5jImt4XGWs7tT4H2itJS3dlYRIA/rnQkZ4eXnh1q1bIq1lAwcOhJ2dHUaPHo3r16/jxIkTWLBgAQIDA9ngKSUlBTY2NsjLywMgDOS0tbXh7++P69ev4+7duwgKCkJOTg68vb0BAH/99RfCw8ORnp6OrKwsbN68GaGhofjuu+/Yc9+9exe7d+/GvXv3kJKSgm+++Qbp6ekIDQ1t1XW9ePECaWlpbMCZmZmJtLQ0dkxcXUBWXl6OiIgIlJSUoKCgAAUFBeDz+Ww5NjY2iI2NFbtcQDjlx8WLF5GdnY3du3fj66+/xqxZs9ClSxcAgIaGBqZMmYLFixfj5MmTyMzMxLfffgsA+Prrr1t1nYQQQggFZTLC3t4ezs7O2L9/P5smJyeHo0ePQk5ODu7u7hg1ahTGjBmDpUuXsnkqKiqQmZnJvhGpp6eH48ePo6ysDP369YOrqyuSkpJw+PBhdOvWDYCw9WvTpk1wd3eHo6Mjtm7dinXr1mHx4sVsuXw+H2vXrkW3bt0wYMAAvHr1CsnJySIT2yYkJIDD4TS7AsGRI0fg5OTEBoTffPMNnJycsGWLcBzL1atXcenSJdy8eRPW1tYwNjZmP//3f//HlpOZmSkyoWxL5dYd4+vrC1tbWyxduhTz58/HmjVrROq3evVqfPPNNxg9ejS6d++O3NxcnDlzRuSlCELIh4/mKiPvA40pkyGLFi1CUFAQAgIC2C5Cc3NzxMXFNXlM3759G/yicXV1xYkTTa+5NmjQIAwa1Pwrqba2trh27VqzeXJycmBtbQ1TU9Mm84wdOxZjx45tcn9j9W/M63laKhcQzs+2cuXKZvMoKChgzZo1DYI1QsiHT4HHgYGNAp7cqcGTOzUSm6uMtB8UlMkQb29v3Lt3D3l5eTAzM5N0dVoUFxeH0NDQNhmUL60ePnwIOzs7VFVXo5MVTSpLyIekbr6yn3vkSboqpJ2goEzGzJw5U9JVENuBAw2njZA1JiYmuHI1DRk5gIKiEkC9H7KHurQIIW2ExpQR8g7Jy8vD2toaZubWMDI2w+1c+jdc5rSj9S8JIe8WBWWEvGNczr9zzr2qBm7l0L/hHzwFFcDIUfi9IE24/iWReTTYn7xrFJQR8o5xOICtOaD8v/XfX1WDWsw+dHULldepLqcHKqPqBvsDYAf7E/KuUFBGyHvA4QBdO/0bmFW8oiWXPnj1Jz0NM2y33ZjxL5Nwr/JBm5Qlja1QdYP9CXkfKCgj5D2pazEjMkJBBejo8e/2w/PCFrN2wlr53x/mvjeHQ8C8/XpiRb0HSmVgRsj7QkEZIe8TTXEkO+q6MOcW/pvWjlrLuqt3w5e6Xux29quHb1YQLUpOCIuCMkIIeVMcDqCq324H/a/uFMx+73tzOEpqy1pdRt2i5IQQCspkyvPnz2FgYNDsskVE+tQtN8XhcODr6yvp6pDWen3QfzuizFWCLc+K3V71aOsblUOLkhMiREGZDFm+fDl8fHxE1pecPn06XFxcoKSkBEdHxwbHJCQkwMfHB8bGxlBVVYWjoyP27NnT4rlaKhcA9u/fD0dHR6ioqMDc3ByrV69ukKeqqgrz58+Hubk5lJSUYGFhgR07doh7yQCAmJgYDBw4ELq6uuBwOEhLS2uQp6CgAKNHj4aRkRFUVVXh7OyMgwcPtlh2Xl4eRo0aBV1dXfB4PNjb2+Py5cuN5p0yZQo4HA42bNggkm5hYcEGXfJyHHS35WDX9n+Xb+rVqxfy8/Ph5+fXqusmUqR+UNHO3sQ88XEk+/1ZbZEEa0LIh49m9JcRFRUViIiIaHTNyvHjx+PSpUu4ceNGg33JyclwcHDA3LlzYWhoiKNHj2LMmDHQ1NTEkCFDmj1nc+UeO3YMI0eOxC+//IKBAwfi9u3bCAgIAI/Hw7Rp09h8fn5+KCwsREREBKytrZGfnw+BoHUDhsvLy/HJJ5/Az88PAQEBjeYZM2YMXr58iSNHjkBPTw979+6Fn58fLl++DCcnp0aPKSoqgoeHBzw9PXHs2DHo6+vj3r17jS42Hhsbi4sXL8LExKTRspYuXYqAgADwBcDNbEBVVZ3dp6ioCCMjI/B4PFRVVbXq2okUCjMUvgAwMVE0WJNRchw5LOs4GwsfrpN0VQj54FFQJiPi4uKgpKSEnj17iqT//PPPAICnT582Gjz9+OOPItszZszAyZMnERMT02xQ1lK5UVFR8PX1xZQpUwAAlpaWCA4ORlhYGAIDA8HhcHD8+HGcPXsW9+/fh46ODgCItPKJa/To0QDQbLdtcnIyNm/ejB49egAAFixYgPXr1+PKlStNBmVhYWEwMzPDzp072bROnTo1yJeXl4fvvvsOJ06cgLe3d6Nlqaurw8jICHwBkF8i7pWRD0bdm5gPzwu3H54Hyp8Kx5u1g8CMENI2qPuyJQwj7I6QxKcVXSCJiYlwcXFpk0suLi5mg6Q3VVVVBWVlZZE0Ho+HR48eITc3FwBw5MgRuLq6YtWqVTA1NcVHH32EOXPmoLKy8q3O3ZhevXrhjz/+wIsXLyAQCBAdHY1Xr16hb9++TR5TV7+vv/4aBgYGcHJywvbt20XyCAQCjB49GkFBQejatWuTZa1cuRK6urpwdXFCVMRq1NbWttWlEWnQ2JuY7XDusmc11H1JyNuglrKW1FQAy9Qkc+6FZYCiqlhZc3Nzm+w6a439+/cjNTUVW7e+2YDdOl5eXpg1axbGjh0LT09PZGVlYe3atQCA/Px8WFhY4P79+0hKSoKysjJiY2Px7NkzTJ06Fc+fPxdpnWoL+/fvx7Bhw6Crqwt5eXmoqKggNjYW1tbWTR5z//59bN68GbNnz8aPP/6I1NRUTJ8+HYqKivD39wcgbE2Tl5fH9OnTmyxn+vTpcHZ2ho6ODpKSkjEvOBjPnubj9x3U3SNT6t7EfL3FrLocUJLQ75D37ELpVaSWXkd39W6Srso7Ez3mCUYfMKSXE8g7QUGZjKisrGzQMtVa//zzD8aNG4ft27c32+ojjoCAAGRnZ2PIkCGoqamBhoYGZsyYgZCQEHC5wgZagUAADoeDPXv2QFNTEwCwbt06/Pe//8Vvv/0GHo/3VnWob+HChXj58iVOnToFPT09HDp0CH5+fkhMTIS9vX2jxwgEAri6uiI0NBQA4OTkhPT0dGzZsgX+/v64cuUKNm7ciKtXrzb7C3r27Nns964fO6CgSBGhIZOxffMKqPCU2uwaiRSoazErfypsKQOErWVTr8p0N+Ynmq7s98zKHJkLyuqWWnpyp4ZdaklRRXafJ5EcCspaoqAibLGS1LnFpKenh6KiN+86OHv2LIYOHYr169djzJgxb1xOHQ6Hg7CwMISGhqKgoAD6+vo4ffo0AOH4MgAwNjaGqakpG5ABgK2tLRiGwaNHj9C5c+e3rgcAZGdn49dff0V6ejobbHbr1g2JiYnYtGkTtmzZ0uhxxsbGsLOzE0mztbVl39pMTEzEkydP0LFjR3Y/n8/H999/jw0bNjQ5xq2rgxv4tbV4kPMAdnZd2uAKiVSpP3dZQZrwI+OtZR/xOmGQ9qc4XnRO0lV5J+qWWvq5R56kq0JkHI0pawmHI+xClMSnFX9ZOzk5ISMj440uMSEhAd7e3ggLC8OkSZPeqIymyMnJwdTUFIqKiti3bx/c3d2hr68PAPDw8MDjx49RVvZv0Hv37l1wuVx06NChzepQ8b8Zwuta6OrXrbk3PT08PJCZmSmSdvfuXZibC5eXGT16NG7cuIG0tDT2Y2JigqCgoEbfgmXLuJMGLpeL4hqD9jTcqH15fe6ydja2TNZFj3lCy0GRd4KCMhnh5eWFW7duNWgty8rKQlpaGgoKClBZWckGD9XV1QCEXZbe3t6YPn06vvrqKxQUFKCgoAAvXrxgy4iNjYWNjU2ryn327Bm2bNmCO3fuIC0tDTNmzMCBAwdE5vAaMWIEdHV1MW7cOGRkZODcuXMICgrC+PHjW9V1+eLFC6SlpbFBaWZmJls3ALCxsYG1tTUmT56MlJQUZGdnY+3atYiPjxeZrPWzzz7Dr7/+ym7PmjULFy9eRGhoKLKysrB3715s27YNgYGBAABdXV18/PHHIh8FBQUYGRmhSxdhC9iFCxewYcMGXL9+Hffv38e+vXuwIWwWBg8dBQUlbVqUXJYpqorO9N+O1sWURXVdmADYLkxC2hoFZTLC3t4ezs7O2L9/v0j6xIkT4eTkhK1bt+Lu3btwcnKCk5MTHj9+DACIjIxERUUFVqxYAWNjY/bz5ZdfsmUUFxc3aDFqqdy6sl1dXeHh4YFbt24hISGBnZICANTU1BAfH4+XL1/C1dUVI0eOxNChQ9npNoB/Z7tvbrqLI0eOwMnJiZ2O4ptvvoGTkxPbLamgoIC4uDjo6+tj6NChcHBwwO+//47IyEh8/vnnbDnZ2dl49uwZu929e3fExsZi3759+Pjjj7Fs2TJs2LABI0eObPF51FFSUkJ0dDT69OmDrl27IjR0OWbPmoUfl24TuwzygaLWMplS14VJyLtEY8pkyKJFixAUFISAgAC2qy4hIaHZY3bt2oVdu3Y1m2fs2LEYO3asSFpL5erp6eHChQst1FjYihUfH9/k/pycHFhbW8PU1LRV9Xtd586dW5zBv7HAb8iQIS1OottcGc7Ozrh48aJIGl8AXLsrdpHkQ1bXWlY3tqz8qTBNQUVmB/7fKL8j6SoQ8sGiljIZ4u3tjUmTJiEvT3YGo8bFxSE0NBQKCgqSrso7IRAACWcToaamJtbyVuQD83prWZihcIodGWw1k+cI/8bf8/QwXtQUS7g2hHyYqKVMxsycOVPSVWhTBw4ckHQV3qnrWYC8piuiDqZBWQlw6KwGhpHZRpT2SVFVdO4yQPi9pkLseQg/BJOMhuPoizMAgGX/9wvWWy54o3IYhgH9+JP2ilrKCHnPuBxArd5sJ8rKPJiZW0PfyBr5pUbI/D+Za0Rp3+payxaWic74L2Nc1D6GppxwTdfEktQ3Lqeo90B6s5G0WxSUEfKecThAFzPA6aP/fToDKvXm/S2rAGr5wrFn9T/079QHrP7UOjIs8qPVAABua/9pUVGBvKMDAKA27Qbwv2lsCGlvqPuSEAngcAC5en00tubCQOx6lnC77r/1qakIgznq2iTSSpGjCADIqy7A2eJL6KPpJtZxHA4H2okn8VTdCAB1YZL2i1rKCJECHA4gLyfarfm6sgrQvGZEqukqaLHfR2TOREjuRrGPrb9U2QvnT8A0M7EzIbKKgjJCpESDbs3/fbo1vWY6IVKlg5IxQs2D2O3thdF4WVsi3sH1ujD597LwwuUTGltG2h0KygiRIhwOIMcV/XDp/1LyAfE3/BLnHf59a/qVoEqs4zgcDnSuJEGus/CvEBpbRtoj+nVPCCGkTVkod4A8R67Vx3G4XOhcTXoHNSLkw0BBmQx5/vw5DAwMml2SiEifkJAQcDgccDgckbVBG0W9OUTGcehNFtKOUVAmQ5YvXw4fHx9YWFiwadOnT4eLiwuUlJTg6OjY6HEnTpxAz549oa6uDn19fXz11VdiBXZ///033NzcwOPxoK2tLbK4d33Pnz9Hhw4dwOFw8PLlSza9bl3L1z91C4mL48WLF/juu+/QpUsX8Hg8dOzYEdOnT0dxseiM4o2dJzo6utmyLSwsGhyzcuVKkTz79++Ho6MjVFRUYG5ujtWrVzcop6qqCvPnz4e5uTmUlJRgYWGBHTt2sPvnzJmD/Px8dOjQocXrpTnMZAg9SELIa2hKDBlRUVGBiIgInDhxosG+8ePH49KlS7hx40aDfTk5OfDx8cHs2bOxZ88eFBcXY9asWfjyyy9x9erVJs938OBBBAQEIDQ0FP369UNtbS3S09MbzTthwgQ4ODg0ufxTZmYmNDQ02G0DA/EX/X38+DEeP36MNWvWwM7ODrm5uZgyZQoeP36MP//8UyTvzp07MWjQIHZbS0urxfKXLl2KgIAAdltdXZ39fuzYMYwcORK//PILBg4ciNu3byMgIAA8Hg/Tpk1j8/n5+aGwsBARERGwtrZGfn4+BPXeLFNTU4Oamhrk5Brv7uFyhPOYVbwSfgSM6HQa5AMV3huYepXmOGmGNE+NET3mCUYfMKSWPdKmKCiTEXFxcVBSUkLPnj1F0n/++WcAwNOnTxsNyq5cuQI+n4+ffvqJXcR8zpw58PHxQU1NTaNrTtbW1mLGjBlYvXo1JkyYwKbb2dk1yLt582a8fPkSixYtwrFjxxqtu4GBgVgBUmM+/vhjkYXGrayssHz5cowaNQq1tbWQl//3R1xLSwtGRkatKl9dXb3JY6KiouDr64spU6YAACwtLREcHIywsDAEBgaCw+Hg+PHjOHv2LO7fvw8dHR0AEGnJFEfdW5nX7rXqMCKNFFREFyiXsaWWGnPq5XmMMvB9o2NfOH8C3TtXwZGSt10UeBwY2CjgyZ0aPLlTg5pKBooqFJSRtiMdP+lSjGEYVPArJfJpzevgiYmJcHFxafX1ubi4gMvlYufOneDz+SguLkZUVBT69+/f5CLgV69eRV5eHrhcLpycnGBsbIzBgwc3aCnLyMjA0qVL8fvvv7MBX2McHR1hbGyMAQMG4Pz5803mE1dxcTE0NDREAjIACAwMhJ6eHnr06IEdO3aIdX9XrlwJXV1dODk5YfXq1aitrWX3VVVVQVlZWSQ/j8fDo0ePkJubCwA4cuQIXF1dsWrVKpiamuKjjz7CnDlzUFlZ2bqLqvd7X0Cz+3+4Xl+gvLpcZh9mLcMHAGzJ39u6A6V4agwOh4Nvfhe/JZ+Q1qKWshZUCl6h85V+Ejn3PZczUJHjiZU3NzcXJiYmrT5Hp06dcPLkSfj5+WHy5Mng8/lwd3dHXFxck8fcv38fgHCA+rp162BhYYG1a9eib9++uHv3LnR0dFBVVYXhw4dj9erV6NixI3tMfcbGxtiyZQtcXV1RVVWF8PBw9O3bF5cuXYKzs3OrrwUAnj17hmXLlmHSpEki6UuXLkW/fv2goqKCkydPYurUqSgrK8P06dObLGv69OlwdnaGjo4OkpOTERwcjPz8fKxbtw4A4OXlhVmzZmHs2LHw9PREVlYW1q5dCwDIz8+HhYUF7t+/j6SkJCgrKyM2NhbPnj3D1KlT8fz5c+zcufONrvF6Fs3u/0Gr/9DCDIWLlU9MlLmHudLiB8x7sAo5Vf+HOxXZsFGxEuu4uqkxnts4g38v69+pMVSlr0WRujBJW6OgTEZUVlY2aLURR0FBAQICAuDv74/hw4ejtLQUixYtwn//+1/Ex8c3+sumbjzU/Pnz8dVXXwEQjtfq0KEDDhw4gMmTJyM4OBi2trYYNWpUk+fu0qULunTpwm736tUL2dnZWL9+PaKiolp9LSUlJfD29oadnR1CQkJE9i1cuJD97uTkhPLycqxevbrZoGz27NnsdwcHBygqKmLy5MlYsWIFlJSUEBAQgOzsbAwZMgQ1NTXQ0NDAjBkzEBISwrYMCgQCcDgc7NmzB5qamgCAdevW4b///S9+++038HjiBd11i5iX/W/aprrZ/Wls2QdIQUUYiD38X6vww/My2Y3prv7vH1Z7nx7BUvNZYh9bNzVG3bJL0oS6MMm7REFZC3hcZdxzOSOxc4tLT08PRUVFrT7Hpk2boKmpiVWrVrFpu3fvhpmZGS5dutRgjBogbOECRMeQKSkpwdLSEg8fPgQAnDlzBjdv3mQH29d1P+jp6WH+/PlYsmRJo/Xp0aMHkpJaP09RaWkpBg0aBHV1dcTGxjbZ9VrHzc0Ny5YtQ1VVFZSUlMQ6h5ubG2pra/HgwQN06dIFHA4HYWFhCA0NRUFBAfT19XH69GkAwvFlgPBemZqasgEZANja2oJhGDx69AidO3cW69x148rqr49JPlB1XZjlT4UtZTLKmmeO3hrdkViSilqmtuUDXlP/D0JpGvBf14X5c4/GX1wi5G1QUNYCDocjdheiJDk5OWH37t2tPq6ioqLBeK+6twAFTaw9VzfFRmZmJj755BMAQE1NDR48eABzc3MAwrcz64+bSk1Nxfjx45GYmAgrq6a7MdLS0tigT1wlJSXw8vKCkpISjhw5IlaLYVpaGrS1tcUOyOqO4XK5Dd4OlZOTg6mpKQBg3759cHd3h76+PgDAw8MDBw4cQFlZGdTU1AAAd+/eBZfLFWsKjPo4HJrdX2ZwOKItY1IyZqqtdVdzQGJJKiKfxOA/ugPRXb3bG5VT1HsgdK6ep25CIvPoV7yM8PLywq1btxq0lmVlZSEtLQ0FBQWorKxEWloa0tLSUF1dDQDw9vZGamoqli5dinv37uHq1asYN24czM3N4eTkBABISUmBjY0NO6WFhoYGpkyZgsWLF+PkyZPIzMzEt99+CwD4+uuvAQjfgvz444/ZT6dOnQAIW4nqgpoNGzbg8OHDyMrKQnp6OmbOnIkzZ84gMDBQ7OsuKSnBwIEDUV5ejoiICJSUlKCgoAAFBQXg84UDjf/66y+Eh4cjPT0dWVlZ2Lx5M0JDQ/Hdd9+x5bx+jRcuXMCGDRtw/fp13L9/H3v27MGsWbMwatQoaGtrAxCOX9uyZQvu3LmDtLQ0zJgxAwcOHBCZAHbEiBHQ1dXFuHHjkJGRgXPnziEoKAjjx48Xu+uStAPhvWUyMPtIpRP73ff2FFQLasQ/uN6Af2lecil6zBOpeRGBfPiopUxG2Nvbw9nZGfv378fkyZPZ9IkTJ+Ls2bPsdl2glZOTAwsLC/Tr1w979+7FqlWrsGrVKqioqMDd3R3Hjx9ng4aKigpkZmaipubfX6irV6+GvLw8Ro8ejcrKSri5ueHMmTNswCKO6upqfP/998jLy4OKigocHBxw6tQpeHp6snl27dqFcePGNflL7+rVq7h06RIAwNpadOXuumtUUFDApk2bMGvWLDAMA2tra6xbt05k/rHXr1FJSQnR0dEICQlBVVUVOnXqhFmzZomMMwOAyMhIzJkzBwzDwN3dHQkJCejRowe7X01NDfHx8fjuu+/g6uoKXV1d+Pn54aeffhL7PhEZ1Q6mxxiq8xmemb/AglzhyzGVgldQ5DY/tKAOh8OBduJJGldG2hUKymTIokWLEBQUhICAALZLMiEhocXjvvnmG3zzzTdN7u/bt2+DoEhBQQFr1qzBmjVrxKpbY2X88MMP+OGHH5o9LicnB3369GlVua8bNGiQyKSx4pTj7OyMixcvNnuMnp4eLly40GweALCxsUF8fHyL+Ug7Uze27Cf1lvN+wEbp/4cNygRofEhEU6S1u5LGlZF3hbovZYi3tzcmTZrU5Mz5H6Jjx46JvIQgi0JDQ6Gmpsa+JEHaESkNOt6VoJwVkq7CO0FdmKStUEuZjJk5c6akq9CmUlJSJF2Fd27KlCnw8/MDAPYFAUJkhQJXHkYK+iioeYrsV7Lzhwd1YZJ3gVrKCJEwHR0dWFtbw9raWmTqDEJkxdpOPwIA7lbm4GRRYgu5Pwyvz+5PrWWkLVBQRggh5J2yU/l3Pr5LpWlvVAZTXi51QU9daxkAtrWMkLdBQRkhHyhaA5N8KAwUdTHJaDgAYEvBXux+cqjVZTw1tERR74FSFZjRWpikrVFQRsgH6noWkPl/FJjJDBl/kF3rtZbNfRCGGoEYs/yrqEDBw53drDl/QWrnKyOkLVBQRsgHpG4NzDp1a2ASGSCjE8jW+a/eYGy1Xs5uizM9Rt1cZfqF999l1QiRGhSUEfIBqVsDs5t1y3nJB6BuAllAOIFsdbkka/POfarRo+VMr+FwOOCoytakuoQ0hYIyQj4wtAamDKmbQLaOjLeW1fcmi5QDkKoxZYS0NfrVLkOeP38OAwMDPHjwQNJVIa1gYWEhbA3gcPDy5cvWF0D/Rn3YFFVFW8tqZHfMVP0Z+n/IWflGZUjbYH9C2hIFZTJk+fLl8PHxgYWFBQDg+vXrGD58OMzMzMDj8WBra4uNGzeKHJOQkMAGBPU/BQUFTZ7nwYMHjR5Tf1mimpoaLF26FFZWVlBWVka3bt1w/PjxBmXl5eVh1KhR0NXVBY/Hg729PS5fvtyq6/7iiy/QsWNHKCsrw9jYGKNHj8bjx4/Z/ZmZmfD09IShoSGUlZVhaWmJBQsWiKzl2ZjGrjE6Oprdn5SUBA8PD7buNjY2WL9+vUgZmzdvhoODAzQ0NKChoQF3d3ccO3ZMJE9qaioOHjzYqmuujwb7f+Beby2T4YepLqcKQwU9AEBedaH4B34gi5MT8rZoRn8ZUVFRgYiICJw4cYJNu3LlCgwMDLB7926YmZkhOTkZkyZNgpycHKZNmyZyfGZmJjQ0NNhtA4OWX/M+deoUunbtym7r6uqy3xcsWIDdu3dj+/btsLGxwYkTJ/Cf//wHycnJ7KLoRUVF8PDwgKenJ44dOwZ9fX3cu3evVYuaA4Cnpyd+/PFHGBsbIy8vD3PmzMF///tfJCcnAxCu0zlmzBg4OztDS0sL169fR0BAAAQCAUJDQ5ste+fOnSLrZmppabHfVVVVMW3aNDg4OEBVVRVJSUmYPHkyVFVVMWnSJABAhw4dsHLlSnTu3BkMwyAyMhI+Pj64du0ae+/09fWho6PTqmvmcgAVZaDilfAjYAA5mkz8w1V/uaXw3sDUqzK7BNNy8+8xMSu4VcdI8+LkhLQlCspkRFxcHJSUlNCzZ082bfz48SJ5LC0tceHCBcTExDQIygwMDEQCDnHo6urCyKjxX5JRUVGYP38+Pv/8cwDAt99+i1OnTmHt2rXYvXs3ACAsLAxmZmbYuXMne1ynTp1aVQcAmDVrFvvd3Nwc8+bNg6+vL2pqaqCgoABLS0tYWlqK5ElISEBiYsszi2tpaTV5jU5OTmyACQi7IWNiYpCYmMgGZUOHDhU5Zvny5di8eTMuXrwoEtC2Vt2A/2v3/pcgu40r7UPdgP+CtH+7MBVpcHt90ro4OSFtibovW8AwjHAmaUl8WtGNkZiYCBcXlxbzFRcXN9oq4+joCGNjYwwYMADnz58X65xffPEFDAwM8Mknn+DIkSMi+6qqqqCsrCySxuPxkJSUxG4fOXIErq6u+Prrr2FgYAAnJyds375drHM35cWLF9izZw969eoFBQWFRvNkZWXh+PHj6NOnT4vlBQYGQk9PDz169MCOHTuafSbXrl1DcnJyk+Xy+XxER0ejvLwc7u7ujeZplXr/Rt3OBfh8gE8Tyn6Y2lEXJiGkadRS1pKKCjxRM5TIqQ3KCgExXwXPzc2FiYlJs3mSk5Pxxx9/4O+//2bTjI2NsWXLFri6uqKqqgrh4eHo27cvLl26BGdn50bLUVNTw9q1a+Hh4QEul4uDBw/C19cXhw4dwhdffAEA8PLywrp16/Dpp5/CysoKp0+fRkxMDPh8PlvO/fv3sXnzZsyePRs//vgjUlNTMX36dCgqKsLf31+s664zd+5c/Prrr6ioqEDPnj1x9OjRBnl69eqFq1evoqqqCpMmTcLSpUubLXPp0qXo168fVFRUcPLkSUydOhVlZWWYPn26SL4OHTrg6dOnqK2tRUhICCZOnCiy/+bNm3B3d8erV6+gpqaG2NhY2NnZter6GlO/C/NV9b+tZmoqwlY0alj4wNR/YJudgW+vClvL6EES0m5QUCYjKisrG7RM1Zeeng4fHx8sXrwYAwcOZNO7dOmCLl26sNu9evVCdnY21q9fj6ioqEbL0tPTw+zZs9nt7t274/Hjx1i9ejUblG3cuBEBAQGwsbEBh8OBlZUVxo0bhx07drDHCQQCuLq6suO6nJyckJ6eji1btrQ6KAsKCsKECROQm5uLJUuWYMyYMTh69KhIl8cff/yB0tJSXL9+HUFBQVizZg1++OGHJstcuHAh+93JyQnl5eVYvXp1g6AsMTERZWVluHjxIubNmwdra2sMHz6c3d+lSxekpaWhuLgYf/75J/z9/XH27Nm3Dsw4HMDWXNhKVvHq3/SyCuESTHJyb1U8ed/qd2E+vwf8pA509BC2oFFgRki7QEFZS1RUhC1WEjq3uPT09FBUVNTovoyMDHz22WeYNGkSFixY0GJZPXr0EOlmFIebmxvi4+PZbX19fRw6dAivXr3C8+fPYWJignnz5omM7TI2Nm4QmNja2r7Rm4h6enrQ09PDRx99BFtbW5iZmeHixYsi3YRmZmYAADs7O/D5fEyaNAnff/895MSMXtzc3LBs2TJUVVVBSUmJTa8bB2dvb4/CwkKEhISIBGWKioqwthbO9uri4oLU1FRs3LgRW7dubfV1vq4uMBMwwkDsepYw/XauML2ui5NL/6ZLPw4H+PYKsNlFGJgBwMPzNL6sEQzDgH6kiSyioKwFHA5H7C5ESXJycmIH0Nd369Yt9OvXD/7+/li+fHkjRzaUlpYGY2PjVp2/qWOUlZVhamqKmpoaHDx4EH5+fuw+Dw8PZGZmiuS/e/cuzM3NW3Xu1wkEwuVbqqqqms1TU1MDgUAgdlCWlpYGbW1tkYCssXKbO6+4eVqDwxG+edlUdyYg7NI012+zU5J3hcsVvnlZ/hQIk8ywiQ9BUe+B0Ll6ngb/E5lDQZmM8PLyQnBwMIqKitgpJdLT09GvXz94eXlh9uzZ7NxjcnJy0NcX/gu9YcMGdOrUCV27dsWrV68QHh6OM2fO4OTJk2zZv/76K2JjY3H69GkAQGRkJBQVFdk3D2NiYrBjxw6Eh4ezx1y6dAl5eXlwdHREXl4eQkJCIBAIRLoLZ82ahV69eiE0NBR+fn5ISUnBtm3bsG3bNrGv+9KlS0hNTcUnn3wCbW1tZGdnY+HChbCysmJbyfbs2QMFBQXY29tDSUkJly9fRnBwMIYNG8a+DBAbG4vg4GDcuXMHAPDXX3+hsLAQPXv2hLKyMuLj4xEaGoo5c+aw5960aRM6duwIGxsbAMC5c+ewZs0ake7N4OBgDB48GB07dkRpaSn27t2LhIQEkalL2kpT3ZkArZH5QeFwRFvGZHTQf2rZDdytzMFHPDHfuP7fXGW1aTf+navsA/iDmZDWoKBMRtjb28PZ2Rn79+/H5MmTAQB//vknnj59it27d4u0opmbm7Oz/ldXV+P7779HXl4eVFRU4ODggFOnTsHT05PN/+zZM2RnZ4ucb9myZcjNzYW8vDxsbGzwxx9/4L///S+7/9WrV1iwYAHu378PNTU1fP7554iKihKZdqN79+5sMLR06VJ06tQJGzZswMiRI9k8ISEh2LVrV5OrFKioqCAmJgaLFy9GeXk5jI2NMWjQICxYsIBt0ZKXl0dYWBju3r0LhmFgbm6OadOmiUylUVxcLNJqp6CggE2bNmHWrFlgGAbW1tZYt24dAgIC2DwCgQDBwcHIycmBvLw8rKysEBYWxt5/AHjy5AnGjBmD/Px8aGpqwsHBASdOnMCAAQOafJZvo353prCO/3Zp0rQZHygZm7dMkavIfve8OQJjDL7ECougFo97fa4y6sIksojDtLP1KkpKSqCpqYni4mKRyVIBYSCRk5ODTp06NTtoXlr9/fffCAoKQnp6Orgysjiiv78/OBwOdu3aJemqvFMJCQnw9PREUVFRq+eLaw5fAFy7K/yurPAKctUf7s93u8IwwG/O/44tW1gmM+PKXgmqMCpzFi6UXmPT8npcEOtYprycfRte3tFBKrowqysE+LlHHgBgeoopFFXa5nfvk9sXEDe7F9SNrfDVjiyRfcwrPkq/Fk5dpH7AAxzl5odg1NbWsquRfPPNN5CXb6E95lUOcMUS4KoA7uVvfhGNmP8UCH0OzNAGNrSjHvrmYo/6qKVMhnh7e+PevXvIy8tjB7V/yBiGQUJCQqtfOvjQdO3aFffv338nZYuMM6sCeO3qT7APWN28ZT+pS7ombU6Zq4Q/bX9DVuUD9Lk5HNzWTJdJXZhExlFQJmNmzpwp6Sq0GQ6Hg9zcXElX452Li4tj1+Fs7i+oN/H6zP+FRYAlBWYfhvotQNWvtVYoqHzw3Zkacq0POGm5JSLrKCgjRMLe9m3TlnC5/2stqwCqa4DKKoDHe6enJG3t9TcxZWj+MgEEyK58CCteR7HyS7q7kpB3STYGHhFCmlTXWlansgoorxR+2teI0g+Mgoow+GpM3fxlHzBl7r9Ty3jeHIEaQa0Ea0OIdKCWMkLag3qNC72nAblPhN8drYGzvwCqPJlodJEtdePK6gdf1eUyM3+ZhrwavLU98XfRP+CDD4vLvaHMVcJBm9/gqPb2y5AR8iGiljJC2oG6Af+vS8sCNAcDrhOF02cQKVM3Z1n9jwxZ0+lHke1XgipsLtgjodoQInkUlBHSDnA4QCdjwMwQuLwdKD4mbCWrk5YFdA+g7kzyfmnIq+FR92Sctd8HJ1Vh61i1oEbCtSJEcigoI6Sd4NRbiklNBbgcLgzOOncQ7k/LEo4zI+R94nA4sOZZYLj+F5KuCiESR0EZIe0Uh/O/4Gz7v2muAcIlmehFgA8APRxCZA4FZTLk+fPnMDAwaHJJIiKdOBwOOBxOm87k3xqqvH+7Mu89Eo4x0xgk/PT5jv7tl1rhvenhECJjKCiTIcuXL4ePjw8sLCwACIO0QYMGwcTEBEpKSjAzM8O0adNQUlLCHpOUlAQPDw/o6uqCx+PBxsYG69evb/Y8Dx48YAOJ+p+LFy+yeWJiYuDq6gotLS2oqqrC0dERUVFRIuWEhITAxsYGqqqq0NbWRv/+/XHp0qU3vv6srCyoq6s3CG7EqUtjNm3aBFtbW/B4PHTp0gW///57k3mjo6PB4XDg6+srkt7YfeJwOFi9ejWbJz8/Hxs2bGjNpbYpDgdI3S46xqzO+ZvUpSlVFFQAI0fh94K0D35aDEKIKJoSQ0ZUVFQgIiICJ06cYNO4XC58fHzw008/QV9fH1lZWQgMDMSLFy+wd+9eAICqqiqmTZsGBwcHqKqqIikpCZMnT4aqqiomTZrU7DlPnTqFrl27stu6urrsdx0dHcyfPx82NjZQVFTE0aNHMW7cOBgYGMDLywsA8NFHH+HXX3+FpaUlKisrsX79egwcOBBZWVnQ19dv1fXX1NRg+PDh6N27N5KTk0X2iVOX123evBnBwcHYvn07unfvjpSUFAQEBEBbWxtDhw4VyfvgwQPMmTMHvXv3blBOfn6+yPaxY8cwYcIEfPXVV2yakZERNDU1W3W9bY3LFY4xq3gl3C5/BRj7Cr+7BgAZUcI8RMJeX36JWsoIkSkUlMmIuLg4KCkpoWfPnmyatrY2vv32W3bb3NwcU6dOFWmlcXJygpOTE7ttYWGBmJgYJCYmthiU6erqwsio8eVO+vbtK7I9Y8YMREZGIikpiQ2ERowYIZJn3bp1iIiIwI0bN/DZZ581f8GvWbBgAWxsbPDZZ581CMrEqcvroqKiMHnyZAwbNgwAYGlpidTUVISFhYkEZXw+HyNHjsSSJUuQmJiIly9fipTz+v05fPgwPD09YWlp2arrex84HGFXJiB8GcDRWjj4/94j4ZuZl8NpLjOpUP8hhPcGpl6lB0OIjJCKv303bdoECwsLKCsrw83NDSkpKU3m3b59O3r37g1tbW22y6u5/G+LYRhUVwgk8mFa8VdwYmIiXFxcms3z+PFjxMTEoE+fPk3muXbtGpKTk5vNU+eLL76AgYEBPvnkExw5cqTJfAzD4PTp08jMzMSnn37aaJ7q6mps27YNmpqa6NatW4vnru/MmTM4cOAANm3a1GJeceoCAFVVVVBWFp3Yi8fjISUlhV2nEgCWLl0KAwMDTJgwocVzFxYW4u+//xYrr6TVdWnWfzOzrhWNSBh1YRIisyTeUvbHH39g9uzZ2LJlC9zc3LBhwwZ4eXkhMzMTBgYGDfInJCRg+PDh6NWrF5SVlREWFoaBAwfi1q1bMDU1bfP61VQy+LlHXpuXK47pKaZQVBHvL+Dc3FyYmJg0um/48OE4fPgwKisrMXToUISHhzfI06FDBzx9+hS1tbUICQnBxIkTmzyXmpoa1q5dCw8PD3C5XBw8eBC+vr44dOgQvvji39fai4uLYWpqiqqqKsjJyeG3337DgAEDRMo6evQovvnmG1RUVMDY2Bjx8fHQ09MT65oB4bi5sWPHYvfu3c0u5i1OXerz8vJCeHg4fH194ezsjCtXriA8PBw1NTV49uwZjI2NkZSUhIiICKSlpYlV18jISKirq+PLL78U+/okicsVvpmpOVjSNSEiXu/CJITIDIm3lK1btw4BAQEYN24c7OzssGXLFqioqGDHjh2N5t+zZw+mTp0KR0dH2NjYIDw8HAKBAKdPn37PNZculZWVDVp26qxfvx5Xr17F4cOHkZ2djdmzZzfIk5iYiMuXL2PLli3YsGED9u3b1+S59PT0MHv2bLi5uaF79+5YuXIlRo0aJdItCgDq6upIS0tDamoqli9fjtmzZyMhIUEkj6enJ9LS0pCcnIxBgwbBz88PT548Efu6AwICMGLEiGZbvcStS30LFy7E4MGD0bNnTygoKMDHxwf+/v4AhGP1SktLMXr0aGzfvl3sIHLHjh0YOXJkk89JGtXvFaPhS1KEHgwhMkmiLWXV1dW4cuUKgoOD2TQul4v+/fvjwoULYpVRUVGBmpoa6OjoNLq/qqoKVVVV7Hb9Nw/FocDjYHpK27fAiXtucenp6aGoqKjRfUZGRjAyMoKNjQ10dHTQu3dvLFy4EMbGxmyeTp06AQDs7e1RWFiIkJAQDB8+XOzzu7m5IT4+XiSNy+XC2lr4Sp+joyNu376NFStWiIzxUlVVhbW1NaytrdGzZ0907twZERERIj8TzTlz5gyOHDmCNWvWABB2TwoEAsjLy2Pbtm0YP3682HWpj8fjYceOHdi6dSsKCwthbGyMbdu2QV1dHfr6+rhx4wYePHggMr5M8L91iuTl5ZGZmQkrKyt2X2JiIjIzM/HHH3+IdV3SqM93NK5MKtG4MkJkhkSDsmfPnoHP58PQUHSBXUNDQ9y5c0esMubOnQsTExP079+/0f0rVqzAkiVL3riOHA5H7C5ESXJycsLu3btbzFcXONQPVBvL09z+xqSlpYkEeW9abmvPfeHCBfD5fHb78OHDCAsLQ3JycrPd2eKeR0FBAR06CAdWRUdHY8iQIeByubCxscHNmzdF8i5YsAClpaXYuHEjzMzMRPZFRETAxcWl1ePlJK3+gP+6cWV1LwMQCaobV1aQ9u+4MhlbF5OQ9kjiY8rexsqVKxEdHY2EhIQmu4SCg4NFuutKSkoa/IMpC7y8vBAcHIyioiJoa2sDEL6RWVhYiO7du0NNTQ23bt1CUFAQPDw82LnMNm3ahI4dO8LGxgYAcO7cOaxZswbTp09ny/71118RGxvLdhFHRkZCUVGRfWszJiYGO3bsEBmrtmLFCri6usLKygpVVVWIi4tDVFQUNm/eDAAoLy/H8uXL8cUXX8DY2BjPnj3Dpk2bkJeXh6+//lrs67a1tRXZvnz5MrhcLj7++GOx6wIIf07y8vLYucju3r2LlJQUuLm5oaioCOvWrUN6ejoiIyMBAMrKyiLnAMDOj/Z6eklJCQ4cOIC1a9eKfV3SgsMBzv5C48qkDo0rI0QmSTQo09PTg5ycHAoLC0XSCwsLm5xqoc6aNWuwcuVKnDp1Cg4ODk3mU1JSgpKSUpvUV5rZ29vD2dkZ+/fvx+TJkwEIu+C2b9+OWbNmoaqqCmZmZvjyyy8xb9489jiBQIDg4GDk5ORAXl4eVlZWCAsLY8sAhC2a2dnZIudbtmwZcnNzIS8vDxsbG/zxxx/473//y+4vLy/H1KlT8ejRI3ZS2t27d7NTTMjJyeHOnTuIjIzEs2fPoKuri+7duyMxMVFk7rO+ffvCwsICu3bteuN701JdAOF8Yg8fPmS3+Xw+1q5di8zMTCgoKMDT0xPJyclsMNsa0dHRYBimVd3B0oR6xaQUPRhCZA8jYT169GCmTZvGbvP5fMbU1JRZsWJFk8eEhYUxGhoazIULF1p9vuLiYgYAU1xc3GBfZWUlk5GRwVRWVra6XGlw9OhRxtbWluHz+ZKuSpvp2LEjs3PnTklX453buXMno6mp+U7P8aY/32UVDMP9VPgpfMEwAsE7qiBpnaoyhlkA4aeqTNK1eWu7Cw8xJpd6MmMzg5rNJygrYwqgyhRAlRGUSf66q8r5zOquD5nVXR8yVeVt97u3MCOZ2TkIzJ/jrBrsE1TWMsVDzjLFQ84ygsraFsuqqalhoqKimKioKKampqblk1feZ5gkMEyyyptUvVk/PmEY3GaYGQVtXrRUay72qE/i3ZezZ8+Gv78/XF1d0aNHD2zYsAHl5eUYN24cAGDMmDEwNTXFihUrAABhYWFYtGgR9u7dCwsLCxQUFAAQTtOgpqYmseuQBt7e3rh37x7y8vJkoov21q1b0NTUxJgxYyRdlXdKTU0NtbW1H8Rbmca+gIe9sEuTGmoIIaRtSTwoGzZsGJ4+fYpFixahoKAAjo6OOH78ODv4/+HDh+DWW99l8+bNqK6uFukqA4DFixcjJCTkfVZdKs2cOVPSVWgzXbt2xY0bNyRdjXeubp4zOTk5yVakCSrKwkDs/P/eazh/kwb8Sx2aFoMQmSDxoAwApk2bhmnTpjW67/W5pB48ePDuK0TIe1Q3VYe0qhvs//Tlv+thUgwgZWhaDEJkgsQnjyWESD8OB1Ct17va5zsKzCSOllsiROZQUEYIEUvdnGUArYUpFeqmxSCEyAwKygghYqnrxiRShLorCZEpFJQRQsRGMQAhhLw7FJQRQt5I+SsaV0YIIW2JgjJCyBsx9gVcJwJlFRScEUJIW6CgTIY8f/4cBgYGNG3IB6Zv377gcDjgcDjsnGXSqm7OsjppWcJ1MeltTEIIeXsUlMmQ5cuXw8fHp9H1GZ8/f44OHTqAw+Hg5cuXbHpSUhI8PDygq6vLrgu5fv36Fs+1f/9+ODo6QkVFBebm5li9enWTec+fPw95eXk4OjqKpFtYWLDBSP1PYGCguJcMAI2WER0dLZJn06ZNsLW1BY/HQ5cuXdiFx5vz8OFDeHt7Q0VFBQYGBggKCkJtbS27X5x7V1paipkzZ8Lc3Bw8Hg+9evVCamqqSJ6YmBikpKS06polpW6wf/Gxf9/EBIQTyj59SYEZIYS8DamYPJa8vYqKCkRERODEiRON7p8wYQIcHByQl5cnkq6qqopp06bBwcEBqqqqSEpKwuTJk6GqqopJkyY1WtaxY8cwcuRI/PLLLxg4cCBu376NgIAA8Hi8BpMAv3z5EmPGjMFnn33WYOH51NRU8Pl8djs9PR0DBgzA119/3err37lzJwYNGsRua2lpsd83b96M4OBgbN++Hd27d0dKSgoCAgKgra2NoUOHNloen8+Ht7c3jIyMkJycjPz8fIwZMwYKCgoIDQ0FIN69mzhxItLT0xEVFQUTExPs3r0b/fv3R0ZGBkxNTQEAOjo6KCkpafU1SwqHA6ipAJfDRSeUpSWYCCHk7VBLmYyIi4uDkpISevbs2WDf5s2b8fLlS8yZM6fBPicnJwwfPhxdu3aFhYUFRo0aBS8vLyQmNj3/UVRUFHx9fTFlyhRYWlrC29sbwcHBCAsLA/NaU8mUKVMwYsQIuLu7NyhHX18fRkZG7Ofo0aOwsrJCnz59Wn39WlpaImXVX0cyKioKkydPxrBhw2BpaYlvvvkGkyZNQlhYWJPlnTx5EhkZGdi9ezccHR0xePBgLFu2DJs2bUJ1dTWAlu9dZWUlDh48iFWrVuHTTz+FtbU1QkJCYG1tjc2bN7f6GqUNhwPoa4l2Z9YtwUQIIaT1KChrAcMwqHlVLpHP6wFOcxITE+Hi4tIgPSMjA0uXLsXvv/8usoZoU65du4bk5ORmA6OqqqoGi2fzeDw8evQIubm5bNrOnTtx//59LF68uMXzVldXY/fu3Rg/fjw4b9DMEhgYCD09PfTo0QM7duwQuXdN1TclJQU1NTWNlnfhwgXY29uza7ACgJeXF0pKSnDr1q1Gj3n93tXW1oLP5zd67qSkpFZfozSq687MPyTpmhBCyIePui9bUFtVgT3/UZPIuUfGlkFBWVWsvLm5uTAxMRFJq6qqwvDhw7F69Wp07NgR9+/fb/L4Dh064OnTp6itrUVISAgmTpzYZF4vLy/MmjULY8eOhaenJ7KysrB27VoAQH5+PiwsLHDv3j3MmzcPiYmJkJdv+cfs0KFDePnyJcaOHSvW9da3dOlS9OvXDyoqKjh58iSmTp2KsrIyTJ8+na1veHg4fH194ezsjCtXriA8PBw1NTV49uwZjI2NG5RZUFAgEpABYLcLCgpE0pu6d+rq6nB3d8eyZctga2sLQ0ND7Nu3DxcuXJD69S5b4/UlmGhcGSGEvBkKymREZWVlgxaZ4OBg2NraYtSoUS0en5iYiLKyMly8eBHz5s2DtbU1hg8f3mjegIAAZGdnY8iQIaipqYGGhgZmzJiBkJAQcLlc8Pl8jBgxAkuWLMFHH30kVv0jIiIwePDgBoGlOBYuXMh+d3JyQnl5OVavXs0GZQsXLkRBQQF69uwJhmFgaGgIf39/rFq1SqzWw5Y0d++ioqIwfvx4mJqaQk5ODs7Ozhg+fDiuXLny1ueVVn2+E443o3FlhBDSOhSUtUBeSQUjY8skdm5x6enpoaioSCTtzJkzuHnzJv78808AYLv09PT0MH/+fCxZsoTN26lTJwCAvb09CgsLERIS0mRQxuFwEBYWhtDQUBQUFEBfXx+nT58GAFhaWqK0tBSXL1/GtWvX2IH/AoEADMNAXl4eJ0+eRL9+/djycnNzcerUKcTExIh9vc1xc3PDsmXLUFVVBSUlJfB4POzYsQNbt25FYWEhjI2NsW3bNqirq0NfX7/RMoyMjBq8EVn3ooKRkZFIenP3zsrKCmfPnkV5eTlKSkpgbGzMjm2TJXXrYqZl/bsupipP0rUihJAPCwVlLeBwOGJ3IUqSk5MTdu/eLZJ28OBBVFZWstupqakYP348EhMTYWVl1WRZAoEAVVVVLZ5TTk6OfYNw3759cHd3h76+PgQCAW7evCmS97fffsOZM2fw559/skFMnZ07d8LAwADe3t4tnlMcaWlp0NbWhpKSkki6goICOnToAACIjo7GkCFDmmwpc3d3x/Lly/HkyRMYGBgAAOLj46GhoQE7O7smz93UvVNVVYWqqiqKiopw4sQJrFq16k0vTyrVjS3THCzpmhBCyIeLgjIZ4eXlheDgYBQVFUFbWxsAGgRez549AwDY2tqyU0Zs2rQJHTt2hI2NDQDg3LlzWLNmDdv1BwC//vorYmNj2dawZ8+e4c8//0Tfvn3x6tUr7Ny5EwcOHMDZs2cBAFwuFx9//LHIuQ0MDKCsrNwgXSAQYOfOnfD39xdr7Nnr/vrrLxQWFqJnz55QVlZGfHw8QkNDRd40vXv3LlJSUuDm5oaioiKsW7cO6enpiIyMZPPExsYiODgYd+7cAQAMHDgQdnZ2GD16NFatWoWCggIsWLAAgYGBbLAnzr07ceIEGIZBly5dkJWVhaCgINjY2GDcuHGtvlZpR92VhBDydigokxH29vZwdnbG/v37MXnyZLGPEwgECA4ORk5ODuTl5WFlZYWwsDCRMp49e4bs7GyR4yIjIzFnzhwwDAN3d3ckJCSgR48era73qVOn8PDhQ4wfP77R/WPHjsWDBw+QkJDQ6H4FBQVs2rQJs2bNAsMwsLa2xrp16xAQEMDm4fP5WLt2LTIzM6GgoABPT08kJyeLTLJbXFyMzMxMdltOTg5Hjx7Ft99+C3d3d6iqqsLf3x9Lly5l84hz74qLixEcHIxHjx5BR0cHX331FZYvXw4FBYVW3ytCCCGyjYIyGbJo0SIEBQUhICCg0W65vn37Nphm47vvvsN3333XbLkhISEICQlht/X09HDhwoVW1e31MuoMHDiw2ak/cnJy4Onp2eT+QYMGiUwa2xhbW1tcu3at2Txjx45t8Oanubk54uLimjxGnHvn5+cHPz+/ZvMQQgghAAVlMsXb2xv37t1DXl4ezMzMJF2dt1ZcXIzs7Gz8/fffkq7KOzV48GCcO3dO0tUghBAiYRSUyZiZM2dKugptRlNTE48ePZJ0Nd658PBw9oWMjh07Srg2bYPmKiOEkNajoIwQCat7g1WW0FxlhBDSerTMEiGkTdTNVQb8O1cZIYQQ8VFQRghpE3VzlRFCCHkzFJQRQtoMdVcSQsibo6CMEEIIIUQKUFBGCCGEECIFKCgjhBBCCJECFJTJkOfPn8PAwAAPHjyQdFVIK/Tt2xccDgccDgdpaWmSrg4hhBAJoaBMhixfvhw+Pj4iazrW/WNf/xMdHS1y3KZNm2Brawsej4cuXbrg999/b/FcDx8+hLe3N1RUVGBgYICgoCDU1tay+5OSkuDh4QFdXV3weDzY2Nhg/fr1ImWUlpZi5syZMDc3B4/HQ69evZCamtrq67579y58fHygp6cHDQ0NfPLJJ/jnn3/Y/c+fP8egQYNgYmICJSUlmJmZYdq0aSgpKWm23BcvXmDkyJHQ0NCAlpYWJkyYgLKyMnZ/SEhIo/dXVVWVzRMTEwNXV1doaWlBVVUVjo6OiIqKEjlPTEwMUlJSWn3dhBBCZAtNHisjKioqEBERgRMnTjTYt3PnTpH1IbW0tNjvmzdvRnBwMLZv347u3bsjJSUFAQEB0NbWxtChQxs9F5/Ph7e3N4yMjJCcnIz8/HyMGTMGCgoKCA0NBQCoqqpi2rRpcHBwgKqqKpKSkjB58mSoqqpi0qRJAICJEyciPT0dUVFRMDExwe7du9G/f39kZGS0akLVIUOGoHPnzjhz5gx4PB42bNiAIUOGIDs7G0ZGRuByufDx8cFPP/0EfX19ZGVlITAwEC9evMDevXubLHfkyJHIz89HfHw8ampqMG7cOEyaNIk9Zs6cOZgyZYrIMZ999hm6d+/Obuvo6GD+/PmwsbGBoqIijh49inHjxsHAwABeXl5snpYCREIIIe0A084UFxczAJji4uIG+yorK5mMjAymsrJSAjV7OwcOHGD09fUbpANgYmNjmzzO3d2dmTNnjkja7NmzGQ8PjyaPiYuLY7hcLlNQUMCmbd68mdHQ0GCqqqqaPO4///kPM2rUKIZhGKaiooKRk5Njjh49KpLH2dmZmT9/fpNlvO7p06cMAObcuXNsWklJCQOAiY+Pb/K4jRs3Mh06dGhyf0ZGBgOASU1NZdOOHTvGcDgcJi8vr9Fj0tLSGtSlMU5OTsyCBQtE0nJychgAzLVr15o99m28j5/vsgqG4X4q/JRVvLPTkDpVZQyzAMJPVZmka/NWdhceYkwu9WTGZgY1m09QVsYUQJUpgCojKJP8NVeV85nVXR8yq7s+ZKrK+W1WbmFGMrNzEJg/x1k12CeorGWKh5xlioecZQSVtS2WVVNTw0RFRTFRUVFMTU1NyyevvM8wSWCYZJU3qXqzfnzCMLjNMDMKWs4rS5qLPeqj7ssWMAwD5hVfMp9WLCCYmJgIFxeXRvcFBgZCT08PPXr0wI4dO0TKraqqgrKyskh+Ho+HlJQU1NTUNFrehQsXYG9vD0NDQzbNy8sLJSUluHXrVqPHXLt2DcnJyejTpw8AoLa2Fnw+v9FzJyUltXzB/6Orq8t2uZaXl6O2thZbt26FgYFBk/fj8ePHiImJYevS1DVqaWnB1dWVTevfvz+4XC4uXbrU6DHh4eH46KOP0Lt370b3MwyD06dPIzMzE59++qnY10gIIaR9oO7LllQJUPr1eYmcWv2AB6AsJ1be3NxcmJiYNEhfunQp+vXrBxUVFZw8eRJTp05FWVkZpk+fDkAYTIWHh8PX1xfOzs64cuUKwsPDUVNTg2fPnsHY2LhBmQUFBSIBGQB2u6CgQCS9Q4cOePr0KWpraxESEoKJEycKr01dHe7u7li2bBlsbW1haGiIffv24cKFC7C2thbrmgHhmLlTp07B19cX6urq4HK5MDAwwPHjx6GtrS2Sd/jw4Th8+DAqKysxdOhQhIeHN1luQUEBDAwMRNLk5eWho6PT4BoB4NWrV9izZw/mzZvXYF9xcTFMTU1RVVUFOTk5/PbbbxgwYIDY10gIIaR9oJYyGVFZWdmg1QkAFi5cCA8PDzg5OWHu3Ln44YcfsHr1apH9gwcPRs+ePaGgoAAfHx/4+/sDALjct//xSExMxOXLl7FlyxZs2LAB+/btY/dFRUWBYRiYmppCSUkJP//8M4YPH96q8zIMg8DAQBgYGCAxMREpKSnw9fXF0KFDkZ+fL5J3/fr1uHr1Kg4fPozs7GzMnj37ra+vTmxsLEpLS9l7V5+6ujrS0tKQmpqK5cuXY/bs2UhISGizcxNCCJEN1FLWEiWusMVKQucWl56eHoqKilrM5+bmhmXLlqGqqgpKSkrg8XjYsWMHtm7disLCQhgbG2Pbtm1QV1eHvr5+o2UYGRk1eFuwsLCQ3Vdfp06dAAD29vYoLCxESEgIhg8fDgCwsrLC2bNnUV5ejpKSEhgbG2PYsGGwtLQU+7rPnDmDo0ePoqioCBoaGgCA3377DfHx8YiMjBRpuTIyMoKRkRFsbGygo6OD3r17Y+HChY22BhoZGeHJkyciabW1tXjx4kWDawSEXZdDhgxp0IIICIPbutY/R0dH3L59GytWrEDfvn3Fvk5CCCGyj1rKWsDhcMBRlpPMpxULCTo5OSEjI6PFfGlpadDW1oaSkpJIuoKCAjp06AA5OTlER0djyJAhTbZYubu74+bNmyJBS3x8PDQ0NGBnZ9fkuQUCAaqqqhqkq6qqwtjYGEVFRThx4gR8fHxavI46FRUVABq26nG5XAgEgmbrAqDR+gDCa3z58iWuXLnCpp05cwYCgQBubm4ieXNycvDPP/9gwoQJYtW5qftACCGkfaOWMhnh5eWF4OBgFBUVsWOp/vrrLxQWFqJnz55QVlZGfHw8QkNDMWfOHPa4u3fvIiUlBW5ubigqKsK6deuQnp6OyMhINk9sbCyCg4Nx584dAMDAgQNhZ2eH0aNHY9WqVSgoKMCCBQsQGBjIBnubNm1Cx44dYWNjAwA4d+4c1qxZw45lA4ATJ06AYRh06dIFWVlZCAoKgo2NDcaNGyf2dbu7u0NbWxv+/v5YtGgReDwetm/fjpycHHh7ewMA4uLiUFhYiO7du0NNTQ23bt1CUFAQPDw82DndUlJSMGbMGJw+fRqmpqawtbXFoEGDEBAQgC1btqCmpgbTpk3DN99802Ds3o4dO2BsbIzBgwc3qN+KFSvg6uoKKysrVFVVIS4uDlFRUdi8ebPY10gIIaR9oKBMRtjb28PZ2Rn79+/H5MmTAQhbvzZt2oRZs2aBYRhYW1tj3bp1CAgIYI/j8/lYu3YtMjMzoaCgAE9PTyQnJ4tMQFtcXIzMzEx2W05ODkePHsW3334Ld3d3qKqqwt/fH0uXLmXzCAQCBAcHIycnB/Ly8rCyskJYWBhbt7pyg4OD8ejRI+jo6OCrr77C8uXLoaCgwOYJCQnBrl27mlylQE9PD8ePH8f8+fPRr18/1NTUoGvXrjh8+DC6desGAGygNmvWLFRVVcHMzAxffvmlSNdmRUUFMjMzRd443bNnD6ZNm4bPPvsMXC4XX331FX7++WeR8wsEAuzatQtjx46FnFzDlzLKy8sxdepUPHr0iJ1Ed/fu3Rg2bFij10MIIaT9oqBMhixatAhBQUEICAgAl8vFoEGDRCaNbYytrS2uXbvWbJ6xY8di7NixImnm5uaIi4tr8pjvvvsO3333XbPl+vn5wc/Pr9k8OTk5LY69cnV1bXTS3Dp1gWZz+vbt22AKEh0dnWYnlwWE3aT/93//1+T+n376CT/99FOzZRBCCCEABWUyxdvbG/fu3UNeXh7MzMwkXZ23xjAMEhISWjVv2Ydo8ODBOHfunKSrQQghRMIoKJMxM2fOlHQV2gyHw0Fubq6kq/HOhYeHo7KyEgDQsWNHCdeGEEKIpFBQRoiEtWadT0IIIbKLpsQghBBCCJECFJQRQgghhEgBCsoIIYQQQqQABWWEEEIIIVKAgjJCCCGEEClAQRkhhBBCiBSgoEyGPH/+HAYGBk0uSUSkU9++fYUL33M4SEtLk3R1CCGESAgFZTJk+fLl8PHxEVm3MjU1FZ999hm0tLSgra0NLy8vXL9+nd2fmZkJT09PGBoaQllZGZaWlliwYIHIGpCNefjwIby9vaGiogIDAwMEBQWhtraW3T927Fg20Kj/6dq1K5tn8+bNcHBwgIaGBjQ0NODu7o5jx461+rqnT58OFxcXKCkpwdHRscH+hIQE+Pj4wNjYGKqqqnB0dMSePXuaLC86OhocDge+vr7NnjcmJgYDBgyAvr4+W//GlnvKy8vDqFGjoKurCx6PB3t7e1y+fFmknJSUFLGvlxBCiGyioExGVFRUICIiAhMmTGDTysrKMGjQIHTs2BGXLl1CUlIS1NXV4eXlxQZdCgoKGDNmDE6ePInMzExs2LAB27dvx+LFi5s8F5/Ph7e3N6qrq5GcnIzIyEjs2rULixYtYvNs3LgR+fn57Of//u//oKOjg6+//prN06FDB6xcuRJXrlzB5cuX0a9fP/j4+ODWrVutvv7x48c3uch3cnIyHBwccPDgQdy4cQPjxo3DmDFjcPTo0QZ5Hzx4gDlz5qB3794tnvPcuXMYMGAA4uLicOXKFXh6emLo0KEia4kWFRXBw8MDCgoKOHbsGDIyMrB27Vpoa2uzeXR0dKCvr9/qayaEECJbaEb/FjAMAz6fL5Fzy8nJgcPhiJU3Li4OSkpK6NmzJ5t2584dvHjxAkuXLmXXwly8eDEcHByQm5sLa2trWFpawtLSkj3G3NwcCQkJSExMbPJcJ0+eREZGBk6dOgVDQ0M4Ojpi2bJlmDt3LkJCQqCoqAhNTU1oamqyxxw6dAhFRUUYN24cmzZ06FCRcpcvX47Nmzfj4sWLIi1qLfn5558BAE+fPsWNGzca7P/xxx9FtmfMmIGTJ08iJiYGQ4YMYdP5fD5GjhyJJUuWIDExES9fvmz2vBs2bBDZDg0NxeHDh/HXX3/ByckJABAWFgYzMzPs3LmTzdepUyexr40QQkj7QUFZC/h8PqKjoyVy7m+++Qby8uI9osTERLi4uIikdenSBbq6uoiIiMCPP/4IPp+PiIgI2NrainRx1peVlYXjx4/jyy+/bPJcFy5cgL29PQwNDdk0Ly8vfPvtt7h16xYbkNQXERGB/v37w9zcvNEy+Xw+Dhw4gPLycri7u4txxW+nuLgYtra2ImlLly6FgYEBJkyY0GxQ2hSBQIDS0lLo6OiwaUeOHIGXlxe+/vprnD17Fqamppg6dSoCAgLe+hoIIYTIFuq+lBG5ubkwMTERSVNXV0dCQgJ2794NHo8HNTU1HD9+HMeOHWsQ7PXq1QvKysro3LkzevfujaVLlzZ5roKCApGADAC7XVBQ0CD/48ePcezYMUycOLHBvps3b0JNTQ1KSkqYMmUKYmNjYWdnJ/Z1v4n9+/cjNTVVpNUuKSkJERER2L59+xuXu2bNGpSVlcHPz49Nu3//PjZv3ozOnTvjxIkT+PbbbzF9+nRERka+1TUQQgiRPdRS1gI5OTl88803Eju3uCorK6GsrNwgbcKECfDw8MC+ffvA5/OxZs0aeHt7IzU1FTwej837xx9/oLS0FNevX0dQUBDWrFmDH374oU2uIzIyElpaWo0OnO/SpQvS0tJQXFyMP//8E/7+/jh79uw7C8z++ecfjBs3Dtu3b2e7SEtLSzF69Ghs374denp6b1Tu3r17sWTJEhw+fBgGBgZsukAggKurK0JDQwEATk5OSE9Px5YtW+Dv7//2F0QIIURmUFDWAg6HI3YXoiTp6emhqKhIJG3v3r148OABLly4AC6Xy6Zpa2vj8OHDIsFm3ZgzOzs78Pl8TJo0Cd9//32jgaGRkVGDtwULCwvZffUxDIMdO3Zg9OjRUFRUbFCWoqIirK2tAQAuLi5ITU3Fxo0bsXXr1tbeghadPXsWQ4cOxfr16zFmzBg2PTs7Gw8ePBAZ4yYQCAAA8vLyyMzMhJWVVZPlRkdHY+LEiThw4AD69+8vss/Y2LhBgGlra4uDBw+2xSURQgiRIdR9KSOcnJyQkZEhklZRUQEulyvyskDddl3Q0RiBQICampom87i7u+PmzZt48uQJmxYfHw8NDY0GAcjZs2eRlZUl8lZocwQCAaqqqsTK2xoJCQnw9vZGWFgYJk2aJLLPxsYGN2/eRFpaGvv54osv4OnpibS0NDZgbcy+ffswbtw47Nu3D97e3g32e3h4IDMzUyTt7t27TY6tI4QQ0n5JfxMQEYuXlxeCg4NRVFTETrcwYMAABAUFITAwEN999x0EAgFWrlwJeXl5eHp6AgD27NkDBQUF2NvbQ0lJCZcvX0ZwcDCGDRsGBQUFAEBsbCyCg4Nx584dAMDAgQNhZ2eH0aNHY9WqVSgoKMCCBQsQGBgIJSUlkXpFRETAzc0NH3/8cYM6BwcHY/DgwejYsSNKS0uxd+9eJCQkNDrXV3OysrJQVlaGgoICVFZWshOw2tnZQVFREf/88w+GDBmCGTNm4KuvvmLHvSkqKkJHRwfKysoN6qelpQUAIunBwcHIy8vD77//DkDY6ujv74+NGzfCzc2NLZfH47Fvns6aNQu9evVCaGgo/Pz8kJKSgm3btmHbtm2tukZCCCGyj1rKZIS9vT2cnZ2xf/9+Ns3GxgZ//fUXbty4AXd3d/Tu3RuPHz/G8ePHYWxsDEDYPRcWFoYePXrAwcEBS5YswbRp0xAeHs6WU1xcLNLaIycnh6NHj0JOTg7u7u4YNWoUxowZ0+DlgOLiYhw8eLDJVrInT55gzJgx6NKlCz777DOkpqbixIkTGDBgAJtn7Nix6Nu3b7PXPnHiRDg5OWHr1q24e/cunJyc4OTkhMePHwMQjmmrqKjAihUrYGxszH6ae8O0Mfn5+Xj48CG7vW3bNtTW1iIwMFCk3BkzZrB5unfvjtjYWOzbtw8ff/wxli1bhg0bNmDkyJGtOjchhBDZRy1lMmTRokUICgpCQEAAO4ZswIABIkHO64YNG9bkpKt1xo4di7Fjx4qkmZubIy4urtnjNDU1UVFR0eT+iIiIZo8HgJycHLZVrykJCQnN7t+1axd27drV4rleP6altJbOW2fIkCEi86ERQgghjaGgTIZ4e3vj3r17yMvLa3Yc1IeiuLgY2dnZ+PvvvyVdlXdq8ODBOHfunKSrQQghRMIoKJMxM2fOlHQV2oympiYePXok6Wq8c+Hh4aisrAQAdOzYUcK1IYQQIikUlBEiYaamppKuAiGEEClAA/0JIYQQQqQABWWEEEIIIVKAgjJCCCGEEClAQRkhhBBCiBSgoIwQQgghRApQUEYIIYQQIgUoKJMhz58/h4GBAR48eCDpqpA2xuFwwOFw2DU5CSGEyB4KymTI8uXL4ePjAwsLCzZt+vTpcHFxgZKSEhwdHRsck5CQAB8fHxgbG0NVVRWOjo7Ys2dPk+eIjo4Gh8OBr69vs3WJiYnBgAEDoK+vDw0NDbi7uze60HheXh5GjRoFXV1d8Hg82Nvb4/Lly+JeMh48eIAJEyagU6dO4PF4sLKywuLFi1FdXS2S78aNG+jduzeUlZVhZmaGVatWieyvqanB0qVLYWVlBWVlZXTr1g3Hjx9v9tzi3LuYmBi4urpCS0uLzRMVFdVkmVOmTAGHw8GGDRtE0vPz8xukEUIIkS00eayMqKioQERERKOBz/jx43Hp0iXcuHGjwb7k5GQ4ODhg7ty5MDQ0xNGjRzFmzBhoamo2WK/xwYMHmDNnDnr37t1ifc6dO4cBAwYgNDQUWlpa2LlzJ4YOHYpLly7ByckJAFBUVAQPDw94enri2LFj0NfXx71796CtrS32dd+5cwcCgQBbt26FtbU10tPTERAQgPLycqxZswYAUFJSgoEDB6J///7YsmULbt68ifHjx0NLSwuTJk0CACxYsAC7d+/G9u3bYWNjgxMnTuA///kPkpOT2fq+yb3T0dHB/PnzYWNjA0VFRRw9ehTjxo2DgYEBvLy8RMqLjY3FxYsXYWJi0uBcRkZG0NTUFPu+EEII+fBQUNYShgEETS+q/U5xVQAOR6yscXFxUFJSQs+ePUXSf/75ZwDA06dPGw3KfvzxR5HtGTNm4OTJk4iJiREJyvh8PkaOHIklS5YgMTERL1++bLY+r7fqhIaG4vDhw/jrr7/YICcsLAxmZmbYuXMnm69Tp04tXmt9gwYNwqBBg9htS0tLZGZmYvPmzWxQtmfPHlRXV2PHjh1QVFRE165dkZaWhnXr1rFBWVRUFObPn4/PP/8cAPDtt9/i1KlTWLt2LXbv3t3oucW5d3379m2QJzIyEklJSSJBWV5eHr777jucOHEC3t7erboHhBBCZAMFZS0RVAAX1SRz7p5lgJyqWFkTExPh4uLSJqctLi6Gra2tSNrSpUthYGCACRMmIDExsdVlCgQClJaWQkdHh007cuQIvLy88PXXX+Ps2bMwNTXF1KlTERAQ8Nb1r3+eCxcu4NNPP4WioiKb5uXlhbCwMBQVFUFbWxtVVVVQVlYWKYfH4yEpKanV53793tVhGAZnzpxBZmYmwsLC2HSBQIDRo0cjKCgIXbt2bdX5CCGEyA4aUyYjcnNzG+32aq39+/cjNTUV48aNY9OSkpIQERGB7du3v3G5a9asQVlZGfz8/Ni0+/fvY/PmzejcuTNOnDiBb7/9FtOnT0dkZOQbnycrKwu//PILJk+ezKYVFBTA0NBQJF/ddkFBAQBhkLZu3Trcu3cPAoEA8fHxiImJQX5+vtjnbuzeAcJATU1NDYqKivD29sYvv/yCAQMGsPvDwsIgLy+P6dOnt/p6CSGEyA5qKWsJV0XYYiWpc4upsrKyQUtPa/3zzz8YN24ctm/fzrbYlJaWYvTo0di+fTv09PTeqNy9e/diyZIlOHz4MAwMDNh0gUAAV1dXhIaGAgCcnJyQnp6OLVu2wN/fv9XnycvLw6BBg/D111+3urVt48aNCAgIgI2NDTgcDqysrDBu3Djs2LFDrOMbu3d11NXVkZaWhrKyMpw+fRqzZ8+GpaUl+vbtiytXrmDjxo24evUqOGJ2VRNCCJFNFJS1hMMRuwtRkvT09FBUVPTGx589exZDhw7F+vXrMWbMGDY9OzsbDx48wNChQ9k0gUAAAJCXl0dmZiasrKyaLDc6OhoTJ07EgQMH0L9/f5F9xsbGsLOzE0mztbXFwYMHW13/x48fw9PTE7169cK2bdtE9hkZGaGwsFAkrW7byMgIAKCvr49Dhw7h1atXeP78OUxMTDBv3jxYWlq2eO6m7l0dLpcLa2trAICjoyNu376NFStWoG/fvkhMTMSTJ0/QsWNHNj+fz8f333+PDRs20PQmhBDSjlBQJiOcnJyaHJDekoSEBAwZMgRhYWHswPc6NjY2uHnzpkjaggULUFpaio0bN8LMzKzJcvft24fx48cjOjq60cHrHh4eyMzMFEm7e/cuzM3NW1X/vLw8eHp6wsXFBTt37gSXK9or7+7ujvnz56OmpgYKCgoAgPj4eHTp0qXBm57KysowNTVFTU0NDh48KNLd2pjm7l1TBAIBqqqqAACjR49uEKx6eXlh9OjRDbpBCSGEyDYKymSEl5cXgoOD2YHrdbKyslBWVoaCggJUVlYiLS0NAGBnZwdFRUX8888/GDJkCGbMmIGvvvqKHWOlqKgIHR0dKCsr4+OPPxY5V90EpvXTg4ODkZeXh99//x2AsMvS398fGzduhJubG1suj8djp3aYNWsWevXqhdDQUPj5+SElJQXbtm1r0NLVnLy8PPTt2xfm5uZYs2YNnj59yu6rawUbMWIElixZggkTJmDu3LlIT0/Hxo0bsX79ejbvpUuXkJeXB0dHR+Tl5SEkJAQCgQA//PADm+fXX39FbGwsTp8+DQAt3jsAWLFiBVxdXWFlZYWqqirExcUhKioKmzdvBgDo6upCV1dX5JoUFBRgZGSELl26iH0fCCGEfPhooL+MsLe3h7OzM/bv3y+SPnHiRDg5OWHr1q24e/cunJyc4OTkhMePHwMAIiMjUVFRgRUrVsDY2Jj9fPnll606f35+Ph4+fMhub9u2DbW1tQgMDBQpd8aMGWye7t27IzY2Fvv27cPHH3+MZcuWYcOGDRg5ciSbJyQkRGQy3NfFx8cjKysLp0+fRocOHUTOVUdTUxMnT55ETk4OXFxc8P3332PRokUiLVuvXr3CggULYGdnh//85z8wNTVFUlKSyAz6z549Q3Z2Nrstzr0rLy/H1KlT0bVrV3h4eODgwYPYvXs3Jk6c2Kr7SwghRPZRS5kMWbRoEYKCghAQEMB24SUkJDR7zK5du7Br165Wnaex/K+ntXTeOkOGDGkwSW19OTk5Deb6qm/s2LEYO3Zsi+dxcHBodiqPPn36ICMjo9kyQkJCEBISwm6Lc+9++ukn/PTTTy3Wrz4aR0YIIe0TBWUyxNvbG/fu3UNeXl6zY70+FAzDICEhodVzhckiNTU11NbWvvUbtoQQQqQXBWUyZubMmZKuQpvhcDjIzc2VdDWkQt1YQDk5OclWhBBCyDtDQRkhH4C6KTUIIYTILhroTwghhBAiBSgoI4QQQgiRAhSUEUIIIYRIAakIyjZt2gQLCwsoKyvDzc0NKSkpzeY/cOAAbGxsoKysDHt7e8TFxb2nmhJCCCGEvBsSD8r++OMPzJ49G4sXL8bVq1fRrVs3eHl54cmTJ43mT05OxvDhwzFhwgRcu3YNvr6+8PX1RXp6+nuuOSGEEEJI25H425fr1q1DQEAAu87fli1b8Pfff2PHjh2YN29eg/wbN27EoEGDEBQUBABYtmwZ4uPj8euvv2LLli3vte6EkKaVv5J0DdqBakD1f1/LS8oBBYnW5q1UVQrXg+XX1qK8uLzJfEz5v/vK8p+Co9J03vehppJhvxfnPIV8G00lWProBQBAUMNHUXah6M4qAeomx3l5pwBQbL59pZbPZ78/u5UHOW7zU+twBfnQBcAIGDy7+ai1VW9WBVcDkNNA5bNSPH1S3KZlvy2tLoZQUJTs/0QSDcqqq6tx5coVBAcHs2lcLhf9+/fHhQsXGj3mwoULmD17tkial5cXDh061Gj+qqoqdvFnACgpKXn7ikup58+fw9bWFikpKc0uTURkz4MHD9CpUycAQLdu3dh5zSTJ2FfSNZB9Klyg9BPhd9WNhpKtzFtS6mgAdLPEpaJE+Dx2bzpfpQA7/ve9ovPHTeZ7X2o4PMDuKgAgclh1m5Urr1gDLUOg7GkeDk7qK7JPDor4SuUX4feF2Y0cLYqREwD/FX4/dbPplU3qqMo/wX/MAA4qIf+sV6vr3hyuehCg9h3+5NQgCaVtWvbbydyzEQAAGKBJREFUWp2cjM/7+km0DhLtvnz27Bn4fD4MDUV/mRgaGrKLO7+uoKCgVflXrFgBTU1N9iMLM903Zfny5fDx8WEDsuvXr2P48OEwMzMDj8eDra0tNm7c2OC4hIQEODs7Q0lJCdbW1g2WDiotLcXMmTNhbm4OHo+HXr16ITU1tdm6xMTEYMCAAdDX14eGhgbc3d1x4sQJkTybN2+Gg4MDNDQ02DzHjh1rtDyGYTB48GBwOJwmA/CmjB07FhwOp8Gna9eubB4LC4tG8wQGBrJ5Jk+eDCsrK/B4POjr68PHxwd37txp9tyFhYUYO3YsTExMoKKigkGDBuHevXsN8l24cAH9+vWDqqoqNDQ08Omnn6KyspLdf/XqVQwYMABaWlrQ1dXFpEmTUFZWxu43MzNDfn4+vv/++1bdm7amogx42Eu0Cu1KhUAFScUekq5GmzCrEP7xXKYgj9saqk1+0gzUcM1BRcK1/Zc8Uwn98ittXq6AbwKG4YLDqYG84h2RD0fxBp4xN8QuS47Pgc5TJbHzV/HVUSMQ5tdW/L82/dhAWO8XXB1kKNhK1aeSqWzutrwXEu++fNeCg4NFWtZKSkpkMjCrqKhARESESOBz5coVGBgYYPfu3TAzM0NycjImTZoEOTk5TJs2DYBwbUlvb29MmTIFe/bswenTpzFx4kQYGxvDy8sLgHBR8/T0dERFRcHExAS7d+9G//79kZGRAVNT00brc+7cOQwYMAChoaHQ0tLCzp07MXToUFy6dAlOTk4AgA4dOmDlypXo3LkzGIZBZGQkfHx8cO3aNZGACQA2bNgADofzRvdm48aNWLlyJbtdW1uLbt264euvv2bTUlNTwa/XxJ+eno4BAwaI5HFxccHIkSPRsWNHvHjxAiEhIRg4cCBycnIanWmfYRj4+vpCQUEBhw8fhoaGBtatW8feO1VVYcfThQsXMGjQIAQHB+OXX36BvLw8rl+/zq5f+vjxY/Tv3x/Dhg3Dr7/+ipKSEsycORNjx47Fn3/+CUA407+RkRHU1NTe6B61FQ4HOPsLUEFdl+8JB2ASUV5TIemKvDUXAEde3cdzflHLmeMY3Kysajnfe2LCAEZVzf+B9iZqn+8E/3l+o/vSmXJway+JXRbDAJoQ/3doQsEcqMk3Prb7bXQFEK4cinIur83Lfls9XHwkXQWAkaCqqipGTk6OiY2NFUkfM2YM88UXXzR6jJmZGbN+/XqRtEWLFjEODg5inbO4uJgBwBQXFzfYV1lZyWRkZDCVlZVsmkDAMGV8yXwEArEuiWEYhjlw4ACjr6/fYr6pU6cynp6e7PYPP/zAdO3aVSTPsGHDGC8vL4ZhGKaiooKRk5Njjh49KpLH2dmZmT9/vvgVZBjGzs6OWbJkSbN5tLW1mfDwcJG0a9euMaampkx+fj4DoMHPS2vFxsYyHA6HefDgQZN5ZsyYwVhZWTGCZh7C9evXGQBMVlZWo/szMzMZAEx6ejqbxufzGX19fWb79u1smpubG7NgwYImz7N161bGwMCA4fP5bNqNGzcYAMy9e/dE8i5evJjp1q1bo+U09vNNCCHk3Wsu9qhPot2XioqKcHFxwenTp9k0gUCA06dPw9298TEF7u7uIvkBID4+vsn8b6uCAdTuSuZTwbRcvzqJiYlwcXFpMV9xcTF0dHTY7QsXLqB///4ieby8vNgxfbW1teDz+Q0WwubxeK1aKFwgEKC0tFTk3PXx+XxER0ejvLxc5FlWVFRgxIgR2LRpE4yMjMQ+X3MiIiLQv39/mJubN7q/uroau3fvxvjx45tsnSsvL8fOnTvRqVOnJlte68Yy1r93XC4XSkpK7L178uQJLl26BAMDA/Tq1QuGhobo06ePyL2tqqqCoqIi23IGCO8/AFqsnRBCZIjEp8SYPXs2tm/fjsjISNy+fRvffvstysvL2bcxx4wZI/IiwIwZM3D8+HGsXbsWd+7cQUhICC5fvsx2x7VXubm5MDExaTZPcnIy/vjjD0yaNIlNa2qMXklJCSorK6Gurg53d3csW7YMjx8/Bp/Px+7du3HhwgXk5zferN6YNWvWoKysDH5+ooMob968CTU1NSgpKWHKlCmIjY2FnZ0du3/WrFno1asXfHzapln58ePHOHbsGCZOnNhknkOHDuHly5cYO3Zsg32//fYb1NTUoKamhmPHjiE+Ph6KioqNlmNjY4OOHTsiODgYRUVFqK6uRlhYGB49esTeu/v37wMAQkJCEBAQgOPHj8PZ2RmfffYZO/asX79+KCgowOrVq1FdXY2ioiL2zeTWPANCCCHSTeJjyoYNG4anT59i0aJFKCgogKOjI44fP84GCg8fPhRpIejVqxf27t2LBQsW4Mcff0Tnzp1x6NAhfPzxu3kLR4UDlH30TooW69ziqqysbNCaVV96ejp8fHywePFiDBw4sFX1iIqKwvjx42Fqago5OTk4Oztj+PDhuHJFvMGte/fuxZIlS3D48GEYGBiI7OvSpQvS0tJQXFyMP//8E/7+/jh79izs7Oxw5MgRnDlzBteuXWtVfZsTGRkJLS0t+Pr6NpknIiICgwcPbjTIHTlyJAYMGID8/HysWbMGfn5+OH/+fKP3XkFBATExMZgwYQJ0dHQgJyeH/v37Y/DgwWAYYTOoQCAAIHyJoO4PEScnJ5w+fRo7duzAihUr0LVrV0RGRmL27NkIDg6GnJwcpk+fDkNDQ5H/NwghhHzg3k9vqvRo7ZiyD8WIESOY4cOHN7rv1q1bjIGBAfPjjz822Ne7d29mxowZImk7duxgNDQ0GuQtKytjHj9+zDAMw/j5+TGff/55i/Xat28fw+PxGoxJa8pnn33GTJo0iWEY4bguDofDyMnJsR8ADJfLZfr06SNWefUJBALG2tqamTlzZpN5Hjx4wHC5XObQoUMtlldVVcWoqKgwe/fubTHvy5cvmSdPnjAMwzA9evRgpk6dyjAMw9y/f58BwERFRYnk9/PzY0aMGNGgnIKCAqa0tJQpKytjuFwus3//fpH9NKaMEEKkzwcxpoy0HScnJ2RkZDRIv3XrFjw9PeHv74/ly5c32N+aMXqqqqowNjZGUVERTpw40WKX4r59+zBu3Djs27cP3t7eYl2HQCBgx2LNmzcPN27cQFpaGvsBgPXr12Pnzp1ilVff2bNnkZWVhQkTJjSZZ+fOnTAwMBCrvgzDgGEYkXnwmqKpqQl9fX3cu3cPly9fZu+dhYUFTExMkJmZKZL/7t27jY55MzQ0hJqaGv744w8oKytjwIABLZ6bEELIB+K9hIhSRFZbym7cuMHIy8szL168YNNu3rzJ6OvrM6NGjWLy8/PZT12LDcMIW2pUVFSYoKAg5vbt28ymTZsYOTk55vjx42ye48ePM8eOHWPu37/PnDx5kunWrRvj5ubGVFdXs3nmzZvHjB49mt3es2cPIy8vz2zatEnk3C9fvhQ55uzZs0xOTg5z48YNZt68eQyHw2FOnjzZ5HXiLd6+HDVqFOPm5tbkfj6fz3Ts2JGZO3dug33Z2dlMaGgoc/nyZSY3N5c5f/48M3ToUEZHR4cpLCxk83Xp0oWJiYlht/fv38/8888/THZ2NnPo0CHG3Nyc+fLLL0XKXr9+PaOhocEcOHCAuXfvHrNgwQJGWVlZ5K3OX375hbly5QqTmZnJ/PrrrwyPx2M2btzYoJ7UUkYIIdJH3JYyCsrq+dD/0erRowezZcsWdnvx4sUMgAYfc3NzkeP++ecfxtHRkVFUVGQsLS2ZnTt3iuz/448/GEtLS0ZRUZExMjJiAgMDRYIrhmEYf39/kS7FPn36NHpuf39/Ns/48eMZc3NzRlFRkdHX12c+++yzZgMyhmk8KDM3N2cWL17c7HEvX75keDwes23btibznDhxggHAZGZmNtiXl5fHDB48mDEwMGAUFBSYDh06MCNGjGDu3LnToH7179/GjRuZDh06MAoKCkzHjh2ZBQsWMFVVVQ3KX7FiBdOhQwdGRUWFcXd3ZxITE0X2jx49mtHR0WEUFRUZBwcH5vfff2/0GigoI4QQ6SNuUMZhGKYVEy98+EpKSqCpqYni4mJoaGiI7Hv16hVycnLQqVOnZgfNS6u///4bQUFBSE9PbzcDwCsqKqCrq4tjx46hb9++kq6OxIWEhODQoUONLrP0of98E0LIh6q52KM+ib99SdqOt7c37t27h7y8PJlctaAx//zzD/r169fuA7KHDx/Czs4O1dXVIlOKEEII+XBQUCZjZs6cKekqvFfe3t5iv0Qgy0xMTNjWMSUl8de4I4QQIj0oKCNEBsjLy8Pa2lrS1SCEEPIW2sfAI0IIIYQQKUdBWSPa2bsPpJ2gn2tCCJFuFJTVo6CgAED4Rh8hsqbu57ru55wQQoh0oTFl9cjJyUFLSwtPnjwBAKioqIDDacUClIRIIYZhUFFRgSdPnkBLSwtycnKSrhIhhJBGUFD2GiMjIwBgAzNCZIWWlhb7800IIUT6UFD2Gg6HA2NjYxgYGKCmpkbS1SGkTSgoKFALGSGESDkKypogJydH/4gRQggh5L2hgf6EEEIIIVKAgjJCCCGEEClAQRkhhBBCiBRod2PK6ibQLCkpkXBNCCGEENIe1MUcLU3i3e6CstLSUgCAmZmZhGtCCCGEkPaktLQUmpqaTe7nMO1s7RWBQIDHjx9DXV39nU0MW1JSAjMzM/zf//0fNDQ03sk5iHjoWUgHeg7Sg56FdKDnID3ex7NgGAalpaUwMTEBl9v0yLF211LG5XLRoUOH93IuDQ0N+p9NStCzkA70HKQHPQvpQM9BerzrZ9FcC1kdGuhPCCGEECIFKCgjhBBCCJECFJS9A0pKSli8eDGUlJQkXZV2j56FdKDnID3oWUgHeg7SQ5qeRbsb6E8IIYQQIo2opYwQQgghRApQUEYIIYQQIgUoKCOEEEIIkQIUlBFCCCGESAEKyt7Qpk2bYGFhAWVlZbi5uSElJaXZ/AcOHICNjQ2UlZVhb2+PuLi491RT2deaZ7F9+3b07t0b2tra0NbWRv/+/Vt8dkQ8rf1/ok50dDQ4HA58fX3fbQXbkdY+i5cvXyIwMBDGxsZQUlLCRx99RL+j2kBrn8OGDRvQpUsX8Hg8mJmZYdasWXj16tV7qq3sOnfuHIYOHQoTExNwOBwcOnSoxWMSEhLg7OwMJSUlWFtbY9euXe+8ngAAhrRadHQ0o6ioyOzYsYO5desWExAQwGhpaTGFhYWN5j9//jwjJyfHrFq1isnIyGAWLFjAKCgoMDdv3nzPNZc9rX0WI0aMYDZt2sRcu3aNuX37NjN27FhGU1OTefTo0XuuuWxp7XOok5OTw5iamjK9e/dmfHx83k9lZVxrn0VVVRXj6urKfP7550xSUhKTk5PDJCQkMGlpae+55rKltc9hz549jJKSErNnzx4mJyeHOXHiBGNsbMzMmjXrPddc9sTFxTHz589nYmJiGABMbGxss/nv37/PqKioMLNnz2YyMjKYX375hZGTk2OOHz/+zutKQdkb6NGjBxMYGMhu8/l8xsTEhFmxYkWj+f38/Bhvb2+RNDc3N2by5MnvtJ7tQWufxetqa2sZdXV1JjIy8l1VsV14k+dQW1vL9OrViwkPD2f8/f0pKGsjrX0WmzdvZiwtLZnq6ur3VcV2obXPITAwkOnXr59I2uzZsxkPD493Ws/2Rpyg7IcffmC6du0qkjZs2DDGy8vrHdZMiLovW6m6uhpXrlxB//792TQul4v+/fvjwoULjR5z4cIFkfwA4OXl1WR+Ip43eRavq6ioQE1NDXR0dN5VNWXemz6HpUuXwsDAABMmTHgf1WwX3uRZHDlyBO7u7ggMDIShoSE+/vhjhIaGgs/nv69qy5w3eQ69evXClStX2C7O+/fvIy4uDp9//vl7qTP5lyT/zW53C5K/rWfPnoHP58PQ0FAk3dDQEHfu3Gn0mIKCgkbzFxQUvLN6tgdv8ixeN3fuXJiYmDT4H5CI702eQ1JSEiIiIpCWlvYeath+vMmzuH//Ps6cOYORI0ciLi4OWVlZmDp1KmpqarB48eL3UW2Z8ybPYcSIEXj27Bk++eQTMAyD2tpaTJkyBT/++OP7qDKpp6l/s0tKSlBZWQkej/fOzk0tZaTdWrlyJaKjoxEbGwtlZWVJV6fdKC0txejRo7F9+3bo6elJujrtnkAggIGBAbZt2wYXFxcMGzYM8+fPx5YtWyRdtXYlISEBoaGh+O2333D16lXExMTg77//xrJlyyRdNfIeUUtZK+np6UFOTg6FhYUi6YWFhTAyMmr0GCMjo1blJ+J5k2dRZ82aNVi5ciVOnToFBweHd1lNmdfa55CdnY0HDx5g6NChbJpAIAAAyMvLIzMzE1ZWVu+20jLqTf6fMDY2hoKCAuTk5Ng0W1tbFBQUoLq6GoqKiu+0zrLoTZ7DwoULMXr0aEycOBEAYG9vj/LyckyaNAnz588Hl0ttKO9LU/9ma2hovNNWMoBaylpNUVERLi4uOH36NJsmEAhw+vRpuLu7N3qMu7u7SH4AiI+PbzI/Ec+bPAsAWLVqFZYtW4bjx4/D1dX1fVRVprX2OdjY2ODmzZtIS0tjP1988QU8PT2RlpYGMzOz91l9mfIm/094eHggKyuLDYwB4O7duzA2NqaA7A29yXOoqKhoEHjVBcoMLVH9Xkn03+x3/iqBDIqOjmaUlJSYXbt2MRkZGcykSZMYLS0tpqCggGEYhhk9ejQzb948Nv/58+cZeXl5Zs2aNczt27eZxYsX05QYbaS1z2LlypWMoqIi8+effzL5+fnsp7S0VFKXIBNa+xxeR29ftp3WPouHDx8y6urqzLRp05jMzEzm6NGjjIGBAfPTTz9J6hJkQmufw+LFixl1dXVm3759zP3795mTJ08yVlZWjJ+fn6QuQWaUlpYy165dY65du8YAYNatW8dcu3aNyc3NZRiGYebNm8eMHj2azV83JUZQUBBz+/ZtZtOmTTQlhrT75ZdfmI4dOzKKiopMjx49mIsXL7L7+vTpw/j7+4vk379/P/PRRx8xioqKTNeuXZm///77PddYdrXmWZibmzMAGnwWL178/isuY1r7/0R9FJS1rdY+i+TkZMbNzY1RUlJiLC0tmeXLlzO1tbXvudaypzXPoaamhgkJCWGsrKwYZWVlxszMjJk6dSpTVFT0/isuY/75559Gf+/X3X9/f3+mT58+DY5xdHRkFBUVGUtLS2bnzp3vpa4chqF2UUIIIYQQSaMxZYQQQgghUoCCMkIIIYQQKUBBGSGEEEKIFKCgjBBCCCFEClBQRgghhBAiBSgoI4QQQgiRAhSUEUIIIYRIAQrKCCHkHQkJCYGjoyO7PXbsWPj6+kqsPoQQ6UZBGSGEEEKIFKCgjBDSLlVXV0u6CoQQIoKCMkJIu9C3b19MmzYNM2fOhJ6eHry8vJCeno7BgwdDTU0NhoaGGD16NJ49e8YeIxAIsGrVKlhbW0NJSQkdO3bE8uXL2f1z587FRx99BBUVFVhaWmLhwoWoqamRxOURQmQABWWEkHYjMjISioqKOH/+PFauXIl+/frByckJly9fxvHjx1FYWAg/Pz82f3BwMFauXImFCxciIyMDe/fuhaGhIbtfXV0du3btQkZGBjZu3Ijt27dj/fr1krg0QogMoAXJCSHtQt++fVFSUoKrV68CAH766SckJibixIkTbJ5Hjx7BzMwMmZmZMDY2hr6+Pn799VdMnDhRrHOsWbMG0dHRuHz5MgDhQP9Dhw4hLS0NgHCg/8uXL3Ho0KE2vTZCiGyQl3QFCCHkfXFxcWG/X79+Hf/88w/U1NQa5MvOzsbLly9RVVWFzz77rMny/vjjD/z888/Izs5GWVkZamtroaGh8U7qTgiRfRSUEULaDVVVVfZ7WVkZhg4dirCwsAb5jI2Ncf/+/WbLunDhAkaOHIklS5bAy8sLmpqaiI6Oxtq1a9u83oSQ9oGCMkJIu+Ts7IyDBw/CwsIC8vINfxV27twZPB4Pp0+fbrT7Mjk5Gebm5pg/fz6blpub+07rTAiRbTTQnxDSLgUGBuLFixcYPnw4UlNTkZ2djRMnTmDcuHHg8/lQVlbG3Llz8cMPP+D3339HdnY2Ll68iIiICADCoO3hw4eIjo5GdnY2fv75Z8TGxkr4qgghHzIKyggh7ZKJiQnOnz8PPp+PgQMHwt7eHjNnzoSWlha4XOGvxoULF+L777/HokWLYGtri2HDhuHJkycAgC+++AKzZs3CtGnT4OjoiOTkZCxcuFCSl0QI+cDR25eEEEIIIVKAWsoIIYQQQqQABWWEEEIIIVKAgjJCCCGEEClAQRkhhBBCiBSgoIwQQgghRApQUEYIIYQQIgUoKCOEEEIIkQIUlBFCCCGESAEKygghhBBCpAAFZYQQQgghUoCCMkIIIYQQKUBBGSGEEEKIFPh/E31tKuiNK10AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "persons = pr[(pr[\"category_id\"] == 1) & (pr[\"iou_threshold\"] == 0.5)]\n", "plt.figure(figsize=(7, 7))\n", @@ -3256,7 +965,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "id": "c4eef9d1", "metadata": { "ExecuteTime": { @@ -3283,7 +992,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "id": "8c5ed310", "metadata": { "ExecuteTime": { @@ -3305,7 +1014,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "id": "c23360c3", "metadata": { "ExecuteTime": { @@ -3313,18 +1022,7 @@ "start_time": "2023-06-22T09:38:50.796990Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAHuCAYAAABK9tJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjXElEQVR4nOzdd3hUZfbA8e/MJJPee6MEQu89FOmCAopYsCDKKq69oD/L2ld3sey6uoqiKHYFC64FBBVBpNfQSSCQ3uukTb+/PwIRJEBIZuZOwvk8T55HJvfe9wxC5vCWczSKoigIIYQQQgin0aodgBBCCCFEWycJlxBCCCGEk0nCJYQQQgjhZJJwCSGEEEI4mSRcQgghhBBOJgmXEEIIIYSTScIlhBBCCOFkF1zCpSgKBoMBKT8mhBBCCFe54BKuqqoqgoKCqKqqUjsUIYQQQlwgLriESwghhBDC1SThEkIIIYRwMkm4hBBCCCGcTBIuIYQQQggnk4RLCCGEEMLJJOESQgghhHAySbiEEEIIIZxMEi4hhBBCCCeThEsIIYQQwskk4RJCCCGEcDJJuIQQQgghnEwSLiGEEEIIJ5OESwghhBDCySThEkIIIYRwMkm4hBBCCCGcTBIuIYQQQggnk4RLCCGEEMLJPNQOQAghhFCbxWzhyPoUDm3cj95Hz5QHr1c7JNHGSMIlhBDigmKz2cjemcqB31LITMuluLCSymojVrsdgCA/b6Y8qHKQos2RhEsIIUSbVpCWwf6fd5BxMIvC/HLKDXWYrbbTrtNqNAT6eREdE6JClKKtk4RLCCFEm1GeW8iBX7ZzdM8xCnJLKauopdZkafRafx89YaH+xHeMImlId3qMH0R6ehYeHjoXRy0uBJJwCSGEaJVqSis4tGY7R3akk59dTGl5DVV1JhTl9Gu99R6EhvgRmxBB5wFJ9Jw4hMDwoIbv79l1gAfveoZ1v25i2MiBvPPpKy58J+JCIAmXEEIIt2eqrubI77s5vC2VnKOFlJRVY6gxYrOfnl156LSEBPkSExdKYt9Eek8cQni76Eafu2Prbt7570ds+n07AFqtlrDwUCxmC556T6e+J3FhkYRLCCGEW7HWGcnadoBDm/aTfaSA4hIDldXGRvddaTQaggO8iYwOoUOPdvQaP5CEnoloNJozPl9RFLZt2sXbr33Its0pAOh0OqbNuJhb7ppF+47xznpr4gImCZcQQgjV2CwWCvYcJnXDPjJTcygqrKSiykit+Qz7rny9iIwMpF3XBHqM7kPnwT3RNXHPlaIobFy3jXf++xG7tu8FwMPTg+lXX8Jf7riB+HYxDntfQvyZJFxCCCFcwma1UXo4g8Pr95FxIIuC/HLKDbVUG81n3HcVHh5AfKcYuo/oTdLwXvgF+J33uIqisO7XTbz934/Yl3IQAL2Xnhkzp/CXO64nOjaypW9NiHOShEsIIYTD2Ww2KjPzOLZ5H+m7M8g/fmKwqs50xn1XYaH+xHWIImlwN7qP6UdIRMvKM9jtdtb8tJ63//sRh/YfBsDb24urb7iMm/56LZFR4S16vhDnQxIuIYQQLWbILSJr2z6O7EonL7OU0vJqDLWmM9a7Cg7yJSYhjM4DkugxZgBR7aPPuu/qfNhsNn5e8RvvvP4RR1KPAeDj68O1s6cz+9ZrCIsIdcg4QpwPSbiEEEKcl5ricnJ3HCB9Zzo5xwooKa3GUGM6476rAH9vomNC6Ng7kZ7j+pPQtX2T912dD6vVyqrv1/DO6x9xLD0LAD9/X66/+Upm3XIVIaHBDh9TiKaShEsIIcQZmSqrydt1kGM7jpCVnk9xcf2JwWpT4/uufLw9iYwKpn33dvS4qB8d+3bC29fbqTFaLFaWf/MT7y74hKyMXAACAv2ZdcvV3DDnSgKDApw6vhBNIQmXEEIIAMw1dRTuSSNr12EyU/MoLKykoqqOaqO5oc/gyTw9tISHB9GuSyzdR/al08AuBIYGui5ek5nvvl7Juws+JS+nAIDgkCBuvPVqrrtpBv7N2GAvhLNIwiWEEBcgq9lE0d50cncfIeNQNgV5FZQbaqmqM59x31VIqD/xHaPpmtyDpCE9iIgLd9i+q/NhMpr4ZukK3nvrUwrziwEIDQ/h5tuu5ZpZl+Hr5+vymIQ4F0m4hBCijbNZLJSkZlCw5wgZB7LJy6k/MVhdZz7jvqugQB9i2kWQNKgbXYf1JCYxBg9PdT8y6uqMfPXZ93yw8HOKi0oBiIgMY84d13PldVPx8XHu0qUQLSEJlxBCtCE2m43y9BwK9x4ha38muVkllJbV9xisMVmwN7LxytdHT3RcGIn9OtFlWC/ad2/n9H1X56O2ppYlH/+PjxZ9QVlJOQDRsZH85Y7rueKaS/Hy9lI5QiHOTRIuIYRopWw2G1U5hRTsOUzegSyyM4ooKakvx3DGfVeeOiKjQujQqwNdk3vRoWcHgsJct+/qfFQZqvn8w2/45L0vqSivBCAuIYZb7rqBy6+cLL0ORasiCZcQQrQSVQXFFKQcpiA1i+z0AoqLqqisMVJtNGNqbN+VVkNYeCDtuyXQJbkXHXt1JDw2DK1Wq0L0TWeorOKTxV/x6eKvqDJUA9C+Yzy33jWLS6dPxFPlpU0hmkP+1AohhBuqqzCQv/MgRanZ5BwpoKCwksqq+uTqTPuugoP9iO8US9dh3enYu5Nb7Ls6H+VlFXz87pd8/uEyaqprAUjs3J6599zIpKlj8fBoPe9FiD+TP71CCOEG6soNZG/eS+HBTDIPF5BfZKCy1njmfVe+XsR1iKLz4K506tuZhC4JePu5z76r81FaXMYH7yzli0++pa62DoCkboncds+NTLhkNDqd44ukCuFqknAJIYQKakrLyd2yj6KD2RTnlJJfVEVZdR3lNXVYbafuvfL01BGTEE6n/kl06t+Fdt3aue2+q/NRVFjC+ws/5+vPvsdoNAHQvVcX/nrvbMZMHOH2S59CnA9JuIQQwgVqisvJ2bKXotQcKvIrKCuraUiwDLUmTp7D0us9SOqbSL9xA+nQsz3hceFtKvnIzy1k8Vuf8c0XKzCbzAD07t+Dv94zm1HjhqlS20sIZ5OESwghnKC6sJScLfsoSsuhMr+SmmoThjoT5dV1lFXXYbRYT7k+PCaUPhf1oeewHnTs1dEpvQbVlpOVz3tvfsK3X63Eevz99x/cm7/eexPJowZJoiXaNEm4hBDCAaoKisnZso/itFwqCiox1liwWG2U1xgpq6mjoqYOm/2PeSytTkvnvp3omdyTnsndiYiLUDF658o8lsO7Cz7mh2U/Y7PVn6YcnNyf2++7iUHD+kmiJS4IknAJIUQzGHKLyNlan2BVFhow1lpQFIVas6VhFqvKaD7lHv9gf3oM607PYT3oNqhrq93k3lTpaRkseuNjVn7/K/bjNcGGXzSY2+6dzYDBfVSOTgjXkoRLCCGawJCdT/bWAxQfzqOy0ICprr40g92uUFl7YhbLeNpSYVznOHom96DnsB6065bQpvZinUnawXTeef0jfl7xG8rxE5YXjU/mtntm06d/D5WjE0IdknAJIUQjKjLzyNl6gJL0EwnWH4mUyWqlvNpIpdFIebUR20mnCj31HnQZ2IWew3rQY1h3QiJD1AhfFQf2pvHO6x/y66r1Da+NnzSKuffMpkfvLipGJoT6JOESQgig/FguudvqE6yKwirMxj8SLEVRqDaaqbKYKa8xUWGoPeXe4IjghlmspP6d0XvrXR2+qvbsOsA7//2Idb9uAkCj0XDxlDHMvedGunTrpHJ0QrgHSbiEEBeksvRscrcfoORIAZXFBszGU1vjWO126mxWDBYrhaVV1NWaGr6n0Who371dQ5IV2yn2gtz4vXPbHt7570dsXLcNAK1WyyWXjWfu3bNITOqgbnBCuBlJuIQQFwSb1ULu5r1kbUulNLMUk9F62jUavYZqxU5ptYm8nFJsJ/Un9PL1ovvgbvQc1oPuQ7sREBLgyvDdhqIobNu0i7df+5Btm1MA0Ol0TJ0xkVvvupH2HePVDVAINyUJlxCizTIbqshcv4u8PccoyzNgMZ86i+UdoMfu7UmlxUZOXjlFqcWnfD88Noyew3vSc1gPOvVJbFV9CR1NURQ2/b6dt1/7kF3b9wLg4enB5VdN5pY7byC+XazKEQrh3i7cnx5CiDbHbrdTm1dA1qa95B/MoaKoBpv1jw3tWq2GoCh/bIH+5JfXsivlCLVVdSd9X0tin471tbGG9SAyIeKCXCo8maIorPt1E2//9yP2pRwEQO+lZ8bMKcy5/Tpi4qJUjlCI1kESLiFEq2a3WCg/fJTsrYcoTi+ksqwOu+2PAqM6Dy1h8SHED+oC4WGseH8l6Wv3N3zfN9CXHkOP18Ya0g1ffx813obbsdvtrPlpPW//9yMO7T8MgLe3F1fdcBk3//VaIqPCVY5QiNZFEi4hRKtjrq6mdF8auTuPUJJdRlWFEeWkZoSeeh0RiZG0H96LuIHdKM4tZfl7K9i9bg9QvxQ2fFoy/cf0o0OP9mh1bb82VlPZbDZ++fE33nn9Yw4fOgqAj68PM2+8nJvmziQsIlTlCIVonSThEkK4PbvdTl1BESUHDpO/N5OyfAM1VeZTkiwvX0+iusaReFF/Irq2Q6PVUFlq4Kv/fsOmHzZjt9vRaDUMmTSYS26edEHVx2oKq9XKqu/X8M7rH3EsPQsAP39frr/5SmbdchUhocHqBihEKycJlxDCLdksFgzHMik9kE5Baj4VxTXUVltOucYn0Ju43h1pf1FfQttFNey3MtYYWb10DWu//A3z8fY6vYb3ZMqtlxLbMcbl78WdWSxWVvzvZxa98TFZGbkABAT6M+uWq7lhzpUEBl2YpzGFcDRJuIQQbsNsqKLyyFFKDmVSfLSYyjIjdbWnJln+4f4kDOxC++ReBEafurxltVjZ8N1GVn38MzWVNQB06NGey/46jU59El32PloDi9nCt1/9yLsLPiUvpwCA4JAgbrz1aq6dfQUBgf4qRyhE2yIJlxBCNfVLhYVUHDlGaVoupbkVGMpNp9XICo4Nod3Q7iQM6oZfWGCjz9m1JoXl762gNL8MgMiESKbOvZQ+I3tf8CcNT2Yymvhm6QoWL/yMgrwiAELDQ7hp7kxm3ng5vn6+KkcoRNskCZcQwqWsRiNVGdkYMrIpTc+noqgWQ4URs+mPGlkajYawjpG0G9aT+H6d8A70O+PzUnek8d3bP5BzOAeAwLBALrlpEkMvHYJOp3P6+2kt6uqMfPXZ93yw8HOKi0oBiIgM4+bbr+Oq66fh4+OtcoRCtG2ScAkhnMpUUUl1di61+UUYSyupKjJQVlKHocKI1XJSjSydlshu8bQb3J3Y3h3R+509AchOy+H7RT+Quj0NAG8/b8ZfO47RV47Cy8fLqe+pNamtqWXpx9/y4aKllJWUAxAdG8lfbr+eK2Zeipe3/F4J4QqScAkhHObEacKa3DxqC0sxlRmwmSwoikJttYXigmqqDeaG63V6D2J7dyRhYBeie3bAw8vznGOU5JWyYvGP7Fi9s/4ZHjpGTh/BxbMm4B8k+45OqDJU8/mH3/DJe19SUV4JQGx8NLfePYvLr5yMp/7cv9dCCMeRhEsI0Ww2s4nqnHxqcwuoKy7DVFGNYvtj1kpRFAwVJkqLa6mtOp5oaTTE9+9Mx+QeRHZLQNfEdjnVFdWs+vhnNny3saHH4cAJA5jyl0sIiwlz+HtrrQyVVXyy+Cs+XfwVVYZqANp1iGPu3Tdy6fSJeF7A7YmEUJP8zRNCNJnZUNWwPFhXUoGluhaUU6/RaDV4BPpiMNjIP1JMbXn9aUGdp44OyT3pOnEA/hHBTR7TVGdi7VfrWL3kV0y1JgC6De7KtLlTiE+SRsknlJdV8PG7X/L5h8uoqa4FILFze+befSOTpo3Fw0N+3AuhJvkbKIRolN1ux1hcQnV2HnVFJRhLDdiM5tOu0+o98A4JwCcqHH1YGPmHizi4JgWjof5D39PXi86j+5I0th/egU0/AWez2ti8YgsrP1yFoawKgPikeC7761S6DuzimDfZBpQWl/HhoqUs/fhb6mrr+0ImdUvktntuZMIlo+XggBBuQhIuIQRQX2i0JjePmtwC6oqOLw9abadd5+HnhXdoML7REfi3i0UfHIzJUEva6l2kf74F6/GkzCfEny7jB5A4shee3vomx6EoCrvX7WH5eysoyi4GICw2jKm3XEq/MX3RaqUND0BRYQkfvL2Erz79DqPx+MxfzyT+eu9sxl48Un6fhHAzknAJcYGryc2jYONOTJU1nNIrB0CjQR/ki094KL4xkfi3i8PT949ZKkNBGXs/WU3mloPYj+/dCowNo9vFA0kY1BWdx/nNrhzZnc53b39P5sH61jL+wf5Mmj2R4VOT8ZC9RwDk5xay+K3P+OaLFZhNx6vo9+vO7ffexKhxw6TmmBBuSn6CCXGBUhSFitQ0CjbubtjorvXU4RUSgE9EGH7x0fjFRKP1PP00W8nRPFJX7SB3T3rDHq7wzrF0u3gQMb06otGe34d+3rF8fli0nP2bDgCg99Yz9poxjJs5Bm9fqQ8FkJOVz3tvfsK3X63EaqkvDNt/UG/+et9NJI8aJImWEG5OEi4hLkCKzUbxzhRKdh8BRcEr2J/Y0UPxCg8741KUoijk78vg0KrtlBzJbXg9tm8i3S4eRHin2POOo7yonBXvr2Tbqu0oioJWqyV56jAm33QxgaGnV5S/EGUey+HdBR/zw7Kfsdnql3gHJ/fnr/fOZnByf0m0hGglJOES4gJjM9ZRsHkblYfzAPCNDidh8mh0jcxkAdhtNrK2pZL60w4q8+orlGt1WtoN7Ua3iYMIjAlt9L6zqa2q5edPV7Nu2e8NszX9Rvdlyi2XEJkQ2cx31rakHjjCB28v4cfvVmO3189ADr9oMLfdO5sBg/uoHJ0Q4nxJwiXEBcRYVkLR1l1UZ9cnToGJ8cSNHY6mkVkti9HMsQ37SPtlF7Xl9acEPbw86XRRH5LG9cc3pHlFRves38tnLy6hrrr+RF3nvp247K9Tad+9fTPfVdtRU13Lj9/9wrIly9m3+1DD6xeNS+a2e2fTp38PFaMTQrSE6gnXggULePnllykoKKBv3768/vrrDBky5IzXv/rqq7z11ltkZWURHh7OVVddxfz58/H2ln0eQpyJYrdTk5dFyc6D1BbWVx0P69OVyCH9TluSMhpqObw2hfS1uzEfr3vlHehL0rh+dLqoD/oW7Knau2Ef7z/zIXabnZjEGC67bSrdh3S7oJfFFEVhz64DLPv8B1b+sKahtIOHpwfjLh7JX+64nh69u6ocpRCipVRNuJYuXcq8efNYuHAhQ4cO5dVXX2XSpEmkpqYSGXn6ssJnn33Go48+yuLFixk+fDhpaWncfPPNaDQaXnnlFRXegRDuz2Y2UXXsMGX7MzCW1lcejxrWn7A/fYhXF1eS+ssOMjbux2ap3yvkHxFM14sH0mFY9yZXhD+T/ZsPNCRbAycMYNaj16PVXbilCyrKK/l+2U8sW7Kc9LRjDa936NSOGTOnMO3KSYSFh6gYoRDCkTSK8udz4K4zdOhQBg8ezBtvvAHUF1pMSEjgnnvu4dFHHz3t+rvvvpuDBw+yevXqhtcefPBBtmzZwvr16xsdw2QyYTKZGn5tMBhISEigsrKSwEDZlCvaNrOhgqqMdMoP5WKurAWNhrgxQwnq3KHhGlN1HTuXrCFnx2FO/DgIaR9Ft4sHEde/k0PqOR3ansqiv72H1WKl/5h+3PjEDRdkQU673c62TSl8veR7Vq/8HYvZAoC3txcTp4zhyuum0n9Q7wt6xk+Itkq1GS6z2cyOHTt47LHHGl7TarVMmDCBTZs2NXrP8OHD+eSTT9i6dStDhgzh6NGjrFixghtvvPGM48yfP59nn33W4fEL4c4URaGuMI/a3BzKU/Ow1JjQeOhImDAS/4SYhuvsdjubFi2nKDUHgOge7ek2aRARXeId9qF/eNdh3n28PtnqM6o3Nz5+4SVbxYWlfPvVj3yzdAXZmX+c8OzWozMzrpvKpZdPIDAoQMUIhRDOplrCVVJSgs1mIyoq6pTXo6KiOHToUKP3XH/99ZSUlDBy5EgURcFqtXL77bfzt7/97YzjPPbYY8ybN6/h1ydmuIRoq+wWC9XZRzGVllF2KA+b0YLOS0/C5NH4Rp7a5Hn/d5soSs3Bw8uT0ffNICwx5gxPbZ70PUd552/vYTFb6TGsBzc9eeN5F0NtraxWKxt+28rXn//A779ubijp4B/gxyWXj+fKa6fRo7e0KBLiQqH6pvnzsXbtWv75z3/y5ptvMnToUI4cOcJ9993Hc889x5NPPtnoPV5eXnh5ebk4UiHUYampojrzKGZDNeWp+djNVjz8fGl/yWi8QoJOuTZv7zEOrtwGwKBZExyebB3bn8Hbjy7CbDTTbXBX/vLsTRdEtficrHy+Wbqcb7/8kaLCkobX+w/qzYxrpzBxyhh8fX1UjFAIoQbVfvqFh4ej0+koLCw85fXCwkKio6MbvefJJ5/kxhtv5NZbbwWgd+/e1NTUcNttt/H4449L7zBxwVIUBWNJIXX5OZir6ihPK0Cx2tAHB9L+ktF4+vudcn1NSSVb318JQOcxfWk32LGn4LJSs1n4yDuY6kwk9U/ilufm4KlvvM5XW2A2mVnz83q+/vwHNq/f0fB6cEgQl105iRnXTiExqYN6AQohVKdawqXX6xk4cCCrV69m+vTpQP1+ktWrV3P33Xc3ek9tbe1pSdWJvSAq7v0XQlV2m5Wa7AwshgpMFTVUHC5EsdvxiQwjYdJFeHifOsNrs1jZ+M5yzLUmQjtE0ffKUQ6NJ+dwDm8+tBBjjZFOfRKZ+4+/oPdqevPq1iQ9LYNvli7n+2WrKC+rbHg9edQgZlw7hbETR7bZ9y6EOD+qzu/PmzePm266iUGDBjFkyBBeffVVampqmDNnDgCzZ88mLi6O+fPnAzBt2jReeeUV+vfv37Ck+OSTTzJt2rQLbhOuEADWulqqM9Oxm03UlVRRebQIFAX/hBjix49A28gSXsqXv1GeVYTez5vk26a0uNzDyfKO5vHmQ29TV11Hx54duG3+rXj5tK0l/draOn5evpavP/+BlB37Gl6PjApn+jWXMv2aS4lv59jlWSFE66dqwjVz5kyKi4t56qmnKCgooF+/fqxcubJhI31WVtYpM1pPPPEEGo2GJ554gtzcXCIiIpg2bRr/+Mc/1HoLQqjGVFZCTW4mKAq1hVUYMuqX54M6dyB29JBGq8dnbjlI+rq9oIGhf5mMnwP7FRZkFrLgoYXUGGpo360df31hbptqPH1gbypfL/mBH79dTXVVDVA/w37R+GSuvHYqw0cPxsOj7e9RE0I0j6p1uNRgMBgICgqSOlyi1VLsdmpyszCXl6AcT7aqMosACO3dlaihp1ePB6jMLeGXF5dgM1vpMWUovaYlOyymouwiXr9/AYayKuKT4rnr37fjG+DrsOerxVBZxYpv61vtHNp/uOH1+HaxzLh2CpdfdQkRUWFneYIQQtSTf44J0YrYTEaqM9OxGetQFIWa/Gqqs+uTrcghfQnr03ibHIvRzMZ3lmMzW4nq3o4eU4Y6LKaS3BLemPcWhrIqYhNjuPPlv7bqZEtRFHZu28OyJcv5eflajMb6wsmeek8mTL6IGddOZXByPzmkI4Q4L5JwCdFKmCvLqcnOQLHbAC3VORXU5BWBRkPsqMEEd01s9D5FUdj+8c9UFZbjE+LP0L9MdliyUFZQxhsPvkVlSSXR7aO469934Bfkd+4b3VBpSTnff72KZUuXk5Ge1fB6py4dufK6qUy9YiLBfyqtIYQQTSUJlxBuTlHs1OXnYiyp36Ol9fSmPC2fuqJSNDod8eOHE9A+7oz3H16TQvaOw2i0WpLnXoq3g2afKooreGPem5QXlhOZEMFdr9yBf7C/Q57tKna7nU2/b2fZkh9Y8/MGrBYrAD6+PkyeNo4rr5tK737dpdWOEKLFJOESwo0pdjtVxw5jrakCwMM/mOKdhzGVV6LVe9Ju0kX4Rkec8f6So3ns/up3APpeOYrwxFiHxFVZUskb896iNL+M8Ngw7vr3HQQ6cAO+s5UWl/HlZ9/xvy9+JC+noOH1Xv26c+W1U5k8bRx+/q13WVQI4X4k4RLCjdXmZdcnW1ot+qBI8tfvxFJdi4evD+0uGY13aPAZ7zVW1bJp0QoUu52EgUkkjevnkJgMZVUsePAtinOKCY0O5a5X7iQ44sxxuJvKCgPXXfZXCvLq974FBPozbcbFzLh2Kl26d1I5OiFEWyUJlxBuylRWgqmsGAAP/zBy127DZjShDwqg3SWj0QecefnObrez5f2V1JVXExAVwqAbJzpkWay6opoFD75FYVYRwZHB3P3KHYRGhbT4ua6iKArPPPIyBXlFxCXEcPeDtzD+kovw9m5btcKEEO5HEi4h3JC1rra+xhaAxofcNdtQrFa8w0NpN/kiPHzOXt/qwPItFB7IQqf3YPhtU/D0bnm18xpDDW8+tJCCjAKCwgO5+5U7CItpXSURli1ZzuqV6/Dw9ODfb/1dmkcLIVxGEi4h3IzdZqU6Mx0UBTSeFG47gGKz4RcXRfyEkejO0ZMwf38GB1ZsAWDg9eMJigtvcUy11XW89X9vk5ueR0BIAHf9+04i4s68d8wdHUvP4sVnXwfgnodulWRLCOFSknAJ4UYURaEm6xh2swmNzpOyQ/kNyVbCpIvQnqOFVU2ZgS2LV4ICiaN602FY9xbHZKwx8vYj75CdloN/sD93v3IHUe0iW/xcV7KYLTx23/MY64wMGT6Am26bqXZIQogLjFTuE8KNGIsLsFRVgkaDscKCqawCnZee2DHDzpls2aw2Ni1agbnGSEi7SPpfM7rF8ZjqTLz92CIyDmTiG+jLnf+6negO0S1+rqsteGUxB/amEhQcyD/+8zcpWiqEcDn5qSOEm7BUGagryAVAow+g/MARAGJGDcbT1+ec9+/++nfKjhWg9/VySFNqs9HMO397l6N7j+Hj78OdL99OXCfHlJVwpa0bd/L+ws8BeObF/yPqLGU0hBDCWSThEsIN2MxmqrOOAuAREEzJzkMABHXpSGDHhHPen7UtlSNrUgAYMmcy/uEtq4huMVtY9MRijqSk4+XrxR0v3UZCl/gWPVMNFeWV/O2Bf6IoCldeN5Xxky9SOyQhxAVKEi4hVKbY7VRnpaPYrOi8fanKLMFSXYunvx/RyQPOeb8hv4ztn/wCQPfJg4nt3bFF8VjNVt576n3SdqSh99Zzx4u30b57+xY9Uw2KovDso/+iqKCYDp3a8X9P3a12SEKIC5gkXEKorDY/G1ttDRqdDkXjTeXhDNBoiBs77JwnEuubUv+A1WQhsms8PacltygWq8XK+89+yMEth/D08uSvL8ylY6+WJXBqObkExAuvPYlvE5ZlhRDCWSThEkJFpvJSTKX1xU29wmMo3JQCQFjfbmdt2QP1Mzg7PvsVQ34Z3kF+DLvlErS65v+VtlltfPjcx+zbuB9PvQdz/3ELnfu2zsrrUgJCCOFuJOESQiXWulpqcuqLm3pFRFO88xA2kxnv8BAiB/Q65/3p6/aQtfUQGq2G5FsvxTvQr9mx2Gw2Ppn/GXt+34vOU8ctz/2FrgNbZ5IiJSCEEO5IEi4hVPBHcVM7Hv6BGEtrqckpQKPTETdmGJpzlIAoyygg5ct1APS5YiQRSXEtiMXO5y8uZeevu9B56PjLszfTfUi3Zj9PbW/8+z0pASGEcDvyk0gIF1MUhZrsDOxmE1pPPZ6B4RRt3Q1A1JC+eIWc/YShqbqOje8sx261EdevE10mnHtj/dmsXrqGbT9vR6vTcvPTs+mV3LNFz1PTlg07+eDtJYCUgBBCuBdJuIRwMWNxARZDBWg0+MV3JP/3bceryUcT0jPprPcqdoUt76+itqwK/4hgBt90cYuaUpcWlLHqo58AuOaBq+gzsnezn6W2ivJKHp8nJSCEEO5JEi4hXMhS/UdxU9/YdpQfOoaxpLy+mvzooedMng6u3EbB/gx0njqG/3UKeh+vFsWz7PVvsJgsdO7XiWGXDm3Rs9QkJSCEEO5OEi4hXMRuMVOdWV/cVB8Shs2sULL7IAAxIwfj6Xf2sgWFh7LY//0mAAZcN47g+JYtl+3dsI99G/ej1Wm5+v6rWjRTpjYpASGEcHeScAnhAordTnXmieKmPnhHxJD32xZQFIKSOhCYePZq8rXl1Wx+70cURaHjiJ50HN6yfVamOhPLXv8GgHEzxxDdPqpFz1OTlIAQQrQGknAJ4QK1+TlYa2vQaHX4t+9E0ZbdWKpq8PT3JXr42Te92202Nr+7AlNVHcEJEfSfObbF8fz0yS+UFZYTEhXCxbMmtvh5ajm5BMTQEQOlBIQQwm1JwiWEk9UXNy0CwK9dR2ryiqlIOwZA7Jhh6PT6s96/55sNlKTn4emjZ/htU/DQt6wpdUFmIWu+WAvAlXdfgVcL94Gp6eQSEM+/8piUgBBCuC356SSEE1mNdQ3FTb0jo9F4eJH/+zYAwvp2xy8m8qz35+05StovOwEYctMk/COCWxSPoih89drX2Kw2eg3vSe+R5y6w6q6kBIQQojWRhEsIJ1FsNqozjhwvbhqAd2Qs+eu21leTDwsmcuDZk53a8mq2flhfsqHL+P7E9Wt5m50dv+zk8K4jeHp5MuPu6S1+nloqyit5/IF/SAkIIUSrIQmXEE6gKArV2ccaipv6t0uk4lA61dn5aHRaYsckn7WavN1uZ+sHKzHXGAlpF0nv6SNaHFNtdR3/e+s7AC6eNZGwmLAWP1MNiqLw7CMvU1RYIiUghBCthiRcQjiBsaSwobipf/tELNV1FG5OASBySF+8Q89eTf7Qqu0Upebg4eXJsFsuQefZsn1bACsW/0hVeRWRCZGMu2ZMi5+nlmVLlrN61e9SAkII0apIwiWEg1mqq6jLzwHANzYBnbcvuWs2H68mH0Voz7OXLSg5mvdHva1rxxIQFdLimLJTs1n/7QYArr7/yhZvvFeLlIAQQrRWknAJ4UB2i5nqrHQA9MGheIVGULxzH8aSMrRNqCZvrjWy+d0fUewK7QZ3pf2w7i2PyWbni1e/QrErDBw/gC4Dzt4+yF1JCQghRGsmCZcQDqIodqozj6JY64ub+sW3p66olJKU49XkRwzC08/3LPcr7PjsV2rLqvALD2Tg9eMcUv194/LNZB3KxtvPm8vvuKzFz1OLlIAQQrRm8hNLCAepL25a3VDc1G61k7tmU301+c7tCerU7qz3H9u4n+ztaWi0WobdcimeDqiPVVVexQ+LlgMw5S+XEBQW2OJnqkFKQAghWjtJuIRwAFNFGaaS48VNEzqg8/KmcPOuP6rJjxh41vsN+WXsWroWgN6XDyesY7RD4vru7R+oq64jPimOkZe3/KSjGqQEhBCiLWidO2eFcBN2ixlTRRl1hXkAeEdEow8KwZCRQ0VqfaPqc1WTt1msbH5vBTazlahu7eg68ezJWVMd2Z3O1lXb0Gg0XH3/VWh1re/fV1ICQgjRVkjCJcR5Umw2zJXlmCpKsVZXNbzu4R+AT3Qc1tq6P6rJ9+l2zmrye5atpyKnBK8AH4bMmYRG2/J9WzarjS//8xUAyVOH0aFH+xY/Uw1fL/lBSkAIIdoESbiEaALFbsdSVYm5ogyzoQIUpeF7Hr5+6IPD8AoNByBv3VZsRhNeocFEDOp91ufm7TnK4TUpAAyZfTE+QX4OiXftV79RkFmIf7A/0+ZOccgzXe1YehYvPfsGICUghBCtnyRcQpyBoihYa6sxl5dhrixDsdkavqf18sYrOBR9SBg6/R+b28sOHGmoJh83dhjas1STr6s4tXVPTO+ODom7vKiclcefe/lfp+EbcOaTke5KSkAIIdoaSbiE+BOrsQ5zeSnmijLsFnPD6xoPzz+SLG+f00o2mCoMFG7ZBUDk4L54hwafcQy73c6W9+tb9wQnRDikdc8Jy974H2ajmU59Ehk8aZDDnutKUgJCCNHWSMIlBGA3129+N1eUYjPWNbyu0erwDArGKzgMD/+AM9bFUux2ctduRrHa8IuNIrTX2Ze/Tm7dk3zrpQ5p3QOwf9MB9vy+F61Oy1X3X+mQOl6udnIJiGdfelhKQAgh2gRJuMQFy26zYq4ox1xRhrXmj83vaDR4BgThFRyKZ2AwmibMrhTv2o+xuAyt3vOc1eRPbt3Tf+YYh7TuATCbzHz9+jIAxlw1mtiOMQ55riudXALiquunMW7SKLVDEkIIh5CES1xQTmx+N5WXYqmqPHXzu58/+uAw9EEhaD2a9lfDbrVSduAIJbsOABAzchCe/mfeM/Xn1j0dknu07A2d5JdPV1OaX0ZwRDCTb7rYYc91lT+XgHjoybvUDkkIIRxGEi7R5imKgrWm6vjm93IU+x+b33XePuiDQ9EHh56y+f1c7FYr5YfSKUk5iK3OCEBQ5w4EdTpz+QVnte4BKMou4pclvwIw4+7peDmgSr2rSQkIIURbJgmXaNMsNVXUZB07ZfO71tOzfiYrOBQPn/M7wWe32ag4dJSSlANYa+v3enn6+xE+oCfBSR3Oeu+xjQdOat1ziUNa90B9Ivfla8uwWWx0H9qNPqPOXorCHUkJCCFEWycJl2iz7FbL8WbSFjQ6HfqgEPTBYXj4+Z/3zJJis1GRdoziXfux1tQnWh5+vkT070Fwl45ozlL+AU607lkDQK/Lkwlz4P6qXWtSSNuRhqfeg6vubX0b5S1mC4/e+5yUgBBCtGmScIk2SVEUarIzUKwWtF7eBHXufs6kqNHn2O1UpB2jZNd+LNW1AHj4+hDevwfBXRPPWmfrhD+37uk20XGlGow1Rr5581sAJt4wgfDYMIc921Xe+Pd7HNyXJiUghBBtmiRcok0ylRbVb4rXaPBvl3jeyZZit1N5JJPinfuwVNUA4OHjTVi/HoR064TWo+nPa2jd4++41j0nrHj/RwylBiLiIxh37ViHPddVpASEEOJCIQmXaHOsdbXU5ucA4BuTcF77tBS7HcPRLIp37MdsqC8VofPxIrxPd0J6dG7y6cUTTmndc5PjWvcA5BzJZd036wG46r4ZeOo9HfZsV5ASEEKIC4kkXKJNUew2qrOOgqLU19IKa9qMiaIoGI5mU7xzH+YKAwA6Lz1hfbsT2iMJbTMKkzqrdQ/UV6r/8j9fodgV+o/tR7dBXR32bFeQEhBCiAuNJFyiTanNy8ZuMqLx8MQvocM5N5ArikJVRg7FO/ZhKq8EQOulJ7xPN0J6JKFr5qyRM1v3AGz5cSsZBzLx8vXiijsvd+izXUFKQAghLjSScIk2w1xRhqmsBAD/dh3Repw5WVIUherMXIp27MNUVgGAVu9JWO+uhPbqgk6vb1EszmrdA1BdWc137/wAwKVzJhMUHuSwZ7uClIAQQlyIJOESbYLNbKImNxMA74hoPP0DG71OURSqs/Mp3rEXY0k5AFpPD0J7dSWsd1d0Xi1LtMB5rXtO+O7tH6g11BLXKZZRV4x06LOdzW6389RDL0gJCCHEBUcSLtHqKYpCTdYxFJsNna8fPtGxjV+TU0DRjr0Yi8sA0Hh4ENoribDe3fDwdkwRUme27gE4uvcYW37cCsDVD1yFrhmlLtT0xcffsnvnfvz8fXnuX49KCQghxAVDEi7R6tUV5mGtrQatFv+ERDSaUz/Ea3ILKdqxl7rC+uVGjU5HaM8kwvp0w8PH22Fx/Ll1zwAHtu4BsNlsfPHqVwAkTxlKx54dHPZsVyjIK+LVF98G4L6HbyM6NlLliIQQwnUk4RKtmqW6CmNRPgB+ce3ReZ06U1W6L5XCTbuA+kQrpHtnwvt2x8PXcYnWCX9u3aN3cD/DdV//Tv7RfPwC/Zg2d6pDn+1siqLw/BOvUFtTR98BPbnmxta30V8IIVpCEi7RatmtVmqyjwKgDwnDK+TUKutmQxVFW/cAENw1kYiBvfH0c85pOEOB81r3AFQUV/DjB6sAuOyvU/FzYD0vV/hp+RrWrd6Eh6cHz7z4sCwlCiEuOJJwiVapfk9WBnaLBa3eC7/Ydqd9P3/9dhSbDd/YSGJGDXZaj0Gbxcrmd53TuueEbxZ8i6nORMeeHRgyebDDn+9MlRUG5j/9XwDm3n0jnbp0UDcgIYRQgfwzU7RKprISLIaKM7buqTySQU1uIRqdjtiRTky2rDY2LVrhtNY9AAe3HiLlt91otVqufuCqVjc79O/n36SspJzEzu255Y7r1Q5HCCFUITNcotWxGuuozcsCwCc6Dg9fvz9939SwbytiQE/0QQFOicNmsbJp0Qry9hxF56lj2K2XOrR1D4DVYuWr/y4D4KIZo4jrdPoJTHe2ef0O/vflj2g0Gp558WH0Dii7IYQQrZEkXKJVUex2ao637vHwD8Q7POq0awo37cJmMuMVGkRYn25OicNmsbLxneXk7z2GzlPHiDsuI6pbgsPH2fjDJkpySwgMDeCSOZMc/nxnqqsz8tzf/g3AzBun029QL5UjEkII9UjCJVqV2vwcbMY6NB4e+Cd0PG2psDqngMojGQDEjBqCxgnLbzaLlY1v/0D+vgx0njpG3nk5Ud3bnfvG82SqM7Hq458BmHTTJLydcLLSmRa++gHZmblExURw78Nz1Q5HCCFUJQmXaDXMlRWYSosA8EvoiNbz1NY9dquV/PXbAAjtmYRvZNhpz2gpm8XKhoU/ULA/A52nByPvuoyobo5PtgDWfrWO6vJqwuPCSb50qFPGcJYDe9P4aNEXADzxj3n4B7SuU5VCCOFoknCJVsFuMVOTkwGAd3gU+oDT+wcW79iHpaoGDz8fIgb1cXgM9cnW9xTszzyebF3ulGVEqO+XuHrJrwBM+csl6DxaT0V5q9XKM4+8hM1mY9LUsYweP1ztkIQQQnWScAm3pygK1VnHUGxWdN6++ETHnXaNsbSc0r2pAMSMGIROf+bG1c1hNVvZsPA7Cg9kodN7MOquy4ns6pxkC+DnT1djqjURnxRHvzF9nTaOM3z87pcc2n+YwKAAHn3mXrXDEUIItyAJl3B7xuICrDVV9a172ieeti9LsdvJW7cNFIXAjgkEtD89IWsJq9nKhre+o/Dg8WTr7ulEdol36BgnKyssZ/3/NgAw9dYpraoMRHZmLm/9530AHnriTsIiQlWOSAgh3IMkXMKtWWuqqSvIBcAvth06r9M3jpftP4yxpAyt3pOo4QMcO77ZwoY3v6fwUBYeXp6MuvtyIpKcl2wBrPxwFVaLlaT+nek2uKtTx3IkRVH4+2P/xmg0MWT4AC6/+hK1QxJCCLchCZdwW3ableqs4617gkLRh5y+Cd5cVUPR9r0ARA3th6ev41r3WM0W1r/5HUWHso8nW9OJSHLs7NmfFWQWsnVV/cb/qbdOcVrBVmf47quVbNmwAy8vPU/Nf7BVxS6EEM4mCZdwS4qiUJuThd1iRuupxze+3Wkf4IqiULBhO4rVim90BMFdEx02vtVsYf2C7yhKPZ5s3TOdiM7OTbYAlr+3AsWu0GdUbzr0aO/08RyltLiMl59bAMAd8+bQroNzZwGFEKK1kYRLuCVzeSnmyjIA/NolotWd/kfVcDSL6ux8NFqtQ3slWk0W1r/5LUWpOXh4eXLRPVcQ3tn5Fd4zDmSy5/e9aLQapvyldS3Hvfj31zFUVtGtZxKzb71G7XCEEMLtSMIl3I7NZKTmROueqFg8/fxPv8ZoomDTTgDC+/fAKzjQIWNbTRZ+X/AtxWk5eHjrueie6YS7oJ2Ooih8v+gHAIZcPJjoDtFOH9NRflu9kZXf/YpOp+OZFx/Gw0N+rAghxJ/JT0bhVhS7vX7flt2Oh18A3pExjV5XuHU3tjoT+uBAwvp2d8jYFqOZ9Qu+pfhwbn2yde90whNd07swdXsaR1LS8fD0YPLNraeFT011Lc8//goAs265mh69u6gckRBCuCdJuIRbqSvIxVZXi0anw7/d6a17AGryCqlIrd9MHztqMFpdy4uCWoxmfn/jW0qO5OLpreeie68gLLHxZM/R7HZ7w+zWyOkjCI0Kccm4jvDfl96hML+Y+Hax3DlvjtrhCCGE25KES7gNc1UlxpJCAPziO6D11J92jd1qI//37QCEdO+Mb3REi8etT7b+R8mRPDx99Fx07wzCOrpuSS9l7W5yDufi5evFxBvGu2zcltq9Yx9LPvofAE/NfxAfn9bV61EIIVxJ9YqKCxYsoEOHDnh7ezN06FC2bt161usrKiq46667iImJwcvLiy5durBixQoXRSucxW6xUJN9DACvsAj0QY3P8pTs2o/ZUIWHrzeRQ1revsdiNPP7638kW6Pvc22yZbPaWL74RwDGzxyLf9Dp+9XckcVs4ZlHXkZRFC6/ejLDRg5SOyQhhHBrqs5wLV26lHnz5rFw4UKGDh3Kq6++yqRJk0hNTSUyMvK0681mMxMnTiQyMpKvvvqKuLg4MjMzCQ4Odn3wwmEURaEm+xiK1YrO2wffmMZb5hjLKijZfRCA6OED0elPnwE7H5Y6E+te/x+lR/Px9PVi9H0zCG0f1aJnnq/NK7ZQkluCf4g/Y64e7dKxW+K9tz4l/XAGoeEhPPj4nWqHI4QQbk/VhOuVV15h7ty5zJlTv/dj4cKFLF++nMWLF/Poo4+edv3ixYspKytj48aNeHrW98rr0KGDK0MWTmAsKcRSbQCNBr92p7fugfrN9Pm/17fvCWgfR0AL6zydnGzpfb24SIVky2w0s/KjnwCYdONEvHy8XDp+c6WnZfDO6x8D8MjT9xAccnojcSGEEKdSbUnRbDazY8cOJkyY8EcwWi0TJkxg06ZNjd7z3XffkZyczF133UVUVBS9evXin//8Jzab7YzjmEwmDAbDKV/CfVhraxpa9/jGJuDh3Xil+PKD6dQVlaL19CB6+MAW1dwy15lY999vGpKt0fdf6fJkC+C3Zb9jKDUQGh3K8KnJLh+/Oex2O88++jJWi5WLxiUzedo4tUMSQohWQbWEq6SkBJvNRlTUqR90UVFRFBQUNHrP0aNH+eqrr7DZbKxYsYInn3ySf//73zz//PNnHGf+/PkEBQU1fCUkNL5cJVxPsdnqS0AoCp6BwXiFNr4B3lJdS9G23QBEDu6Lp79vs8dsSLaOFaD382b0/VcS0u705Wtnq62qZfXnvwJw6V8m4+HZOs6vfPnpd6Ts2Ievnw+PP/+AtO8RQogmUn3T/Pmw2+1ERkbyzjvvMHDgQGbOnMnjjz/OwoULz3jPY489RmVlZcNXdna2CyMWZ1OTl4XdbELr6YlffIdGP7wVRaFg4w7sFis+kWGE9Ojc7PHMtUbWvbaMsoZka4YqyRbAL5//Sl11HTGJMQwc59iG285SkF/Eqy+8DcB9D99GTJzrZwWFEKK1Uu2f1eHh4eh0OgoLC095vbCwkOjoxk+JxcTE4Onpie6kukvdu3enoKAAs9mMvpFN1F5eXnh5tY69MRcSU3kp5vJSAPwSEtGeoTp5VUYOVZm50ML2PeYaI7/99xvKMwvR+3kz5oErCY5veUmJ5qgormDd1+sAmHbrFLQ69/93j6Io/OOJ/1BTXUuf/j245sbL1Q5JCCFaFdV+0uv1egYOHMjq1asbXrPb7axevZrk5Mb3s4wYMYIjR45gt9sbXktLSyMmJqbRZEu4J5vJRG1ufese78gYPP0DznCdmYKNOwAI79sN79DgZo1nrjHy22vLKM8sxMvfR9VkC2DVRz9hMVtJ7N2RHsMcUyXf2X5esZbfftmIh6cHz7z08Cn/6BFCCHFuqv7Tet68eSxatIgPP/yQgwcPcscdd1BTU9NwanH27Nk89thjDdffcccdlJWVcd9995GWlsby5cv55z//yV133aXWWxDnSVHsVGcfRbHb8PD1wyfqzK1zirbtwVprRB8YQHi/ns0aryHZyirCy9+H0SonW0XZRWxeUV9rburcKa1iD5Shsor5T/8XgFvuvIHOXTqqHJEQQrQ+qu7UnTlzJsXFxTz11FMUFBTQr18/Vq5c2bCRPisrC+1JJQISEhJYtWoVDzzwAH369CEuLo777ruPRx55RK23IM5TXWEettoaNFpdfQmIMyQctQXFlB88AkDMqEFoPZo3o7L769/rk60AH8bcfyVBceHNjt0RVixeid1up2dyDzr1TlQ1lqb69z/eorS4jI6d2jH3rllqhyOEEK2SRlEURe0gXMlgMBAUFERlZSWBgYFqh3NBsVQbqDqaBoB/u0T0waGNXme32Ti6bBXmCgPBXROJvWhIs8arzCvlp+c+QVEUxj10DeGdXdOI+kyyU7P51+3/QaPR8PC7DxLrosbYLbFlw07mXv8AAB9+9Qb9B/dWOSIhhGid3H+3rmgT7FYL1VnHW/eEhJ8x2QIo3X0Qc4UBnY8XUUP6NnvMvd9uQFEU4vp3Vj3ZAvj+3eUADJowsFUkW0ajib8/9i8Arpl1uSRbQgjRApJwCaerb92TgWK1oPXyxjfuzLXQTOWVlOw6AEB08kB03s07YVpyJI+83UfRaDT0vnx4s57hSKk70kjdnobOQ8clcyapHU6TLHz1A7Izc4mMjuC+R25TOxwhhGjVJOESTmcqKcJSVQkaDf7tEtFoG9+PpSgK+eu3o9jt+CfEEJjYvCK1iqKw55v1AHQc0ZPA6DPPprmCoij8cHx2a8S0ZMJiwlSNpykO7T/Mh+8sBeDx5x8gILB1NNUWQgh3JQmXcCpTeSm1+fXFZn2j4/HwOXOV+IpD6dQWFKPx8CB6xKBmn+DL33uMkvQ8dJ46ekwZ1qxnONKe3/eSdSgbvbeeibMmqh3OOVmtVp555GVsNhsXTxnD2Ikj1A5JCCFaPUm4hNOYK8qoyT6+byssEq/wM1d1t9TWUbj1ePueQb3RB/g1a0y73c6e/20AIGlcf3xD1J2ZsdlsLH9vBQBjrxlDYGjjNcfcyaeLv+bA3lQCAv159Jl71Q5HCCHaBEm4hFOYDRUNm+T1IeH4xiacdcaqcONO7GYL3uGhhPZMava4mZsPYsgrRe/rRbdJg5r9HEfZunIbhVlF+AX6Me6aMWqHc045WXks+Pd7ADz4+J2ER7r/8qcQQrQGknAJh7NUGajOTAcU9MGh+MW3P2uyVZWZi+FYNmg0xF40GI22eX8sbRYr+7/fDEC3yUPQ+3o36zmOYjaZWfnhTwBMnDUBbz914zkXRVF47m//xmg0MTi5P1fMvFTtkIQQos2QhEs4lKWmiqqMI6AoeAYG45fQeFPqE2xmC/kbtgMQ1rsr3mEhzR77yNrd1JZX4RsSQNLY5peTcJT1326koriC4MhgRrrBSclz+X7ZKjb9vh0vLz1PzX+oVVTBF0KI1kISLuEw1toaqo8dAcWOp39g/YlEzdn/iBVv34O1pg7PAD8iBvZq9tjmWiMHf6xvmdNz2jB0nqo2UaCuuo6fP/0FgEvnTMZT76lqPOdSWlLOy39fAMAdD8yhfcd4lSMSQoi2RRIu4RBWYx1Vx9LqeyT6+ePfodM5lwZri0op238YgJiRg9F6ND9JOrRqO+ZaE4GxYbR3g4bQvy5dQ62hluj2UQyeqP5esnN56dnXqaww0LVHZ2689Rq1wxFCiDZHEi7RYjaTkaqjqSg2GzpfPwI6JJ2x1tYJit1O/u/1M1JBnTvgHx/d7PFry6s5/GsKAL0vH35K/001GMoMrP1qHQBTbr0Urc69/5r9/utmfvxuNVqtlmde/D88VZ4dFEKItsi9PwmE27OZTfXJltWKztunPtnSnbvRdOmeQ5jKKtF56YlK7t+iGA4s34zNYiW8UyyxfdRvCP3Txz9jNppp370dvUc0f5nUFaoM1Tx7vH3PrFuupmefbipHJIQQbZMkXKLZ7BYzVUfTsFvqW/YEJHZp0rKgqbKK4p37AIhK7o9HM9v3ABgKyji2cT8Afa4YqfpG75K8UjZ8vwmAabdNVT2ec/nX829SVFBMuw5x3PXgX9QORwgh2ixJuESz2K0WDEfTsJtNaPVeBCZ2Qetx7o3h9e17tqHY7PjFRRHUuUOL4tj77UYUu0Jsn0S3aFC94v0fsdvsdB/SjaR+ndUO56w2rtvGN0uXo9FoePblR/Dxce+yFUII0ZpJwiXOm91qrZ/ZMhnReurrZ7Y89U26t/LwMWrzitDodMSMHNyiGaDSo/nk7jpS36B6uvrtZ3KP5LJz9S4Apt7q3jWsqqtqeOaRlwC47qYrGDhE/TIaQgjRlknCJc6LYrNRdewwNmMdGg8PAhK7oNM3bUnQWmekcHMKABEDe6FvQUPkkxtUt0/uTlCs+hXRf3h3BYqiMGBcf+KT3Luswn/mL6Qgr4i4hBjufeQ2tcMRQog2TxIu0WSK3UZVxmFsdTVodB4EJHZF59X0ZaiCTbuwmcx4hwUT1rtri2Ip2JdB8eFctB46ek1NbtGzHOHI7nQObDmIVqfl0r9MVjucs9qyYSdffvodAM++9DC+vj4qRySEEM0zZswY7r//fodf6wxy/ls0iWK3U5WRjrWmGo1WR0DHJDy8m/5BXZ2djyE9EzQaYkYNaXb7HvhTg+qx/fBVuSG0oij8sGg5AMlThhERF6FqPGdTW1PL0w+/CMA1sy5nyPABKkckhBgzZgz9+vXj1VdfVTsUwP3iOZtly5bh6dm0wtLnc60zSMIlzklR7FRnHcVabQCtFv+OSXj4+jX5frvFSv76+vY9oT274BMR2qJ4sramUplbgqevF90mD27Rsxwh5bfdHNufgaeXJ5NmX6x2OGf12ovvkJdTQGx8NA88drva4QghHMRsNqPXN20vrTuw2WxoNJoW100MDW3658n5XOsMsqQozkpRFGqyMrAYKkCjIaBDZzz9zm/vVdG2PViqa/D09yVyUMvqUtksVvZ9txGAbpMG4aVyQ+iK4gq++M9XAIy7ZgxBYYGqxnM22zen8PmH3wDw9AsP4efvq3JEQoibb76Z3377jddeew2NRoNGoyE9PZ1bbrmFjh074uPjQ9euXXnttddOu2/69On84x//IDY2lq5d67dpbNy4kX79+uHt7c2gQYP43//+h0ajISUlpeHeffv2cckll+Dv709UVBQ33ngjJSUlZ4wnIyPjrO9h7dq1aDQali9fTp8+ffD29mbYsGHs27ev4ZoPPviA4OBgvvvuO3r06IGXlxdZWVmYTCYeeugh4uLi8PPzY+jQoaxdu/aU52/YsIExY8bg6+tLSEgIkyZNory8HDh9mfDNN98kKSkJb29voqKiuOqqqxq+9+dry8vLmT17NiEhIfj6+nLJJZdw+PDh02JetWoV3bt3x9/fn8mTJ5Ofn3/W348zkYRLnJGiKNTkZGKuLAONBv/2nfD0P7+EwnAsh7L9aQBEjxyEtoXTuenr9lBbVoVPkB9JY/u16FktZbfZ+WT+Z9QaaolPiufiGyeqGs/Z1NUZefrh+lOJM66dQvIo9WcGhRDw2muvkZyczNy5c8nPzyc/P5/4+Hji4+P58ssvOXDgAE899RR/+9vf+OKLL065d/Xq1aSmpvLzzz/zww8/YDAYmDZtGr1792bnzp0899xzPPLII6fcU1FRwbhx4+jfvz/bt29n5cqVFBYWcs0115wxnoSEhCa9l//7v//j3//+N9u2bSMiIoJp06ZhsVgavl9bW8uLL77Iu+++y/79+4mMjOTuu+9m06ZNLFmyhD179nD11VczefLkhsQnJSWF8ePH06NHDzZt2sT69euZNm0aNpvttPG3b9/Ovffey9///ndSU1NZuXIlF1100Rnjvfnmm9m+fTvfffcdmzZtQlEULr300tNi/te//sXHH3/MunXryMrK4qGHHmrS78dplAtMZWWlAiiVlZVqh+LW7Ha7Up2TqZTu3qaU7t6mmCrKzvsZpkqDcvD9r5T973yu5G/a2eKYTLVG5Zt5bylL//ofJf33vS1+Xkv9/Nkvyr1jHlAemvyIUphVqHY4Z/Xis68rvdtdpEwYeqViqKxSOxwhxElGjx6t3HfffWe95q677lKuvPLKhl/fdNNNSlRUlGIymRpee+utt5SwsDClrq6u4bVFixYpgLJr1y5FURTlueeeUy6++OJTnp2dna0ASmpqapPjOdmaNWsUQFmyZEnDa6WlpYqPj4+ydOlSRVEU5f3331cAJSUlpeGazMxMRafTKbm5uac8b/z48cpjjz2mKIqiXHfddcqIESPOOPbJsX799ddKYGCgYjAYznltWlqaAigbNmxo+H5JSYni4+OjfPHFF6fEfOTIkYZrFixYoERFRZ3rt6RRsodLnEZRFOoKcjGVFgHgl9ARfVDIeT3DbrWR88tG7BYLPlHhRDmgzlPqzzsw1xgJiA6hQ3KPFj+vJTIPZbH8vR8BuPKeK4hMiFQ1nrPZtW0vny6uX/Z8av5DBLSgHIcQwjUWLFjA4sWLycrKoq6uDrPZTL9+/U65pnfv3qfs20pNTW1Y0jthyJAhp9yze/du1qxZg7//6T8H0tPT6dKlS7NjTk7+48R4aGgoXbt25eDBgw2v6fV6+vTp0/DrvXv3YrPZThvTZDIRFlZf6iclJYWrr766SeNPnDiR9u3bk5iYyOTJk5k8eTJXXHEFvr6nb584ePAgHh4eDB06tOG1sLCw02L29fWlU6dODb+OiYmhqKioSfH8mSRc4jTGonyMxQUA+Ma1xyvk/GtcFWzaibG0HJ23F/HjhrfoVCJAXWUNab/sBKD35SNUbQhtrDXy0fOfYLfZ6Te6L0MvGXLum1RiNJp46uEXURSFy66azKixw9QOSQhxDkuWLOGhhx7i3//+N8nJyQQEBPDyyy+zZcuWU67z82v64aUTqqurmTZtGi+++OJp34uJiWl2zE3h4+NzSrHr6upqdDodO3bsQPenHrwnEkIfn6afhg8ICGDnzp2sXbuWn376iaeeeopnnnmGbdu2ERwc3KyY/3yqUaPRoChKs54le7jEKeqKC6grzAPANyYe77DzL3FQcTiDikPpAMSNTcbTAZuzDyzfjM1sJaxjNHH9Op37Bif6+vVvKMktITgymJkPXu3W/RLffGUxmUeziYgM4+Gn7lY7HCFEI/R6/Sl7kjZs2MDw4cO588476d+/P507dyY9Pf2cz+natSt79+7FZDI1vLZt27ZTrhkwYAD79++nQ4cOdO7c+ZSvEwncn+Npqs2bNzf8d3l5OWlpaXTv3v2M1/fv3x+bzUZRUdFpsURHRwPQp08fVq9e3eQYPDw8mDBhAi+99BJ79uwhIyODX3/99bTrunfvjtVqPSWJLS0tJTU1lR49nLOCIgmXaGAsLaIuPwcAn6hYvCOiz/8ZZZXkr6//Cx4+oCf+8ef/jD+rKizn6Pr60y59ZqjboHrnr7vYunIbGo2GG/92A74B7nvSb8+uA3y0qH6T7ZPzHyQwSN16ZUKIxnXo0IEtW7aQkZFBSUkJSUlJbN++nVWrVpGWlsaTTz55WuLUmOuvvx673c5tt93GwYMHWbVqFf/6178AGn5u3nXXXZSVlXHdddexbds20tPTWbVqFXPmzGlIsv4cj91ub9L7+Pvf/87q1avZt28fN998M+Hh4UyfPv2M13fp0oUbbriB2bNns2zZMo4dO8bWrVuZP38+y5fX1zZ87LHH2LZtG3feeSd79uzh0KFDvPXWWw2nKk/2ww8/8N///peUlBQyMzP56KOPsNvtDSc4T5aUlMTll1/O3LlzWb9+Pbt372bWrFnExcVx+eWXN+n9ni9JuAQApvISanOzAPCOiMY78vynlu0WCzmrN6BYbfjFRRHRv6dDYjvRoDqmd0ciVGyZU1ZQxhevfAnAxFkT6NxX3Zm2szEZTTz9fy9it9uZMn0iYyao32tSCNG4hx56CJ1OR48ePYiIiGDSpEnMmDGDmTNnMnToUEpLS7nzzjvP+ZzAwEC+//57UlJS6NevH48//jhPPfUUQMO+rtjYWDZs2IDNZuPiiy+md+/e3H///QQHBzfUxPpzPFlZWU16Hy+88AL33XcfAwcOpKCggO+///6ctcHef/99Zs+ezYMPPkjXrl2ZPn0627Zto127dkB9UvbTTz+xe/duhgwZQnJyMt9++y0eHqfviAoODmbZsmWMGzeO7t27s3DhQj7//HN69mz8s+j9999n4MCBTJ06leTkZBRFYcWKFU4rjqpRmrsY2UoZDAaCgoKorKwkMNB9aya5krmijOqsowB4hUXiG5tw3rNIiqKQu2YzhvRMPHx9SJwxCQ+fltfIKsso4JcXloAGLn5iFsFx4S1+ZnPYbDZev/9Nju07Roce7bn3tbvReejOfaNKXnvpHd5b8ClhEaF88/MHBIcEqR2SEEIFn376KXPmzKGysvK89kOdj7Vr1zJ27FjKy8ubvVfqQiCb5i9wZkMF1VnHAPAKCW9WsgVQfjC9oXVP/PjhDkm2FEVhzzf1LXzaD+2uWrIF8PMnv3Bs3zG8fL248fFZbp1sHdibygcLlwDw+HMPSLIlxAXko48+IjExkbi4OHbv3s0jjzzCNddc47RkSzSdLClewCxVBqoz0wEFfXAovvHtm5Vs1RWXUbip/gRh5OA++EY7ppdg4cEsilKz6xtUT1OvQfWxfcdY9dHPAFx9/5WEx57/qU1XsZgtPPnQC9hsNiZNHcuES85c9E8I0fYUFBQwa9YsunfvzgMPPMDVV1/NO++806Jn3n777fj7+zf6dfvt0iKsqWRJ8QJlqami6uhhUOx4Bgbj3z4Rjeb882+byczRb1ZhqarBv30cCRMds6ldsSv8PP8zKrKL6TK+P/2uHt3iZzZHXXUdL839N2UFZQycMIDZj89SJY6mWvDKYt5+7UNCQoP45pePCA0LVjskIUQrV1RUhMFgaPR7gYGBREa6bx1CdyJLihcga20N1ceO1Cdb/oH4t2tesqUoCnm/bcFSVYOnvx9xo4c67ARh1vZUKrKL8fTW012lOleKovDFf76irKCMsJhQrr7vSlXiaKpD+w/z3oJPAPjbc/dLsiWEcIjIyEhJqhxAlhQvMNa6WqqOpaHYbXj4+ePfoVOzi5KW7k2lKjMXjVZL/IQR6Lwc06neZrU1NKjuevEgvPzV2Xuw/ecd7Px1F1qtlhsfn4WPSnE0hcVi5amHXsBqtTF+8kVcPGWs2iEJIYQ4iSRcFxCbyVifbNls6Hz9COiQhEbbvM3ftQXFFG3dDUBUcn98IkIdFufR3/dSU2LAO9CXLuP7O+y556Mkt4QvX/0agMk3XUzHnh1UiaOpFr/5KYcOHCEoOJAnnn/ArYuxCiHEhUgSrguEzWyi6mgqitWKztunPtnSNS/ZstYZyVm9ERSFwE7tCOne2WFxWoxmDqyor/zbY+owPLycUw/lbGxWGx/94xNMdSY69Ulk4g0TXB7D+Ug7lM7br38EwKPP3EuYA5NfIYQQjiEJ1wXAbjFTdTQVu8WC1subgMQuaBspGtcUit1O7ppNWGvr0AcHEjtqsENnU1J/3oGpqg7/yGASRzimcOr5WvnhKjIPZuHj582sv92gat/Gc7FarTz10ItYLVZGTxjOpdPdOzkUQogLVZM/dWfMmNHkhy5btqxZwQjHs1stGI6mYTeb0eq9CEzsgtaj+bNGJbsOUJNbiMZDR/z4EWgdWJHXaPhzg2rX17o6knKEnz+t79s188FrCI0KcXkM5+PDd5ZyYG8qAYH+PPnPB2UpUQgh3FSTE66gICme2NrYrVaqjqZhNxnReurrZ7Y8m7+xvTqngOKd9T0NY0YOwjvUsX8mDqzYitVkIbR9FPEDHLdM2VQ1hho+/udnKIrC0MlD6D+2n8tjOB9HD2fw5n/eB+Dhp+4mMkq9wrBCCCHOrskJ1/vvv+/MOISDKTYbVcfSsBnr0Hh4EpDYBZ3eq9nPs9TUkrtmEwDB3RIJTuroqFABqC6uIH3dXkCdBtWKovDFK19RUVxBRHwEV957hUvHP182m40n/+9FLGYLI8cM5bKrJqsdkhBCtMiCBQt4+eWXKSgooG/fvrz++usMGdJ4WaD9+/fz1FNPsWPHDjIzM/nPf/7D/fff79qAz5P7bk4RzabYbVRlHMZWV4tG51GfbHk1v9WOYreTs3ojNqMJ77BgopMHOjDaevu+24RitxPdoz2RXRMc/vxz2bxiCym/7Uar0zL7iVl4+TQ/OXWFj9/9kr27DuAf4MdT8x+SpUQhRKu2dOlS5s2bx9NPP83OnTvp27cvkyZNoqioqNHra2trSUxM5IUXXiA6OtrF0TZPk2e4+vfv3+Qf6jt37mx2QKJlFLudqox0rDXVaLQ6Ajom4eHdsvpRRdv2UFdYgtbTk/gJI9A6uI9geVYRWdtSAeh9xQiHPrspCrOKWPbG/wCYesultFMh4TsfGUezWfDv9wB48PE7iY6VgoRCiNMpigKKXZ3BNdrz+ofgK6+8wty5c5kzZw4ACxcuZPny5SxevJhHH330tOsHDx7M4MGDARr9vjtqcsI1ffp0J4YhHEFR7FRnHcVabQCtFv+OSXj4+rXomVUZOZTuOQRA7Ogh6AMDHBHqKfZ8sx6AdoO7EpLg2uTBarby0fMfYzaaSeqfxNiZY1w6/vmy2Ww8/X8vYjKZSR41iBnXTlE7JCGEu1LslO/bpcrQIb36g6Zp/zg3m83s2LGDxx57rOE1rVbLhAkT2LRpk7NCdLkmJ1xPP/20M+MQLaQoCjVZx7AYKkCjIaBDZzz9/Fv0TLOhmtzf6mtihfbqSmBHx8/8FB7MovBgFlqdll6XDXf4889l+eIV5BzOxTfQl1mPXYe2mVX3XeXzD79h1/a9+Pr58PQL/ydLiUKIVq+kpASbzUZUVNQpr0dFRXHo0CGVonI86aXYBiiKQk1OBubKctBo8G/fCU//ljXmtltt5KzegN1swScyjKihfR0U7R8Uu9Iwu9Xpoj74R7j2JGzqjjR+XboWgOv+bybBEcEuHf98ZWfm8t8X3wHggcduJza+dexbEEKoRKOtn2lSaWxxqmYlXDabjf/85z988cUXZGVlYTabT/l+WVmZQ4IT56YoCrV5WZjLSwHwb5eIPjC4xc8t3LwLY0k5Oi898eOHN7vf4tnk7DxMeVYRHl6eLm9QXV1RzSfzPwNgxGXD6TOyt0vHP192u52nH34Jo9HE4GH9uPqGy9QOSQjh5jQaTZOX9dQUHh6OTqejsLDwlNcLCwtbzYb4pmjWp+izzz7LK6+8wsyZM6msrGTevHnMmDEDrVbLM8884+AQxZkoikJdQS6m0mIA/BI6og9qeaHOyiMZlB88AkDc2GQ8/Vu2D6wxdpuNvd9uAKDrxQPxDvR1+BhnoigKn7+8FEOpgaj2UUy/w/2Tly8+/pbtm1Pw9vHm2ZcfcfulTyGEaCq9Xs/AgQNZvXp1w2t2u53Vq1eTnJysYmSO1ayf2p9++imLFi3iwQcfxMPDg+uuu453332Xp556is2bNzs6RnEGxqJ8jMUFAPjGtccrJKzFzzSVV5L3+3YAwvv3xD8hpsXPbMzR3/dRXVyJV4AvXcYPcMoYZ7L+243s27gfnaeOm56Yhd67+cVgXSEnK5//vPA2APc9Mpf4drEqRySEEI41b948Fi1axIcffsjBgwe54447qKmpaTi1OHv27FM21ZvNZlJSUkhJScFsNpObm0tKSgpHjhxR6y2cU7OWFAsKCujdu34Jxt/fn8rKSgCmTp3Kk08+6bjoxBnVFRdQV5gHgG9MAt5hES1+pt1iJeeXDShWK36xUUQMcE4vw1MaVE8ZiqcLE578YwV8+9a3AFx221TiOse5bOzmUBSFvz/2MnW1dQwY0ofrbmp6iy0hhGgtZs6cSXFxMU899RQFBQX069ePlStXNmykz8rKOmVmPy8vj/79/9if9q9//Yt//etfjB49mrVr17o6/CZpVsIVHx9Pfn4+7dq1o1OnTvz0008MGDCAbdu24eXl3gUj2wJjaRF1+TkA+ETF4h0RdY47zk1RFPLXb8NUYcDD15u4sclO2bcFkLZ6F0ZDLf4RQSSO7OWUMRpjMVv48PmPsZitdB/SjYtmjHLZ2M2VnZnL5vU78PDQ8exLspQohGi77r77bu6+++5Gv/fnJKpDhw71dcZakWb99L7iiisa1lrvuecennzySZKSkpg9ezZ/+ctfHBqgOJWprITa3CwAvCOi8YlyzPJSxaF0Ko9kgkZD3LjhePg2vzL92Rirakn9eQcAvS4bjs7BRVTP5ru3fyD/aD7+If5c/4j7l4AA2LKhvohw34G9aN8xXuVohBBCNFezZrheeOGFhv+eOXMm7du3Z+PGjSQlJTFt2jSHBSdOZa4ooyYnAwCvsEh8oh2zHFZXUkbBpvoP9sjBffCLcV7x0YM/bsVqNBPSLpKEgV2cNs6f7d98gHXLfgfg+oevJTDU8QVcnWHLhvrkdOgI1+5zE0II4VgOqcM1bNgwhg0b5ohHiTMwGyqozjoGgFdoOL6xCQ4pemkzmev3bdns+LeLJaxPtxY/80yqSypJ/20PAL2nj0CjdU3RTkNZFZ+9tASAi2aMouewHi4Zt6XsdjtbN9ZXiR4yXBIuIYRozZq1pjJ//nwWL1582uuLFy/mxRdfbHFQ4lSWKgPVmemAgj44FN+49g5JthRFIe+3LViqavD09yNuzDCnVi7f//0m7DY7Ud3aEd2jvdPGOZndbuezFz+nuryamMQYLvvrVJeM6whpB9OpKK/Ex9eH3n27qx2OEEKIFmhWwvX222/TrdvpMyE9e/Zk4cKFLQ5K/MFSU0VVxhFQFDwDg/FL6OCwpKhsbypVmblotFriJ4xA5+W804IVOcVkbq1v0eDKBtWbV2zh4NZDeOo9uOmJG/HUe7ps7JY6sX9r4JA+rSpuIYQQp2tWwlVQUEBMzOn1mSIiIsjPz29xUKKetbaGqmOHQbHjGRCIf7tENA5ql1BbWELh1t0ARCX3xyci1CHPPZM932wABRIGdSG0fctPVTaFzWbj50/rD3dcesulxHRsXRWLt26sT7iGjhiociRCCCFaqlmf3gkJCWzYsOG01zds2EBsrBRldARrXS1Vx9LAbsfDzx//9p0cVqbBWmckZ/UGUBQCO7UjpHtnhzz3TIpSsynYn4FG69oG1Slrd1NWUIZfkB8jVWiM3RIWi5UdxxNi2TAvhBCtX7M2zc+dO5f7778fi8XCuHHjAFi9ejUPP/wwDz74oEMDvBDZjEaqjqWh2GzofP0I6JCERuuY8gmK3U7ums1Ya+rQBwUQM3KwU/dt2aw2dn3xGwCJo3oREBnstLFOpigKqz//FYDRM0a5fTX5P9uXcpDamjpCQoPo0r2T2uEIIYRooWYlXP/3f/9HaWkpd955Z0Pjam9vbx555JFTSu+L82czmzAcS0WxWtF5+xDQMQmNznG1qkpSDlCTW4BGp6vft+XkvUEHV2ylMrcEL38fek513UnWQ9sOkZueh95bz8jprtsz5ihbNtaXgxic3L9V1AsTQghxds1KuDQaDS+++CJPPvkkBw8exMfHh6SkJKky30J2s5mqo6koFgs6L28CErug1TmkcgcA1bkFFO/YB0DMyEF4hwY77NmNKc8q4uDKrQAMuG4s3gGua1D9y/HZreSpw/ALdHzzbWc7sWFeykEIIUTb0KJ/OhcUFFBWVkanTp3w8vJqdWX23YndYsFwLA272YxW71WfbHk4bvbJUlNL7q+bAAjumkhwl44Oe3ZjbBYrWz9YhWJXiB+Q5NIip5kHMzmSko5Wp2Xs1aNdNq6j1NbWsXvnfkA2zAshLhwLFiygQ4cOeHt7M3ToULZu3XrGa5ctW8agQYMIDg7Gz8+Pfv368fHHH7sw2vPXrISrtLSU8ePH06VLFy699NKGk4m33HKL7OFqBrvVStWxNOwmI1pPfX2y5em4PUeK3U7O6o3YjCa8w4KJdsGsyYEVW6nMK8UrwIcB1411+ngnOzG7NWjCQEIiQ1w6tiPs2rYXq8VKdGwk7Tq4d3NtIYRwhKVLlzJv3jyefvppdu7cSd++fZk0aRJFRUWNXh8aGsrjjz/Opk2b2LNnD3PmzGHOnDmsWrXKxZE3XbMSrgceeABPT0+ysrLw9f1jmWjmzJmsXLnSYcFdCBSbjapjadiMdWg8PAlI7IJO79il2aJte6grLEHr6UH8+BFoPRy3TNmYssxCDq3aBsDA68a5dCmxMKuIvevrl03HX+vaRM9R/igHMcCpBxqEEG2boijYLVZVvs53xeuVV15h7ty5zJkzhx49erBw4UJ8fX0bLbIOMGbMGK644gq6d+9Op06duO++++jTpw/r1693xG+dUzTrk/enn35i1apVxMef2kw3KSmJzMxMhwR2IVDsNqoyDmOrq0Wj86hPtrwc2zS6KjOX0j31BUdjRw9FH+TcHoI2i5WtH/6EYldIGNSF+AFJTh3vz9Z8sQZFUeg1vCfRHVpX3a0TTuzfGjpclhOFEM2nWG0c+uArVcbudvNVaDyblmKYzWZ27NhxyqE7rVbLhAkT2LRp0znvVxSFX3/9ldTUVLfudtOshKumpuaUma0TysrKZON8Eyl2O1UZ6VhrqtFodQR0TMLD28ehY5gN1eSu3QxAaK8uBHZMcOjzG7N/+RYMeaV4BfgywMUzTJUllWz9aTsA468d59KxHaWywsDBfWkADJH6W0KIC0BJSQk2m42oqFOLYkdFRXHo0KEz3ldZWUlcXBwmkwmdTsebb77JxIkTnR1uszUr4Ro1ahQfffQRzz33HFB/atFut/PSSy8xdmzrXMZxJUWxU52ZjrXaAFot/h2T8PB17Ek6u9VGzuoN2M0WfCLDiBrS16HPb0xZRgGpq+oTnoHXj8PL37EJ5Lms/WodNouNjr06ktjbuYcCnGXbphQURSGxc3sio8LVDkcI0YppPHR0u/kq1cZ2toCAAFJSUqiurmb16tXMmzePxMRExowZ4/Sxm6NZCdfLL7/MuHHj2L59O2azmYcffpj9+/dTVlbWaAV68QdFUajJOoalqhI0GgI6dMbTz9/h4xRu3oWxpBydl5748cMdWsurMQ1LiYpCu8Fdie/v3Or1f1ZbXceG7zcCMOG61jm7BbBlQ339LSkHIYRoKY1G0+RlPTWFh4ej0+koLCw85fXCwkKio8+8NUSr1dK5c/1nTb9+/Th48CDz589324TrvDfNWywW7r33Xr7//ntGjhzJ5ZdfTk1NDTNmzGDXrl106iRVsc9EURRqcjIwV5aDRoN/+854+gc6fJzKI5mUHzwCQOzYYXj6O78O1f4fNmPIL8M70Jf+M8c4fbw/2/DdRky1JqI7RNNjWHeXj+8oW07aMC+EEBcCvV7PwIEDWb16dcNrdrud1atXk5yc3OTn2O12TCaTM0J0iPNOfT09PdmzZw8hISE8/vjjzoipTVIUhdq8LMzlpQD4t0tEHxjk8HFMFQbyfq8/IRjerwcBCc7vbVl6LJ/Un+pnZtRYSrSYLfz21Tqg/mRia63MXlhQTEZ6FlqtlsHJ/dUORwghXGbevHncdNNNDBo0iCFDhvDqq69SU1PDnDlzAJg9ezZxcXHMnz8fgPnz5zNo0CA6deqEyWRixYoVfPzxx7z11ltqvo2zatZc46xZs3jvvfd44YUXHB1Pm6QoCnUFOZhKiwHwS+iIPsjx9aHsFis5v2xAsVrxjYkkYmAvh4/xZ6csJQ7pRlw/1y4lAmxbtZ2q8iqCI4MZOL71zgydKAfRvVcSgU4+TSqEEO5k5syZFBcX89RTT1FQUEC/fv1YuXJlw0b6rKysU/4xXVNTw5133klOTg4+Pj5069aNTz75hJkzZ6r1Fs6pWQmX1Wpl8eLF/PLLLwwcOBA/v1OXrF555RWHBNdWGIvyMRbXr037xrXHKyTM4WMoikL+hu2Yyivx8PEmflwyGhfM9Oz7fhNVBeWqLSXabXZWL10DwNirR6NzwUZNZ2koByHV5YUQF6C7776bu+++u9HvrV279pRfP//88zz//PMuiMpxmpVw7du3jwED6mcS0tLSTvmeFGo8VV1xAXWFeQD4xibgHRbhlHEqUo9SeTgDNBrixg/Hw9f5y3qlR/NJ+7k+SRh4w3i8/BxbQ6wp9qzfS0luCb4BPiRPcV1zbEdTFKVhw7zs3xJCiLanWQnXmjVrHB1Hm2QsKaIuPwcAn+g4vMOjznFHM8cpLadgY/2HdeSg3vjFRDplnJNZzX8sJbYf2o24vq4/LKEoCr98Vr/JctT0kXj5tN4acJnHcijML8ZT70m/Qb3VDkcIIYSDtc7dxa2AqayE2rwsALwjo/GJjHHKODazmexfNqDY7Pi3iyWsr2tO6O3/fhNVheV4B/nR75oxLhnzz9J2HiY7LQdPL08umjFKlRgc5cTsVt8BPfHxcf1MoRBCCOdyi4TrfDqEn2zJkiVoNBqmT5/u3ADPk6mijJqcDAC8wiLxiXJOA2JFUcj7bSsWQzWe/r7EjR7qkiXdkqN5pP5SnyAMUmkpEWD1kvom1cMuHYp/sONrmbnSH+18ZDlRCCHaItUTrvPtEH5CRkYGDz30EKNGudfMhtlQQU3WMQC8QsPxjU1wWhJUti+Nqowc0GqJHz8Cnbfzl9SsZivbPvwZFGg/rDuxfRKdPmZjstNySN2ehlarZaxKM2yOYrfb2bZpFyAb5oUQoq1SPeE63w7hADabjRtuuIFnn32WxER1PvAbY6kyUJ2ZDijog0PxjWvvtGSrtrCEwi0pAEQP64dPpONPPjZm33cbqSosxyfIj/5Xj3bJmI05MbvVf2w/wqJDVYvDEVIPHKGywoCvnw89+3ZTOxwhhBBOoGrCdaJD+IQJExpea0qH8L///e9ERkZyyy23nHMMk8mEwWA45csZLDVVVGUcAUXBMzAYv4SOTku2rEYTOas3gKIQmJhASI8kp4zzZyVH8khbffxU4qwJ6FVaSizJLSHlt91AfaHT1u7EcuKgof3wbAVtOIQQQpw/VROus3UILygoaPSe9evX895777Fo0aImjTF//nyCgoIavhISEloc959Za2uoOnYYFDueAYH4t0t0WrKlKAq5azZhralDHxRAzKghLtm3ZTVb2PrRT6BAh+QexKrYHPrXL9ai2BW6D+lGXGfn7I9zJSkHIYQQbZ/qS4rno6qqihtvvJFFixYRHh7epHsee+wxKisrG76ys7MdGpO1rpaqY2lgt+PhF4B/+85OLThasusANTkFaHQ64ieMQKf3dNpYJ9v37UaqiyrwCfan39UXuWTMxhjKqtjyY/2hivGtuEn1CRazhR1b9wCyf0sIIdoyVdcvzrdDeHp6OhkZGUybNq3hNbvdDoCHhwepqamnNc/28vLCy8s5m8ltxjqqjqWh2GzofP0I6ODcZKsmt5DinfsAiBk5EO/QYKeNdbLiw7mk/Vq/qXvQrPHofdUrW7Bu2e9YLVbad2tHZxVqfznanpQDGOuMhIQG0bmrerOGQgghnEvVGa7z7RDerVs39u7dS0pKSsPXZZddxtixY0lJSXHKcuGZ2MwmDMfSUKxWdN6+BHRMQqNzXlsZS00dOWs2gqIQ3KUjwV1cc1jAaraw7aP6U4kdh/ckppd6SYGx1sj6bzcAMP76cW2iq8GJ/VtDhg9otU23hRDCEc6nRNQHH3yARqM55cvb271rGKq+Q/d8OoR7e3vTq9epDZmDg4MBTnvd6RTQoEHr5U1AYhJanfN+KxW7ndxfN2KrM+EVGky0C5ee9v5vA9XFFfiE+NNXxaVEgI0/bKauuo7IhEh6j3Dx/28nOdGwWvZvCSEuZCdKRC1cuJChQ4fy6quvMmnSJFJTU4mMbLx7SmBgIKmpqQ2/dvd/hKuecJ1vh3B3ofPyIrBTN9CA1sO5+6iKtu+ltqAYracH8RNGoPVwzf+24sM5HF6TAsDgWRPQq9g6x2qxsvbL3wAYN3OMW/6ZOF+1tXXs2XUAkP1bQgjHUxQFm9mqytg6vcd5JUAnl4gCWLhwIcuXL2fx4sU8+uijjd6j0Wga3X7krlRPuOD8OoT/2QcffOD4gJpIq9c7fYyqzFxKdx8EIPaioXgFBTh9TACrycLW4wVOO47oSXTPDi4Z90y2/7KTypJKgsIDGTxxkKqxOMrOrXuwWqzExkcT3y5W7XCEEG2MzWxl2X0LVBl7xmt34eHVtMmIEyWiHnvssYbXmlIiqrq6mvbt22O32xkwYAD//Oc/6dmzZ4tjd5bWP03Qhpmrqsn9bQsAoT27EJjouj1qe/63gZqSSnxDAuh7lbpLiXa7nV+PFzodfeVFeOjd4t8JLXZyOx93nwoXQghnaU6JqK5du7J48WK+/fZbPvnkE+x2O8OHDycnJ8cVITdL2/jkaoPsNhs5v2zEbjLjExlG1NC+Lhu7KC2HI8eXEgfdqO5SIsC+jfspzCrCx8+bEdOGqxqLI52ovzVE9m8JIZxAp/dgxmt3qTa2MyUnJ59yuG748OF0796dt99+m+eee86pYzeXJFxuqnBzCsaSMnReeuLHD3fqCciTWYzm+lOJQOLIXkT3aO+Scc9EURRWf14/uzXi8uF4q1Td3tEqyitJPXAEgCHJknAJIRxPo9E0eVlPTedbIqoxnp6e9O/fnyNHjjgjRIeQJUU3VJmeRfmBwwDEjh2Gp7+fy8be+83xpcTQAPpeqX5j8PQ9R8k4kImHpwejr1R3adORtm7chaIodErqQESUa/pgCiGEOzrfElGNsdls7N27l5iYGGeF2WIyw+VmTBUG8n+vrz0S3q8HAQmu20xdlJrNkeM9CgffOBFPlZcSgYbZrSGTBxMYGqhyNI4j5SCEEOIP51MiCup7Kg8bNozOnTtTUVHByy+/TGZmJrfeequab+OsJOFyI3arlZxfNmC3WPGNiSRioOtqTZ2ylDiqN1Hd27ls7DPJO5rHgS0H0Wg1jJs5Ru1wHGpLQ8Il5SCEEOJ8S0SVl5czd+5cCgoKCAkJYeDAgWzcuJEePXqo9RbOSaMoiqJ2EK5kMBgICgqisrKSwED3mTFRFIW837ZQeTgDDx9vEmdMwsPXx2Xj7/j8V9J/24NvaACTnroRT2/nl7w4l4//+Snbf95Bv9F9mfPMTWqH4zAF+UVcPOxqtFot61K+I9BFpT6EEEKoR/ZwuYmK1KNUHs4AjYa4cckuTbYKD2WT/lt9A+XBsye6RbJVVlDGztX1/RsntIEm1Sc7UQ6iR5+ukmwJIcQFQhIuN2AsLafg+BJT5KDe+MVGneMOx6lfSvwJgE4X9SGqm/pLiQBrvliL3W6ny4AkErq6rv6YK5woByH7t4QQ4sIhCZfKbGYzOb9sQLHZ8E+IIaxvd5eOv2fZ79SWVeEXFkifGSNdOvaZVFdWs2lFfcHX8W1sdktRFLaeVPBUCCHEhUESLhUpikLeuq2YDdV4+vsSO2aYSyuOFx7MIn3dXsB9lhIBfv9mPRaThfikeLoO7KJ2OA6VkZ5FUWEJei89/Qb1VjscIYQQLiIJl4rK9qdRdSwHtFrixo/Aw9t1ZRgsdSa2fVx/KrHT6D5EusmynanOxLpv1gP1e7faWsubE6cT+w7oibcL/38LIYRQlyRcKqktLKFwcwoAUUP74Rvp2uKXu08sJYYH0ucK91hKBNi8Ygu1hlrCY8Poe1EftcNxuIb+iVIOQgghLiiScKnAajSRs3ojKAqBHRMI7Znk0vELDmRy9Pd9wPECp26ylGiz2ljz5W8AjJ05Fq2ubf3xtNlsbNtUf/JSNswLIcSFpW19orUCiqKQt3Yz1ppa9IEBxFw0xKXLZpY6E9s//gWAzmP6us1SIsDONbsoLyzHP8SfIZMGqR2Ow6UeOIKhsgr/AD969umqdjhCCCFcSBIuFytJOUB1dj4anY74CSPQ6V3bWDTlq9+pLa/CLzzIrZYST25SPXrGRei93GPWzZE2Hy8HMXBoXzw8pMmDEEJcSCThcqGavEKKd9Qv5UWPGIh3WLBLxy/Yn8GxDfXjD7lpolt1kT+w+SD5xwrw8vFi5OXD1Q7HKU6Ugxgi5SCEEOKCIwmXi1hq68j5dRMoCkFdOhLSNdGl45vrTGz7pH4pMWlsPyKS4l06/rmsXlI/uzXismR8A3xVjsbxzCYzO7fWV/OX/VtCCHG6BQsW0KFDB7y9vRk6dChbt24947VjxoxBo9Gc9jVlyhQXRnx+JOFyAcVuJ/fXjdjqjHiFBhGjwgm13V+to668Gv+IIHpPH+Hy8c/m2P4M0vccReehY/SVF6kdjlPsSTmI0WgiNDyEJBcn20II4e6WLl3KvHnzePrpp9m5cyd9+/Zl0qRJFBUVNXr9smXLyM/Pb/jat28fOp2Oq6++2sWRN51sJHGBoh17qc0vRuvpQfz4EWhdvH8nf98xjm3YDxoYPPtit1pKBBr2bg2aOJDgiGB1g3GSE+18hgzv3+Zqiwkh3JOiKJiNZlXG1nvrz+tn3SuvvMLcuXOZM2cOAAsXLmT58uUsXryYRx999LTrQ0NDT/n1kiVL8PX1lYTrQlaVlUdpykEAYkYNwSs40KXjm2uNbP9kNQBJY/sTkRTn0vHPpSCzkL0b9qHRaBh/7Vi1w3GaP9r5SP0tIYRrmI1mHr70MVXGfmnFfLx8mlbc2Ww2s2PHDh577I9YtVotEyZMYNOmTU16xnvvvce1116Ln59fs+J1BVlSdCJzVQ25azcDENIjiaBOrm8MnfLVOuoqqvGPDKb3dPfbjP7rkjUA9BrRk6h2rmva7Uq1NbXsTTkASMFTIYT4s5KSEmw2G1FRp34GREVFUVBQcM77t27dyr59+7j11ludFaJDyAyXkyg2GzmrN2A3mfGOCCVqWD+Xx5C/9xgZGw+ABobMvhgPF5egOJeK4gq2/1K/1DahjTWpPtmOLXuwWm3EJcQQ3y5G7XCEEBcIvbeel1bMV21sV3nvvffo3bs3Q4YMcdmYzSEJl5MUbknBWFyG1ktfv29Lp3Pp+OYaI9uPn0rsMq4/4Z1jXTp+U6z58jdsVhud+3aiQ48OaofjNH/s35LTiUII19FoNE1e1lNTeHg4Op2OwsLCU14vLCwkOjr6rPfW1NSwZMkS/v73vzszRIeQJUUnMBzNomz/YQDixgxDH+D6NeWUL3+jrrKGgKgQerlhXavaqlo2/VC/3Dq+Dc9uAWzdeKJ/oiRcQgjxZ3q9noEDB7J69eqG1+x2O6tXryY5Ofms93755ZeYTCZmzZrl7DBbTGa4HMxUYSBvXX3tkLC+3Qlo5/qZpby9x8jYfPD4qcSJbreUCLD+2w2Y6kzEJsbQfUg3tcNxmvKyCg4dOALAUJnhEkKIRs2bN4+bbrqJQYMGMWTIEF599VVqamoaTi3Onj2buLg45s8/dYn0vffeY/r06YSFhakR9nmRhMuB7FZr/b4tixXfmAgiB/V2eQynLCWOH0B4J/dbSjSbzPz29e8AjL92XJsuk3CiWXXnrh0Jiwg9x9VCCHFhmjlzJsXFxTz11FMUFBTQr18/Vq5c2bCRPisrC6321EW51NRU1q9fz08//aRGyOdNEi4HKtiwA1NZJTofb+LGDUejdf2K7a4vfsN4YinxMvdbSgTYunIb1RXVhEaF0H9cP7XDcaotJ8pByOlEIYQ4q7vvvpu777670e+tXbv2tNe6du2KoihOjspxZA+Xg1SkHqUi7RhoNMSPS8bT18flMeTtOUrmloNoNBqG3HQxHnr3y6dtNhu/frEWgLHXjEHn4sMErnZiw7zs3xJCiAubJFwOYCytIP/4B2vEwF74xbq+npTp5KXECQMIS3TP8gO7f9tDaV4pfoF+DL3EvY/wtlR+biFZGbnodDoGDe2ndjhCCCFUJAlXC9nMFnJ+2YBis+GfEEN4vx6qxJHyxVqMhloCokPoddnZT3WoRVEUfjnexueiGSNbxXHlljgxu9WjT1f8VTipKoQQwn1IwtUCiqKQv24rZkMVHn6+xI4ZpsoG8NyUdDK3HGpYStR5ut9SIkDq9jRyj+Si99YzavpItcNxuoZyEHI6UQghLniScLVA+f7DGI5lg1ZL/PjheHi7fsbGVF3Hjs/qa5d0vXggYR3dcykRaJjdSp4yFL+gtj3joyiKbJgXQgjRQBKuZqorLqNgSwoAUUP74hsVrkocu5bWLyUGxoTSc+owVWJoiqzUbA7vOoxWp2XM1WPUDsfpjh3JpLioFC8vPf0G9lQ7HCGEECpzz7WnVkAfFEBg+zgUFEJ7dlElhpxdR8jalopGo2HwbPddSgRYfXx2a+C4AYRGhagcjfOdmN3qN6g3XirMfAohhHAv7vsJ7eZ0ek/ixg9HsdlV2bdVv5RYn8TULyWevd+Umoqyi9i9bg8A464bq3I0rrFlo5SDEEII8QdJuFpAo9Gg8VCnjtTOJWswVdUSGBvm1kuJAKs+/hlFUegxrAexbrzHzFFsNhvbNqUAsn9LCCFEPdnD1Qrl7DpC9vY0NFr3PpUIkPLbbrb/vAONRsOkGyeoHY5LHNyXRpWhGv8AP7r3SlI7HCGEEG5AEq5WxlhV23AqsdvFgwht7/oiq01VXlTOkn99AcCE68fToUcHdQNyka0b6/snDhrWDw8P902GhRDCnSxYsIAOHTrg7e3N0KFD2bp16xmvtVgs/P3vf6dTp054e3vTt29fVq5c6cJoz58kXK3MriVrMFXVERQbRo8pQ9UO54zsNjsf/+NT6qrraN+tHZfcPEntkFxG2vkIIcT5Wbp0KfPmzePpp59m586d9O3bl0mTJlFUVNTo9U888QRvv/02r7/+OgcOHOD222/niiuuYNeuXS6OvOk0Smvq/OgABoOBoKAgKisrCQwMVDuc85K94zCbFi1Ho9Uw/pFr3Xp266dPfmb5ez/i5ePFw4seJDxOnbIZrmY2mRnZZypGo4llP39A5y4d1Q5JCHGBUhSFujqjKmP7+Hif14GyoUOHMnjwYN544w0A7HY7CQkJ3HPPPTz66KOnXR8bG8vjjz/OXXfd1fDalVdeiY+PD5988knL34ATyHpHK2GsqmXnkvpTid0mD3brZCvjQCY/vr8KgKvum3HBJFsAu3fux2g0ER4RSqekDmqHI4S4gNXVGRnWfbIqY28+uBJfX58mXWs2m9mxYwePPfZYw2tarZYJEyawadOmRu8xmUx4e3uf8pqPjw/r169vftBOJkuKrcTOz48vJcaF0+NS911KNNYY+egfn2C32xkwrj+DLx6kdkgudaL+1pDhA1QpFyKEEK1NSUkJNpuNqKhTJxKioqIoKCho9J5JkybxyiuvcPjwYex2Oz///DPLli0jPz/fFSE3i8xwtQLZ29PI2Xn4j1OJKpWiaIqvXltGaV4podGhXPPAVRdc0iH7t4QQ7sLHx5vNB9XZSO7j433ui1rgtddeY+7cuXTr1g2NRkOnTp2YM2cOixcvduq4LSEJl5szGmrZuWQNAN0vGUJIu0iVIzqz7T/vYNvP29FoNcx+/AZ8/Js2ndxWVFfVsG/3IaB+hksIIdSk0WiavKynpvDwcHQ6HYWFhae8XlhYSHR040W9IyIi+N///ofRaKS0tJTY2FgeffRREhMTXRFys8iSohtTFIWdn/+KqbqO4Phwul8yRO2Qzqgkr5QvXv0KgEmzL6Zjrwtvs/jOrXuw2WzEt4slLqHtF3gVQghH0Ov1DBw4kNWrVze8ZrfbWb16NcnJyWe919vbm7i4OKxWK19//TWXX365s8NtNpnhcmPZ29PI2XUEjVbLYDdeSrTZbHz8z08x1Zro2KsjF8+6MAqc/pksJwohRPPMmzePm266iUGDBjFkyBBeffVVampqmDNnDgCzZ88mLi6O+fPnA7BlyxZyc3Pp168fubm5PPPMM9jtdh5++GE138ZZScLlpoyGmpOWEgcTkuC+S4mrPvqZjP0Z+Ph5M/vxG9Dp3DMxdLYtG+s3zEs7HyGEOD8zZ86kuLiYp556ioKCAvr168fKlSsbNtJnZWWh1f6xKGc0GnniiSc4evQo/v7+XHrppXz88ccEBwer9A7OTepwuSFFUdj49g/kpqQTnBDB+EeuddvZrfQ9R3n9gQUodoWbnryRAeP6qx2SKkpLyhk7cDoAa3d+S2hYsKrxCCGEcC+yh8sNZW9PJTclHY1W69anEmuravnoH5+g2BWGTB58wSZbANs21Vc37tK9kyRbQgghTiMJl5upq6xh55K1APSYMoTg+Ah1AzoDRVH44pWvqCiqIDw2jCvvuULtkFTVsH9LTicKIYRohCRcbkRRFHZ8thpzjZHghAi6Tx6sdkhntGXlNnatTUGr0zL7iVl4+zq35oq7ayh4KhvmhRBCNEISLjeStTWVvN1H0erqlxK1brr5vCinmK//uwyAS/9yCe27t1c5InXlZueTk5WHTqdj4JC+aocjhBDCDckpRTdRV1nDrqX1pxJ7TBnqtkuJVouVj57/BLPRTFL/zoyfOVbtkFS1e8c+/vX8mwD06tsN/wA/lSMSQgjhjiThcgOKorDj09WYa02EtIuk2yT37T+44v2VZKdm4xvoy6zHrkeruzAnSY+lZ/HflxaxeuU6ALy9vbj17lkqRyWEEMJdScLlBjK3HCJvT/1S4mA3XkpM3ZHGr8drg1370DUERwSrG5AKSopKeeu1D1j2+XJsNhtarZbLr76EO+fNISraPWclhRBCqE8SLpXVVVSz64u1APSYOozguHB1AzqD6spqPn3hMxRFYfjUYfQd1UftkFyqprqWDxct5cN3llJXWwfA6AnDue+R2+jc5cJrYySEEOL8SMKlIkVR2P7paiy1JkLaR9HtYvdcSlQUhSUvf0FliYGodpFMv9N9e1U5msViZdmSH3jr1Q8oKykHoFe/7sz72x0MGiob5IUQQjSNJFwqytx8kPy9x9B66I6fSnTP/VAbv9/E3g370HnqmP3ELLx8vNQOyekUReGXH9fx35cXkXk0G4B2HeK49+HbmHjpaDQajcoRCiGEaE0k4VJJbfkfS4k9pw4lKDZM3YDOoCCjgG/e/BaAaXOnEp8Ur3JEzrdj627+88+F7Nl1AICQsGDuuO9mrrx+Gp6e8ldGCCHE+ZNPDxXUn0r8BUudmdD2UXSd6J5LiRazhY+e/wSLyUK3wV0ZfeUotUNyqqOHM3j1xXdY+/MGALx9vLnptpncfNu1+Pn7qhydEEKI1kwSLhVkbDpA/r4MtB6646cS3XMp8ftFy8lNz8M/2J8bHr3ulE7tbUlRYQlv/ed9vlm6Arvdjk6nY8a1U7j9vpuJiHLPmUchhBCtiyRcLlZbXkXKF78B0HPaMLddSjy49SC/fVVfY+r6h68lMDRQ5Ygcr7qqhvcXfs7H736B0WgCYNykkdz38G107HxhV88XQgjhWJJwuZCiKGz/5BcsRjOhHaLoOmGg2iE1ylBWxScvfA7ARVeMpGdyD5UjciyL2cKXn37H2//9kPKySgD6DezFA4/dTv/BvVWOTgghRFskCZcLHdt4gIL9mcdPJU5yy6VERVH47KXPqS6vJqZjNJfdPk3tkBxGURRW/bCG119+l+zMXAA6dGrH/Y/cxtiLR8rJQyGEEE4jCZeL1JZVsfvL+qXEXpclExgTqnJEjVu37HcObjmEp96D2U/eiKfeU+2QHGLbpl38Z/5C9u0+BEB4RCh3PDCHK2ZeioeH/DUQQgjhXPJJ4wInLyWGdYymy4QBaofUqNz0PL59+3sALr/9MmI7xqgcUcsVF5byzCMv8fuazQD4+vlw81+vZfat1+DrJycPhRBCuIYkXC5wbMN+Cg5k/nEq0Q1P+5mNZj567mNsFhs9k3swcvoItUNqMZvNxv/d/Qw7t+7Bw0PHVddfxl/vnU1YhHvOLgohhGi7JOFyspoyAynHT/v1vnw4gdHu+WH/v7e+oyCzkMDQAK5/+No2sZ/pk/e+YufWPfj4+vDJ/94kqWui2iEJIYS4QLnfVEsboigK2z/+BavRTFhiDEnj+6sdUqP2btjHhu82AnDDY9fjH+yvckQtdyTtGK//610A/u/JOyXZEkIIoSpJuJzo6Pp9FB7MQud5vFeiGy4lVpZU8vlLSwEYN3MM3QZ1VTmilrNYrDz+wD8xm8yMHDOUK69rOycthRBCtE7ulwG0ETWlBnYfX0rsdfkIAqJCVI7odHa7nU/mf0aNoYb4pDim3HKp2iE5xDuvf8TBfWkEBgXwzEsPt4nlUSGEEK2bJFxO0LCUaLIQ3imWpHH91A6pUWu+WEvazsPovfXMfuJGPNpAY+Z9uw/y7hufAPD48w8QGRWuckRCCCGEmyRcCxYsoEOHDnh7ezN06FC2bt16xmsXLVrEqFGjCAkJISQkhAkTJpz1ejUc/X0vhYey0Hl6MHj2RLdcSsxOzeaHd1cAMOPu6US1i1Q5opYzGk08/sA/sdlsTJo6lksuG692SEIIIQTgBgnX0qVLmTdvHk8//TQ7d+6kb9++TJo0iaKiokavX7t2Lddddx1r1qxh06ZNJCQkcPHFF5Obm+viyBtXU1LJ7q9/B6D39OFuuZRoqjPx4fOfYLfZ6XtRH4ZdOlTtkBzi9ZcWcSw9i/CIUB5//gG1wxFCCCEaaBRFUdQMYOjQoQwePJg33ngDqN9XlJCQwD333MOjjz56zvttNhshISG88cYbzJ49+5zXGwwGgoKCqKysJDDQsQ2ZFbvCb68toyg1m/DOsYyddzUarfvtH/r85aVsXrGF4IhgHn73QfwC/dQOqcW2bdrFLdfeD8CC919k1Lhh6gYkhBBCnETVGS6z2cyOHTuYMGFCw2tarZYJEyawadOmJj2jtrYWi8VCaGjj9a1MJhMGg+GUL2dJ/30PRanZx5cSL3bLZGvX2hQ2r9iCRqPhxr9d3yaSreqqGp586AUAZlw75f/bu/OwqsqF/ePfDQiICA4oOKCU4lQqDqj4mqkHX+qUqaVZZqhpdo5joeYsVirmUJSa5TmZOZVZaZ3SSnmPE1qahZmpiDkeBQcUxIlhP+8f/eKNX1ooe7M2eH+ui+tqL9Zazw202ndrrf0slS0REXE5lhaus2fPkpeXR2BgYIHlgYGBpKamFmofY8aMoXr16gVK22/FxcXh7++f/xUcHFzk3NeTdTaDHz7eCkDj7v9F+aoVnDJOUaSnnWflnFUARPb+C3XD6lqcyDFmvTSfkydSqV4ziNGThlodR0RE5Hcsv4erKGbMmMH777/P6tWr8fb2vu4648aNIyMjI//r+PHjDs9h7IadS9aTey2HKqE1CO0Q5vAxisqeZ2fZ9OVcybpC7Qa1uL9flNWRHGJTwjZWr/wcm83G1DnjKOer5yOKiIjrsXQegICAANzd3UlLSyuwPC0tjaCgoD/cdvbs2cyYMYMNGzbQpEmTG67n5eWFl5eXQ/LeSMrmHziTfAJ3z18+leiKlxLXr0jg0A8/41XWi+iJfXD3cLc6UpGdT7/AlDGzAHhyQE9atgmzNpCIiMgNWHqGy9PTkxYtWpCQkJC/zG63k5CQQERExA23mzlzJi+99BJffPEFLVu2LI6oN5R1JoMfPv7lU4lNurfDt0oFS/Ncz5GfjvDF4i8B6PnsIwTUKPlzUxljmDbxVc6dSefOurUZNnqg1ZFERERuyPKZLmNiYujbty8tW7akVatWxMfHc+nSJfr37w9AdHQ0NWrUIC4uDoCXX36ZyZMns2LFCkJCQvLv9fL19cXXt3ifAfjLpcSvyMvOpUq9mtS9t2mxjl8YVy9dZcnUZdjtdpp3akbLzi2sjuQQ6z5N4KvPN+Lu7s60V8fj5e3cs5giIiJFYXnh6tWrF2fOnGHy5MmkpqYSFhbGF198kX8j/bFjxwpMHLpgwQKys7Pp0aNHgf3ExsYyZcqU4oxOyqbdnDn4Hzy8yhD+pGteSlz12kecO5VOpaBKPPpcj1LxmJu01DNMnxQPwKDh0dzVpIG1gURERP6E5fNwFTdHzcOVdeYCX760jLzsXJo91pHQDq53dmvn+m9ZNn0FNjcbI14byh1332F1pCIzxjC47/MkbtpBo8b1Wbr6DcqUgkcSiYhI6aZ3qlvk5u5OwJ3VMcZO3fY3vmnfKmdPnmNV/EcA3Bf936WibAF8uOJfJG7agaeXJ9NeGa+yJSIiJYLerW6RT6XytB/RnZyr2S53KTEvL4+l05Zx7fI17mx8B537XH+OspLm+NH/MHvqGwAMHz2QOvVCrA0kIiJSSCV6Hi6r2Ww2PMu63s3aX777FUd+OkrZct48Of4J3N1L/hQQeXl5TBwZx5XLV2jZJow+A3paHUlERKTQVLhKmZTdh/hq+QYAHo3pSaWg6z/yqKRZ8o8P+H7nHnzKleXFWWMLfJBCRETE1eldqxS5fPEyS6cvx9gNre4Lp3mnZlZHcoiDB35m3py3ARg9aSg1a1WzOJGIiMjNUeEqJYwxrJyzigunLxBQI4BHhnW3OpJD5GTnMOG56eRk59C+UwQPP/aA1ZFERERumgpXKfHNuh0kbdqNm7sb0RP74O1z/WdLljQL5y5h/96D+FfwI3bG6FIxj5iIiNx+VLhKgdPHT/PR3NUAPDDgfmo3qGVxIsfYk7SPf85fDsDEac9RJbCyxYlERERujQpXCZebk8uSqcvIvppNaLO6dOrV0epIDnH16jUmxEwnLy+P+x7qRNSDnayOJCIicstUuEq4tYvWcTz5BD5+PvQZ17vUfHrvtZcXcuTQMapUrcyEl56zOo6IiEiRlI5359vUgV3JJLz/bwAeG/UoFapUsDaQg+zY9h3LF30IwJSZz+Nf4dYfwSQiIuIKVLhKqKyMLJbFrQCgbZcImt7jeo8XuhUXM7OYNGoGAD16d+Gejm0sTiQiIlJ0KlwlkDGG92d9QOa5TAJrVaX74K5WR3KYWS/O49R/0qgRXI2REwZbHUdERMQhVLhKoMR/bWdP4o+4l3EnetKTeHp7Wh3JITZuSGTNqnXYbDamvjKOcr4+VkcSERFxCBWuEib1SCpr5q8BoMvTD1Kzbg1rAzlI+rkLTBkzC4Dop3vRolVTixOJiIg4jgpXCZKTncO7Ly0lJzuXBuH1ufeRe6yO5BDGGKZOeIX0s+epU+8Oho58yupIIiIiDqXCVYL8a+FnnPz5FL4VfHli7OOlZgqItWs2sGHdJjw83Jn2yni8vL2sjiQiIuJQpeMd+zbw0zf72PTRFgB6j3kMv0qlY6qEtNQzTJ8cD8Cg4dE0alzP2kAiIiJOoMJVAmSmX2T5y+8B0L57O+5q08jiRI5hjCF29MtczMzi7qYNGDC4j9WRREREnEKFy8XZ7XZWvPweWeezqHZHEA/9rYvVkRzmg2WfsG3zTry8PJn2ynjKlPGwOpKIiIhTqHC5uM0fb2Xfjv2U8fQgetKTlPEsY3Ukhzh25ARzpi0AYPiYQdxRt7bFiURERJxHhcuF/SflP3y68F8AdP17V6rfUc3iRI6Rl5fHpJEzuHrlKuFtwnii/yNWRxIREXEqFS4XlX01m3enLiMvJ4+7295Fu65trY7kMO/+YyXff7uHcr4+vDh7bKn5tKWIiMiN6J3ORa1Z8ClpR9Pwq1Sex0f3wmazWR3JIZL3H2L+nEUAPD95KDWCS8dZOxERkT+iwuWC9mz9kcRPtwHwxLje+FbwtTiRY+Rk5zDhuenkZOfQ/i8RdHv0r1ZHEhERKRYqXC7mwpkLrJj1PgCdenWgQcv6FidynDdfe5cDP6VQoaI/U2aMLjVn7URERP6MCpcLsdvtLIt7j8uZl6kZWpMHBpSeM0C7v9vL228sB2DitBgCqla2OJGIiEjxUeFyIf9euZGD3x/E09uT6Il98Cgl81JduXKViSPjsNvt/LVrJP/9QAerI4mIiBQrFS4XcezAcT57ey0ADw/tRmCtqhYncoyzp88xesgUjv58nKqBAYx/6VmrI4mIiBS70nEKpYS7duUaS6Yuw55np2n7JrT5a2urIxWZMYbVK9cyZ9obXMzMwsPDnRdnj8XPv7zV0URERIqdCpcL+Gjuas6cOEOFKhXoNbJnib+Z/OjhE7w4bjY7t38PQKPG9Zny8mga3BVqcTIRERFrqHBZ7Pt/J/HNuh3YbDaeHN+bcn7lrI50y3Jyclnyj5W8Gb+Ya9ey8fb2YsjIATzx1CN4eOhfNRERuX3pXdBC6anprJzzAQCdn/gLdcPqWpzo1u39YT9TxsziwE8pAETc05JJ00dSs1Z1i5OJiIhYT4XLIvY8O8viVnDl0lVqN6zFfX2jrI50Sy5fvsIbcxaxbNGH2O12/Cv4MXryELo8HFXiL42KiIg4igqXRdavSODQDz/jVdaL6Al9cPdwtzrSTdu2eScvjpvNyROpAPy1aySjJw+lckBFi5OJiIi4FhUuCxzee4QvFn8JQM9nHyGgRoDFiW7O+fQLzHppPp99/BUA1WoEMnFaDPd0bGNxMhEREdekwlXMrmRd+WUKCLudFn9pTsvOLayOVGjGGNau2cDMF+dyPj0Dm81G7/6PMGzUAHzK+VgdT0RExGWpcBWzVa99RHpqOpWCKtHz2UdKzH1OJ0+k8tL4OSRu2gFA3fp3MOXl52nSrJHFyURERFyfClcx2rn+W3Zt+A43NzeiJzxBWd+yVkf6U3l5eaxY/DHzZr/NlctX8PTyZNCwaPo/8xhlPMtYHU9ERKREUOEqJmdPnmNV/EcAREV35o6777A40Z9L3neIKWNm8uPu/QC0aN2UyXGjuKNOLYuTiYiIlCwqXMUgLzePJVOXcu3yNe5sfAed+0RaHekPXbt6jYVzl/LOmyvIzc2jvJ8vz417hocfexA3Nz1+U0RE5GapcBWDL5Z8xdF9xyhbzpsnxz+Bu7vrTgHx7ddJvDBuNkd/Pg7AX+5rz7gXR1A1sGR9klJERMSVqHA5WUpSCuuXbQCg18hHqRRUyeJE15eZcZFX497ko/c+A6BK1cqMe/FZIu9vb3EyERGRkk+Fy4kuX7zM0ukrMMbQ+r5WNOsYZnWk69qwbjNxk+M5c/ocAD2feIgRYwbh51/e4mQiIiKlgwqXkxhjWDlnFRfOXCCgRgCPDO9udaTfSUs9Q9zkeP7ny60A1L4zmNgZo2nZuqnFyUREREoXFS4n+WbdDpI27cbN3Y3oiX3wKutldaR8drudD1f8i/gZb5F18RIeHu489fcneHpoH7y8XSeniIhIaaHC5QRpx07z0dzVADww4H5qN3CdaRQOpxxlythZfL9zDwCNmzUidsYo6jWoY3EyERGR0kuFy8Fyc3JZMnUZ2VezCW0WSqdeHa2OBEBOdg7vvPkeb81dQk52DmV9yjL8+YE8Ft3dpT81KSIiUhqocDnY52+v48TBE/j4+dBn3OMuMW/V7u/28sLYWaQcOAxAuw6tmTgthuo1gyxOJiIicntQ4XKgA7uS+Z+V/wbg8dG9qFClgqV5LmVdZu7sf/Le4o8xxlCxcgXGxA7j/of+UmKe4SgiIlIaqHA5SFZGFsviVgDQtksETdo1tjTP5oTtTJ34CqknTwPwUI/7GDVxMBUq+luaS0RE5HakwuUAxhjem7mSzHOZBNaqSvfBXS3Lcu7seWa+MJd1nyYAUCO4GpPjRhJxT7hlmURERG53KlwOkPjpNn7cthf3Mu5ET3oST2/PYs9gjOHTj75k9kvzybiQiZubG30G9GRwTH98fMoWex4RERH5PypcRXTqcCpr3vgEgIcGPUjNujWKPcOJYyd5cdxsvt66C4AGjeoyZebzNGpcv9iziIiIyO+pcBVBTnYO705dSk52Lg3C69P+4XuKdfzc3FyWvf0hb7yyiKtXr+Hl5cnfn+vPkwMfpUwZ/WlFRERchd6Vi+DTtz7j1M+n8K3gyxNji3cKiH0/JjNlzCz2/ZgMQHhEM2JnjKJWSM1iyyAiIiKFo8J1i1J2H2Lzx1sA6D3mMfwq+RXLuFeuXOXN+MUs+ccH5OXl4edfnlETB9O15/2a6kFERMRFqXDdojvuDuG+flFczbrKXW0aFcuYX2/dxUvj53D86H8AiHqwI2NihxFQtXKxjC8iIiK3xmaMMVaHKE6ZmZn4+/uTkZGBn1/Rz0oZY5x+ZinjQiZzpr7BmlXrAAisVoUJU5+jQ+R/OXVcERERcQyd4SoiZ5YtYwxffvZvZkx5nfSz57HZbDwW3Y1ho5/Gt3w5p40rIiIijqXC5aJST55m6sRX2JywHYA6oSHEzhhNWMu7LU4mIiIiN0uFy8XY7XY+WPoJ8S+/xeVLV/Ao48GgYU/y1N964+lV/BOqioiISNGpcLmQlOTDvDBmFru/2wtAWIu7iZ0xmjr1QqwNJiIiIkWiwuUCsq9l84/5y3j7jeXk5uRSzteHEWMG8WifrsU6t5eIiIg4hwqXxb7fuYcXxs7i55SjANwb2ZYJU58jqFpVi5OJiIiIo6hwWSTr4iXiZ7zFB8t+eQ5j5SqVGPfCcDr/tYMmMBURESllVLgs8O+vtjJtUjynU88A0L3XA4yc8Hf8/MtbnExEREScQYWrGJ09fY642NdYv3YTALVCajA5bhSt2ja3OJmIiIg4kwpXMTDG8PH7n/PK9AVczMzC3d2dfs88xjMj+uLt7WV1PBEREXEyFS4nO3r4BC+OncXOr5MAuKtJfWJnjKbBXaHWBhMREZFio8LlJDk5uSz5x0oWxC8m+1o23mW9GTryKXr3fwQPD/3aRUREbid653eCH3fv44WxsznwUwoAbduHM3HaSGrWqmZxMhEREbGCCpcDXb58hTfmLGLZog+x2+1UqOjP6MlDeLD7f2uqBxERkduYS0xjPn/+fEJCQvD29qZ169bs2LHjD9dftWoVDRo0wNvbm8aNG7N27dpiSnpjiZt28HDnfiz55wfY7XYe6NaZNQlL6PJwlMqWiIjIbc7ywrVy5UpiYmKIjY3lu+++o2nTpkRFRXH69Onrrr9t2zYef/xxBgwYwPfff0+3bt3o1q0bP/74YzEn/8X59AuMf24af48ezckTqVSvGcT8xS8T99pEKlWuYEkmERERcS02Y4yxMkDr1q0JDw9n3rx5ANjtdoKDgxk2bBhjx4793fq9evXi0qVLfPbZZ/nL2rRpQ1hYGG+++eafjpeZmYm/vz8ZGRn4+fndcm5jDGvXbGDmi3M5n56BzWbjiad6MHTkU/iU87nl/YqIiEjpY+kZruzsbHbt2kVkZGT+Mjc3NyIjI9m+fft1t9m+fXuB9QGioqJuuP61a9fIzMws8OUI336dxLhnp3I+PYPQBneybM0Cnp88VGVLREREfsfSm+bPnj1LXl4egYGBBZYHBgayf//+626Tmpp63fVTU1Ovu35cXBwvvPCCYwL/Rss2YdzXpROhDe6k3zOPU6aMPn8gIiIi11fqW8K4ceOIiYnJf52ZmUlwcHCR92uz2Xh57mTdEC8iIiJ/ytLCFRAQgLu7O2lpaQWWp6WlERQUdN1tgoKCbmp9Ly8vvLyc8/gclS0REREpDEvv4fL09KRFixYkJCTkL7Pb7SQkJBAREXHdbSIiIgqsD7B+/fobri8iIiJiNcsvKcbExNC3b19atmxJq1atiI+P59KlS/Tv3x+A6OhoatSoQVxcHAAjRozg3nvvZc6cOTzwwAO8//77fPvttyxcuNDKH0NERETkhiwvXL169eLMmTNMnjyZ1NRUwsLC+OKLL/JvjD927Bhubv93Iq5t27asWLGCiRMnMn78eEJDQ1mzZg133323VT+CiIiIyB+yfB6u4uaoebhERERECsvymeZFRERESjsVLhEREREnU+ESERERcTIVLhEREREnU+ESERERcTIVLhEREREnU+ESERERcTIVLhEREREnU+ESERERcTIVLhEREREnU+ESERERcTLLH15d3H59dGRmZqbFSUREpLQrX748NpvN6hjiAm67wnXx4kUAgoODLU4iIiKlXUZGBn5+flbHEBdgM7+e8rlN2O12Tp48eVP/1xEeHs7OnTtvapyb3aaw6//ZepmZmQQHB3P8+PHb5iC/lb+PsxRHFkeOUdR96dhwbTo2rNvXr9vrDJf86rY7w+Xm5kbNmjVvaht3d/eb/g/0zW5T2PULu56fn99t86ZyK38fZymOLI4co6j70rHh2nRsWLcvV/rdi2vQTfOFMGTIEKdvU9j1byVLaedKv5PiyOLIMYq6Lx0brs2Vfic6NuR2d9tdUiztMjMz8ff3130DIv8fHRsiYiWd4SplvLy8iI2NxcvLy+ooIi5Fx4aIWElnuEREREScTGe4RERERJxMhUtERETEyVS4RERERJxMhUtERETEyVS4RERERJxMhes20r17dypWrEiPHj2sjiLiUo4fP06HDh1o1KgRTZo0YdWqVVZHEpFSRtNC3EY2btzIxYsXeffdd/nwww+tjiPiMk6dOkVaWhphYWGkpqbSokULkpOTKVeunNXRRKSU0Bmu20iHDh0oX7681TFEXE61atUICwsDICgoiICAANLT060NJSKligpXCbF582a6dOlC9erVsdlsrFmz5nfrzJ8/n5CQELy9vWndujU7duwo/qAiFnDk8bFr1y7y8vIIDg52cmoRuZ2ocJUQly5domnTpsyfP/+631+5ciUxMTHExsby3Xff0bRpU6Kiojh9+nQxJxUpfo46PtLT04mOjmbhwoXFEVtEbiO6h6sEstlsrF69mm7duuUva926NeHh4cybNw8Au91OcHAww4YNY+zYsfnrbdy4kXnz5ukeLim1bvX4uHbtGp07d+bpp5/mySeftCK6iJRiOsNVCmRnZ7Nr1y4iIyPzl7m5uREZGcn27dstTCZivcIcH8YY+vXrR6dOnVS2RMQpVLhKgbNnz5KXl0dgYGCB5YGBgaSmpua/joyMpGfPnqxdu5aaNWuqjMltoTDHR2JiIitXrmTNmjWEhYURFhbGnj17rIgrIqWUh9UBpPhs2LDB6ggiLqldu3bY7XarY4hIKaYzXKVAQEAA7u7upKWlFVielpZGUFCQRalEXIOODxFxBSpcpYCnpyctWrQgISEhf5ndbichIYGIiAgLk4lYT8eHiLgCXVIsIbKyskhJScl/ffjwYZKSkqhUqRK1atUiJiaGvn370rJlS1q1akV8fDyXLl2if//+FqYWKR46PkTE1WlaiBJi48aNdOzY8XfL+/bty+LFiwGYN28es2bNIjU1lbCwMF5//XVat25dzElFip+ODxFxdSpcIiIiIk6me7hEREREnEyFS0RERMTJVLhEREREnEyFS0RERMTJVLhEREREnEyFS0RERMTJVLhEREREnEyFS0RERMTJVLhEREREnEyFS+QWdejQgWeffdbqGCXKkSNHsNlsJCUlFWk/ISEhxMfHF/u4IiK3SoVLREqcnTt3MmjQIIfuc/HixVSoUMGh+xQR+ZWH1QFERG5WlSpVrI4gInJTdIZLpAhyc3MZOnQo/v7+BAQEMGnSJH59Hvz58+eJjo6mYsWK+Pj4cP/993Pw4EEAzpw5Q1BQENOnT8/f17Zt2/D09CQhIeFPx50yZQphYWEsWrSIWrVq4evry+DBg8nLy2PmzJkEBQVRtWpVpk2bVmC7CxcuMHDgQKpUqYKfnx+dOnVi9+7d+d8/dOgQXbt2JTAwEF9fX8LDw9mwYUOBfYSEhDB9+nSeeuopypcvT61atVi4cOFN/d5+/vlnOnbsiI+PD02bNmX79u0Fvr9161buueceypYtS3BwMMOHD+fSpUsFMvz2kuL+/ftp164d3t7eNGrUiA0bNmCz2VizZk2hxt24cSP9+/cnIyMDm82GzWZjypQpN/UziYj8ISMit+Tee+81vr6+ZsSIEWb//v1m2bJlxsfHxyxcuNAYY8xDDz1kGjZsaDZv3mySkpJMVFSUqVu3rsnOzjbGGPP555+bMmXKmJ07d5rMzExz5513mueee65QY8fGxhpfX1/To0cPs3fvXvPpp58aT09PExUVZYYNG2b2799vFi1aZADz9ddf528XGRlpunTpYnbu3GmSk5PNyJEjTeXKlc25c+eMMcYkJSWZN9980+zZs8ckJyebiRMnGm9vb3P06NH8fdSuXdtUqlTJzJ8/3xw8eNDExcUZNzc3s3///j/NffjwYQOYBg0amM8++8wcOHDA9OjRw9SuXdvk5OQYY4xJSUkx5cqVM6+++qpJTk42iYmJplmzZqZfv34FMrz66qvGGGNyc3NN/fr1TefOnU1SUpLZsmWLadWqlQHM6tWrCzXutWvXTHx8vPHz8zOnTp0yp06dMhcvXizU30JEpDBUuERu0b333msaNmxo7HZ7/rIxY8aYhg0bmuTkZAOYxMTE/O+dPXvWlC1b1nzwwQf5ywYPHmzq1atnevfubRo3bmyuXr1aqLFjY2ONj4+PyczMzF8WFRVlQkJCTF5eXv6y+vXrm7i4OGOMMVu2bDF+fn6/G6NOnTrmrbfeuuFYd911l5k7d27+69q1a5s+ffrkv7bb7aZq1apmwYIFf5r71+Lzz3/+M3/Z3r17DWD27dtnjDFmwIABZtCgQQW227Jli3FzczNXrlzJz/Br4Vq3bp3x8PAwp06dyl9//fr11y1cfzTuO++8Y/z9/f/0ZxARuRW6pChSBG3atMFms+W/joiI4ODBg/z00094eHjQunXr/O9VrlyZ+vXrs2/fvvxls2fPJjc3l1WrVrF8+XK8vLwKPXZISAjly5fPfx0YGEijRo1wc3MrsOz06dMA7N69m6ysLCpXroyvr2/+1+HDhzl06BAAWVlZjBo1ioYNG1KhQgV8fX3Zt28fx44dKzB2kyZN8v/ZZrMRFBSUP05h/Hb7atWqARTIuXjx4gIZo6KisNvtHD58+Hf7OnDgAMHBwQQFBeUva9Wq1U2PKyLiTLppXsRChw4d4uTJk9jtdo4cOULjxo0LvW2ZMmUKvLbZbNddZrfbgV/KVLVq1di4cePv9vXrp/NGjRrF+vXrmT17NnXr1qVs2bL06NGD7OzsPx3713FuNvuvhfW3OZ955hmGDx/+u+1q1apV6DFudlwREWdS4RIpgm+++abA66+//prQ0FAaNWpEbm4u33zzDW3btgXg3LlzHDhwgEaNGgGQnZ1Nnz596NWrF/Xr12fgwIHs2bOHqlWrOiVr8+bNSU1NxcPDg5CQkOuuk5iYSL9+/ejevTvwS/k5cuSIU/LcSPPmzfnpp5+oW7duodavX78+x48fJy0tjcDAQOCXaSNulqenJ3l5eTe9nYhIYeiSokgRHDt2jJiYGA4cOMB7773H3LlzGTFiBKGhoXTt2pWnn36arVu3snv3bvr06UONGjXo2rUrABMmTCAjI4PXX3+dMWPGUK9ePZ566imnZY2MjCQiIoJu3brx1VdfceTIEbZt28aECRP49ttvAQgNDeXjjz8mKSmJ3bt307t372I/AzRmzBi2bdvG0KFDSUpK4uDBg3zyyScMHTr0uut37tyZOnXq0LdvX3744QcSExOZOHEiQIHLvX8mJCSErKwsEhISOHv2LJcvX3bIzyMiAipcIkUSHR3NlStXaNWqFUOGDGHEiBH5E3K+8847tGjRggcffJCIiAiMMaxdu5YyZcqwceNG4uPjWbp0KX5+fri5ubF06VK2bNnCggULnJLVZrOxdu1a2rdvT//+/alXrx6PPfYYR48ezT8z9Morr1CxYkXatm1Lly5diIqKonnz5k7JcyNNmjRh06ZNJCcnc88999CsWTMmT55M9erVr7u+u7s7a9asISsri/DwcAYOHMiECRMA8Pb2LvS4bdu25W9/+xu9evWiSpUqzJw50yE/j4gIgM2Y/zdpkIhIKZGYmEi7du1ISUmhTp06VscREVHhEpGSb/Xq1fj6+hIaGkpKSgojRoygYsWKbN261epoIiKALimKuKS77rqrwLQIv/1avny51fFuaPr06TfMff/99ztt3IsXLzJkyBAaNGhAv379CA8P55NPPnHaeCIiN0tnuERc0NGjR8nJybnu9wIDAwvMv+VK0tPTSU9Pv+73ypYtS40aNYo5kYiIa1DhEhEREXEyXVIUERERcTIVLhEREREnU+ESERERcTIVLhEREREnU+ESERERcTIVLhEREREnU+ESERERcbL/BZdQj6vudgk/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "g = sns.relplot(\n", " data=recall_at_precision_persons,\n", @@ -3339,7 +1037,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "id": "b1a44272", "metadata": { "ExecuteTime": { @@ -3347,18 +1045,7 @@ "start_time": "2023-06-22T09:38:51.032788Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAHqCAYAAABcJhVUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9FElEQVR4nOzdd1zU9R8H8Nf3BjeQPRRQQRwoas4fztyrMjUry0pNzSwrLUdmmTnSMmdmpmlqqWmaC1duzYkLUhygTBVQ9ubm+/fHwcEJKCBwHL6fj8f3cdx3vr+A+L739zMEIiIwxhhjjDFWCiJzB8AYY4wxxiwPJ5GMMcYYY6zUOIlkjDHGGGOlxkkkY4wxxhgrNU4iGWOMMcZYqXESyRhjjDHGSo2TSMYYY4wxVmqcRDLGGGOMsVJ75pJIIkJaWhp4jHXGGGOMsbJ75pLI9PR02NnZIT093dyhMMYYY4xZrGcuiWSMMcYYY0+Pk0jGGGOMMVZqnEQyxhhjjLFS4ySSMcYYY4yVGieRjDHGGGOs1DiJZIwxxhhjpcZJJGOMMcYYKzVOIhljjDHGWKlxEskYY4wxxkqNk0jGGGOMMVZqnEQyxhhjjLFS4ySSMcYYY4yVGieRjDHGGGOs1DiJZIwxxhhjpcZJJGOMMcYYKzVOIhljjDHGWKlxEskYY4wxxkpNYu4ALNXvqcCKZHNHwRirDsQCoMhbRI+8PmadvLjtua9yARAJ5r47xlh1xUlkGcVqgQs55o6CMcYeT/ZoovlIklmapPXR10JJrABYCYDAiStjzwROIsvoNRugmczcUTDGqgMNAdl6IIeA7Nyvsx/9+tHXYtbl6AFNgXOryLCk6CvnXgSUXyX1SevykmAJJ62MmQUnkWXUwMqwMMZYVaOl3IS0hInno+vKcizlXpsAZBGQpau8+5WgdJXUF6yBgTaVFx9j1RUnkYwxVs1IBKCGANSopK6TRICaTBPLQlXVMiS0j6vMqij/+loA6XogvYTxOos5iWSsPHASyRhj7KkIgqHtpQyAfSVdU08lS1RzikhAn1dUUpCMVXOcRDLGGLM4IgFQCoASAMTmjoaxZxOPE8kYY4wxxkqNk0jGGGOMMVZqnEQyxhhjjLFS4ySSMcYYY4yVGieRjDHGGGOs1DiJZIwxxhhjpcZJJGOMMcYYKzVOIhljjDHGWKlxEskYY4wxxkqNk0jGGGOMMVZqnEQyxhhjjLFS4ySSMcYYY4yVmsTcAVis5ENAkr+5o2Cs4ggCgLxFVOB9UV+L8vcVnvR1ZZ6rwPkq9VwlPC8Ew3uJEyCyKo+fGmOMVRpOIssq8woQ97O5o2CMVQcia8DhJcBpMODwIiCxMXdEjDH2RAIRkbmDqExpaWmws7NDamoqbG1ty36i1FNA6pHyC4yxqoYIgB4AGRZ60tf63GOK+7qczlWi48vzXE+6r6c9V962XIIVYN/HkFA6vgxInZ/ih8gYYxWHk0jGGDMnIiDjMpC0A0jYDuSEFtgoBuy65iaUgwCZh7miZIyxQjiJZIyxqoIIyL4JJO4wLJmBpttt2gOOgwGnVwBFA/PEyBhjuTiJZIyxqionHEjcaUgo08+ablM+Z6hQOg0GlM1yO+wwxljl4SSSMcYsgToWSNwFJO0EUo4B0OVvkzfITyhr/C+3ZzhjjFUsTiIZY8zSaJKA5L2GCmXKQUCfk7/NysPwuNtxMGD3PCDwIByMsYrBSSRjjFkyXQaQ/I8hoUzeC+jS87dJnADHAYDTq4B9T0AkN1+cjLFqh5NIxhirLvQqIOUokLgdSNoNaBPzt4ltCoxF+QIgrmG+OBlj1QInkWWUlJSExMTEJ+/ImIUSiUQQi8Ulfs37WiTi9nhVAmkN49km7TB0zlHfz98myACHvrkJ5cuA1NF8cTLGLBYnkWUUHByMoKCg8guMsWpCEIRSJ6BP+/qkfYRnvecy6YGMi/lDB+XcKbBRDNh1z+2YMwiwcjNXlIwxC8NJZBlFR0cjPDy8HCNjrOogIuj1euj1euh0uie+VnWVndRW6WotEZB13ZBMJu0AMv8z3W7TIb+nt9zbPDEyxiwCJ5GMsadCRCCiEiWbJdmnPF71er25vy2P9Wi11sbGBvXq1YOnpydkMlnlBpMdZhg2KHEHkH7OdJt1y/yEUuHLY1EyxkxwEskYq3byKqmlTWQrMrktCZFIBA8PD9SrVw8eHh4Qi8UV/J16hOo+kLTLkFCmnoTpWJSNCoxF2ZYTSsYYJ5GMMVbRHlet1el0iIuLQ0REBJKTk43HWFlZwdPTE/Xq1YOLi0vlt+vUJABJewydclIOAaTK32ZVOzehfAWw7cxjUTL2jOIkkjHGqoiUlBSEh4cjMjISWVlZxvU1atRAvXr1UK9ePfP83dKmAykHcttR7gP0GfnbJM6A40BDUmnfExBV8uN4xpjZcBLJGGNVjF6vx4MHDxAREYHo6GhotVrjNmdnZ2P7SbncDIOH63OAlCO5CeVuQJuUv01sAzj0Nwxu7tAPEFtXfnyMsUrDSSRjjFVhWq0Wd+/eRUREBGJjY5H3J1sQBGP7ydq1a1d++0kgdyzKf/OHDtLE5m8TyQH73LEoHV8GJA6VHx9jrEJxEskYYxYiOzsbkZGRCA8PL9R+sm7duvD29jZP+0nAMBZlekD+0EE5BYZAEySGsSgd88airFX58THGyh0nkWWkuZgI7emEcoyMlYgIhl6hea8CAJFg6Cgqyn1fcLsIJuuEIo7FI8cKxVyj4KtQ6BqF9xMEFHuNvGOEJ8RSnjEb42bVQkpKCiIiIhAREWHSftLa2hr16tWDt7e3+T4oEwFZV3MrlDuBrGsFNgqATcf8jjnyeuaJkTH21DiJLCPVtmio/ogsv8AYqwyPJrZFJMOCAEAsQHCwgshJBsEp99XRCoKTDCInw6tgI+GktAogIjx48ADh4eGF2k86OTnB29vbfO0n82TfNiSTiTuAjADTbdat8ocOUvqaJz7GWJlwEllG2pA06K6nlmNk7IkobyFAn/tKAOnI+LVxfYHt0BMo97XQ8QXPo8/fv7j9Hn+e3H2KiaHgKxUTQ8H96DGx5sdQ4d/14lmJIDhaGZNKk4Qz79XBCoKU59KuLI9rP+nu7g5vb2/ztZ/Mo7r3yFiUBQaGV/jktqEcDNRow2NRMlbFcRLJmAUjKpBMPiYJpuISWmNS+8h6LUGfrAYlqkBJaugTVaDE3NcEFShdW1xIhQj2UgiO+RVMkXPuq2N+8glrMVc1y1l2djaioqIQHh6OpKT8HtRSqdQ4/qSrq6t5v++aeCDJ35BQphwBSJ2/TVYXcHzFkFTadgIEMya+jLEicRLJGCs1UutBSSroEw2JZuFXQ/IJbQn/vMhEhSqZgqMMIudHqppiTjTL4kntJ+vVqwc7OzszRghAmwok7zcklMn7AX1+nJC6AI6DDAmlXQ9AZGW2MBlj+TiJZIxVCNITKF0DSsirZOYmmY8kn8goYVVTBAj2VrmP0It4dJ7XXlPJs6cUJ6/9ZN74kxqNxrjNyckJ9erVg5eXl3nbTwKALtswS07iDiB5D6DN74kOsR3g2D93cPO+PBYlY2bESWQZ5aQlIic1vhwjY08itpJDbusMidyaH31WI5SjM31knmR4ZG5S3UxWA7oS/qlSiAu00yzQXrNA8inYc1VTq9Xi3r17iIiIQExMTJHtJz08PCCRmDkp12uAtJP5Pb01cfnbRArAvl9uO8r+gMTebGEy9iziJLKMrm79HlfWTSvHyFhJiaQyyG2dIbNzNrzaOkNul/ta1Hs7Z0iszFxZYU+F9ARK1RR+ZJ5o2l4TWbqSnVCE/KSyQHvNQtVN+bPRDi8nJ8c4/uSj7Sfzxp80e/tJIHcsyvO5CeV2QBWZv02QAHY9cxPKgYBVTbOFydizgpPIMrq+cymubp5TjpGxJ9GqsqBT55TpWIncGnI7lxIlnHJbZ8hsHCGSSMv5DlhFo2yd6aPzRBX0SabtNSlZbdIh+LGsxRA5yiA4ywpXN3M7Bgl2Ugii6lPVTE1NNbafzMzMNK6vUu0nAUNvsMyg/Nlysm8U2CgAtp1zE8pXALmnuaJkrFrjJJJZFE1OJlSpCchJS4AqLQE5qbmvaQmm6wu8J13JexIXZFXDvuhk086lyEqolbU9BBEPZ1PVkY5AKcV1CMpPPJFdwqqmpIgxNYtorylYWdbvBhHh4cOHxvEnC7afdHR0hLe3d9VoP5kn6xaQtNPwyDvjouk26zYFxqJsbJ74GKuGOIlk1RoRQZOVVjjZTI0vMuFUpSVAlZ6UO+ZN6QgiEWQ2TsVXN4t4L1XamP8RISsSZWnzk8qEAo/OC7TfpBR1icfqFGwkhmTy0Y5BzjKI69eAyKHq9jjWarW4f/8+wsPDi2w/mTd/t9nbT+ZRRQOJuwwVyrRTMB2LsgngPgGoNdZc0TFWbZg9ifz555+xYMECxMXFoUWLFvjpp5/g5+dX7P5Lly7FL7/8gujoaDg7O+O1117Dd999V+JPw5xEsifR63RQZyQ/trppqILGG99rstLKdC2RRFp8dbOYdp8SmaKc75iVFWn1oGS1aSUzKT/pNPZAVz/h+bmVCLLhXrB62aPKPxrPaz8ZERGBxMRE4/q89pP16tVDzZo1q86HI/VDw1iUSXljUWqAurOBOl+bOzLGLJ5Zk8i//voLw4cPx8qVK9GuXTssXboU27ZtQ0hICFxdXQvt/+eff2LUqFFYu3YtOnbsiNDQULz77rt48803sXjx4hJdk5NIVhF0GjVU6YmletSuVWU9+cRFkMiUT0g2XR7Z7sTtO82IiIBMbfGPzmOyob+fDQAQN7WFYrwPRO6W8UGhuPaTSqXS2H7S3t7efAE+SpsKJO8DbNoDcm9zR8OYxTNrEtmuXTv873//w/LlywEAer0ederUwSeffIIvvvii0P4ff/wxbt68iaNHjxrXTZo0CQEBATh9+nSJrslJJKsqtDlZpWrbqUpLgF6refKJiyC1tnt8R6JH3lvVcIDInFPjPUOICJp/YpGzLsLQDtNKBNmIerDq717lq5J58tpPRkREICoqqlD7ybzxJxUKy0iOGWMlY7YkUq1WQ6lU4u+//8agQYOM60eMGIGUlBTs3r270DF//vknxo0bh0OHDsHPzw/h4eF46aWXMGzYMHz55ZdFXkelUkGlUhnfp6WloU6dOpxEMotjaN+ZXuyj9cLrEqBKTyxb+06xBC6N28OjdR+4t+kLpwZtOKmsYPoHOcheFgrd1RQAgLipHRSfNoKolmUlXjqdDvfu3Suy/aSbmxvq1auHOnXqVJ32k4yxMjNbEhkTEwMPDw+cPXsWHTp0MK7//PPPcfLkSQQEBBR53LJlyzB58mQQEbRaLT744AP88ssvxV5n5syZmDVrVqH1nESyZ4Fep4M6M+Xx1c7cjkZ52zSZqYXOI7NxhFur3vBo0xfurfvA2tnDDHdT/ZGeoDkQi5z14UCOHpCJIB/pDekLbhZTlSwoJycHUVFRiIiIQEJCgnG9VCpFnTp14O3tXbXaTzLGSsWiksgTJ07gzTffxLfffot27drhzp07mDBhAsaMGYOvvy66kTRXIhkrHb1Wg4yH0YgNOoL7lw8iNuhooY5D9p5NcxPKvqjZ7Hnu7FPO9HHZyP4xFLpgQ0Ivbm4HxXjLq0oWlJaWhvDwcMtpP8kYeyKLepz9/PPPo3379liwYIFx3caNG/H+++8jIyMDohKM0cdtIhkrHb1Wg/iQC4i5fBD3rxxEQuhFk0fkYis5ajbrYkgq2/SFfV1friyVA9ITNPtjkLM+AlDpAXluVbKfZVYl8xAR4uPjER4eXqj9pIODg3H8SW4/yVjVZ/aONX5+fvjpp58AGDrW1K1bFx9//HGRHWvatGmDXr16Yf78+cZ1mzdvxujRo5Geng5xCdpscRLJ2NPJSUtEbNBRQ1J5+SCyEu+bbFc6ecC9dR94tOkLt1a9ILd1MlOk1YM+NhvZP4ZAd91QDRa3sDdUJV2ryCDfT0Gn05mMP6nXG4ZC4vaTjFkGsw/xM2LECKxatQp+fn5YunQptm7dilu3bqFmzZoYPnw4PDw88N133wEwtG9cvHgxfv31V+Pj7A8//BBt2rTBX3/9VaJrchLJWPkhIqRE38itUh7Cg2snTaemFAQ4N/ofPFobqpQujdtBJOaEoLRIT1DvjYHq9wjDmJMKMeSjvCHtW6vaVH2Laz8pkUhMxp8syRMnxljlMPtg48uXLzcONt6yZUssW7YM7dq1AwB069YNXl5eWL9+PQDDrAlz587Fhg0bcP/+fbi4uODll1/G3LlzS9yWhpNIxiqOVpWNB8GnEHPFkFSmRAabbJcqbeHWsqfx0bdNTS/zBGqhdDHZyFkaAt3N3KpkS3soPqkeVcmC0tLSjONPZmRkGNcrlUp4eXnB29ub208yVgWYPYmsbJxEMlZ5MhPuI+bKIUMHncDDhiklC7D1aAj31n3h0aYvaj3XDVJFDTNFajlIR1DvuQ/Vhsj8quR73pD2rj5VyTx57Sfzxp9Uq9XGbQ4ODsbxJ5VKpRmjZOzZxUkkY6xS6HU6JN65bEwq42+eA+l1xu0iiRSuvp3g3qYvPFr3haN3Cwj86LJYuntZyPkxFLpbuVXJ1g6GqqSzzMyRVYy89pMRERG4f/++SfvJWrVqwdvbm9tPMlbJOIlkjJmFOjMVsUHHDEnllYPIiIsw2S63dzV00GndB+6t+0DhUNNMkVZdpCOod9+DamMkoCHAWgz5e/Uh7Vm9x15UqVSIiopCeHg4t59kzIw4iWSMmR0RIT3mDu5fPoiYK4cQ+98xaHMyTfZx9G6ZW6XsA1ffThBbVc+KW1no7mYh58cQ6ELSAQCSto6Qf9wQIqfq/z1KT083jj9ZsP2kQqEwjj/p4OBgxggZq744iSyjlGgtkqM1kMgFSOUiSBQCpHIBEpkAqUKARC5AJK6+lQDGKpJOo8bDm2eNwwglhQWabJfIrVHruW7GXt+2Hg2rdeWtJEhHUO/KrUpqCbCWQP5+fUi7uz4T3xsiQkJCgnH8SW4/yVjF4ySyjC6sTcO/iwtPD1eQWIrc5FKUm2wK+cmmyfvC2x/dZtwuz09S85JWSx54mLGSyE55iJgrh429vnOSH5hst3b1hEcbQwcdt5Y9YWVtZ6ZIzU8XnYnspaHQ386tSvo5Qv5RQ4gcq39VMs+T2k82atQIderUMXOUjFk+TiLL6Nr2DARuyYA2h6DJofzX7Mr/dhabYMoFSBWi4rfnJamyoo4TTKqsYimeiWoGq/pIr0dSxFXEXDmEmMsH8eD6aei1+VUnQSSGS+P2xgHPnRq2hagEExFUJ6QjqHfcherPKENVsoYEirH1Ien6bFQlC8prPxkREYH4+HgAgK+vL1q3bm3myBizfJxEljMiglaVm1RmmyaX+cmm3vi+uG1aVVHb8t7roVM/OZbyJIhQdDW1QJL66DZjElrkcfnbCyawIsmz9R8ce3qanEzEXT1hHPA87V6IyXaZjSPcWvUyPPpu3QfWLrXNFGnl00VlIntpCPR3DG0FJe2cDFVJByszR2Ye6enpiIiIgKenJ+zsnt1qNWPlhZNIC6XX5SaahRJVfeEENu+9yjSBLXo/vfG9JptAuifHUp5EEphWQQsknEpHEVwaWcHFRwpXHylq1BQ/c1UV9mTpDyIRc/kQYq4cREzQUWgyTZud2Nf1NXTQadMXNZt1gURWvedoJq0e6u13odoSDWgJgo0E8rENIOniwv9+GGNPhZNI9lg6TTFJaoHEtLgqa3FJauHKKgFl+C1U2Ivg3MiQULr4GJJLp/pSSKz4P0ZmoNdpkRByAfdzO+gk3r4Iym0fBwAiqQy1mnUxJpX2nk2rbWKli8gwVCXDDb3eJR2cIR/XACL7Z7MqyRh7epxEMrMjIujUMH2U/2jymUVIjdUiPkSD+BA1kiK1RVZJRRLAsZ4ULo2kuRVLQ3Jp7fxstYljRVOlJyE26KgxqcxKuGeyXenkDvfWfeDeui/cW/eG3NbJTJFWDNLqod52F6q/ogEdQbCVQv5BA0ifdzF3aIwxC8RJJLNIWhUh4Y4hoYwP1eQmlxrkpOmL3F/pJDImlHmLo5cUYmn1rDqxJyMipEbfxP0rhrEp466egE6dk7+DIMC5YVtjBx2Xxu0hkkjNF3A50oVnIHtJCPSRuVXJTs6Qf9gAIjuuSjLGSo6TSFZtEBHS43TGhPJhqBrxIRokR2mLfFwulgJODUwrli4+UijsuGr5LNKqc/Aw+JShSnnlIFIig022S5W2cGvRwzjguY2bt5kiLR+k0UO1NRrqrdGAHhDspJB/2ADSTlyVZIyVDCeRrNpTZ+mReEeDhyEa4+Pw+FAN1JlF/+rb1BTnVyxzO/I4eEp48PhnTFZiDO7nDiMUE3gYqrREk+027g0MY1O27otaLbpDqqhhpkifju5OOrJ/DM2vSj7vAvnYBhDZVY+qK2Os4nASyZ5JpCek3tchPkSdn1yGqpF6r+ju6BK5AOcG+Y/CXX2s4NJICpkNz837LNDrdEgKC8ydlvEgHt48B9JpjdtFEilcmnQ0Dnju6N0SggXN20waPVR/RUO9LbcqaS+FfFxDSDs4mzs0xlgVxkkkYwWoMvS5bSwNj8IfhmiQcFsDbU7R/0xsPcTGhDIvubSrLeZZhKo5dWYaYv87ZhzwPD0u3GS73M4F7q16w72NYWxKpWMtM0VaOrrb6YYe3NFZAABJl9yqpC1XJRljhXESydgT6HWElGhtbsVSbWxzmf6g6KqlVCkU6h3u3FAKK6XlVKZY6aTF3DFUKS8fROzV49BmZ5hsd/BuYRzsvGbTzhBbVd0pCEmjh2pzFNTb7+ZXJT9qCGl7rkoyxkxxEslYGWWn5nfiyXscnnBHU/RsQgLgUFdi+jjcRwqbWjxgenWj06gRf/Ocodf35YNIvHPFZLtEpkSt57oZq5R2tX2q5O+ALjTNMAf3XUNVUtrNFfL360Ow4aokY8yAk0jGypFOQ0iO0pq2tQxRIzOh6KGHZLYCXBpZGQZMb2QYNN2pgQRSOVctq4vslIeIDTyS257yELKT40y2W7vWRf3u76DlOzOr3BBCpNZD9WcU1Dtzq5KOVoaqpF/1Gj+TMVY2nEQyVgkyE3X5PcNz21omRWig1xbeVxADDp4Sk2GHXH2sYO0iqpIVK1ZyRITkiKuIuXII9y8fxIPgU9BrDaXrWs91Q7ev/q6SA5xrb6UhZ2kI9PezAQDSHjUhH1MfQg2JmSNjjJkTJ5GMmYlWTUgK1xRqa5mdUnTVUuEgyk8qG+VP88gDplsuTU4mos/uxLnlH0KbnQEbt/roOXMP7Os2MXdohZBKB9WmKKh33QMotyr5SSNI2zqaOzTGmJlwEslYFUJEyHhYYMD0kPwB06mI3FIkAZy8pYXaWiodecB0S5IccQ1HZw1AxoNISJW26PblVni06WvusIqkvZmKnKWh0MfkViV71YT8vfoQrLkqydizhpNIxiyAJlufO82jJn+ax1A1VOlF//O1dhHBxSe3raWPoa2lo6cEIglXLauq7JSHOD5nMB7eOANBJILf+0vReMDHVbIJA+XooNoYCbX/fUNV0tkKik8aQdKaq5KMPUs4iWTMQhER0mJ0+RXL3OQyJbqIhpYAxFYwDJjeyLStpdyOO/FUFTq1Cmd/GouwI78DABq9OBbtP/ypynW4yaO9noqcH0OgjzXMOS7tUwvy0d4QlFyVZOxZwEkkY9WMOkuPhNBH2lqGaqDJLmaax1riQvOHO9SV8IDpZkJEuL59IS6tnQoQwa1FD3T7ahtkNlWzykc5Oqg25FYlAQjOMijGN4KklYOZI2OMVTROIhl7BpCekHJPa+wZnpdcpsUUP2B6/W4KNB2ghGd7OT8GN4Po8/7494e3DR1u3BsYOtzUaWzusIqlvZaC7GWhoLjcqmQ/N8hH1uOqJGPVGCeRjD3DctL0iA9Vm3TkSbyjhVaV/2dB6SRCk/5KNH3ZGq6NrcwY7bMnKeIqjs58GZkPoyG1tkO3aVvh0aaPucMqFuXokPN7BDR7YwAAgmtuVbIFVyUZq444iWSMmdBrCQ9uqnFjTxZu7c8yGXLIpZEUvgOUaPKSNWq4cA/wymDocPMKHt44C0Ekht/YpWj88kdVssNNHu3VFGT/GAJ6qAIASF90g/xdbwgK/p1hrDrhJJIxViydhhBxOgfX/TMRfiIbOo1hvSACPDvK0XSAEg26KyBVcOeciqRTq3B22fsIO/oHAMDnxQ/Q7sNlVbbDDQBQtg4568KhORALABBqyqGY0AiS5vbmDYwxVm44iWSMlUh2qg4h/2Tjhn8mYv7LnyDcylpAoz5KNB2gRO02Mu6QU0GICMF/L8DldV9YRIebPNr/kg1tJfOqkv3dIR9RD4Kcq5KMWTpOIhljpZYcpcH1PVm4sScTaffzO+fYuovh+7I1fF9WwtGr6lbJLFn0eX/8O/8taHMyYePeAL1m7YVdbR9zh/VYlKVFzroIaP7JrUrWyq1KNrM3b2CMsafCSSRjrMxIT7h3RYUbe7IQcjAL6oz8Pyduz1nBd4ASjfspobDnqlN5erTDTfcvt8G9dW9zh/VE2sDcqmSCChAAq5c9IBvmxVVJxiwUJ5GMsXKhydEj7Lih/WTk2RxQboFSJAHqd1XAd4AS3l0UPNd3OclOfoDj3w7O73DzwY9o8vJH5g7riShLi5zfwqE5FAcAELnJIZ/gA0lTOzNHxhgrLU4iGWPlLjNBh5v7s3DDPxMPb2mM6xX2Ivi8YGg/WauZVZXuYWwJtOocnFv2PsKObgAANO4/Dn5jl1bpDjd5tFeSkP1TKChBbahKDvSA7B0vCDKuSjJmKTiJLCNdbBz0Dx5C5OwEkZMjBIWiHKNkrPqID1Hj+p4s3NybicyE/OGCHOtJjO0nbd14QOqyIiIEb/sBl9dPM3S4adkT3b7cBplN1R+bkTK1yPktDJrDDwAAIg8F5J/6QNKYP+AzZgk4iSyjzMU/IWPStPwVCgVETo75SWWBrw3vnQptE2xsuBLDnhl6LSEqIAc3/LNw+2g2tDn5f3rq+MnQdIA1GvVWwMqahwsqi6izu3BqwTvQ5mTC1qMRes7cA7vajcwdVoloLiUh56dQUJIaEAFWA2tD9rYnVyUZq+I4iSyjzKU/I+v7RdAnJgFabdlOIpEUkXA6QTBJPh9JRh0cIIj5DyuzbKoMPW4fycZ1/0zcvaAyrpfIBTTsaWg/6dleDpGYP2SVRlL4f4YON/F3YVXDHt2+3Ab3Vr3MHVaJUIYGOavDoTmWW5WsnVuV9OGqJGNVFSeRT4mIQGlp0CcmgRKToE9Mgj4hEZSYaPz60W36xCQgO7tsFxQECA4O+UllgQRT5OxkSDpN3udWP614ujpWNaXGaHFzr2G4oKSI/A9k1i4iNHnJGk0HKOHSiH9/SyorKQ7H57yC+FvnIYjEaPfhMjTuP87cYZWY5kIicn6+nV+VfKU2ZG95QbDiCjVjVQ0nkWZCWVmGpDIxCfrEREOSWTDhzP264HtKSyvz9QQbmyISzKITzrzKJ5RKftzOKg0RIS5Yjev+hukWc1Lz20+6NpbCd4A1mryohLUzV+KfRKvOwdkfxyD82EYAQOOXPzJ0uBFbRttTStcg59cwaE48BACI6iih+NQH4kY2Zo6MMVYQJ5EWhDQa6JOKSDKLSDj1uZVQSkoG9Ponn7woMlnhhNPYrtOpyDaggp0dJ57sqek0hPB/s3HDPwthJ7Ohzy1QCmLAq6McTQdYo353OaRyrk4Vh4hwbev3uLL+SwCAW6te6DZtq0V0uMmjOZ9gqEqmaAxVyVfrQDbUE4KUf+6MVQWcRFZzpNeDUlKKTDhNHrs/sg1q9ZNPXhSxGIKjQ4EE06mITkaPvHd0hCCxjAoJq3zZKTrc+icLN/ZkIbbgdIs1BPj0VaLpAGt4tLLi6RaLEXVmp6HDjSrL4jrcAIA+TYOcX+9AezIeACCqm1uVbMhVScbMjZNIVggRgTIy8ttxlqCdJyUmgTIzy3xNwd6+6ASzYJvP2h6Q+DaGyI4HJX5WJUVqcGNPFq77ZyI9tsB0ix6G6RabvqyEg2fVHyOxsiWGBeHYrAEFOtz8DfdWPc0dVqloziUgZ0WBquTrdSF7oy5XJRkzI04iWbmhnJwCj9WLSDiLSj5TUkp9HVFtD0iaNoGkma/htWkTiH0bQ1SjRvnfFKuSSE+4d1mF6/5ZCD2UBXVm/p8x9xZW8B1gDZ9+CijsuP1knqykOBybPQgJIQGGDjfjlqPxSx+YO6xS0adqkLPqDrSncquSXtZQTGgEcQOuSjJmDpxEltE9VSyiVDHwsKoJNytXyETce7QsSKsFJScX2ZHIJCFNSIQuIgr6+zHFnkvk5WmSWEqa+ULSuBEPBF/NabL1uHM8G9f9sxB1NgeU2wRYLAW8uynQdIA16nWW83SLyO1ws/Q9hB/fBABo/PLH8Bu7xGI63OTRnIlHzoo7oDQNIBZg9XodyIZwVZKxysZJZBn9GrcZs6KXGd+7SB3hYVUT7la14GFVEx6ymvAo8LWTxIE7nJQDfUoKtNdvGpbgG9Dlfq1/8LDoA0QiiL3rQdIsP7EUN20CiU8jHvaoGsqI1+Hmvkzc8M9CfGiB6RYdRGj8gqH9ZM2m0mf63yIR4dpf3+HK718BANxb90HXaX9BVsPevIGVkj5VjZxf7kB7JgEAIKpnDcVnPhDX4ycSjFUWTiLL6I+HO/Bb3FbcVz9Atj7nifvLBCu4G5PL3ARTVhPuVobFw6omFGJ5meN51ukTEkySS8PrTVBSUtEHiMUQN2pgWrVs2gTiBvUhSLlNXXXw8JYa1/dk4ubeLGQlFphu0VuCpgOs0eSlZ3u6xagzO3BqwTBDh5vaPug1cw9sPRqaO6xS05yKR84vt0HpWkAsQPZGXVi9XgeChKuS5aVbt25o2bIlli5dWunXnjlzJnbt2oWgoKAyn+PEiRPo3r07kpOTYW9vX2nXfRZwEvmUiAjJ2jTEqONwX/0A91UPcD/365jc9w80CSA8+dvsKLE3qWK6P1LRdJE6QiTwH8aSIiLoHzyE9voN6PISy+u3oA2+UfyYm1IpJI0bGaqVBdtcetfjmYIslF5LiDyXgxt7snDnaDa0qtx/iwJQ108G3wHWaNTr2ZxuMfFOII7OGoCshHuwquGA7l/9DbeWPcwdVqnpk3Orkudyq5LeNQxVSS9rM0dWPVh6EqlWq5GUlISaNWuW+ClESa5rzu9LVfHsfgwvJ4IgwFFqB0epHZpZ+xS5j1qvwQNNAu6rchNNdRzuq3KTTPUD3FPFIVOfhSRtCpK0KbiWFVLkeaSCxKRy6W6sataEh8yQaFqLlRV5uxZFEASIa9WEuFZNoGd343oigv5+zCNVyxvQ3bgFysyE9tp1aK9dh6rgyeRySJr4mHboaeYLUd06EETPXvJhSUQSAd7PK+D9vAKqdD1CD2fhun8W7l1SITrAsBz5VkCjngr4DrBG3XayZ2a6RacGrdD/xws4NvsVJIQE4ND0vmg/bjl8Xhxr7tBKReRgBcW0JtCeikfOyjvQh2cg87MrkL3pCavX6kB4Rn6erGhWVlaoVauWucOolrgSWQUQEdJ0GbmVzIJVzLyvHyJOHQ8ddE88l73YBu65CWXB5NI99+uaUieIBa6oFYX0euij7+YnlnlJ5s0QIKfoJguCtTXEvo0LdegRebg/0+3uLEHqfS1u7DW0n0yOyp9usYarGE36G9pPOjd4Npo2aFXZOLN0NCJObAYANBnwCf73/mKL63AD5FYlf74NbUAiAEDUoIZhXElPrkqWVbdu3dCsWTMAwIYNGyCVSvHhhx9i9uzZEAQBycnJmDBhAvbs2QOVSoWuXbti2bJlaNiwIeLj49G8eXOMHz8eX35pGPj+7Nmz6NatGw4cOICePR8/1FReRXDSpEn4+uuvkZycjBdeeAGrV6+GjY2hV75er8f8+fPx66+/Ii4uDo0aNcLXX3+N1157DUDRj7NXr16N2bNnIzExEX379sXzzz+P2bNnIyV3xJAnXffdd9/F77//bhJrREQEvLy8yum7bhk4ibQQWtLigTqxyMfmeVXNVF36E88jhhhuVi7wkNWCu5VrfmegAm01bSXcML0g0umgC48o3KHnViig0RR5jGBnB4lvY2OHHnFTX0NyWdOVk8sqhogQe1WN6/6ZCDmQjZy0/PaTNX2l8H3ZGo1fVMLaqXp/+CIiXN0yD4F/TAdguR1uAMO9aE8+RPaqMCBDC0gEyN7yhNVgrkqWRbdu3XD58mWMHj0aH374IS5duoT3338fS5cuxZgxYzBw4EDcvn0bq1atgq2tLaZOnYqwsDDcuHEDUqkU+/fvx6BBg3D27Fn4+PigZcuWGDhwIBYvXvzEa8+cOROLFi1Cnz59MGvWLCQnJ2PIkCEYNWoU5s6dCwCYO3cuNm7ciKVLl6Jhw4b4999/8cEHH+DgwYPo2rVroSTyzJkz6NKlC+bPn48BAwbgyJEj+Prrr6HT6UySyMddNzU1FS+88AKaNWuG2bNnAwBcXFwgfsaaPXESWY2k6zIRo3pg8sj8vvoBYnMfm8eoH0BLT65m2oiti0wu876uKXWBVGR5FYryRhoNdHfCTB+LX78JXegdQFf091lwdMzvKV7g0bjI2bmSo2dF0aoJ4SezcWNPFsL/NZ1usV4nOXwHWKNBdwUksuqbiESe3o7TC4fnd7iZtRe27g3MHVaZ6JNUhqrkBUMHO1FDGyg+bQRxXa5Klka3bt3w8OFDXL9+3fgh+IsvvoC/vz92796NRo0a4cyZM+jYsSMAIDExEXXq1MHvv/+O119/HQDw0Ucf4ciRI2jbti2uXbuGixcvQiaTPfHaM2fOxIIFCxAXF2esPH7++ef4999/cf78eahUKjg6OuLIkSPo0KGD8bj33nsPWVlZ+PPPPwslkW+++SYyMjKwd+9e4/7vvPMO9u7da5JEPu66ed8XbhPJqg0bsTV8lN7wUXoXuV1HOsRrkoyPzfPaZBasaiZrU5Guy8St7HDcyg4v8jwiiOAqdSo0jFHBzkD2YttqX3ETpFJImjSGpElj4LVXjOtJpYI29LahWlmgp7guLByUlATNv2eg+feMyblEri75ww8VeDQuKmFPQlY+JFYCGvVWolFvJbKSdQj5x9B+Mu6aGuH/5iD83xzIbAzTLfrmTbdYzX7PvTq/Cpta9XB05gCk3QvB3gl+6D59O9xadH/ywVWMyFEGxfSm0Bx/iJxfw6C/nY7MT69ANqIeZANrmzs8i9K+fXuT3/UOHTpg0aJFuHHjBiQSCdq1a2fc5uTkBB8fH9y8edO4buHChWjWrBm2bduGy5cvlyiBzOPl5WVM5ADAzc0NDx8ahnW7c+cOsrKy0Lt3b5Nj1Go1WrVqVeT5QkJC8Morr5is8/PzM0kqn3RdZsBJ5DNELIhRy8oFtaxc0KZGsyL3ydJlF5lcxhR4bK4mDeI08YjTxOMygos8j1KkKDK5zOsUVJ0HaBdkMkibN4O0uen3mLKzob0VWqjNpT4yCvqH8VAfOwkcO2lyjMjDvfAwRL6NIbLhGToqmtJBjFZDbdBqqA0SwzW4sScTN/ZkIT1Oh6t/Z+Lq35mwq5033aI17OtWnz+nTg1ao/+yi7kz3FzAoa/6oP24n+Hz4vvmDq3UBEGAVY+akLSwR87y29BeSgI0z9QDuCohLCwMMTEx0Ov1iIyMRPPmzUt8rPSRYdcEQYBeb2h2kpGRAQDYt28fPDw8TPYrTaJa2usyg+rzV4+VC6VYgQYKLzRQeBW5XU96JGpTiu1pfl8VhwRtMrL02bidE4nbOZHFXstV6mTS6efRzkCOEvtqVeURFApIW7WAtFULk/X6jAzobtwqNM6l/t596O/HQH0/BupDR02OEXnWLTT1o6SJDwQl986vCE7eUjw/wR6dP7HD3UsqXPfPROihbKTe0+HcL2k490saPFrlTrfYRwm5neX32Fc6uqHf/BM4s2QUIk5uwbmfxiIl+gb+N2ahRXa4ETnJoJjRFNrziZD4OZk7HIsTEBBg8v78+fNo2LAhfH19odVqERAQYPI4OyQkBL6+vgAMVcF33nkHb7zxBnx8fPDee+/h2rVrcHV1feq4fH19IZPJEB0dja5du5boGB8fH1y8eNFk3aPvS8LKygq6YpouPSss7y8BMyuRIIKL1BEuUke0hG+R+2TrcxCrjjd5ZB7zSGUzR6/CQ00iHmoSEZh5o8jzyAUrY09zdytXNFJ4o5d9JzRQeFbkLVY6UY0aEPm1hdSvrcl6fUoKtHnJZcHZeeIeQB8VDXVUNNT7D+YfIAiG2XmaNoGkWW5nnqZNDFM/PuUncmYgiATU9ZOjrp8cPb/U486xbNzwz0LU+RzcD1TjfqAax75LRv3uCjR92RpenSx7ukWJTIEuU/+EvWdTBP7xNW7u/hGp926h27S/YGVtZ+7wSk0QBEg7cPvjsoiOjsbEiRMxduxYXLlyBT/99BMWLVqEhg0bYuDAgRgzZgxWrVoFGxsbfPHFF/Dw8MDAgQMBAF999RVSU1OxbNky1KhRA/v378eoUaMKPT4uCxsbG0yePBmfffYZ9Ho9OnfujNTUVJw5cwa2trYYMWJEoWM++eQTdOnSBYsXL8bLL7+MY8eO4cCBA6UuWnh5eSEgIACRkZGoUaMGHB0dIXrGhnzjJJKVO4VIDm95HXjL6xS53TBAe+ojHYBMe5o/0CQgh9QIz4lGeE608dg5d39CPVkd9HbojD72nfE/m+cgEarnr7HI3h5WHdvDqmN7k/X6xMQiZue5AUpMgi4sHLqwcKj89+UfIBZD3MC70DBE4oYNeHaep2ClFMG3vzV8+1sj/YEWN/dl4caeLCTc1iD0YDZCD2ZD4ShCkxcNwwW5NrHM6RYFQUCLodNhV7sxTi0ajpjLB7Hvsw7oOXMPbN3rmzs8VkmGDx+O7Oxs+Pn5QSwWY8KECXj/fUPzhnXr1mHChAno378/1Go1unTpgv3790MqleLEiRNYunQpjh8/buzMumHDBrRo0QK//PILPvzww6eObc6cOXBxccF3332H8PBw2Nvbo3Xr1sYhhR7VqVMnrFy5ErNmzcL06dPRt29ffPbZZ1i+fHmprjt58mSMGDECvr6+yM7O5iF+ngXVuXd2daLSqxGnjjcmmvdUcbiYfhVn0y9DQ/lj+tmLbdDDviN62XdGd7v2z+zwREQE/cOHpp158mbnSU0t+iCp1DD1Y4HB0yVNm0Bc35tn5ykjIkJ8iAbX/XOnW0zKbz/lVF8C3wHW8H1JCZtalvnBJ+H2ZRybNRBZifchs3FEt+nb4fZcN3OHxdhTGzNmDG7duoVTp06ZOxSLwkkksyjpukycTA3AoeRTOJZ6Dsna/ARJIojR3qYV+tg/j94OnVFX5m7GSKsGIoI+Jrbo2XlyG6QXIpNB4tsYinffhmLMSAgKReUGXU3oNISoczm47p+JO8eyoVPnbhAAz3aG6RYb9lLASmlZj7+yEmMMHW5CL0IQS9DhoxVo9MIYc4fFWKksXLgQvXv3hrW1NQ4cOIBJkyZhxYoVeO+998wdmkXhJJJZLC1pcTkjGIeTT+NQyimEFXjsDQCNFd7oZd8ZfRyeRytrX553vADS66G/e6/o2Xmys437idxqQfn5Z1COHcXJ5FPISdMj9JDhcfe9y/kTakoVAhr2VqDlGzXg3sJy2q1qVdk4vXgkIv/9CwDgO+hTtH1vgUV2uGHm1bRpU0RFRRW5bdWqVXj77bcr5LpDhgzBiRMnkJ6eDm9vb3zyySf44IMPKuRa1RknkazaCM+5i8PJp3E45RQupF81mSbSWeKAnvYd0cfheXSx9YNSzAlRUUingy4iEupDR5H5/WLo794DAIhquhqSyQ9Gcw/wp5RyN3+6xZS7hqYZggjoPMEOfqNsLKbdJBHhvz/nIGjjNwAAj7b90PWLLRbZ4YaZT1RUFDTFzPxVs2ZNk3EaWdXDSSSrlpK1qTiech6HU07jeOo5pOsyjdtkghU62bZFb4dO6G3fGW5WTz/MRHVEajWy129E5ryF0EcZqrwiVxcop3wK5YfvQbDmWT+eBhEhJkiNwD8zcOtAFgDAp68Cfec4WtQj7shT23Bq0QjoVNmwq9OEO9ww9gzhJJJVe2q9BufTA3Ek5QwOJZ/CXXWsyfbmSh/0cXgeve07o5mykcVUgioLqdXI/uNPZM5dAH2k4bGT4OwE68kToPjofYhqPJudmcrTf1szcHReMvRawLmhFIOWOcO+juU8GjZ0uBmArMQYyGwc0X36DtR6rmRj9jHGLBcnkeyZQkQIyQ7H4ZTTOJR8GoGZ10HI/yfgZuWKXvad0Mf+eXS0bQ25yHLaqVU00miQs2EzMucugC48AgAgODnCetJ4KD4ey7PoPKX7V1Twn5iAzAQ95LYi9F/gBK9OcnOHVWJZiTE4OmsgEm9fMnS4+fgXNOrHnRQYq844iWTPtHhNEo6mnMHhlNM4mXoB2foc4zalSIGudn7obd8ZPe07wlnqaMZIqw7SaJDz51ZkfvsDdHfCAACCoyOUEz+G8pMPIOJ/V2WW/kAL/88SEXtVDUEEPP+pHf430nLaSWpzsnB6yUhE/rsVAOD7ymdoO3oBRDxkFGPVEieRjOXK1ufgbNoVHEo+hSMppxGnSTBuEyCgdY2mhuGD7DujkaKexfzHXlFIq0XO5m2GZDL0NgBAcHCA8rOPoBz/IUR23MGiLLRqwtG5ybi23dCO19LaSRo63MxG0MaZAIDa/3sRXaZuhpU1/71lrLrhJJKxIhARrmWFGIcPCs4KNdnuKfMwPPZ2eB7tarSEVGQ57dfKG+l0yNnyNzLnfA9dSG4yaW8P5afjoJwwDiJ7e/MGaIGICP9tzcSx7wztJF0aSTHwR8tqJ1mww419XV/0nLkHNm7e5g6LMVaOOIlkrARi1A9xJOU0Diefxpm0y1CR2rjNVlwD3e06oLd9J3S37wB7ybP5e0U6HXK2bkfmnPnQ3QwBAAh2dlBO+BDKTz+CyMHBzBFanvtXVNj9WQKyEnPbSS50gldHy2knmRB6CcdmDzR0uLF1MnS4ad7F3GExxsoJJ5GMlVKmLgv/pl7A4ZTTOJJyFonaZOM2McTws2mB3vad0cehM+oVM394dUY6HVR/70TGnPnQXb8JABBsbaEc/wGUn30MkSO3LS0NS28nmZlwH8dmD0Ti7csQSaRo//EvaNR3tLnDYrkSExPRpEkTXLhw4Zmb97mqioyMRL169QAALVq0QFBQkHkDegzLaGTDWBViLVbiBcduWOw9HYGt9mB3k1/xsdsw+Ci8oYMO59KvYPbdZeh8dQi6Xn0Tc+/+jAvp/0FHuiefvBoQxGLI33gNTlcDYLf1D0ia+YLS0pD57Q9I8PRF+pczoU9IePKJGADApqYEb6x3RfPB1iA98O/iVOydkgh1lv7JB1cB1s4eeOGHf+H1/OvQazU4u/Q9XFw9CXrds/HvoaqbO3cuBg4caJJARkdH46WXXoJSqYSrqyumTJkCrVb72POEhoZi4MCBcHZ2hq2tLTp37ozjx4+b7CMIQqFly5YtJvv8/PPPaNKkCRQKBXx8fPDHH3+U+p527NiBPn36wMnJCYIgFErCkpKS8Mknn8DHxwcKhQJ169bF+PHjkZqaWvQJS3heAAgLC8Mrr7wCFxcX2NraYsiQIXjw4EGh/fbt24d27dpBoVDAwcEBgwYNMm6rU6cOYmNjMWnSpFLfe2XjJJKxpyAWxGhr0xzT6ozDseabcPa5vzGr7qfoZNsGEkGMOzlRWBG7Ea/c/AAtA/tjQths7Es6jowCg59XV4JIBPnrg+H433nYbd8ESYvmoIwMZH23EAleTZH+xQzo4+PNHaZFkFgJ6DPLAb2mO0AkAUL+ycbmdx4aZ7yp6iRyJbp+sQUt3jbMbnN9x2IcmzUA6sw0M0f2bMvKysJvv/2G0aPzK8M6nQ4vvfQS1Go1zp49i99//x3r16/HjBkzHnuu/v37Q6vV4tixY7h8+TJatGiB/v37Iy4uzmS/devWITY21rgUTJ5++eUXTJs2DTNnzsT169cxa9YsfPTRR9izZ0+p7iszMxOdO3fG/Pnzi9weExODmJgYLFy4EMHBwVi/fj3++ecfk+9DWc6bmZmJPn36QBAEHDt2DGfOnIFarcbLL78MvT7/Q9/27dsxbNgwjBw5Ev/99x/OnDmDt956y7hdLBajVq1aqGEJY/DSMyY1NZUAUGpqqrlDYdVciiaNdiUcoo/uzKAml3qTe0B74+J14Xl669YEWhe3je7lxJo71Eqh1+koe6c/JbTqSHGwpjhY0wNrV0qb8hXpHjwwd3gW4+7lHPq5yz1a0DSafup4jyLOZJs7pFIJP7GF/hggp3X9QDvHNqW0mDBzh1Tu9HqijCzzLHp9yePctm0bubi4mKzbv38/iUQiiouLM6775ZdfyNbWllQqVZHniY+PJwD077//GtelpaURADp8+LBxHQDauXNnsfF06NCBJk+ebLJu4sSJ1KlTp5LfVAEREREEgAIDA5+479atW8nKyoo0Gk2Zz3vw4EESiUQm+UVKSgoJgmD8Pmg0GvLw8KA1a9Y88TrffPMNtWjR4on7mZPldPVjzMLYSWww0Kk3Bjr1hkavxcWMq7mDnJ9CpOoeTqQG4ERqAL6KWgRfZUP0se+M3vad8Zx1Y4iE6veQQBCJIB/0MmQD+0O1Zz8yZ30H7ZUgZC1Yiqyff4Xyw/egnDIB4po1zR1qlVa7tQzDttY0tpPc/kG8RbWTrNf1DdjU8sbR2QOREnUdez9thx5f70DNZs+bO7Ryk5UD2PYzz7XT/gGsFSXb99SpU2jTpo3JunPnzqF58+aoWeDfYd++ffHhhx/i+vXraNWqVaHzODk5GR89t27dGjKZDKtWrYKrq2uh83/00Ud477334O3tjQ8++AAjR440/t6qVCrI5aYdxxQKBS5cuACNRgOpVFqyGyuDvH4SEknZ0yKVSgVBECCT5U9SIZfLIRKJcPr0afTq1QtXrlzB/fv3IRKJ0KpVK8TFxaFly5ZYsGABmjVrVh63Uqmq3/9UjFVBUpEEHW1b45u643H6ua042XwzvqrzEfxqtIAIItzIuo2lMevw0o3RaBs0EJ9HfI/DyadNBj+vLgRBgHzAS3C8dAr2e7ZB0rY1kJWFrEXLkFCvGdInfgFdXOE2RCxfXjvJZq/kt5Pc93mSxbSTdPb5H/r/eBFODVpDlZaAg9N64vbBteYO65kTFRUFd3d3k3VxcXEmCSQA4/tHH03nEQQBR44cQWBgIGxsbCCXy7F48WL8888/cCgwKsPs2bOxdetWHD58GK+++irGjRuHn376ybi9b9++WLNmDS5fvgwiwqVLl7BmzRpoNBokVGA76oSEBMyZMwfvv//+U52nffv2sLa2xtSpU5GVlYXMzExMnjwZOp0OsbGG6XbDw8MBADNnzsT06dOxd+9eODg4oFu3bkhKSnrqe6l05i6FLl++nDw9PUkmk5Gfnx8FBAQ8dv/k5GQaN24c1apVi6ysrKhhw4a0b9++El+PH2ezqiZRnUxb4/fRe6HTqOHFHiaPvb0vdqV3Q6bQpge76YEqwdyhVgi9Xk85+w9SYrtuxsfccXInSpswhbT3Y8wdXpWm1+vpyuY0WtQimhY0jab1r8RS8t0nP46rKjTZmXTs29doXT/Qun6gC6snk06rNXdYT81SHmf36dOHxo0bZ7JuzJgx1KdPH5N1mZmZBID2799fzP3qacCAAfTCCy/Q6dOn6fLly/Thhx+Sh4cHxcQU/2/466+/ptq1axvfZ2Vl0ciRI0kikZBYLCZ3d3f6/PPPCYDJ4/WSKsnj7NTUVPLz86N+/fqRWq1+6vMePHiQvL29SRAEEovF9M4771Dr1q3pgw8+ICKiTZs2EQBatWqV8ZicnBxydnamlStXmpzLEh5nm7US+ddff2HixIn45ptvcOXKFbRo0QJ9+/bFw4cPi9xfrVajd+/eiIyMxN9//42QkBCsXr0aHh4elRw5Y+XHUWqP151fxOqG83Ct9QFsarQE77q+CnermsjRq3Ao5RSmRH6HVkH90f/6aCy9vw43su6AqsnoXIIgQPZCHzicOwb7f3ZB2qEdkJODrB9XIMG7GdI+mQTd/Rhzh1klCYKAVm/aYMhaVyidRIgP1WDjGw8Qdc4yKtgSuRLdpv2FFm8ZOm1c374Qx2YPsvgON4JgeKRsjqU0LRqcnZ2RnJxssq5WrVqFehPnva9Vq1aR5zl27Bj27t2LLVu2oFOnTmjdujVWrFgBhUKB33//vdjrt2vXDvfu3YNKpQJgeHS9du1aZGVlITIyEtHR0fDy8oKNjQ1cXFxKfmMllJ6ejn79+sHGxgY7d+4sl8flffr0QVhYGB4+fIiEhARs2LAB9+/fh7e3YaB9Nzc3AICvr6/xGJlMBm9vb0RHRz/19SubWZPIxYsXY8yYMRg5ciR8fX2xcuVKKJVKrF1b9GONtWvXIikpCbt27UKnTp3g5eWFrl27okWLFpUcOWMVQyayQjf79pjrNRkXWuzEoWZ/YIrH+2hp3QQAEJh5Awvu/4rewcPQ7r/BmB65CCdTA6DSq59w5qpPEATI+vaCw5kjsD/kD2mnDoBKhezlqwzJ5EefQXf3nrnDrJJqt5Zh2F81Uau5FXJS9fh7bDwurkuziA8agkiEVsNmocvUzRBbyXHvwl7sn9wJ6Q8izR1atdeqVSvcuHHDZF2HDh1w7do1k2LO4cOHYWtra5L4FJSVlQUAEIlMUwqRSGTSK/lRQUFBcHBwMGlDCABSqRS1a9eGWCzGli1b0L9//0LnflppaWno06cPrKys4O/vX6gt5tNydnaGvb09jh07hocPH2LAgAEAgDZt2kAmkyEkJMS4r0ajQWRkJDw9Pcs1hkphrhKoSqUisVhcqKfW8OHDacCAAUUe88ILL9Dbb79NY8aMIVdXV2ratCnNnTuXtKV4/MGPs5mlilPF08YHu2hEyGTyvtDF5LF3o4s9aEzoNNoWv58S1SnmDrVc6PV6yjlyjBKf753/mNvKgVI/GE/aqGhzh1claXL0dGB6Ii1oani8vWdKAqmzdOYOq8Qe3gqgLW+50bp+oD+HOFPctVPmDqlau3r1KkkkEkpKSjKu02q11KxZM+rTpw8FBQXRP//8Qy4uLjRt2jTjPgEBAeTj40P37t0jIkPvbCcnJxo8eDAFBQVRSEgITZ48maRSKQUFBRERkb+/P61evZquXbtGt2/fphUrVpBSqaQZM2YYzxsSEkIbNmyg0NBQCggIoDfeeIMcHR0pIiKiVPeVmJhIgYGBtG/fPgJAW7ZsocDAQIqNNYyEkZqaSu3ataPmzZvTnTt3KDY21rgUzCd8fHxox44dJT4vEdHatWvp3LlzdOfOHdqwYQM5OjrSxIkTTeKbMGECeXh40MGDB+nWrVs0evRocnV1Nfk5EFnG42yzJZH3798nAHT27FmT9VOmTCE/P78ij/Hx8SGZTEajRo2iS5cu0ZYtW8jR0ZFmzpxZ7HVycnIoNTXVuNy9e5eTSGbxsrTZdDDpX5ocPo9aXnnJJKGsHdCRXrnxAa2I2UC3syLNHepT0+v1pDp2ghK79s1PJqX2lPr+x6SNsPz7K2+F2kkOtqx2khkP79Luj1rRun6g3/tLKfTQOnOHVK35+fkVaosXGRlJL7zwAikUCnJ2dqZJkyaZDH1z/PhxAmCS3F28eJH69OlDjo6OZGNjQ+3btzdpQ3ngwAFq2bIl1ahRg6ytralFixa0cuVK0unyP+TcuHGDWrZsSQqFgmxtbWngwIF069Ytk9iKuvaj1q1bRwAKLd98843JOYpaCp4XAK1bt67E5yUimjp1KtWsWZOkUik1bNiQFi1aRPpHGqqq1WqaNGkSubq6ko2NDfXq1YuCg4ML3YclJJFmm/YwJiYGHh4eOHv2LDp06GBc//nnn+PkyZMICAgodEyjRo2Qk5ODiIgIiMViAIZH4gsWLDD2fHrUzJkzMWvWrELredpDVl3oSY//Mm/mDh90Gjez75hsryerg94OndHHvjP+Z/McJILljuylPnkKGbO+g+b4v4YVEgkU774D5bRJkHjXM29wVcy9yyr4f5aArCQ95HYivLzQCZ4dLGPebU1OJk4vHIGoM9sBAM1em4LW734HUe7ffVZ+9u3bhylTpiA4OLjcHxlXhHXr1mHevHm4ceNGhQ75UxXMnDkTu3btqtLTHpotiVSr1VAqlfj7779NRqwfMWIEUlJSsHv37kLHdO3aFVKpFEeOHDGuO3DgAF588UWoVCpYWVkVOkalUhkb7QKGdhB16tThJJJVW/dUsTiScgaHkk/jbPplaCh/VhN7sQ162HdEb/vO6GbXHrYSC5gRoQjqU2eQOft7qI/kTqsmFkM+/C1YfzUFkvre5g2uCkmP02L3p4mICzbMu93lMzu0fdcyxpMkvR6BG7/B1c3fAgBq+/VH16l/Qqq0MXNk1c/SpUvx6quvok6dOuYO5Ylef/11DBkyBK+//rq5Q6kw0dHR8PX1hVqthq+vLyeRxWnXrh38/PyM40Tp9XrUrVsXH3/8Mb744otC+3/55Zf4888/ER4ebvzE9OOPP2L+/PmIiSlZ7820tDTY2dlxEsmeCem6TJxMDcDh5NM4mnoWydr8uWElghgdbFqjt31n9HbojLoy98ecqWpSnz2PzFnfQX3oqGGFWAz5O2/CevrnkDSob97gqgitinBkTjKCdxmm2mz8ohJ9ZzlAqqj6VScACD/+J04vGQW9RgV7r2boOXMPbGp6mTssxiqMVqtFZGQkAEPP7aqc3Js1ifzrr78wYsQIrFq1Cn5+fli6dCm2bt2KW7duoWbNmhg+fDg8PDzw3XffAQDu3r2Lpk2bYsSIEfjkk09w+/ZtjBo1CuPHj8dXX31VomtyEsmeVTrS4XJGMA4ln8LhlNO4kxNlsr2xwhu97Dujj8PzaGXta1Gz5qjPBRgqk/8cNqwQiSB/+w1DMtmooXmDqwKICEF/ZeD49ynQawEXHykG/ugM+9qW0bQh/lYAjs0ehOzkOMjtXNB9+g7UbNbZ3GEx9swzaxIJAMuXL8eCBQuMU/8sW7YM7dq1AwB069YNXl5eWL9+vXH/c+fO4bPPPkNQUBA8PDwwevRoTJ061dhG8kk4iWTMIDznLg4nn8bhlFO4kH4VOuiM21ykjvig1tsYXXMIpCLLSDQAQHPhEjJmfQf1/oOGFSIR5ENfNySTjX3MG1wVYMntJDPj7+LozAFICg+CSGKFjuN/RYPeI8wdFmPPNLMnkZWNk0jGCkvWpuJ4ynkcTjmN46nnkK7LffSp8MZcz8lob1t4vtyqTHPpCjJmfw/1nv2GFYIA+ZuvGZJJ3ybmDc7M0mK18P+sQDvJiXZoO8Iy2kkaOtwMR9SZHQC4ww1j5sZJJGPMhFqvwfbEA5h7d4WxDeWrTv3wdd1P4CJ1NHN0paO5EoTM2d9DtXuvYYUgQPb6K6jx9VRImjU1b3BmpFURDs9JwvVdhkGiLamdJOn1CNwwA1e3zAUA1Gk/AF2mbOQON4yZASeRjLEiJWlSMf/eSmyK3w0CwVZcA5/Xfh/DXQdDLFhW5UcTdBWZs7+Dauce4zrZa4NgPeMLSJs3M2Nk5kNECNqSgePzDe0kXRsb2knaeVhG84WCHW4cvJqj58w9qFHTAmf8YMyCcRJZVumxQEo0ULMZYGVdfgEyVsUEZlzHl5ELcTXrFgCgmbIR5nlNQZsalpd8aa4GG5LJ7flDiMkGD4D1jGmQtmhuxsjM5+6lHOyZmIisJD0U9iL0X+gEz/aW0U4y/lYAjs4eiJzkB5Dbu6LH1zvh6tvR3GEx9szgJLKszi8H9n1imO3esSFQq4Vhcct9ta1t2MZYNaAjHTY+3I3591YiVZcOAHjLZQCm1f4QjlJ78wZXBpprwcicMx+qv3cBuX8CZYP6G5LJVi3MG5wZpMVqsfvTBDy4roEgArpOskeb4TUsop1koQ43E1ajQa/h5g7LYiQmJqJJkya4cOECvLy8zB0OK6ETJ06ge/fuAICBAwdi165dZomj6jeAqar0GsDa1fAfUGIocH0bcHQ6sPFlYGFd4DtnYG0PYP9nwJX1QEwgoFU98bSMVUViQYwRNQfj3+e2YIjzSwCAP+P98fzVN7Dp4W7oSW/mCEtH2rwZ7LdugNO1AMjefA0QBKh27UVS605IGfgGNJcDzR1ipbJ1k2DoHzXRdJASpAdOLEjB/i+SoMmu+j9Xa5c6eGHRadTt+Ar0WjVOLxqBS2u/AOmrfuxVwdy5czFw4ECTBHL8+PFo06YNZDIZWrZsWeiYEydOYODAgXBzc4O1tTVatmyJTZs2PfFaTzovAGzduhUtW7aEUqmEp6cnFixYUGgflUqFr776Cp6enpDJZPDy8sLatWtLessAgB07dqBPnz5wcnKCIAhFDugdFxeHYcOGoVatWrC2tkbr1q2xffv2J577/v37eOedd+Dk5ASFQoHmzZvj0qVLRe77wQcfQBAELF261GS9l5cXBEEwWb7//nvj9o4dOyI2NhZDhgwp1X2XN8to/FIVdfzMsKTHAXH/mS4Jt4DsJCDiuGHJI5IAzo1NK5a1WgA1aprvPhgrBWepI5Z4T8dQl5fxZeRC3My+g88jv8fmeH/M85qC56wbmzvEUpE09YX95vXQzvgCmd/+gJwtf0Plvw8q/32weqkfanwzDdL/tTF3mJVCIhPQb44javpa4cQPKbi5LwuJYRqLaCcplVuj+1d/I/CPr3H1r3kI3jYfqfduGTrcKCxzVqbKkJWVhd9++w0HDx4stG3UqFEICAjA1atXC207e/YsnnvuOUydOhU1a9bE3r17MXz4cNjZ2aF///6PvebjznvgwAG8/fbb+Omnn9CnTx/cvHkTY8aMgUKhwMcff2zcb8iQIXjw4AF+++03NGjQALGxsdCX8kNDZmYmOnfujCFDhmDMmDFF7jN8+HCkpKTA398fzs7O+PPPPzFkyBBcunQJrVoVPWJFcnIyOnXqhO7du+PAgQNwcXHB7du34eDgUGjfnTt34vz583B3L3qih9mzZ5vEZmOT33nMysoKtWrVgkKhMJmVr9JV5kTdVUFqaioBoNTU1Iq7iDqb6P5lostrifZNIPqtG9FcB6LpKHr5vibR+j5E/0whCtpIFBdMpNU88TKMmZNGr6FfYzdTo4s9yD2gPXkEdKBpET9QsqYC/21VMM2tEEp5ZzTFiWwoDtYUB2tKeuEVUp+/YO7QKlX0xWxa/vw9WtA0mpZ3ukdR57PNHVKJ3Tm6gX5/WUbr+oF2ffgcpcdFmjukKmvbtm3k4uJS7PZvvvmGWrRoUaJzvfjiizRy5MgS7VvceYcOHUqvvfaaybply5ZR7dq1Sa/XExHRgQMHyM7OjhITE0t0rSeJiIggABQYGFhom7W1Nf3xxx8m6xwdHWn16tXFnm/q1KnUuXPnJ1733r175OHhQcHBweTp6UlLliwx2V7UuqKMGDGCBg4c+MT9Kgo/zq4IUjng3hpoPRJ4cSkw6jgwLRGYFAW87Q/0nAM0fQ1wamhoN5nxALhzCDi9APj7HWB5M+DbGsAvbYCdo4BzPwIRJ4DsZHPfGWNGEkGCMbXexMnntmCQY28QCL8/3IEuV9/E1vh9IAtsbi3xaQS7DWvgdPMy5MPfAsRiqA8cQlL77kjuNwjqcwHmDrFS1Gkrx7C/aqJmUymyU/TYNiYel35Pt4ifaf0e76Df/OOQ27siOeIq9n7qh4c3z1VuEESAOtM8Syl+RqdOnUKbNuVTaU9NTYWj49MNAaZSqSCXm3bqUigUuHfvHqKiDDNs+fv7o23btvjhhx/g4eGBRo0aYfLkycjOzn6qaxelY8eO+Ouvv5CUlAS9Xo8tW7YgJycH3bp1K/aYvPhef/11uLq6olWrVli9erXJPnq9HsOGDcOUKVPQtGnxQ419//33cHJyQqtWrbBgwQJotdryurVyU7WfUVQnggDY1zUsjV/OX6/KAB4GP/JI/CqgzgBirhiWguzq5D8Gz1scGwAi/jzAzKOWlQt+bjAbQ9MG4KvIhbiTE4XPIr7F5vg9mOc1GU2UDcwdYqlJGjWE3e+/wvrrqcictxA5f/wJ9cEjUB88AqvePWD9zTRYdepg7jArlK2bBG/+7oojc5JxfXcWTixIwYMbavSZWfXHk3Rt0gH9f7yIo7MGIDn8P/zzeTd0+nQN6vccVjkBaLKAOWZ6jP51RolHDImKiir2UWppbN26FRcvXsSqVaue6jx9+/bFZ599hnfffRfdu3fHnTt3sGjRIgBAbGwsvLy8EB4ejtOnT0Mul2Pnzp1ISEjAuHHjkJiYiHXr1j31vRS0detWvPHGG3BycoJEIoFSqcTOnTvRoEHxf9PCw8Pxyy+/YOLEifjyyy9x8eJFjB8/HlZWVhgxwjDD0vz58yGRSDB+/PhizzN+/Hi0bt0ajo6OOHv2LKZNm4bY2FgsXry4XO/xaXESaW6yGkCd9oYlj14PpEQAsXlJZZDhNSUKSL1rWEL25u8vVQI1mwNuLfMTy5rNARkPvssqT2fbtjjcbANWx23Bkpi1uJDxH/oGv4tRNV/HpNrvwUZseUNhSRrUh93aX2A9/XNDMvn7JqgPH4P68DFY9exmSCaf72TuMCuMVC5Cv28N7SSPF2wnucwZdu5V+7+PGq518eLC0zi1YBiiz+3CqYXDkRJ9A61HzIXAH7oBANnZ2YUqf6V1/PhxjBw5EqtXr35sVa0kxowZg7CwMPTv3x8ajQa2traYMGECZs6cCVHuz0yv10MQBGzatAl2dnYAgMWLF+O1117DihUroFAoniqGgr7++mukpKTgyJEjcHZ2xq5duzBkyBCcOnUKzZsXPSSYXq9H27ZtMW/ePABAq1atEBwcjJUrV2LEiBG4fPkyfvzxR1y5cuWxox9MnDjR+PVzzz0HKysrjB07Ft999x1kMlm53ePTqtp/BZ5VIhHgWN+wNB2cvz47BXhw1bRq+SDY8Kn3XoBhKcixfuGqpb0nDz3EKoyVSIqP3IdhkFNvzIxehv3Jx7H6wRb4Jx3BN3XHY4BjL4sYNuZREu96sFvzM2p8NQWZ3y1E9rqNUB89AfXRE5B274Ia30yDVdfnzR1mhRAEAa3ftoFLIyn8JyXi4S0NNg55gJcXOaFuu6o9nqRUUQPdp2/HlT+m49pf3+Ha1u+RevcWnp+yoWI73EiVhoqgOUiVJd7V2dkZycllbyZ18uRJvPzyy1iyZAmGD3/6YZUEQcD8+fMxb948xMXFwcXFBUePHgUAeHt7AwDc3Nzg4eFhTCABoEmTJiAi3Lt3Dw0bNnzqOAAgLCwMy5cvR3BwsDE5btGiBU6dOoWff/4ZK1euLPI4Nzc3+Pr6mqxr0qSJsVf3qVOn8PDhQ9StW9e4XafTYdKkSVi6dCkiIyOLPG+7du2g1WoRGRkJHx+fcrjD8sFJpCVR2ANeXQxLHp0WSLxduId4egyQFGZYbuzI319uB9R8zjSxrNkMkJbfpzfGPGS1sLrhPBxPOYfpUYsRqbqHcWEzsCl+N+Z5TkYDhZe5QywTcT0v2P66HNZffW5IJtdugOb4v0g+/i+kXTsbenN362KRifKT1PmfoZ1k3niS296PN4wnOaxqjycpiERo8+482NdpgjNL3zNUJRcMQ48ZOyvwooJFTELRqlUrbNy4sUzHnjhxAv3798f8+fPx/vvvl2tcYrEYHh4eAIDNmzejQ4cOcHFxAQB06tQJ27ZtQ0ZGBmrUMHwQCA0NhUgkQu3atcsthqwsw5Sgokeq1mKx+LE9wTt16oSQkBCTdaGhofD0NMymNGzYMPTq1ctke9++fTFs2DCMHDmy2PMGBQVBJBLB1dW1VPdR4czWpcdMKqV3dlWQ8ZDozhGi0wuJtg0j+uk5om+kRfcO/1pE9GMTor/eJDr5HVHIfqLU+0S5veEYexrZuhxafO838r7QhdwD2pPnhc40L/pnytRmmTu0p6aNiqbUDydQnJWDsTd34vO9KefwMWNv0upGna2j/V8m0IKm0bSgaTTt/TyB1Fk6c4dVIg9unKW/RzWgpIhr5g6lSrh69SpJJBJKSkoyWX/79m0KDAyksWPHUqNGjSgwMJACAwNJpVIREdGxY8dIqVTStGnTKDY21rgU7DG9Y8cO8vHxKdV54+Pj6ZdffqGbN29SYGAgjR8/nuRyOQUEBBjPkZ6eTrVr16bXXnuNrl+/TidPnqSGDRvSe++9V6p7T0xMpMDAQNq3bx8BoC1btlBgYCDFxsYSEZFaraYGDRrQ888/TwEBAXTnzh1auHAhCYJA+/btM56nR48e9NNPPxnfX7hwgSQSCc2dO5du375NmzZtIqVSSRs3biw2lkd7Yp89e5aWLFlCQUFBFBYWRhs3biQXFxcaPnx4oWPN3Tubk8hniUZFFBNEdOV3ov0Tidb2JJrnXPzQQ/OcDfvsn2g4JibIcA7GyiAy+x4NuzWR3APak3tAe/pf4CDan3i8WiRb2rv3KPXjiRQnc8xPJjv2pJyDR6rF/T1Kr9fT5Q1ptPA5QyL5+2uxlHLfMoYl0/HwaSb8/Pxo5cqVJuu6du1KAAotERERRGRIXIra3rVrV+M51q1bR4/WqZ503vj4eGrfvj1ZW1uTUqmknj170vnz5wvFfPPmTerVqxcpFAqqXbs2TZw4kbKy8j+UHj9+3OS8RcmL79Hlm2++Me4TGhpKgwcPJldXV1IqlfTcc88VGvLH09PT5Bgioj179lCzZs1IJpNR48aN6ddffy02jrxzFEwiL1++TO3atSM7OzuSy+XUpEkTmjdvHuXk5BQ61txJJE97+KwjMswDXmjA9BCgqFlIxFLAuUnhAdOtXSo/dmZxiAiHUk5hRtQS3FPHAQB62HXAbM/PUE9ex8zRPT3d/Rhk/rAE2avWArkDAEvb+xk64PS1zPagj3P3Yg78JyUiO0kPhYPI0E7Sr2q3k2Sm9u3bhylTpiA4OLjQo1tLtW7dOsybNw83btyAVCo1dzgV6t1330VKSorZpj3kJJIVTZNt6LTzaHKpSit6fxv3wp14nBsBInHlxs0sQrYuBz/GrMfKuE3QkBYywQofuQ3DOPd3oBBZfhKii41D1g9LkLXyNyAnBwAgbfc/WM/4AlYv9KlWyWRarBa7JyTgwQ0NBDHQbbI9Wr9TtdtJMlNLly7Fq6++ijp1LP+DHAC8/vrrGDJkCF5//XVzh1JhTp06hRdeeAEqlQovvfQSJ5GVhZPIp0BkGGbo0cQyKazo/SVyQ6edR5NLuV3R+7NnTlh2NKZHLcK/aRcAAJ4yD8zxnIie9h3NHFn50MU9QNaCpcj6ZQ2QOxiypG1rQ2/ul/pVm0RLk6PH4dnJuOFv6Izg21+J3jMdIJVXj8oWY1VNdnY27t+/DwCoUaMGatWqZZY4OIlkT0+VDjy4lp9UxgYZ3muyit7f3hOo1TI/qXRrAdjX4wHTn1FEhL3JxzAz6kfEaeIBAP0cumBW3U9RW+Zm5ujKh+7BA2QtXIasFauB3F6fktYtYT3jC8gGvFQtkkkiQuCmDBxfkALSAa5NpIZ5t6v4eJKMsbLjJJJVDL3OUKF8tGqZerfo/a1qALUeHXqouUUMk8HKR4YuE0vur8WaB39BSzrIRTJ86j4SY2u9BStR9WjXpI+PR+ain5C9fBUoMxMAIGn5HGrMnwNZn55mjq58RF/IwZ5JichO5naSjFV3nESyypWVVHjA9IfXAa2q8L6CYJjSMS+p9OwMeHbhimU1F5IVji+jFuB8ehAAoL68Lr71nIQudn7mDawc6RMSkLl4ObJ/WgnKyABEIjgc3Qurbl2efLAF4HaSjD0bOIlk5qfTAAmhplM8xv0HZDwovK9jA6DtGKDVu0CNKjboKis3RIQdiQcx5+5PiNckAQBeduyJb+qOh5tV9fm56xMTkfbhp1Bt2wmRqwscA89C7F49HuFrcvQ4PCsZN/bktpN8WYne33A7ScaqE04iWdWV8SA/oYwJBEL35fcOF0uBJq8Abd8H6nXn6mQ1lapNx8L7q7H+wXbooYe1SImJHqMxuuYQSEXVo60dZWUhqUMPaK8GQ9q5AxyO7YdQTYYlISJc2ZiBEwsN7SRr+hraSdq6VY+fHWPPOk4imeVQZwLX/gIurQLuXchfz9XJai84MwTTIhfiSmYwAKCxwhtzPSejvW0rM0dWPrS37yCpbRdQWhqUk8bDZuE8c4dUrridJGPVEyeRzDLFBgGXVgP/bTStTjYeBPxvLFcnqyE96fFXwl7MvbsCydpUAMCrTv3wdd1P4CJ1NHN0Ty9nx26kvvo2AMBu+ybIBw80c0TlKzVGC/9PuZ0kY9UJ/y/LLJNbS+Dln4HPY4BBvwG12xnaVl7fBqzvBfzYCPh3ftHtKplFEgkiDHUZgH+b/4V3XAZBgIDtif+gy9U3sO7BNuhIZ+4Qn4p88EAoJ40HAKSN/BDa23fMHFH5snOX4M0/XOHbXwnSAcfnp+DAl0nQ5BQxMxarNImJiXB1dUVkZKS5Q2GlMHPmTAiCAEEQsHTpUrPFwUkks2xW1kCbUcDY88C4IMBvHCCzNQwvdPgLYGEdYMsQIOwIoOf/rKoDR6kd5tebij2+q/GcsjHSdBmYHrUYL14fhcsZweYO76nU+G4WpJ07gNLSkPrq26CsYsZatVBSuQgvfOeI7lPtIYiBG3uysGX4Q6TFas0d2jNr7ty5GDhwILy8vIzrxo8fjzZt2kAmk6Fly5ZFHnfw4EG0b98eNjY2cHFxwauvvlqiRHTfvn1o164dFAoFHBwcMGjQoCL3S0xMRO3atSEIAlJSUozrT5w4YUyeCi5xcXElvuekpCR88skn8PHxgUKhQN26dTF+/Hikpqaa7FfUdbZs2fLYc3t5eRU65vvvvzfZZ+vWrWjZsiWUSiU8PT2xYMGCQudRqVT46quv4OnpCZlMBi8vL6xdu9a4ffLkyYiNjUXt2rVLfN8VgZNIVn24tcivTr6y9pHqZG+uTlYzrWo0xd6mazDPcwrsxDYIzgrFgBtjMCXiOyRpUswdXpkIUins/voDopqu0F67jrRxn6G6tTgSBAFthtng9dUuUDiI8OCGBhveeIDoCznmDu2Zk5WVhd9++w2jR48utG3UqFF44403ijwuIiICAwcORI8ePRAUFISDBw8iISEBgwcPfuz1tm/fjmHDhmHkyJH477//cObMGbz11ltF7jt69Gg899xzxZ4rJCQEsbGxxsXVteTt4WNiYhATE4OFCxciODgY69evxz///FPk92HdunUm1yku6S1o9uzZJsd88sknxm0HDhzA22+/jQ8++ADBwcFYsWIFlixZguXLl5ucY8iQITh69Ch+++03hISEYPPmzfDx8TFuz5ulRiw289TC9IxJTU0lAJSammruUFhliAki8h9HNMeWaDoMywwJ0ebXiO4cJtLpzB0hKwfx6kT6NGwOuQe0J/eA9uR7qQ9tfLCLdHrL/Pmqjp+kOJENxcGaMn9da+5wKkzKfQ39/losLWgaTQufi6bLG9JIr9ebO6xnxrZt28jFxaXY7d988w21aNGiyOMkEgnpCvz99Pf3J0EQSK1WF3kujUZDHh4etGbNmifGtWLFCuratSsdPXqUAFBycrJx2/HjxwutKw9bt24lKysr0mg0xnUAaOfOnaU6j6enJy1ZsqTY7UOHDqXXXnvNZN2yZcuodu3axt/9AwcOkJ2dHSUmJj719SoaVyJZ9fZodbJOe0CvBa7/bahOLm0I/Ps9VyctnLPUEUu8p2Nnk5VoomiAFF0aPo/8HgNujMHVzFvmDq/UrLp1QY253wAA0j+ZDM2VIPMGVEHs3CUYuiG/neSx71Nw4CvLbydJRMjSZZtloVJUrk+dOoU2bdqU+v7atGkDkUiEdevWQafTITU1FRs2bECvXr0gLWZ4qitXruD+/fsQiURo1aoV3Nzc8MILLyA42LQJyo0bNzB79mz88ccfED2mc2TLli3h5uaG3r1748yZM6W+h0fldbaVSEyHn/roo4/g7OwMPz8/rF27tkTf3++//x5OTk5o1aoVFixYAK02v7mGSqWCXG46MoFCocC9e/cQFRUFAPD390fbtm3xww8/wMPDA40aNcLkyZORnZ391PdZ3niwLvZssLIGWo80LLH/AZdXA0EbgORw4PA04OjXQJNBhnEnvXtyz24L5WfTAv80W4d1D/7GwnurEZh5Ay9eH4Xhrq/g89pjYS+xnBEZlJ9/BvXZAKj37EfKq2/D6cppiBwczB1WuctrJ1mzqRVOLEzBDf8sJN7RWPR4ktn6HDS83MMs177d5hiUYkWJ9o2KioK7u3upr1GvXj0cOnQIQ4YMwdixY6HT6dChQwfs37+/2GPCw8MBGDqELF68GF5eXli0aBG6deuG0NBQODo6QqVSYejQoViwYAHq1q1rPKYgNzc3rFy5Em3btoVKpcKaNWvQrVs3BAQEoHXr1qW+FwBISEjAnDlz8P7775usnz17Nnr06AGlUolDhw5h3LhxyMjIwPjx44s91/jx49G6dWs4Ojri7NmzmDZtGmJjY7F48WIAQN++ffHZZ5/h3XffRffu3XHnzh0sWrQIABAbGwsvLy+Eh4fj9OnTkMvl2LlzJxISEjBu3DgkJiZi3bp1ZbrHisJD/LBnlzoTCN4KXPoVuHs+f72Dd/64kza1zBYeezpx6njMif4Ju5IOAwCcJA6YXucjvO78osUMK6NPTkZS2y7QhUfAqv8LsN/9F4Rq/AHHZDxJRxEGLHJCnf9Z3niSWbpsi0gi+/btiwYNGuDnn38ucvvMmTOxa9cuBAUFmayPi4tDly5dMGjQIAwdOhTp6emYMWMGJBIJDh8+XOS/rz///BNvv/02Vq1aZUzWVCoVateujW+//RZjx47FxIkTERMTY+y8cuLECXTv3h3Jycmwt7cv9j66du2KunXrYsOGDSW674LS0tLQu3dvODo6wt/fv9hKKgDMmDED69atw927d0t8/rVr12Ls2LHIyMiATCYDEeGLL77AsmXLoNFoYGtriwkTJmDmzJk4f/482rVrhz59+uDUqVOIi4uDnZ0dAGDHjh147bXXkJmZCYUi/+fr5eWFTz/9FJ9++mmp7708WObHPMbKQ8HqZNxVQzLJ1clqo5aVC35uMBtD0wbgq8iFuJMThc8ivsXm+D2Y5zUZTZQNzB3iE4kcHGD390YkdegB9d4DyJq/GNbTJps7rApT10+Od/6qid0TEvDwpgZb34tH9yn2aPW2ZY0nqRDJcbvNMbNdu6ScnZ2RnJxc6mv8/PPPsLOzww8//GBct3HjRtSpUwcBAQFo3759oWPc3AzTefr6+hrXyWQyeHt7Izo6GgBw7NgxXLt2DX///TcAGB8dOzs746uvvsKsWbOKjMfPzw+nT58u9X2kp6ejX79+sLGxwc6dOx+bQAJAu3btMGfOHKhUKshkshJdo127dtBqtYiMjISPjw8EQcD8+fMxb948xMXFwcXFBUePHgUAeHt7AzB8rzw8PIwJJAA0adIERIR79+6hYcOGpb7XisL/KzIGALWeA/ovz207uc607eTvffLbTqaXfBgJVjV0tm2Lw8024Mva46AQyXEh4z/0DX4XM6N+RLou09zhPZG0VQvY/mx4FJYxfTZUR4+bOaKKZecuwdA/XNHkJcttJykIApRihVmW0iTbrVq1wo0bN0p9f1lZWYXaK+b1EtYXM5Ra3pBBISEhxnUajQaRkZHw9PQEYOi9/d9//yEoKAhBQUFYs2YNAEPbzY8++qjYeIKCgoxJakmlpaWhT58+sLKygr+/f6F2isVdx8HBocQJZN4xIpGoUO9xsVgMDw8PWFlZYfPmzejQoQNcXFwAAJ06dUJMTAwyMjKM+4eGhkIkEpl9SJ9CzNalx0y4dzYrsdj/iPZ8TPStnWnP7j9fJbp9iHt2W6B7ObH0Xug0Yy/uVlf6066EQxbRIzhl5AcUB2t64OJJ2nv3zR1OhdPr9XTx9zRa+Fw0LWgaTX+8HkupMZonH8hK7OrVqySRSCgpKclk/e3btykwMJDGjh1LjRo1osDAQAoMDCSVSkVEREePHiVBEGjWrFkUGhpKly9fpr59+5KnpydlZWUREVFAQAD5+PjQvXv3jOedMGECeXh40MGDB+nWrVs0evRocnV1LXT9PEX1xF6yZAnt2rWLbt++TdeuXaMJEyaQSCSiI0eOlPi+U1NTqV27dtS8eXO6c+cOxcbGGhetVktEht7mq1evpmvXrtHt27dpxYoVpFQqacaMGcbzPHqPZ8+epSVLllBQUBCFhYXRxo0bycXFhYYPH248Jj4+nn755Re6efMmBQYG0vjx40kul1NAQIBxn/T0dKpduza99tprdP36dTp58iQ1bNiQ3nvvvUL3Yu7e2ZxEMvYkqkyiy+uIVnXITyang2hRPaIT84jSYs0dISulY8lnqWPQa8Zk8vWbH9HtrAhzh/VY+qwsSmjRnuJgTYmdepG+mKFUqpuo89m0vNM9WtA0mpY/f4+iL2SbO6Rqxc/Pj1auXGmyrmvXrgSg0BIREWHcZ/PmzdSqVSuytrYmFxcXGjBgAN28edO4PS8BLHiMWq2mSZMmkaurK9nY2FCvXr0oODi42NiKSiLnz59P9evXJ7lcTo6OjtStWzc6duyYyXHr1q2jx9XI8s77uHs8cOAAtWzZkmrUqEHW1tbUokULWrlypcmwRo/e4+XLl6ldu3ZkZ2dHcrmcmjRpQvPmzaOcnBzjMfHx8dS+fXuytrYmpVJJPXv2pPPnzxeK8ebNm9SrVy9SKBRUu3ZtmjhxojFBL8jcSSR3rGGsNOKuGdpO/rcByMmd3UAkARoPBP73PuDdi9tOWogcvQq/xG7C8pjfkUNqSAUJxtYaignuI0vcMaGyae+EIanN86C0NCg/+xg2i79/8kHVQGqM1thOUiQBuk2xR6u3LKudZFW1b98+TJkyBcHBwY8dUseSfPPNNzh58iROnDhh7lAqnLk71pQ4iXzSSPQF7dixo8wBVTROIlm5UGcV6Nl9Ln+9Qz2gzRhDZx3u2W0RonLuY0b0EhxJMYw152FVC7PqTkA/h65VMknJ2bUHqa8MBQDYbdsA+WuvmDmiyqHJ1uPQzGTc3GeYCrLpQCV6z3CERFb1fkaWZunSpXj11VdRp04dc4dSLvz8/LB8+XL4+fmZO5QKM2/ePMybNw9ZWVlYvHhx1U8iR44cWeKTVrVxjAriJJKVu2KrkwOA/43l6qSFOJR8Cl9HLcY9taHzVA+7Dpjt+Rnqyavef6zpn09H1oKlEGxs4HjpX0gaVZ3emhWJiHD5jwycXJQC0gM1m0oxcKnljifJWFklJSUhKSkJAODi4mLSk7sy8eNsxsqLOsswT/fFVVydtFDZuhwsi/0dv8RuhIa0kAlWGOf2Dj5yH1aqoVMqGmm1SO75EjT/noGkmS8czx+HYG1t7rAqTXRA7niSKZY9niRjlo6TSMYqQty13Flx/ihcnWz7PlC/N1cnq7Cw7GhMj1qEf9MuAAA8ZR6Y4zkRPe07mjmyfLrYOCS16gj9g4eQDxsK299/rZKP3ytK6v3cdpK3cttJfm6PVkO5nSRjlanESWSrVq1K/I/zypUrTxVUReIkklWqvOrkpV+B6LP56+29DLPitB7F1ckqioiwN/kYZkb9iDhNPACgn0MXzKr7KWrLSjcmXUVRnzyF5J79AZ0ONit/hHLsaHOHVKkKtZMcpETvr7mdJGOVpcRJZHEjxRflm2++KXNAFY2TSGY2XJ20SBm6TCy5vxZrHvwFLekgF8nwqftIjK31FqxEj5/hojJk/rAEGVO/Bqys4HjmCKRtyzZ/sKXidpKMmQ8/zmassj2xOjkSsKkalS6WLyQrHF9GLcD59CAAQH15XXzrOQld7MzbA5SIkDp4KFS79kLkWRdOV05D5Oho1pjMIep8DvZONrSTVDqK8PJiJ9Rpy+0kGatInEQyZk4PgoFLedXJFMM6kRjwye3ZzdXJKoWIsCPxIObc/QnxGkPPyJcde+KbuuPhZuX6hKMrjj4lBUltu0AXFg6rF/vCfs82CM/g7w23k2SscpUpidTpdFiyZAm2bt2K6OhoqNVqk+153c6rIk4iWZWkzjLM031pVeHqZJv3gDajuDpZhaRq07Hw/mqsf7AdeuhhLVJiosdojK45BFKReR6jav67hqT23YGcHFjP+Ro1pk81SxzmpsnW4+A3ybi139BOstkga/T62oHbSTJWAcr0UXXWrFlYvHgx3njjDaSmpmLixIkYPHgwRCIRZs6cWc4hMvYMsFICrYYDY84AH18D2o8H5PZASiRwdDqwsA7w52Dg9j+AXm/uaJ95dhIbzPGciANN16K1dTNk6rMw5+5P6Hd9BM6nBZolJmmL5rBdsQQAkDnjW6iOHDdLHOYmVYjw0nxHdJ1sB0EEBO/KxJYRD5EepzV3aFVSYmIiXF1dERkZae5QWCl4eXlBEAQIgoCUlBSzxVGmJHLTpk1YvXo1Jk2aBIlEgqFDh2LNmjWYMWMGzp8/X94xMvZsqdkMeOlHYMp9YPDvQN1OgF4H3NwJ/PECsMQbODEXSIsxd6TPvGbWPtjtuwoL602Dg8QOt7LD8eqtcRgfNsv4uLsyKUYOg3z0CIAIqUPfhe7e/UqPoSoQBAH/e9cWr61ygdxOhLhgNTYMeYB7l1XmDq3KmTt3LgYOHAgvLy8AwH///YehQ4eiTp06UCgUaNKkCX788UeTY06cOGFMYAoucXFxxV4nMjKyyGMK5gwajQazZ89G/fr1IZfL0aJFC/zzzz+FznX//n288847cHJygkKhQPPmzXHp0qVS3feAAQNQt25dyOVyuLm5YdiwYYiJyf+bGhISgu7du6NmzZqQy+Xw9vbG9OnTodFoHnveou5xy5Ytxu2nT59Gp06djLE3btwYS5YsMTnHL7/8gueeew62trawtbVFhw4dcODAAZN9Ll68iO3bt5fqnitEWSbcViqVFBUVRUREtWrVosuXLxMRUVhYGNna2pbllJUmNTWVAFBqaqq5Q2Gs5OKuEe0dT/StPdF0GJYZYqJNrxCFHiDSac0d4TMvUZ1Cn4d/Tx4BHcg9oD01vtSL1sZtJa2+cn82+qwsSmjZgeJgTYkdepBeparU61c1yXc1tH5wLC1oGk2LWkTTlT/TSK/XmzusKiEzM5NsbW3p3LlzxnW//fYbjR8/nk6cOEFhYWG0YcMGUigU9NNPPxn3OX78OAGgkJAQio2NNS46na7Ya0VERBAAOnLkiMkxarXauM/nn39O7u7utG/fPgoLC6MVK1aQXC6nK1euGPdJSkoiT09PevfddykgIIDCw8Pp4MGDdOfOnVLd++LFi+ncuXMUGRlJZ86coQ4dOlCHDh2M28PCwmjt2rUUFBREkZGRtHv3bnJ1daVp06Y99rwAaN26dSb3mJ2dbdx+5coV+vPPPyk4OJgiIiJow4YNpFQqadWqVcZ9/P39ad++fRQaGkohISH05ZdfklQqpeDgYJNr5f0ckpOTS3Xv5alMSWSjRo3o/PnzRETUqVMn+u6774iIaMuWLeTi4lJ+0VUATiKZRVNnEQX+QfRrp/xkcjqIFnoSHf+WKPW+uSN85l1JD6Z+194l94D25B7QnvpcG06X0q9VagyasHB6YOdOcbCmtAlTKvXaVZE6S0d7piTQgqbRtKBpNB2Zm2TukKqEbdu2lej/7HHjxlH37t2N78uSvOQlkYGBgcXu4+bmRsuXLzdZN3jwYHr77beN76dOnUqdO3cu8XVLavfu3SQIgklS+6jPPvvsidcGQDt37izVtV955RV65513HruPg4MDrVmzxmRdVUgiy/Q4+5VXXsHRo0cBAJ988gm+/vprNGzYEMOHD8eoUaPKoT7KGCuSVAG0HAaMOQ18HFyg7WSUoe3korrAn68AoQcMj8BZpWtVoyn2Nl2DeZ5TYCe2QXBWKAbcGIMpEd8hSZNSKTFIvOvB9o9fAQBZP65AztYq8NjLjEzaSYqB2m1lFXo9IgJlZppnKUVf2VOnTqFNmzZP3C81NRWORQwb1bJlS7i5uaF37944c+ZMia45YMAAuLq6onPnzvD39zfZplKpIJebDsukUChw+vRp43t/f3+0bdsWr7/+OlxdXdGqVSusXr26RNcuTlJSEjZt2oSOHTtCKi167Nc7d+7gn3/+QdeuXZ94vo8++gjOzs7w8/PD2rVrH/szCQwMxNmzZ4s9r06nw5YtW5CZmYkOHTqU7IYqU3lkoufOnaNFixaRv79/eZyuQnElklU7edXJ1Z2LqE7O4eqkGcWrE+nTsDnGqqTvpT608cEu0umLf+xXntKmfk1xsKYHNWqS5uatSrlmVZccranwa+gzMigO1mZZ9BkZJY5z4MCBNGrUqMfuc+bMGZJIJHTw4EHjulu3btHKlSvp0qVLdObMGRo5ciRJJBJj07aixMfH06JFi+j8+fN04cIFmjp1KgmCQLt37zbuM3ToUPL19aXQ0FDS6XR06NAhUigUZGVlZdxHJpORTCajadOm0ZUrV2jVqlUkl8tp/fr1Jb7vPJ9//jkplUoCQO3bt6eEhIRC+3To0IFkMhkBoPfff/+xj+yJiGbPnk2nT5+mK1eu0Pfff08ymYx+/PHHQvt5eHiQlZUViUQimj17dqHtV69eJWtraxKLxWRnZ0f79u0rtE9VqETyOJGMVScPrhtmxQn8/ZFxJ182zIrToI/hPatUF9L/w5eRC3Ez+w4AoJW1L+Z5TcFz1o0r9Lqk1SK598vQnDgFcdMmcAo4AcHaukKvyQDKzMTDGjXNcm3XjAcl/hn37dsXDRo0wM8//1zk9uDgYHTv3h0TJkzA9OnTH3uurl27om7dutiwYUOJYx0+fDgiIiJw6tQpAEB8fDzGjBmDPXv2QBAE1K9fH7169cLatWuRnZ0NALCyskLbtm1x9mz+UGjjx4/HxYsXce7cuRJfGwASEhKQlJSEqKgozJo1C3Z2dti7d6/JuKJ3795Feno6/vvvP0yZMgXjx4/H559/XuJrzJgxA+vWrcPdu3dN1kdERCAjIwPnz5/HF198geXLl2Po0KHG7Wq1GtHR0UhNTcXff/+NNWvW4OTJk/D19TXuc+LECXTv3h3Jycmwt7cv1b2Xm7JknvPmzaPffvut0PrffvuNvv/++6fMaysWVyLZM4Grk1WORq+hX2M3U6OLPcg9oD15BHSgaRE/ULKmYv8WaWPj6KFbfYqDNaW8PYo7lVQCvV5P+owM8yyl+Pm+9dZbNHTo0CK3Xb9+nVxdXenLL78s0bkmT55M7du3L/G1iYiWL19OtWrVKrQ+Ozub7t27R3q9nj7//HPy9fU1bqtbty6NHj3aZP8VK1aQu7t7qa79qLt37xIAOnv2bLH75HUy0mpL3llu7969BIBycnKK3WfOnDnUqFGjx56nZ8+e9P7775usqwqVyDK1iVy1ahUaNy78Cbpp06ZYuXLlUyW1jLFykNd28r1TwCfXgQ4TAIVDbtvJrw1tJzcN4raTlUgiSDCm1ps4+dwWDHLsDQLh94c70OXqm9ideLjCriuuVRN2f/0OiMXI2fQXsleuqbBrMQNBECBYW5tnKcXsPK1atcKNGzcKrb9+/Tq6d++OESNGYO7cuSU6V1BQENzcSjchQnHHyOVyeHh4QKvVYvv27Rg4cKBxW6dOnRASEmKyf2hoKDw9PUt17Ufpc8ffVamKHwZKr9dDo9EY9y2JoKAgODg4QCYrvh2uXq9/7HVLuo9ZlCXzlMlkFB4eXmh9WFgYyWSyp85sKxJXItkzS51FFLihcHVyQV2iY7O5OlnJTqVepC7/vWFsL/nnw91PPugpZCz80dBuzsqB1BcuVei1mGW4evUqSSQSSkrK761+7do1cnFxoXfeecdkmJqHDx8a91myZAnt2rWLbt++TdeuXaMJEyaQSCSiI0eOGPf56aefqEePHsb369evpz///JNu3rxJN2/epLlz55JIJKK1a9ca9zl//jxt376dwsLC6N9//6UePXpQvXr1TCptFy5cIIlEQnPnzqXbt2/Tpk2bSKlU0saNG0t83+fPn6effvqJAgMDKTIyko4ePUodO3ak+vXrGyuGGzdupL/++otu3LhBYWFh9Ndff5G7u7tJT/EdO3aQj4+P8b2/vz+tXr2arl27Rrdv36YVK1aQUqmkGTNmGPdZvnw5+fv7U2hoKIWGhtKaNWvIxsaGvvrqK+M+X3zxBZ08eZIiIiLo6tWr9MUXX5AgCHTo0CGT+6gKlcgyJZENGjSgDRs2FFr/xx9/UL169Z46qIrESSRjRPTgOtG+T4nmOpiOO7lxIFHIPh53spKodGr6OnIxuQe0p9oBHck/8ciTDyojvV5PyYOHUhys6WHdxqQrohMBe/b4+fnRypUrje+/+eYbAlBo8fT0NO4zf/58ql+/PsnlcnJ0dKRu3brRsWPHTM77zTffmByzfv16atKkCSmVSrK1tSU/Pz/atm2byTEnTpygJk2akEwmIycnJxo2bBjdv1/4w+2ePXuoWbNmJJPJqHHjxvTrr78+9tqPunr1KnXv3p0cHR1JJpORl5cXffDBB3Tv3j3jPlu2bKHWrVtTjRo1yNramnx9fWnevHkmYz6uW7eOCtbiDhw4QC1btjQe06JFC1q5cqVJZ5xly5ZR06ZNjd+HVq1a0YoVK0z2GTVqFHl6epKVlRW5uLhQz549CyWQRFUjiSxTx5offvgBP/zwAxYsWIAePXoAAI4ePYrPP/8ckyZNwrRp08qpTlr+uGMNYwVosoHr2w1zdkflD6MBu7pAn/nAc2+aL7ZnBBFhauR8bIrfDakgwbqGP6C7fcUM5aFPTUVS2y7Q3QmDVb/esN+3HYKoTK2aWDWxb98+TJkyBcHBwRBVk9+FESNGQBAErF+/3tyhVKiq0LGmTEkkEeGLL77AsmXLoFarARjaMEydOhUzZswo9yDLEyeRjBXj4Q3g0mog6HcgO9mw7rm3gf7LAYW9WUOr7nSkwydhs7A76TDkIhk2+/wIP5sWFXItzdVgJLXvDmRnw3rWV6gxo+p+6GeVY+nSpXj11VdRp04dc4fy1IgIXl5eOH36dLW4n+I0bdoU4eHhyMnJsbwkMk9GRgZu3rwJhUKBhg0bPrbhaFXBSSRjT6DJAf79Djj5LUB6Q1Xy1T+Aek8eZJeVnUavxejbU3E09SxsxNbY1vhnNLf2qZBrZf++CWnvjgUEAfb/7IKsT88KuQ5jrGJERUUZ5/H29vY2WxX5qZLIO3fuICwsDF26dIFCoQARlapnmDlwEslYCUWfA/5+B0gOBwQB6Pw50GM2ILEyd2TVVrY+B++EfIbz6UFwlNhjZ5Nf0EDhVSHXSnv/Y2SvXg/ByRFOgWchrlO7Qq7DGKu+ypS6JiYmomfPnmjUqBFefPFFxMbGAgBGjx6NSZMmlWuAjDEzqdsB+CgIaD0KIAJOzQd+bQ88vGnuyKothUiO9Y0W4jllYyRpU/DGrfG4q4qtkGvZLFsISeuWoMQkpL4+DJTbNIkxxkqqTEnkZ599BqlUiujoaCiVSuP6N954A//880+5BccYMzOZDfDKb8Cb2wGFIxAbCPzSGgj42ZBYsnJnI7bGJp8laCj3QpwmHm/eGo+H6sRyv44gl8P+740Q7O2hCbiI9Mlflvs1GGPVW5mSyEOHDmH+/PmoXdv08UfDhg0RFRVVLoExxqqQpoOBj68Zpk3U5gB7PwY2vASkx5k7smrJUWqPzY1/RB0rN0Sq7uGtkAlI0aaV+3XE9bxgt2E1ACD7p5XI2bKt3K/BGKu+ypREZmZmmlQg8yQlJVlE5xrGWBnYugPDDgAvLQMkMuD2AWB5c+DmbnNHVi25WbliS+NlcJU64WZ2GIaFTEKmLqvcryPr/wKU0yYDANLe+xjam7fK/RqMseqpTEnk888/jz/++MP4XhAE6PV6/PDDD+jevXu5BccYq2JEIqD9J8AHl4FaLYCsBODPQcCuMYAqw9zRVTte8trY7PMj7MU2uJIZjFG3pyJHX/5Tn9WYPR3S7l1AmZlIefVt6DP4Z8kYe7Iy9c6+fv06evTogdatW+PYsWMYMGAArl+/jqSkJJw5cwb169eviFjLBffOZqycaFXA0RnAmQWG9pGODYDXNgJ12pk7smonMOM63rg1Hpn6LPRz6IJVDeZCIkjK9Rq6Bw+Q1KoT9LFxkA99Hbab1lb50TYYY+ZV6kqkRqPB+PHjsWfPHnTu3BkDBw5EZmYmBg8ejMDAwCqdQDLGypFEBvSdD4w8BtjVAZLuAGs6AcdnAzqtuaOrVlrVaIp1jX6ATLDCP8n/YmL4XOhJX67XENesCbttGwCJBDmbtyF7xa/len5WNSUmJsLV1RWRkZHmDoWVgiAIEATBbIOM5yl1EimVSnH16lU4ODjgq6++wtatW7F//358++23cHNzq4gYGWNVWb1uwEf/Ac3fBPQ64Ng3wG/PA0lh5o6sWulk2wYrG3wLMcTYnvgPZkQtwVMM81skq04dUOOHbwEA6Z99AU3AxXI9P6t65s6di4EDB8LLywuAIans168f3N3dIZPJUKdOHXz88cdIS8vv2HX69Gl06tQJTk5OUCgUaNy4MZYsWfLY60RGRhoTn4LL+fPnjfvs2LEDbdu2hb29PaytrdGyZUts2LDB5DwzZ85E48aNYW1tDQcHB/Tq1QsBAQFlvv87d+7AxsamUDJWkliK8vPPP6NJkyZQKBTw8fExafr3qC1btkAQBAwaNMhkfVHfJ0EQsGDBAuM+sbGxWLp0aWlutWKUZcLtTz/9lKZOnfrUE3ebQ2pqKgGg1NRUc4fCWPUTtIloji3RdBDNtia69BuRXm/uqKqVHfH/kEdAB3IPaE/z764s9/Pr9XpKfu1tioM1PazjQ7r4+HK/BqsaMjMzydbWls6dO2dcl5SURCtWrKCLFy9SZGQkHTlyhHx8fGjo0KHGfa5cuUJ//vknBQcHU0REBG3YsIGUSiWtWrWq2GtFREQQADpy5AjFxsYaF7Vabdzn+PHjtGPHDrpx4wbduXOHli5dSmKxmP755x/jPps2baLDhw9TWFgYBQcH0+jRo8nW1pYePnxY6vtXq9XUtm1beuGFF8jOzs5kW0liedSKFSvIxsaGtmzZQmFhYbR582aqUaMG+fv7F/n98PDwoOeff54GDhxosq3g9yc2NpbWrl1LgiBQWFiYyX7r1q0rFHdlK1ObyE8++QR//PEHGjZsiDZt2sDa2tpk++LFi8spxS1/3CaSsQqWEgVsHw5E/mt43+QVYOCvgLWzeeOqRn5/sANfRhmqEl/X+RgfuL1drufXp6Uh6X9doQu9Das+PWG/fwcEsbhcr8HM7++//8a4cePw8OHDx+63bNkyLFiwAHfv3i12n8GDB8Pa2rrYal1kZCTq1auHwMBAtGzZssQxtm7dGi+99BLmzJlT5Pa8/9OPHDmCnj1LN33n1KlTERMTg549e+LTTz9FSkrKU8XSsWNHdOrUyaRiOGnSJAQEBOD06dPGdTqdDl26dMGoUaNw6tQppKSkYNeuXcVed9CgQUhPT8fRo0dN1q9fv75EcVekMvXODg4ORuvWrWFjY4PQ0FAEBgYal6CgoHIOkTFmUew9De0k+8wHxFLg5k7DUEC3D5o7smpjRM3BmFb7QwDAnLvLselh+Q6zJLK1hd3fGwCFAupDR5E55/tyPX91R0RQZ+nNspSmLnTq1Cm0adPmsfvExMRgx44d6Nq1a7H7BAYG4uzZs4/dJ8+AAQPg6uqKzp07w9/fv9j9iAhHjx5FSEgIunTpUuQ+arUav/76K+zs7NCiRYsnXrugY8eOYdu2bfj555+fuG9JYgEAlUoFuVxusk6hUODChQvGea4BYPbs2XB1dcXo0aOfeO0HDx5g3759JdrXHMrUve/48ePlHQdjrDoRiYHnPwfq9wb+fhuIvwn80Q9oPx7o8z0gVZg7Qov3sftwpOky8HPsBkyNnI8aYmsMdOpVbueXNm8G21XLkDZ8DDJnfw9pez/I+vUut/NXZ5pswjK/+2a59vgLHrBSlqxXfVRUFNzd3YvcNnToUOzevRvZ2dl4+eWXsWbNmkL71K5dG/Hx8dBqtZg5cybee++9Yq9Vo0YNLFq0CJ06dYJIJML27dsxaNAg7Nq1CwMGDDDul5qaCg8PD6hUKojFYqxYsQK9e5v+3u3duxdvvvkmsrKy4ObmhsOHD8PZueRPOhITE/Huu+9i48aNj30iWZJYCurbty/WrFmDQYMGoXXr1rh8+TLWrFkDjUaDhIQEuLm54fTp0/jtt99KXHD7/fffYWNjg8GDB5f4/ipTmSqRjDFWIu6tgA8vA+0+Nrw/vwz4pS0QG2TWsKqLabU/xDsug0AgjA+fiaMpZ8v1/IphQ6EYa5g7PfXt0dBFF/84k1me7OzsQpWzPEuWLMGVK1ewe/duhIWFYeLEiYX2OXXqFC5duoSVK1di6dKl2Lx5c7HXcnZ2xsSJE9GuXTv873//w/fff4933nnH5NEvANjY2CAoKAgXL17E3LlzMXHiRJw4ccJkn+7duyMoKAhnz55Fv379MGTIkCc+ki9ozJgxeOuttx5bVSxpLAV9/fXXeOGFF9C+fXtIpVIMHDgQI0aMAACIRCKkp6dj2LBhWL16dYmT3rVr1+Ltt98u9udkduZskJln+fLl5OnpSTKZjPz8/CggIKBEx23evJkAFGqU+jjcsYYxMwnZT/R9LUOnm2+kRKd+INJpzR2VxdPqtfTRnRnkHtCevC90oXOpV8r1/PrsbEpo05niYE0Jfl1Jn5NTruevjvR6PakydWZZ9KXoyPbWW2+ZdJgpzqlTpwgAxcTEFLvPnDlzqFGjRiW+NpHh//5atWo9dp/Ro0dTnz59HrtPgwYNaN68eSW+rp2dHYnFYuMiEokIAIn/396dx9WU/38Af91u+15UKskSKVthEMa+NyZmBhOSbGPwNcYwGEyWn22GsYy9yF4YWcYSBlmTUJIoUtaypL1U99737487LncqulSn5f18PM5j5nzO53zO6xzbp88553PEYtq0adMnZSGSv7Dz6NEjkkgkipdtpFIphYeHK47zZhGJRCQSiUgsFtO9e/eU2jl37hwBoIiIiEKPUx5erBF8JHL37t2YPHkyvL29cf36dTRr1gw9e/b84E8VCQkJmDJlCj7//PMySsoY+yQNegMTIgGHfoA0Hzj+M7ClG5D6UOhkFZpYJMbyOrPRzbgdXlMePGOnIDKr5D5dKNLWhvFfOyAyMYHkylVk/DSjxNqurEQiETR11QRZVJkg3tnZGdHR0R+sJ5PJ5yTNzS36a0kymey92wsTERHxwakBi9OuqscOCQlBRESEYpk3b55i1LF///6ffBwNDQ3UrFkTYrEYAQEB+OKLL6CmpoaGDRvi5s2bSsf+8ssvFSOrNjY2Su1s2rQJLVq0UPl5zzIlaBeWiFq1akXjx49XrEulUrKysqJFixYVuY9EIqG2bduSr68veXp68kgkYxWJTEZ01Vc+BdAsEP2fEdGNXUKnqvCypTn0dfQ4sgptQ42u9aSY7Psl2v7rw8coCXqUBD3K3rm7RNtmwoiMjCR1dXV69eqVouzIkSO0efNmunnzJsXHx9Phw4fJwcGB2rVrp6izevVqOnToEMXGxlJsbCz5+vqSgYEBzZw5U1Hnzz//pC5duijWt2zZQrt27aLbt2/T7du3acGCBaSmpkabN29W1Fm4cCGdOHGC4uLiKDo6mpYuXUrq6urk4+NDRESZmZk0Y8YMCgkJoYSEBLp69Sp5eXmRlpYWRUVFffR1KGxE70NZiIimT59OHh4eivWYmBjavn07xcbGUmhoKA0aNIhMTU0pPj6+yGMX1YdJS0sjXV1dWrdunUq5y1rJfjdLRXl5ebh27RpmzHj7k62amhq6deuGkJCQIvd7982m8+fPl0VUxlhJEYmAFiOB2h2Bv4YCj0OBvYOBmMPAF2sAHWOhE1ZIOmra2NLgNwy68z9EZN2G+52J2O+4AbW0Cn9xQlVarr2gN3Mqshb8jvTRE6Dh1ATqjg4l0jYTRpMmTdC8eXPs2bMH3333HQD528Q+Pj748ccfkZubCxsbG3z11VeYPn26Yj+ZTIYZM2YgPj4e6urqqFevHpYsWaJoAwBevnyJuDjlDw7Mnz8fDx48gLq6Oho2bIjdu3fjm2++UWzPysrCuHHj8PjxY8Uk5jt27MCgQYMAAGKxGHfu3MHWrVvx8uVLVKtWDZ999hnOnz+PRo0aKdrp1KkTateujS1btnz0tflQFkA+4ffDh2/vpEilUixbtgwxMTHQ0NBA586dcenSJcVE7qoICAgAEcHd3f2jz6EsfNQ8kSXl6dOnsLa2xqVLl+Di4qIo//nnn3H27NlCZ6G/cOECvv32W0RERKB69eoYPnz4e+dYys3NVRp+Tk9Ph42NDc8TyVh5IJUAZxcAZ+fLv3ZjZAN8vU3+FRz2UV7lp+HrO98jNicetbWsEeiwHhaaJTNHJ0mlSO3phrxTwRA3bADTK2ehZmBQIm0zYRw5cgRTp05FVFQU1NQEf8KtRNja2mLu3LkYPny40FFKVYWdJ1IoH/Nm06JFi2BkZKRY/vvMAWNMQGJ1oIs3MOoCYFoPSHsE+HUBjk8DJKo9X8XkTDWM4G+/ErW0rJCQ+wSDY35AiiStRNoWicUw2rUZatZWkN6JRfroCSX+6UVWtlxdXTFmzBg8eSLMlEQl7datWzAyMsKwYcOEjlKq9PX1MXbsWKFjCDsSmZeXB11dXfz1119K34709PREamoqDh5UnkA3IiICzs7OEL/z5YQ3D/yqqakhJiYG9erVU9qHRyIZqyByM4BjPwLXNsnXazgBA3YC5o6CxqqoHrx+gv63x+JZ/ks46zkioOEq6Iv1PrxjMeSFhCKlQ09AIoHBqt+h+7/vS6Rdxljx3Lt3D4D8Fn+dOnUEyyHoSKSmpiZatGih9CkfmUyGU6dOKd3efkPVN5sAQEtLC4aGhkpLSUhIBCauAKLul0hzjDEtA6CfL+AeCOhWA5IigHUtgMt/AjzapTJbbWv426+EsdgQ4VnRGHF3Gl7LSmZ0V9OlNQyWLgAAZEyegbyQgo8eMcZKj52dHezs7ATtQALl4Hb25MmT4ePjg61bt+L27dv4/vvvkZWVBS8vLwDAsGHDFC/eaGtro3HjxkqLsbExDAwM0LhxY2hqapZZbt/DwJr9QDMv4PPxwNYgIIfvvjH26Rz7AxNuAnY9Aclr4MhEYHsfICNR6GQVjr1uXey0Xw59NV1cTL+Gcfd+Rb5MUiJt60wcB62BXwESCdIGDoPsxYsSaZcxVnEI3okcNGgQli5dil9//RVOTk6IiIhAUFAQLCwsAAAPHz5EYmL5+8ejRyugfwdALAYuRQEjFgE1vwImrQKiE4ROx1gFZ2AJDDsGuP4JqGsDd4Pk39+O3i90sgrHSd8RWxr8Dm2RJo6nnsPk+AWQkeyT2xWJRDD0XQOxfX3IHj9B2uARIKm0BBIzxioKQZ+JFEJ6ejqMjIxK7JnIxGRgy1H5yGRC0tvy9k2AUX2BbzoBOlqffBjGqq7n0cDeIfLb24B8eqDeKwAtfSFTVTj/pF7EyLvTICEpPM2/wgLbKSpNTF0Uya1oJLfqBGRnQ2/2NOjPm/3pYRljFQJ3IkuITAacCAM2HgIOhwBvfiA3MQCG9QJGfwE41C6xwzFWtUjygNO/Ahd+kz8faVoP+GYHYNNG6GQVyoHkE5gQNwcEwv8sPTHdpmTe7szZuRvpQ0cCAIyPBkKrd48SaZcxVr5xJ7IUPH0J+P07Ovnw2dvyDs3ko5NfdwC0eXSSMdXFnwX2DQPSHgJqYqDjLPkiFvS7CRXK9uf7MT3hNwDATJvxGGc5tETaTR83CTnrfCEyNUW16xcgtq1VIu0yxsov7kSWIqkUOP7v6OSREPloJQBUMwKG9QRG9wXs+e9ZxlSTkwocngBE7pSv12wtH5WsZidorIpkbeIOLHi0BgCwpPY0DDXv98ltUm4uXn3eA5Kwa1Bv2RymF05CpMU/LTNWmQn+Yk1lJhYDfdoABxYC8buBOV6AjTmQnAYs3wM4egBdfwD8/wFy84ROy1gFoWMMDNgBDNgFaBvJP5u41gm46stTARXTOMuhmGApn4x5esJvOJh88pPbFGlpwXjvdohMTSG5eh0ZP0775DZZ6UtOToa5uTkSEhKEjsJU0KlTJ4hEIohEIkRERAiWgzuRZaSmOTB7OBAXABxcBLi6AGpqQHAEMHQ+UOsb4Od1wN3HQidlrIJo6g6Mj5R/IjEvCzg4GtjVH8jiqWaKY3rNsRhm/hUIhIn35+Kf1Iuf3KbYthaMdvgCIhFy1vkiZ+fuEkjKStOCBQvg5uZW6Pedk5OTUbNmTYhEIqVP6124cAHt2rVDtWrVFN+VXr58+QePtWfPHjg5OUFXVxe2trb4/fffi6x78eJFqKurw8nJSam8du3ais7Tu8v48eOLe8oAUGgbAQEBSnXWrFkDBwcH6OjowN7eHtu2bftguw8fPoSrqyt0dXVhbm6OqVOnQiJ5O61Wca5dRkYGJk2aBFtbW+jo6KBt27YICwtTqhMYGIgrV66odM6lgqqYtLQ0AkBpaWlCR6GHz4jmbCay+ZpIrcPbpdskooBTRLl5QidkrAKQSonO/0bkrUE0C0SLaxDFHhM6VYUglUlpwj1vsgptQ3WvdKBLaddKpN2M2fMoCXqUpGtG+VG3SqRNVvKysrLI0NCQQkJCCt3u5uZGvXv3JgCUkpKiKL9+/Trt2rWLoqKiKD4+nrZv3066urq0YcOGIo919OhRUldXp3Xr1lFcXBwdPnyYLC0t6c8//yxQNyUlherWrUs9evSgZs2aKW17/vw5JSYmKpaTJ08SADpz5oxK5w6A/Pz8lNrKyclRbF+7di0ZGBhQQEAAxcXFkb+/P+nr69OhQ4eKbFMikVDjxo2pW7duFB4eTkePHqXq1avTjBkzFHWKc+0GDhxIjo6OdPbsWbp79y55e3uToaEhPX78WOl48fHxBIDCw8NVOveSxJ3IciA/n+jgBaIvphGJO77tTFp8STRtHdHdR0InZKwCeBpOtNJR3pGcBaK/JxDlZQudqtzLk+bT8JipZBXahhqEdaGIjOhPblMmkdCr7n0pCXr0wt6JpOnpJZCUlbS9e/eSmZlZodvWrl1LHTt2pFOnThXoRBamf//+NHTo0CK3u7u70zfffKNUtmrVKqpZsybJZDKl8kGDBtGsWbPI29u7QCfyv3744QeqV69egTY+BADt37+/yO0uLi40ZcoUpbLJkydTu3btitzn6NGjpKamRklJSYqydevWkaGhIeXm5ha537vXLjs7m8RiMR0+fFipTvPmzWnmzJlKZeWhE8m3s8sBdXXgy3bA34uB+7uBWcMAq+rAi1Tgd3/AfgjQYzKw9wyQly90WsbKKUsn4PurQJuJ8vXQ1fLPJj4NFzRWeaehpo51dvPR1qAFMmXZGBwzCTHZn/Y9V5FYDKNdm6FW0xrSmLtIHzkOVIWeVyUi5L/OEmRR5TqfP38eLVq0KFAeHR2NefPmYdu2bVBT+3A3ITw8HJcuXULHjh2LrJObmwttbW2lMh0dHTx+/BgPHjxQlPn5+eH+/fvw9vb+4HHz8vKwY8cOjBgx4qPmPB0/fjyqV6+OVq1aYfPmzUrXrqi8V65cQX5+4f8Qh4SEoEmTJoqPpQBAz549kZ6ejlu3bhW6z3+vnUQigVQqLfTYFy5cUPkcSxvPi1HO1LIA5o4EZnvK55v0+Rs4fgU4dU2+mJsAXn2AUV8Ada2ETstYOaOhA7iuBBr0AQKHAy9uAxtbA13mA+2nyKcFYgVoq2nBr8ESfHtnIsKzouEe8wP2O6yHrbb1R7epVr06jPZuR0qHnsjdux/ZbddCb5Jqz61VVJLcbOzsL8xk+EP2Z0JDW69YdR88eAArK+V/SHJzc+Hu7o7ff/8dtWrVwv37Rf9AUbNmTbx48QISiQRz5szBqFGjiqzbs2dP/Pjjjxg+fDg6d+6Me/fuYdmyZQCAxMRE1K5dG3fv3sX06dNx/vx5qKt/uHty4MABpKamYvjw4cU633fNmzcPXbp0ga6uLk6cOIFx48YhMzMTEydOVOT19fVFv3790Lx5c1y7dg2+vr7Iz8/Hy5cvYWlpWaDNpKQkpQ4kAMV6UlKSUnlR187AwAAuLi6YP38+HBwcYGFhAX9/f4SEhMDOrvzNQMEjkeWUujrQ73PgyG/APX/gFw+ghinwPAVYshOo7w70/AnYdxbIL5lP4TJWedTvKf/+tkN/QJoPnJwO+HUBUh98eN8qSl+sh+32f6ChTl08y38J95gfkJT3aS8pabZpBYNlCwEAmVNnIu9iSElEZSUkJyenwIjXjBkz4ODggKFDPzx/6Pnz53H16lWsX78eK1asgL+/f5F1R48ejQkTJuCLL76ApqYm2rRpg2+//RYAoKamBqlUisGDB2Pu3Llo0KBBsfJv2rQJvXv3LtARLo7Zs2ejXbt2cHZ2xrRp0/Dzzz8rvegze/Zs9O7dG23atIGGhgbc3Nzg6empyPup3nfttm/fDiKCtbU1tLS0sGrVKri7u5fIcUucYDfSBVIen4ksrrx8on1niXpNUX520qof0cyNRPefCp2QsXJGJiO6tplonr78Ocn5hkQRO4ROVa4l5b4gl4ivySq0DXWOHEzJeamf1J5MJqOUbz0pCXr03MqOpM+elVDS8ksmk1FeTqYgiyrPBg4ePJjc3d2Vypo1a0ZqamokFotJLBaTmpoaASCxWEy//vprkW3Nnz+fGjRo8MFjSiQSevz4MeXm5tLRo0cJAD1//pxSUlIUx3mziEQiRdmpU6eU2klISCA1NTU6cOBAsc/3fQ4fPkwA6PXr10rleXl59OjRI5JIJIqXbaRSaaFtzJ49u8AznPfv3ycAdP369SKPXdS1y8zMpKdP5f+wDxw4kPr06aO0nZ+JZCrRUAe+6gAc+x246w9MHwJYmAJJr4BFO+Sjk72nAvvP8egkYwAAkQho7gWMjwBsXIDcdOCvocCewUBOitDpyiULzeoIaLgKNTSqIybnPjxif0SmNOuj2xOJRDD0WQ1xwwaQPU1E2uARoDffha2kRCIRNLT1BFlUeTbQ2dkZ0dHRSmX79u3DjRs3EBERgYiICPj6+gKQj5y9bxodmUyG3NzcDx5TLBbD2toampqa8Pf3h4uLC8zMzGBoaIibN28qjhsREYGxY8fC3t4eERERaN26tVI7fn5+MDc3h6ura7HP930iIiJgYmICrf9MkK+hoYGaNWtCLBYjICAAX3zxRZEjgi4uLrh58yaeP3+uKDt58iQMDQ3h6OhY5LGLunZ6enqwtLRESkoKjh8/Djc3t488u1IkWPdVIBV5JLIwuXlEe88Q9ZisPE2QdX+i2b5ECYlCJ2SsnJDkE52eR/SrWD4q+bsNUdxpoVOVWzHZ96nRtZ5kFdqGvo4eR9nSnA/v9B75t6LpmZ45JUGPMmbOKaGU7FNERkaSuro6vXr1qsg6Z86cKfB29urVq+nQoUMUGxtLsbGx5OvrSwYGBkpvD//555/UpUsXxfqLFy9o3bp1dPv2bQoPD6eJEyeStrY2hYaGFnnsot7OlkqlVKtWLZo2bZpqJ/yvQ4cOkY+PD928eZPu3r1La9euJV1dXaWR1piYGNq+fTvFxsZSaGgoDRo0iExNTSk+Pl5RJzAwkOzt7RXrb6b46dGjB0VERFBQUBCZmZkpTfFTnGsXFBREx44do/v379OJEyeoWbNm1Lp1a8rLU573rzyMRHInshK595ho+nqiGm5vO5PijkR9phIdOC+fSoixKu/hZaI/7OQdydkioqCpRPmvP7xfFRSREU0NwrqQVWgb8oyZQnnST/tLJHvXbvn8kdCj14d5Ls/yoFWrVrR+/foitxfWiVy1ahU1atSIdHV1ydDQkJydnWnt2rVKt3m9vb3J1tZWsf7ixQtq06YN6enpka6uLnXt2pUuX7783mxFdSKPHz9OACgmJqbQ/Tw9Paljx45Ftnvs2DFycnIifX190tPTo2bNmtH69euV8kdHR5OTkxPp6OiQoaEhubm50Z07d5Ta8fPzo/+OxSUkJFDv3r1JR0eHqlevTj/99BPlv/OPb3Gu3e7du6lu3bqkqalJNWrUoPHjx1NqasHHSspDJ5K/nV0J5eUDB84Dvoflb3S/YW0GjOgDjHCVvwXOWJWVmwkETQau+sjXazQDvtkJWDQSNlc5dDk9HENiJuE15aF/tR5YVdcbaqKPfxIqfcJk5KzZCJGJCapdvwBxbdsSTMtUdeTIEUydOhVRUVHl88WNj9CxY0d07twZc+bMETpKqUpISECdOnUQHh5e4Ms+ZYU7kZXc3ceA79/AlmPAyzR5mZoa0Ks1MKYv0Lu1/E1wxqqk2weBA6OA7JeAuhbQ4zeg9QT5HxKmcCr1Ekbc/RkSksLDvD8W2U79qHn5AIByc/GqQ09IrlyFegtnmF44CdF/3hBmZWvFihX4+uuvYWNjI3SUT5aWloZGjRrhzp070NcXZpqlstC7d2+cO3cO2dnZ3IksS1WtE/lGbh6w/7y8Q3nmnbmXa5rJRyZHusq/781YlZORBOwfAdw9Jl+36wn03wwY8kSs7zqY/A/Gx/0KAmGCpQdm2Iz76LakDx8huXk7UPIr6Hw3AobrV5VgUsYqvydPniAnJwcAUKtWLWhqagqSgzuRVVDsI/kk5luDgOR3Rif7tAHGfAn0agWIeU5mVpUQAVfWAUE/AZLXgG414MuNQKOvhE5Wrux8fhA/JywGAMyo+T0mWA376LZyj/+D1N79ASIYbvOBjod7ScVkjJUR7kRWYa9zgcBz8mcnz0a8Lbcxl49MjnCVP0fJWJXx/Dawbyjw9Lp8vfkIoM8KQMtA0FjlyfrEnZj/aDUAYFHtqRhm/vEd7cy5C5E1ZyGgowPT0DPQaNK4pGIyxsoAdyIZAODOA/no5LbjwKt0eZlYDLi6yJ+d7PEZj06yKkKSB5z2Bi4skY9QmtQFvtkB1HIROlm5seTxBqx6ugUiiPBnXW/0r97zo9ohmQypfb5C3vF/IK5vB9Or56DGfy8zVmFwJ5IpeZ0L7DsH+BwCzke+Lbet8XZ00rKacPkYKzMJ54C/PIC0h4BIDeg4C+g0CxBrCJ1McESEWQ+WYcvzfRBDDN/6i9DD5POPakv28iWSm7eH7NFjaH31JYz+2vnRL+0wxsoWdyJZkaIT/h2dDAJSM+VlYjHQt6382cnuLfklVlbJvU4DDk8AbuyQr9dsJR+VrFZf2FzlgIxk+OH+fAQmB0FLpInt9n+gnWGLj2or/8pVvGrfHcjPh/6yRdCb/L8STssYKw3ciWQflJML/BUs71BevPm2vHYNYNQXgFcfoAaPTrLKLDIA+Pt74HUqoKErf06yxSj5ZxWrMAlJMObuTBxPPQc9NV3sbrgKzvofN9dm9poNyJjwEyAWwyT4GDTbty3htIyxksadSKaSqPvyzuT2E0Dav6OT6mLgy/byZye7tuDRSVZJpT0C9nkC8Wfk6w2/BPr5AnpV++2z17JceMZOwYX0qzAWG2Kfw1o01K2ncjtEhPQhI/Dafy/ULGvANPwixBb8VQTGyjP+556ppHFdYOUPwON9wOYZgEsjQCIFAs8CvaYA9kOAJTuBZ6+ETspYCTOyAYb/A/RaCog1gTuHgNVNgNijQicTlLaaFjbXXwJnvUZIlaZjcMwkJLx+rHI7IpEIBhv/hNjBHrLEJKS5e4EkklJIzN6VnJwMc3NzJCQkCB2FqaBTp04QiUQQiUSIiIgQLAd3ItlH0dUGPHsBF9YCEZuBcf0BQz3g/lPgl42A7QBgkLf8s4symdBpGSshampAu5+A764A5o2AzGfAdlfg7/FAXrbQ6QSjJ9bFdvtlcNCph2f5L+Ee8wMS856r3I6avj6M9+2ESE8P+WfOIfPX/yuFtOxdCxYsgJubG2rXrq0oe9M5eXcJCAhQ2m/NmjVwcHCAjo4O7O3tsW3btg8e6+HDh3B1dYWuri7Mzc0xdepUSN75QeHChQto164dqlWrBh0dHTRs2BDLly9XaiMjIwOTJk2Cra0tdHR00LZtW4SFhal83rGxsXBzc0P16tVhaGiI9u3b48yZM4rtycnJ6NWrF6ysrKClpQUbGxtMmDAB6enp72331atXGDJkCAwNDWFsbIyRI0ciMzNTsX3OnDmFXl89PT1FncDAQLRs2RLGxsbQ09ODk5MTtm/frnScwMBAXLlyReXzLnFl+aHu8iAtLY0AUFpamtBRKp3MbKLNR4hcxhKpdXi7NHAn+m0n0bNXQidkrATl5RAdmUQ0C/JlRUOiJ9eETiWoZ7kvqW3E12QV2oY6RbpTcl7KR7WTE7CXkqBHSdCj14eOlGxIppCVlUWGhoYUEhKiVA6A/Pz8KDExUbHk5OQotq9du5YMDAwoICCA4uLiyN/fn/T19enQoUNFHksikVDjxo2pW7duFB4eTkePHqXq1avTjBkzFHWuX79Ou3btoqioKIqPj6ft27eTrq4ubdiwQVFn4MCB5OjoSGfPnqW7d++St7c3GRoa0uPHj1U69/r161OfPn3oxo0bFBsbS+PGjSNdXV1KTEwkIqJXr17R2rVrKSwsjBISEuiff/4he3t7cnd3f2+7vXr1ombNmtHly5fp/PnzZGdnp7RPRkaG0nVNTEwkR0dH8vT0VNQ5c+YMBQYGUnR0NN27d49WrFhBYrGYgoKClI4VHx9PACg8PFylcy9J3IlkpSLiLtG4ZURGvd52JrW6EH07h+j0NSKZTOiEjJWQuyeIlljKO5K/qhOdXUQklQidSjAPXz+l5tf7klVoG+od5UXpksyPaiftfz9REvTombE15cfdL+GUjIho7969ZGZmVqAcAO3fv7/I/VxcXGjKlClKZZMnT6Z27doVuc/Ro0dJTU2NkpKSFGXr1q0jQ0NDys3NLXK//v3709ChQ4mIKDs7m8RiMR0+fFipTvPmzWnmzJlFtvFfL168IAB07tw5RVl6ejoBoJMnTxa538qVK6lmzZpFbo+OjiYAFBYWpig7duwYiUQievLkSaH7REREFMhSGGdnZ5o1a5ZSWXnoRPLtbFYqmtkBayYDTwKBjT8DnzUE8iXAntNAtx8Bh6HAsgDgZarQSRn7RHbdgQk3AcevAJkEODkD2NwZSEkQOpkgbLQsEdBwFUzVjXEj6za8YqciR/Za5XYMli6ERptWoNRUpA3wAL1WvQ2hEBHotVSYRYV3Zc+fP48WLQqflmn8+PGoXr06WrVqhc2bNyu1m5ubC21tbaX6Ojo6uHLlCvLz8wttLyQkBE2aNIHFOy9L9ezZE+np6bh161ah+4SHh+PSpUvo2LEjAEAikUAqlRZ67AsXLnz4hP9VrVo1xS34rKwsSCQSbNiwAebm5kVej6dPnyIwMFCRpahzNDY2RsuWLRVl3bp1g5qaGkJDQwvdx9fXFw0aNMDnnxc+zyoR4dSpU4iJiUGHDh2KfY5lRV3oAKxy09ORT1I+0hUIjwU2/g3sOgncfQz8vA6Y5Qt81UE+72SHZlV+xhRWUelWA779CwjfChz5H/DgPLCmGfDFGqDZkCr3G7u+Tm3ssl+BAXfGIyQjHN/dnQnf+ouhqVb8idpFmpow2rMNyc3bQXI9AhkTp8Bw4+pSTF2CcmXIGHBRkEMb7G0HaBfv82IPHjyAlZVVgfJ58+ahS5cu0NXVxYkTJzBu3DhkZmZi4sSJAOSdP19fX/Tr1w/NmzfHtWvX4Ovri/z8fLx8+RKWlpYF2kxKSlLqQAJQrCclJSmV16xZEy9evIBEIsGcOXMwatQo+bkZGMDFxQXz58+Hg4MDLCws4O/vj5CQENjZ2RXrnAH5M5///PMP+vXrBwMDA6ipqcHc3BxBQUEwMTFRquvu7o6DBw8iJycHffv2ha+vb5HtJiUlwdzcXKlMXV0dpqamBc4RAF6/fo2dO3di+vTpBbalpaXB2toaubm5EIvFWLt2Lbp3717scywrPBLJyoxzA2DdT/LRyfVTgBb2QF4+EHAK6PID0GgYsHw3kJwmdFLGPoJIBDQfDoy/AdRqC+SmA/s8gD3uQE6K0OnKXBM9e2xtsBTaalo4lXYJP9yfBylJVWpDbFMTRrv8AJEIOT5bkLN1ZymlrZpycnIKjOoBwOzZs9GuXTs4Oztj2rRp+Pnnn/H7778rbe/duzfatGkDDQ0NuLm5wdPTEwCgVgJzvJ0/fx5Xr17F+vXrsWLFCvj7+yu2bd++HUQEa2traGlpYdWqVXB3d1fpuESE8ePHw9zcHOfPn8eVK1fQr18/9O3bF4mJiUp1ly9fjuvXr+PgwYOIi4vD5MmTP/n83ti/fz8yMjIU1+5dBgYGiIiIQFhYGBYsWIDJkycjODi4xI5dYgS7kS4QfiayfLl6h2jMb0QGPd8+O6nTjWjofKJzEfzsJKugJPlEZ+YT/SqWPyv5W02iuFNCpxLE6ZRLZHulPVmFtqGp9xeR7CP+UGfMWyR/0Ua7GuVFRJZCypIlk8lIliMRZlHh+g4ePPiDL4oQER0+fJgA0OvXr5XK8/Ly6NGjRySRSBQv20il0kLbmD17NjVr1kyp7P79+wSArl+/XuSx58+fTw0aNChQnpmZSU+fPiUi+cs2ffr0+eB5vPHPP/+QmppagX6AnZ0dLVq0qMj9zp8/TwAUx/2vTZs2kbGxsVJZfn4+icViCgwMLFC/S5cu1K9fv2JlHjlyJPXo0UOpjJ+JZFVeC3tgw1T56OTanwDn+kBunvyWd6eJQBNPYOVe4NX7Z1VgrHwRq8u/sz36kvwTiemPAb+uQNAUQJIrdLoy1dnYBX/WmwM1qGHni4NY8GiNSs/tAYDezJ+h2bsH8Po10r4ZClla+b5dIRKJINIWC7Oo8OiEs7MzoqOjP1gvIiICJiYm0NLSUirX0NBAzZo1IRaLERAQgC+++KLIEUEXFxfcvHkTz5+/nfrp5MmTMDQ0hKOjY5HHlslkyM0t+GdGT08PlpaWSElJwfHjx+Hm5vbB83gjO1s+Hdd/s6qpqUH2njnp3mwrLA8gP8fU1FRcu3ZNUXb69GnIZDK0bt1aqW58fDzOnDmDkSNHFitzUddBcIJ1XwXCI5Hlm0xGdCWaaNQSIv0eb0cndbsRjVxMlJAodELGVJSbSXTwu7dTAf3ZlCjpptCpytyu5wfJKrQNWYW2oVVPtqi8v/TlS3peqyElQY9S+g36qBFNpiwyMpLU1dXp1au3868dOnSIfHx86ObNm3T37l1au3Yt6erq0q+//qqoExMTQ9u3b6fY2FgKDQ2lQYMGkampKcXHxyvqBAYGkr29vWL9zRQ/PXr0oIiICAoKCiIzMzOlKX5Wr15Nhw4dotjYWIqNjSVfX18yMDBQevM6KCiIjh07Rvfv36cTJ05Qs2bNqHXr1pSXl1fs837x4gVVq1aNvvrqK4qIiKCYmBiaMmUKaWhoUEREBBERHTlyhDZv3kw3b96k+Ph4Onz4MDk4OCi9gR4aGkr29vZK0wv16tWLnJ2dKTQ0lC5cuED169cvdLR31qxZZGVlRRJJwZkcFi5cSCdOnKC4uDiKjo6mpUuXkrq6Ovn4+CjVKw8jkdyJZOVWWibR2v1EziOUb3X/vJYoJV3odIyp6PYhokVm8o7kHC2ii8uJirj1V1mtf7pL0ZH0S/pL5f3zrlylJE0TSoIeZf6+ohQSVj2tWrWi9evXK9aPHTtGTk5OpK+vT3p6etSsWTNav3690m3q6OhocnJyIh0dHTI0NCQ3Nze6c+eOUrt+fn7033GqhIQE6t27N+no6FD16tXpp59+ovz8fMX2VatWUaNGjUhXV5cMDQ3J2dmZ1q5dq3Ts3bt3U926dUlTU5Nq1KhB48ePp9TUVKXjeHt7k62t7XvPOywsjHr06EGmpqZkYGBAbdq0oaNHjyq2nz59mlxcXMjIyIi0tbWpfv36NG3aNEpJSVHUOXPmDAFQ6jwnJyeTu7s76evrk6GhIXl5eVFGRobSsaVSKdWsWZN++eWXQrPNnDmT7OzsSFtbm0xMTMjFxYUCAgIK1CsPnUj+djYr94iAkFvAbB8gOEJeZmoIzPQAvu8HaGkKmY4xFWQ+A/aPBGKPyNfrdQe+2gIYFnxDtrL6/fFGrHjqBwBYVdcbX1fvpdL+2et8kDHuR0AshsnpI9Ds0L40YlYZR44cwdSpUxEVFVUiL8WUB56enhCJRNiyZYvQUUpVQkIC6tSpg/DwcDg5OQmSoXL8jmGVmkgEtG0M/LMCOLQYcKwtf0bypzWAowfg/w9/WpFVEPoWwNC/gb7rAA0dIO6k/PvbtwKFTlZmpliPxgiLAQCAH+//H06knFdpf52xo6A9ZBAglSJtkCekSc9KI2aV4erqijFjxuDJkydCRykRRITg4GDMnz9f6Cilqnfv3mjUqJHQMcAjkazCkUiArccB701AYrK8rIU9sGQs0Lm5sNkYK7YXMcBfQ4Cn/z6E33EW0GWu/PvclZyMZPjx/v/hr+Rj0BJpYmuDpfjc6LNi709ZWUhu3QnSW7eh0bE9TP45DJE6T3vMqo4nT54gJycHAFCrVi1oagpzS447kazCysoBVuwFftsFZMr/LKGPC7BoDNC4rrDZGCsWSR7wzy/AxWXydcevga+3App6wuYqAxKS4Lt7MxGUcg66ajrY3fBPNNcv/siKJCYWr1p2AGVmQnfaZBgsnleKaRljheFOJKvwnqcA87cCGw8BEql8IGd4b2COF2BtJnQ6xorh+hbg0HeANA+wdAaGHASMbIROVepyZXnwjJ2C8+lhMBYb4C+HtXDQLf6XR17vDUTawGEAAKODu6H9pWtpRWWMFYI7kazSiH0EzPQBAs/K13W0gB8HAlPdAcPKP7DDKroHFwH//kDWC/mzk4MPAjatP7xfBZctzcG3MRNxLTMK5hrVEOiwDnW0i9+Bzpj0M7JXroXIyAim185DvR7fhmCsrHAnklU6l6KAaevk/wWA6kbAr8Pl3+fW4MemWHmW+gDY8SXwLBJQ1wL6bZJ/e7uSS5Wk45vb43E75x5qatbAfscNsNI0//COACgvDymdeiM/JBTqTk1heukURDo6pZyYMQbw29msEmrbGDi3Gtj3f0ADG+BlGjBxpfzrN/vOyqcMYqxcMrYFRl8EGrrJv2zz11Dg5C+VfvoBY3VD+DdcidpaNfE4LwnudyYiOb943xsXaWrCaM82iMyqQxIRifT/TSnltIyxN3gkklVq+RLA9zAwb4v82UkAaOMI/DYOaNdE0GiMFU0mA/6ZCZxfLF936Ad8vR3Q0hc0Vml7nJuIfrfHIjHvOZro2mNPw9UwVC/eOeeeOoPUHm6ATAbDTWuhM2JYKadljHEnklUJGdnAsgBg2W4g+7W8rN/nwMIxgH0tYbMxVqSIHcDBUfJRSYumwNBD8tHKSuxeTgK+uj0OyZIUtDZwws4Gy6Ej1i7WvpkLfkPWrHmAtjZMQ05Dw6lpKadlrGrj29msSjDQBeaMAGJ3AaO+kL/BfeA80GQ4MP4P4NkroRMyVginocCIYPmLNs8igfWtgIeXhE5Vqux0amOX/XIYiPUQmhGBMfd+QZ4sv1j76s2YAk3XXsDr10j7eghkqamlG7YSSE5Ohrm5ORISEoSOwlTQqVMniEQiiEQiRERECJaDO5GsSrGsBmyYCtzwA75oC0ilwPqDQP3BwPwtQGa20AkZ+w+bNsB3V4AaTkDWc2BzZyB8m9CpSlVjPXtsa7AM2mpaOJ0Wgon350JK0g/uJ1JTg9G2jVCrbQvp/XikDx+LKnazTWULFiyAm5sbateurSgLCwtD165dYWxsDBMTE/Ts2RM3btxQbI+JiUHnzp1hYWEBbW1t1K1bF7NmzUJ+/vs7+w8fPoSrqyt0dXVhbm6OqVOnQiKRKLYPHz5c0TF6d3n3yyzr1q1D06ZNYWhoCENDQ7i4uODYsWMqn/fEiRPRokULaGlpFfrJwODgYLi5ucHS0hJ6enpwcnLCzp07i2wvICAAIpEI/fr1e+9xAwMD0b17d5iZmSnyHz9+vEC9J0+eYOjQoahWrRp0dHTQpEkTXL16VamdK1euFPt8Swt3IlmV5FgbOLgIOL0S+KyhfOLyOX6A/ZB/55uUfLAJxsqOcS1g9AXAob98LslAT+D4NED24Y5VRdXKoBk22S2Ghkgdf786hekJvxWrQ6hmagrjvdsBTU3kHjyM7N9XlH7YCio7OxubNm3CyJEjFWWZmZno1asXatWqhdDQUFy4cAEGBgbo2bOnopOooaGBYcOG4cSJE4iJicGKFSvg4+MDb2/vIo8llUrh6uqKvLw8XLp0CVu3bsWWLVvw66+/KuqsXLkSiYmJiuXRo0cwNTXFgAEDFHVq1qyJxYsX49q1a7h69Sq6dOkCNzc33Lp1S+XzHzFiBAYNGlTotkuXLqFp06bYt28fIiMj4eXlhWHDhuHw4cMF6iYkJGDKlCn4/PPPP3jMc+fOoXv37jh69CiuXbuGzp07o2/fvggPD1fUSUlJQbt27aChoYFjx44hOjoay5Ytg4mJiaKOqakpzMzKwUTIVMWkpaURAEpLSxM6CisnZDKi3aeI7L4lUusgXxp5EB26IN/GWLkhlRKdnEk0C/Jle1+i1+lCpypVfyefopqhbckqtA3NfbCSZMX8Q5m13peSoEdJagaUG3yulFNWTHv37iUzMzOlsrCwMAJADx8+VJRFRkYSALp7926Rbf3444/Uvn37IrcfPXqU1NTUKCkpSVG2bt06MjQ0pNzc3EL32b9/P4lEIkpISHjveZiYmJCvr+976xTF29ubmjVrVqy6ffr0IS8vL6UyiURCbdu2JV9fX/L09CQ3NzeVMzg6OtLcuXMV69OmTXvvtXwjPj6eAFB4eLjKxywpPBLJqjyRCBjYBYjaCiz/H1DNCLj9AOj3C9DlB+DKbaETMvYvNTWg2/8B3+yUzyMZ8zfg0w5ISRA6Wan5wrQLfq8zHQCwIckfqxK3Fms/nTEjoO3hDshkSBvkCWliUmnGVEJEkEgkgiykwu378+fPo0WLFkpl9vb2qFatGjZt2oS8vDzk5ORg06ZNcHBwULrl/a579+4hKCgIHTt2LPJYISEhaNKkCSwsLBRlPXv2RHp6epGjiJs2bUK3bt1ga1v4y2RSqRQBAQHIysqCi4vLB87206WlpcHU1FSpbN68eTA3N1cazVWFTCZDRkaGUruHDh1Cy5YtMWDAAJibm8PZ2Rk+Pj6flL208NTLjP1LSxOY+A0wrCfwmz+wci9w7gbgMhYY0BlYMBqoZy10SsYANBsMmNYDdvUDnt0ENrQC3AMB2/ZCJysV35r1RYY0C3MersRvjzfAUKwHL4sB791HJBLBcP1KSMJvQBIVjbRvPWFy6ghE6qX/z96bzo0Qvv32W6gX8xwfPHgAKysrpTIDAwMEBwejX79+mD9/PgCgfv36OH78eIF227Zti+vXryM3NxdjxozBvHlFf788KSlJqQMJQLGelFSwg//06VMcO3YMu3btKrDt5s2bcHFxwevXr6Gvr4/9+/fD0dGxWOf8sfbs2YOwsDBs2LBBUXbhwgVs2rTpk15sWbp0KTIzMzFw4EBF2f3797Fu3TpMnjwZv/zyC8LCwjBx4kRoamrC09PzU06jxPFIJGP/YWwgn/rnzk7As5d8pHLvGaDRMGDSKuBlqtAJGYP8k4hjwwCr5vJPJfp1kX+Du5IaXeNbTLaSj/bMevAH9r48+sF9RLq6MNq3EyIDA+Sfu4jMX+aUcsqKJScnB9ra2gXKRo4ciXbt2uHy5cu4ePEiGjduDFdXV+Tk5CjV3b17N65fv45du3bhyJEjWLp0aYll27p1K4yNjQt9UcXe3h4REREIDQ3F999/D09PT0RHR5fYsf/rzJkz8PLygo+Pj+Iln4yMDHh4eMDHxwfVq1f/qHZ37dqFuXPnYs+ePTA3f/uFJplMhubNm2PhwoVwdnbGmDFjMHr0aKxfv75EzqdECXYjXSD8TCRTVcRdol5T3j4vadybaPEOouzXQidjjIhyM4n8v3n7nOSxn4ikEqFTlQqZTEazE/4gq9A2ZBPajo69Ci7Wfjl7A+XPR0KPcvYfKuWU8pz5+fmCLMV9ZpSIaPDgweTu7q5U5uvrS+bm5iSVShVlubm5pKurS/7+/kW2tX37dtLR0SGJpPDfe7Nnzy7w7OH9+/cJAF2/fr3A9bOzs6NJkyYV6zy6du1KY8aMKVbd//rQM5HBwcGkp6dHGzZsUCoPDw8nACQWixWLSCQikUhEYrGY7t27997j+vv7k46ODh0+fLjAtlq1atHIkSOVytauXUtWVlZKZfxMJGMVQDM74NjvQNBSwMkOSM8CftkINBwCbDkmnyaIMcFo6gEDdwOd/n3L9eIyYKcb8Dpd2FylQCQSYU6tHzCwuiukkOL7e7NxLu3D05xof9Mfuj9OAACke34Hyb24Us+prq4uyCISiYqd09nZucAIXnZ2NtTU1JTaebMue8/nN2UyGfLz84us4+Ligps3b+L58+eKspMnT8LQ0LDAreizZ8/i3r17xX7OUCaTITc3t1h1VREcHAxXV1csWbIEY8aMUdrWsGFD3Lx5ExEREYrlyy+/ROfOnREREQEbG5si2/X394eXlxf8/f3h6upaYHu7du0QExOjVBYbG1vks6GCEqz7KhAeiWSfQiol2n6cqPaAtyOTzYYTHbvMb3KzciAygGiOtnxEclUjouQ4oROVinxZPo2KnU5WoW3ILqwzhaVHfnAfWV4eJbfrRknQo5QvB5ZByvIvMjKS1NXV6dWrV4qy27dvk5aWFn3//fcUHR1NUVFRNHToUDIyMqKnT58SEdGOHTto9+7dFB0dTXFxcbR7926ysrKiIUOGKNoJDAwke3t7xbpEIqHGjRtTjx49KCIigoKCgsjMzIxmzJhRINfQoUOpdevWhWaePn06nT17luLj4ykyMpKmT59OIpGITpw4odK53717l8LDw+m7776jBg0aUHh4OIWHhyveFD99+jTp6urSjBkzKDExUbEkJycX2WZhb2dPnz6dPDw8FOs7d+4kdXV1WrNmjVK7qampijpXrlwhdXV1WrBgAd29e5d27txJurq6tGPHDqW2y8NIJHciGfsIOa+JlvoTmfZ525ns/iPRtRihk7Eq73EY0RIreUdyYTWi+8W75VvRvJbmkvvtH8gqtA05XO1Ot7KKnn7mDcmTp5TqMYqk7+kIVDWtWrWi9evXK5WdOHGC2rVrR0ZGRmRiYkJdunShkJAQxfaAgABq3rw56evrk56eHjk6OtLChQspJydHUcfPz4/+O06VkJBAvXv3Jh0dHapevTr99NNPlJ+fr1QnNTWVdHR0aOPGjYXmHTFiBNna2pKmpiaZmZlR165dC3QgPT09qWPHju89744dOxKAAkt8fLyijcK2v6/dwjqR/81S1HE9PT2V9vv777+pcePGpKWlRQ0bNiz0epSHTiR/O5uxT5CcBizaAazZD+T9+7GGId2B+aMA2xrCZmNVWPoT+ZvbT64CaupA33VAy1FCpypx2dIcuMf8gKuZN2GmYYpAh/Woq130bURW0JEjRzB16lRERUVBTa1yPOHWsWNHdO7cGXPmzBE6SqlKSEhAnTp1EB4eXuhXd8pC5fgdw5hAqhkBS8cD0dsB927ysp0ngYZDgZ/XASkZwuZjVZShNTDiLNB4ECCTAAdHA0d/BKSV61NMumIdbGuwDI106+NF/it8e2cinuQ+EzpWheLq6ooxY8bgyZMnQkcpEWlpaYiLi8OUKVOEjlKqevfurfQ5SKHwSCRjJehaDDBtHXDm3y9YmRgAv3gA4/vL56FkrEwRAcHzgdP/fo6ufi9gYACgbSRsrhL2Mv8V+t/+HvdfP0Q97VrY77Ae1TRMPrwjYxXUkydPFFMu1apVC5qawvwDw51IxkoYERAUCkxfD0TFy8tq15Df4v62q/yjI4yVqai98u9t5+cAZg7A0L/lk5VXIk9yk9Dv9lg8zXuGxroNsLfhGhiq6wsdi7FKjTuRjJUSqRTYGgR4bwaevpSXNW8ALPke6NJc2GysCnpyDdjlJn9eUscUcN8H1OkkdKoSFZfzEP1vj0WyJAWt9Jthl/0K6Ii1P7wjY+yjcCeSsVKW/Vr+CcUlu4CMbHlZr9bA4u+AJpVrMIiVdxmJ8jkkn4TJX7j5Yg3w2ZgP71eBRGXFYsCd8UiXZqKzURtsrv8bNNU0hI7FWKXEnUjGysiLVGD+FmDDIUAilX9O0bMXMHcEUNP8Q3szVkLyc4D9I4Gb/vL1Nv8Dev0BiEv/m9JlJSzjBtxjJiFH9hquJp2xzm4+xCKx0LEYq3S4E8lYGbv7GJi5Edh3Vr6uowVMGgBMdQeM+BEuVhaIgLMLgVOz5Ot2PeRfvdExFjRWSTqbForhsVORR/n4tvoXWFrnF5W+5sIY+zDuRDImkMu35G9yX7gpX69uBMz2BMZ8CWjy3TdWFm4FAvs8gPxsoLq9/IWbavWFTlVijr4Kxnf3ZkIGGUZbfAvvWhO5I8lYCeJOJGMCIgIOXQRmbABiHsrL6lkDC0YD33SS3/JmrFQlRgA7vwTSHgE6JsCgvUC9rkKnKjG7XxzB5Pj/AwBMsR6NH61HCJyIscqDJxthTEAiEeDWHoj0A9b+BFiYAnFPgG/nAO3GAedvCJ2QVXqWTsB3VwCbNkBOCrCtJxC6VuhUJWaQmSvm1poEAFj6xAebkvYIG6icSU5Ohrm5ORISEoSOwkqYSCSCSCSCsbFxqR2DO5GMlQPq6sB3XwIxO4FfhwO62kBoNNBpItB/JnDngdAJWaVmUAPwOgM0GwrIpMDh8cDf4wFpvtDJSsSoGoMwxVr+2cdfHy7HnhdHBE5UfixYsABubm6oXbu2omzixIlo0aIFtLS0Cv2cXnBwMNzc3GBpaQk9PT04OTlh586dRR4jICAAIpEI/fr1e2+WwMBAdO/eHWZmZjA0NISLiwuOHz9eoN6TJ08wdOhQVKtWDTo6OmjSpAmuXr1a3FNGQkICRo4ciTp16kBHRwf16tWDt7c38vLylOpFRkbi888/h7a2NmxsbPDbb78pbc/Pz8e8efNQr149aGtro1mzZggKCnrvsYtz7QIDA9GyZUsYGxsr6mzfvr3INseOHQuRSIQVK1YolScmJhYoK2nciWSsHDHQBby9gNhd8mcjxWLg0AWgqRfw/TIgKVnohKzS0tAGvt4GdF8kHyK/shbY1ls+OlkJTLIagdEW3wIA4l4/FDhN+ZCdnY1NmzZh5MiRBbaNGDECgwYNKnS/S5cuoWnTpti3bx8iIyPh5eWFYcOG4fDhwwXqJiQkYMqUKfj8888/mOfcuXPo3r07jh49imvXrqFz587o27cvwsPDFXVSUlLQrl07aGho4NixY4iOjsayZctgYlL8LxTduXMHMpkMGzZswK1bt7B8+XKsX78ev/zyi6JOeno6evToAVtbW1y7dg2///475syZg40bNyrqzJo1Cxs2bMCff/6J6OhojB07Fv3791fK+1/FuXampqaYOXMmQkJCFHW8vLwK7VDv378fly9fhpWVVYFtNWrUgJFRKX+diqqYtLQ0AkBpaWlCR2Hsg6Ljifr9QqTWQb4Y9CSa60eUkSV0MlapRR8gmqdHNAtEy+sTPb8jdKISIZPJ6GTKBaFjlBt79+4lMzOzIrd7e3tTs2bNitVWnz59yMvLS6lMIpFQ27ZtydfXlzw9PcnNzU3ljI6OjjR37lzF+rRp06h9+/Yqt/Mhv/32G9WpU0exvnbtWjIxMaHc3FylY9vb2yvWLS0tafXq1UrtfPXVVzRkyBCVjl3YtfsvZ2dnmjVrllLZ48ePydramqKiosjW1paWL19eYD8/Pz8yMjJSKY8qeCSSsXLMoTawfwFwZhXQygHIygHm+gENhvw736RE6ISsUnJwA0ZdBIxqAcl3gY2tgXsnhU71yUQiEboZtyv9AxEB0ixhFhXelT1//jxatGhRIqeclpYGU1NTpbJ58+bB3Ny80JHO4pDJZMjIyFBq99ChQ2jZsiUGDBgAc3NzODs7w8fH55OyAwXzh4SEoEOHDkrfpO7ZsydiYmKQkiIfnc/NzYW2tvIXkXR0dHDhwoVPOva7iAinTp1CTEwMOnTooCiXyWTw8PDA1KlT0ahRI5WOV5Iqz+yyjFViHZoBl9YBfwUDM33kL9+MWwas2gss/A74sh2/yc1KmGUzYOwVwP8r4OElYHtvoPcKoPV4/s32IbJs4LJAk762yQTEesWq+uDBg0Jvg6pqz549CAsLw4YNGxRlFy5cwKZNmxAREfHR7S5duhSZmZkYOHCgouz+/ftYt24dJk+ejF9++QVhYWGYOHEiNDU14enp+VHHuXfvHv78808sXbpUUZaUlIQ6deoo1bOwsFBsMzExQc+ePfHHH3+gQ4cOqFevHk6dOoXAwEBIpdJiH7uwawfIO5bW1tbIzc2FWCzG2rVr0b17d8X2JUuWQF1dHRMnTvyYUy4xPBLJWAUhEgEDOgNRW4GVE4FqRsCdh8BXM4HOE+Uv4jBWovQtAK/TgNMw+Qs3R/4H/D2u0rxwU9Xl5OQUGElT1ZkzZ+Dl5QUfHx/FiFhGRgY8PDzg4+OD6tWrf1S7u3btwty5c7Fnzx6Ym7/9pJdMJkPz5s2xcOFCODs7Y8yYMRg9ejTWr1//Ucd58uQJevXqhQEDBmD06NEq7bty5UrUr18fDRs2hKamJiZMmAAvLy+oqRWva1XYtXvDwMAAERERCAsLw4IFCzB58mQEBwcDAK5du4aVK1diy5Ytws97Wmo3ylWwevVqsrW1JS0tLWrVqhWFhoYWWXfjxo3Uvn17MjY2JmNjY+ratet76/8XPxPJKovUDKJfNhDpdnv7zOTAX4nuPhI6Gat0ZDKi878RzRbJn5Pc1Jko66XQqcovmYxIkinMIpMVO+bgwYPJ3d29yO0feiYyODiY9PT0aMOGDUrl4eHhBIDEYrFiEYlEJBKJSCwW0717996by9/fn3R0dOjw4cMFttWqVYtGjhypVLZ27VqysrJ6b5uFefLkCdWvX588PDxIKpUqbfPw8CjwDOfp06cJAL169UqpPCcnhx4/fkwymYx+/vlncnR0/OCxi7p2RRk5ciT16NGDiIiWL1+uuJZvFgCkpqZGtra2SvtV+mcid+/ejcmTJ8Pb2xvXr19Hs2bN0LNnTzx//rzQ+sHBwXB3d8eZM2cQEhICGxsb9OjRA0+ePCnj5IwJy0gfWDBGPi3Q8N7ykcq/goFGw4AfVsq/1c1YiRCJgPZTgcEHAU19IP4MsKE18Py20MnKJ5FIfktZiEWFkSlnZ2dER3/cLYzg4GC4urpiyZIlGDNmjNK2hg0b4ubNm4iIiFAsX375JTp37oyIiAjY2NgU2a6/vz+8vLzg7+8PV1fXAtvbtWuHmJgYpbLY2FjY2tqqlP/Jkyfo1KkTWrRoAT8/vwKjhy4uLjh37hzy89+Oup88eRL29vYF3gTX1taGtbU1JBIJ9u3bBzc3t/ce+33XrigymQy5ubkAAA8PD0RGRipdXysrK0ydOrXQN7hLVal1T4upVatWNH78eMW6VColKysrWrRoUbH2l0gkZGBgQFu3bi1WfR6JZJVV5D2iPlPfjkoa9SJauI0oK0foZKxSSYwkWlpbPiI535Ao9pjQidhHioyMJHV19QIja3fv3qXw8HD67rvvqEGDBhQeHk7h4eGKN5VPnz5Nurq6NGPGDEpMTFQsycnJRR6rsLezp0+fTh4eHor1nTt3krq6Oq1Zs0ap3dTUVEWdK1eukLq6Oi1YsIDu3r1LO3fuJF1dXdqxY0exz/vx48dkZ2dHXbt2pcePHysd643U1FSysLAgDw8PioqKooCAANLV1VUaObx8+TLt27eP4uLi6Ny5c9SlSxeqU6cOpaSkKOr8+eef1KVLF8V6ca7dwoUL6cSJExQXF0fR0dG0dOlSUldXJx8fnyLPSai3swXtRObm5pJYLKb9+/crlQ8bNoy+/PLLYrWRnp5O2tra9Pfffxe6/fXr15SWlqZYHj16xJ1IVqn9c5Wo5ai3nUmbr4k2HyGSSIROxiqNzOdEPp/LO5Kz1YgurVDpNiorP1q1akXr169XKuvYsSMBKLDEx8cTkbxDWNj2jh07FnmcwjqRnp6eSvsUdVxPT0+l/f7++29q3LgxaWlpUcOGDWnjxo1K2729vQvc1n2Xn59focf577jajRs3qH379qSlpUXW1ta0ePFipe3BwcHk4OBAWlpaVK1aNfLw8KAnT568N0txrt3MmTPJzs6OtLW1ycTEhFxcXCggIKDI8yESrhMp6Leznz59Cmtra1y6dAkuLi6K8p9//hlnz55FaGjoB9sYN24cjh8/jlu3bhX6gPCcOXMwd+7cAuX87WxWmclkgP8pYLYv8CBJXta4DrB4LNCrNb9cy0qAJA/4+3vg+mb5eotRwBdrAHXN9+/HypUjR45g6tSpiIqKKvYLIeWdp6cnRCIRtmzZInQUwW3ZsgWTJk1CampqqbRfoX/HLF68GAEBAdi/f3+Rb5jNmDEDaWlpiuXRo0dlnJKxsqemBgzpDkRvA34fBxjrA1HxwBfTgB6TgWsxH26DsfdS1wT6+QK9lgEiNeCaL7C1B5D1UuhkTAWurq4YM2ZMpXmvgIgQHByM+fPnCx1FcPr6+hg7dmypHkPQkci8vDzo6urir7/+UvqmpqenJ1JTU3Hw4MEi9126dCn+7//+D//88w9atmxZ7GOmp6fDyMiIRyJZlfIqHVi8E/hzH5D373Pi7t2A/xsF1LYUNhurBGKPAnu+BXIzAJO6wJBDgIVwEyAzxuTzXwKAWCwuMOdlSRF0JFJTUxMtWrTAqVOnFGUymQynTp1Sur39X7/99hvmz5+PoKAglTqQjFVVpobAb98Dt7cDg/+dr9b/H8DBA5i6Vt7JZOyjNegDjA4BTOoAKfcBHxcg5ojQqRir0uzs7GBnZ1dqHUigHNzOnjx5Mnx8fLB161bcvn0b33//PbKysuDl5QUAGDZsGGbMmKGov2TJEsyePRubN29G7dq1kZSUhKSkJGRmZgp1CoxVGLUtge2zgDAfoEtz+ajkH7uB+u7AsgDgda7QCVmFZdEI+O4KULuDfERyZ1/g4h8qfYaPMVaxCHo7+43Vq1fj999/R1JSEpycnLBq1Sq0bt0aANCpUyfUrl1b8YBs7dq18eDBgwJteHt7Y86cOR88Ft/OZkyOCDh+BZi+Hrh5X15WywKYPwoY3E3+XCVjKpPkAYfHy5+RBIDmI4C+6/iFG8YqoXLRiSxL3IlkTJlUCmw/Afy6CXjyQl7mXB9YMRFo31TYbKyCIgIurwKOTQZIBth+DrjvA/TMhE7GGCtB3IlkjAEAsl/LX7xZvBNIz5KXjXAFFn8n/043Yyq7GwTsHgTkpgPGtYGhfwMWjYVOxRgrIdyJZIwpeZEKzNwIbPr3vYjqRsBv44BhPXl+SfYRnt+WPx/5Kk7+ycSB/oD9F0KnYoyVAO5EMsYKdfEmMG6ZfH5JAOjkBKyZDDRU7RO1jAHZyUDAAPk3t0UioMcSoN0U/qmEsQqOH51njBWqXRPgqi+w6DtARwsIjgCcRgDem/gtbqYi3WqA53Hgs7H/vtH1M7DfC5DwbyShJScnw9zcHAkJCUJHYWUsISEBIpEIIpEITk5OH9UGdyIZY0XSUAd+Hgzc3Ar0bgPkS4D/2wY08wJOhgmdjlUoYg2g71rA9U9ATQyEbwX8ugCZz4VOVqUtWLAAbm5uqF27NgDgxo0bcHd3h42NDXR0dODg4ICVK1cW2C84OBjNmzeHlpYW7OzsCnxiMCMjA5MmTYKtrS10dHTQtm1bhIW9/y+NwMBAdO/eHWZmZjA0NISLiwuOHz+uVGfdunVo2rQpDA0NFXWOHTtWaHtEhN69e0MkEuHAgQPFviYAMHz4cEUH692lUaO3k+jXrl270Drjx49X1Pnuu+9Qr1496OjowMzMDG5ubrhz5857j/3s2TMMHz4cVlZW0NXVRa9evXD37t0C9UJCQtClSxfo6enB0NAQHTp0QE5OjmL79evX0b17dxgbG6NatWoYM2aM0nSINjY2SExMxE8//aTStXkXdyIZYx9UxxL4ezGwey5gVR249wToNQUYMg9IShY6HaswRCKgzQTA4xigbQQ8vASs/wxIihQ6WZWUnZ2NTZs2YeTIkYqya9euwdzcHDt27MCtW7cwc+ZMzJgxA6tXr1bUiY+Ph6urKzp37oyIiAhMmjQJo0aNUurwjRo1CidPnsT27dtx8+ZN9OjRA926dXvv5xXPnTuH7t274+jRo7h27Ro6d+6Mvn37Ijw8XFGnZs2aWLx4Ma5du4arV6+iS5cucHNzw61btwq0t2LFCog+8pGJlStXIjExUbE8evQIpqamGDBggKJOWFiYUp2TJ08CgFKdFi1awM/PD7dv38bx48dBROjRowekUmmhxyUi9OvXD/fv38fBgwcRHh4OW1tbdOvWDVlZWYp6ISEh6NWrF3r06IErV64gLCwMEyZMUHz//OnTp+jWrRvs7OwQGhqKoKAg3Lp1C8OHD1e0IRaLUaNGDejr63/UNXoTuEpJS0sjAJSWliZ0FMYqpLRMookriNQ7Eal1IDLpQ7TuAJFUKnQyVqE8v0O0vD7RLBDN0yOKPiB0oipn7969ZGZm9sF648aNo86dOyvWf/75Z2rUqJFSnUGDBlHPnj2JiCg7O5vEYjEdPnxYqU7z5s1p5syZKmV0dHSkuXPnvreOiYkJ+fr6KpWFh4eTtbU1JSYmEgDav3+/Ssf9r/3795NIJKKEhIQi6/zwww9Ur149kslkRda5ceMGAaB79+4Vuj0mJoYAUFRUlKJMKpWSmZkZ+fj4KMpat25Ns2bNKvI4GzZsIHNzc5K+8xdzZGQkAaC7d+8q1fX29qZmzZoV2db78EgkY0wlhnrAyh+AkHVAC3sgLRMY/wfw+Xjgxj2h07EKw8we+C4UqNcNyMsC/PsDZxdVii/cEAFZMmEWVS7f+fPn0aJFiw/WS0tLg6mpqWI9JCQE3bp1U6rTs2dPhISEAAAkEgmkUim0tbWV6ujo6ODChQvFzieTyZCRkaF07HdJpVIEBAQgKytL6VPJ2dnZGDx4MNasWYMaNWoU+3jvs2nTJnTr1g22toW/WZiXl4cdO3ZgxIgRRY5+ZmVlwc/PD3Xq1IGNjU2hdXJz5c8Jv3vt1NTUoKWlpbh2z58/R2hoKMzNzdG2bVtYWFigY8eOStc2NzcXmpqaipFJQH79Aaj0a/Ah3IlkjH2Ulg3lHckV/wMMdIHL0cBnY+Tf4s7MFjodqxB0TACPo0Dr8fLezz+/APuGAfmvhU72SbIJ0I8VZslWoRP54MEDWFlZvbfOpUuXsHv3bowZM0ZRlpSUBAsLC6V6FhYWSE9PR05ODgwMDODi4oL58+fj6dOnkEql2LFjB0JCQpCYmFjsfEuXLkVmZiYGDhyoVH7z5k3o6+tDS0sLY8eOxf79++Ho6KjY/uOPP6Jt27Zwc3Mr9rHe5+nTpzh27BhGjRpVZJ0DBw4gNTVV6XbxG2vXroW+vj709fVx7NgxnDx5EpqahX/BqWHDhqhVqxZmzJiBlJQU5OXlYcmSJXj8+LHi2t2/L//E2Jw5czB69GgEBQWhefPm6Nq1q+LZyS5duiApKQm///478vLykJKSgunTpwOASr8GH8KdSMbYRxOLgf99A9zaBnzVUf71mz92A02GA4cuCp2OVQhiDeCL1cAXa+Qv3NzYAfh1BjKShE5W6eXk5BQYLXxXVFQU3Nzc4O3tjR49eqjU9vbt20FEsLa2hpaWFlatWgV3d3elkbH32bVrF+bOnYs9e/bA3NxcaZu9vT0iIiIQGhqK77//Hp6enoiOjgYAHDp0CKdPn8aKFStUyvs+W7duhbGxMfr161dknU2bNqF3796FdsqHDBmC8PBwnD17Fg0aNMDAgQPx+nXhPyhpaGggMDAQsbGxMDU1ha6uLs6cOYPevXsrrp1MJgMgf2nHy8sLzs7OWL58Oezt7bF582YAQKNGjbB161YsW7YMurq6qFGjBurUqQMLC4ti/xoUh3qJtcQYq7KszYC984AjIcD/VgAPkoD+vwBu7eW3vm3MP9gEq+pajwOq2wO7BwCPLgMbWgFDDgGWTkInU5muCMhsINyxi6t69epISUkpdFt0dDS6du2KMWPGYNasWUrbatSogWfPnimVPXv2DIaGhopbpvXq1cPZs2eRlZWF9PR0WFpaYtCgQahbt+4HcwUEBGDUqFHYu3dvgdvmAKCpqQk7OzsA8hdXwsLCsHLlSmzYsAGnT59GXFwcjI2Nlfb5+uuv8fnnnyM4OPiDx38XEWHz5s3w8PAocvTwwYMH+OeffxAYGFjodiMjIxgZGaF+/fpo06YNTExMsH//fri7uxdav0WLFoiIiEBaWhry8vJgZmaG1q1bo2XLlgAAS0tLAFAafQUABwcHPHz4ULE+ePBgDB48GM+ePYOenh5EIhH++OOPYv0aFBePRDLGSoyrC3Bzi3xaIHUxcPAC0HgYsGIPIJEInY6Ve/W6yp+TrG4PpD0CfNoBtwr/h7k8E4kAPTVhFlVeRnZ2dlaM4L3r1q1b6Ny5Mzw9PbFgwYIC211cXHDq1CmlspMnTyo9l/iGnp4eLC0tkZKSguPHj3/wFrO/vz+8vLzg7+8PV1fXYp2HTCZTPEs4ffp0REZGIiIiQrEAwPLly+Hn51es9t519uxZ3Lt3T+kN9v/y8/ODubl5sfISEYhIkfd9jIyMYGZmhrt37+Lq1auKa1e7dm1YWVkhJiZGqX5sbGyhz2xaWFhAX18fu3fvhra2Nrp37/7BYxfbR72OU4Hx29mMlY3Ie0Ttx8nf4FbrQNR8BFFotNCpWIWQnUK0pYf8ze1ZIDrzf0TveeOVfZzIyEhSV1enV69eKcpu3rxJZmZmNHToUEpMTFQsz58/V9S5f/8+6erq0tSpU+n27du0Zs0aEovFFBQUpKgTFBREx44do/v379OJEyeoWbNm1Lp1a8rLy1PUmT59Onl4eCjWd+7cSerq6rRmzRqlY6empirtc/bsWYqPj6fIyEiaPn06iUQiOnHiRJHniU94O3vo0KHUunXrIrdLpVKqVasWTZs2rcC2uLg4WrhwIV29epUePHhAFy9epL59+5KpqSk9e/ZMUc/e3p4CAwMV63v27KEzZ85QXFwcHThwgGxtbemrr75Sanv58uVkaGhIe/fupbt379KsWbNIW1tb6a3vP//8k65du0YxMTG0evVq0tHRoZUrVxbI+SlvZ3MnkjFWaqRSoo2HiKq5yjuS4o5E4/8gSs0QOhkr9yT5RIcnvu1I7nYnyssWOlWl06pVK1q/fr1i3dvbmwAUWGxtbZX2O3PmDDk5OZGmpibVrVuX/Pz8lLbv3r2b6tatS5qamlSjRg0aP368UmeQiMjT05M6duyoWO/YsWOhx/b09FTUGTFiBNna2pKmpiaZmZlR165d39uBJCq8E2lra0ve3t7v3S81NZV0dHRo48aNRdY5fvw4AaCYmJgC2548eUK9e/cmc3Nz0tDQoJo1a9LgwYPpzp07BfK9e/1WrlxJNWvWJA0NDapVqxbNmjWLcnNzC7S/aNEiqlmzJunq6pKLiwudP39eabuHhweZmpqSpqYmNW3alLZt21boOXxKJ5K/nc0YK3XPU4Apa4Cd8rl4UcMU+ON/wMDO/Plk9gFhG4HD4wGZBKjZChh8ADCwFDpVpXHkyBFMnToVUVFRJfrCRXmWnZ2NatWq4dixY+jUqZPQcQQ3Z84cHDhwQHHrXxVV43cMY0xQ5ibAtlnAiT+A+jWBpFfA4LlAn5+B+0+FTsfKtc/GAJ4nAB1T4PEV+Rdunl4XOlWl4erqijFjxrz3SzKVzZkzZ9ClS5cq34F8+PAh9PX1sXDhwo9ug0ciGWNl6nUu8Js/sGgHkJcPaGsCs4YBP30LaGoInY6VW8n3gJ1fAi9uAxo6wFfbgMbfCJ2KsQpLIpEgISEBAKClpVXkBOjvw51IxpggYh/Jv3Rz+t9BJQdbYO1PQIdmwuZi5djrNGCPO3D3mHy9y1yg02x+JoIxgXAnkjEmGCL5c5JT1gAvUuVlw3sDS8YC1Y2FTMbKLZkUOD4VuLRcvt54INDfD9DUFTYXY1UQPxPJGBOMSAQM7QHc3gGM7isv23IMcBwm/2/V+hGXFYuaGOj9B9DPF1BTB6L2AJs7AulV55k+xsoLHolkjJUbl6KA75cCUfHy9Q7NgLWTAYfagsZi5VX8WSDgayA7Wf7G9pBDgHVLoVMxVmXwSCRjrNxo2xi46gss/g7Q0QLO3QCcRwKzfYGcD3/ggVU1dToC310BzByBjETA93Pg5m6hUzFWZXAnkjFWrmioA1MHA1FbgT4uQL4EWLgdaOYFnAgTOh0rd0zrAmNCgAZ9AMlrYM+3wClvQCYTOhljlR7fzmaMlVtEQOA5YNIq4OlLedmgLsAfE4Aa1YTNxsoZmRQ4MQ24uEy+3ugb4Kut/MINY6WIRyIZY+WWSAR83RG4tQ2Y+A2gpgbsPi1/8WbdfkAqFTohKzfUxECvpUD/zYBYA7j1F7DpcyDtsdDJGKu0eCSSMVZhXIsBxi0DrsbI11s5AOt+ApzqC5uLlTMPLgC7+gPZLwH9GvJPJdq0FjoVY5UOj0QyxiqMFvbApXXAyomAgS5w5TbQ6jv5PJOZ2UKnY+WGbXtgbBhg3hjITJJPAXRjl9CpGKt0uBPJGKtQxGJgwtfyW9zfdJLf0l6+B2jsCRy8IHQ6Vm6Y1AbGXALs+wKSXOCvIcA/s/iFG8ZKEN/OZoxVaEcvA/9bDiQkyde/bC8fqaxlIWwuVk7IpMA/M4HzS+TrDv2Br7cBWvrC5mKsEuCRSMZYhdanDXBzKzBtCKAuBg5dkI9K/rEbkEiETscEpyYGeiyWv6kt1gRu7wf2eQidirFKgUciGWOVRtR9YNwfwMWb8vVmdvIXb1o7CpuLlRMPLwH7hslftLFoLHQaxio87kQyxioVmQzYfBSYvh5IyZBPE/Tdl8CC0YCxgdDpmOCkEkCsLnQKxioFvp3NGKtU1NSAUV8A0duBoT3kE5avPyifW9L/H/k6q8K4A8lYieGRSMZYpXbmuvwWd+wj+Xr3z4DVkwC7moLGYoyxCo9HIhljlVrn5kDEZmCOF6ClCZwMA5p6AQu2Abl5QqdjjLGKi0ciGWNVxt3HwPg/gFPX5OsNawFrfwI6OgkaizHGKiQeiWSMVRn1awLHlwHbZwHmJsCdh0CXHwCvRcDLVKHTMcZYxcKdSMZYlSISAYO7y1+8GfOlvGxbEODgAWw+wi/eMMZYcfHtbMZYlRYSBXy/DLh5X77+eVP5LW7H2oLGYoyxco9HIhljVZpLYyDMB1gyFtDVBs5HAs1HArN8gJxcodMxxlj5xZ1IxliVp6EOTHEHorYCri5AvgRYtANoOhwIChU6HWOMlU98O5sxxt5BBBw4D/ywCnjyQl42oDOw/H+AZTVhszHGWHnCI5GMMfYOkQjo3wG4tQ34YYD8Czh7zwCOHsDa/YBUKnRCxhgrH3gkkjHG3uN6LPD9UuBqjHz9s4bAup8A5wbC5mKMMaHxSCRjjL1H8wbApXXAn5MAA10g7A7Q6jtg8mogI1vodIwxJhzuRDLG2AeIxcC4/vK5JQd0BmQyYOVeoPEwYP85nluSMVY18e1sxhhTUVAoMGE5EJ8oX/+iLbDqB8C2hrC5GGOsLPFIJGOMqahXayByCzB9CKAuBg5fAhp7AssC5NMDMcZYVcAjkYwx9gluxQPjlgEXbsrXm9YD1k6WT2LOGGOVGY9EMsbYJ2hUBzizCvD5GTA1BCLjgM8nyD+lmJIhdDrGGCs93IlkjLFPpKYGjHCVv3gzrJf8RZuNh+RzS+46yS/eMMYqJ76dzRhjJSw4HBj3BxDzUL7etYX8FrddTWFzMcZYSeKRSMYYK2GdnIHwTcC8kYCWJnDqGtDUC/i/rUBuntDpGGOsZPBIJGOMlaJ7j4Hxy4F/rsrX7WvJRyU7OQubizHGPhWPRDLGWCmyqwkELQV2zAYsTOW3uLtOAoYvBF6kCp2OMcY+HnciGWOslIlEgHs3IHob8N2X8vXtx+Uv3mw6Iv8CDmOMVTR8O5sxxsrY5VvyKYAi4+TrDrZAh2ZA60aASyOgfk15R5Mxxsoz7kQyxpgA8iXAqr+AOX5A9mvlbSYGQGtHoI2jvGPZqiFgbCBMTsYYKwp3IhljTEAvU4GzN4DQaCD0FnA1BnhdyBvcDrbyjmVrR6BNI6BRbUAsLuu0jDH2FnciGWOsHMmXyG9zh0YDIbfk/417UrCevg7wWcN/O5aN5KOW5iZln5cxVnVxJ5Ixxsq5F6n/jlT+u1y5DWRkF6xX1+qd2+COQDM7QFOjzOMyxqoI7kQyxlgFI5UCtx8Al9/pWEYnFPy8opYm0KKB8m3wmmb80g5jrGRwJ5IxxiqBtEwg7I7ybfBX6QXrWVVXHq1sYQ/oapd9XsZYxcedSMYYq4SIgHtP5NMJvRmtvBEnH8V8l1gMNKv3drTSpRFQz5pHKxljH8adSMYYqyKyXwPXYuQdysvR8g5mYnLBetWMlEcrP2sIGOmXfV7GWPnGnUjGGKuiiIDHL5RHK6/FArn/mWJIJAIca7/zbKWjfMohnmKIsaqNO5GMMcYUcvPkt71Db719cSc+sWA9A12glYP8ZZ3WjkBrB6C6cZnHZYwJiDuRjDHG3uvZKyD0trxjGRoNXLkDZOUUrGdn/fYt8NaOQNN6gIZ62edljJUN7kQyxhhTiVQK3Ep4exv88i3gzsOC9bQ1gZb28snQ39wGtzYr87iMsVLCnUjGGGOfLCVDPgn6m05laDSQmlmwXk0z5dHK5g0AHa2yz8sY+3TciWSMMVbiZDLg7uN/n6v8t1MZeV9e/i4NdcDJTnlC9DqWPMUQYxUBdyIZY4yVicxs+dvfb0YrL0fLn7f8LzPjd6YYaiSfYshAt8zjMsY+gDuRjDHGBEEEPEhS/nzj9VggX6JcT00NaFRbeUJ0+1rycsaYcMpFJ3LNmjX4/fffkZSUhGbNmuHPP/9Eq1atiqy/d+9ezJ49GwkJCahfvz6WLFmCPn36FOtY3IlkjLHy63UuEHHv7YToodHyjuZ/Gen/O8WQ49vOpSn/lc5YmRK8E7l7924MGzYM69evR+vWrbFixQrs3bsXMTExMDc3L1D/0qVL6NChAxYtWoQvvvgCu3btwpIlS3D9+nU0btz4g8fjTiRjjFUsiclvRypDo+XfCM9+XbBeAxvlCdGb1AXUeYohxkqN4J3I1q1b47PPPsPq1asBADKZDDY2Nvjf//6H6dOnF6g/aNAgZGVl4fDhw4qyNm3awMnJCevXr//g8bgTyRhjFZtEAty8r3wbPPZRwXq62v9OMfTOSzuW1co+L2OVlaA/o+Xl5eHatWuYMWOGokxNTQ3dunVDSEhIofuEhIRg8uTJSmU9e/bEgQMHCq2fm5uL3NxcxXp6evqnB2eMMSYYdXXAuYF8+b6fvCw57Z0phqLl/5+WCZy7IV/eqGUBTPgK+OlbQaIzVqkI2ol8+fIlpFIpLCwslMotLCxw586dQvdJSkoqtH5SUiEPzQBYtGgR5s6dWzKBGWOMlUvVjIDebeQLIJ9KKOah8mhlVDzw8BkgkQqblbHKotI/LTJjxgylkcv09HTY2NgImIgxxlhpU1MDHGrLF69/37vMyAau3gFqWwqZjLHKQ9BOZPXq1SEWi/Hs2TOl8mfPnqFGjRqF7lOjRg2V6mtpaUFLiz+HwBhjVZ2BLtC5udApGKs8BJ1lS1NTEy1atMCpU6cUZTKZDKdOnYKLi0uh+7i4uCjVB4CTJ08WWZ8xxhhjjJU8wW9nT548GZ6enmjZsiVatWqFFStWICsrC15eXgCAYcOGwdraGosWLQIA/PDDD+jYsSOWLVsGV1dXBAQE4OrVq9i4caOQp8EYY4wxVqUI3okcNGgQXrx4gV9//RVJSUlwcnJCUFCQ4uWZhw8fQu2dzxK0bdsWu3btwqxZs/DLL7+gfv36OHDgQLHmiGSMMcYYYyVD8HkiyxrPE8kYY4wx9un4y6OMMcYYY0xl3IlkjDHGGGMq404kY4wxxhhTGXciGWOMMcaYyrgTyRhjjDHGVMadSMYYY4wxpjLuRDLGGGOMMZVxJ5IxxhhjjKmMO5GMMcYYY0xl3IlkjDHGGGMq404kY4wxxhhTGXciGWOMMcaYytSFDlDWiAgAkJ6eLnASxhhjFZ2BgQFEIpHQMRgTRJXrRGZkZAAAbGxsBE7CGGOsoktLS4OhoaHQMRgThIjeDM1VETKZDE+fPi2Rnx7T09NhY2ODR48eVZi/RCpiZoBzl7WKmLsiZgY4d1kqjcw8Esmqsio3EqmmpoaaNWuWaJuGhoYV5i/RNypiZoBzl7WKmLsiZgY4d1mqiJkZK4/4xRrGGGOMMaYy7kQyxhhjjDGVcSfyE2hpacHb2xtaWlpCRym2ipgZ4NxlrSLmroiZAc5dlipiZsbKsyr3Yg1jjDHGGPt0PBLJGGOMMcZUxp1IxhhjjDGmMu5EMsYYY4wxlXEn8j3WrFmD2rVrQ1tbG61bt8aVK1eKrHvr1i18/fXXqF27NkQiEVasWFF2Qf9Dldw+Pj74/PPPYWJiAhMTE3Tr1u299UuTKrkDAwPRsmVLGBsbQ09PD05OTti+fXsZpn1LldzvCggIgEgkQr9+/Uo3YCFUybxlyxaIRCKlRVtbuwzTvqXqtU5NTcX48eNhaWkJLS0tNGjQAEePHi2jtG+pkrtTp04FrrdIJIKrq2sZJpZT9XqvWLEC9vb20NHRgY2NDX788Ue8fv26jNLKqZI5Pz8f8+bNQ7169aCtrY1mzZohKCioDNMyVsERK1RAQABpamrS5s2b6datWzR69GgyNjamZ8+eFVr/ypUrNGXKFPL396caNWrQ8uXLyzbwv1TNPXjwYFqzZg2Fh4fT7du3afjw4WRkZESPHz8u17nPnDlDgYGBFB0dTffu3aMVK1aQWCymoKCgcp37jfj4eLK2tqbPP/+c3Nzcyibsv1TN7OfnR4aGhpSYmKhYkpKSyjQzkeq5c3NzqWXLltSnTx+6cOECxcfHU3BwMEVERJTr3MnJyUrXOioqisRiMfn5+ZXr3Dt37iQtLS3auXMnxcfH0/Hjx8nS0pJ+/PHHcpv5559/JisrKzpy5AjFxcXR2rVrSVtbm65fv15mmRmryLgTWYRWrVrR+PHjFetSqZSsrKxo0aJFH9zX1tZWsE7kp+QmIpJIJGRgYEBbt24trYiF+tTcRETOzs40a9as0ohXpI/JLZFIqG3btuTr60uenp5l3olUNbOfnx8ZGRmVUbqiqZp73bp1VLduXcrLyyuriIX61N/by5cvJwMDA8rMzCytiIVSNff48eOpS5cuSmWTJ0+mdu3alWrOd6ma2dLSklavXq1U9tVXX9GQIUNKNSdjlQXfzi5EXl4erl27hm7duinK1NTU0K1bN4SEhAiY7P1KInd2djby8/NhampaWjEL+NTcRIRTp04hJiYGHTp0KM2oSj4297x582Bubo6RI0eWRUwlH5s5MzMTtra2sLGxgZubG27dulUWcRU+JvehQ4fg4uKC8ePHw8LCAo0bN8bChQshlUrLKnaJ/JnctGkTvv32W+jp6ZVWzAI+Jnfbtm1x7do1xe3j+/fv4+jRo+jTp0+5zZybm1vg0QwdHR1cuHChVLMyVllUuW9nF8fLly8hlUphYWGhVG5hYYE7d+4IlOrDSiL3tGnTYGVlpfQXcWn72NxpaWmwtrZGbm4uxGIx1q5di+7du5d2XIWPyX3hwgVs2rQJERERZZCwoI/JbG9vj82bN6Np06ZIS0vD0qVL0bZtW9y6davEv0NflI/Jff/+fZw+fRpDhgzB0aNHce/ePYwbNw75+fnw9vYui9if/GfyypUriIqKwqZNm0orYqE+JvfgwYPx8uVLtG/fHkQEiUSCsWPH4pdffimLyB+VuWfPnvjjjz/QoUMH1KtXD6dOnUJgYGCZ/qDBWEXGI5FMYfHixQgICMD+/fsFe3FCFQYGBoiIiEBYWBgWLFiAyZMnIzg4WOhYRcrIyICHhwd8fHxQvXp1oeMUm4uLC4YNGwYnJyd07NgRgYGBMDMzw4YNG4SO9l4ymQzm5ubYuHEjWrRogUGDBmHmzJlYv3690NGKbdOmTWjSpAlatWoldJQPCg4OxsKFC7F27Vpcv34dgYGBOHLkCObPny90tCKtXLkS9evXR8OGDaGpqYkJEybAy8sLamr8TyNjxcEjkYWoXr06xGIxnj17plT+7Nkz1KhRQ6BUH/YpuZcuXYrFixfjn3/+QdOmTUszZgEfm1tNTQ12dnYAACcnJ9y+fRuLFi1Cp06dSjOugqq54+LikJCQgL59+yrKZDIZAEBdXR0xMTGoV69eucpcGA0NDTg7O+PevXulEbFQH5Pb0tISGhoaEIvFijIHBwckJSUhLy8PmpqapZoZ+LTrnZWVhYCAAMybN680IxbqY3LPnj0bHh4eGDVqFACgSZMmyMrKwpgxYzBz5sxS75h9TGYzMzMcOHAAr1+/RnJyMqysrDB9+nTUrVu3VLMyVlnwj1uF0NTURIsWLXDq1ClFmUwmw6lTp+Di4iJgsvf72Ny//fYb5s+fj6CgILRs2bIsoiopqestk8mQm5tbGhELpWruhg0b4ubNm4iIiFAsX375JTp37oyIiAjY2NiUu8yFkUqluHnzJiwtLUsrZgEfk7tdu3a4d++eoqMOALGxsbC0tCyTDiTwadd77969yM3NxdChQ0s7ZgEfkzs7O7tAR/FNB57K4Ou6n3KttbW1YW1tDYlEgn379sHNza204zJWOQj8Yk+5FRAQQFpaWrRlyxaKjo6mMWPGkLGxsWJqEw8PD5o+fbqifm5uLoWHh1N4eDhZWlrSlClTKDw8nO7evVuucy9evJg0NTXpr7/+UppWJCMjo1znXrhwIZ04cYLi4uIoOjqali5dSurq6uTj41Ouc/+XEG9nq5p57ty5dPz4cYqLi6Nr167Rt99+S9ra2nTr1q1ynfvhw4dkYGBAEyZMoJiYGDp8+DCZm5vT//3f/5Xr3G+0b9+eBg0aVKZZ36Vqbm9vbzIwMCB/f3+6f/8+nThxgurVq0cDBw4st5kvX75M+/bto7i4ODp37hx16dKF6tSpQykpKWWWmbGKjDuR7/Hnn39SrVq1SFNTk1q1akWXL19WbOvYsSN5enoq1uPj4wlAgaVjx47lOretrW2hub29vct17pkzZ5KdnR1pa2uTiYkJubi4UEBAQJlnJlIt938J0YkkUi3zpEmTFHUtLCyoT58+gs2jp+q1vnTpErVu3Zq0tLSobt26tGDBApJIJGWcWvXcd+7cIQB04sSJMk6qTJXc+fn5NGfOHKpXrx5pa2uTjY0NjRs3rsw7ZKpkDg4OJgcHB9LS0qJq1aqRh4cHPXnypEzzMlaRiYjK4D4DY4wxxhirVPiZSMYYY4wxpjLuRDLGGGOMMZVxJ5IxxhhjjKmMO5GMMcYYY0xl3IlkjDHGGGMq404kY4wxxhhTGXciGWOMMcaYyrgTyRhjjDHGVMadSMaYIDp16oRJkyaVeF3GGGNlg79Yw9gn6NSpE5ycnLBixQqhowAof3ne59WrV9DQ0ICBgUGJ1mWMMVY21IUOwFhVl5eXB01NTaFjFJtUKoVIJIKa2qfdyDA1NS2VuowxxsoG385m7CMNHz4cZ8+excqVKyESiSASiRAXF4eRI0eiTp060NHRgb29PVauXFlgv379+mHBggWwsrKCvb09AODSpUtwcnKCtrY2WrZsiQMHDkAkEiEiIkKxb1RUFHr37g19fX1YWFjAw8MDL1++LDJPQkLCe88hODgYIpEIR44cQdOmTaGtrY02bdogKipKUWfLli0wNjbGoUOH4OjoCC0tLTx8+BC5ubmYMmUKrK2toaenh9atWyM4OFip/YsXL6JTp07Q1dWFiYkJevbsiZSUFAAFb1GvXbsW9evXh7a2NiwsLPDNN98otv23bkpKCoYNGwYTExPo6uqid+/euHv3boHMx48fh4ODA/T19dGrVy8kJia+93owxhgrPu5EMvaRVq5cCRcXF4wePRqJiYlITExEzZo1UbNmTezduxfR0dH49ddf8csvv2DPnj1K+546dQoxMTE4efIkDh8+jPT0dPTt2xdNmjTB9evXMX/+fEybNk1pn9TUVHTp0gXOzs64evUqgoKC8OzZMwwcOLDIPDY2NsU6l6lTp2LZsmUICwuDmZkZ+vbti/z8fMX27OxsLFmyBL6+vrh16xbMzc0xYcIEhISEICAgAJGRkRgwYAB69eql6MxFRESga9eucHR0REhICC5cuIC+fftCKpUWOP7Vq1cxceJEzJs3DzExMQgKCkKHDh2KzDt8+HBcvXoVhw4dQkhICIgIffr0KZB56dKl2L59O86dO4eHDx9iypQpxboejDHGioEYYx+tY8eO9MMPP7y3zvjx4+nrr79WrHt6epKFhQXl5uYqytatW0fVqlWjnJwcRZmPjw8BoPDwcCIimj9/PvXo0UOp7UePHhEAiomJKXaed505c4YAUEBAgKIsOTmZdHR0aPfu3URE5OfnRwAoIiJCUefBgwckFovpyZMnSu117dqVZsyYQURE7u7u1K5duyKP/W7Wffv2kaGhIaWnp3+wbmxsLAGgixcvKra/fPmSdHR0aM+ePUqZ7927p6izZs0asrCw+NAlYYwxVkz8TCRjJWzNmjXYvHkzHj58iJycHOTl5cHJyUmpTpMmTZSeg4yJiVHcTn6jVatWSvvcuHEDZ86cgb6+foFjxsXFoUGDBh+d2cXFRfH/pqamsLe3x+3btxVlmpqaaNq0qWL95s2bkEqlBY6Zm5uLatWqAZCPRA4YMKBYx+/evTtsbW1Rt25d9OrVC7169UL//v2hq6tboO7t27ehrq6O1q1bK8qqVatWILOuri7q1aunWLe0tMTz58+LlYcxxtiHcSeSsRIUEBCAKVOmYNmyZXBxcYGBgQF+//13hIaGKtXT09NTue3MzEz07dsXS5YsKbDN0tLyozMXh46ODkQikVIWsViMa9euQSwWK9V908nV0dEpdvsGBga4fv06goODceLECfz666+YM2cOwsLCYGxs/FGZNTQ0lNZFIhGIJ6NgjLESw89EMvYJNDU1lZ7xu3jxItq2bYtx48bB2dkZdnZ2iIuL+2A79vb2uHnzJnJzcxVlYWFhSnWaN2+OW7duoXbt2rCzs1Na3nRK/5unuC5fvqz4/5SUFMTGxsLBwaHI+s7OzpBKpXj+/HmBLDVq1AAANG3aFKdOnSp2BnV1dXTr1g2//fYbIiMjkZCQgNOnTxeo5+DgAIlEotQxT05ORkxMDBwdHYt9PMYYY5+GO5GMfYLatWsjNDQUCQkJePnyJerXr4+rV6/i+PHjiI2NxezZswt0BgszePBgyGQyjBkzBrdv38bx48exdOlSAFCMAI4fPx6vXr2Cu7s7wsLCEBcXh+PHj8PLy0vRcfxvHplMVqzzmDdvHk6dOoWoqCgMHz4c1atXR79+/Yqs36BBAwwZMgTDhg1DYGAg4uPjceXKFSxatAhHjhwBAMyYMQNhYWEYN24cIiMjcefOHaxbt07xNvm7Dh8+jFWrViEiIgIPHjzAtm3bIJPJFG+uv6t+/fpwc3PD6NGjceHCBdy4cQNDhw6FtbU13NzcinW+jDHGPh13Ihn7BFOmTIFYLIajoyPMzMzQs2dPfPXVVxg0aBBat26N5ORkjBs37oPtGBoa4u+//0ZERAScnJwwc+ZM/PrrrwCgeE7SysoKFy9ehFQqRY8ePdCkSRNMmjQJxsbGijkb/5vn4cOHxTqPxYsX44cffkCLFi2QlJSEv//++4NzV/r5+WHYsGH46aefYG9vj379+iEsLAy1atUCIO9onjhxAjdu3ECrVq3g4uKCgwcPQl294FM0xsbGCAwMRJcuXeDg4ID169fD398fjRo1KvLYLVq0wBdffAEXFxcQEY4ePVrgFjZjjLHSw1+sYayc2rlzJ7y8vJCWlqbS84WqCA4ORufOnZGSkvLRzx4yxhirmvjFGsbKiW3btqFu3bqwtrbGjRs3MG3aNAwcOLDUOpCMMcbYp+Db2YyVE0lJSRg6dCgcHBzw448/YsCAAdi4ceMntTl27Fjo6+sXuowdO7aEkjPGGKuK+HY2Y5XY8+fPkZ6eXug2Q0NDmJubl3EixhhjlQV3IhljjDHGmMr4djZjjDHGGFMZdyIZY4wxxpjKuBPJGGOMMcZUxp1IxhhjjDGmMu5EMsYYY4wxlXEnkjHGGGOMqYw7kYwxxhhjTGXciWSMMcYYYyr7fyL3+raoaqLBAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "sns.relplot(\n", " data=recall_at_precision_persons,\n", @@ -3381,7 +1068,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "id": "13516ec3", "metadata": { "ExecuteTime": { @@ -3407,7 +1094,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "id": "7caad849", "metadata": { "ExecuteTime": { @@ -3415,18 +1102,7 @@ "start_time": "2023-06-22T09:38:51.321315Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAHqCAYAAABcJhVUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZxkWVmgjz/nnLvEHllZlVlL1tZrNU1vbN3QgKB+HVREnfm6zYjAqAiMIKP4cxwdRkAdxmFEBBxAZnAYHGbQGb4qCC6ALQLSDXQ1vVb1Ul1bVlZVVlVmRMZ6l3N+f9wba0Zm5VZb13n6E30jbtwtIqMynnzf875HGGMMFovFYrFYLBbLKpCX+gIsFovFYrFYLFceViItFovFYrFYLKvGSqTFYrFYLBaLZdVYibRYLBaLxWKxrBorkRaLxWKxWCyWVWMl0mKxWCwWi8WyaqxEWiwWi8VisVhWjZVIi8VisVgsFsuqueok0hhDtVrF9li3WCwWi8ViWTtXnUQuLCxQLpdZWFi41JdisVgsFovFcsVy1UmkxWKxWCwWi2X9WIm0WCwWi8VisawaK5EWi8VisVgsllVjJdJisVgsFovFsmqsRFosFovFYrFYVo2VSIvFYrFYLBbLqrESabFYLBaLxWJZNVYiLRaLxWKxWCyrxkqkxWKxWCwWi2XVWIm0WCwWi8VisawaK5EWi8VisVgsllVjJdJisVgsFovFsmqsRFosFovFYrFYVo2VSIvFYrFYLBbLqrESabFYLBaLxWJZNVYiLRaLxWKxWCyrxkqkxWKxWCwWi2XVWIm0WCwWi8Visawa51JfgGXlGJMu+24Dj1f5/JLbmo1/HkCn6zV9S9N7bEY9P3T9QiR/+QzcBAhADT+Xru/e0sdyxLpFt1HbLrP9onOl21osFovF8kzFSuQ6WIjhbDxaqPqFqF+SVipM2gxtP3SOzn2WEbpR2y96bmj/zlL0b2v6HqdiNPx8P0IMrupsK/oed5YdKevfVoy43z2uXvxah9/z4dfTPacZfA1dTP9Gi8/ff40jhbP/WkfIpCQV3D4xlYCiT4pFb90oIV1KUle03RLbyyWOYQXYYrFYLCvBSuQ6OBvDN1vg9H3hbqQwLfkcPQlA9L7wR4nOwD5i8HkAjEHQu2FMn0CkSmZGqJnp0zfRt+2wqpqh9YbBY5nh9X37D+zb0WmVvHKRqpjoezfE0LITRxT9y3QEx8D+i+kX0lGiOuoV9++jh7cxgwLceTWM2HfgOhhaOUKAOy9h+HM3/Jnrj6oObNNZ1yeUHaF1ZfJLwhXJzRM9Ke4Ir+p/3Hdf9W1rsVgslmceViLXhcY1ATtVv2zB6PjfSuVqaL9huRo4R1+c0ui+Y+q+bfvsZTAuOni+peSun+FrHrXfyDgg9NRleP35nh/W8VGqNepY6W2RZPZLZb8uSRAqvUmEcBAdER0Qzv6l7B2b4WMP73Nxhh8Pyy9994cFeEBkhwRYAwFQjyFO18cmWS/S7Tt/MXUktj+i2h9VlSQC6gjwSJYdKR2WzYHHI56TVkgtFovlssFK5HoITkLjJMgWa5cr6MUvl2KUYPXJVVeUhvbprl/uub5jdUWnE74asc1wHKt76KFzXep8qElVyMCgOPcJttFADKad7qT7woXDAwmWk9yOKMKAMIp+uRT0YnUSpJM8Fqm84oyOpA4cs19Y+9b1LQUCsZSwXsAfiTGLZVOTDMuIgcCA1r318fA/EwHCgEk/UqqzZDD1r+gJqEsqpqmgLiefw891jmexWCyWtWMlcj0YnQiIyrEiubLfWhcP0S9hFxAzIvK7lLCaqPdc3BcHXCSsS9EnkUsJ60Aq30klNdUnqUg1aglhHbXO6YvQqqWvTPR+mbjrfM/1CAntyGkItFMhjfu27ZdR+u4vGm9Kb10nXe8yKKZKLC+fcsRz9p+2xWK5GrESuW4ESP9SX4TlUtGNMHIJhHVoaEJ3SEMMJgRavfX924yMpo5ap3oS2pFJ3OTzLj0Qbp9gdiKrfdLZldXV0ZG+7mWsg45kxmm6viOecXq/GQ8K60ghpfen4KgOAB01XySk4vzy2S+r65Vvi8ViudhYibRYrhQuqrB2hgPEvaUOgBbE8+n6YfHsS893RdID6abS6fWl7vtF0+mJ6AaH9DpC6qzzsMYsls1+IQ2BxjrGjzoCtinY6sAmZYuRLBbLlYGVSIvFshjRl85eKSbqySdxIpqmBnH/+n76o5ydtLvXF+X0++RyKem8OAVLoi/iuF6BHzV+NDTwZAhPhbBJwk4XtigoLj2CwGKxWC45ViLXgTaaMI6JdLTkNuI83zjLPS9GRGVGrbNYLguEszrBMp1IZ1+00zRA19L78fAJ+kRS9olkGuWU3pBgDkU9u2n3S8tS40fLCiID8zE80IKshAkF2x3YrMC384tZLJbLjEv/G/UKpt1u02g0qbaX3mak9C0jgutxxJHSuUxBT69v5BIn7R8TtugYg4+TfoRLnec8L2q5p0e+JtIqZDF4/M7ANXrX0tnOyvdlSDf66K5s++54z1Q8jQbdBpp90jkqxT6UZu9EO/vHdeL0KuYZks6L+NlxBGxJfys3NMzEcCxMIpJTDkw4SaTStjqyWCyXA1Yi14HBYIxGOYtzTsYMf5mt8RzLHWboSbNEde9y17LUPqvebrn2j0u1flxqX7HEc51j9S2HxbVfLhFi0fd/IpRJSEf2yacQsvt4UEpF7y6Dzw/La7+49s5lv+03DCFIIosr/LXVlc7O+M4ovQV9KfbhqvihQqKO5Hakk/5oZ0dKh6KfG5Riz8nkpg1UNRwI4IkgiUpOucmyYKOTFovlEmIlco0cD+H+MMMTjFE1hQt3omWjdBfutJcjSdMagxIaB4NjDAqDg8bFIOmsj7tT+kGfaxuTin+SJu2IcVeQRwlr//2Bal2x6L4QvajvUvLajdiKjoSKQXkV3R26px4pr0tEXXvnuso+HKPoSucq9jEd6RxKsccLDPQR7f9wdFLssiOQ/Sl2fwnpXFnrJEiijmMquQUGKjGcbEFeJIU429J0t63utlgsFxsrkWvkj6vwb6u7gd2wTDrbculwOlLZuYm++53nBtZ1ttMoY3DTx8oY3HQ71b/v0GNlNK4ZWofBMZ37/UvdXTrGoITBNTrZXiTnFJJFvc5XI69CiO5whqXkdSCa2ncAAUghEVIghUTKqyTk1ZW6labYdZ90xr3esTT6xnwON6zvb53UiWBmwB0HVQaVXfJ0nkhS2gB1DUdDOBJCUSbp7kkHxpaezdNisVg2FCuRa2SThD0yoKVD3PNEEiwbgwYiBJERyRKZLgV6RLgpeb6PUSn3jRl1cEFw9KAEKzoym8pmnxArEulVIonQDkhsV1rTbYbuO519RCrCGFyhmRBtthMwJjVKCZRSKKkQSqKuRsEcRXdc52pT7P2RzhDiOoSnQGbA2QzuZnDKy6bu8zK5xQYWNDzaTiq8x2WS7t6iknS4xWKxXCiE2ajBe1cI1WqVcrlMpVKhVCqt61iPzj7ON84eZk9ubGMuzrJmtEkEM0YQpmIZG0GYimZ3venfRib3Uykd3mZAVLvi2nczgyK7eLvF+y4+n1xSgi8XssRsp8VW0WIbze79HaLNdhmRVQYlFUolgikRSCURQqCk/QNrxRgDpglRDTDgFMGZBGcMVGFF4cW2hoqGlumlu7c7MK7W3yvTYrFYhrGRSMszAinAS4skusnAK+hLs1+Co1RmY9O5L3vrTf826XqTbj9im9VKcJweq43klPE5YzyaKA6R55DJ9y6486dnDONhwHaabBUtttNim2ixXbTZIQO2iADPcRLB7EQurWCORggQOfBySQFQXIfWk0k0Uo2BN5EsVWbJQ/gSJmXio3WTpLoPh0mKu1PdXbLpbovFskFYibRYLgP6JbjLZfBFHxjBSeMzY3xOaH/g/ozJ0EBxDo9zeDxiyslOfYLpotkatNiWyuU20WI7iWBulw3GnCRqKaXspsY7snlVFwcJJ0lnU07aGMUVaMyCzKWp7s3glJZMdwsBBZFUb0dpdfdDbfDCpPfkDidJd2dsuttisawDm85eK2f/nMr0H3KuXSevVjgI37IujFBo4aLxk6XwMMJD999w0WLE8wxtJ5LtjHDReDY0swaMgSoOMzoRy2HRPGn886bpi4RdwUyimIlg7pAtdiiN5wgrmB266e6F5PEa0t0tDfMaAp0I5nYnSXmP26kWLRbLGrASuVaO/0c48m837sIsl5REMt0h0Uzk04hBMdVDYmqGxDQR2d52ZsQ+V4PMxgZmjccJk0QtO7J5wvic1D7z56mAlhi20Ga7aLGVFttFix0iYLtss9MJGZcGx7lKBbOT7tbNvnT3ZFrdvXS6u7t7WoxT1UnAuzPV4maVVHpfDW+hxWJZP1Yi18rCNznx9Kc5VjvDmEh+aXd/7w78Ah7s6ZesEou3E33bjjzOEMPPDZxjuEnhEg8W9TJc5nyXAYIYaQKkCZEmQJggeUy67N5CpGkjTDjiuc4+4aV+OSMZFtCuZC5aPxh57YnuSmS2P5o7Omp7MT4MDSOTCGY3kpkZiGoGLJ9rzRAnUcw0krlDtNkh2+xwIqZUSN4R3bGXz2jB1O2kj6WJQGZXlO7upzPVYl33plrcYadatFgsK8BK5Dp4+IlH+NapQ+zyy4OtYkz6P9O72/fE0HYMTZox1NV60eNlEKOWSwhln7SOdMz+htYj1nUPLfpXpMilRXXkNS4lv53j9L+Oof3X7ARGIwkT0TTtrpjKITEVQ2IqGdxu4Hnave3OK7qdfYI1voALSyx82mqCljNFS+2g6UzRcnbQdHbQUjuIZOmCiqY2MIfbTY+fGJDNpODHnOffxSYCtqURzO2izXbZZkqG7HRCJp0YR6bFPRKUUFe+YBqTNEaPasnjNaS7m2m6O9JJRHK7m6S77VSLFotlFFYi18HDTzzCt04fYvdl0OLHjHowPKPbqB/1EvLb/3Bl8jvqwKuU3879FcivWCSjIpnSpvNY9gmy7DXj7orwomP2nXv4/F153mCRBTAmqbNeIlrajagOiy79Ijv0/JCw9p7vHXNYdlcrs5EoJEKZ3ppqRyKczg5azna08NfxppyfwAhODY3D7BfN+nlqBh00W9MxmNvT25QKmFIhO52IktJXtmAOpLvdvurulaW7dV+6W9FLd29x7FSLFoulh5XIdXA5SeSVypLyO7BcRn7NcMTXDG4zUnTPI7iLoqQj5FH0zR0zSmRT8RSi//GQyI4aurCUyMohY91IkYVFMqtMk0x0kkw0TSY+QTY6QSa9+frseQ/XVhOpWCZy2YlgtpwdtNUEGzW/9BIvhQUUMzrDjPGYMZnuOMwTxueU8YjPkyovELItHY+5XSbFPjtVyJSK2O6E+FIglEByBTRbX5Tu3pKkvFVxRenuMJ1qsWEgJ5JZcTpTLXpXmFtbLJaNxUrkOrAS+cxj0ciDfgkd/qdyxYmsHIzU9u836pxCgJIwVGghdWtILKfJxj3JdExj6ddFMu6z5WxPI5hTtJzt3XR5y5kiksVl918vnYKfTmp8RvucMJmkqlz7zK2w4Gcb7a5gTqlEMnc4IVukRjqXoWD2p7uFSFLcq0x313UilDFJv8lO78kxm+62WK5KrESukQMHDrD/gf1EWqOutFTXlYoQSCmSWVHS3oKi02NQSYSUSCVGrEsqd6+UlOQFEVnd/0CMuD8CCaQRN1yJcGXSB8YBZGINiwKKxuDqSl8Ec5pM1Cec8UkE8bKvPxTFXpo8FcveuMxtGOEtu/96aRqZpMf7xmDOpFHMk8anzfJN0v204GeHbLNdBOzoE8ydKiTncOkF00QQ10C3knS3swnciaQ3pTz/UITOVIsLOpkJZ3M61eJmlUzFaLFYrg6sRK6Rhx9+mAceeGDjLsxywRFSDIjlwH05JJ8jJfXKkNCNwEAintpAbDDGJOEnTBrtTOXSEQhXgJOMH0Ql0culppMXJsKPT3ejlkkEsyOa03h67jzXJdKCnx201NSicZmB2nLBU+Wdgp9+wezcn11Bwc8YQTKjj2izPRXM29wG1/nxpZnFpz/drXLgbAF3HFSJJX+QfXSmWmymUy1uS9Pd4wrcq+efjMVyVWIlco20Wi0efvwRHjx7nM3Z8sBzK3lDh79o1vJDGPVlNXyclV3L+Y+72mNs1LUMXI8xiDhGaI2JY9AaEWuIY4g1Rqf3tU4exxp0vLY3dxSCrlj2i6jsRECHBLQ/Otrd7wqJhi6HgUQotcHEiWR2UaQRSgGeRDh90UuVRi+XC37qZhK1TNPjnUhmJ32uTHPZa9N4aXp8R1+6vDcuM5aF9b8ByxAYwWnjJelxnSz7I5lLFfxIDD+sZnhjfpYxz7k0UUpjQNeTghzoq+7eBCp/3nR3Z6rFSvpPrixhp5MU45Rt70mL5RmJlch1cOCJh3no1OOo/I6R2iWG7GUlv0OHtxl93KXPMWr9qBqORecxw9e6WCVXdJxFr9ksu48Yuc/iY3bW6XTr3hJ0WiShuzeBEaL3WBtMrInTpdEanUqm0aOXxHEqpTqR0o1CCpAqESqlkrTw0H2hJEiJUMl2ok9cEQIpxJLva+e9HH68lm36i91XwqLopTa9NLqgLzUu0tS47Eonjjx/ANEYXD3Xk8t4Zkg0T50/VS5LaWq8V03eK/rZjhEXdvapBaMWpccP6ywP6uR30RbavNk5zHfnGvied+lS3t10dxOEn4ybXEW6O+qku2PwZJLm3pkW42RtuttiecZgJXI9x3piP5VjX8UrXzuwfmUieD5xGrWPZb2YgVvvp9D/ePh5bQyRhkgb4tgQak0Up+tiTaRN+tgQp4/j9H6sDVGsRxaYr5X+VHtPOFPJTGVUKNkV0CQCqEApjEzWDQ+37FfSzuuOASPAwZAxGp8Yv6vsq8MYkoilIZX0vidVX3rcE4hOanyF0cvu+9JNlU+nYzAHK8tXliqf7GtZ1FdZ7kwRyM0XLJx2X1zm94M9nDBJ+527OMsveIfZk5V47iWUSUjGTca1Nae7W2m6u51OtdhJd29SyXhKi8Vy5WIlch0sPLmfxpF/wB27zgqeZVm0SUQz1L1lmIrneZfpPhv1D1UKcJTAkRIlRXpfoJRMlwJHSTzfRWR9GtKlIlyaKNpIdHqMjEmkMkN8nlKTpemmxk2aGh+OXqo0Nd6JXjoyHXsp0+dWfi6lG32p8TR6Gc2kUc0TKNNadv9Y+LTU9r6in6m+qOb6U+VtI/hEOMWnom1ESHxiXi2O8KPuaQpZ/9LLpNGgG33p7jK4nakWV5burqVCKeiluyccO9WixXKlYiVyHZzZ/0XqT9+D8Lf1Wq6INAkoQSBByLRFYLJeSNEb+J8uk+4raSKx24+l80tV9B03RXQqjYeaBIpeBbLoO7blyscYQ2xYJKJLi6keENBQG+I1ZuULnqScdchlHPyMj8j6NKXDXFcsFRECKQyeSaQynXV8na+ZJHqpSYcW9D2pRE8wO9FL1Vm/uC3RSk7m6nN9VeT9otlJlS//BoayPNB0vVv0o3akVeUrS5Uf1hl+L9jbTXFfS523yCe4zWvh+5eBTMKIdPempP+kMwby/NXzkUlksh5DRsKWvqkWMzbdbbFcMViJXAez3/xrFp76Eiq/M/26TBKDptNiZdFyA97qgWkGxVC/QIEYEFB5weU2OXdHYnvH69vQyu1lgjG9COdyIhrFhnZsqLYiWtHiz6wACr6inFHkMy5+1kVkfFrSYR6XukjEMkw/fy4xvtFk0Hjodf/sFxX2mL7oZX9bIqcveqnopcbXIClJqvxUn1hODxQAeXr+PNcsaavJPrGcGhiXGcjxAevVBv4q3sJHgt1UcRAYXilO8lpxmHFP4GcyeI576WUShtLd+VQmN6043d1Mo5OBTnpPbndhUiXpbmV/UVgslzVWItfB7Df/moWnv4hf3r2Crdf+NvcEVQ81rk6+QLuJzs6P0oAxemhfk3YFPJ/crvE6B2ZSOZ/c9j/fk1ch0vsCZEdSZV8UVqTyK12EUCBchFQgHIRMb2u7essStCJNpRlTaUVUWjGVZkQ7Hi2WRV9RzioKGQc/4yGzPm2hmMdlQTi0kgkZN2yc5Sh60cu0sCdOe2GmhT2oRDCFK8AdbEu06uhlH0rXB6rIhyvLlWkvu3/T2cnT5TdwOvv/0G+588bhw8Eu/jqeAGATIW+Qh3iZOI3nupeXTA6kuwU4pTTdPQZO/ry7d6ZaXEjT3ePpVIubFRQvQecji8Vyfi65RP7BH/wB73nPezh58iS33347H/jAB7jzzjuX3P5973sfH/rQhzh69ChbtmzhR37kR3j3u99NJnP++WBhYyXy9De/QPWpfyA/vtYZNs4zhmgDjrEizPmOsfTzpht9FX0yavqeI12fPm96KcFOxLZzjO51mM7j9Bgm+XLvbC+ETpeGTuBTiCSdilRIqRDKSQVTIpVKIiLC6conQiXSKRS9KV469+0AraUwxtCODPN9UllpxQQjxFKKVCwzilI2EUvhe7SlwwLqgo2zHHndMBi91Kb3uVxLU/VVndzg6XNDEcxeE3Y/Pt1NlVe9mzlUfjPzmecNHOKBuMjvBXs5arIAPE9WeLN4ku2igetcZjIJoCPQnWbmHjjjaYSyvKJ0d2eqxbqGnEwik9tdO9WixXK5cUkl8lOf+hSvec1r+PCHP8xdd93F+973Pv70T/+UgwcPMjk5uWj7T37yk/z0T/80H/vYx7j77rt5/PHHed3rXsdP/MRP8N73vndF59xIiTz5rQc59fCjlLaOsxEyt7L+jGsXvpVzMa5jrdep+25R0i/SREAEOsSY9LEO+7aLESJGECGkQUiNFLoT2EwqnaVM5kKWSauZbqpfKKTsREUlAgchZNoApyOfElB9TXHk4O0ZLqTGGFqRYT4VykorotKMCfVosSz5inLWoZxR+BkX5Xs0pUMdxbxwaYwYZ+mTRC3XO85y5PVfgKbqq0HpBjsX/je7Fj7RnTLyTOYlHBr7eRpur/NDYASfirbziXAHIRIXzaudaf6ZOYor9OUpk7DudHdDw3w61WIxnWpx0k61aLFcFlxSibzrrrt4wQtewAc/+EEAtNbs2rWLt7zlLfzqr/7qou3f/OY389hjj/HFL36xu+5tb3sb9957L1/5yldWdM6Nksjgr2Zo/O+niIIA6Tog00BaxyHS+6b/cf82/Y+X2l6A6bs/8Fj2bT/8eD37L7X98PUvc47LNadsSNP8cZzEP3WI0RGYEDryaTSCGEQyfCCJbqayKUAIjVCglEmaiCsQwiAV3dfeGV6apOpNIqHpFRhE2pMz2diIIeFMb2bROrGiL9zLBWMMzVBTacVJ1LIZU2nFRCPEUgkoZRTljEM5q8hlXITn0pQOTRRzQ+MsjQBvg8dZjnwNsLam6jKtHF/lRbnxOfZW/ys7an+GIMYgmcm/isPl1xOoie5209rnfcFevqnLAOwWTf618zTPNucwGDzHw8v4l59Mjkx3b02qu1eY7q72TbU4LpOpFrfYqRYtlkvGJZPIIAjI5XL8n//zf/jhH/7h7vrXvva1zM/P8+d//ueL9vnkJz/Jv/pX/4q/+Zu/4c477+TQoUO88pWv5Kd+6qf4tV/7tZHnabfbtNu98UjVapVdu3atWyLbf3KU9icOr3n/ZzJmGQldlbgObW9cMFnQ6c1kQOdAZ8Ckyw3NgQIGjYlNGuE0GB2jTZy2oolJUvnpeNWudIok4pkEL7vTLUpHpql2gZRJWj65GZSMQeg0UgqgEaYTSe12bUxlKR3davp9XS4hpKJPSDumK1lffnZtGGNohJr5/jGWrWhk1biSJFKZymU+6yBcl5Z0aCIXjbMEUOLCjLNc9DrggjZVz4ZHuLbyX5ho3gNALDIcK/4LjhVfTSwT2TIGvhSP8wfBbuZI0sOvULO80TlKLm5ijMFzL1OZhL50dxNEpq+6e2Xp7iBNdzcN5ARsTXtPbrZTLVosF5VLJpEnTpxgamqKr33ta7zoRS/qrv+VX/kV/v7v/55777135H7vf//7+eVf/uWk0jSKeOMb38iHPvShJc/zjne8g3e+852L1q9XIvVsizNfeYxzTx4nP1bu1r2I/m7V6fe/6Ls//Fj0rV90jBXsP+qcI/df5pxCr3L7y7gUS3tDornc/QsinUPRzjjCmFRCdUdG+3ZIx3MiFEiB7FTNK4VyZFc+hehFPZPt6KbdpTAIEQMhkKT2Bf3pfI0wMb0fame+n+SKDSL5uWLoCKbppuh9wL9gUVBjDPVA90UrI6qtmBFDLHH6xTLrUMwocF1awqEp1EUfZzny9UDSv8Zw/qbqqi96qdSit7jU/jbXzX+AcvAQAIHcxOHy65nJ/xBGJNMn1ozio+FOPhNNYhCUiHiDd5TvFbNEcdiNTPoZH/dylEkYke6e6Et3L3+9/VMtapIU91Q61eLYM38kicVyybmiJPKee+7hJ37iJ/it3/ot7rrrLp588kne+ta38vrXv563v/3tI89zoSKRACfvf5iTDz5BadvmdR3nimMpaV1OfNcrrhpECKIJMr2JJsgWyAaI1trkVvtDEc0+0VwknhdAOmEo2qk1xugR0c4kyGVIvxhT6RSdMZvSQToOUrlI5SGUQspk405EVKpkbGcS7TQIo+lNDhkDcSqbiYwKGkALYVrJdkamvQ79RC4v0BSBxhhqgabSjJhv9cRyRCYcVwrKWdUnlwrjOLSFQ0OoSzbOctFrguWbqjsSWXIhpwbFxxi2NO/h2sofkIuOAdBwdnOo/POcyb6sa0mPxnl+N7iGQyYHwG2yyi96h9lDkzAalEnP9S7POdy76e4aoJK5u1eR7o7TdHctBlcmUcmpNDqZuwzd2WJ5JnBFpbNf+tKX8sIXvpD3vOc93XV//Md/zM/93M9Rq9VW9Ff2xhbWPMzMt5+gOLm5m4odaONouXgYEO0+uWye5/46pHNALofE8+JIZ6cAJMYYjdHx6Ghn1zqHo50KISRCuUjHRapEQIVQCJU8h1Io6SCURskgEUlTB6oI6gjTTqKdhkGxxLsg4R9tDLV2nEhlGrFcaI8WS0+Jbhq8I5jCUbSEoiHUJR1nOQpjgEBjIoMoOYiitygqKUzE9tr/x97qf+tO31jxbuOpsV+g6t8KQGQE/zfayn8Pp2ihcND8uHOSn3Kn8Yy+cmQSFqe73TTdrcZAnv+Pl+5UiwbyArY7Scp73E61aLFsKM6lOrHneTzvec/ji1/8YlcitdZ88Ytf5M1vfvPIfRqNxiJRVCr5bXspXLhZiWnMxZg4HHxCJP/rtjcUdCNCnWJd0Vnf16Jm5CQ0nf+JvmOL3npB3wD+vrdGdDa6WsRWJNIWZ4BNK9i+I51pFHOl0inbyY35lV3WIunsS6Xr3OIo6EoG8iU/82R83UrRRnejnJ1lHDaSb9lOtDN9X6Dz2XRQjoPycjiZHNLZjHK3I5TAUSGYFoImwlQQ1BCmhiBIo6YKg9cnluuzaSkEpYxDKePAWOc1GRZa8UDxzkI7aTc0W4+YrUfd/X0luhXh5YxiKuugnEQom0LRNJIKLlXhUMUZGGfpp7PwXKhxlkIAvgQHTDVKBvyNOQiv954Z4XCi+KOcyn8fuxf+mJ0Ln6QcPMhzT/8ss9nv5FD5X9F0d/Pj7kleps7xgXAPX4s38T+jHfxdPM5bvSPc6VUw2hBGIUEtuLxlUjogx4CxJN0dzkJwcsXp7oxMbp1096EwuY3JZKrF7a6NTlosG8Elb/Hz2te+lo985CPceeedvO997+NP/uRPOHDgAFu3buU1r3kNU1NTvPvd7waS8Y3vfe97+cM//MNuOvtNb3oTz3ve8/jUpz61onNuZCTy0Be+zfT9j+NvGQPofQl3bimdfolDbRS7y/4v75XSlcuBFXSlccnvhAGx7Ilr2uM7OUyf2NJ53Nm9X0aHxLb3fJ/Y9l1HkooV6xLbbv1N2qi8ez64sF+EpiebXblsgWgMptQ3PNK53P0MK5LOtWAwmChCxyE6jpKxnRikdJLopevjZvIo10e6PlIplBMhOulvs4CgAqaNoN2XDvcxeCTjLDf+b9hYGxbaqVimLYdq7XjkP6+MIwbGWJYzCseRiViSRC6r6TjLForWRepnaeoxOAJZ9hant1O86DTXVD/KtvpnEWg0ihOFf8aR0s8Qqk0YA1+JN/H+cA9nTFKo8p3qLD/vHWWzCLsyecVEJiFNd9fT6u5OuntbUoyjcufdPUrT3fMxPC8D156/fsdisZyHS95s/IMf/GC32fgdd9zB+9//fu666y4AXv7yl7N3717++3//7wBEUcRv//Zv84lPfILp6WkmJiZ41atexW//9m8zNja2ovNtpEQe+eJDnLzvcfydKwl9rSUSuMwe/aLatzTdpek9ZVgkt4bF+/YvTf/xR13WiOdGRU27d4fFduCJvsir7BNbQU9a0wiuUYAyGGmSFcogBRjRLRHpvox+uRSdxxdLOvXo9PrIaGcrWa72agxg/NERzQslnVrHmCgkjkOIQ4wxSWrccZGOl4ill0U6LsrxkI5BihbCNBGmAcyn0cs2gihNhydSmUQt3Q1Ph8faUO1EK9MxlrX26Hmws45MU+C9dLirJE0kLdRFG2dp2suntzvkgye5tvIHbG59DYBI5Dhaei3HCz+BlhkaRvJH4U4+HW1FI8gT8TPucX7QOY0SSfYnipI/EDzXJ+P7uK57ecskJH1gdT1Jd8tsWt29eUXp7mMh3OZbibRYNoJLLpEXm42UyJl7DnD2ngNkr1vcGP2qZEhsu3fT9Z2PmhneVnd2MUPb9x2XEWIrDUKZbvca6QqkaxBOkj01wmAkGGkwabTVdP4z/WdMrPiykM5GTyqXS7GL1hqlMzNaLhdJZy5Nr6/ouBodRegowESJWCJAKAelPJSfpsOVh3I9pEM6zrKZpsQ76fBknGWyv8PgOMuNDblGqVhWWlG35VA9WEIsXclYX7SynEnEsk0il0uNs0Ssb95wE4NpxYiMQoy5CG/p92Cs9U2um38/xfAgAG01wdOln+Nk/pUgFI/rHO8N9nJQFwC4SdZ4m3eY62XS3FzrZMwkcGXJJCQiGdeSN6yb7h4HVRz5ubESabFsHFYi14GVyEtMUsyM1ia9b5LZR/oEVEjSRuAmSRG66XArl0RAhUiKX1QimkbotEjcoDvSazrq2UGk7XBEEthLpVOmodeLJp3DYzlHpdXXIZ1xAcLtEG1PlvE4K45kDqbDw2RmIUiqxpWL8jM4fiGVSg+pFI4TAc00armAoIowbaCdvN/ddPiFaTsUxoZqX7RyvhnTCEeLZd6TvWhlRlHKOLhKECJ64yzpjbMc7mfZGWfpoZdNhw+kt8c8yI5ObycbayYbf8u1lQ+RiWcAqLnXcaj8Zs5lXkSM4C+iSf5ruIsGConhnzmn+Gn3OFmRvM6OTAoErutdWTJpYnrNzJ3e3N1D6W4rkRbLxmElch1YibwC0EndiDYmmRkxFc2+Kbz7pj8ElMBxRZKG9UQa7UzS5ii6c3VrdNqlRRObdPbvNFRqTCKh/Xn/SxrlTN+HZQuIhgW0NeIQHkTbINyWiuVWYJVdfnQco+MAHYWgo6QIRwqE8lCuj+PncPwMwvFQykG6BkknHV5HME/SdqiNIAYjBtPhG9x2KIx1Okd4Lx3eXEYsx/oqwksZhSMFMZx3nKUShi0mwF0iDb7S9DaANG12LPwf9lT/CNcsADDnP5+nxt5CzbuJM9rlg+Fu/j5OWpNNiDa/4B7hJc589xj9Mul5Hr53BckkpOnudO7ubrp7C6gyx2LXSqTFskFYiVwHViKfIei+iOZKRTONajqeQHTk0klT5mn00yQdIBOpNBptkuhmTE86O6n1y2o8J0AA7mlwZsCdAeckyKEmBEZANNGLVIbbwJy/nd8itNHpOMsAoigdZwmk4yodP4fycijXQykX4Zi+tkMNoEKv7VAExlzQtkNBpHvRylZMpRnRikb/Gi34qVim6fCSr1AyiWO3SIp4GkIxi88xkWErbXxGS6qJDKatEVmFKC+f3gZw4gq7Fz7OzoU/QZL88E7lvpeny2+g5ezg3rjM7wd7mDEZAO5Wc/yCe4StMuge44qXSRhKdxc4JrZzW2GcazPnL8axWCzLYyVyHViJvIpIpTLuiKYxpDMhDrTF6abPpUC5AuUmYzWVQzLdoUqafhsB0kllMk2d94tlbEwqnnRF9JKO59SgziZC6Z5M5FLVFm8Wl1KhTNPg8SbWUlGWvCdRiI4iTBxgtB5oOyS9HG4mh3T8pFrckUNth6oIFtJ0eCJFYiAdvv62Q/20O2KZVoTPtyLaI8RSAAU/GVc5lo6xLPoKLSVPiDyHRJ5xAnIDU930vS8GTCMGN63eXi69nZKJTnBN5SNsbfwVABqX48Uf42jpddTEGJ8Id/CpaBsxkgwx/9Kd5v91TqL6jvuMkMk03X0sCLmttItri7sv9RVZLFc8ViLXgZVIywCpaGqdCOZARHOg/yIolS7dRDalA9IRSCfpL6pUMj2edKAjjKNks5M670hn53H/eE49lCIV6f874zllKpqIdFwnK5NOuZBGKdNopTq72Be1n0Yqt6ViOcmau9MawMRJAU+n7RCAkMk4S+n5OJkcjptJ2w5JlBMnLYb6xlkmotnfdqjTz3Jj2w61Qt2dI7zTbigYMZ+jADbnHfZN5pjNFnlCFCgQUSJafNDOe9FOZjmSRQfOk97uUAge47r5D7Kp/U0AQlniSPF1TBd/lEOmzO8Fe3lIFwG4TtT5Je8wN6v6wDGeCTJ5rFnhttIOK5EWywZgJXIdWIm0rBqdRJN03BFMg46TIEkHAaD6RNMRSTTTTUVTJSl0pUS6nRgoQjV9oqkZut9Nra9sPKdCoKRMRPM8oiDaSdq7E6l0T4EY8iAjE5HsFuxsW3kV+JJvqY4xcUQcBWnboVSCHQfldMQyi3S9obZDnVl4KggafelwMZQO35i2Q8YYWpFJxLLZS4eHcS+mvHfcJzuxiSecEg6accKlj7fK9HZ6EYy3/pFrKx+kED4FQFNt5+nymziZ/R4+ryf5w2A3VRwEhlc5p3m9e5yCGIyMDstkxs/gOM4VIZNWIi2WjcNK5DqwEmm5IJg0ojksmn0RTUiysbIzVjMVTcfriGaSPl9KNAdO1yeYA9FNrQl0TGR0EuUElJAoIVArabkTg3MmFcqT4J5IinaGiTalBTtpGlyXWVMKfOA1ddsOhZgoSGbqESJtO+Si/DyOn0U6/jJth+rpvOGJmCbhvo1tO2SMoR5oDpxucqqWCKPvCLZvLXGyPEEkJZOmveTbsZb0drJjzLb6X3JN9Q/x41kAFtybeGrsLRz2X8iHgt38TbwFgHECft47yneqc4uOrbUmDEOEuHJk0kqkxbJxWIlcI498+r18649+HWEclOcjpY9QHrL/Jjv3/UXrxBLrO/cXHUv5A9sIeWWlkCwbTCqanbQ5GuLYDIpm2qxdpoU/QgmUl0Q0lZuKpuxFNmU6ZnPgNGkxUGQ0oY5p6xhtkgimQHSFUq7ks2hAVlKhTNPgztzizXQ2jVR2UuATbMgc5AYwUbh02yEvg5NZqu1QKx1neeHaDp1aCHn0VKPbVqicd4m2b6ORybHNtJbtrqTbGjrp7ZK3Yr+VusXO2v9md/XjOCbpGXk2czeHym/mK+oOfi/Yy7E0VPx8WeFfe4eZku3F5++TSd/z8X3/spVJK5EWy8ZhJXKNfPt//Rb7/8fbN/DKVk8inCuUV+Uh5JCUDstrn6xaiX0GkDS87LU4Gh6nmdIpBuqKpitQXlJ57vgSJ9ObxtKYZPxlRyoDHRNrjWYNUknSUqhT/e3OgHMKxFBxslEQbe0r2NkGxt+Ytwj62g7FIcRpdbiUSdshx03E0ssk6XDlDM3Cs7Fth2JteOpsi6fOttBJz3b8LWWak1vZLtrL95SMDKYdI3IOorTC9HaKG59jT/Vj7Kh9GkmMQXIy/0oOFt/Ix7mN/xnuIETiofkpd5ofd07ijpjX80qQSSuRFsvGYSVyjYSNBY797X2c+9oB3KlC+iUUYOIArQN03O6u0911g+uNDga36Tw3tD45ZvLc5YRYJKCjBXbxdv4IefUQ0l98vFSUpfJw/BKOu4YeMpblWaaXplCgfEGmIHAzEpVJ+mh2MKlQRkYTxjGB0cQ6GYkpEd3094olIgJndrBgZzjwZYB4c1+/yu2gi6w7Bd5Pp+2QjsPeLDyAcJO2Q8rLJa2HHBfl+gill2g7FPSlwzuz8HTmDl/6gutBzCMnG8zWk0Gl0lXE27YxUXTwl3mdvfS2RJbdlae3U7LhUa6pfIjJ5pcAiIXP8eK/4Kv51/O70c3cr8sA7BFNftE7zO1qYeRx4jgmiqIBmXTdje3huVasRFosG4eVyHVwscdEGmMwOhwS0/YI4dwYiTVx2JXXzvOXGjeziWxhJ5niVLrcSbaYPHa99f08LYsxMcRtQxQm81g6HjgZiZdKZX+UEuimviOtCXREqDVxGvZcTZFO7wJAzfUile4MqMrizeJ8X7/K7Ylkrnee8MWX0t92KMToTjq803Yoi5PJp8U7Xtp2KALTTNsO9c/CEwAGYVQvHS4GK4yMMZyqhTx6qtltcG4Keca2baLgL5821y0N2iBLafX2Kt+LUvshrpt/P+XgQQACOcbh0s/yPzKv57+E1zCXdpn/XjXLG71jlIcrqFLiOCaKIwQC3/e71dyXEiuRFsvGYSVyHVxthTWJxEaLhNQsI7WDUdX20LYrj8B2tlkOxy+TLUwlYlnoyWW2uAvHK11WKbUrEgNxaIjaSQsjIUF5Ar8ocLOJUPZHKQHiVCij9Rbp9CEaPaF0ZpLineEUuHaTFHhHLKOtYC7ADCVLtx2SSRS9r+2QSNPhyon62g7VkiIe00CYEC0mFo2rjLXhiTMtDp1tJcNdhcDfUmbzliJCLv3eddPbeQdRXF16OzmAYUvzy1xb+SC56CgADWcX+8u/yH9U/4LPxlsBKBHyRu8Y36vOLBn1vJxk0kqkxbJxWIlcB1ebRF5qorBOa2GaZu04zYVjyf2F47RqxwmaZ5fd13GLqVDuJFNIl8WdZIu7cP0xK5hroBOljKMk/a1ccDMSryhwMgLXl4siYLHWG1Ok0084Ynadob83jIB4S1+/yu2gC+t7/cvRnYUnSiL6pNO0J7PwjGg7pBo4HEKZWTSbQWQWHbPWjnn4VIOzaYpbuA7j2zeRKS4980o3ve1JZGn16W0AYSK21/+cvZWP4umkEqri3cqny7/Jb5nv4ZBJzn+brPJL3mH2jJozM2VYJjvV3BcTK5EWy8ZhJXIddCSyMLmERF5CLznfD3XEmPiN4UK+ZpNUGhgAmYgBMrlFcYNW4wTNeiqWC8dpLhynWZsmaJxe9rDKyXXT4t1IZiqbXnaLFcyVkEYp48Cgo06UEvy8xM31RSn73sqNLtLpokGdS/tVnkiWo4buxcW+fpXbIR7ngn5+B9oOxSFG66SCXjooL0O2XCaTOYcjjgE5jCgvPoYxzCyEPHyqSRgl4ddMMUt52ziON1rGDGC66W0Xiu6auhMpXWfXwh+za+GTKJOI4onsd/Puwu/yX/UttFA4aH7CmeHV7gn8ZX7JdMZMSiHxfO+iyqSVSItl47ASuQ5OfPMJpr/6AGO7dw4+cTW8o5foNQoNxAYRgQgBna7rLA2JISfdV0BAZNq0GtM0G9M068do1qa7Ec12/dSyL0aqTC8t3h2Dmdz3chOIDegV+IwkhigwxGEvSulkBH4hFUpfjmwntKFFOn3IWi9S2Z1dZ+jHrv2hKvBJ4AJnXDtth6KwhYlCvGKZfFnjuzNI0x6Z3gaIYsO3zwScPJe05RFCUJwoU9hcQsjR789AervkIdy1GbMXz7K38lG21z+DQGNQ3Ft4PW/LvpOv6eQP6h2ixb/2DvMCVV32WJdCJq1EWiwbh5XIdXDi209y9B+/xaZr9mzQ1VlWTdq6piuSMT2hjFLZjHrrOtslESdDHAe0WjM06sdpNo7TrB+nWZ+mVTtOq35ysBfOEFJ5vdR4IZHLTorcz04ghi3pasWADiEKdBKlFEmU0stLvHzaRsgTi6KAG16k04cIknZC3Srwk0vMrjOR9qvckc6us3TmeN1oHRM1qiAluZJPvjiHoypLprcBTrThoZNNokYSGVSew9j2cTKF0dMAddLbwpPJLDfZtX9Gc+Ehrp3/A7a0vgJAKHL819Lv8hvOv2SWpAfTd6mz/Lx3lHGx9Mw7cHFl0kqkxbJxWIlcB1YiryBiMyiS8XmimgZ0FNJqztCsH6dRP06rMZ0s68dp1WcwJl7ydEK6ZAo7epXkabFPpjhFJr8NIS/uOLDLCp1GKYMkSikdcLMCL59EKd3M4iglXJginf5rUmcGC3ZUY8Q1lPsildshHmPDU+BxFBA1qzieQ2GsRSY7j5CFkeltgAUj2b8gqZ46h4iSz2SmlGNs2yaUu/hz1k1vG4Msrj293WGs9S2unf8ApfAxAM7IPbxt7H/yx+JuNII8Ea93j/Mq5zRLBEl7r/0iyKSVSItl47ASuUbmj0cc+vsjnH3yAJuu2Yqb0TgZg/LMRkyza7kUGDMYzRwV1YyBGIgi2vVTybjLNE2eCOY0zcYJjF468iKEIlPYMVjgk47FzBR2IK8ywdQhxKEmDnpRSjcv8XNplNJfHKWEpYp0kk3XPJ6ygwG5MNiv0jk34tozg/0qo0k2bHadqFUnDhvkCiH5UhXXU5gl0tstJI/qHCdma4hzSfGLkGmKe3x0inuj0tvJwTSTzS9wzfyHyMYnAPiK94O8ofgRHmUbAM+SNX7Je5rrR819OcSFlEkrkRbLxmElco3c97EqX37viIZ1wuD4BiejcTMGx0/k0sloXN907zvpc27nsd9b76aP7XC7y5TzRDVpx7Trs33FPemtkUim1su0KhKKTH5rmh5PU+SddkWFHUh1AfrUXE4MRykVOL7AK0rcjMDJSNQIl7hgRTp9iFZfv8qT6ew6Q8FooxKRHJhdZ3QmekVoo4kaVaSoUShVyRZicLaNTG+HCB4XBZ5uS5wTM8TNpK+r47uMbR/Hzy/ex2gwzRjhy2SWm3WktwGECZiq/V/2VD+Gq6vESP5z4d38pv+vqeMhMfyIc5LXudNkh/syjaBfJv1M0hpovTJpJdJi2TisRK6RB/9Pjfv+21ma8wE68ojaAqM3NgSpvBGy2ZHMkYI6Qlh9zVUW2Lo8GI5qprJJrAmqs7Tmj9OqHqdZTVoUNWvTNOvH0fHS7VFA4Oe29vW/3NknmFMoZwPnArxM0BHEQRKlRIDjgpOT+Pm02fkSUcoLWaTTJR6aXeckjAqyRZsGG6HrEqtOgScp7nNkMmcpFBuo/FaE3DTqkjgkcjxOnsz8HMGps+g4kbVsOUd56+IUd5LejpPoa8mFwvrS2wCOrrK7+j/YufApJAHTcgdvLP0vPqu+A4BJ0eYX3CO82Jlf0fEWyaTv44z6a2IFWIm0WDYOK5HroH9MpDEQh4KoJYjaMlm2BGFLErUFUauzThL2P25LwnR9ZzsdbayMSqcvMjoc9ewT0YEI6ojH0ll2pjbLWtC9wiATG6La2UQw54/TqhyjWZ1OIpq148TRiEF6fXjZSbLdFHl/L8ydKGd0ocUVhYYobSNkYoNQAscX+N3ZcyRqiWrqTpFOrDXtUUU6aZRyXVJpQFaGGqHPj7iW3GCkMtrCilPgUbuOiI6Ry8/hF3LIzB7EUHrbAEdFloOigIpD1KlZ6nM1IElxlybHyI8XF73WJL2tEXmFKHsIZ/3/2P1ohmsqH2Fr468QGD7rvop/VfyvHBNJFfdL1Dne4h5lcrix5xJ0ZFJJhef7+L63apm0EmmxbBxWItfBhSqsiSMGpHJQNgeFMxyQ1sHHcbCx+XAhzejIp7+6CKnybKp+VRiTCuYcrflp2vPHac4fo1XpRTPjsLbsITx/c1LYMyyZ5V1X7HzkJoI4GJqSMZtUfI+akrGfC1qk04doDkYqndOLZ9cxDrSvhdrLWVFLIYMmbs7gyaNk8hEqfw2Ot7joZkb4PCaKhEIw1qhSmTlH2ExkzfFdxnaM4+cGU9wbnd7uUAgOcu38Bxlv30eDLL+R+y3el3krkVBkiPlp9zj/zDmFWqG3rkcmrURaLBuHlch1cOLbT3Lka99i/Jrdl2WITscQB2k09DzyGbXEshHSpLP3BtEZN9qVz0HxXCpCminHFCcjm54fwhhD1KrSmjtG69xxWvPH0kjmNK3qcaL2iLG7fbjeJrL5nWTzU33V5LvIjV+H9K6QMZgaosgQd6ZkVKB8QSaNUqoRUzL201+kE2hNbOKNK9LpJ0pE0u2fXSedkj7cCtUfWPkYSh3VEeHjeN4sXn47KrcLpQal7ywuj8oiC8Jhq27SmqtROT2PSVPcubE8pa2bUE5vv256G5Lq7Q1IbycHNmxq3ct1lQ9QCJ/kYfVsXl/4GF937gTgelHnl7zDPEvVV3zItciklUiLZeOwErkOjn/xXo588R8Ym9ySSKQQiM4vcaVAimTqDilBiqRvoExTZp3fylKk+8rkG0uQ3heLbgKRbt+/Td/9C4TRvVT9StLzg9t1JDZZv95xo0IZiltDylPJrTQVUt4R4mSuqo/xqoha1UQo548notlNlx8nbM4tuZ9UPqVNt1DecgflrXdQnLwZ6a6jSuQi0pmScSBKmZF4hfNHKS9GkU7vZOBOQ/GvEpmMxqH6qtVMyWggOoaKH8fxHZzC9bjZ8sCQyyoOj8gCZ4XPdtOEKKZ6ap7GfCfFLSltHSO/qTCQ4r4Q6e3kwDHbGp/nmsqHceMz/Df/Z/iV/HuYF2MIDD/knOZn3OMUhquWlmGRTGY8nCX+2rQSabFsHFYi18Hxv/oKh//6Hjbt2pEUUkAyxo10xpROo+q0yCJdmQhfOoXfoslSus91ZLNTOJAKJB1xFD1xFCIRVUgktvO4/yYEKIkQAtF53DmWTKd2ESKZRpDe8brHEiBIRbcjvshk+34pXgZjkkKJbiR0ODI6JKjhUJq+ec4hbI4+T35LRGkq6MnljpBM6fzVn1c7UbtOu5JIZbMvgtk8+zRRazCCKaRHadPNlLfcQWnbHZS23opyrgCpTKdkjDpRSgnKE/hFgZvtm5Jxqd0vQpGOOgulz4CqJ9MxVn4Q9NjK9xdUEeFjKM4i/Z14xe04Xu9n00DyqCxykgyTtPAwBI028zPnCFtJitvNeIxtH8fL9Qq0LlR6G0DqFjtrn2J39eOcI8fb8r/LH/s/BcA4AT/vHeU71blV/X28Epm0EmmxbBxWItfB8b/6Ckf+9u/ZdMN1G3R1Q2jdk1Nj0jxTb53pX7dom+SxwXTvDxxrlMh21qX3hegT1o5kdn6jyyGJ7URLh+W1PxqrZDeaKrriSk9C+883fJMCjKRZ86mczFCZdqlOu1SmXVqV0REHvxj3opWpYObGYzsecwUYY2ieO0z1+H6q0/upHt9P2Dg7sI0QDsVNz6I8cQflbXdQmrwN5V7AKV02iE6UMg4NxiRTMroZiVcUSbNzXy77GblQRTqymoikMw86C5UfgHhyNUcIUOYIMnoSTQ63sBsvP4ZK07ttJAdEnqMixxbaZNEYY6ifW6B6eh6jk3/7uU0FSpNj3RR3L70tkCUH8huU3k5x4zn2VD/Gjtr/5e+cl/Gmwod4Qt0IwJ1ynrd6R9jRyfmvkK5MKgff9/D8nkxaibRYNg4rkevggkvkpcaYRGQ7dKKs6TrTWWc60dchqdV9Eksaje2fRrBfWofXpV/AYiD6KsFRCN+HbBbp++A5tMMMC6cKVE75XbGszTojx3E6vk6lMolWlqdCiltDO87yPBhjaM0fS6Ty+P1Ujz9AUD89uJFQFMdupDz5HMrbnkNp4jYcb8V52UtDGqWMA5NMySiTZud+XuLm+qKUy/jgRhbpiAaUP5u0DtIuLHw/hDtX94KUmEXpJzHhPEbtwC9twcmWkEIQIXhS5HhKFCgTUCBJGcdRTOXkHM1KMh5RqiTFnRvrpbgvWHo7JRse45rKhyg1v8LvZP8N/yH7awTCxyPmp9wT/LhzEnd4wvPl3gmTyGQcD8rkTLtuJdJi2SCsRK6DZ7xEXmo60dO+oQImiiAKMWHcFVLhOOA6A3IZ4bJwtkj1dI7KSZ/KtMvCjDuyfZJQhuK2ZGylHWe5MowxtKsnEqk8lkQr2wszQ1tJCmPXU976HMpbn0Np4nZcf33/5i44cdrsPEyanSsXnIzAL6RC6Y+eknHgEOss0hEBFD8H3nQyf/fCKyC4dnUvQ7KAI49ANE0UFFDZcfziOK6fQwOHRY6DokCWmDF6syu16y3mZ84RtZN1bjZNcWeTFHeS3o4Qvkrm3s5s/PzwxfbDXDf/fk5HDd5U+BBfcr8bgL2iwS96h7lNLd+JYJhhmTxDwPM27+aG8jUbfu0Wy9WGlch1YCXyMiGKErkMQ0wUdyOlwlHgugjPg1wOHJ9aJU/1TIHqqSyVGZ/qCXf0OEthyG+OB8ZZlqdC/KIdZ7kU7erJJEp57AGq0/tpVY8PbSHIl69NpHLyDkqTd+BlFjfMvmwwyZSMUaCTKKVIopRePmkj5PgSx1s+SrnmIp0Iin8L/qEkoF57ObRvXu0LCHDlcRTHCZsRWpTx85vwCmNIx2VaZHhMFBDAFnp9Go0x1M8uUJ3tpbjzmwqUto4hlbrg6e30Itjc+jLXzv8B/598Cb+Ufy+zMsntf586zRu845RFtNpDEscxx4Mqzx/fwy2TN23wRVssVx9WIteBlcjLnDjGhCGEqWT2y6WTRC5NJku7XaRytkD1dC6RyxM+rcroCIsdZ7ly2rXTLBzbT/XoA1RP7KdZObJom1xpb1cqy5PPwctuvgRXukKGp2R0wM0KvHwSpXQz549SLlek4wmFkn0fJA2Fv4fMo8nD+oug+RxWOdtNkt725BFMXKfd8pFOLolK5kucERkelUXaQjJp2gOHjsOIyqk5mpWkyb1UktK2TeTKeYQQmNBggjS9PeYhVtrkcRUIE7Gt/heUq3/Kv8/8Gz6a+TkAxmjyBm+GV6gzq25Mcbgxx/M27eHWrVYiLZb1YiVyHRz9q3/g0N/cQ25bNpUIgUAO/CIWCES3aCQtLOm060nXd+53nxO9aunO/XXNpGEZJI4TqQxCTBxBPCiXuC6BKFOrlKnMpnJ50qd2xh09zjKju+MryzsSwbTjLBcT1M6ycPSBJAV+Yj+N+UOLtskWdyVjKifvoDx5B35+6yW40pWhQ4jDZErGTpTSzUv8XBqlXGJKxoFjpFIZxBGNKEkhe1L1/r0byH0dcvcnDxt3QONuVimSSXrblUdQ4iztdpY4MriZEn5xEwuZMR6TBSrCZatpLZo8p11rJinuIIn8eTmfse3juBnvoqS3AZSus2vhkxxtPsXP536fh51bAXiuOM1b/ZPslstNFzqIlUiLZeOwErkOHrvnXg79zQOovR7CQDJ3XVJIItPKaIFBaIM0BnScSKWJEWnRioDkvkiXfYUowoBAd6unhZDpeTq6CgaRVIKS9qIUCsmQnA7JaldKF4nrVU5HLsMIE4WpXJpkzKXjEOFTq29mYX6Mymye6uksC6f8keMspTIUtoUDLYfsOMtBwtocC0e/zcLx/VRO7Kc+/yTDPa8y+R2Ut96RSuVzyRS2X5qLPR/DUUoFji/wihI3I5IpGZf5o8IYQ6BjalFAqGN86QykuLP7If+15H7rJqh9J2k7rtUQ4MppHDGNNi5B0wE0Xn6MsDjJQW+c08Jnm2nhDP0cjDbUzlZZmK3Q+crIjxcpTY4hlOxLb7tQcC5Y21ovPsNU5WP8r/h63pX79zRFDteE/KRzhH/uzeGtoPDGSqTFsnFYiVwHB/7hfp7424cp3ziOMSb9tdtb6r77GJMUJ2PSOhGDQaONSauYNYL0vtFAIqTJj0cnEto9ViKXiWSm2+tUeLTG6Dh93nRvUgiESb93OsXP2oBInseYrlCmakniqzLtgZ605RFIpEiapks6giqRqawuLaryyo2mxnEy7rKTFo+TilahFFq51GslqgubWZgrUT2dp3IqQ9QaEZFJx1mWp4JuhbgdZ5liDPFClYVjD1I9vp/Kyf3U5h4nbbDaxc9t7UYpy5PPIVPceVl+rnQEcZBEKRHguODkJH5nSsYlopSR1tSjgGYc4giJ25cf9w9A4UsgDLT3JgU3rDranaS3XXkEQZsoKhO2m0jHQxe2cKg4xQmZZ5I2Pos/l1EYUTk5R6uaprgdRXnbJrKlHEQk6e1CWr19AdLbHXLh06jKp/n3zmv4nPdKAPaYU/yCd5Lnusu3A7ISabFsHFYi18GBf7ifJ7/wKJtvnNigq1sak0Y2+7QUk/6S12kEcyl5jY3GGI3RiZwaEyf7mKRPnMB0+092pNWkj2Xn2J3IqdAIrRFGJ+fXGkwitBiDEAZhRBpVTfrmgenKq0x7TibCqcHIXmtIVFc8ZXo/kVfVlVfXzaLUZTIVX0cuU8FM5NKAdGi2ClQrm1iobqKaVom3FkZPjOyX4r6WQ3acJQDaENfq1Pqlcv4AxgzOYuJltwxIZba05/KTSg1R2kbIxAahBI4v8Luz50hU30fDGEMzjqhHAdoY/L70tvc0FP8aRAzhDqh+Pxh/ifMuQ396OzabiAKDjtoYv8CRsb0cy2xhMwE5Rs8a00pT3HEnxZ33Gds2juN6mFaa3h5zEf6FSW93KDXv5+HGQf6t/8uckFMAvNI8wE9nQ8bl6K82K5EWy8ZhJXIdXEyJvFSsVF4TMdXdKKrRaa88E6dN0dP7aIw2qbx20v+JuGodd6Oq0sTpPjqNkiaiqnSMj8KTHp7KkfGKOE7m8krH98tlFEGUfBEHYSaRyvmx5HamQP2cz6iQ1KJxljsDiluj8xZuPCMxBhGBrjeTSOX0A1RP76c6/xhGhwObuplNSfPzyTsob30OufI1l9dnAzARxMHQlIw5SX5c4WZ7n4VAx9TDgLaO8KTq9pp0TkDpL0EGEG2GyqvA5NdyJSGuPI4jpjHGJ6ZA1GoSa810eRdHilOUlaDE6Cpoow0LZysszFa7bbgKm0sUJsqIIEl3yLIHeXUhZ2UFY8g2/4GPt8f5iPdatFCUTZVfEPfy8kwJKQdPbiXSYtk4rESug6tBIi8Vw/KqjcGYiHZYIwxrREEDghoqjnA1+NLFUxkyTgHPKyAvx6qWEXIZhYraQpnqfCqXcyVqZ3PoeLH4DI+zLE+FlLZfheMstUEEYBptascfonriASqz+6nOPYLWwcCmjl+mPHF7N1KZH7sumcP+ckFDFBnipkE6kB1X5Dap7h8L2hjqUUAjCpGAm0Yl1SyUPwOyCXEpnSaxvJYLGExvx2YzRhvCVp3jmU0cLu0h52fZLJeexzoKwiTFvdAEQDmK8vZN+JkshCZNb/uIC/y2CxNwtnYfv2W+i/3OHQC8IP42v+Q+zbbMju52ViItlo3DSuQ6sBJ5aYl0RBA1aIcLRGED064hozauifGMwpU+GSeH5xVwVPbyS3N2GJJLHWjq1QILnYjlfJnq2SJRMEKM7ThLCA0yAFNvUz/xKJWTD1A5s5/K3MPoeLBq13GLlCZuS4t1nkNh0w2Iy+QPjqhtiJoGvyjIbVb4+eQPCWMM7bToJuorupEVKP8FqCroXBKRjLes7dzD6W2Djw4DThjBE/mdiGyZ7b5ctpanudCgMnOOOEyE089nKG8dR2lx0dLbAMQ17qmf4HfVD1ETRZSJeGP0f/l/cxmEu91KpMWygViJXAdWIi8vtNGEcZsgqhEEdeKgDmEdJ47wtMCTDr7K4bl5PDd/eUYr++nIZRyjg5Bm1ad6rpTKZZnquRLtRmbkrp1xluWpoJsWz22OL2xa8XIgjVImUhlSP3mA6ukHmD+7n8q5B4mjxsDmysklUplGKgubb7q0nwsN7XryB0BuXJLb5HTHS0ZaU4vatOKoW3Qj6klE0jkL2k/GSEY7ljn+sgymtzUlDIbToeaAM04rW2JXxsV1lx6TbLRm4UyVhTOVTmUehc1lCoU8QinkmAe5C5zeTqmE8/xhK8/n1IsB2B0f4R36U2TUNdyy+VYrkRbLBmAlch1Yibz8CXVEGNVpBTXisIEJFlBRgNKaDApP+XhOHt/No1Tm8o1W9qN1MjtPHNOuSqpn8lTnUrmcK1Gv5rHjLFOiJEop2gZRi6ifeYLK7H7mzz1A5ey3icLBKfSkylCauKXbq7K4+WbkJSjkigNDWDc4eUFhiyJTkCCSqGQjCmnEYbfoRrYFpc+BOwPGgeorINy71jMvTm+DpGIcHiHDOafALk+QyRaQaukPTtQOmT95jnYtiQQrV1Ge2ITvZRAlB1H0Lnh6u8P+Vp3fi27imEzaQ/1Q8Bf8O+8Az7/pVy7OBVgsz2CsRK4DK5FXHtpogrhFGC4QBHWioIEM6ygd4xnwpY8nc/heDs/JX17j586H1hBFhE3DwukslbOFpO3QXJmF+RJGjx5nWdwWDqTCSztCHP8Z+GtBG0SYzE0tGwbRiqmfe4rK2f3MnXuAyplvEwWVgV2k8ihufnYilVvvoLj5FpSzhnLoNV0vBA2N0ZAdk+Q2q2SaRZKim1oYEHSKbiJJ6a/BO5JOk/jd0N639lMn6e2jKHGmm95uCIcDssC0cdhuQnKFIsovIJf4u8sYQ2uhSeVkf4o7S2mshFvwEZtchHdx/n01jeRPmvAJcwexcPg+8yCfe9ZtF+XcFsszGSuR68BK5DODUEe0owWCoEYcNqFdQ8ZtHG3wjYPn+PhOHt8rIKV3ZUQr+9EaHcQsnPGpzqZzh8+VWJgrE4Wj2g4Z8ltCtt3SYufzm5S2r26O4iuGviilbACBpjH/NPPn9jM/9wCV2QcI23MDuwjpUtz8rG6ksjRxK8rJXtDL1BEENY3jQ36LIlNO0sGx0UlUMgqQQuJqSfHvBJnHk/1qL4HW7es58+L0dhvJ4+4mjhiP8WCBvO/h5UooL7PkJDpaaxZmK9TOVJMVQlAoFymMl1Cb/IuW3gY4FPv8QTPPb5XafN/OZ1+ck1osz2CsRK4DK5HPTLSJCaImQVgjCOvEQQMVNlBa4xuBK5xEKt0Crpu77FrIrBSjDc05h8qpbCKXZ4tU50q0m4NSVNrWYufzGkw9v02m9Awt2DHJWEoRgGwaZAsIDI36Eebm9lM5l0hl0DwzsJsQisL4Td35v0sTt+G4a+q3c57rg7CZNC/PjEkKmxVORqRFNxG1MCQyMb5wKH5NkP12slvj+dC4k1VPk9h/4sH09jgRDk85ZZ52iuSbFfImws0V8bJFpLP0eNKwHVKZOUe73klxO5Q2jZHdVrio6W1bWGOxbBxWItdI8xP/i3O/+Z+oRwrGthDni8SFIrpQSG7FArpURBfz6FIRk8/DMmOILJcvxhhCE9AO64Tp2EqCOjIOcLXBFy6e9Mg4RTwvf0nG0G0k7brDueN5Thyc4PTxiV4aXBgmrq2x63kNtj4nxvGewb86YoNsp1HKZiKXRJpmc5q5+QeonN1P5fQDtBunBvcTksKmG/vm/74dxytu2GWZGNo1jeNCbrMiO6YQcrDoxkVR3C/J35vs03w21L+DNUyT2GM4vR3jc8Qp8oSziUzcotCqIh0XN1fGyeYHpmwcuH5jaFYbVE7OodP+qZlcltL2cdyJzEVJb1uJtFg2DiuRa6T2zv9A/R3/YVX7xNk8Ub6I7ghnvpAsi3l0sZhIZ76ALhSJC8lS53I880tqrzziNFrZDhcIgwY6rOGEzTRaKXGlS0blk/ZCTvaKjVYGTYeZJzYz/dgE87O9RoSOG7Htpio7n1dny80g1JX5+laEScdStkG2kiilCAEMjdYM8/MPUDnzAJXT+2nVTgztLMhvur5b/V2evAPXX1NDxwGipiFqGzJFSW6LxMtJtDE0o4B6HGIMlB9TFP4+mcK0fR0sfA+wLkfrpLdPYIxHTIkTKs9BdxMY2BRUMFGI8rNJitvPLp3ijjULs/PUzi4AIISgMF6iuHsz4gLOvQ1WIi2WjcRK5BqJDx9h5m8/w9z9/0jeLyIqNWS1hqjWEZUaopo+rtSQjeaaz2OkJM6lYplPI5zFzv10mUZA40IvGmr8jJXPi4gxhlC3aUd1gmCBOGhBWEdFIZ4x+MLBU1l8N4fnFJBq9BSIlzO1uQwnHp9k+rEtNGu9lHcm32Lqlnl2Pq9OaY8Dy6Q0nxHE6VjKVi9KKWIw0tAKTyeV37OJVDYXji3aPVe+tjujTnniDrzs+NquQydRSSEgt1mSG3eQCoI46SkZ6Iji04ry30qEhmAnLHwfmHUFyhent2dlgQPuJlrCYSKuodstQONmi3i58vIp7lbA/Mw5gkYy37VyHMZ2bSazo3zB0ttWIi2WjcNK5Do4dvAbHP/mlyjvuXH5DaMIsVBHVOvIIcGkkkpnpZ5KaA25kN7a7TVfm3Gcnmj2Rz0LnWUv2tlbFsG98uTmciWJVtaTWXaCBrTryKiJYwy+EXgyg+dk8b1C2l7oyojmGQNzMyWmD0ww8+SWgSbopc1Vdt5yjqnntshs8SBzkSqZLxWmr+K7aRAtkGGy3jjQis5QOfdtKqcTqWxUDi86RLa0hy27Xs7uW16LVKt/v6LAEDU0Xl6S35I0KY/R1MOQRhyQnZZs/rxCRBBOQvUHwKyzFkhQw5NHuuntc7LEAWcTVekxGTeQOiIOWgjHwcuWcLIFpBz9+TbG0KzUkxR3nIy5zRRzjN0wiVPY+KEhViItlo3DSuQ6WLFErpV2kMjnXCKZzNURXemsIRZqiZQu1JELC6haDVlfQEZrr6bVvt+Leo4UzUKSji+mQppPlna85/lJ2gu1CTvRyrAJQR03jvGMwRMursqScfO4V0IzdCCOBKcPjzN9YJLZo2Pd8ZNCaLZMnWHns86w7fYYVfIRuSxcIaK8ZuK02Xla8d0fpTQOtOM5qmc6UvkA9fknu7vmx67nphe/i1x5z+rP22lSbpIm5dlxhXKgpSNqYYA6ZZj4nEK2BNEmqL4K9LqHag6mt6tiMwfdTZxWWbZGDRwMOmoTRwGOl03GS2aWT3FXT89TP9dLcRenxinsGUeqjcuqWIm0WDYOK5Hr4IJL5CoxOmkHQj2A+TrM11LprCO695Mop6otIOuJeKr6AqpRQ5i1V97qbI64UOgrLhqMcOp8IRHP7jjQIjqbgyWiE1cLoY4IOlIZNZOpG7vthRSe9PDcK6MZervpMPP4BNMHJ6ic7hmK44Zs2zPD1E1nGL8JVD6LyOWe+WnvpaKUGIwC7UIYVZmb+TpP3f9+ovY8UmW47vm/yNZrX7mmn7UOIKhrnFzapLwoCU1MPQoIz0Rs/ayDqgviQiKS8Roz6X0vciC9XWOCJ5zNTDsFtkRNfDQGTRy0Qcc42SJerohaZtaboBkwP3OWsJnMg+5kXMau30pmPLfeiwWsRFosG4mVyHVwuUnkSjEadCwwsegtQwMLLZirwVwjHddZRy0sIGt1ZG0BVVtANRZQ9QWcdKma9bVfh5DofL5XRNQRzZGR0CLRxAS6sHGVrpcjnWhlEC4QBnWisIEK66g4aYbuCRdP5fDdPK6bu2yjlbW5LNMHJpg+OEmr1kvRZvMNduw9ztRNsxR2KmSxiMhmn/lpbxiMUjaTQh2hwWBoRWc4+K3fYv7UNwHYsvu7ueHOX8HxCqs/j0mblEeQ2STJb1ZIFxpRQLsSsvkzCndeoDNJajvauv6X1p/ebpnNPOFMcsQpMabb5EySGTEmJm43wXHwMwWcbHHJWW+MMTTma1RPzXdT3NktRcaun0B56/vMW4m0WDYOK5Hr4EqVyJUyIJvRoHRGoUAHkrhpkLUGslpD1uqIhVQy66lwNhZwGlVUI4141quoeg3Zaq3+eoSgvfdamrfdQfPWO2hdf+MzPpqVtBeKaEed9kJNCGvIsJ22F0qjlU4B3y0g1eXVDN0YODddYvrgJCef3EwU9n5e5c1z7Nh7jB3Xn8Hf7CLLZchmro60d3+UsmWQdTA65ujhT3L4wY+CifHz27npxe+gtOWWtZ0iStsBeZCfSJqUBzqivhAw9lnwZ2UyTeL3Q7hrI15UL70dGZ+nnJ086Y5RjAOKJuy7rpA4aqHcDG6+jPJzS856o6OYyul5GnPJ9JRCSUp7NlOYGlvz59xKpMWycViJXAfPdIlcKTpmQDCT+xIdC+JAoENJHEiMTrZBC0wrRDV7Yuk0a6hGFae5gFOvdgW0M85TLSzgzA/OHqIzWZrPvoXGrYlURlu3XaJ34OKiTUw7biXN0IM6JmyggkY6daPEkw6+zOH5eVyVu2ymboxDyamnx5k+OMGZo5swJpEAITQTU7Ps2HuUyd1nUXkPMTaGzF0laW+SdLdz2mCEoVJ7hANffQft+gwIxd7bXs/Om39yzYVXUcMQBYZMOY1KZgz1ekD+c5rMtMTIpP1PcP1GvBKDEmdw5RGgxdNyD0+64zjGsEm3+7YyxGEb4giVyePny+dJcbeZnz5L2E5k1M37jN0wiV9afYWQlUiLZeOwErkOrESujkQ25eJUeiyIA5lENsPeerRA9w3TdCpnKT6xn+KB/eQe/TZqoTpw/HByG400Stm8+RZM9sJOR3e5kEQrw7S9UBUdttOpG4NkPnAUrvTx3WSWHSHdSx6tbNddTjyRjJ+szvZStq4fsm3PSXbsPsLYxDwy6yOKxasi7S1rBnfWoF1DSJ0n7vtPnDn6RQDGtj6ffXe/HS+7ZU3H7jQpV07SpDxTlgRxiPvXEdmnJAZD/WWC1tqCnovoT28fl1McdLYRIdmimwOFNcZo4nYDpMLLFnGzhSVbAhljqJ9doDo7j9HJ11Zua4nyNVtWleK2EmmxbBxWIteBlciNxxgwuieXnTS6iQVxKAhqDnFbErchc/wQxYP3UzhwP9mnDiLiuHccpWjdsI/mrXfQuPV2gr3XXlVFPAPN0MMGJmigwhaOjvGMwBUuGTeH5+ZxnEs7dePC2RzTByc4cXCCVr0niblSkx3XzrBj9xFy+QWE5yPyuWd02ltVNM4ZiDNJNfepQ3/JU9/8PXTcwvHH2PfCX2d86u41Hz9qGaKWwS8KcpsV0teIL4VkH0nUrn4XNJ/HOqZJ7CfEFcdx5AnOiDKPurupCzdpATS0pdERUdBEOR5uvoyTWXrWmyiMqZ44R7PWAEA4kvLeLeS3l1f0x5GVSItl47ASuQ6O3f95jv/jZynvug7cDEgPlAPSAeWCcK4qcbkYGAM6lEQtSdyWBDWXsCmh2iL3+MMUDn6LwoEH8E7PDOwXF0s0b7mNxq2307z1DuJN6y5LvaLQRhPqgCCsJ/OBhw1E0EANRCs77YVyl2TqRqPh7HSZ6QOTnDy0mTjspeE3bauy47oTbJs6jqsaCMeBTOaZl/Y2BjVvcM5BnDXgCBqVIxz46r/vtgOa2vfj7L3jjWv/GaVNyhGQ3yzxyxJxX0D2G8nTjdsMjZeIDRLJXnp7QRgeca7jnMyxNW6gMENbgo5amChC+bl01pvMkpfRmm9SmZ0jCtIUd9Fn0/Vb8YqZZa/ISqTFsnFYiVwHx775GY7/w/+lvHNv2lsnRUoQKpVJH5wMOB5Id1AwbW/FDSEORRqdVAR1RdhQqBOz5B6+n8LBB8g//m1Ua3DWoPau3Una+9Y7aO17Fsa7sue7XguRiQmiBu1ggahTsBO1cGODZyS+8sj5m3DdwkWPVEah5NShzUwfmODM8TFIx09KqZnYe46dN55iy8QJRNQCIRCZZ1DaWxuccwZVMcR5QAp03Obp/R/ixON/CkBh0z72vfgd5Eq713yaKDBEdYOXF+S3KNzHI/wvJ+NHWjcaat8l1jlNYo9OerstKzziXMNJtYnJqInL4rZiBk3caoCQuLkCXra0ZIpbh5r6mSoL89Vuiju/vUx57xakO/rirURaLBuHlch1cOybn+H4V/6M8rXPHnyi07Cx/9ZBkEYoU5l0M6AyaQQzlUzpJo8ta0LHELcVUUsSNhVhBbyDT5B/+AHyB/eTPfokou9jrz2P1k3Ppnnr7TRuu4Nwx86rcsrIwWboNXS7hhs2yMaCrPLJ+GNJ6vsiF+q0ah4nHt/C9MFJFs7mu+vdTMj2G86w88ZTlEpnIO1F+IxIe8cG56xBLfREEuDs8a/w+L3/gahdQTpZrn/+LzF5zfetfYxrf5PyTZLcrMH/UozQ0NptqH2vgA2bxCpJb8fyFAfdrRyV29kct8gQj9zapLPeSMdNGpVnR6e4jYGoGrBQqdBcSFLc0lWUr9lCbmtp0XtjJdJi2TisRK6DJSVyOZK+OUn/DR2l9/v+GpcOSJWIppsFx09ks18upXtVSs5aMRqiNFIZNSXhTIPstx8i98gDFA7sx62cG9g+Gt/cTXs3b7ntGd+bcim0iWlEdVqteURQxw9aZDRkpIfnFnDc/EUXyuqZHNMHJjnx+ATtRi96nB9rMrXvNDv2zZLzq5hWGxOFV3baO0oKbWQzFcn033y7McvBr72Tyun9AEzs/Sdc/4JfxnHzyxxseXQIQU3j5KBch+w9GhFBe6th4ZVAdqN+3yTpbSGPcsjJ8aTaQ1mH5M3Ss2zpqI2OQpSfTVPco2e90W1Nu9aiOj9P1EpS3F4pw9j1k3iFXorbSqTFsnFYiVwHa5LI5TA6KaNMyph7ktlBqp5gKg+cbC9N3hmL2ZFQy5IYA3GQjKkMmxJx8ASZ/d8m9/C3yT35MDLq62knBO1rr0+jlM+hfd0NV+UwhNCE1MM6UXsBJ2qRbbfxtcYTDo6bR13kxudaw9ljY0wfnODkoc3oqG/85I4KO/fNsu36M7hOgGm2MO32FZn2FoHBmTWItkEXeupkdMyxR/+YIw/9NzAxmcIObnrxuyhuftbaT2YgbGriAIqRoPyVGBFAMG6o/IBBFDcumiuo4cgjHHdiDjp78LWkbIJlLk0TBy3QGjdXxM2VUM7iEKmJDLoV0Wg2WDhT6aa4CzvGKO3djHSUlUiLZQOxErlG/rF6P//zwH9l7NAJ9o3tY1dUZEJnERszGn0xxgAa4qhPMPvT5CIRSKGS6OXAOMz+SObVJ0ArIRlXqYgrEfL+g2Tuf5DcIw+QmTk6sJ3O5mg++9akN+VtdxBNTF6iK740aKMJTEAjbCCiJl4YkglbeFGMg0Q5GZRXuKhCGQWKk0+NM31wkrPHy3QqQqTSbL3mHDv2nWZi9zxSxEmEsn1lpb1FKxXJ2KBzg79fqrMPceBr76BdP4kQir23v4GpZ/3zdY1h7TQpz7QMm7+RzK4TFQ1nfyBGblIb2B4qxBHHOeXWOehOYnSezXr5SQg6KW4cBz9bwskWkEPFi8aAacTE6CTFPZfMqiVdRfnaCWYLEc8b32sl0mLZAKxErpHfm/4Y/3n6owPrstphV1xkd1RiV9RbTsUFnEVNLTaYgXGYqWT2Vz92opTKSQUz01fk0xfJtGlyAHQkiNoSpudx7n0If/9D5B79Nk59YWC7YNv2JO192x00n/VsTObq6E0JSWFOS7doRwFuHJCJYjJBAxVFSGOQTgbHzSPVhg2qOy/NmseJg8l0i7VzvbmWvWzAjhvOsGPfLOXJWvIxb7evmLS3bKTNyKXBZAb/jUbBAk/c+zucOfZ3AIxtu5N9L/p3eNnN6zpn1DCYec3kfoNTT6rFZ18ZISedJdvvrJ4kvT3nzHLQLdFgjMm4fd4/xXXUJo4CHC+LmyvhZHKL9tEtDdoQiJDKzDmiZpJhMAWXm269kRdc95wNeg3PfF7+8pdzxx138L73ve+in/sd73gHf/Znf8YDDzyw5mPcc889fOd3fidzc3OMjY1dtPNeDVw+vyWvMO4uPZfXTt/NY2cfYqYM06pGU0Y8Lud43B2cWUUZwY64wO6oyK6oxO6olNyPi+TMBn3BCpmkuEe1/ehPk0cBBM3kcQep+qKYGduuCJCOwXNiuLEIN95N8JN302gI5COHcb/xEP79D5J96iDeyRm8kzOU//bzGOXQunFfN0oZ7N77jH7PHKEoqDx5mSMwIU3dpuZn8XVMPgK3XYN2Ba3DPqG8sFXw2ULAdc+b5trnTlOdzTN9cJITj28haHocfnAHhx/cQX5Tg6l9p5naN0u27CfyEceYZgt9fBp9Gaa9dU4QbQb3DOjAYLyeMjlekZte8pucfOozHPrW+5g/eR/3f/617Hvh29m04641n9PJCfAVp18QM3G/wa0KJv/C5cz3RoRTAndDhs0IYjNBOczxbDPD4+4sp9Q4E3G0bGG4dHyE4xEHLeL50ziZAl6+NDDrjcxITGTw2g4Te7dTr9VYmJ6DWsipQzNgJfKq4e6772ZmZoZyubyhx72Ucn25YCVyjdxVvIMd8hjHD85TvvbZhGhOqBpHnSpHnQWOdZaqSkvGHHMWOOYsACcGjjMRZ1OxTCOXaSRzk/Y3LjUuZHKTI4TVGCDupcnbVWj2FZrYdkVA8va5BQN37UHftYeG/gFqcy3UNw7g3fcgmQcexJ09RfaxR8g+9gj8yf8kKpZp3no7zdtup3nL7cRjmy71y7ggCCHwhYcvPbSKaZqAc06AzIyTjzV5LaC9QNReINYBSvk4XuGCCqUQUJ6sU558mpvuPsyZdPzkqUPj1OdyPP71vTz+9T1snqqwY98s264/i1tQiEIetMa02ugzZ9GnT182aW9dFESxwTkniIUBt/f7QQjB9ut/kNLErRz46m/QmH+Kh+/5Jaae9c/Ze9sb1h4NVuBOKs6+RDP2j5rMHEz8pcO574lp7o3w5caktw15ctEenqVP8qQ/x2mnxEQEDksnygQCx8tijCZq1YjCJn62iJMtItPfR8IRoBxMIyafLZB9doGZ6VNsv3Hnuq/ZcuXgeR7btl0d0+JebGw6ex2spLBGYzgjmyPlck61l9yvoN1uSnx3VGJ3nEQxt8V51IUadzmKjWhXJNUzPk1utEEcnkV9/WH8bzyI/9AjyPbg+K7Wzr1J2vu222ntexa4Fy/NeykI0+hkpGN86VDUikykke0KcVBHxwFS+Sg3j3IuTqQvbCtOPrWZ6QOTnDvRi0pIJ2brNeeYuuk0W3bNDwaQL6e0tzGoOYMzB3HOgFr87yqO2jy9/4PMPPFpAArjN3HTi99JtrhOcQoNha/GZE8nbTsrLzMs3BThSYXaMKk2hPIch7w6M47PeKjwVvj7zsQhcdhCORncQgnl5zudkTCAaWkwhmOZBs/dcQ23bVtHEdJVxstf/nJuuSWZE/MTn/gEruvypje9iXe9610IIZibm+Otb30rn/nMZ2i327zsZS/j/e9/PzfccAOzs7Pceuut/MIv/AK/9mu/BsDXvvY1Xv7yl/P5z3+e7/7u71723J208tve9jbe/va3Mzc3x/d93/fx0Y9+lGIx6ZyhteZ3fud3+MM//ENOnjzJjTfeyNvf/nZ+5Ed+BBidzv7oRz/Ku971Ls6ePcsrXvEKXvrSl/Kud72L+fn5FZ33da97HR//+McHrvXpp59m7969G/SuXxnYSOQFRiKY1DkmgxzPDwb/EqqKgGNOlWPOQiKZKpHMGVWnJkMe887xmDfYfsY1kp1RMRHMuNRNke+Kivgb1Rm4n/OlyTvtiqIWBPXVtyt6hqTJhRRw7STxtd9F4198F40wQn77SdyvP4T3jYfwDj1N5vhhMscPs+lzf4b2fBo33kLz9jto3X4b4fapZ5xou8LFVS5GGtom4BwthCvI+uOUzCR+FENznjCoEjbPIp2OUC4/48i6rsmP2XXzaXbdfJpm1Wf68QmmD0xQn88x88QEM09M4OUCdtwwy9RNs5S21BG+n9zg0qe9hSAeAxEbVAXigun2kOygHJ/rX/A2xra9gCfu/Q/Uzh1g/+dfx/Uv+P8xec0r1n5uV1D7DoW5T5M7ahi7RyBrDtXnxcTS4Aq5AVFJgas3c20ri+tVOOoaxmJJxpz/d5tQLko5xFGbeH4WlWng5Us4bvKzE2l62zRjWAjBBqZWxcc//nF+5md+hvvuu49vfvOb/NzP/Ry7d+/m9a9/Pa973et44okn+Iu/+AtKpRL/5t/8G77/+7+fRx99lImJCT72sY/xwz/8w/yTf/JP2LdvHz/1Uz/Fm9/85vMKZIennnqKP/uzP+Ozn/0sc3Nz/NiP/Rj/8T/+R377t38bgHe/+9388R//MR/+8Ie54YYb+PKXv8yrX/1qJiYmeNnLXrboeF/96ld54xvfyO/8zu/wgz/4g3zhC1/g7W9/+6rO+/u///s8/vjj3HLLLbzrXe8CYGJiYh3v8JWJjUSugw1v8ZMSEHM8TX8fVUnk8qhT5bizQCAWz/AAIAxsjfPddPjuqLcsmUswnsuYtBfmStsV9aXJu6L5zGlXJOaqOPc9kkjltx5Czc0PPB9smqDx7DRKedutmELh0lzoBSbuFOPoEE+6FGSegpF4UUTUPEfYrqDjNkJ56RhKfwOrgUdjDFROF5g+kEhk0OpFiAvjdaZummXqxlkyhaEWNGna+5JUe8cG54xB1QxxgSX/AGnXT3HgH99F9fQDAExe871c9/xfWldPSYwh/21N7vHkq2PhJqi8JMY4Gl9uXNFNTMRxt8JhL6agY/J65cMfjNHE7QZIiZct4WYL3VlvDjfmed6WPdy277YNuc6rgZe//OWcPn2aRx55pPvv8Vd/9Vf5i7/4C/78z/+cG2+8ka9+9avcfXcyr/vZs2fZtWsXH//4x/nRH/1RAH7+53+eL3zhCzz/+c/noYce4hvf+Aa+f/7vpne84x285z3v4eTJk93I46/8yq/w5S9/ma9//eu0223Gx8f5whe+wIte9KLufj/7sz9Lo9Hgk5/85KJI5E/8xE9Qq9X47Gc/293+1a9+NZ/97GcHIpHLnbfzvtgxkZb1oQ3E8YaOCfRQXBuNcW00NrA+xnBa1TmqFhalxxdkwEmnzkmnzjf8kwP7jcX+gFx2xmBO6BzyQqXGhUiqvkeNw4TBNHlQg9b84L7dQp9UMFUaxVRp4c8VFrUzm0qEr3gR4SteRMMY1FPHcO99COfeh/AeOog3N4v3lb9l7Ct/ixGS5p4bqadSGe67DuE8M2RaCUVe5ckraOuASrzAHJqM4zNW3kHWTOFGAe3GGcKgQtCaQ0o3EUonc0GEUggY21pjbGuNZ73kMLNHx5g+MMnpp8epnctz8Gt5Dn5tD5t3VZjad5pt157F8TRIichlE1mEJO29UCOam7vwaW+VFNqIGFTdEOfNyH8Tfn4rt33X+zn6yMc5+vAfcfrpv2LhzCPse/E7KI6vscWNENTvUOiMpvCgpngAZEMx/x2CdiHCFQpnA7ILCofd4TgOTZ72msSiQSn2WclcjEJInEwBoyOC+jxRu46bL+Nk1iHPVzkvfOELB/79vehFL+J3f/d3efTRR3Ech7vu6hVxbd68mX379vHYY4911/3n//yfueWWW/jTP/1TvvWtb61IIDvs3bu3K3IA27dv5/Tp0wA8+eSTNBoNvud7vmdgnyAIeM5zRhdPHTx4kH/6T//pwLo777xzQCrPd15LgpXI9eAo4qyHPFuF2CCMxiiFcRS4DsZNlmyQACgE2+MC2+MCdwXbu+sNhnnZ5tgIuTytGsyrNvOqzUPemYHjZbRi57BcxkWmoiLuhW5JtNI0ediEdi2tMDe9sZd+Gbxc0nD9IraQ2RCEIL5+N/H1u+EnXwmtNu4DB3DvfQj3vodwjp4gd/gAucMH4C//N3E2T23f7TRufg7N22/HbN98ObYzXDW+TItxjKZl2syEsyihKDhZyuO7KOjdEDYJmmcJWvOE7XmEdFKhzF4QoZTKsPWaObZeM0fYUsw8uYXpgxPMzZQ5e2yMs8fGeMSJ2XrdWab2nWbLzkrvZ3Gx096OINoCzmzSAkgv4UdCKvbc+tOMbX0uB7/2LpoLx/j237yBvbe/iambfmzNPSWbN0mMB4VvavJHQfyN5MxLIRjTRK7ekKIbgWAqzOFoj0OewzlVYzyOgJW9f0I6qEwBHbVoVc7gtBoYRyxTrmO5UDz11FOcOHECrTWHDx/m1ltvXfG+7tD4cSEEWidZuVqtBsBf/uVfMjU1NbDdakR1tee1JFiJXA/bt1B/zm7Kmd2IIIQgQjTaiHoT0QyQrQBqTQhjBGCk6MqlcRzoSOY6EQg26QybdIbbwsExGU0RcXxYLtUC084CLRnzpJznSXd+YB9pBNvjfF8rol56PL9RLYmWfUESlGTkpL06TMZftqeTx44PXhH8QjqDT+bKG2OZ8QlfeDvhC28HQJ46g3vfw7j3PYj7zUdQtTrlB75G+YGvwSehvXUnCzc9h8bNz6F1883Iood0rtyvRSkkOZElJ7OEJqKum1RaNXzlUnILlDJ7GDN7iNo1guY5gvY8Yb2SCEI6hnI9zbWXws3E7L7lFLtvOUWj4jN9cJLpgxM0KllOHJzkxMFJ/HybHTeeYWrfaUpbGr2dVVLpfaGrvY2Xtv45DbJp0MtMT1ievIPnfN9/54l7383Z41/m6f0fYP7kN7jxRf8OL7O2zgGtayXag9LXNbnTMPl3kjMvEMQTMc1chO9sTNHN1tjBaY/xlOdz2qkwGdfArGzIhwCUk0E6mrjdJAxjwnp13dd0tXHvvfcOPP7617/ODTfcwM0330wURdx7770D6eyDBw9y8803A0lU8NWvfjU//uM/zr59+/jZn/1ZHnroISYn1z9Zw80334zv+xw9enTk+MdR7Nu3j2984xsD64YfrwTP84jj0XO/Xy1YiVwPQmCyLqaUX/yXrdaJVAYhoh1BECLaAaLWQjRayHYI9UQwk9CFAFdhXKe3dNZf1Zw1DjdEm7ghGvySiNCcVPWuXB51qt1IZkNGTDs1pp0a/zh0vPE4M1IuN+vMhZutpx/pgpfKpdEQB9Ccg/psUqijMpBJo5RudnSk8zJHb91C+1Uvp/2ql0OscQ4cSoTyvodxHn0S/9Rx/FPH4e8/g3YcmtfdzMK+51B/1nMJr9mN8g3SMVdaxh8AVzi4qtAtxjkbzHGOebJOhjG/TD57LXltiNpV2q1zhK052vUqQkiUm0O5uQsilLlymxvuPMb1LzjG/Mki0wcnmHliC+26z9P7p3h6/xTFLTWm9s2y48ZZMvne1JkrTXurLZvXlPI2mUQknVkQbYPxl/7Bu36JZ730P3DyyT/j0P3vZ27m69z/udey7+63s2nbC1Z9boBgp6TyHVD6iiZzDrZ+XXDyDge9JaZZjvB8hbcBY5s3a4Mb5HjC9ZhxKmyPz4IpsZL0NoBA4vh5aFfRcXj+HSwDHD16lF/6pV/iDW94A/fffz8f+MAH+N3f/V1uuOEGfuiHfojXv/71fOQjH6FYLPKrv/qrTE1N8UM/9EMA/Pqv/zqVSoX3v//9FAoFPve5z/HTP/3Ti9LHa6FYLPLLv/zL/OIv/iJaa17ykpdQqVT46le/SqlU4rWvfe2ifd7ylrfwHd/xHbz3ve/lVa96FV/60pf4/Oc/v+rI+d69e7n33ns5fPgwhUKB8fHxRTMoPdOxEnmhkBIyHibjLRZMY1KpTOUyiBCpVMp6G4IwWUYxSXMKAY5MBbMvTb4OS3CQ7IyL7IyL3N3XachgOCtbvchlX2HPOdXq3h7wB8eF5LQz0OeyI5fb4zzqQqXGhezNvgNJlDIOYCHtxen44OQgU0qrwzNXXqGOkkTPvp7o2dfT/Jf/DLFQx/3Wo7jfSFLf6uQZ8gcfJH/wQfiLjxOVxqg96w5qNz6X2rPugPESytNI98qSSiEEGeGTkX5ajNPmeOsknnTIyxxjfolcbjMijoiCKkHrHEHzHO36aRAS5wIJpRCwafsCm7Yv8KyXPs3s4U1MH5zk9OFNLJwpcOBMgQNf28uWXfNM7Ztl67Vncdyh9NfItPdxaDZRu6ZgxJzQ50PnBZFOm5GLwWbki1+DYPsN/5TSxO0c+Oq/p1F5moe/9IvsvPkn2XPb69c0ZWU4Kal8p6D85Ri3Atu/Baefq2i3BK1yRFTQZJz1F92UtOZZgcMTZoJp12dbfALH5DArTG9b1s5rXvMams0md955J0op3vrWt/JzP/dzAPzRH/0Rb33rW/mBH/gBgiDgO77jO/jc5z6H67rcc889vO997+Pv/u7vusWsn/jEJ7j99tv50Ic+xJve9KZ1X9tv/uZvMjExwbvf/W4OHTrE2NgYz33uc7sthYZ58YtfzIc//GHe+c538u/+3b/jFa94Bb/4i7/IBz/4wVWd95d/+Zd57Wtfy80330yz2bwqW/zY6ux1cOz0N3hk5h52lK7foKsjFcwIEfQJZhBCvYWstZJ1YQxhp1+jAaUwXhK57EQyL0RKty7CkXI5o2roJb4bHCOYiordPpcdudwZF8maC/g3TCdKGSeVs0iVFOf4JfAKybjKi9Sb8IJhDPLYSbz7EqF09z+KaA1WELd2X0P9Wc+leuNzaV57EyLjoFyN8vQVOa4y0AFN3SY2mozy2aSK5FWenMpg4pCwXSVozRE0zxJHDUCg3ByOm78gEcrudTWd7vjJ+ZO93yvKjdl23Rmmbppl81RlaZGPY/T8PHJ8PBFJdw0RdGNQFYNzNpmiEOf8whZHLQ7d/35OPvnnABQ338y+F7+DbGHqPHuORi0Yyn8foxoQZ+HciyR1JyYuRIiiIZdzNqTopo3gCdfnlNtgUh/FB7Qpnnc/gGPtKs/ZvJs7X/Cd674OyzOH17/+9Rw4cIB/+Id/uNSXckVhJXIdXBCJPB9hGrXspMqDCBotZL0FrRARRolgdn6sMo1gemkE03HS8YYbR0DMCafW7XPZTY87C7TF0uNFJuPcQLV4J5I5tpGz9XQwEUTt5AZpgU4+iVI62bRA5wqLUg4ThDgPPY73jYeTAp0njgw8rTM+zZtuZeGm51C74bm0t0whHZNEKj19RQVptdG0TUAzbqOEJK9yjDlFCjKHK110HCb9J1vztBtnEqE0pieUF/DF1uczTKfzdzervZ6XmUKbHTfOMnXTaYrjzcU7dkRybAy1exd4axTJcwZnfulm5KM4c/TveOLe3yEKF1BOjuvv/BUm937P+XccgWwYyl+OcaqgPai8WFHLaNoihJLGKwqyrrPuopsIOORmOOrGbDZHKZgasSlzvvS2lUgLJNXi3/M930M+n+fzn/88b3vb2/gv/+W/8LM/+7OX+tKuKKxEroNLIpHLEcWpYIa9SGajjai3EK2gJ5i6TzA7leReGsHcQJHSGGZlY6BavDP2cn6Z2XqK2lskl7vjIlvj/Ma0JDKmL0oZ9tLi3ShlOpbySsr/jkCcncf9xsOJVH7jIeTcYDFBNDlB45Y7WNj3XGrX3UHk5xEClJdEKq+UYp3IxDR1i1BH+MqlqPKUVYGcyiGRaB0StauE7SrtxixR2MCYGMfNo9zcmtK3K8EYmJspMn1wkpknthAFvfOUJmpM3XSaHTecwc/1jc+LY/R8BTlWRu3cubYqbp32kKymPSTlyj7HrfpJDn7tnVRnHwRg67Wv5Lrn/WuUm1v1JYi2ofyVGPcsGAWVuyWtzYJGIyLKRTglQ77grLvoRgNHnQyHXEnBnGATp9GmsGx620rk5cWzn/1sjhw5MvK5j3zkI/zkT/7kBTnvj/3Yj3HPPfewsLDAtddey1ve8hbe+MY3XpBzPZOxErkOLjuJXI5Yp+Mw+wSzGXQrybuCGRuEMYOV5OlYzI1qVQRQFe2uVPbL5SlVxyzxnVfUHne2t3FXezsvaG+jYDaoaMbopOI7bqVthDxw07GUTu6ZEaXUGvXk0UQq73sQ58HHEVEvSmykJNh3QyKVNzyX+tQNxLGLm4lxsvEV4dPGGAKTpLsxhqzKMqaKFJw8GZlIRSKUC4TtShKhDGsYY1BuFuXmL5hQxpHg9OFxpg9OMHtkE0Yn8iSEYcvuOfbeNsPEnnnSi0TPzSPLJeSunYjMGmbwiQ3OrEl6SC7TjHwYoyOOPvzfOfrIx8FosqXd3HT3OymM37j6a4gM5a9pvJMGI2DhLkl7l6TViGjqEFPS5EuKjLe+99wAM8rnoOvjijNsNccwqCXT21YiLy+OHDlCGI4udNq6detAn0bL5YeVyHVwRUnkcnQqydthr1VRK0gimI0WIoghipJWRQLMBaokB2gRcdyp9SKXKkmLH3cWCPtm61FGcGuwhbvaO3hhezs74w36RWNMr41QHCZRHJVJhNLLp1LpX/FRShot3P2P4X7jIbz7HkIdG2xQr4sFai99CWfu+gEam/ZcUTIJoE1M07RpxyGuVBRknrJTJK+yOCKRFq0jomAhGUfZmCUKahgTo5wsyitcMKFsNx1mntjC9IFJKqd7n9tnveQQ19wxkzwwBn1uDlHIo/bsTnpLrpbQ4M4aRNOgVyGSAPOn9nPwa+8kaM4ipMs1d/wrduz70dWnoGND8RuazFGDAWrPkbRukMSRoV4PCf0QtywoFF3UOj9cs8rlgJMjUnV26ENI2iPT21YiLZaNw0rkOnjGSORyaJ2Ow4x6qfJOJXkjGCz06bQqclS3gnwjKskBYjSPuef4R/8EX8+c4KizMPD8rqjIXe3tvLC1g1vCzRtXEd6JUkadKKWbpLsz5SRa6WST1kJXOHJmtlvx7X7rUWSt1/OwdestnH3pDzB//V04BXFFySRAaEIacZvYxGSUx5gqUUiLcTpjb42OicIaQavSJ5QR0smm0y9emP6otbksh/ZPcfzRrQBc/4Kj3HDnseT9NQY9N4/I51C7diLyq59tRbSTiKQIDTq/uh9a2K6kPSWTQoPxHXdzwwt/bfU9JY2hsF+TfTL5qqnfLGg8WwKCVjOmHrehoCmUXDKZ9UX856XDQTfHgozZoZ/GFfOL0ttWIi2WjcNK5Dq4KiRyOYYrydsdwWwhG63kuW4leTotm5LdyOV6KslPqBpf92f4un+CB71ZYtH7GBe0ywva23hhewcvaG+juFFpb0iik1EriVZCMpbSK6TNztMo5ZXeJyyKcb/1CJk/+yLu1/Yj0jG00ZbNzL3kezn7glfAlhJu7sqSSW10ku6O20mDc5VNi3HyeH3TcyZCWSdsVWg3Z4mDGrEOUU4mFcqN7T1qDDz1zZ08fu8eAPbcdoKbX/p0973Vc/OIbAa1e9faRLKZRCSNMZhlmpGPvjbDzBOf5tD9H8ToAC+7mX0v+g3Gtj1vdRdhDLlHDflHkmxC8zpB7bkymb0pNiw02oRuhF+USVRyhQVBo6gJxeNujjNKsV0fJyNOpentAiCsRFosG4iVyHVw1UvkchiTpL876fFOqryeVpIH0WChjyBpVdQfwVxhJXldhHzTO8nXMzPc589Qlb02N9IIbgm38MLWdl7Y3sGujUp7Q9pGKK34NnHSCL0zJaObTSKVV9qUjEPImVkyf/4l/M/eg6wk04sZx6H6/Bdz9kWvJNh3A25eX1EyCUkxTku3CHSEL10KKk/ZKZBPi3E6GKOJghpRUKXVOEPcXkDrEKm8dLacjWsTdfjBbTz65esAmNp3mlu/+4nu3yN6voLw3CS1XVjZTC39yHoSkTRq+WbkS1Gbe4IDX/0NmtUjgGDXs3+K3bf+zKpT/pknNYX7NQJo7RIs3Cm7FeTNVkQtDBC5mGLZI5Nde1SyJSSPu1lOKJ9t+gw5cRxBm9iUONZuWIm0WDYIK5HrwErkOgiHemG2w16ronY4upLcdTD5DPhLi1mM4TH3LPemUcrD7mBF8lRU4IXpOMpbgi04G9kIXYeJUMapxDp+EqX0in3Nzq/QKGU7wPu7+8h8+m9xHzvUXd3afS1nXvwq6i+6G2fMueJ6TybFOCEt3UIbQ05lKKsSRZUjozJD22risN6r8g4W0HGAVH4yW46zhgKYIaYPTPDgF2/AGMHWa89yxz85iEqr5HWlgnCcJCK5ht9dqppUbWvfYNzVi2QcNTn0rd/n5FOfAaC45RZuuvsdZArbV3Uc/6imeJ9GaAi2Ciovlt2elrHWVBtt2ioiX1QUSt6aW08FCA65WY66GTbFC5SYRop5jrQUd2zeayXSYtkArESuAyuRF4go7mu0nopmvYWsNRGVBiIM0bkMppA9b8X4jKpxrz/DP/ozPOidJhpKez+/vY0XtrfzgvZ2ShuZ9u40O4/SNkLKTZudl8HPX7FTMgKoxw6R+fTf4n/p3iS6DMT5AnN3fQ+V7/xe2LPlipNJ6BTjBLTjAEcqCjJL2SlRULluMU4HY0xXKIPmGcJ2JRVKrzuf91o5dWic/X+9Dx1LNu+c53nffwDHSyrpTaUKSiYiWS6v7sDGoOYNzrmVNyMfxeyRL/LEff+JOKyh3AI33PVvmNj9Xas6hntSU/6qRsQQjkPlpaobITUYGkFEvd1GZqBUdvHzazPJGDjsZHnKzVLUAWPMcKx1judu2Wkl0mLZAC65RP7BH/wB73nPezh58iS33347H/jAB7jzzjuX3H5+fp5f//Vf59Of/jTnzp1jz549vO997+P7v//7V3Q+K5FXMMYgFhrIuRry5BxioQ4GTD6TRCjPE+Wri5D7vVP8Y+YE9/kzVIbS3s8ON/PCVhKl3BUXN7bheWdKxk6zc8cDJ39FT8ko5hfw//LvyfzZF1EnzwBghKB28/OYe/n3E77gVoRzBdokSTFOU7eJdFKMU1ZFit1inMHXlAhlgyio0m4kQhnHbaR0kzGUTmbVVc1nj5f55l8+izhUlLcu8IIfeBQvm8xSZRYWAJEU22waW90LMwbnbCKTcZ4VNyMfplWb4cBXf4OFs48AsO26V3Ht896KclZeRe6cNZT/IUYGEJWg8h0KnetdT6Rjqs02gYgp5B1yYw5qDeJrgGNOhiedLC6aSvUMd20vc9cLnr/qY1kslkEuqUR+6lOf4jWveQ0f/vCHueuuu3jf+97Hn/7pn3Lw4EEmJycXbR8EAS9+8YuZnJzk137t15iamuLIkSOMjY1x++23r+icViKfIcQaUakjz1aRs/OIhWZStFPMYrLnb8ETYzjYqfYekfbeERV4YTsZR3nrRqe9+6dkjKOkB6XKXLlTMsYa9+sPkPn0F/Due6i7ur1lG/Mv+34a/8/LMMXVj+O7HEiKcUJacev/z955h1lRnv/7npnT257tjYWlsyBIk2pUEAFjQWMkdqOJmlhQLFGiIjZiiSXfxJ9d7DE2jCWCWFCKNMVCr7sL23dP7+fMzO+P2T3swoILbAE993XtpcyZeeedUz/zvM/zeRAEAYtkwqlLwypaMIr7RpJVVUVOhElEfUTDDcSjHpREBEHUNQpKc5sFpafGxur3BxKP6rFlBBl15gZMNu3GR/UHtMhiUSFCRsbBXZTcKCT9jUKyjWbke6MoCcp/fJ5d618BVMyOHpSMvwdretu/DyWv1t1GCoNs0YSk7NgzHwWVUDxOMBpDMjRGJW2HdrNVLRnYordS5Q8zId/BmJEDDmmcnxsNDQ2UlJSwatWqX1zf5yOV0tJSevbsCcCxxx7Ld99917UTOgBdGiZ49NFHueKKK7jssssYOHAgTz31FBaLhRdeeKHV/V944QVcLhfvvfce48ePp7i4mBNPPLHNAjLFzwhJRM2wI/ctJD6iH4lhfZDzMhCiccTKBsR6L0RbN7AFkBAYGM/kD4HBPNswhVfqfs01vmGMiOaiV0UqdQHetW7lLxlfck7Of7kv7Ws+NZXhE/bfaafNJDvkpIElU8uZVGUIVINrG9RvhoZtEKyDaADk/beOPCKQROLjh+N/5C+4X3uI8LlTUKwWjPXV5L7zAj1mXEHG/3sS3Y4dPz3WEYYoiJhEI059GjbJSkyJsytSzY5IObuj1fgSAWR1j3+pIAjo9BZMtjzSsgeRnjsMR/YxGC3ZyHKMaLCmWdecA9+/O3MDjPnNjxitUQIuK1+/O5iQV7u5EOw2kETk8l2o9Q0Hd1GSQCJDQLYKSEH2tEg9SERRR/GxVzF44j8wmDMJ+8pYu/AKKre885PX1oScJuCZKJGwgxQC5xcyOteeY0UEbHoD6VYTgiLQUB/DV59Ajh/8nPPkGINiAbJi7fAZ/hlx//33M23atBYCsry8nNNOOw2LxUJOTg633HILiUTigONs2bKFadOmkZWVhcPh4Pjjj+eLL75osY8gCPv8vfHGGy32eeKJJygpKcFsNtO/f39efvnlg76md999l8mTJ5OZmYkgCPuIMJfLxXXXXUf//v0xm810796dGTNm4PV6D2tcgO3bt3P22WeTnZ2Nw+Fg+vTp1NTU7LPfRx99xOjRozGbzaSnp3PWWWclHysqKqKqqoqbbrrpoK+9s+kyERmLxfjmm2+YNGnSnsmIIpMmTeLrr79u9Zj333+fsWPHcs0115Cbm8sxxxzD3LlzkQ/wIxuNRvH5fC3+UvzMMOpRcpzIxxQTG9mPxOCeKE4boi+EVFmP4AloeZYHIE+2claoDw+4T+Dt2jOZ7R7L5FAxTtlISEzwpXk3DzpXcW7O+8zM+IL/WDdRJvnQLJQPE0HS+nibM8CUDqIBYkHwlEHDFqjfBN7dEHY3VoIfuWnMSvd8QjMuwj3/HwRuuZxE7yLEeAzn8k/pPvsW8mbfjmXpEkjsX+AfqUiChFWykqFPQy/o8SR8lEZ3syNSTl3MRViO7HuM3oLJmosjayDpecNwZA/CaMlFVeKaoAzWkogHUZsJ0ebYM8OMPedHLI4wYZ+Jr98Zgr9Ba0MoWK2g1yPv2oVaX39w7wudgJwpoJgFxMMQkgDOvBEMP/VlMgrGoyoxtq95lA1f3UY8euAf5CYUq4BngkQ8HcQopC2W0de2fD4Mgg6nyYzNaCDoj+OujhHxKwf96ctU4hwTcJOtHn3vv44gFArx/PPP84c//CG5TZZlTjvtNGKxGMuXL+ell17ixRdfZPbs2Qcc6/TTTyeRSPD555/zzTffcOyxx3L66adTXd2ykcG8efOoqqpK/jUXT08++SSzZs1izpw5rF+/nrvvvptrrrmGDz744KCuKxgMcvzxx/Pggw+2+nhlZSWVlZX8/e9/Z926dbz44ossWLCgxfNwKOMGg0EmT56MIAh8/vnnLFu2jFgsxhlnnIGi7HlPv/POO1x88cVcdtllfP/99yxbtowLLrgg+bgkSeTl5WE7BCeGzqbLlrMrKyspLCxk+fLljB07Nrn9L3/5C19++SUrV67c55gBAwZQWlrKhRdeyNVXX822bdu4+uqrmTFjBnfddVer55kzZw533333PtsPeznbXUrDD/P43qSSlTPs0MdJ0TEcZv5kEwoqm/SuZLX3Dn3LH8b8hDVZ7T04lo2+ve/Lmpud09SS0dxoI3QUtGRUVXQ/bsH0zqcYvlyN0HjDl7Cn4TtpEv5Jk5Ezs7p4koeOoipaZxwlhoSETTLj1DmwSmb0wgFcBBIRElEfsaibWNiFHA+hMzrQ6Vv3gYwE9az67yACLit6Y5zjztiAM6/RcikUhlgUsSAfMSfnoIz9haiKrlZFkNUW+YiHgqqqVG55m51rn0BV4hjM2fQfdxfO3LZ9PwpxFccyBUOtiiqCb4xIrNte+aeoxEgQiMSIJxSsFj0Wp4TuIGyL/FUN5BzTm/zjhhzU9R0Mqgqhfe8pOgWLqe1vgbfffpurr76a2tra5LaPP/6Y008/ncrKSnJzNRP8p556iltvvZW6ujoMhn3TOOrr68nOzuarr77iV7/6FQB+vx+Hw8GiRYuSwSJBEJg/f34L4diccePGMX78eB5++OHktptuuomVK1eydOnStl1UM5qWhdeuXcvQoUMPuO9bb73FRRddRDAYRKc7sHXV/sb95JNPOPXUU3G73Ul94fV6SU9P55NPPmHSpEkkEgmKi4u5++67f1K0zpkzh/fee++IXs4+qlptKIpCTk4OzzzzDJIkMWLECCoqKnj44Yf3KyJnzZrFjTfemPy3z+ejqKjo8Cez4V0yP72HiUA4oyf+bsPwFw4jmNsfOqhdWoqDQBBQHVZkhxW5W3aL/Emx2t3m/Emxcdl7YDyTywLHUCMGNUFpquI7Qy1VuiDzdVuZb92KRdElq71HRfNJU9shr1EQNbGot+xpyRgLQcTX6K1p0ozOjXZNUOoO4hekMxAEEkP6ExjSH6Heg/H9LzD99wt0LjcZH7xD+kfzCQ4/Dt8ppxIZeMyRNfc2IAoiVsGMVTQTVxMElTDeSACjpE8W41gl8z7FOJLOhKQzYbTmICeiRIO1BD07UJUEeuO+Vdcma5wxv1nHmg8G4qmxs/K/xzDi1xvJKvIiWMyoooC8u1JrqpSbTVvL41WjgJwFuloQIiqq6dCff0EQKOx/LmnZx7Jp2WzC/l38+Nl1FB1zKT2OuQzhJ74XVb2A91cijhUKxgoVx9cKgREQ6bXnWgQEjOiRTCIhOUYwHCcelbGk6THaxSPGQSsUAcfUrjm3bwFY21jftGTJEkaMaGkc//XXXzN48OCkgASYMmUKf/7zn1m/fj3Dhu17U5CZmZlceh4+fDhGo5Gnn36anJycfca/5ppr+OMf/0ivXr3405/+xGWXXZbME45Go5j26hVvNptZtWoV8Xgcvb7jfHebAks/JSAPRDQaRRAEjMY93/0mkwlRFFm6dCmTJk3i22+/paKiAlEUGTZsGNXV1QwdOpSHH36YY445pj0upVPpMrWTlZWFJEn75ArU1NSQl5fX6jH5+fno9XqkZpGXkpISqquricVird4hGY3GFi9ou2HJIpZTgqF2I2bXTsyuneT88C6y3kygYAj+wmH4uw0lbtu3QChFJ9OUP5lhR+6eg+gNItR6kFw+BHdAWw63Ww7oP9lErmLlzHAfzgz3ISwk+NZQwwpjJSuNVbilKF+Zd/OVeTeiCiXxzGSUskfCcfjV3oKgRSKbrIGaopTBBgjU7dWS0ax10DmCWjKqWU4il59N5JIz0H/1Lca3P8P44wZsa1ZiW7OSWEE3fKdMxT/+RFSLpaune9DoBR16yYYqqkTVGPUxF/W4sOjMjcU4Zkzivt9Fks6IJa0IUWcg4N5GNNyAwZSxTwGOwZRg1LR1fPO/Ehp2O1nzwUCGTt1MXi8XgkmrAFcqKkFVkPJy2ywkFbNAIhN09UD00MzIm2PL6MewqS+w/Zt/ULPjQ3atexFvzbf0H3cXJmvr3+1JJAHfWBHbNwrmnSr2NQpCFMIDhBY3GDokbJIJnTVGMB7H54phCkuYnRIG0xGiJI8CysrKKCgoaLGturq6hYAEkv/ee2m6CUEQ+PTTTznrrLOw2+2IokhOTg4LFiwgPX1Pm8x77rmHiRMnYrFY+OSTT7j66qsJBALMmDED0MTqc889x1lnncXw4cP55ptveO6554jH49TX15Off3CepG2lvr6ee++9lyuvvPKwxhkzZgxWq5Vbb72VuXPnoqoqt912G7IsU1VVBcCOxtzwOXPm8Oijj1JcXMwjjzzCSSedxJYtW8g42EK5LqbLfmEMBgMjRozgs88+S4a2FUXhs88+49prr231mPHjx/P666+jKApi4y3nli1byM/Pb1VAdijDLqGmsIStOz+kj9+Lffd32CvWoov4SCtbSVqZthwfcXZrFJTDCOYORNUdnd6APxsa8yfJcSKHItpyd60H0R1AiCdQLMY2+U8CmFUd46OFjI8WoqCyRe9mhbGSrxuXvdcbGlhvaOB5+4/kJazJau8h7bXs3TxKCXtaMnob+4ofqS0ZdTriE0cRnziK0LZdGN76HPNnSzFU7ibrpefI+M+r+I8/Cd8pU4kXtsOqQScjCAImwYhJNCKrMhElyu5INQZRp3XGkexYJDM6oeV7zGTNRRT1mpAM1WK0ZCPsJQR1BoWRZ2zgu4X9qdmRybcfD2DIxK10K6kDoxERNCGpqEj5uW22jVJsWvtBXYOAIh6aGXlzJL2FfmNm4cwbybZVD+Gr+4G1//s9fUffSlb3n/BnFAUCI0VUo4Jlk4rtRwUxKhA8VmwhJEUEzBjQ6SVCUoxQJEG8WsWSJmGyS126IGQxaRHBrjp3WwmHw/tE/g4FVVW55ppryMnJYcmSJZjNZp577jnOOOMMVq9enRR/d955Z/KYYcOGEQwGefjhh5Mi8s4776S6upoxY8agqiq5ublceumlPPTQQ8nf/PbG5/Nx2mmnMXDgQObMmXNYY2VnZ/PWW2/x5z//mf/7v/9DFEXOP/98hg8fnpx/U27k7bffzjnnnANoeaLdunXjrbfe4qqrrjqsOXQ2XRqmuPHGG7n00ksZOXIko0aN4vHHHycYDHLZZZcBcMkll1BYWMjf/vY3AP785z/zr3/9i+uvv57rrruOrVu3Mnfu3OQbsCuImWx4cobi6X0iqArmhp3Yd6/FXrEWS+1mTJ7dmDy7yV7/AYpkIJB/TFJUxhz5R93y3c8KiwnFYkIpyGyRPyk2eLX8SYsJ1da2/EkRgQHxDAbEM/h94BhqxZBmcm6q5DtDLdW6IO/ptvGedRsWRceIWC5jIgWMiubjbI9lb2g0NG+MpjbZCIVdWpW3pNdEZVOU8ggxO1f6FBGZdSmRa6cjvb8cy/uLMFRWkPbpAtI+XUB44DH4Jk0lOGLUkZ37uR+0YhwLVgliSgxvwo8r7sUsGXFKdmySDbNkTEapDeYMHFIJftdWosEaDJbsfVoLSpLKsKmb+PHzPlRsyuWHz/qRiOkoPrZKE5KCgFJVpVkA5ee1+XmTHQIoKjqXoPWiP0Qz8ubkFJ+CPWsgm5fNwd+wgY1L7yCvzzR6DZ9xYEN2QSA4REIxKti+V7BsURFjCv6RYgtLIgEBAzokUURniRNOxAi4VeJhFbNTxGDpmpsmQWj7knJXkpWVhdvtbrEtLy+PVatWtdjWtGK4v1XCzz//nA8//LBFLuD/+3//j0WLFvHSSy9x2223tXrc6NGjuffee4lGoxiNRsxmMy+88AJPP/00NTU15Ofn88wzz2C328nOzj7cy90Hv9/P1KlTsdvtzJ8/v12WyydPnsz27dupr69Hp9PhdDrJy8ujV69eAElBPXDgwOQxRqORXr16UV5eftjn72y6VET+7ne/o66ujtmzZyfzAhYsWJAMnZeXl7e4+ygqKmLhwoXMnDmTIUOGUFhYyPXXX8+tt97aVZfQEkEknNWbcFZvaof+FjEaxFb1A47d32LbvRZDyIVj97c4dn8LKyFqy8XfbSiBbsMI5A9G0R8F3zo/R9opf7I5OYqFM8K9OSPcm7CQYK2hhq+NWm9vlxRhiamCJaYKhOSytxalLG6PZW/YYyPU9EPd1JLRV6H9u0VLRpOWT9mVUUq7GfnCk/GdPxGWbcb07iKs36zBvGEd5g3rSKRn4Dt5Cv4Jk5DTnF03z8PAIBowiAYUVSGqxqiK1SMJbqySGafOjlNnR0BEZ7DjyCoh4NpONFiNwZKFuJfgF0UYcvI29EaZ0u8L2LCkF/Gojj7H7UIwGBAdDpTqalAUpMKCtglJQUBOA0FWkTwgW9VDNiNvjtlWyJBTnqTsh2fZveFVqrf9F1/dDwwYfw9WZ68DHhvuL6IYwb5awVSqIsQUfGPEfQSuhIgVA5JOIGJNEInGSdRImO0SRqd4SCblvwSGDRvGq6++2mLb2LFjuf/++6mtrU36NS9atAiHw9FC+DQnFAoB7BMtFEWxRVXy3nz33Xekp6fvk3Km1+vp1q0bAG+88Qann356u0cifT4fU6ZMwWg08v7777dLRLY5WVlaweDnn39ObW0tZ555JgAjRozAaDSyefNmjj/+eADi8TilpaX06NGjXefQGXR5x5rOpr3Nxr+r+ow0WxFWwYheOMAXtapi9JRrUcrd32Gt2YCo7PHdUkQdodwByShlJL1HKkrZ1UTjWv5knRepwQuh6EHlT7aGgspWnZsVJq3ae5ve0+LxvISF0Y15lENi2RjogOhb85aMakIrBDvCWjKqKsg7PRje/QL7Z5+hC2hV8aqkIzhqDN5TTiXat/9R/xlJqDJhJUJcSZCpd5JnyEq2WFTkOEHvDsK+3eiNTqRWbjJVFbatLmLrqu4AFB9bScnxO7WnJZFA8XoRs7ORCgvblKIBtJsZeWu4q1ax+ev7iEcaECUDvYbPIK/PWT9pwG6oVHB8rbVJjGWB73gJ1dD6MXFkwsSIJRQIg14vYk6XMNo0EdIZ1dlHCz/++CPDhw+ntrY2mbsoyzJDhw6loKCAhx56iOrqai6++GL++Mc/MnfuXABWrVrFJZdcwmeffUZhYSH19fUMGDCAE088kdmzZ2M2m3n22Wf5xz/+werVqzn22GP54IMPqKmpYcyYMZhMJhYtWsTNN9/MzTffnHRQ2bJlC6tWrWL06NG43W4effRRFi1axDfffHNQRugul4vy8nIqKys57bTTeOONN+jfvz95eXnk5eXh8/mYPHkyoVCI+fPnY7XucUXIzs5O1l0MGDCAv/3tb5x99tltGhe0pemSkhKys7P5+uuvuf766/n973/PI488kjzHDTfcwNtvv80LL7xAjx49ePjhh/nggw/YtGlTixzSo6E6OyUiD4NAw0YqK5dRb7USVKIkUDCiwyYaMaI/4BejGA9jrVqPvWIt9t3fYvS3LDCKWzKSgjJQMATZeOT7Rf2sCUUQPUHEGvch5U/uj7rGZe8VxirWGmuICXvu2s1Ny97RAkZF80hX2vdOOYma0ARli5aMFjA5G/Mpu657jqpC3K0gLfwG28cLsezcnHws2qMnvklTCYz7FWpHFM91IglVxpcIkKazkWfIThbgqIpMyFdO0FuKTm9FZ2j9e6D0+3w2LNGieoUDahg8cZsWWJZlFI8HMSsLqVsB6Np485NQ0dWpSOFGIdmOYj0WcbPl6/twV60AILPoRPqOug298cDfx/o6FcdSGTEOCSd4fiWhmlufl4JKhBgRNYEcVRETIkabhCVNJNTgSonIZowePZrLL7+8RS5eWVkZf/7zn1m8eDFWq5VLL72UBx54IFm5vHjxYiZMmMDOnTuT4m7NmjXcfvvtrFmzhng8zqBBg5g9ezannnoqAAsWLGDWrFls27YNVVXp06cPf/7zn7niiiuSUcaNGzdywQUXsHnzZvR6PRMmTODBBx+kf//+ybm1du69efHFF5Npcc256667mDNnTnKM1mg+riAIzJs3j9///vdtGhfgtttu48UXX8TlclFcXMyf/vQnZs6c2UIPxONxZs2axSuvvEI4HE527Bs0aFCLcVMi8gikPUUk7lKo+h7ZUYBPDeNXwtTLfrxqiIiSQBIErIIRi2BE+olKSYOvKplLaav8EVHe09dZFURC2X2TNkLhrN5trrxM0c6oKoI/jOj2t/SfPIj8yf0RIcFaYy0rjJWsaFz2bkJQYUA8I1nt3TOR1r69vZtItmRs/NObNDFpStMM0buov7eqQjwkIX+zG9tHn+BY/RViXPuMyBYr/hMm4Js0lURex1RvdgaKquBL+DFJJvIN2dgkLTqiqiqRQCVB9w4QRQym9FaP370pmx8/64uqCuT2amDolM1IkrpHSGZmakJS37YosxDThKQQVVFs7fteU1WFys1vsvO7J1GVBEZLLv3HzSYtZ+gBj5PcKs4lMmIEZBt4TpD2OzcVlTgyIWLIsgJhEZ1OQJY9FA7rQ8HoVKcz0Dqn3HLLLaxbt67Dilfak3nz5jF37lw2bNjQoZY/RwIpEXkE0hEikrRuyU2qqhJSY/jUMG45SIPiJ6TGUFQVs6jHKhgxHsCEGEBIxLDWbGyMUq7F5NnV4vGEyYG/4FgtSlk4lITZeXjXkeLQOMz+3QdCQWWbzsMKkyYot+pbJr/nyBbGRLQ8ymM7bNlb1fp7x7V8Jww2sKQ35lF2Xf5uPCgR3RXB9PFXpH+5AEPDHtuR0JBh+E6ZSujYYV0meA8HVVXxK0FEBPIM2aTr9nhGRkN1BNzbUOQYBnNWqysd1Tsy+G5BfxRFJLObhxG/3ojOoOwRkk4nUvciaKObhRBpFJLtYEbeGn7XJjYtvYtIYDcIIt2PuYzugy5FOMBrJwZUnF/KSEGQTY39tp37n5uMQpg4UeIIEZGo203BsD70OiXVJKKJxx9/nHPOOad9PJQ7mHPPPZfp06dz7rnndvVUOozy8nIGDhxILBZj4MCBKRF5JNHRInJvYmoCvxLGq4SpV/z4lDAxEhjQYRWMmAUD4k+IDX2gPikobZU/IDX9qDcSyuyVXPoO5fRLmZ13BXvnT4ZjYNAdVv5kc+rFcLJrzlpjLVFhTxtHkyIxIqaZnI+O5nfMsreqQDyoLXlLhsbopFMTll1UNR0PSYQbJKRl60j/4mNsG79BaPw6i2fnaIU4J56MYrd3yfwOh5ASJi7HyTFkkm3ISJqVxyIeAq6tJGJ+jNacfSyAAOp3pfHN/0qQ4xLOXD8jz9iAwZRoFJJeRGcaUlE3aGMKgBjSutqo4uGZke+PRDzI9jWPUrtT88Rx5AxlwNjZGK25+z1GDKukfSWj84KiB+/xEons/c9NRSVCnAgJQtVuCgf3offUlIhMcWSSSCQoLS0FtMrtI1ncp0Tk4dAGEdkcRVUIqFFt2Vvx41XCBJUIoiBiFgw/XZwDoCSw1G7ZYyPUsKPFw7LeopmdNy59x21Hb0u5o5YOyp9sIkKC74y1rDBWsdJYRb0UbvH4gFhGstq7V0cse8sxrbc3quZRaU7XOuboLV1S6BIPS0TcehJbGnB+sYD0FZ8ihbSWgIreQHDMeLynTCXWq0+nz+1wiCoxgnJ4n4KbRCxIwL2VaKgBo3VfCyAAT42N1e8PJB7VY8sIMmraekzWOCgKituNmJaGWNQNoY0VqWJARV+noujV/Ra0HC61OxeybfXDyIkwOoODvqNnkVV0wn73F2IqaUtl9PWgSuAbKxIrOPBybBwZz+4asof1TonIFCnagZSIPBwOUkTuTViN4VcieBRt2TugxEggY0SHVTRi+oniHABd2IOt4rtGUfkduqi/xeMRZxH+wqEps/OuoAPzJ5OnaFr2NlaxwlTJlr2WvbNls5ZHGclnaCynfZe9VQUSYYhHtM44Bvue5W6p83OV4mGRiEdPtFrFtmIpmUs/wlS+5yYr0rsvvlOmEhw1DrWzmxMcIk0FNw6djfxmBTdyIkrQs51woBKDKROpleInf4OFVf8dRDRkwOIIM+qs9Vgc0UYh6UGw25B6FCGY2paaIHkVdPUgm1Q4TDPy/RH272bTsrsIuDYBkN/3N/Qcdm2r1wdAQmuPaKxSUQXwHycSLT7w5yq0vYb08f3odsqgA+6XIkWKnyYlIg+HwxSRzZFVZa/inDARJX5QxTkoMuaGHcmlb0vdVgR1T7Vv0uy8MUoZSys4wGAp2pUOzJ9sTkNy2buKb401+yx7D2+s9h4dzSejPZe95TgkQqAkNM9JUzqYHFp0spOT9RMRkYhbT9ilx7B5G1nLP8C+ZjmCrFlqyXYHvpNOxn/yZBJZR35b0j0FN8bGghutQltR4oQ8pYR8u9AZHej0+7aKDHmNrPzvMYR9JoyWGKOmrcOeGQZV1YSk1YLUvQihLW0mVRXJo6JzgWxpHw/J1lDkOKU/PE3Fxn8DYHH2ZsD4u7Gm9dzPAarmI1mm/ZQFhoqE++3/PRfeXkvG8f0omNS652GKFCnaTkpEHg7tKCKbo6oqYTWGt1lxTliNIR9EcQ6AFA1gq/whufStD7laPB615yUFZTB/UMrsvLOIJRA9gQ7Ln2wiisx3hlpWmLTe3nV7LXv3j6Unq717J5zts+zd1M87EdHEo8EGpowusQpKRLTIZNhlQK3zkbVmAelfLUTnatCmKoiEho/AN+lUwscMOaI9J5sKbgQg35CTLLhRVYWQbxch705EydSqTU4kYGDV+wMJuKzojXGOO3MDztzG5X6XB8Fi0oRkM6+8/aKo6Fwqkrf9PST3xl25ks0r7iUecSNKRnqNuJ683me2vjqjqli/U7Bs1X7OgiUCoWPEVl/TlIhMkaL9SInIw6GDROTexNQEASWCRwlRr/jxq2Gi6sEV56CqmNzlmoXQ7rVYazbuY3YezB2Iv5u29B11dj+if1R/NjTPn/QEEWLxds2fbEJFZbvOywqjJig3GVreUGTLZkY35lEOjeZgbI9lbzUBsVCXWwUlok2RSQOJEKRvWUH6Vx9hWf9jcp9YfgG+SVPx/+okVEsbxFQXEVLCxOQYOYYssg0ZiIioqko0WEPAvRUQMJgz9jkuFtax+sOBeGvsSHqZkadtJLObZuCueDwIBgNSj+4Itjb40XagGfm+825g89f34anW2vBlFU2gz+i/oDe08t2tqlg2qljXaasv4V4CgeHiPvNLicgUKdqPlIg8HDpJRDZHURWCahSfEqFe8eFVwoTUKAJC24tz0MzObVU/Ytu9FsfutRgCtS0ej1kyCDRGKf0Fx6IYj9wf1p8FnZA/2RyXGGGlsYqVxkq+MdQQEfcsextVieHRXE4P9eK4WN7hRyiPEKsgOSYS9ugJNxhIRCSs7lIylv4P+5LFiBEtSqsYTQTGn4D3lKnEi47MFmQxJUaglYKbaLiBgGsrciKC0ZK1T+V2Iibxzf8G0LDbiSgpDJuymdxe2s2E4vEiGPRIRd0Q2vK9mNAKbcQOMCPfG1VVqNj4b0q/fxpVlTFachkw/m4c2YNb3d+0XcH2jYIARLsJ+EaLLZbeUyIyRYr2IyUiD4cuEJF7E1Hj+JUw7sMozkFVW5qdV61rxey8n7b03W0Y4cxeKbPzjqST8iebiDUtezcW5zRf9u4bd3JBYCDjogWI7bXc3cVWQXJMaFzmNpIIieiFIOnffE7apx9jqNid3C88YCC+SVMJjhwNuiPLNmt/BTfxqI+AexvxiAejJXsfv0U5IfDdJ/2p2ZGJIKgMOXkrhQPqAFC8XgSdThOSaWn7nHNvkmbkMRXF2vGrFv6GjWxadheRQAUIEj0G/4GigRe16ilp2KXgWKkgKBDLEfCNF1Ebi4FSIrIlDQ0NlJSUsGrVqoNqLZiia2nedWfatGm89957XTKPlBI4yjEJerIlB/30+Ywy9OE4Yy+O0XfDKVoIqTGqZA/Vsge/EkZuVmTTAkEgllZAw6DTKJ18B+svfIkdU2ZTN+gMIs5uCKqCtXYTed/+m77v/4WB/76coi8fx7ntS6Swp1Ov9xeBJKJm2JH7FhIf2Z/EsD7I+ZkI0ThilQux3gvReLudzoDEqFg+M/zDea3uNJ6uP4Vzgv0wKRJb9R7uTl/OVZmf8LmpHJn9vIfaiiA2VnFngc4EoQZwbYOGLeCv1qyDOvi+VjKoWHNipPcKYC8Ko5pN1I44gx13/pOKv95NYNRYVFHEvGkDuf96lO43/Annu28iud0/PXgnoRMknDo7gUSAsmglAVnLcdQbHTgyB2C0ZBEN1aLILd8nkk5l2NRNFPavRVUFvv+0H6Xfa11+xLQ0kBXksl2oHu9PzkE1CCQyBdAJiKGOj0XYM0sYduo8sosngypT9sMz/Pj59URDdfvsGysS8f5KRNGBoVYlbbGMEPlFxUvazP3338+0adNaCMgZM2YwYsQIjEYjQ4cO3eeYxYsXM23aNPLz87FarQwdOpTXXnvtJ8/1U+MCvPnmmwwdOhSLxZLsK7030WiU22+/nR49emA0GikuLuaFF15o6yUD8O677zJ58mQyMzMRBKFVQ++mvuF5eXlYrVaGDx/OO++885NjV1RUcNFFF5GZmYnZbGbw4MGsWbOm1X3/9Kc/IQgCjz/+eIvtxcXFCILQ4u+BBx5IPj5u3DiqqqqYPn36QV13e3Nk3V6nOCwkQcQpWHCKFrpJGYSbdc6pV/zUKr42dc5RdUYChUMJFA6lisvQB2qx7/6usSXjD+giPtK3f0X69q8ACGX2TkYpQ9n9jspOIUcsBh1KjhNynMh75082+No9f1JAoFfCyZ/8Ts4PDGC+dSvzLVsp1fv4m3MlLyXWcV6whEnhHugP9x5UMoDZsMcqyLu7U62CJIOKNTuGyRkn6tUTajDgyRuG/w/HYrqwlrQvPsH+xafoPG4y3v0P6f99m+DI0fhOmUqk/8AuzxkWBZE0nQO/EqQ8WkWeIZsMnRNJb8GeOQBBMhD27cZgzkDS7anEF0UYMmkremOC0h8K2LCkF/GYRJ+RuxEcdlS/H7msHEnthpDeeovFJlSTQCITdLVad5uOMCNvjk5vpf/Y2aTnjWLbmkfw1q7l248vpd/ov5LZ7fgW+8ZzRbwnCaQtkdG7wfmFjPeE1HdTc0KhEM8//zwLFy7c57HLL7+clStX8sMPP+zz2PLlyxkyZAi33norubm5fPjhh1xyySWkpaVx+umnH/CcBxr3448/5sILL+Sf//wnkydPZuPGjVxxxRWYzWauvfba5H7Tp0+npqaG559/nj59+lBVVYWiHNwNbjAY5Pjjj2f69OlcccUVre5zySWX4PF4eP/998nKyuL1119n+vTprFmzhmHDWvcZdbvdjB8/ngkTJvDxxx+TnZ3N1q1bSW/lszR//nxWrFhBQUHrTin33HNPi7nZmzVOMBgM5OXlYTabiUajB3Pp7UpqOftwOAKWs9tKU3GOVwlR11icE1Nl9EhtL84BUBJYazdrS9+712J27WzxsGywtGjJGLemzM7bneb5kzVuBF/H5k8GhTj/tWzjHesWfKKW5pAtm5keHMCpoZ7tU4TTRBdaBclxgZhPT6jeQCyoQ2eU0Rsi2L5ZSdqijzFt2ZTcN1rUHd+kUwmM/xVqG30WO5KwEiEqR8k2ZJJjyERERFEShLxlhLxl6Aw2dIaWRTOqCltXFbFtdXcAio+toOT4UgQB1GAQEgltaTsz8yfPL/pV9PUda0a+NyFfOZuW3UXQvQWAgn7n0nPYnxGlli4Akk/rbiOFQDZDTU8PjlP6pJazgbfffpurr76a2traVh8/mN7Np512Grm5uW2KCO5v3AsuuIB4PM5bb72V3PbPf/6Thx56iPLycgRBYMGCBZx33nns2LGDjIx9i8gOltLSUnr27MnatWv3iY7abDaefPJJLr744uS2zMxMHnzwQf74xz+2Ot5tt93GsmXLWLJkyQHPW1FRwejRo1m4cCGnnXYaN9xwAzfccEPy8eLi4n22tcbvf/97PB5Pajk7RcdiEHRkSDZ66nMYaejJKENvhui7kyM5iCNTrXiokj14lBBxVd7/QKKOYN4gqkdexNazHmHDec+x61fX4el5PAmjDSkWwln6NUVL/x8l/7mSvvNvIH/VS9gqf0CQ228J9heNIKA6LMg9comP6Ed8eD/k4jwQQKx2a8IyFGm3ZWGrqueCYAmv1p3GVb5jyZBN1ElhnnCs5eLsj3jTspmQ0E6vraQHY5omHgECVeDaCu7tEGzQcik7CEmvYs6Mkd47iLM4hKhXiQSsuAefRMUd97P7/kfwTZiEYjRi3FVO9ryn6XHdlWS+/Dz6yooOm1dbMIsmLJKZmlgDldFa4mocUdRhdfbEltEPOR4mHvG0OEYQoN/oXZT8SjNkL/2+kB8/74OioNn96PXI5btR6xt+8r2k2CCRDmJMgETnxCUsju4Mnfw0hQPOA6Byy1t8t/BKQt6yFvvJDgHPRImEHaQw5G52IFZ38HeRqmqpGV3xdxCf+yVLljBixIh2uWSv13vYoi4ajWLaq4uS2Wxm9+7dlJVpr+v777/PyJEjeeihhygsLKRfv37cfPPNhMPh1oY8LMaNG8d//vMfXC4XiqLwxhtvEIlEOOmkk/Z7TNP8zj33XHJychg2bBjPPvtsi30UReHiiy/mlltuYdCg/ZveP/DAA2RmZjJs2DAefvhhEonEfvftKlLL2b9AREHELpixi2YKSU8W52hRSh8uJdjm4pyEJQN33wm4+07QzM7rt7cwOze7yzG7y8le918UnZFA/uBkn++YI6+Tr/xnSFP+ZIYduUduC/9JwRNsV/9Js6rjt6F+nBnqzUJzKf+xbaJGCvGs4wfesG3iN8G+nBXqg01th24wgqhFH/WWPVZBYU+nWAWJOhVzRgyjI07UpyNUbyTiMRDL6EP0sj/jOu9i7F99gePTBehrqkn75H+kffI/Qscci++UqYSGjeiSlA6DaCBNkGiIe4ipcQr02ZgkExZHN0RJT8C9nWioHoM5s8XnueexVegNMj983ofdG3OJRyWGTtmCZLGgEkYu34WoyIjZ2ftfwhcE5DQ0+x+P0KFm5M0RJQO9hl+HM3cEW1bcT9CzjbULLqf3yJnk9joteZ2KRROSaUtk9C4R/dowXNSBE4uH4N422CV1BHcGwNA2N42ysrL9LqUeDG+++SarV6/m6aefPqxxpkyZwsyZM/n973/PhAkT2LZtG4888ggAVVVVFBcXs2PHDpYuXYrJZGL+/PnU19dz9dVX09DQwLx58w77Wprz5ptv8rvf/Y7MzEx0Oh0Wi4X58+fTp8/+W6ju2LGDJ598khtvvJG//vWvrF69mhkzZmAwGLj00ksBePDBB9HpdMyYMWO/48yYMYPhw4eTkZHB8uXLmTVrFlVVVTz66KPteo2HS0pEpsAk6DFJWoFOTzUHvxrBr4Spk32a4bkSRGxL5xxRIpzTj3BOP2qH/Q4p4sdW+X1SVOrDHhy71uDYpSUYRx35yZaMgbxjUPXt2EHll0gn5U8akDgj3JtTwz35zFzOG9aN7NYFeMm+nresmzkz1Idzgv1wqu1kLi7owOjYYxUUqNX+OtgqSBOTcYxpiUYxaSDi0SPqnchTzsA75TTM677HsWgBlu++wbLueyzrvieemYXv5Cn4TzoZxfHTVc7tidRYcOOTA5SpVRQYsrFLNkzWXETJQMC1lWiwFqM1u4UFULeSWnSGBN8t7E/Njiy++VBi+Kmb0FnMqIKAvKsCVVGRcnMOLCTTQVBUJC/INrVDPSSbk1E4juG/fonNy+/FU7OGrSv/hrtqFX1H/SW5jK8aBTwnShiWB5BO+ekl+l8C4XB4n8jfwfLFF19w2WWX8eyzzx4wqtYWrrjiCrZv387pp59OPB7H4XBw/fXXM2fOHMTGdBZFURAEgddee420RheBRx99lN/+9rf8v//3/zCb2++74M4778Tj8fDpp5+SlZXFe++9x/Tp01myZAmDB7duMaUoCiNHjmTu3LkADBs2jHXr1vHUU09x6aWX8s033/CPf/yDb7/99oDOKTfeeGPy/4cMGYLBYOCqq67ib3/7G0Zj5zZuOBApEZmiBe1VnAMgm+x4ex2Pt9fxmtm5q7RRUH6HtWYjRl8VRl8VWRs/1szO8wYmo5RRZ1GXFy4c1VhMKBYTSn5Gi/xJscHbbvmTOkSmhIuZFO7BEtNuXrduZKfeyxu2Tcy3buW0UC/ODfYnS2mnL3VB0Cq6daY9VkHusg63ChIlFXN6HKMjruVMNhiIePWIkooyaBjhIcPQ1dbg+PwT7Is/Q99QT+abr5Hx7n8IjBmP75RTifbu265zOuB8BRGnzoFf1gpu8hsLbgymdBxZA/G7thIN1mCwZCOKe34C8nq7GHnGBr75Xwn1u9JZ9d9BHHfGBvRmE4gCSkUlqApSXu7+Lb5EgUQGoIAUUDUh2UmfY4M5i2MmPsbuja9T9v0z1Jd/hr9hAwPGz8GRdYy2k17A2y1Mhq6D56S3aBHBrqCV9pf7IysrC/dhuA58+eWXnHHGGTz22GNccsklhzxOE4Ig8OCDDzJ37lyqq6vJzs7ms88+A6BXr14A5OfnU1hYmBSQACUlJaiqyu7du+nbt30+a9u3b+df//oX69atS4rjY489liVLlvDEE0/w1FNPtXpcfn4+Awe2zLctKSlJVnUvWbKE2tpaunfvnnxclmVuuukmHn/8cUpLS1sdd/To0SQSCUpLS+nfv387XGH7kBKRKfaLIAhYBCMWjORJTuKq3GzZ249PDRNTAm0rzhEEIpk9iWT2pG7IbxBjIWxV6xpF5bcYAnXYK3/AXvkDrH6JmDUrKSgDBYNR2rg8k2IvmvInHRbkbtma/6TLj1jrRqx2t4v/pITASZEiToh0Y4WxitetG9hscPOudSsfWLYzOVzM74IDyJfb8TVssgoy2LWOOKEGCNVrP6DmdDDatf9vRwEjSmBKj2NwxIn5tQKcqK9RTGbm4jrvYty/mY51xXIciz7GtHM79qVfYl/6JZGevfGdMpXgmPGohs6JItglKxElwu5INTFDnBxDJjqDDUfWAAKu7USD1RgsWYjSnvSDrCIvo6atY80HA/HUOFgxfzCjzlyP0QoCoFRUgaIi5efuf8le0oSkIIMYUFE6UUgKgkjRwItIyxnKpmVziAar+H7R1RQPuYJuAy/cx4C9AyfS5iXlrmTYsGG8+uqrh3Ts4sWLOf3003nwwQe58sor23VekiRRWFgIwL///W/Gjh1LdnY2AOPHj+ett94iEAhga+ywtGXLFkRRpFu39ityDYW05gjiXjfakiQdsBJ8/PjxbN68ucW2LVu20KOH1rzg4osvZtKkSS0enzJlChdffDGXXXbZfsf97rvvEEWRnJycg7qOjiYlIlO0Gb0gkSHZyJBs9FCzkp1zGhQ/HiWEV/G0uXOOYrDg6zEKX49RoKoYvRXJZW9r9XoMwXoytywic8siVEEkmDMAX/eRuPtORDYdZlX9L5Xm+ZPdc/aTP2kG46HlNIoIjIsWMDaazzeGGl63beRHQz0fWXbwsXknJ0e6c15gAN3ldn79OtkqSJTA5NQik9HmYlJU0dsgcMIEAidMwLh9K45FC7CuXIZp53ZMzzyB/PpL+E+ahG/iZBI5ue02p/1hEk1IgkRNrIGYEiffmI1eZ8ae2R9RZyDs24Xe6ERqlg6Qnhdg9NnrWP3+IPwNVr5+dzCjpq3H4tAqMZWqKlBVpIK8/QtJvUAiS7P+EUMqSifrKUfWMQw/9UW2rnqI+vLPKP3+KTzVa+g/7s7OncgRzpQpU5g1axZut7uFBc22bdsIBAJUV1cTDoeTVdQDBw7EYDDwxRdfcPrpp3P99ddzzjnnUF1dDWi2M03FNfPnz2fWrFls2rSpzePW19fz9ttvc9JJJxGJRJg3bx5vvfUWX375ZXKMCy64gHvvvZfLLruMu+++m/r6em655RYuv/zyg1rKdrlclJeXU1lZCZAUfnl5eeTl5TFgwAD69OnDVVddxd///ncyMzN57733WLRoER9++GFynJNPPpmzzz47aUE0c+ZMxo0bx9y5c5k+fTqrVq3imWee4ZlnngG06u7MvRwP9Ho9eXl5yQjj119/zcqVK5kwYQJ2u52vv/6amTNnctFFF7VqFdSVpCx+DoejyOKno9m7OOeQOuc0IiSiWKvXN3bQ+Q6Td0/lqyLp8fQ6noaSXxPO6t1Rl/PLorX+3WYDqt1y2PmTP+rreN22kTXGGgAEFU6IdOP8YAm9E852mPx+6ESrIFWBmF9HyGUk6tM1BqESiDrtq1X0ebEv/gzHZwvRN9RrxwgCoaHD8U06lfDgYzvevkiV8SYC2HVm8vW5mCUTqiIT8pUT9JYi6S3oDfYWxwS9Jlb9dxBhnwmjNcqoaeuxZ4QhHkfx+RBzc5EK8g+YPiCEtfaIqCqKufPTU1RVpWbHR2xf8xiKHEFndFJcfC29Tj8/ZfHTyOjRo7n88su56qqrkttOOumkFsKtiZ07d1JcXMzvf/97XnrppX0eP/HEE1m8eDEAL774IpdddhnNJcZPjVtfX88ZZ5zBjz/+iKqqjB07lvvvv5/Ro0e32H/Tpk1cd911LFu2jMzMTKZPn859992XFJFN3Vyaxm2NpvntzV133cWcOXMA2Lp1K7fddhtLly4lEAjQp08fbr755haWP03PR9MxAB9++CGzZs1i69at9OzZkxtvvHG/XpRNYzS38/n222+5+uqr2bRpE9FolJ49e3LxxRdz44037pMP2dUWPykReTikRGSryKqyT3FORIkhCeJPF+e0gt5fg2P3t6Rv+QxLw47k9mB2PxpKTsXbcxxqB5pS/2LY23/SE0Q16FCdNpAOT+Rs1rn4t20jy0yVyW1jIvlcECyhJN6BRQ6qAomI9ieKWkW3OROMNtC177KyqkAsoCPUYCDm096PBtseMYkiY1n7LY5PP8by4/fJ4+K5eXjOOBv/SZNaG7bdUFQFnxzAIOrJ1+fg0NlQVZVIoIqgZzsIIgZTyyhHJGBg1fuDCLgs6E1xjjtjA87cAMQTKD4vYnY2UmHhAW82xKDWHlGVVFRj1+Q5h7xlbFo2m6BnGwA9R1/JiXMOr5L458JHH33ELbfcwrp16/ZZuj1amTdvHnPnzmXDhg3o9T/v34aUiOxkUiKyc1FVdZ/inJAaa3Nxzl6DYanbQubGj0nbuRxR0TyzEiYHDf0n4+o/mbgtZW7eLsgKYp0HqbwOweVDtZlRHYefY7hT5+V160a+Mu1CaRxqeDSHCwIDGRLPQmiP/tz7o8kqSI51qFVQk5gMuwxEvXrYKzIJoK+qxPHpAmxLvkBqzL1ynXs+nmm/bbd57I+AHERWVa3gRp+GgEA0VE/AvRVFjmEwZ7VYNYiFdaz+YCDeWjuSXmbkaRvI7OaDRALF60XMykLqVnjA/uKST0VXr6IYOs+MfG8UOcrOtU9SueUtBk6+h1EzU0vbTTz++OOcc845FBUVdfVU2oVzzz2X6dOnc+6553b1VDqMJUuWcOqppxKNRjnttNNSIrKzSInIrmXv4pxD7ZyjC3vI2LyIjE0LMYRcAKiCiLfHKBpKTiWYd0yqurs9iCUQa91I5bWIvhBKmlWzCTpMdkt+3rBu4lNzGbKgfQUNimVyYWAgI2O5HSwmG62C4pp46yiroKSYdOuJerQ8U701gaTf85UrRCI4P5xP+ntvA9Bw3sV4Tz+r3eawPyJKhLASJUefSbY+E0kQiUe9+Bu2EI/5MFlzWxShJGIS33w0gIYKJ6KkMGzqJnJ7ukGWUTwexMxMpKJC0O3nhlBVkTwqOhfIZhU6ujr6ANR/v4xuU35N4SmHZ0eTIkVXEg6HqajQUr1sNht5eV3ju5wSkYdDSkQeFqqqElAjLYpzQmq0zcU5ACgJHOWrydrwMbbqdcnNEWcR9SWn4ulzIkoHeAj+4ojEkCrrkXbXQySG4rSB+fCXg2vEIP+xbmaBZSdxQat47BtP54JACeOiBYgdKSZhj1VQItphVkGq2hSZ1BPzGlBULTLZXEw633ubjLf/DUD9RZfhm3rg/sPtQVyN40+ESNc5yDdkoxf1JGJBAp5tREP1GPeyAJITguYjuTMTQVAZMmkrhf3r9gjJjAwtImnYT2GWqiK5VHQeOs2MvDXC22vJOL5fKicyRYp2ICUiDwdPOVR9B4IElsx2rQD9JXK4xTlGdxlZGxfg3PYlUiICgKy34O47gYaSqUTTCjvrUn62CP4wYkUdUqULFAUlww76wzd5qBfDvG3dwkfm7UREre1mcdzB+cESTox0Q+qMDq1yTGsbh9ohVkGqCvGgJiajXgOK0lJMpr/972REsv7SK/CdMvWwz/lTtFZwIyeiBD07CAcqMJgykZrljioK/PhZXyo2azYjA0/YTvGQ6j1C0ulEKuoG+zNDVrRlbcmnItvoNDPy5qREZIoU7UdKRB4OigzBOi0iGawFBLBmaRGNFIdF68U5cfSCRJpoPmAepRgLkr51MVkb/4fRV5Xc7i84loaBp+Lr1jVt6X42qCqCJ4C0ux6xxg2iiJLRPpE7rxDlXetW3rNsJSRqOa8FCRvnBQcwKdwDfWeIySaroHikQ6yCNDEpEXYbiHr0KLLQKCYVMv7zKs4P3wOg7g9/xj+hY4ttQCu48csB9M0KbhQlTshTRshXjs7oQNfMwFpVYcNXPSn7UWuX129MGb1H7EZQFRS3WxOS3bqBaT9CUtYKbaRgo5Ds5LSTlIhMkaL9SInI9kBRIFSnRSYDVYAA5gyts0aKdiGkRPGqYaplDw1ygDgJrIIJu2Daf6W3qmCr/IGsDf/DvusbBLS3esyWTcOAqbj6TUI22Vs/NsVPoyiIDT7EXbWI9X5Ukx41zdoudjUBIcZ/Ldt517oFnxgDIFs287vgAKaGemKkk24COtAqSFUhHpIIuwxEXAYkg4LenCDjtRdxLvgQVRCou+IaAidMaKeLOTBBOUhCVckzZJGpd4KqEvLtJuTZgagzoTfu+b5UVdi6qjvbVmuFGD2HVjBgfGlSSAp2O1KPIgRT66kkQlwTkkKk0UOyE4VkSkSmSNF+pERke6IoEG7YIyYVGcxZWiVoinZBVVV8apgGOUCl4sYvh9EJEg7RjFnYfwRY768hc9NCMrZ8ii6qtSNLeU62EwkZsdaDtKsWwR1AtVtQ7eZ2EQZhIcFH5h28Zd2MS9JSFNJlI+cG+3N6uDdmtZP6JXSwVVC4wYB3txm9WUZnkMl8+TnSFi1AFQRq/3w9wXG/aoeL+GkiSpSwEkkW3IgIRIM1BNzbABWDuaUd087vCti4tCcA3QbWMPikbQiCiuL2IFgtSN2LECytt+EToo1CMq6iWFMiMkWKo5GUiOwIVBXCLk1M+itBToAl46B6mqb4aeKqjEsJaNFJJUBEjWMVjDgE836jk0IiinPHUjI3fpzynGxvonGkahfirjrEYBjFaUO1tM8NVAyZheZS3rBtolbSqqrtioHfBPtyVqgPNrUTU0g6wCpIVSFYYyRQZcboiCOKMlnznsHxhdaxqfbamQRHj2vf69gPTQU3Tp2dAkMOelFPLNyA37UNORHGaMlqUbm9a0MOP37RB1SBvN71HDt5C5Kkorg8CFYzUlE3BGvrLWuEsIq+VkVFRe0kM/KUiEyRov1IiciORFUh7AbvLvBVaD865oyjoqfq0YZf0aKTVYobrxJBRMAumLCK+4kSpTwnO45QBKmiAamyHqJxrfjmEFsp7k0ChU/NZbxh3USFTosoWxQdZ4b6cE6wH061c/pSA+1uFaQq4KswE6o3YnbGEFDIfvb/YV/yBaooUnPdzYSOG/3TA7UDTQU3tsaCG4tkIh71EXBvIx5xY7TkIDQTzNXbM/huYX8URSSryM3wX29Cp1dQPB4Eo1GLSDb2Od4bMaAV23SWGXlKRKZI0X6kRGRnEfbsEZOJMJgytKWwFO1KQpVxK0FqZR91ip+QGsWCAbto3q9dUMpzsmMQfEHE3fVI1S5Q0Ipv2qGSG0BG5SvTLl63bqRU7wPAqEqcFurFucH+ZCmdbOvUTlZBclzAt9tM1KvH5IwjqDLZT/0L+/KvUCUdNTfcQmjYyA67jOZoBTdBdKJEgT4Xh86GHA8RcG8jGqrDYM5CbBa1rytP49v/lSAnJNLzfIw8fQN6k1a1LRgMmpC0t56DnDQjN6qo+o79rKVEZEsaGhooKSlh1apV+20RmOLIY86cOdx9990APPbYY8mWiZ3Nz6PH0dGA2Ql5g6H7OMjqD3IEPGUQ9XX1zH5W6ASJbMnBIEM3Rhl6MUTfHYtopEHxUyV7CCgR9r5vSpid1A49l03Tn6J04i0E8o5BUBWcpSvo/fFd9Jt/AxkbFyDGw110VUcnqsOKXNKd+LG9UbIdiPU+xHovyMphjy0hMCHSnacbJnO3exz94ulEBZl3rVu5JPt//MPxDdVSsB2uoo0IYmMVd5ZWUBdqANc2aNgCgRrNOqgN9+uSXsVeEEFvTRD16UGUqLvqWgKjxyHICXL/8TDmH9Z2wgWBKIik6eygqpRHq6iPuRD1ZuyZAzDZC4mF65EbrbQAsrt7GTVtPTpjAne1gxXzBxMN6RGdTtR4HLmsHNXnbfVcsh0S6SBGBEj8ouIaXc7999/PtGnTWgjIGTNmMGLECIxGI0OHDm31uIULFzJmzBjsdjvZ2dmcc845lJaW/uT5PvroI0aPHo3ZbCY9PZ2zzjqr1f0aGhro1q0bgiDg8XiS2xcvXowgCPv8VVdXt/maXS4X1113Hf3798dsNtO9e3dmzJiB19vy/dnaed54440Djl1cXLzPMQ888ECLfd58802GDh2KxWKhR48ePPzww/uME41Guf322+nRowdGo5Hi4mJeeOGF5OM333wzVVVVdOvWtT7VnZSVniKJyQGmgZBWBL5K8JZpYtKUBsa0VMSrHbGIRiyikXzJiVcJUSv7qFV8VCpujOhxiGYMQrOPgKjDVzwWX/HYFp6TJs8uun39DPlrXk15Th4sgoCa6SDhtCHmebXONzUuVItJq+Q+zPe7iMC4aCFjowV8Y6jhddtGfjTU86FlB/8z7+TkSHfOD5RQJHdiFb5kALNhj1WQZ9dBWQXpjAqOggiecgtRvw6jHWr/fD2CLGNds5Lcxx6i+qZZRI4Z0imXY5WsRJQoFbFaYsTJ1WdjS++DJBkJeneiKjZ0Bm1VJT3fz5izf2TV+4PwN1j5+p3BjJ62HnNaGqrPj1y6C6k7CM60licRBGQnCLKK5AHZ2nVm5L8kQqEQzz//PAsXLtznscsvv5yVK1fyww8/7PPYzp07mTZtGjfeeCOvvfYaXq+XmTNn8pvf/IZvv/12v+d75513uOKKK5g7dy4TJ04kkUiwbt26Vvf9wx/+wJAhQ5JdWfZm8+bNLVYTc3Jyfupyk1RWVlJZWcnf//53Bg4cSFlZGX/605+orKzk7bffbrHvvHnzmDp1j2er0+n8yfHvuecerrjiiuS/7c0i8B9//DEXXngh//znP5k8eTIbN27kiiuuwGw2c+211yb3mz59OjU1NTz//PP06dOHqqoqFGXPDbjNZsNmsyG1U1OEQyW1nN3VxIJ7xGTEpwlJU0pMdhRhNYZLDlIlu3ErIWRVxi6asAqmVtstpjwn25l4QqvkLqvR2ig6LKj29i04+0Ffx+u2jXxjrAFAUOGESDcuCJbQK+Fs13O1mX2sgpyNxTj7twqKenV4d1kQdQp6swKJOLn/+DvWtWtQDAaqb7mDSEnnte5rXnCTb8hBL+gI+ysIeXaAqMNgcib3DXpMrPrvIMJ+EyZrlFHT1mPLCKP6/QBasU16+r4nkVV0DSqSX0W20iFm5Knl7D28/fbbXH311dTW1rb6+Jw5c3jvvff47rvv9jnu/PPPJxqNIja+fz/44AOmTZtGNBpFr9/3JimRSFBcXMzdd9/NH/7whwPO68knn+Q///kPs2fP5uSTT8btdifF2+LFi5kwYUKLbe3BW2+9xUUXXUQwGETX2AdeEATmz5+/32hpaxQXF3PDDTfsd3n5ggsuIB6P89ZbbyW3/fOf/+Shhx6ivLwcQRBYsGAB5513Hjt27CAjI+OwztfRpJazuxqDFbL6QtE4yDsWBLTcybBLi2SkaFfMgoFCXTrDDcWMNPakjz4XBZUq2U2d7COqxlvsrxisNAw6jc3n/JMdU2bjKxqJioC98nuKP32AAW9fTfYP85Ei/i66oqMMvQ6lMIv4iL4k+hchJBStACcUbbdTDIln84D7BP5VfzLjIgWoAnxp3s1VWYu407mUjfqGdjtXm5H0jTeIjcIpUK0tdbu2QbBBy6XcC2NaAnt+hERUQo4JoNNTM+NmQkOGIcZi5P19LsYtmzrtEvSCnjSdDU/Cz65YJSElgsXRDXvmABAEoqH6ZKqI1Rlh7Dk/YksPEQkaWfHuYLy1Vi0nUhCRy3ahNrTyOkgCiQwB2SogBWlTCsCRiKqqhORwl/wdTFxoyZIljBgx4qCvb8SIEYiiyLx585BlGa/XyyuvvMKkSZNaFZAA3377LRUVFYiiyLBhw8jPz+fUU0/dJxK5YcMG7rnnHl5++eWkQG2NoUOHkp+fzymnnMKyZcsO+hr2pimw1CQgm7jmmmvIyspi1KhRvPDCC216fh944AEyMzMZNmwYDz/8MIlEIvlYNBrFZGrpWmE2m9m9ezdlZWUAvP/++4wcOZKHHnqIwsJC+vXrx80330w4fOSlVKWWs48UDBbI7A2OQu0Hxr1TE5MGq/bDk4p2tSuiIJIuWEkXrRTpMnEpwWZG5gFsghFbcyNzQSRQOJRA4dAWnpOGQB35a14hd+0bKc/Jg8FoQO6Zh5KdhljZgFTRAN4gSqYdDO1jsdQ/kcHdnvHs1Hl53bqRL027WGGqYoWpiuHRHC4IDGRIPAuho/tzN0cQteij3rLHKiiyQ6vmtuVrrRab/XCaMmLIMYFAdaP1j15PzQ23kPvoA1jW/UD+Q/dRNesuor37dsr0JUHCqbPjl4PsUivJ1+eQZs1BkPQEXNuIBmsxWrMRBBGTLcaY3/zI6g8G4q21s3L+MYw4fSOZhaAGg8i7diOpIGRmtFx50QnIGSAoIAZVlKOw/jCsROj7zcQuOffWEZ9jkdpWWFZWVkZBQcFBn6Nnz5588sknTJ8+nauuugpZlhk7diz/+9//9nvMjh2apdqcOXN49NFHKS4u5pFHHuGkk05iy5YtZGRkEI1GOf/883n44Yfp3r178pjm5Ofn89RTTzFy5Eii0SjPPfccJ510EitXrmT48OEHfS0A9fX13HvvvVx55ZUttt9zzz1MnDgRi8XCJ598wtVXX00gEGDGjBn7HWvGjBkMHz6cjIwMli9fzqxZs6iqquLRRx8FYMqUKcycOZPf//73TJgwgW3btvHII48AUFVVRXFxMTt27GDp0qWYTCbmz59PfX09V199NQ0NDcybN++QrrGjSC1nH6kkoo1islRL0tdbG39gUmKyo9ifkXmaaMbUipG5kIji3LmMzA3/S3lOHiaCN4i4qw6pugEEUbMF0rXve32X5OcN6yY+M5chC9rX3jGxLC4IlDAyltu5YrI5qqotdSeiWttUW14LA/N9rH9EEKJR8v5+P+aN65EtFqpm3U2sZ69OnXZQDpFQZfL0WWQa0pFjQfzubcTDDRgs2YiiFqOIxyS++agEV0UaoiQzbOpmcnu6UUMhiMUQCwsQs7P3SeERoiq6WhVBVlEs7ffadMZydkgOHxUicsqUKfTp04cnnnii1cf3t5xdXV3NCSecwFlnncX555+P3+9n9uzZ6HQ6Fi1ahNBKatDrr7/OhRdeyNNPP50Ua9FolG7dunHfffdx1VVXceONN1JZWZksXmnr0vWJJ55I9+7deeWVV9p03c3x+XyccsopZGRk8P777+83kgowe/Zs5s2bx65du9o8/gsvvMBVV11FIBDAaDSiqiq33XYb//d//0c8HsfhcHD99dczZ84cVqxYwejRo5k8eTJLliyhurqatDQtf/jdd9/lt7/9LcFgELN5z+vb1cvZqUjkkYrOCM4eWnQiWKOJSX8lSEbNuFxMvXTtjSAIpAkW0kQL3dQM3E3RSSVAvRLYx8hc1Rlx952Iu8+EFp6T1rotWOu2kFg1L+U52UbUNCuyw4KSl460qw6x1oNq1KM6bSC1T9ZNkWznFt9xXBwcyJvWzSww72SdoZ6/ZiyhbzydCwMljI0WIHa2mBQE7SZRMkCgTotOOgq0nEm04KUtL4KSEAh79JjT42A0Un3TLPIfug/Tlk3kP3i3JiR7FHfatK2SpUXBTY4+C0fmAIKeHUT8lRgsWYiSAb1B5rgzNrB2QX9qSzP49uMBDDl5K4X961EFEXl3JaqiIuXmtBCSqlFAzgJdLQgRFdV09OSJm0UTW0d83mXnbitZWVm43e6DPscTTzxBWloaDz30UHLbq6++SlFREStXrmTMmDH7HJOfnw/AwIF7xLvRaKRXr16Ul5cD8Pnnn/Pjjz8mi1uaYlxZWVncfvvtSUubvRk1ahRLly496Ovw+/1MnToVu93O/PnzDyggAUaPHs29995LNBrFaGybJ+3o0aNJJBKUlpbSv39/BEHgwQcfZO7cuVRXV5Odnc1nn30GQK9e2o1gfn4+hYWFSQEJUFJSgqqq7N69m759O2floS2klMiRjs6gVXLb8iBYqy1zB6o1EWnO0qo+U7Q7BkFHrpRGrpTWwsi8RvHta2QuCIRy+hPK6U/VqN+TsflTMjYtwBBykfv92+T88G7Kc7ItCAJqVhqJdDtinQeprBaxxo1qNaE6LO32vOXJVmb4hnNBoIS3rVv4yLydrXo3c9KXUxx3cH6whBMjRUidLSZFvdaMIOYH9w6w5IItFyRJs/7Jj6DERaI+Paa0OKrJTNXNt5P/4D2Ytm8l/4G7qbz9buLdunfalE2iEUmQqIu5iStx8g252DL6Ioh6wr5d6I0OJL0FSacw/NRN/PBZHyq35PD9on4kYjp6DK4GUUCpqASahOSemwbFLJDIBH0dKDEV1XB0fHYEQWhzNLArGTZsGK+++upBHxcKhfbJV2yqEm5eQdycJsugzZs3c/zxxwMQj8cpLS2lR48egFa93Tzvb/Xq1Vx++eUsWbKE3r33nyb03XffJUVqW/H5fEyZMgWj0cj777+/T57i/s6Tnp7eZgHZdIwoivtUj0uSRGGh5vLx73//m7Fjx5KdnQ3A+PHjeeuttwgEAtgaTfq3bNmCKIpdbumzNykFcrQg6bV8SWuuJiY9ZRCsBkGnRSalTmz79gvDLpqxi+ZkdLLJKsgtB7FgwCGa0TUamWuek7+ldsjZOMpXkbXhY2zV63CWrsBZuoKIs4j6klPx9DkR5RC6mvwikESUvAyUDAdijQupvA6psgElzYpqa7/nLEsx8yf/sZwXGMB861bes2ylVO/jb86VvJRYz/nBAZwc7oG+M+sPBQGMDm1p21+hLXPb88FgRWdSsBeG8ZZZiAV0GGwJVIuF6r/cSf4Dd2PcuZ38v91N1e13Ey/ovB8avaDDqbPhSQSIqzL5hhxszl6Ioo6gtwxFldEb7IiSyrGnbEVvlCn7MZ/1X/YmHpXoPaICEVB2V4KiIOXntRSSNoGErKKrF1CEjjcj/yUxZcoUZs2ahdvtJr1Ztfy2bdsIBAJUV1cTDoeTy9kDBw7EYDBw2mmn8dhjj3HPPfckl7P/+te/0qNHD4YNGwbAqlWruOSSS/jss88oLCzE4XDwpz/9ibvuuouioqIW/ojnnnsuwD5Csb6+HtCicE3L2Y8//jg9e/Zk0KBBRCIRnnvuOT7//HM++eSTNl+3z+dj8uTJhEIhXn31VXw+Hz6f5tmcnZ2NJEl88MEH1NTUMGbMGEwmE4sWLWLu3LncfPPNyXH2vsavv/6alStXMmHCBOx2O19//TUzZ87koosuSj6/9fX1vP3225x00klEIhHmzZvHW2+9xZdffpkc94ILLuDee+/lsssu4+6776a+vp5bbrmFyy+/vMVS9pFASkQebUg6banLlgvBOk1MBmoAASyZLXKpUrQvTUbm2ZKDYiWKSwlQKbupU7TKbLtgwioYtXwgUWrhOZm5cQHpKc/Jg8OgQynKQclKQ6pqQNpdj1DVgJJuB1P73TQ5VSOXBY7h3GA//mvZzrvWLVTqAjyStoaXbev5XXAAU0M9MdKJ+cg6o3bjGPFobRXtBWDOwGAFe2EEX7mZeFhEb1ZQrFaqbr2T/LlzMJaXkj93DpV33EMi7+ALJg4VUZBI1znwyQF2xSrJ02eTllaMKBkJerYTC7swmDMQBBh4wg50xgTb1xSxZUUxiaiO/uPKEG2gVFaDoiIV5LXI/5YdAigqOpeg5bPqUkKyPRg8eDDDhw/nzTff5Kqrrkpu/+Mf/9hC1DQJw507d1JcXMzEiRN5/fXXeeihh3jooYewWCyMHTuWBQsWJEVOKBRi8+bNxON7HC8efvhhdDodF198MeFwmNGjR/P555+3ELA/RSwW46abbqKiogKLxcKQIUP49NNPmTBhQnKfF198kcsuu2y/ldTffvstK1euBKBPnz4tHmu6Rr1ezxNPPMHMmTNRVZU+ffrw6KOPtvB/3PsajUYjb7zxBnPmzCEajdKzZ09mzpzJjTfe2OIcL730EjfffDOqqjJ27FgWL17MqFGjko/bbDYWLVrEddddx8iRI8nMzGT69Oncd999bX6eOotUYc3RjqJAqL5RTFYDKpgzta4ZKTocWVXwNItOhtRo60bmNPec/BijrzK5PeU52TYEfxixQotKoqha8U07tVFsTlhI8KF5O29bt+CStI4sGbKJ3wb7cXq4N2a1k++94yFIRLRuOHat6CZUb8C324zBmkAyaF/hot9Hwf13YdhdTiIjUxOSOXmdO1cgqIRIKDK5+iyyDOnEQg0E3FtREjEMlqxk0cWOtQVsWtYTgKKB1Rxz0naERAzF70fMzUUqyG/ZMlJR0blUJO/heUimfCJb8tFHH3HLLbewbt26A1rqHE3cddddfPnllyxevLirp9LhdHVhTZtF5G9+85s2D/ruu+8e8oQ6mp+diGxCUSDcAJ5yCFSBImtiMrVk2mmElRguJUCV7DmwkbmqYKv8gcyNH+MoX4OA9hGM2bJpGDAVV79JyKZO7LByNKGqCJ4A0q5axBoPSJLWk7sDujbEkFlg3sl/bJuplUIA2BUD5wT7Mi3UB5vaiSkkSlxrRmCwgr0A1eggWGPaY/2j095DktdD/v2zMVRWEM/KpuqOe0hktb2TR3sRVaIE5QhZBie5+mzUWJCAawuxqBeTNRehcbl614YcfvyiD6gCeX3qGXrKFkQljuLzIubkIBUUtKzSbwcz8pSI3JfHH3+cc845h6Kioq6eSrswatQo/vWvf7WI7v3cmDt3LnPnziUUCvHoo48e+SLysssua/OgR5qPUXN+tiKyCVXVjMo9u7ScKjmh5Uzq27crSIr9o6gKXjVMveynurFft0HQ4RDNGIWW1X/NPSd10YB2vKRPeU7+FIqC2OBDKq9FqPehmg1aG8UOiKTEUfjMXMa/rZuo1GmvkUXRMS3Uh98E++FUOymFRFW1ohtVBmseijkHf429hfUPgOR2k3//nRiqq4jn5FJ5+73ImZmdM8dmxNUE/kSAtMYON5KcIOjeRiRUh7GZBVDVtky++6QfqiKS1d3N8FM3oRNiKF4vYlYWUrdCaG4AnVDR16mI4UYheZAFVykRmeLngMvlwuVyAVoeZ/NK7s4ktZz9c0VVtXyqJjGZiGo+k4aj0Ln3KCaixnErWptFlxwkpsrYxb2MzEl5Th4yCVlro1hei+AJoNotqHZzh1TAy6h8ZdrF69aNlOq1JHyTInFauBe/DfYnS+mkqH8iqolJsxPZVIivNpuoR4cpPZ68bKmhgYL770RfW0MsL5+q2+9FPoi8s/ZCUWU8iQBWyUS+IReTKhL07CAcqMRgykBqzOGuK3Py7ccDkBMS6fk+Rp6+Ab0uhuL2IGZlIhUVgm7P+1+IqejqVISoimJLicgUKbqKlIj8JRD2gK9C64CTCGsdcIyp5dLOpMnIvF72U6V49m9krqotPCdFRWuXlTA5Up6TByIaR6p2IZbXIoYiKE4bqqVj8oIVVFYYK3nNtpEtes1jT6+KTAkX87vgAPJka4ectwWqAlEPiHoShm5467qRiOgxOfcUMejqa8m/bzb6+jpiBYVU3X4Pcpqz4+e291RVFZ8cQCdI5BmycYgWQp5SQr5ydEY7Or32fLmr7Kz+YCCJmA5HVoDjztyA0RhB8XgQMzI0Ianf81kRIo1C8iDNyFMiMkWK9qPNInLYsGGtutC3xrfffntYk+pIfpEisomID3y7NTEZCzZGJu0p38JOJqYmWhiZR9UEVsGAvZmROYAu7GnhOQmgCmLKc/JAhCJIFQ1IFfUQT2iV3MaOieCqqKwx1PC6bSPrDJoViagKnBzpzvmBEorkTrhRi4cgHiYmFOB19wLBgMG2p0+vrraagvtmo3M1EOvWncrb70axd833XlAJk1AS5OqzyNQ7iPiqCHq2I+qM6I3aUpyv3sKq/w4iFjZgSQsz+qx1mC1hTUg6nUhF3aCZR58Y0rraqGLbzchTIjJFivajzSJyf07xrXHXXXcd8oQ6ml+0iGwiGmiMTJZD1K91xjCmpQRJJ6OqKgE1kjQy9yoRpEYjc4vYLM9OkVt4TjaR8pzcP4IviLi7HqmqAVQ6rJK7iR/0dbxm28i3xhrt/CqcGCni/OAAeiWcHXZeQOvBHfESiWThc/dGspnQmfd8reuqKzUh6XET7dGTqll3odi6ZiUiqsQIymGy9E5yDVkkQg0E3NtAVdCbMhAEgaDHxKr/DiLsN2GyRRk1bT02R2CPkOzWDUzNhKRfRV+voujbZkaeEpEpUrQfqeXsXzKxIPirwFOqRSmNDjA5U2KyC0iocgsj84gawywYcAh7jMyBFp6TUkKzn5H1lpTnZGuoKoLLn2yjiEGH0o5tFFtjk97F69aNfG3aY+E0NlLABcESBsQzOuy8TUU3wQYLfl8vDJk2pGaROX3lbvLvm43O5yXaszdVt92FYu2EZfdWSKgyvoQ/WXAjRAP4XVuREyGMlmwEQSQcMLDqv4MIui0YTHGOO3M9aVl+FLcHwWFH6t4NwbTnxknyKOhcIBtV+Akz8pSITJGi/UiJyBQQD4OvslFMerV8SZOzRdeIFJ1HsJmRuUdptJZpbmROynPyoJAVxHqvVnzj8qFaTFoldwfeLO3Qefi3dRNfmnahNp5meDSXCwMlDIlnd9h51USMQIVIwF+IKceK2Ky7hX5XOQVz70Ly+4j06UfVX+5EtXSNa4OiyngTASySiXxDDkZZxu/aSjzixmjJQRAlomEdq98fhK/Ohs6QYORpG8ko8GpC0mpB6tEdoen6VBXJraJzg2xRQdr/a5sSkSlStB+HJCJlWeaxxx7jzTffpLy8nFgs1uLxprLzI5GUiDwA8YhmWO4phZBL86QzpafESBext5F5UI1i2tvIPOU52XbiCa2Su6wG0Rdq9zaKrbFL8vOGdROfmstQBO21OSaWxQWBEkbGchE6oD+3klDx75IIedMw55kQLGnQGM02lJWSP/cupGCAcL8Sqv9yO6qpa1IhtIKbIJIgkG/IwY6egGs70VANBnMmomQgHpP45sMSXJVpiJLM8FM3k9PDtUdIFnVDaIqoKo0ekl4V2cZ+PSRTIjJFivbjkETk7Nmzee6557jpppu44447uP322yktLeW9995j9uzZzJgxoyPm2i6kRGQbSES1VorunZrnpM6sFeGIqS6ZXUWTkXml7MGjBJFVZR8j85TnZBuJxJCqXEi76iAcRUm3gbljvR6rpSBvWjezwLyTuKAA0DeezoWBEsZGCxDbWUzKcRHfLiNRrw5Tjh7BkpFsiWrYuZ38v81BCoUIlwyi+ubbUY1d1y61qeAmR59BpmQn6NlJxF+B3pSOpDMhJ0S+/bg/dWUZCKLCsZO2UtCvXhOSZpMmJG2N1mWyiq5eRQrs34w8JSJb0tDQQElJCatWraK4uLirp5OijRQXF1NWVgaA2+1O9hbvbA5pvfK1117j2Wef5aabbkKn03H++efz3HPPMXv2bFasWNHec0zR2eiM4OwO3cdB4UgtIumrhECtZl6eotMxiwYKdRmMMBQzwtCTXvocFFSqZA91so+oGiduz6X6uEvY+Ltn2fWrawll9kKU42Rs/YK+799C7w9uw7ntSwQ5/tMn/DljMiD3zCM+vA9yj1zEYBSx2g2xjnte8mQrM3zDebnu15wT7ItJkdiqdzMnfTlXZX7CMmNFu55P0ivYC2PoHTqi9THNlSHqA1Ul1rM31X+5E8VkxrxxPbmPPYAQi7br+Q8Gq2jGJBqpitVTlXBjdvbE6uxFPOohEQsg6RRG/HoTBf3qUBWR7z7pR/m6XMR0J2okglxWjur3N164QCJTQDELSCG0XNEUB+T+++9n2rRpSQH5/fffc/7551NUVITZbKakpIR//OMfLY5ZvHgxgiDs81ddXb3f85SWlrZ6THPNEI/Hueeee+jduzcmk4ljjz2WBQsW7DNWRUUFF110EZmZmZjNZgYPHsyaNWsO6rrPPPNMunfvjslkIj8/n4svvpjKyj2pQZs3b2bChAnk5uZiMpno1asXd9xxR4te4K3R2jW+8cYbyceXLl3K+PHjk3MfMGAAjz32WIsxnnzySYYMGYLD4cDhcDB27Fg+/vjjFvusXr2ad95556CuuSM4pNBSdXU1gwcPBrRG4V6vF4DTTz+dO++8s/1ml6JrkfSQVgS2fAjWgLsMgtVaRNKcqT2eolMRBZEMyUaGZKO7LguXEqBa9jQamQewi0bskhl334m4+0xo4TlprduCtW4LiVXzUp6TgGozIw8oQslLbyy+cYMgaLZAuo5J4chSzPzJP5TzAiW8a93Cfy3bKNX7mJO+nIsDA7k4MLDdlrh1Rhl7fhDv7jRigQgGuQLMGWDJJNqnH1V/uYP8B+/Fsu4Hch9/mOqZt4K+az7TRtGAJEjUx90k1AS59nxsop6QZwcxJYHB5OTYU7agMyQoX5fPusV9iEd19B4BiteLXFauFds40kAnkMgCXZ1mAaR0Tf3QUUEoFOL5559n4cKFyW3ffPMNOTk5vPrqqxQVFbF8+XKuvPJKJEni2muvbXH85s2bW6zo5eT8dIvNTz/9lEGDBiX/ndmsm9Idd9zBq6++yrPPPsuAAQNYuHAhZ599NsuXL2fYsGGAFnUbP348EyZM4OOPPyY7O5utW7eSfpBm+hMmTOCvf/0r+fn5VFRUcPPNN/Pb3/6W5cuXA6DX67nkkksYPnw4TqeT77//niuuuAJFUZg7d+4Bx543bx5Tp05N/rt5lNBqtXLttdcyZMgQrFYrS5cu5aqrrsJqtXLllVcC0K1bNx544AH69u2Lqqq89NJLTJs2jbVr1yafu+zsbDIyOrBYr40c0nJ2//79efnllxk9ejTHH388p59+Orfddhv/+c9/uO6666itre2IubYLqeXsw0CRIVgL7lLtv4IElkyQOrGHcIp9aIuRecpz8idQVcR6H+KuWsQ6L6rJgOrsmDaKzQkIMV61beAd61YApoSKucE3At2hLRK1SsRnwlfpRJIi6ESP1rXKmg16C6aN68l7+D7EWIzgsJHUXH9zi84wnY2iKvgSfkySiQJDDrpIAL9nO6ocw2DOAgS2rOjO9m+0Hs+9hu+m/9gy8PlAEpGKihCcmuekENHaI6KoKOY97+3UcvYe3n77ba6++uqf/M2+5ppr2LhxI59//jmgRSInTJhwUMuopaWl9OzZk7Vr1zJ06NBW9ykoKOD222/nmmuuSW4755xzMJvNvPrqqwDcdtttLFu2jCVLlrTpvG3l/fff56yzziIajaLfz83UjTfeyOrVqw94bkEQmD9/PmeddVabz/2b3/wGq9XKK6+8st99MjIyePjhh/nDH/6Q3HYor0N7c0jfVGeffTafffYZANdddx133nknffv25ZJLLuHyyy9v1wmmOIIQJbDnQ7dR0G209kMUrNOWuhNdtxz2S0cQBNJEC731uYwy9Ga4sSc5koOAGqVCduNRgkRNDmqH/pZN05+mdOItBPKOQVAVnKUr6P3xXfSbfwMZGxcgxsNdfTldgyCgZKeROLY3iSG9wGRArHIh+IIduiRqUw38yT+UG7wjEFVYaCnlzvSlhIT2W1o3OSJYs33E4xZkMUMroPPuhrCLyIABVN84C0VvwLp2Dbn/egwSXZeyIgoiaToHMTVOebSSkNGII7MESWchGqwBFPqPLWfAuJ0A7Pi2G+sW9wa7A1QVubwc1e0BQDUJJDIEUAWEaOcua6uqihoMds3fQbxflyxZwogRI35yP6/X22rUa+jQoeTn53PKKaewbNmyNp3zzDPPJCcnh+OPP57333+/xWPRaBSTqWWnKbPZzNKlS5P/fv/99xk5ciTnnnsuOTk5DBs2jGeffbZN594fLpeL1157jXHjxu1XQG7bto0FCxZw4okn/uR411xzDVlZWYwaNYoXXnjhgK/J2rVrWb58+X7HlWWZN954g2AwyNixY9t2QZ1Iu1j8rFixguXLl9O3b1/OOOOM9phXh5GKRLYjigKhevCUaVXdqGDKBH3HtJtL0XbaYmSe8pw8ALEEYrVWfCP6Q1obRWvHvq9XGqu4L+1rIqJM77iT+9zHt1s/blWBQJ2NQJ0DkyOMqIZBjmpNBixZmNdvIO+xBxASCQJjxlP75+tB6lpXhqASJiHHyTFkko6RoHs70VADRms2oqhj1/pcfvyiNyCQ37eOYydtRQj5QVG0pe1G0bO3GXlnRCLVYJBaW26HjX8gcgI1eyrWf4KzzjqLzMxMnn/++f3u0yRwPvroIyZPngxoy9iLFy9m5MiRRKNRnnvuOV555RVWrlzJ8OHDWx2nvr6el19+mfHjxyOKIu+88w4PPfQQ7733HmeeeSYAF1xwAd9//z3vvfcevXv35rPPPmPatGnIskw0qgUqmkTmjTfeyLnnnsvq1au5/vrreeqpp7j00kvb/DwB3HrrrfzrX/8iFAoxZswYPvzwwxbL6wDjxo3j22+/JRqNcuWVV/Lkk08iHmCF4t5772XixIlYLBY++eQT7rrrLh566KF9Co67detGXV0diUSCOXPm7JMK+OOPPzJ27FgikQg2m43XX3+dX//61y32ORIikSmfyBSHj6pCqEFrp+ivBCWh5UymuqgcETQZmdfIXuoUP2E1hqWZkfl+PSfzB+PqPxlfj1Gov9T813AUqbKxjWIkpuVLmjoufWOzzsUd6UvxSFFyZAv3u4+nOJHWLmMrsoC/2kHIbcWcFkIQFIgFtHQUazaW9ZvJ/cffEeQE/vEnUHfVtV1u79XU4SZT7yRbtBH1lhMOVGI0ZyFKBqq2ZfLdJ/1QFZHsHi6GT92MGPNDIoHUrRtCVqbmIelV0TWAbFYJl9WlRGQjU6ZMoU+fPjzxxBOtPr5u3TomTJjA9ddfzx133HHAsU488US6d+9+wCXZvbnkkkvYuXNncnm4rq6OK664gg8++ABBEOjduzeTJk3ihRdeIBzWVkkMBgMjR45M5i4CzJgxg9WrV/P111+3+dygCVuXy0VZWRl33303aWlpfPjhhy1aPO/atQu/38/333/PLbfcwowZM/jLX/7S5nPMnj2befPmsWvXrhbbd+7cSSAQYMWKFdx2223861//4vzzz08+HovFKC8vx+v18vbbb/Pcc8/x5ZdfMnDgnvftkSAiD6mw5m9/+xu5ubn7LF2/8MIL1NXVceutt7bL5FIcJQgCWLO0/Ehnd01M+io0YWlO16q7U3QZOkEiW3KQLTlaGJnXK35UwKEzIw/8NQ0DT23hOWmv+hF71Y/ETWm4+07E1f8UYo68rr6czsVsRO5dgJLtRKyoQ6pygTfYYW0U+ycy+D/XRP6avoTdugA3ZHzB3Z5xHBv76YKFn0KUVGw5fuSERMRvweQIIRgcWv9tXwWhft2pueZ6cv/1GPZlX4Gko+6Pf+7wvNAD0VRw0xD3ENclyHX2wCLqCft2oTc6yO8DOv1Gvvl4AHVlGax6fyAjT9+ITvAj79qFqCqIWVnIaYJm/+MRaHRY6lgsFnICNZ1wotbP3VaysrJwu92tPrZhwwZOPvlkrrzyyp8UkACjRo1qsezcFkaPHs2iRYuS/87Ozua9994jEonQ0NBAQUEBt912G7169Uruk5+f30JIAZSUlBxSpXJWVhZZWVn069ePkpISioqKWLFiRYtl46IiLf924MCByLLMlVdeyU033YTUxkj96NGjuffee4lGoxibWWn17NkTgMGDB1NTU8OcOXNaiEiDwUCfPn0AGDFiBKtXr+Yf//gHTz/99EFfZ0dySN8OTz/9NAMGDNhn+6BBg3jqqacOe1IpjlIEQROSecdq9kDpPSEe1ERlLNDVs0sBWEUjRbpMRhp6McLQk+5SJjESVChuGpQgroJjKJs0i03Tn6Jm6LnEzenoI15yfpzPgLevpueCu3GUfq1Fm39BqA4L8oDuxIf2QclJQ2zwIdZ5QZbb/Vz5so1/NExkUCyToBhnVvoSvjCVt8vYkl7BkedDb4oR9ZtAAAwW0FkgVE+oXyG1f7oaVRCxf/U5WfOe6XKbHJ0g4dTZCSQCVMRrwZGHNb038ViAeNRHdg8Po85cj86QwF2Vxsr3jiFGGhiMyLsqUBqLRuR0AbmTfPcFQUCwWrvm7yAK5IYNG8aGDRv22b5+/XomTJjApZdeyv3339+msb777jvy8/PbfO4DHWMymSgsLCSRSPDOO+8wbdq05GPjx49n8+bNLfbfsmULPXr0OKhz742iaHcXTcvm+9snHo8n920L3333Henp6S0EZGvjHui8bd2nKzhki5/WXvjs7GyqqqoOe1IpjnIEQYtAmtMhvYeWxO/brXXBMadrbRVTdCmSIJIp2cmU7BQr2Ukjc3eTkbnFRmzYedQMPRdH+RoyN3+CreJ77JXaX9zsxNX3ZFz9TyFuP/wo2VGBIKBm2Ek4rYh5PqRdtYg1HlSzQWuj2I4RO4dq5EHXiTzoXMkSUwVznSup9YeYHux/2BZAOmMCe54P724nsZABgyUGkg7ENIgFCfYrpPYPl5Hz/As4vliEqtPRcMkfurR6v6ngxq8E2R2rIdeShUPqT8C9jVjYRUYBjDl7HaveH4ivzsaKdwczato6TGYf8u5KVBWk3GwSmQLx3Qk6oFHQUcmUKVOYNWsWbrc7aZGzbt06Jk6cyJQpU7jxxhuT3o+SJJGdrbXsfPzxx+nZsyeDBg0iEonw3HPP8fnnn/PJJ58kx/7Xv/7F/Pnzk0W4L730EgaDIWnV8+677/LCCy/w3HPPJY9ZuXIlFRUVDB06lIqKCubMmYOiKC2Wj2fOnMm4ceOYO3cu06dPZ9WqVTzzzDM888wzbb7ulStXsnr1ao4//njS09PZvn07d955J717905GIV977TX0ej2DBw/GaDSyZs0aZs2axe9+97tk8c38+fOZNWsWmzZtAuCDDz6gpqaGMWPGYDKZWLRoEXPnzuXmm29OnvuJJ56ge/fuyUDcV199xd///vcWOZOzZs3i1FNPpXv37vj9fl5//XUWL17cworpSOGQRGRRURHLli1LhmObWLZsGQUFBe0ysRQ/E0xp2l9akVbF7S0Dr1tL6Dc6ftm2MkcIZtFAoZhBvuTEo4SoV/zUyF4qFDd2wYTaYzS+4jFaR5zNi0jf+jn6sIfcH94h54d38RcOxTVgCr6iX0i/blFEyXGiZNgRa9xa8U2VC9VuQXW0Xy9qIxJ3eMbyjP173rFu5Tn7j9SIIa7xD0M6TBVksMSw5/rwVTpJRHXojAnts2i0gRwlOLAHdRddQParr5O26GNUScJ14e+79PMqCAIOyUZICVMRrSbHkEVa1gCCru1Eg3XYs1TG/OZHVr0/iKDHzNfvDGHUtHXYrAJKRSUoMlJ+HpG0BKrjF/A+bQODBw9m+PDhvPnmm1x11VWAZvtTV1fHq6++mrTVAejRowelpaWAlq930003UVFRgcViYciQIXz66adMmDAhuX99fT3bt29vcb57772XsrIydDodAwYM4D//+Q+//e1vk49HIhHuuOMOduzYgc1m49e//jWvvPJKi3y/4447Line7rnnHnr27Mnjjz/OhRdemNxnzpw5vPjii8n57o3FYuHdd9/lrrvuIhgMkp+fz9SpU7njjjuSEUOdTseDDz7Ili1bUFWVHj16cO211zJz5szkOF6vt0VUVK/X88QTTzBz5kxUVaVPnz48+uijXHHFFcl9FEVh1qxZ7Ny5E51OR+/evXnwwQeTzz9AbW0tl1xyCVVVVaSlpTFkyBAWLlzIKaecst/Xsqs4pMKahx56iIceeoiHH36YiRMnAvDZZ5/xl7/8hZtuuolZs2a1+0Tbi1RhTRcTDWj5kt5yiPo1gWlMS4nJI4yIGqc64WGX3IBfjeAULNhErSpSkOM4yleTsfkT7JU/JI+JWTJw95uEq9+kX5aJeVRroyjuqkMMRbRKbkv7VnK/a9nCU/bvUQUYFylglmc0pkOLAbQg2GDFX5OGwRJB0jdbolO1ohv7yrVkv6HlmnlOPwvX7y46Ij6rzQtuMlUDEfcOYhEvJmsOkaCZVf8dRNBjwWCOcdyZG0hzuFACAcT8fLyRKN3HjKBweL+uvowjgo8++ohbbrmFdevWHbDq+Gji0ksvRRAEXnzxxa6eSodyJBTWHJKIVFWV2267jf/7v/8jFosBWg7DrbfeyuzZs9t9ku1JSkQeIcRCWiW3pwwiXi0qaUoD4efxJfZzIazEqJBd7JJdRJQ4GZIVs7CnOtngqyJj8yIytn6OLuIDNBNzf7fhNPSfjL/bsF9GdBIQghHEinqkygaIJ7RKbmP7VbUvMe7mb86VxAWFAbEM7nUfj1M9vJ7XmvWPnWCdDaMjgig1+zlQgUQIx1fLyHrnAwDcZ5+L+5zzDuuc7UVClfElAjh0NnIEKwnvLiKhOozmLOIxM6vfH4SvzobOkGDk6RvJyKpH8fvxKSrdp55Mt+NKuvoSjhgef/xxzjnnnGQRydGMqqoUFxezdOnSn8X17I9BgwaxY8cOIpHI0ScimwgEAmzcuBGz2Uzfvn0PmDh6pJASkUcY8TD4q8C9UxOTBpuWN5kSk0cUfiXM7oSLSsVNQlXIFG0YhD2RMEGO4yhbqeVOVq1Lbo9Zs3D1m4Sr38kkrJmtDf2zQ/AFEcvrkGpcoNKuldzr9PXMTl+GX4xRkLByv/tXdDvMapEm65+wx6pVbO/90ZMTOD79hKz/aj2MXb89H89Zv913oC6gqcONUTKSJ6WBr4awvwKDOQNFtrLmoxLclWmIOpnhp24ip6COhp2l9DhlAt1PPb6rp58ixSFTVlaW7OPdq1evLosiH5aI3LZtG9u3b+eEE07AbDajqupBVYZ1BSkReYQSj2iG5Z5SCLm1ilFT+i8minW04FaC7E64qJY9AGSINvRCy9fI6K0gY9MnpG/7Al1Uq8pXBRFf0Uhc/SfjLzz25/+6qiqCy9/Yk9sDBh2K0wbS4X/R75L8/DV9CdW6IGmKgXvcxzMwfngCXY6LeCudxIImTUju/TWuqqQt+JjMDzQh2fC7C/Ge8ZvDOmd7oaoqfiWIAOTq0jEGvYS8ZeiMdgTsfLugP3VlGQiiwrGnbMWorqDHyb+i+2k/3XkkRYoUB+aQRGRDQwPTp0/niy++QBAEtm7dSq9evbj88stJT0/nkUce6Yi5tgspEXmEk4hpYtK9E8Iu0Jm1yKTY/p58KQ4NVVVpUAKUy/XUyX70SKSLVqS9QlhCIkZa2ddkbFqErWaPjUjMlo2r3ym4+k0kYdm3ldrPCllBrPcildUiuH2oFpNWyX2YN9tuMcId6UvZondjUEX+6hnD+OjhdRhKRHV4K5zIMR1Ge6TVfZz/+x8ZHzYKyfMuwnv62Yd1zvYkrESIylGy9RnYImHCnlJEnQFJ5+T7T/tStTUbUOk58GuOuzQvJSJTpGgHDklEXnLJJdTW1vLcc89RUlLC999/T69evVi4cCE33ngj69ev74i5tgspEXmUIMchUKNFJoP1WlcNc6ZmRZLiiEBWFeoUH+WJBhpkP2bRgFOwIrYikIzuXWRs/oT0bYvRxYIAqIKEt8dxuPpPJlAw5OedwhBPINZ6kMpqEH0hlDQrqu3wOjqFhQT3p61gpakKQYWr/cM4K9TnsMaMBQ14K5wgaBXcrZH+wUekf6xZjdRfcCG+U88+IoptAGJKjEBjwU16XCHs2YmqKugNGWxY0pvydZo13ZBfNzD5oaFdO9kUKX4GHJKIzMvLY+HChRx77LHY7fakiNyxYwdDhgwhEDhyjaVTIvIoQ05AsAbcZRCq0yKS5kz4pbbhOwKJqzK1spcyuR6PEsIumHAI5lZTW4RElLSdy8nc/AnW2j3WGFF7Hq7+k3D1nYhsdnbi7DuZSExro7i7DsIxlHQbmA89l1xG4Z+OtXxk2QHAucF+/NE/BPEwLIAiXhO+SieSMaFZ/+yNqpL+3w9I/+RTAOouvAD/lDNBPDI+k7Iq400EsOusZMs64t5dJOJBDOZstq4sZvs3RQw9vZ5JDwzr6qmmSHHUc0hhnWAwiKWV1koul+uoKK5JcRQh6cBRCLY8CNZqYjJYA4KkdceROq6PcYq2oRckCnUZZEl2qhptgSoUdwtboCZUnRFP3wl4+k7A5CrTopPbv8ToryZ/zavkfvsGvh6jaOg/hWD+MUdMhKvdMBmQe+Wj5DgRdzdWcntDKBk2MBy8CJMQud43nFzZwgv2dbxl3UKdGOYW73EYOLS8U1NaBDnhx1+ThiAqLa1/AAQB97QzEGQZ52dfkP3a66goBCb9GvRd3+JUauxw40v4iUtGctK7o/dWEgvV0He0glFcR79f9e/qaaZI8bPgkCKRv/71rxkxYgT33nsvdrudH374gR49enDeeeehKApvv/12R8y1XUhFIo9yFBlC9eAu1Za7aWy1qEvdvBwp/JQt0N4I8QjOncvI3PQJlvqtye1RRz4N/U/B3Xcisunn+VkVPIE9ZuUOC6r10P0lPzWV8UjaahKCyuBYFne7x2NXD+0ma4/1jx2jI9zS+ie5k0rmm++Q9uVXqIJA3YW/JXDCKWByHhGFU6qqElBCqKjkinb0vnqiwWoClX6KJ52UyolMkaIdOCQRuX79eiZOnMjw4cP5/PPPOfPMM1m/fj0ul4tly5bRu3fvjphru5ASkT8TFEUTk54yrRAHVVvm1rWvyXOKQ2dvW6AM0YpROHC0zdSwk8zNn+Dc/hVSPAyAIurwFo/F1X8ywbyBP7/opKIgldcibanQlrdNhx5dX2uoZY5zGSExQfeEnbmuX5GrHFp0UJEFfNVpRDyW1q1/AFSVrH+/iWPpMlRBoPbicwmOHg+WbNAfGTd2YSVCRI6SJTmwhn24Nm6ix6QTUyIyRYp24KBFZDweZ+rUqfztb39j0aJFfP/99wQCAYYPH84111xz0A3YO5uUiPyZoaqNYrIcAlVapNKcBfqUmDxSaIst0N6I8TDOHUvJ2PQJloY9rdMiaYW4BkzG3eck5J9TD3ZFQdpehbSjEiUr7ZCWtpvYqfNye/oS6qQwGbKJ+93H0yeRfkhj7bH+MWJyhFvX74pC1mtv4Ph6BaooUnPpeYSGDQVLFhjtR0TBVFPBjVO0ot9cT+EJAyicMrqrp3VE0NDQQElJCatWraK4uLirp5OijTTlnKelpeHxeLpsHgf96dbr9fzwww+kp6dz++238+abb/K///2P++6774gXkCl+hggCWLOhYDgUjYW0HhD1gHc3xENdPbsUQLpo5Rh9N4YZismUbNQrfuplP7Kq7PcYRW/G1f8Utk17mK1nPkxDv1OQdSZM3goKVs6j5I0rKPryH1hqNmo3Ekc7oojcMw+5KAep1gsJ+ZCH6plI4x8NE+kVT8MlRbgxYzGrDdWHNJakV7Dn+tCb4sQC+7kxE0XqLzwP/6jjEBSF3Jf/g+XHDVpHqkAtKPFDvpb2wiAaSNPZ8ChBfDoLquVndANymNx///1MmzYtKSAbGhqYOnUqBQUFGI1GioqKuPbaa/H5fMljli5dyvjx48nMzMRsNjNgwAAee+yxA56ntLQUQRD2+VuxYkVyn3fffZeRI0fidDqxWq0MHTqUV155pcU4c+bMYcCAAVitVtLT05k0aRIrV6485Ovftm0bdrt9n44vbZlLazzxxBOUlJRgNpvp378/L7/88n73feONNxAEgbPOOqvF9taeJ0EQePjhh5P7VFVV8fjjjx/MpXYIh7ScPXPmTIxGIw888EBHzKlDSUUif+aoKoTd4N2l9eiWY2DOAEPXJ/ynODhboL0RYyGcO5aQuekTzK6dye3h9O64+p+Cu/dJKMaj/HWOJdBtKkOqciHnZhyWOXlQiHO3czlrjbWIqsBM3wimhnse2rSS1j8qBst+RKGikPPiy9jWfIuqk6i+8nLCfYpAb9Fu9Ay2Q76W9kJRFRo21dFnUgkDTzquq6fT5YRCIfLz81m4cCFjxowBwO12WxyuOQAAobdJREFU88Ybb3DccceRnZ3Ntm3buOaaaxg+fDivv/46AGvXrmXTpk0MGTIEq9XK0qVLueqqq3jssce48sorWz1XaWkpPXv25NNPP2XQoEHJ7ZmZmej1WuR98eLFuN1uBgwYgMFg4MMPP+Smm27io48+YsqUKQC8/vrr5OTk0KtXL8LhMI899hhvvfUW27ZtIzs7+6CuPx6PM27cOLKzs1m+fHmLiF5b5rI3Tz75JLfeeivPPvssxx13HKtWreKKK67g9ddf54wzztjn+Tj++OPp1asXGRkZvPfee8nHqqtb3vR9/PHH/OEPf2Dbtm306tUruf3FF1/khhtu6NJI5CGJyOuuu46XX36Zvn37MmLECKzWll/cjz76aLtNsL1JichfEGHPHjGZiGgdcIxd/0OW4uBsgfZBVTHXbyNz00KcO5YiypqfoSIZ8PQaz/9n77zDoyrTPnxPS2Yy6T0hofcmoQoICgqIwMLK2ldQRP1WXAsuq6wNC/YCKhYQLLCKqICuqIgoCoI0QQglECAJpPdMJpOp5/vjTSYMJJCQSSPvfV3nIpxz5pz3nExmfud5n+f3FHQbS1lE15abO1luQ3swBXW+CVdUSL2uw46L14J28aMhFYBbS3tya2lPVBdgAWQpNlCSEYS2JusfAKeTyGUf4r/nT1xaLdn/uAtLpzixzRBW0TigaYtu8g7n0OnK7lJEAl988QX33HMPOTk559zvjTfe4OWXX+bkyZM17nPttddiNBprjNZVisg9e/bQr1+/Wo+xf//+TJgwgWeeeaba7ZXf6T/++CNXXnllrY8L8PDDD5ORkcGVV15ZKzF2vrEMGzaM4cOHe0QMH3roIbZv386WLVvc65xOJyNHjmTGjBls3ryZoqIiDxF5JlOmTMFkMrFx40aP9c1BRF7QY25iYiL9+/cnICCAI0eOsGfPHveyd+9eLw9RIrlADMEQ3QfaDoWwLuAsF7mTVlNTj6zVU2kLNMCnAz21otNKuquQUlf1nVI8UKmwRHTh1Ih7OXjjUtIvnYklpC1qp43Qoz/T+Zu5dFk7m9BD36O2tcCUBr0Pzq7xKIFG1DnF9TqUDjX/Lh7EzaU9AFjuf5BXA3fhoOZUgpowBFkwRpiwl/vgtNfw1aHRkHP7dMx9e6N2OIh6dwn6lExhxWXOBlOmaHF6kaMoCrYyV5MsdYkLbd68mQEDBpxzn4yMDFavXs3ll9dciLRnzx62bt16zn0q+ctf/kJkZCSXXXYZX3/9dY37KYrCxo0bSUpKYuTIkdXuY7PZWLx4MUFBQVxyySXnPffp/PTTT3z++ecsWrTovPvWZiwAVqsVvd4z7cNgMLBjxw53n2uAp59+msjISO64447znjs7O5t169bVat+m4IJ8In/++Wdvj0MiaTj0QWIJbgvF6VCSBsVp4BsEvoEtN2J1EeCr0tFeF0GUJshtC1TsKDyvLVAlLl8j+T2vIb/HePxykghN+oHgE1sxFKYSt20xMTs/pqjjZRR0H4slvH7dXBoTxd+Ao3s82sQU1PkluMIufNZEhYrbS3sT6fTjjcA/WO+XQp7GwuNFQzEqdSvgMYaaURxqzHnnsP7Rasm+43aiFy/F78BBot95j8x778HasQPYTOC0iuI3ffMoumkI7BaFNwanN8m579vRBh+/2n2mpaamEhsbW+22m266ia+++gqLxcKkSZN4//33z9onLi6O3NxcHA4H8+bNY+bMmTWey9/fn1dffZXhw4ejVqv58ssvmTJlCmvXruUvf/mLe7/i4mLatGmD1WpFo9Hw9ttvM2bMGI9jffPNN9x4443u6fgNGzYQHh5eq2sGkfd52223sWLFinPOSNZmLKczbtw43n//faZMmUL//v3ZvXs377//Pna7nby8PGJiYtiyZQtLly6tdcDto48+IiAggGuvbR696s+kWfwFL1q0iPbt26PX6xkyZAg7duyo1etqSkqVSKrFNwAiu0P8MIjoCYpTiMnyooujOKMFY1D70FkXzUCfDrTXhlOqlJPpLMKq1LIoQ6WiLKo7p0bex6Ebl5A+ZAblwXFoHOWEHfmRLl//m85f/YvQwz+grrAOau4oQUacXeNAJfwk68sES0eeLhyO3qVht282s0N/Jk9dt3uhUoMxohR9SBlWk6HmPxudjuy77qCsezfUVhsxi97BNyVFPLQBlGYIn9dmUHTTmrFYLGdFzip5/fXX+eOPP/jqq684duwYs2fPPmufzZs3s2vXLt59910WLFjAp59+WuO5wsPDmT17NkOGDGHQoEG88MIL/P3vf/eY+gUICAhg79697Ny5k/nz5zN79mw2bdrksc+oUaPYu3cvW7du5eqrr+b6668/75T86dx5553cfPPN54wq1nYsp/P4448zfvx4Lr30UnQ6HZMnT2b69OkAqNVqTCYTt956K0uWLKm16F22bBm33HJLjb+npuaCciK9yWeffca0adN49913GTJkCAsWLODzzz8nKSmJyMjIGl93rqTUc+HNnMjiUigqBX+DWHxl85SWhc0spteKUqC8REQm9UEyMtkMuBBboLNQFPyyDxGW9ANBKdtQO4VgcWr1FHUaSX73sZSHdTzPQZoedWYB2kOpKAbfevfbBkjSFvBYyBaKNFYinAaeKxxBe0dQnY7htv4p9UUfVIP1D6Cy2Yhe9C6Go8k4DQYy75uFrV1bcDnAVtokRTeNkROpKAp2S9N8teoMqtrlFgO33HILiqK4C2ZqYsuWLYwYMYKMjIwaXVieffZZli9fTlJSUrXbq2PRokU8++yzZGZm1rjPzJkzOXnyJOvXr69xny5dujBjxgzmzp1bq/MGBwd7tGdWFAWXy4VGo2Hx4sXMmDHjgscComAnOzubmJgYFi9ezMMPP0xRURH79u0jISEBjabqs8zlEqklarWapKQkD5/tzZs3M3LkSPbu3VvtdH1zyIm8oOlsb/Laa69x5513cvvttwPw7rvvsm7dOpYtW8YjjzxS7WucTie33HILTz31lDsptSkoNMGuJPDRiva3wf4QHiwEZYAB9M3Da1dSEz5GCOss2iqWZAgxWXxSFN/ogy/aqbaWQIjaSLDOjxhNMGnOPHKdJrRoCFUb0dT296JSURbdk7LonmQMuYOQ5J8JO/wDviUZhCX9QFjSD5SFdya/+1iKOlyG0ky9RV0xoTjsDrSHT6Jo1PXqtQ3QzRHKGwVX8mjIZk5qTTwQ+jNPFQ3jElvND+1nUmn9U+wQQtI3wFrtfoqPD1n/uJvoRe9gOHacmDffJvP+e7HFx4FvMNjNovCtmRTdeAuVSlXrKeWmJCEhgRUrVpx3v0qhY7VW/3uu3Odc26tj796957UGrM1x63rubdu24XRW2Wh99dVXvPjii2zdupU2bdrU+zw6nY64OFFQtnLlSiZOnIharaZ79+7s37/fY9/HHnsMk8nEwoULiY+P99i2dOlSBgwYUOd8z8akSUWkzWZj9+7dHk8ParWaq666im3bttX4utOTUjdv3twYQ60RnRaiw8BSDnnFcCoX1Crw00OAH4QHQaBRCEuDrwxyNUt0BgjrJMRkaRYUnoCSU6IPsCFEiskmQqVSEa4JIERtJFcjbIGynEV1sgWqxKkPIK/3X8jrNQljViJhh38gMHU7fnnJ+G1JJnb7hxR2vpyCbmMpD23XgFd1YbjiI3DaHWiSM3Cp1eB74WbkADFOIwvyR/FEyG8c8Mlnbshm/lU8iNHlbWt9DJ3eIYRkRgi2Ml2N1j+K3pesWf9HzJtvoz+RQswbi8h48J/YY2PFg5zTJopuHBZhUK6rf7RVUjvGjRvH3LlzKSwsJCREGNJ/++23ZGdnM2jQIPz9/Tlw4ABz5sxh+PDhbi/JRYsW0bZtW7p37w7Ar7/+yiuvvMJ9993nPvZbb73FmjVr3BXFH330ET4+PiQkJADCh3HZsmUeuZbPP/88AwcOpFOnTlitVr799luWL1/OO++8A4DZbGb+/Pn85S9/ISYmhry8PBYtWkR6ejrXXXddra+7R48eHv/ftWsXarWa3r1713osAHPnziU9Pd3tBXnkyBF27NjBkCFDKCws5LXXXiMxMZGPPvoIAL1e73EOwO1Peeb6kpISPv/8c1599dVaX1dT0KQiMi8vD6fTSVRUlMf6qKgoDh8+XO1r6pqUarVaPZ4cTjdM9RYaNfj7iQVERz6LTUx1Z+ULDaL3EdHJiGAhLv0NYDRIUdms0OkhpD0ExFSIyRRhWq7zu6iiJC0NjUpNtCaYMHWA2xYow1VYN1ugSlQqzDF9MMf0QWMpIvToz4QmbcDXlEX4oe8IP/Qd5shuFHQbS1GHYSjNpSe7SoWzfTTYHWhSsnFFBosn2HoQqPjyUsHlvBC8g836UzwfvJ0cUxk3mLvV2gLI199GQFQJJRlBOKxKjdY/il5P1qz/I/qNt9GnpRGzcBGZD/wTe0y0qNxW604ruom4qItumhN9+vShf//+rFq1irvvvhsQ1cRLlizhwQcfxGq1Eh8fz7XXXusxM+hyuZg7dy4nTpxAq9XSqVMnXnzxRfcxQHy/Hzt2zON8zzzzDKmpqWi1Wrp3785nn33G3/72N/d2s9nMPffcw6lTp9wm5itWrOCGG24AQKPRcPjwYT766CPy8vIICwtj0KBBbN682cN78oorrqB9+/Z8+OGHF3xvzjcWEIbfaWlp7v87nU5effVVkpKS0Ol0jBo1iq1bt15QJ6CVK1eiKAo33XTTBV9DY9CkOZEZGRm0adOGrVu3MnToUPf6f//73/zyyy9nudCbTCb69u3L22+/zfjx4wG47bbbzumxNG/ePJ566qmz1nsjJzIlE/48BnHn8TdVFLBYocwq/gUhKv0NVZHKAD8w6kEtPzebDw5bVWTSUgBaQ4WYbPIskFaNVbGT6SjipDMfk1JOsMoPf3U9pqIVF/4Z+wlN+oGg1B2oFDHN5fAxUtT5CvK7jcUaEn+egzQSFdPamox8nFEh9TIjr8SFwuKAP/nSeBSASWWdmFWSgKaWQlJRwJxvpDQnCB9jORptzfZBarOZmIVv4XsqHUdgIJkP3oc96rRpdEe5iEzqg8EvTAhMLyN9Ij1Zt24dc+bMITExEfVF8gXUrl07nnrqKW677bamHkqD0hxyIptURNpsNvz8/Pjiiy88KqynT59OUVERX331lcf+e/furVNSKlQfiYyPj29UEXkmigJWG5itUG4FlwK+WjEFHh4scisri3U0MvjV9DjtopK0KAXMeeKLzRAGGikmmxKLy+a2BSp32WttC3QutGWFhBz9ibCkDfiUVlV7mqN6kN9tLMXth6Jom7iCzmpDeyAVdV6xMCP30hf/ar+jvBuwF0UFQ8tj+U/REPS1nKxSXGDKDqSswB/fgBqsfypQl5YSs+AtfDMycAQHkfHgfThO7zTicoiiN52hQYpupIg8mwULFjB16tSzcvJaIgcOHOCmm25i7969F40org5/f38cDgd6vb71ikiAIUOGMHjwYN58801AiMK2bdty7733nlVYU15eTnJysse605NSu3btio/PuT/gvVmdfaEisjrKbVXRSqcTfHQVojIQggPEVLi/AbRStzQdTofI3SpMhbJcEZE0hIGmfvlpkvphclk45Sggw1WIQ3ERqjbiq6rn70Rx4Z/+J2FJPxCYthNVRZ9vh68/hZ1HUdBtDNbgOC+M/sJQmcvRHkhFVWIWQtJLbPY9xQvB27GpXHS3hfJ00XBCXLWL8rqcKkqygigv8kMfVHbOVB21yUTs62/gk5WNPTSEzAfvxxEWWrWDgii6QQF9KPiFei2dRIpIycVApRbSaDR06HBh7Uy9QZOLyM8++4zp06fz3nvvMXjwYBYsWMCqVas4fPgwUVFRTJs2jTZt2vD8889X+/rzTWefSXMVkWdiswtBWVYODqdIf/LzhdBAsVRGKn2kfml8XE4w54icSXMOqDQNNvUmqT1esQWqBm1ZAaFHfiQ06Ud8zHnu9aXRvcjvPo6SdkNQmuBBQlViRpuYgqrcjiuibhY95+KALo/HQ37DpLYR4zDyXOEI4pwBtXqt066mOD0Ym/nc1j8AmuJiYl5/E5+cHOxhYWTMvg9nyBmC2GkXYtI30GtFN1JESiTeo8njWjfccAO5ubk88cQTZGVl0a9fP77//nt3sU1aWtpFHZKuCR+dWIIrZnLsDiEq03PhRCZoNUJUBvtDWFCFrZCf9KpsFNQaUXxjjARzLhSliuluVEJMNpdijFaGV2yBqsHhF0pOv+vJ6TuVgPQ9hB3+gYBTf+CfdQD/rAM49IEUdBlNQbcx2ALPbVfiTZRAI45u8egOpKAqKkUJ9s60by97OAvzR/OfkM1kas3cH/YTzxReRk972Hlfq9G5CIguEULyHNY/AM6gIDIfuJfY199Al5tHzMK3yHzgPpzBQacfENRBoujGUQ5+EaAPlEU3EkkzockjkY1NS4lEng+Hs2L6uxysdpFfb/CFIKPIq6ysAK+npZykNrhcUJZXISYzARUYQkHbPH0HWwNOxUWuS9gC5TtNF2QLdC50pXmEHvmRkCM/4lNW4F5viulLQfexlLQd1GjRSXVWAdqDqSh6H5QAP68dt1BdzmMhWziiK8RHUTO36FIus9bsoXc61lJfijOCUatd6Azn7kqjKSgQQjK/AFtUFJkP/hNndZ/NXiq6kZFIicR7SBFZD5pSRJ6J0yW8KsusQlSqEAIy0CgqwAP8xCK9KhsQlwss+VCUJsSkyyl6BDdTE+vWgF1xum2BilxlF2YLdC5cTgJP7Sb08A8EnNqDCvFxatcHUdj1Sgq6XoUtMNo75zoH6lO5aA+loQT6ofh57/1mUTl4Luh3ftdnolLgHlM/ppR1qd1riwyUZASh1TtqtP6pRJuXT+xrC9EWFWGLiSHjgXtxBVQzhX56pxu/COEzWcffpRSREon3kCKyHjQnEXkmlV6VlvIKWyGVEJBGvfCqDDJKr8oGQ1GEJVBRGpgyxBefIUyaKDchVsVOlqOING/ZAlWDrjSH0KQfCT3yIzpLkXu9qU0/8ruNpaTtwIazh1IUNCcy0SRn4gr192peixMXbwXu4Ru/4wD8zdyVO019UZ/HAsht/ZMdhI//ua1/ALQ5ucS+vhBtcQnWuDZk3n8vLqOxmgMj8iQVl/i7qmPRjRSREon3kCKyHjRnEXkmiiIqwM3l4l9FEU0vKr0qg06zFWqFKagNg6KApRCK00RbRadNTHP7VPPFKGkUGsIW6CxcDgLTdhGW9AMB6Xvdq+2GEAq6XklBt6uw+9e+xWDtz+tCczQDzYlMr5iRn46CwmfGJJYGiJZtl1vi+HfxYHw4t3hzW//k++MbeG7rHwBdVjYxC95AW2LC2jaezPtm4fKrYYreXXQTIKKStXxIkyJSIvEeUkTWg5YkIs+k0quy0gDd6QJ9ha1QWJAo2KnMq5RelV7AUii635ScAodVmJZ72f9OUnsaxBaoGnxKsipyJzeiKy8GQEGFKS5B5E7GDfBuJyS7A03SKbSncnFGh3j9j3ejPpVXgnbiUCn0sYUzr3A4gcq5RbjLoaIkM4jykvNb/wDoMjKJXfAGmlIz5e3bkfnPe1AMNQhERRFFN2qtqN7WBwq3hHMgRaRE4j2kiKwHLVlEVofVLgp1zvSqDAuAkNNshbwY4Gh9lBdXiUlbmRCTvrWzT5F4n4ayBToTldNOYNpOkTuZuc+93uYXSmHXq8jvNgaH8fzVz7XCakd7KA11diGuaO+ZkVeyxyeHecG/UaZ2EO8I4LnCEUQ7zx1dd9o0FGcEYyvzQR94busfAJ9T6cQsfBONuYzyjh3IvPceFP05qgQd5VUPZ+cpupEi0pP8/Hx69OjBjh07Lqg9n6RpuOKKK/jll18A2LNnD/369WuScciJS4kbXx2EBECbcGgbBaEBIrcyLQd2HYbf9sPmP2HPEUjNgoIS4WcpqQP6IIjqBfFDIaKb6BVclArWEhFVkTQqIWojvXVxJPi0J0zjT67LRK7ThFM5d/5eXVE0Ooo7DOPE+HkcnvoWOX2m4NAH4lNWQNTeVXT/8l7CDn0n5n/ri68OR9c2KKEBqHOKvf6+SrBFsqBgNBFOAye1Ju4P/Ymj2sJzvkbj4yQguhitrwOb+fyWEba4NmT+cxZOgwH98RNEv/0uKmvNdkFo9eDrD+WF4gHNapJ/T7Vk/vz5TJ48uVoBmZ+fT1xcHCqVyqMrypYtWxg+fDhhYWHuvtKvv/76ec+1atUq+vXrh5+fH+3atePll1+ucd/ffvsNrVZ7ljhq3749KpXqrGXWrFm1vWSAao+xcuVKj30WLVpEjx49MBgMdOvWjY8//vi8x01LS2PChAn4+fkRGRnJnDlzcDiqCstqc+9MJhMPPPAA7dq1w2AwMGzYMHbu3Omxz+rVq9mxY0edrrkhkDElSY2c6VXpqPCqzMgTIlKjEcU6wf4ir7IyUnmugIGkAn0g6HtCUFsoSRd5k8VpQmT6Bslqp0ZEpVIRrgkgRG0kVyNsgbKcRV63BarEFhRL1qBpZPe/icDU7YQf+AZj7hHabFtCYOp2Tl02C7t/Pac3/PQ4usWjPVjRHjEi2Ctjr6SDI4g38q/k0ZDNHNcVMzv0Zx4vGspgW80+mTq9g4CoEoozgrFbdOe1/rG1jSfrn/cQ88ZbGJKPEfXuErL/cRdKTV3JVBrwCRJ5kiWnKopuwrybLnCRUVZWxtKlS1m/fn212++44w769u1Lenq6x3qj0ci9995L3759MRqNbNmyhbvvvhuj0chdd91V7bG+++47brnlFt58803Gjh3LoUOHuPPOOzEYDNx7770e+xYVFTFt2jSuvPJKsrOzPbbt3LkTp9Pp/n9iYiJjxozhuuuuq/P1f/DBB1x99dXu/wcHB7t/fuedd5g7dy5Llixh0KBB7NixgzvvvJOQkBAmTZpU7fGcTicTJkwgOjqarVu3kpmZybRp09DpdDz33HNA7e7dzJkzSUxMZPny5cTGxrJixQquuuoqDh48SJs2wmYrNDSUkpKSOl+zt5HT2fXgYpvOritur0qryK9Uq8T0d6VXZaUBuvSqrAU2syi+KU6F8hIhJPVSTDYFDW4LdCaKi7BD3xOz82PUThtOnR8ZQ26nsMvoev/+VQUmdIkpKIqCEur9tAmzys7TwVv5wzcHtaLi/pL+XGPpeM7XWIoMlGQGodXb0fo4z7kvgO+x48S89Q5qq5Wynt3JvvtOFN158ledDrCXirxjY4SwBKpATmdX8cUXX3DPPfeQk5Nz1rZ33nmHzz77jCeeeIIrr7ySwsJCD5F1Jtdeey1Go5Hly5dXu/3mm2/Gbrfz+eefu9e9+eabvPTSS6SlpXn8fd1444106dIFjUbD2rVr2bt3b43nfeCBB/jmm284evRonf5GVSoVa9asYcqUKdVuHzZsGMOHD/eIlj700ENs376dLVu2VPua7777jokTJ5KRkeFumPLuu+/y8MMPk5ubW2Nb5tPvncViISAggK+++ooJEya49xkwYADjx4/n2Wefda9LSUmhQ4cOcjpb0jLRaoRIjAoR098x4SJymV8C+47BtkQx/b0tEY6ehOwCMFvkLFO1+BghvAvED4PoS4TRZ3GasAry8tSq5NzoVBraaEMZ4NOBXlrx1J/uKqTUVd4wJ1Spye95DUemvIY5shsaexnxWxbR/sfn0Z5mZH4hKKEBOLrHo3IpqErKvDTgKoyKjmcLRzDG0g6XSuH1oN186J+IQs1/5PogC8YIE/YyH5yO838FWTt1JOueu3H5+OB38DCRS5aJaZFzodGKBzG7ReQgWwpAOb9g9RaKomAvNzfJUpe40ObNmxkwYMBZ6w8ePMjTTz/Nxx9/XKuOcXv27GHr1q1cfvnlNe5jtVrR6z1ttQwGA6dOnSI1NdW97oMPPuD48eM8+eST5z2vzWZjxYoVzJgx44Ie8mbNmkV4eDiDBw9m2bJlHveupvHu2LEDu736KPq2bdvo06ePW0ACjBs3jpKSEg4cOFDta868dw6HA6fTWe25axKvTYmczpZ4DY26akobqrwqS8yQUyjs3U73qgw0QoBBRC+lrVAFPn4Q1gkC2wiPycIUKD4pIiqGENnurRHxVelop4sgUhNEurOAU85C0h2FDWMLhJjmPnbNs0Qc+B9Ruz8h8OQuuq5+gPRhd1HcYfgFRyVdkcE47A60h9NAo0YxetkfEzVzigcR6fTjv/6H+K//IXI0ZTxYPBBdNXEKlQqMoWZcdk2trX/Ku3Qm6x93Ef32exgTDxC19EOyZ95+7upzlUoUrTnKRVtSu0VUcDcCDmsZ//1r07gv3LKmFJ2+djZiqampxMbGeqyzWq3cdNNNvPzyy7Rt25bjx4/X+Pq4uDhyc3NxOBzMmzePmTNn1rjvuHHjePDBB7ntttsYNWoUycnJvPrqqwBkZmbSvn17jh49yiOPPMLmzZvRas8vT9auXUtRURG33XZbra73dJ5++mlGjx6Nn58fP/zwA/fccw+lpaXcd9997vG+//77TJkyhf79+7N7927ef/997HY7eXl5xMScnbqRlZXlISAB9/+zsrI81td07wICAhg6dCjPPPMMPXr0ICoqik8//ZRt27bRuXPnOl9nQyNFpKTBUKuFYKz8zqr0qiyzwuG0Kq9Ko17kVAYHVBig66WtEDo9hHYUYrI0CwpPiIiKjx/oQ2SeVyNiUPvQWR1NlCbIbQtU5CprGFsgtYbcPlMoietP/K9v4pd/jHabXqMoZRvpQ+/CaQg6/zGqwRUbhrPC/kfRqEHvXRGsQsVtpb2JdPqxMPAPNhhSyVdbeKJoGEbl7HukUoN/hAmXQ015iQF90Pkrtsu7dSX77plEv7sY45/7iPzgY3Jun3b+DwutXvTgtpYIQWn3kdMhFVgslrMiXnPnzqVHjx78/e9/P+/rN2/eTGlpKb///juPPPIInTt35qabbqp23zvvvJNjx44xceJE7HY7gYGB3H///cybNw+1Wo3T6eTmm2/mqaeeomvXrrUa/9KlSxk/fvxZQrg2PP744+6fExISMJvNvPzyy24R+fjjj5OVlcWll16KoihERUUxffp0XnrppVpFZ8/Hue7d8uXLmTFjBm3atEGj0dC/f39uuukmdu/eXe/zehuZE1kPWntOZH1RlCpbIYtN2ApVispKr8rKyGYtHkovbhy2KjFpKQCtQUQmG6oDiqRGGssWCJeDyD9XE7X3c1SKE7s+iPTh/0dJuyEXeDwXmuQMNMe9b0Z+Ojt8MnkmeBvlaicd7UHMLxxBuKt6n8dK6x97mQ/6IEutjm/Yf4Doxe+jcjoxDRpI7vS/124qQwHsZeSdKKPTmEvoOWFcHa6qbiiKgsPq/fSB2qD19av11O4tt9yCoih88skn7nX9+vVj//797mMoioLL5UKj0fDoo4/y1FNPVXusZ599luXLl5OUlHTOczqdTrKysoiIiGDjxo1cc8015OTkoNPpCAkJQXPaQ4HL5UJRFDQaDT/88AOjR492b0tNTaVjx46sXr2ayZMn1+p6z8W6deuYOHEi5eXl+PpWJfLb7Xays7OJiYlh8eLFPPzwwxQVFVUrJJ944gm+/vprjxzOEydO0LFjR/744w8SEhKqPXdN985sNlNSUkJMTAw33HADpaWlrFu3zr29OeREym8gSZOhUomAyOlBEatdtGo8nnmaV6UvhAUKr8rwoFZaqKP1geC2EBAjpuYKT4hCHK2+ou2b/FNuLELURoJ1fsRogklz5pHjNKFDQ6jaiMab6QZqLTkJ12OKH0Dc5jcxFKbRfuOLFHa6nIxL78DpW8fpUrUaZ8cYcDjRpuXgjAoRic1eZrAthlcLRvFYReX2fWEbmV84gg6Os6OoGh+nu2LbWuqLr/85bHwqsPTpRfbM24lasoyAnbtAoyH37zedX0iqEJF8pQyU8+RU1hOVSlXrKeWmJCEhgRUrVnis+/LLL7FYqgT9zp07mTFjBps3b6ZTp041HsvlcmE9lw1TBRqNxl1h/OmnnzJ06FAiIiJwuVzs37/fY9+3336bn376iS+++IIOHTp4bPvggw+IjIz0KD6pD3v37iUkJMRDQALodDri4uIAWLlyJRMnTqwxEjl06FDmz59PTk4OkZGiK9WGDRsIDAykZ8+eNZ67pntnNBoxGo0UFhayfv16XnrppQu9vAZDfvNImhW+OrEEVxSS2h2iVWNaDhzLgEA/aB8DseGtVExqdBAUB/7RYM4WOZOlWUJEGsJFQYGkwWlMWyBLeCeS//IyUXs+I2L/WkKO/YIxcz+nLptFaVz1kY0a0Wpwdm6DyuFAk1mAMzq0QRKSuzpCeKPgSv4TspmTWhMPhv7MvKJh9LOd3e5RZ7ATEFl76x+Askv6kjNjOpHLPiLg9+0oGg15N10vk6vryLhx45g7dy6FhYWEhIQAnCUU8/LyAOjRo4e7OnvRokW0bduW7t27A/Drr7/yyiuvuKeCAd566y3WrFnDxo0b3cf54osvuOKKKygvL+eDDz7g888/dxtmq9Vqevfu7XHuyMhI9Hr9WetdLhcffPAB06dPr1Xu5Jn873//Izs7m0svvRS9Xs+GDRt47rnn+Ne//uXe58iRI+zYsYMhQ4ZQWFjIa6+9RmJiIh999JF7nzVr1jB37lwOHz4MwNixY+nZsye33norL730EllZWTz22GPMmjXLLU5rc+/Wr1+Poih069aN5ORk5syZQ/fu3bn99tvrfK0NjfzGkTRrdFoxrR3sL6a/i0thX7JIJWgXLcSkn3frBFoGGq3IlzRGQVmuEJPmLFBpKzp2eL+Fn+RsNCo10ZpgwtQBblugDFeh122BFI2OrIF/p6TtIOJ/fRPfkgw6/vAM+d3GkDn4Nly17BsNgI8WR5c4VHYn6pwiXFEhDWIlFe00siB/NPNCfmO/Tx5zQ37lX8WDuLK83Vn7+gZYCYgqoSQzGJXGVSvrH3P/BHKcTiI/XE7gb1tRtBryr/+btMWqA3369KF///6sWrWKu+++u9avc7lczJ07lxMnTqDVaunUqRMvvviixzHy8vI4duyYx+s++ugj/vWvf6EoCkOHDmXTpk0MHjy4zuP+8ccfSUtLY8aMGdVuv+2220hJSWHTpk3VbtfpdCxatIgHH3wQRVHo3Lkzr732Gnfeead7H6fTyauvvkpSUhI6nY5Ro0axdetWD1P24uJijylojUbDN998wz/+8Q+GDh2K0Whk+vTpPP300+59anPviouLmTt3LqdOnSI0NJSpU6cyf/58dOeztmoCZE5kPZA5kU1DpZgsMUOAEdq3ZjFZicsJ5lzR/aY0G1CBMfyc7d8k3seq2MlyFJHmzMeklBOs8sNf7d03psphJXrXCiIOitwom38kJ0fcizmm93leecZxTBa0B1NQmSxCSDYQNpy8FLSDXwynAJhh6s2N5u6o8BR7igLmXH9KcwLxDShHra2dtZX/79uJWP4JKkWhePQV5E/96zmFZN7hPDqN6UXPid6ZBm3prFu3jjlz5pCYmOiVgpHmwOWXX86oUaOYN29eUw+lQWkOOZEXxzumCUjNglU/idZ/ksZFpRLT3fFR4uf9x2BrhReluXa5+Rcfag0EREObQRA/RPxclitsghwN5G8oOYtKW6CBPh3pqo3GhpN0RyEWxea1cyhaXzIvvYNj45/G5h+JT2kOnb57gpjfl6JynD8nzX2cAAOObvEoeh9U+Q33QeaDhv8UX8rfzKLidllAIm8E/oETT5GoUoExvBS/sFKsJj0uZ+0iiqWXDiHv5hsACPppE6FrvpbV13VgwoQJ3HXXXWd1pWmpFBcXc+zYMY+p6YuR8ePH06tXr6YehoxEXiivfQZz3hY/92gHw/vAZX2he1uZltPYKAqUlInopL9BGJ/HRYCxDjN8Fx0uF1jyoSgNSjNFpNIQLqyDJI2GyWVx2wI5FJfXbYHUdgsxOz4iLOkHAKyBMZwceR9lkd1qf4zcYrQHUlC0GpSghi0GWet3lLcD9qKo4NLyGP5TfCkGxTOryuVQUZIZVGvrn0oCft1MxErRDaVw/DgKJ1UfaZSRSMnFQHp6ursAqm3btjV2w2lopIi8QJavF0Jyn2fKB2GBMLyvEJWDe1R5JEoanurEZJtw8Pc7/2svWhQFyvKFYbkpA1wO0VO4Ljl0knrT0LZA/qf+IG7L2/iUFaCo1OT2nkx2/xtRapkbq87IR3soFcVPj+LfsO+NLb7pPB/8OzaVi262EJ4puowQl+cHpcOmoTg9GIel9tY/AIE/bSL8i9UAFEy8hqJrrj5rHykiJRLvIUVkPUjJhE174UQG/LYfth8URtqV6LTQvytcVhGlbCNzJxuNEjMUVYjJ+Ehx7wNau5i0FIpWiiUZ4LQLn0mf5m9DcrGgKAr5rtIGswVSW83Ebl9KaPImACwhbTk14p9Ywmu2ZTkdTWo2mqRTuIKNDW59cFCXz+MhWyhR24h2GHm+cARxTs/e3naLjuL0YFxOda2sfyoJ2rCRsDVfAZA/eRLF48Z4bJciUiLxHlJE1oMzC2tsdthzFLbsE0t6nuf+HWIqpr37QN9O0kC7MTCVQaFJRITjIyEuspWLSRBisugkmNLBYa0Qk03Toq014lRc5LqELVC+0+R1W6DA1B20+e0ddOXFKCoN2f3+Rs4lU8/vJepyoTmRhSY5HVd4kDBpbUBOaUz8J2QzmVozgS4fni4cTi+7Z1tCq8mX4oxg1FoXOv35rX8qCf7+B0K//gaA/KlTKL6yyqRaikiJxHtIEVkPzlWdrSii+GbLfiEo/0wG52l55AF+MLSXiFBe2ktY2Egajkox6aeH+AghJgNbexCuvFi0Uiw+CQ4L6EOhrgbWkgvGrjjdtkBFrjLC1P5e68mtKS+hzdbFBKdsBaAsrCMnR96HNaTtuV/odKE5chJNao6o2G4AM/LTKVSX80Twbxz2KcBHUfNI0RBGWOM89rEU+lGSFYRWb6uV9U8lweu+I3TddwDkXf83Sq4YKX6WIlIi8RpSRNaDulj8mMrg9wNCUG5NhGJz1Ta1Cvp0FILysr7QMVZanTUUpWVQUCEm4yJEdFKKyRIoqRCTNrOITPrW729DUnusip00Rx7HHLkEqHwJUHsvJzHo+BbabFuM1lqKS60lu/9N5Pb+y7l7r9scaJNOosnIwxkVCpqGrRS0qBw8F/Q7v+szUSnwf6Z+XFvWxb39Qq1/UBRCvl5HyHpRdJR70w2YRgyXIlIi8SJSRNaDC/WJdLrgwImqae/kM5wVokMrBGUf6N/Nsy2gxDuUWoQ9k8G3Ypo7AoJaexDOWgol6VCcKn72DQJ9IHizlZ+kWhRF4ZSzgCOOTNSKijBNwPlfVEu0ZQXE/fYugSd3AWCO7MbJEf/EFhRb84vKbWgPpqDOK8EVHdrgT7VOFBYF7uF/fqJScaq5K3eZ+qKu8JJUXGDKDsRc4I8h0IJKXcuvLUUhdM1XBP/4EwC5f7+JE6FdpIiUSLyEFJH1wFtm41n5Ytr7t32wK0n0j67EVyeqvC+rqPiObDhP4FZJqUVMc+t9RCV3fGRVy8VWi80sim+K08BqErl0+iDQtfZk0oYnx1lCkj2DcsVOhDrQe+0TFYWQ5J+J/X0ZGnsZLo0PmYNuJb/H+BofElTmcrSJlWbkwd4Zx7mGiMJnxiSWBoj+ySMtcTxcPBgfRNTU5VBRnBmMtURfJ+sfFIWwz1cTtOkXFJWK42MmE/zPm6SIlEi8gBSR9aAhOtaUW2FnkohQ/rYPcoo8t3eNr4pS9mwvPSm9hblcRCZ9dRAXLozMW72YdNiE12RJhuiGY7eAjx/4Bsse3Q1IkauMJHsG+U4z0ZpAtF60AtKV5hK3ZREBGfsAKI3pzcnL7sUecHZPawBVsVkISZtdFNs0Aj/p03g5aAcOlUJvWzhPFQ4nUBHTMW7rn3Id+sA6mOgrCmErPydo8xYUlYrSOffR+cX5DXQFLYv8/Hx69OjBjh07PFr6SZo3V1xxhbvvuOxYI3Gj94URfWHu3+F/L8KKx+H/JkPvjmJG6chJWLYOZrwA4+fAUx/Axt0ioia5cCqrt40GOJYB2xJhf7KIUrZatD4QEANtBkC74RDbT0Qjzdkih9Jqkp1BGoBgtR99dPHEaoPJchVjVWpflXw+7P4RnBj3JKeG3oVL64t/ZiJd1zxAaNKGan+XSpARR7c40KhRFZV6bRznYnR5W14oHInRpSPRJ48Hwn4iSyOSyLU+TgKjS9DonFjNdbAhUqnIv+FvlAy7FJWioD18tIFG3/KYP38+kydP9hCQKpXqrGXlypUer1u0aBE9evTAYDDQrVs3Pv744/OeKy0tjQkTJuDn50dkZCRz5szB4XC4t2/ZsoXhw4cTFhaGwWCge/fuvP766x7HMJlMPPDAA7Rr1w6DwcCwYcPYuXNnna/7yJEjTJ48mfDwcAIDA7nsssv4+eef3dvz8/O5+uqriY2NxdfXl/j4eO69915KSs7d3amgoIBbbrmFwMBAgoODueOOOygtrfrbmTdvXrX312isSs5fvXo1AwcOJDg4GKPRSL9+/Vi+fLnHeVavXs2OHTvqfN3eRkYi60Fj984uNIminC37RJGO+bQHcY0aEk7zpGwb1Thjulgpq4hM+mghtqIAJyRAFjzhcoKlAExZUJolhKRWD/pg0Dast2Brw6Y4SLZnk+rII1jth1Ht3fvrU5JF3Oa38M8+CEBJXH9ODf8HDmPYWfuqswrQHkxFMfg2uBl5JSnaYv4TsplcjYUQpy/PFo6gq0Pk8wjrnxDUWmedrH9wuXB98ysh91xPz0kTG2jkLYeysjJiYmJYv349l156qXu9SqXigw8+4Oqrq8zag4OD0euFKfw777zDww8/zJIlSxg0aBA7duzgzjvv5JNPPmHSpEnVnsvpdNKvXz+io6N5+eWXyczMZNq0adx5550899xzgIioHT58mL59+2I0GtmyZQt33303r7/+OnfddRcAN9xwA4mJibzzzjvExsayYsUKXn/9dQ4ePEibNm1qfe1du3alS5cuPP/88xgMBhYsWMCHH37IsWPHiI6OprCwkJUrVzJo0CAiIiJITk5m1qxZ9O/fn08++aTG444fP57MzEzee+897HY7t99+O4MGDXK/prS01ENUAlx55ZUMGjSIDz/8EIBNmzZRWFhI9+7d8fHx4ZtvvuGhhx5i3bp1jBs3zv265tA7W4rIetDYIvJ07A7YmyxMzrfsg7Rsz+1to6paMfbrLIzPJXWnUkzqtMKwXIrJ07BboCwPitPFtLfTBj6B4Btw7upfSa1xKi5SHXkkO7LQq3wIVns5L9XlJPzgOqJ3/xe1047Dx0jGpTMp6jTyrDe5Oi0HbdJJXIFG8GucB4Y8tYVHQzZzXFeM3qXhsaKhDLHFAML6pzgzCJ2hbtY/sjq7ii+++IJ77rmHnJwcj/UqlYo1a9YwZcqUal83bNgwhg8fzssvv+xe99BDD7F9+3a2bNlS7Wu+++47Jk6cSEZGBlFRIsrx7rvv8vDDD5Obm1tj275rr70Wo9HI8uXLsVgsBAQE8NVXXzFhQtXvb8CAAYwfP55nn322Vtedl5dHREQEv/76KyNGjABEhDMwMJANGzZw1VVXVfu6N954g5dffpmTJ09Wu/3QoUP07NmTnTt3MnDgQAC+//57rrnmGk6dOkVs7NnFbH/++Sf9+vXzGEt19O/fnwkTJvDMM8+41zUHESmns1soOi0M6g4PXAdfPCOWB68X6zRqISo//RFmvQZjZ8Pc9+CbrUIQSWqPn77KUzIlC7YdgL1HIb9YzuSiM0BQPMQPgbbDIKKXEB6mDJFHaS9r6hG2eDQqNR20EfTSxePERa6zBK8+96s15PX+C0cnv0pZeGe0NjNtf11Iu59eQmMp8tjVFR+Bs1MM6qJSz+q/BiTcZeC1glH0t0ZRrnbyRMhvfGs4DoA+uAz/cBN2sy8uR/P6KlMUBaXc2TRLHd4fmzdvZsCAAdVumzVrFuHh4QwePJhly5Z5HNdqtbqjkpUYDAZ27NiB3V79e2Pbtm306dPHLSABxo0bR0lJCQcOHKj2NXv27GHr1q1cfvnlADgcDpxOZ7Xnrkm8VkdYWJh7Ct5sNuNwOHjvvfeIjIys8X5kZGSwevVq91hqusbg4GC3gAS46qqrUKvVbN++vdrXvP/++3Tt2rVGAakoChs3biQpKYmRI0fW+hobCxmfukhoGyWWm64SXojbD4ko5W/7xTT4xt1iUamgV4eqae8ucTKqVhsMviLiXG6FkzmQkQ+xYeKehwa28nuoUglvSUMIhLSvmO7OhNJsUZDjY5TFOPVApVLRRhuCXqUlyZFJlquYSHWg19olAliD40ie+DwR+9cQtWcVQanbMWYf4tSwuylpP7RyIDjbRYPNiSYlC1dkcKNMcRgVHfMLL+P1wN384JfC60G7ydGUMb20F8bwUpwODWWFxrpZ/zQ0Vhem635rklMHfD4c9LWbCUhNTa02Ovb0008zevRo/Pz8+OGHH7jnnnsoLS3lvvvuA4T4e//995kyZQr9+/dn9+7dvP/++9jtdvLy8oiJiTnrmFlZWR4CEnD/Pysry2N9XFwcubm5OBwO5s2bx8yZM8W1BQQwdOhQnnnmGXr06EFUVBSffvop27Zto3PnzrW6ZhB/Uz/++CNTpkwhICAAtVpNZGQk33//PSEhnhYoN910E1999RUWi4VJkybx/vvv13jcrKwsIiM9i9S0Wi2hoaFnXSNAeXk5//3vf3nkkUfO2lZcXEybNm2wWq1oNBrefvttxowZc9Z+TY38VL8I8feDKweIxeWCgylV095JJyHxuFje/UpYBlW2YhzUXRT2SGpG7yumtSvFZHpelZgMC2rlYhIqinGixWItrZjuPgll2SJ06xsIPjIf4EII0wTQR6UlyZ5JpquIKHUQOi9WbqPWkHvJ3zDFDSD+1zcwFKbS/qeXKew4goyhM3H6BoBGjbNTDCq7A016Hs7oENA0fOqCFjX/KhlIlMuP5f4H+a//IXI0ZTxYPBD/SBMup5ryulr/SLBYLGdF9QAef/xx988JCQmYzWZefvllt4h8/PHHycrK4tJLL0VRFKKiopg+fTovvfQSai9YhmzevJnS0lJ+//13HnnkETp37sxNN90EwPLly5kxYwZt2rRBo9HQv39/brrpJnbv3l3r4yuKwqxZs4iMjGTz5s0YDAbef/99Jk2axM6dOz1E8Ouvv86TTz7JkSNHmDt3LrNnz+btt9+u9zUCrFmzBpPJxPTp08/aFhAQwN69eyktLWXjxo3Mnj2bjh07csUVV3jl3N5C5kTWg6bMibxQsgtha0WEcvvBsz0pB3aD4RUWQtFn59dLzqDcBvkloutQTIWYDJdi0hOXU/TrLs2G0kwoNwmxqQ8WRTmSOlGu2Dlqz+KUM58wtT96L7VKPB2V007k3s+J3LcaleLCbgjh1GX/wBRfMU1ntaE9mIY6t0i0R2xEr7HvDCdYELgbl0qhvzWSJ4qG4WvV19r6pzFyIhVFAWstO+t4G181qlp+AN1yyy0oinLOQhGAdevWMXHiRMrLy/H1rYo02O12srOziYmJYfHixTz88MMUFRVVKySfeOIJvv76a/bu3eted+LECTp27Mgff/xBQkJCted+9tlnWb58OUlJSR7rzWYzJSUlxMTEcMMNN1BaWsq6detqdd0bN25k7NixFBYWeuiALl26cMcdd1QbGQRRPT5ixAgyMjKqjbYuW7aMhx56iMLCQvc6h8OBXq/n888/569//avH/ldeeSWBgYGsWbPmvGOeOXMmJ0+eZP369e51zSEnUkYiWxlRIfDXkWIpt8EfSUJQbt4HWQXwW6JYXgI6t6kyOe/dscG7n7VIKk3Ky20iKpmRB7HhFZHJQOnjCYgiG2O4WEI7iehkSbr412EThTi+gbIYp5boVTp66GLxVWk57sghQOUiQO1dMa5odGQPuJmStoOI//UN9MXpdNjwHAVdriRjyO24fP1wdItDZ3eizikWZuSN9OQ03tKBcKeBZ4K38YdvDrNDf2Z+4QiCotUUnQrGavbF12htlLHUhEqlqvWUclOSkJDAihUrzrvf3r17CQkJ8RCQADqdjrg40et85cqVTJw4scZI5NChQ5k/fz45OTnuKd8NGzYQGBhIz549azy3y+XCaj3792k0GjEajRQWFrJ+/Xpeeuml815HJWVlIl/7zLGq1WpcrprFf+W26sYD4hqLiorYvXu3O7fyp59+wuVyMWTIEI99T5w4wc8//8zXX39dqzHXdB+aGhmJrActMRJZE4oCxzMqWjHuh/3HwHXaOyPICMN6C1F5aS8IkM1LqsVqF0U3INpXtosWkUkpJs9AUaC8WORMmtLFz6hEdNKntTczrx0uxcVJRz5HHdloUROqaZi+nSqHleg/PiU88X+oULAZwzk14l5KY/uiKqkwIy+34YoIbpDz10SytpBHQ7ZQoCknwmlgfuEIYgsjK6x/HOj0jmpfJ6uzq9i/fz/9+/cnJyfHnQv4v//9j+zsbC699FL0ej0bNmzgX//6F//617946qmnAOGxuGPHDoYMGUJhYSGvvfYaGzZsYPfu3W6/yTVr1jB37lwOHz4MVFn8xMbG8tJLL5GVlcWtt97KzJkz3RY/ixYtom3btnTv3h2AX3/9lQcffJD77rvPXXm9fv16FEWhW7duJCcnM2fOHPR6PZs3b0an09XquvPy8ujevTuXX345TzzxBAaDgSVLlrBw4UJ27tzJJZdcwrfffkt2djaDBg3C39+fAwcOMGfOHEJDQ91FPDt27GDatGls3LjRbS80fvx4srOzeffdd90WPwMHDjwr2vv444+zbNky0tLS0JyREvL8888zcOBAOnXqhNVq5dtvv+WRRx7hnXfeceeHgoxESpoRKhV0aiOW6eOhqFR4UW7ZJyqSi83w3XaxaNRwSeeqzjntouX0bSW+OhGJtNpFZDerQIjJtlEQESzFpBuVCgzBYglpD2X5wnvSnC0ilDqjaLWoqd2XQmtErVLTTheBXu1Dkj2TbGcJkeqAWk9l1hZF60vm4NsobjuY+M1v4mvKpuP388jrMZ7Mgbfi6N4WXeIJVIUmlJDGa/PU2RHCG/mj+U/oZtK0Jh4I/Yl56uF0c2goyQxCrVbQ1MH6pzXSp08f+vfvz6pVq7j77rsBEV1ctGgRDz74IIqi0LlzZ1577TXuvPNO9+ucTievvvoqSUlJ6HQ6Ro0axdatWz0My4uLiz2moDUaDd988w3/+Mc/GDp0KEajkenTp/P000+793G5XMydO5cTJ06g1Wrp1KkTL774ontslcedO3cup06dIjQ0lKlTpzJ//nwPATlv3jw+/PBDUlJSqr3u8PBwvv/+ex599FFGjx6N3W6nV69efPXVV1xyySUAbmH54IMPYrVaiY+P59prr/WY6i4rKyMpKcmjIv2///0v9957L1deeSVqtZqpU6fyxhtveJzf5XLx4Ycfctttt50lIEFM1d9zzz2cOnXKbbq+YsUKbrjhhmqvpymRkch6cDFFIs+Fwwn7jlW0YtwPJzI9t7cJrxCUfSGhC/jI7303NjvkVUQmo0KE4JZi8hxYS4XnZPFJkUfpclVMdwfU2ONZAoUuM4ftGRQ5y4jWBHm1cvt01HYL0TuXE374ewCsAdGcHPlPyolGeyAVxVeHEti40xQmlY0nQ35jv08eWkXF7OJBDE3rRWluIL4BFtQaz684GYn0ZN26dcyZM4fExESvFMU0B6ZPn45KpXKbd1+sNIdIpBSR9aC1iMgzSc8VU95b9sEfR4TxeSV+vjC4p4hQDusjpnIlQkzmlwhNdHpkshEKW1smLheUVxTjmDJEZxyNj7AK0slinOooc1k57MggyyksgHxUDTfR5J/+J3FbFuFjzkNBRV7vv5ATPRbNkUyUAAOKX+P+jmw4eTloJ5sMwgT69pLeXJM8BEuh/1nWP1JEns2CBQuYOnUq8fHxTT2UeqMoCu3bt2fLli0XxfXUxPjx4/n1118pKyuTIrIxkSLSu5SVw45DQlT+tk8IpdPp2b6qc063eBmBsztEzqTT5RmZlGLyHNjLRXSyJB3MeeCwgq9/RTGOzMg5napWibkEq41eb5V4OmqbmdjtHxB69CcAyoPiSO98C/YsDa6wAPD1ftX4uXCh8H7APj43HgHgmtJO3HpoFPYSI4agMnfKjRSRkouB9PR0LBYLAG3btq2x409DI0VkPZAi0hOXS/hQbtknlkOpntvDg0R08rI+MLiH6AbTWqkUkw6n8OpsHwORwVJMnhNFAWuJKMYpSYfyIpFb6RskcihlYi4gWiWmOHI45sjBoPIhyNutEs8gIG0Xcb+9jc5ShKJSkxs3hgLHJbiiwpqk3+pav2TeDtiDooLBZbHcs3882jI/t/WPFJESifeQIrIeSBF5bvKKYGuiiFLuOAhlp7kT6LQwoFtVlLJNeJMNs0lxOET01uaoikxGNY5/c8vG6RDRycrOOLYy0YZRHySmvVs5iqKQ4SzkiCMTlwLhan+vF9ycjqbcRJttSwg+IapWLX5tyDJejSW+W5O8mbf4pvN88O/YVC66lIcye+9kgmx++BhtUkRKJF5Eish6IEVk7bHZYc/Rqihlep7n9g4xVYKybyfQtjIRVSkm7U6ICKqKTGrlbO35sZlFdXfxKSEsXU4x1S2LcchzmjjsyMDsshKlDkLdwNHaoBNbabP1PbRWE4pKQ27ACPI6X90kVfYHdfk8HrKFErWNKJs//9ozhThHAMUpWVJESiReQorIeiBF5IWhKJCaVVWc82eyyBGsJMAPhvYW096X9oLghrG/a5Y4HJBvEqK7UkxGhUgxWSvcxTgV3pNWE6h1IjqpMzT16JqMEpeFJHsGeS4Tkd5ulVgNWksRbX57l6C0HQBYdLGkd/07Nr+o87zS+5zSmHg0ZDMZWjMBDl8e+HMSMQehy7juUkRKJF5Aish6IEWkdygxixaMW/aJbjkl5qptahX06SQE5aj+oqq5NeBwQkGJ8JsMD4L20aKqW4rJWuKwiuhkSQaU5YKjvMp7shUW41gUG0fsmaQ7CwlXB6BXNXBkUFEIPvYLbba9j8ZehkulJSfuGgqiRjR6dLhQXc4Twb9x2KcAnUvDbZsHcn2PMVJESiReQIrIeiBFpPdxuuDAiapp7+T0qm0qFVw5AGZcA53jmm6MjUl1YjIqtEnqFVomiiIikuZcKDlVVYzjEyQ647SiYhy74uS4PYcTzhwCVQb8vdwqsTp05jzifn6TgJz9AJgDOpLR/kbs+rAGP/fplOPgueDtbNNnoFLgH+YxPDr66fO/UCKRnBMpIuuBFJENT1a+mPb+9U/RQaeS0f1hxgToevHagHngcEKhCSxWYQnUriIyKcVkHXA6wFIginHM2cLYXGsQXXNaSTGOS3GR5sgn2ZGNVqUmVN0IuSKKQtjur4jevxKNYsOl9iE7fhKFEUMbVcQ7UVgUsIf/GY/xf66RPH7pi412bonkYkWKyHogRWTjknwKlq6Dn/4QASaAy/vBHROge7smHVqj4XRBYYmodA8LFDmT0aGyS1CdsZWJ9ool6aIYx+mo6IwT2CqKcbKcRSTZM7EpDiLVgQ1auV2J79HDxO94Fz9rGgClgV3JaH89Dt+QBj93JQoKv+Zv55peN9Bu8NRGO29zJj8/nx49erBjxw6PtoWS5s0VV1zBL7/8AtCkZuMX/6el5KKhcxw8fzd88iSMHSyCGL/shWnz4aG34GBKU4+w4dGoITwY2kSIqOTuw7AtEdKyRTGOpJb4+EFwW4gbAvHDIKKHWF98SkQq7ZamHV8DE60Jpo8uHn+1nkxnEU7Fdf4X1RNr526cGPZvsoPG4FJp8S85QqcDrxCUt7PqqbCBUaHikiJ/VLSeNIbzMX/+fCZPnuwhIHfu3MmVV15JcHAwISEhjBs3jj///NO9PSkpiVGjRhEVFYVer6djx4489thjHj2kqyMtLY0JEybg5+dHZGQkc+bMweGoanl22223oVKpzlp69erl3uedd96hb9++BAYGEhgYyNChQ/nuu+/qfN333XcfAwYMwNfXt1oBtmnTJiZPnkxMTAxGo5F+/frx3//+t8bjrVy5EpVKxZQpU8553tWrVzNmzBgiIiLc41+/fv1Z+6Wnp/P3v/+dsLAwDAYDffr0YdeuXR7H2bFjR62vt6GQIlLS4ugUC8/OhM/mwfghovhm8z647Tl44A1IPN7UI2x43GIyEsrtsDtJiMnULCkm64RaDX6hENEN2o2AtpdCQAzYTFCUKopznI7zH6cFEqrxp6+uLZGaQDJdRdiUBr5OlQpnu2jy+v6FlIgZlPm1ReMsp82JlcQnf4DGXnL+Y0i8SllZGUuXLuWOO+5wrystLeXqq6+mbdu2bN++nS1bthAQEMC4cePcIlGn0zFt2jR++OEHkpKSWLBgAUuWLOHJJ5+s8VxOp5MJEyZgs9nYunUrH330ER9++CFPPPGEe5+FCxeSmZnpXk6ePEloaCjXXXede5+4uDheeOEFdu/eza5duxg9ejSTJ0/mwIED1Z32nMyYMYMbbrih2m1bt26lb9++fPnll+zbt4/bb7+dadOm8c0335y1b0pKCv/6178YMWLEec/566+/MmbMGL799lt2797NqFGjmDRpEnv27HHvU1hYyPDhw9HpdHz33XccPHiQV199lZCQqqh9aGgoERFNPw0qp7PrgZzObh6kZsOH38L326usgob0hDsnCc/J1oDLBQUm0YYyJED4bkaHNnrnuYuHymKc4pNQXgwoojOOj/9FV4xjVewVrRLzCFUb8WvAVokAOJxojpxCm5pFMPuIyPoBteLEofUjq91USkL7Nejpi44lEjd8Im0HX9ug52kJfPHFF9xzzz3k5OS41+3atYtBgwaRlpbm7j29f/9++vbty9GjR+ncuXO1x5o9ezY7d+5k8+bN1W7/7rvvmDhxIhkZGURFCZuNd999l4cffpjc3Nxq2/atXbuWa6+9lhMnTtCuXc05S6Ghobz88sseYri2zJs3j7Vr17J3797z7jthwgSioqJYtmyZe53T6WTkyJHMmDGDzZs3U1RUxNq1a+s0hl69enHDDTe4BfUjjzzCb7/9VuO9rCQlJYUOHTrI6eyWjMMBecWielbSNLSLgidvh1VPw6ThIkq3/SDMfBFmvSZMzi921GpRvR0XIbrf/HFEdAtKyQSrralH1wLxDYDQjtDuMmg7FEI6gssOJSdFhxyH9fzHaCH4qnR018XSVRdNsWKhxNXAU/laDc7ObXC2CadI3Y8T3e/H4tcGraOMuGPLaZP8MRp7acOOoYFRFAWHw9EkS13iQps3b2bAgAEe67p160ZYWBhLly7FZrNhsVhYunQpPXr0qDFnMjk5me+//57LL7+8xnNt27aNPn36uAUkwLhx4ygpKakxirh06VKuuuqqGgWk0+lk5cqVmM1mhg4dep6rrT/FxcWEhoZ6rHv66aeJjIy8IAEL4HK5MJlMHsf9+uuvGThwINdddx2RkZEkJCSwZMmSeo29oZC1nfUgMgT6dYHMfFE5a7ODny/4+4FeRoAanfhIeHy6qNr+6Dv432+w87BYBnSFmZOgf9eLLpDkgVotCm5C/KGoVAjoE5mimjs2DPQNHGS66FBrwBghFntnUYxTXFmMYwOfis446pbdYkmjUtNJG4Ve5cMRRyZ5ThPhmoCGO6GPFkfXeHA4UfJNnOh+HxFZGwnP+JGgwj8xmo6T0f5vlIb0brgxNCCV4qYpuPHGG9HW0lA2NTWV2NhYj3UBAQFs2rSJKVOm8MwzzwDQpUsX1q9ff9Zxhw0bxh9//IHVauWuu+7i6adrtk3KysryEJCA+/9ZWVln7Z+RkcF3333HJ598cta2/fv3M3ToUMrLy/H392fNmjX07NmzVtd8oaxatYqdO3fy3nvvuddt2bKFpUuX1iqKWROvvPIKpaWlXH/99e51x48f55133mH27Nn85z//YefOndx33334+Pgwffr0+lyG15GRyHrgp4dObWBYbxjeWwjKAD8oLhWFDjmFUH7xBCxaDG3C4T+3wur5cO3looXi7iPwj1fh7ldgx6FGy+NvMtRqCA0UkUmHU3QF2poIxzPke/KC0RkgKB7ih0DbYRDRUzyRmDKEqbm9rKlHWC9UKhVx2lD66OLRqTRkOotwNeQfit4HZ9d4lEA/1Pml5LYZx4me91Guj0LrMNE2+QNij3+K2nFxFzk1JRaLBb1ef9a6O+64g+HDh/P777/z22+/0bt3byZMmIDF4vm7+Oyzz/jjjz/45JNPWLduHa+88orXxvbRRx8RHBxcbaFKt27d2Lt3L9u3b+cf//gH06dP5+DBg14795n8/PPP3H777SxZssRd5GMymbj11ltZsmQJ4eHhF3TcTz75hKeeeopVq1YRGRnpXu9yuejfvz/PPfccCQkJ3HXXXdx55528++67XrkebyIjkV5ArYbgALG0jxYdVwpNIkJZZIKcIpGbFugHBhkJajRiwuCRW+D28fDx97B2C+w9Cve+LnIlZ04UuZMXe2QyNFDkSRaVwp9HxRR3u2iIDZfvxwtCpQJDiFhCOoiopClLTHObc4WJuW8waFrmx2uEJhAflZYkeyaZrkKi1EFoG6hVouJvwNEtHu2BVNT5JZSHxXOi14NEpK8nLGsTwfm7MJYcJaPDDZiDujXIGBoCjUbDjTfe2GTnri3h4eEUFhZ6rPvkk09ISUlh27ZtqNVq97qQkBC++uorj+uqzJns2bMnTqeTu+66i4ceeqjaMURHR59VTZydne3edjqKorBs2TJuvfXWanMlfXx83LmZAwYMYOfOnSxcuNAjSugtfvnlFyZNmsTrr7/OtGnT3OuPHTtGSkoKkyZNcq9zuURSvlarJSkpiU6dak7KX7lyJTNnzuTzzz/nqquu8tgWExNzVmS1R48efPnll964JK/SMj/lmjEqFQT5i6VdNJjKhKDMyheFD7lF4KsTEUu/hm8YIUF0eJlzM0wfD8vXw9rNsO8Y3LcQeneAOyaKaPLFLCZVKiEkg/1FpHxfshCT7WOkmKwXWh9RzR0QI4pxyvJFMY65YnquhRbjBKn96KOLJ8mRSUYDt0pUgv1xdo1DezAFVVEpSrA/OfETMQX3IvbESnytebQ7spiCiKFkx09C0TT/N6tKpar1lHJTkpCQwIoVKzzWlZWVoVarPbxDK/9fKZKqw+VyYbfbcblc1YrIoUOHMn/+fHJyctxRtw0bNhAYGHiWYPrll19ITk6udZ6hy+XCavX+FMumTZuYOHEiL774InfddZfHtu7du7N//36PdY899hgmk4mFCxe6BXZ1fPrpp8yYMYOVK1cyYcLZ7TeHDx9OUlKSx7ojR46cs7ioqWj+7/IWjEoFgUaxtI2CUosQlNkFkF8iCnJ8tBBgFLmULex7psURGQIP3QjTr4blP8DqXyDxBDz4JvRoJyKTl/W9uH8PKpWImAedJiZPZIoIemy4fLCpF74BYgmKB0uhiEyaMoSo1PqKvt3alnODDWofeuni8EVLiiOXYLURYwNVbrsignB0jUd7KBVKLSj+BiwBHTjeazaRp74lLGcLobnb8C9JIqPDjZQFtBLbhQZm3LhxzJ07l8LCQrd9zJgxY5gzZw6zZs3in//8Jy6XixdeeAGtVsuoUaMA+O9//4tOp6NPnz74+vqya9cu5s6dyw033IBOJx421qxZw9y5czl8+DAAY8eOpWfPntx666289NJLZGVl8dhjjzFr1ix8fT3fV0uXLmXIkCH07n12TuzcuXMZP348bdu2xWQy8cknn7Bp06ZqvRbPRXJyMqWlpWRlZWGxWNx5jT179sTHx4eff/6ZiRMncv/99zN16lR33qaPjw+hoaHo9fqzxhccHAzgsX7u3Lmkp6fz8ccfAyKqO336dBYuXMiQIUPcxzUYDAQFBQHw4IMPMmzYMJ577jmuv/56duzYweLFi1m8eHGdrrExkDmRjYRKJaKPbaNgUA+4rA8M7C6iZOVWOJkjpr9LLRd/vl5TEx4MD14Pa5+Hv48VRVCHUuGhRTDtWdi05+L/HVSKyfgo8fP+YyJn8uhJMMsUtPqh1oAxHKJ6ieruuEFgCBV9u4tPCoHpcjb1KGuFTqWhmy6G7rpYSpVyCl3mBjuXKyYUR+c2qEwW4aQPKBpfstv9lZRu/4fNJwQfawHtDr9DVNpXqFzSEqO+9OnTh/79+7Nq1Sr3uu7du/O///2Pffv2MXToUEaMGEFGRgbff/89MTExgJiuffHFFxk8eDB9+/blqaee4t577+X99993H6e4uNgjmqbRaPjmm2/QaDQMHTqUv//970ybNu2sYpzi4mK+/PLLGqOQOTk5TJs2jW7dunHllVeyc+dO1q9fz5gxY9z73HbbbVxxxRXnvPaZM2eSkJDAe++9x5EjR0hISCAhIYGMjAxA5GSWlZXx/PPPExMT416uvbZu1lCZmZmkpaW5/7948WIcDgezZs3yOO7999/v3mfQoEGsWbOGTz/9lN69e/PMM8+wYMECbrnlljqduzGQPpHNAHNFhDKnUEQoSy2iGCTQD4yGizsy1hwoNMF/N8DnP7u/u+gSJ9opXpEg8govdhQFis0in9ffIFIxYsLEz/L95wUURfhNmnOh5BRYSwAV6INFDmULILOiVaK9IVslKgqa45lokjNwhQWK3J8K1M5yotK+JiRvOwBWfQQZHW7C4l+3KT7pE+nJunXrmDNnDomJie4cyJbO5ZdfzqhRo5g3b15TD6VBaQ4+kVJENjPKykUBRE6hyJ80lwsRE+gHRn3rEDRNRZEJPt0Iq34S9x1Ed5wZE2F0f+E/ebGjKFBSJqa6Db7CLig6DEIDxAONxAs47SJ30pQF5mxR1a31E4U6zdwqqMBZSpIjgxKnhUhNEJqG6DPudKE5egpNSjauyGDQeWZd+RcdIiZlFTp7CQoq8mNGkxs7FkVdu+wsKSLPZsGCBUydOvWceXwtheLiYnr16sXhw4fx9/dv6uE0GOPHj+fXX3+lrKxMisjGpLmLyNOxWIWgzC0UFd6lFiEiAwwiQiQFZcNQbIbPNsLKjeKeg+gAM2MCXDWwdYhJEA80pjJhpO+nF2bm0aGiQEfmTnoJa6mo7i5KBXMe+IWJQpxmTKmrnCR7JtmuYiLVopLb69gdaA+fRJORhzMq9Kw/OrWjjOjUNQQX/AFAuSGG9I43YfVrc95DSxEpuRhIT093Wy61bdu22ir2xkCKyBZCeaWgLBJRytJyUCGMzf0NrUfYNCamMvjsJ/j0R/EziO44MybAmEEi5aA1oChQZhVT3XaHeL9FBItCpdAAaWDuFRxWKEyBgmMiX9I/EmoZWWsKyhU7R+1ZnHIUEKoxYlA1wBeY1Sasf/KKcUWHVptXEVCwj5jUL9E6SlFUanJjx5IXPfqcEV0pIiUS7yFFZAvEavMUlKYyQCW+3P0NrUfcNBalZbDqZ/jkRyGkQHTHuf0auHpI67rfiiJyeEvKRJ9yox6iQoSgDAmQvbrrjTkP8o+CKVNMb/s2388oh+IkxZFLsiOHAJUvAWrv5zuozOVoD6SiKjHjigqpdh+N3URM6pcEFgq7FYtfPOkdb8RmiK52fykiJRLvIUVkC8dmF4IyrwiyKwSlolQISr/WJXAaGnM5fPEzrPhBTHmD6I5z2zUw4VJoAbZwXsXlEvekpEz8HGAQ+ZMRwUJQ6lrZ/fAaTruY3s5PBqcVjNHN1rhcURROOQs44shEragIa4BWiaoSM9rEFFTldlwRQTUNhMCCPcSkrkbjtOBSacltczX50ZfDGXmbUkRKJN5DisiLCLtDCMr8YsgsAJNZfLn7+4kv+NYmchqKsnL48hchJgtNYl1MGNw2HiYOa53iyeUCk0VEbRVFeKPGhEFYkOjjLd97F4ClEPKOCK9Jn0AwBDf1iGokx1lCkj0Di2InUh2I2suV26r8EnQHUlBUKpTgmnNGtbZiYlI+J6D4EABl/u1J73ATdn1VWzopIiUS7yFF5EWKo1JQlohuOadPPwb4tU6h420sVlj9q+iCU1Ai1kWFiM44fxkOPg3T4KPZ43SJiHhpWUUhmJ8QlOFBomNOHbqySZwOYQmUfwRsZeAfBZrmmTNQ5CojyZ5BvtNMtCbQ660S1VkFaA+mouh9UAL8at5RUQjO20FU2ldoXFZcah+y4yZQGDkMVGopIiUSLyJFZCvA4RDTrwUlwtC82AwOp7BsCTC0XrHjLcptopXix9+LLkQAkcEw7WqYPMLD6q7V4XBWCEqLKP4KMorOOKGBQlBKh4FaUl4iciWLTwpfSX1IszTwtLhs7laJEeoAfL3cKlF9KhftoTRcgRVtvs6BzlpA7InPMJqSASgN7EJG+xvIO5UuRaRE4iWkiGxlOJ1VgjKrQEQr7Q5h2RLg17oFT32x2uGrCjGZUyTWhQcJMTllhOiM05pxOEREvNQiIuHB/hVT3oFi+lsKyvPgcoqp7bwjwqzcGNks2yjaFAfJ9mxSHXkEq/282ypRUdCcyESTnIkrNOD8H1iKi5CcrUSd+ga1y45T7csJw0B8Rj1I2yFTvTcuiaSVIkVkK8blOjtCabOLB3x/Pyl6LhSbHb7+DT76ThQ7gYi83ToOpo6Uljgg7lFJmcgv9dGJvMnYcFGQE2hslkG25oO1FAqSRfGNRi+8JZvZDXMpLlIceRxzZOOr0hKs9mJXHpcLzZF0NClZ1ZqRV4dPeS6xJ1biV5oCQGn8aPzv2ui9MbVg8vPz6dGjBzt27KB9+/ZNPRyJF6nsKhUUFERRUVGDnEM++7di1Grxpd2pDQzrDcN7Q78uIiJZXApp2cJGqNza1CNtWfjo4G9XwOr5MPfvItpWUAILP4cp/xE5lGXlTT3KpsVHJ6K0baPEe7CkDPYcha37YftBSM2qchqQnIGvP0T1hTYDQecLxWlgb14Nz9UqNR20EfTyicOJQo6zBK/FK9RqnJ1icMZFoMkpEtMr58GmjyCl+yyy4ybiQoMlerB3xnIRMH/+fCZPnuwhIO+77z4GDBiAr69vtZ1QNm3axOTJk4mJicFoNNKvXz/++9//1niOlStXolKpmDJlyjnHsnr1asaMGUNERASBgYEMHTqU9evXn7Vfeno6f//73wkLC8NgMNCnTx927dpV20smJSWFO+64gw4dOmAwGOjUqRNPPvkkNpvNY799+/YxYsQI9Ho98fHxvPTSSx7b7XY7Tz/9NJ06dUKv13PJJZfw/fffn/Pctbl3q1evZuDAgQQHB7v3Wb58eY3H/L//+z9UKhULFizwWJ+ZmXnWOm8jyyskgBCUwQFiaR8t/BALTSJCWWQS07N6HyEwDTKSVit0WvjrSJg0DNb9Dh98Cxl58OaXQkjeMgb+NkoUO7VmfHXCFgjEA0uhCTLzRMQ2PEi2XawWtRoC24jcyIJjUHQCrFowRpxladNUqFQqYjUh+KIlyZFJlrPIe60SdVqcXdqgcjhR5xQKD8nz5UOo1OTHjCKt1EhU9KD6j+EioKysjKVLl1Yr1GbMmMH27dvZt2/fWdu2bt1K3759efjhh4mKiuKbb75h2rRpBAUFMXHiRI99U1JS+Ne//sWIESPOO55ff/2VMWPG8NxzzxEcHMwHH3zApEmT2L59OwkJCQAUFhYyfPhwRo0axXfffUdERARHjx4lJKR6H9HqOHz4MC6Xi/fee4/OnTuTmJjInXfeidls5pVXXgHErOXYsWO56qqrePfdd9m/fz8zZswgODiYu+66C4DHHnuMFStWsGTJErp378769ev561//ytatW93jvZB7FxoayqOPPkr37t3x8fHhm2++4fbbbycyMpJx48Z5HG/NmjX8/vvvxMbGnnWu6OhogoJqsMXyEnI6W3JOFEVEhApNosq7wCQKSXx9RFGObH9XexwO+H6HEJMnc8S6QCPcfBVcP0qkEEiqsFR0yZFtF8+DokBpNuQliZ7cfuGi+KYZYXJZSLJnkusyEakOROetyu2ycnQHUlEVmXFFBddqWl9WZ1fxxRdfcM8995CTk1Pt9nnz5rF27Vr27t173mNNmDCBqKgoli1b5l7ndDoZOXIkM2bMYPPmzRQVFbF27do6jbFXr17ccMMNPPHEEwA88sgj/Pbbb2zevLlOxzkfL7/8Mu+88w7Hjx8H4J133uHRRx8lKyvL3VLwkUceYe3atRw+fBiA2NhYHn30UWbNmuU+ztSpUzEYDKxYsaLW567u3p1J//79mTBhAs8884x7XXp6OkOGDGH9+vVMmDCBBx54gAceeMDjdR9++CEPPPCAnM6WNA0qlRA67aJhcE+4rC8M6AYRQcJoOi0bsgvEz63rcaTuaLXCR/Kzp+CpGaKFYokZ3v0KJv8H3v+mqr2iRES8o0JFdyCDr3iI2XEIftsPe4+KqK5MtUD8kQZEQ9wQiOgONpPoeOM6/zRvYxGgNtDbJ544TSjZzmLKFdv5X1Qb/PQ4usWj+OtRV1ojNAcUBZzmplnq8EG8efNmBgwY4JVLLi4uJjQ01GPd008/TWRkJHfccccFHdPlcmEymTyO+/XXXzNw4ECuu+46IiMjSUhIYMmSJfUaO5w9/m3btjFy5EiPntTjxo0jKSmJwkKR7G61WtHrPZ9oDQYDW7Zsqde5T0dRFDZu3EhSUhIjR450r3e5XNx6663MmTOHXr161el83kROZ0tqjUolprMD/EQuW2kZFJYKEZlfIkzOdVqx3ahvdrn+zQatBsZfCmMHw4+7YNk6OJEJi7+G//4AN14JN14l7HAk4n1k1ItFUcQDy8kcSMmSbRc90OkhsqeY0s47IvwlDWEih7IZoFfp6KGLxVel5bgjlwCV0yutEpVAPxzd4tElpqAqMKGEer9rTp1xlcHvTXTfLy0FTe0+PFJTU6udBq0rq1atYufOnbz33nvudVu2bGHp0qW1imLWxCuvvEJpaSnXX3+9e93x48d55513mD17Nv/5z3/YuXMn9913Hz4+PkyfPv2CzpOcnMybb77pnsoGyMrKokOHDh77RUVFubeFhIQwbtw4XnvtNUaOHEmnTp3YuHEjq1evxlmLPN1Kqrt3IIRlmzZtsFqtaDQa3n77bcaMGePe/uKLL6LVarnvvvsu5JK9hhSRkgvG308s8ZGin3KhSfTyzisWP2vUEOgnctmkoDwbjRrGDYarBsJPf8Cyb+BYBixdBys3wnWj4OYxwgpHIlCd1iO+su1iajYczxTpFVGhVW0XW63/qTECfIOgMAUKj4Gtwg5I3fQf91qVhi7aaHzRctSRjd3pJFRT/ze4EhqAo3s82gOpUFKGEihzQ2qDxWI5K5JWV37++Wduv/12lixZ4o6ImUwmbr31VpYsWUJ4ePh5jlA9n3zyCU899RRfffUVkZGR7vUul4uBAwfy3HPPAZCQkEBiYiLvvvvuBYnI9PR0rr76aq677jruvPPOOr124cKF3HnnnXTv3h2VSkWnTp24/fbbzzktfTrV3btKAgIC2Lt3L6WlpWzcuJHZs2fTsWNHrrjiCnbv3s3ChQv5448/3BXYTUXTf6pILgqMBrHERYrK40KTqOzOLYLC3Io6gIoIpfQD9ESjhjED4cr+sGkPvL8Okk/Bh9/Bqp9E8c0tY4QwklRR2Q0nwE8IylILHM+AY+liXXQoRIS00raLWh+I6ArG8IqoZAbog8TSxKhUKtrpItCrfThizyTbWUyEF1oluiKDcdgdaA+lgUaN0pQVa2o/ERFsqnPXkvDwcPfU7IXwyy+/MGnSJF5//XWmTZvmXn/s2DFSUlKYNGmSe53L5QJAq9WSlJREp06dajzuypUrmTlzJp9//jlXXXWVx7aYmBh69uzpsa5Hjx58+eWXdR5/RkYGo0aNYtiwYSxevNhjW3R0NNnZ2R7rKv8fHR0NQEREBGvXrqW8vJz8/HxiY2N55JFH6Nix43nPXdO9q0StVtO5c2cA+vXrx6FDh3j++ee54oor2Lx5Mzk5ObRt29a9v9Pp5KGHHmLBggWkpKTU6T7Uh9b20SppBPz0YmkTIYojCk2QVyQ8E9PzKr78K6JJUlBWoVbD6AFwRQL8+ics/QaSTgrz8lU/CdugW8YKc26JJ2q1yN0NNFa1XTx6CpLTIcAIsRWm5iEBraztol+osAIqShXekiWnwBgFmqYP00ZpgvBV6ThsTyfTWUS0Fyq3XbFhOO0ONEmnUDTqpjO7ValqPaXclCQkJNSpAOR0Nm3axMSJE3nxxRfd1cqVdO/enf3793use+yxxzCZTCxcuJD4+Pgaj/vpp58yY8YMVq5cyYQJE87aPnz4cJKSkjzWHTlyhHbt2tVp/Onp6YwaNYoBAwbwwQcfoD7jy2jo0KE8+uij2O12dDrx97Jhwwa6det2ViW4Xq+nTZs22O12vvzyS4/p9+o4172rCZfLhdUqksBvvfXWs8T1uHHjuPXWW7n99ttrdTxvIUWkpEEx+IolNlwUQRSViuhkdiFk5IOKimlxg4jISYQguiIBLu8HW/aJgptDqbDiB/j8Z7j2crh1LIQHN/VImycatUgBCPavart4KEWIx0A/8V4MC2pFbRc1WgjrJEzJ849CSTr4+IOh9pYoDUWw2o++urYcVmWQ6SwiUh2Ij6oeX0sqFc62kWBzoDmeWWsz8tbKuHHjmDt3LoWFhR7CKDk5mdLSUrKysrBYLO68xp49e+Lj48PPP//MxIkTuf/++5k6dSpZWVkA+Pj4EBoail6vp3fv3h7nCg4OBvBYP3fuXNLT0/n4448BMYU9ffp0Fi5cyJAhQ9zHNRgMbquaBx98kGHDhvHcc89x/fXXs2PHDhYvXnxWJPFcpKenc8UVV9CuXTteeeUVcnNz3dsqo4w333wzTz31FHfccQcPP/wwiYmJLFy4kNdff9297/bt20lPT6dfv36kp6czb948XC4X//73v937vPXWW6xZs4aNG4W5/fnuHcDzzz/PwIED6dSpE1arlW+//Zbly5fzzjvvABAWFkZYWJjHNel0OqKjo+nWrVut74M3aA0foZJmgt5XeP716QQj+sKlPaFjLCgu4Qt4KleITKerqUfaPFCpYMQl8OF/4PV/Qu8Owu7m0x/hr4/CqytFDqqkZrQaEX2MjxL9zG0OSDwhKry3Joqp7yKTmA6/6DEEQ2x/iE0AFChKA6eXqqTrgZ/al966eNprIsh1lmB21bPkXq3G2TEGZ9vIWpuRt1b69OlD//79WbVqlcf6mTNnkpCQwHvvvceRI0dISEggISGBjIwMAD766CPKysp4/vnniYmJcS/XXls326TMzEzS0tLc/1+8eDEOh4NZs2Z5HPf+++937zNo0CDWrFnDp59+Su/evXnmmWdYsGABt9xyi3ufefPmnbP7zoYNG0hOTmbjxo3ExcV5nKuSoKAgfvjhB06cOMGAAQN46KGHeOKJJzwih+Xl5Tz22GP07NmTv/71r7Rp04YtW7a4BTNAXl4ex44dc/+/NvfObDZzzz330KtXL4YPH86XX37JihUrmDlzZp3ub2MgfSIlTY7NLsRj5ZR3ZacSf4OIUmpb0/TjOVAU0c3l/W9gX8Vnko8WJl8m+nNHVe8QIakGu0O0+Wy1bRetJshPFt1utHpRxd3EF+1UXKQ4cjjuyMFX5UNwHXL7qsXmQHs4FU1mAc7oUHfYWfpEerJu3TrmzJlDYmLiWVO6LZXp06ejUqn48MMPm3ooTU5D+0RKESlpVtgdQlDmF0NmAZjMIkrk7yfyKFtdgUQ1KArsPCzE5N6jYp1WA3+5DKZfLdosSmqP1S7eZ2VW0OsgJFDcw9BA8SBz0QpKlwtMGcKkvLwE/COFoGxCFEUhw1nEEUcGLkUhXB1Qv+pTixXdwVRUBSbR1UalkiKyGhYsWMDUqVPPmavYUlAUhfbt27Nly5aL4nrqg7+/Pw6HA71ef3GLyEWLFvHyyy+TlZXFJZdcwptvvsngwdX3Nl2yZAkff/wxiYmJAAwYMIDnnnuuxv3PRIrIloOjUlCWCKPpYrNYLzuWCBQFdieJApzdR8Q6rUYYmk8fD20uzFmjVVNuEwbw5TZRk1HZdjHE/yLuKGQzi6hkUSpofETHmyZWznlOE4cdGZhdViLVgfUquFGZLGgPpqAyWXBFhUgRKWk1JCcnA6DRaM7yvPQWTS4iP/vsM6ZNm8a7777LkCFDWLBgAZ9//jlJSUke3lCV3HLLLQwfPpxhw4ah1+t58cUXWbNmDQcOHKBNmzbnPZ8UkS0Th0MYm2fkVXQqsUGQvyiUuGgjRXXgjyNCTO4U3bjQqOGaoXD7eGG7JKk7FiuUlIHVJh5awgKFbVBo4EX4EKMoUJol7IDK8oXXpK5pVXOJu1ViCVHqoHq1SlQVlaJNTAGHk8KiNCkiJRIv0eQicsiQIQwaNIi33noLEGXs8fHx/POf/+SRRx457+udTichISG89dZb1XotnYkUkS2fEjNk5ouuJaYy8POF4ACZOwnwZ7KY5t5+UPxfo4arh8Bt14g2i5ILo6xcvO9sDuF1GhEsclBDAoT7wEWD3QIFx6HoBKASJuX1tN2pDxbFxhF7JunOQsLV/uhVF27Zo84tQnsglaLs48SOniJFpETiBZo0w8xms7F7927mzp3rXqdWq7nqqqvYtm1brY5RVlaG3W6vse+k1Wp1eyuBEJGSlk2lH2C7KFGIczIHsgqEYAoNBN+mt8BrMi7pDG8+APuPi8jk1kRYtw2++120WZxxDbSPOe9hJGdQ6X1a2XbxVK5ou+hvEG0XI0Ig9GJou6gzVLROrDApLz4prIF8mqZtkkHlQ09dHHp8OOHMIUDlIkB9YWFgV0Qwjq5OnKZTXh6lRNJ6aVIRmZeXh9PpdPejrCQqKorDhw/X6hgPP/wwsbGxZxlvVvL888/z1FNP1XuskuaH3hfaRYvcv9xiOJUjRKXTKSKT/vVvy9ti6dMRFtwHB1NEZHLLPvh+O6zfIbrjzJgg7JUkdeP0touKIrrkpFS0XawUlJV9vFts20WVCvyjQB8MBSdE68TKwpsmaJ2oU2nooovCV6Ul2ZGN3eUgVH1hotYVE0p55wgUv1b84SCReJEWXev6wgsvsHLlSjZt2lRj/8+5c+cye/Zs9/9LSkpafcXWxYZWK6ppo0NFd5z0XDHdXVAi2t8FGVuJqXQ19GwPr90Lh1NFT+5f9sIPO2HDLhjdH+6YAJ3jmnqULROV6uy2iycyRf/zwNPaLgb7t1C/a60vRHYXUclKk3JDCPg2fhqQWqWmvS4CvVrHEXsW2c5iItWBda/cVqmwt6kIHUskknrTpB9t4eHhaDSaavtTVrrG18Qrr7zCCy+8wI8//kjfvn1r3M/X1xdf34spaUlSEyqVmM4ODYQOMWKK+2SOmHrU+4jpxtZqEdS9Hbx8Dxw5CcvWwU9/wMbdYhmVAHdMhK7y2eqCqbbtYvrZbReDW2Ifb2O46LldlCqquG3p4BclOuE0MtGa4IpWiRlkOAuJ1gTXu1WiRCK5cJpFYc3gwYN58803AVFY07ZtW+69994aC2teeukl5s+fz/r167n00kvrdD5ZWNO6sNogpwhOZkNeMaCCsAAxFd6aST4Fy74VIrLyE2DkJUJM9qhbC1rJOXA4obRMiMoz2y4GGVtgH29LociVLEkXwlIf3CTDMLusJDkyyKqISNalVWJGyVF6RI+kXVTdvjskEsnZNLmI/Oyzz5g+fTrvvfcegwcPZsGCBaxatYrDhw8TFRXFtGnTaNOmDc8//zwAL774Ik888QSffPIJw4cPdx/H398ff//z58lIEdk6cTqF3+SpiiIcm0N8iQe0cougYxnwwbewYWeVmLysr5jm7tUwtmKtFodDWAaZy0URWEhAlal5i0q5cDpEwU3BUbBZRP6kpvETQK2KnWR7NmmOPELURvzUtXsylCLSk/z8fHr06MGOHTvO2SpQcvGRkpLi9o+85JJL3D3S60KTf2zdcMMNvPLKKzzxxBP069ePvXv38v3337uLbdLS0sjMzHTv/84772Cz2fjb3/7m0XfylVdeaapLkLQANBpR8JDQFYb1hq5xIkp0MluIy9bar7tTLDw7Ez6bB+OHgFolinBufx5ufgoWfy2mwJu+JUHLR6sVgjE+UlgElVlF+8qtibAtEVIyRdSy2aPRQmgHiBsCQXHCX9JS0OhvEl+Vju66WLrqoilRLBS7WsLNa37Mnz+fyZMnuwXkn3/+yU033UR8fDwGg4EePXqwcOHCs163adMm+vfvj6+vL507dz6rxaDJZOKBBx6gXbt2GAwGhg0bxs6dO885ltWrVzNmzBgiIiIIDAxk6NChrF+/3mOfd955h759+xIYGOje57vvvqv2eIqiMH78eFQqFWvXrq31PQG47bbbUKlUZy29evVy79O+fftq95k1a5Z7n7vvvptOnTphMBiIiIhg8uTJ5y0czs7O5rbbbiM2NhY/Pz+uvvpqjh49etZ+27ZtY/To0RiNRgIDAxk5ciQWi8W9/Y8//mDMmDEEBwcTFhbGXXfdRWlpqXt7fHw8mZmZPPTQQ3W6N6fT5CIS4N577yU1NRWr1cr27dsZMmSIe9umTZs83pwpKSkoinLWMm/evMYfuKTFoVKJyu2eHWB4H+jXFXy1ohgnu0D08W6NtI+Bp+6AVU/DhKEiUpacLiq7//4MTPkPvL5KmJq3VsHtTXRakSPZNkpEJE0W2HMEfksU/2bmt4D3oj4IYvpBbH/xh1VyEhzW877Mm2hUajpqo+ili8OOk1ynqVHP39IpKytj6dKl3HHHHe51u3fvJjIykhUrVnDgwAEeffRR5s6d6/ZyBjhx4gQTJkxg1KhR7N27lwceeICZM2d6CL6ZM2eyYcMGli9fzv79+xk7dixXXXUV6enpNY7n119/ZcyYMXz77bfs3r2bUaNGMWnSJPbs2ePeJy4ujhdeeIHdu3eza9cuRo8ezeTJkzlw4MBZx1uwYMEFt81cuHAhmZmZ7uXkyZOEhoZy3XXXuffZuXOnxz4bNmwA8NhnwIABfPDBBxw6dIj169ejKApjx47F6XRWe15FUZgyZQrHjx/nq6++Ys+ePbRr146rrroKs9ns3m/btm1cffXVjB07lh07drBz507uvfded//zjIwMrrrqKjp37sz27dv5/vvvOXDgALfddpv7GBqNhujo6FrN4tZEk09nNzZyOltyJnYH5BaJqGROkQioBAcIU+nWSrFZRCQ37YHfD4j+0pWEBMCIS+CKfjCoR+v25fQ25nIoLgWXUpU/GRnSAqa7raVQUNk6US+8JRs5TyTXWcJhewZlio0odRDqGs4vp7Or+OKLL7jnnnvIyck5536zZs3i0KFD/PTTT4Cw1lu3bp27/TDAjTfeSFFREd9//z0Wi4WAgAC++uorJkyY4N5nwIABjB8/nmeffbbWY+zVqxc33HADTzzxRI37hIaG8vLLL3uI4b179zJx4kR27dpFTEwMa9asYcqUKbU+75msXbuWa6+9lhMnTtCuXfWJ4w888ADffPMNR48erVG87tu3j0suuYTk5GQ6dep01vYjR47QrVs3EhMT3VFPl8tFdHQ0zz33HDNnzgTg0ksvZcyYMTzzzDPVnmfx4sU8/vjjZGZmuoXl/v376du3L0ePHqVz587ufefNm8fatWtb5nS2RNLU6LTiy3pQDxjaS3hPlpVDWrbo3d26HrMEQUYRkXz5HtjwGrz0D9FGMdBP2Ch9vQVmvwXjZsPc94T/ZIuYim3mGPXivRgTJmyDDqWK6e7tB8X7say8qUdYA77+ENUX2gwErQ8Up4G9cQcboQnkEp92hKqNZLoKcSjVR3oaA0UBs6tplrp8Xm3evJkBAwacd7/i4mKPhh7btm07y5t53Lhx7iYhDocDp9N5lvWewWBgy5YttR6fy+XCZDLV2EzE6XSycuVKzGYzQ4cOda8vKyvj5ptvZtGiRed1eqktS5cu5aqrrqpRQNpsNlasWMGMGTNqFJBms5kPPviADh061Gg1WNkc5fR7p1ar8fX1dd+7nJwctm/fTmRkJMOGDSMqKorLL7/c495arVZ8fHzcAhLE/Qfq9Ds4Hy3NbEIiaTDUaggPFkuHGDGleCpH2AS15taKel+4IkEsDgf8cRR+2SM8J3OKqqyCtBoY1B0u7wcj+0F4UNOOuyWjUYv3W3CAiAIXlYqCsEpD86iKHt7Nyn9SrYbANqAPgYJjonWiVScsghrJhidQbaC3Lp4jjspWiQHoVY0fKi9TwP9Io58WgNKuYKxlEDg1NZXY2HN3Hdi6dSufffYZ69atc6/LysqqtklISUmJOwo5dOhQnnnmGXr06EFUVBSffvop27Zt84iAnY9XXnmF0tJSrr/+eo/1+/fvZ+jQoZSXl+Pv78+aNWvo2bOne/uDDz7IsGHDmDx5cq3PdS4yMjL47rvv+OSTT2rcZ+3atRQVFXlMF1fy9ttv8+9//xuz2Uy3bt3YsGEDPj7Vt7fq3r07bdu2Ze7cubz33nsYjUZef/11Tp065a4POX78OCAiiK+88gr9+vXj448/5sorryQxMZEuXbowevRoZs+ezcsvv8z999+P2Wx2O96cXmdSX2QkUiKphkAjdGsr8iYHdAOjQXyJZ+ZDua2pR9d0aLUwuAfMuRn+9yJ8+B+4bTy0jxaFStsOwAv/hQn/hpkvwoofhAiXXDi+OjGlHR8JPlrRIef3A7B1v7BqKjI1s2i5jx9E9YY2g8XPxSfBZj7/67yEQS1aJXbURJLvNFHqaq7h26bHYrHU2KgDIDExkcmTJ/Pkk08yduzYOh17+fLlKIpCmzZt8PX15Y033uCmm27yiIydi08++YSnnnqKVatWERkZ6bGtW7du7N27l+3bt/OPf/yD6dOnc/DgQQC+/vprfvrpJxYsWFCn8Z6Ljz76iODg4HNOhy9dupTx48dXK8pvueUW9uzZwy+//ELXrl25/vrrKS+v/n2p0+lYvXo1R44cITQ0FD8/P37++WfGjx/vvncul0hMv/vuu7n99ttJSEjg9ddfp1u3bixbtgwQaQAfffQRr776Kn5+fkRHR9OhQweioqJq/TuoDc3pOVYiaXbofUXxQ2yY8Jk8mSOibw6HMI7292vqETYdKpXoiNOzPdzzV1Fd/MtekUd5IEVUHu87Bm98IarAK6OZXeNbt63ShaJSifebv58Q7CVm0SPdVyeivpX+k4bm4IGqUkFAtPCRLDwOhSfAagJjBKgbPpyvU2noqouuaJWYg93lJERtbPDzVuKnEhHBpsCvDn9b4eHhFBYWVrvt4MGDXHnlldx111089thjHtuio6OrbRISGBjonjLt1KkTv/zyC2azmZKSEmJiYrjhhhvo2LHjece1cuVKZs6cyeeff15tS2MfHx93RHPAgAHs3LmThQsX8t577/HTTz9x7NgxgoODPV4zdepURowYwaZNm857/tNRFIVly5Zx66231hg9TE1N5ccff2T16tXVbg8KCiIoKIguXbpw6aWXEhISwpo1a7jpppuq3X/AgAHs3buX4uJibDYbERERDBkyhIEDBwIQExMD4BF9BejRowdpaWnu/998883cfPPNZGdnYzQaUalUvPbaa7X6HdQWKSIlklqg1UJ0mJhG9GitmC1bK1bSPkYs08eLHua/7hWicneS8KM8liFaL8aEiSnvK/rBJV3E1K2kbmg1Vd2Zym3iASc9T0x3R4eK92pIc+iOo9NDZE8hHvOOQMkpMISJHMoGRq1S00EXiV7twxF7prtVYmOgUtV+SrkpSUhIYMWKFWetP3DgAKNHj2b69OnMnz//rO1Dhw7l22+/9Vi3YcMGj7zESoxGI0ajkcLCQtavX89LL710zjF9+umnzJgxg5UrV3oU5ZwLl8vlziV85JFH3MUnlfTp04fXX3+dSZMm1ep4p/PLL7+QnJzsUbRzJh988AGRkZG1Gm+lo0zleM9FUJDICTp69Ci7du1yF9G0b9+e2NhYkpKSPPY/cuQI48ePP+s4lakHy5YtQ6/XM2bMmPOeu7Y09UeMRNKiOLO1YnahKHiQrRU9iQqB60aJpaSy0nuv8EPMzIeVG8US7F9V6T24p6z0vhD0PqAPFVPapRY4ngkpWeLBpk2E8KRsclN9YwT4BomIZMExsJWAMRLUDf/HEqMJxhctSY4MMp1FuGhOc/9Ny7hx45g7dy6FhYWEhIh+4omJiYwePZpx48Yxe/ZssrKyAGEHExERAcD//d//8dZbb/Hvf/+bGTNm8NNPP7Fq1SqPvMlKO5tu3bqRnJzMnDlz6N69O7fffrt7n7lz55Kens7HH38MiCns6dOns3DhQoYMGeI+t8FgcAuquXPnMn78eNq2bYvJZOKTTz5h06ZNbnuh6Ojoaotp2rZt6zbWrgtLly5lyJAh9O7du9rtLpeLDz74gOnTp6M948P/+PHjfPbZZ4wdO5aIiAhOnTrFCy+8gMFg4JprrnHv1717d55//nn++te/AvD5558TERFB27Zt2b9/P/fffz9TpkxxpxSoVCrmzJnDk08+ySWXXEK/fv346KOPOHz4MF988YX7uG+99RbDhg3D39+fDRs2MGfOHF544YWzorT1QX7dSSQXSOXUYnwk5FSIyZwisS0koJlMKzYDAo2isvuaoVBuhe2HxJT35n2iYOR/v4nF4Cuq469IgMv6tO5UgQtBpRJiMcBPpFsUl4l0Ar1P1XR3eBD4Vj8j1/BofSCimyi0yTta0ToxWPhNNjChGn/6qNpyhExOkn3+F7QS+vTpQ//+/Vm1ahV33303IGx/cnNzWbFihUeUsl27dqSkpADQoUMH1q1bx4MPPsjChQuJi4vj/fffZ9y4ce79i4uLmTt3LqdOnSI0NJSpU6cyf/58dLqqJ8XMzEyP6dfFixfjcDiYNWuWh2H39OnT3X7ROTk5TJs2jczMTIKCgujbty/r16+vc3Stffv23Hbbbef0mC4uLubLL7+s1my9kh9//JG0tDRmzJhx1ja9Xs/mzZtZsGABhYWFREVFMXLkSLZu3eqR55mUlERxcbH7/5mZmcyePZvs7GxiYmKYNm0ajz/+uMexH3jgAcrLy3nwwQcpKCjgkksuYcOGDR62QTt27ODJJ5+ktLSU7t27895773HrrbfW5vbUGukTKZF4icrWium5kJUPVtla8Zw4nLDnaFUeZc5pqVlajShouiIBLr9EVMxLLgyLVXhP2hzCoikmTBTqhAQ0Ye9upx2K0oS3pKMcjI3TOtGq2Eku/JPgyATaRA1u8PO1BNatW8ecOXNITEz0asFFc6asrIywsDC+++47rrjiiqYeTpNTH59IKSIlEi+jKOJLOzNfTHOXloHRT0zdyvy/6lEU4Ym4qcI66MQZDhS9O4op7ysSRKGTpO64XKIzjsks8ndDAiAuQhTjBDRV1NdSBPlHRa6kTyAYghv8lEpRGkT3RRV2ttFza2XBggVMnTq1Ru/Ci41169bx9ttve0y/t0bS0tLo2bMnNpuNnj17ShFZG6SIlDQmZeUiwpaaBYWlwqIlJAB8ZO7fOUnNEjmUv+yBxBOe2zpWVHpf3g+6t5VR3gvB7hAPOmXlYNCLHNboMNGKsdHfmy6nEJF5R4QVkH8UaBpwzr34JET3hVDvVahKJC0Rh8PhTlHw9fW9oIcIKSIlkkZAtla8cHIK4dc/haDcleTZuzs6tKLSOwEu6dw6zeDrS1m5yE11ujxbLQb7N7LjgNUE+cmi243WAIbQhnlCkCJSIvEaUkRKJI2IywUFJZCRBxn5Il8t0ChyJ2VE7fyUmOG3/WLae9sBT+P3IKNnpbe+qQpIWiguF5SUgamswkIoQFR3hwcJs/1GG4QpA/KSwFpRwa318pOWFJESideQIlIiaSJKzKILzsls8eXdmlsrXgjlNthxUEx7b/4Tik9rilJZ6X15P7isbxPm/LVQbHZxPy1WES2PChVT3mFBjdRq0WYWuZJFqaDxBb9w7z1lSREpkXgNKSIlkiam3CqmuNOyIb9YVMyGBMhIWl1wOOHPZBGh3LRH+HdWolHDwG5weUUeZURwU42y5aEoYC4XDzwuFwT5Q5twUS0f7N/A0XNFAVMm5B+BsgIRldR5ISQqRaRE4jWkiJRImgkOh2yt6A0UBQ6nVVV6H8/w3N67gxCUVyRAO1npXWucLiEmSy2iQCwsEGIjxL9+DZnba7cIg/LCE6BSCzGpqkeyphSREonXkCJSImlmKIporZiZLzwnzeWytWJ9SMuuEpT7j3tu6xBTVZjTo53MS60t5TYx3W21VbVajAptwI5NigLmHFHBbc4FvzDwucDWiVJESiReQ4pIiaQZU1pW1VqxqFRMcYcENFJe2kVIXhH88qcQlbsOe1Z6R4VUTXkndJG5qbWhstViSUU+apAR4iJFMU5gQxSLOaxQcAIKj4mTGyNBXcdflBSREonXkCJSImkB2OxVrRXzS0BBRH1ka8ULx1TmWeltsVZtCzTCiL4iQjmkB+jlfT4vDqeITpotoNeJvMnYcDHd7fX7Z84ThTemTGEF5BtQ+9dKESmReA0pIiWSFsSZrRXL7SJvUrZWrB/lNth5qKrSu6i0apveBy7tJayDLusrBKbk3JRbxT20OcR7MyZMRHq92mrRaYfCFJEv6bKBXxRoahGilyJSIvEaUkRKJC2QytaKWQWiEEe2VvQeDifsSxaCctMecY8r0ahFT+/L+4klMqSJBtlCcLmqprsrWy1Wek96zXbJUihyJUvSQR8E+uBz7y9FpETiNaSIlEhaOJWtFdOyocAkWyt6E0WBIyerrIOOnVHp3at9RaV3P2gf0xQjbDk4HFBkhjKLaLUYESwilGGB4FtfOyunQ3S6yT8K9vKK1ok1/AFIESmReA0pIiWSi4TK1oqnckQxjksRYlK2VvQeJ3M8K71P//RsHy1yKGWl9/kpKxf5k3aHKMaJDReiMiSgng4E5cUVrRNPiuptQzWhYikiJRKvIUWkRHKRIVsrNg55xfDrXjHtveuwmAavJDK4Yso7Afp3aSDbm4sAd6tFs8iVDAsU091hgfXwR3U5xdR2/hGwlla0TjytskeKSInEa0gRKZFcxJjKRAFOmmyt2KCUlsFviSJKuTXxjEpvPxheUek9tKes9K4Jd6vFcvAziEKc6NB6tFq0lorp7eI00X/bECaeoqSIlEi8hhSREkkr4MzWimo1hAbK1ooNgdUOOw6JKe/Nfwrj+Ep8dRWV3gmi0jtIVnpXi7lcVHcrihDhseGiiKnOrRZdLijNFIU3liIRlSzLlSJSIvESUkRKJK2IytaK6Xmi6thuF3losrViw+B0VfX0/mWv6EJUiUYNCV1FUc6IS0SRicQTp0tMdZeUiUKx0NOqu+vUatFWVpErmQq2UogbIkWkROIFpIiUSFohiiIiPRl5Fa0VLRBglK0VGxJFgaOnqiq9k9M9t8dFwKDuMLC7sBEKlR9PHljtwtaqvKLVYlSIaLUYFljLnFNFgdIsEZUMbgch7Rt6yBLJRY8UkRJJK8dsqfKbLDQJu5VQ2VqxwTmVI6KTm/ZA4gnPFowAndsIQTmou2jDKKPFAkUR79niMlBcYoq7MjoZVJvpbocNVOraGZNLJJJzIkWkRCIBqlornswRU94uRdgD+RukoGxoSi2w56io8t51WEQsT0etErZBg3rAwG7Qt7PMZwVREV9iFvfPV3ea92SQbAkqkTQGUkRKJBIPXC7RWjG/GLILwGQRfn6+PkJUGvXSKqihKTTB7iTYWSEqT+Z4btdpoW/HikhlD+jZTtoIldvEdLfVLh58YsLEdHeoN1stSiQSD6SIlEgkNeJ0iqKGErOIUhaVispZtUoUNsgoZeOQXVAhKJNg1yFRaX86fr5iyntgRU5ll7jWm9uqKMLaqqRMvE+DjBAXWdVqUT4ASSTeQ4pIiURSayxWEe0pKBHdcU6PUvobhJiRX9INi6JAWo6IUO48JCKWxWbPfQKNYtq7MqeybVTr/L04HCJ30mwR0/8RwVXdceTDj0RSf6SIlEgkF8SZUcpCE5RZZZSysXG5RKV35dT3niPi93A6kcEwoEJQDuwG0a3QTqjyAcjmgH5doIPsdS6R1BspIiUSiVeQUcrmgcMBB1MrIpWHYf8xIZxOJz6yKlLZ2uyETuZA307QMbapRyKRtHykiJRIJF6nMkpZXCoE5elRSqMejDJK2WiU22DfsYrK7yQ4lNK67YSkiJRIvIcUkRKJpMEpKxfT3jJK2fSUlsGeZJFPuSsJks+wE9KohZ1QZZFO304Xl52QFJESifeQIlIikTQq1UUpzeVCvMgoZeNTaKqo+j6fnVAPEals6XZCUkRKJN5DikiJRNKknB6lzC4SlbQyStl0ZOULUVlZqJNb5Ln9dDuhQT3EVHhLshOSIlIi8R5SREokkmaDzKVsXigKpGVXCcrq7ISCjKI4p6XYCUkRKZF4DykiJRJJs6WsXIiWwoooZWmZaHWn9xGCUkYpGxcPO6FDolXjueyEBnUXXWOaE1JESiTeQ4pIiUTSInA4REFOcano4FJs9oxS+htadq5eS6TSTqgyUrnvmEhFOJ34yKoinYHdICSgacZaiRSREon3kCJSIpG0SCqjlAUlog2gjFI2PR52QofhYAq4zviG6RwnxOSgHhV2QobGHaMUkRKJ95AiUiKRtHgcjqruOR5RSjUYfWWUsqkoLRNT3pWRyuR0z+0aNfRoX2V83hh2QlJESiTeQ4pIiURy0XGuKKW/AQwyStkkFJTA7iMin3JX0tl2Qj5a6NOpoj1jA9kJSREpkXgPKSIlEslFzZlRyiKzaNEoo5RNz/nshIx60ee6svLbG3ZCUkRKJN5DikiJRNKqMFuEqDw9Sul0ga9ORimbkjPthHYlCeF/OpV2QoN6CGHZNrLuvyspIiUS7yFFpEQiabVURimLzZBzZpRSD/56GaVsKlwuOHpKCMqdh0VupeVMO6GQqqrvQT0gKuT8x5UiUiLxHlJESiQSSQWVUcr8YjG1WmqRuZTNBbed0KEKO6Hj1dsJDeohROWAGuyEpIiUSLyHFJESiURSDdVFKcsqe3wbZJSyqSm3wb7kqr7f1dkJdYmryqfsV2EnJEWkROI9pIiUSCSS86AonhXfp0cpDb5i6ltGKZuW2toJdYuHm66Cv45skmFKJBcVUkRKJBJJHTk9Sun2pZRRymZFQYno9V2ZU3kqt2rbtKvhg7lNNzaJ5GJBikiJRCKpBzJK2TLIzBeictMemDEBbh3X1COSSFo+UkRKJBKJF3E4hKAsKZNRyuaIzImUSLyH/CiTSCQSL6LVQliQWNpHV0Up84shr1h4U8oopUQiuRiQIlIikUgaCJVKRB+NBogNF5Y0JRVRyqz8CnFZAmoV+PqAXif+1clPZolE0gKQH1USiUTSSOhqiFIWmqC4FMqsUFpS5X+o1YhOOj46ITDlNLhEImlOyI8kiUQiaQLOjFIC2OyiK4vFKnwQTRUV4Bar+NnhFPvpNCJiWSkwtZqmuw6JRNJ6kSJSIpFImgk+FaIwyL9qnaKcJi5tQlyWmEXk0mKFolJwOoUo1WmFsPT1EcfRqJvuWiQSycWPFJESiUTSjFFV5Ev6+kDwaesVRQjKcltV9LLELCKX5nJhN+RSPMWlvkKkqqW4lEgkXkCKSIlEImmBqFSistvg69kj2uXyFJdl5aJlY6kFTBawFgtxWVnM46OriF7qZJW4RCKpG1JESiQSyUWEWg1+erGcjtNZJSzLbSJaWVwqxGWJWUyZuxQxBX76lLiPVopLiURSPVJESiQSSStAo6kq5Dkdh6NCXJ4euSwFswWKy8HmFFPnanXVlLi0IZJIJCBFpEQikbRqtFrw14K/n+d6u8Mz37LUUrMNUeWUuLQhkkhaF/LPXSKRSCT/3969RzV93nEc/4QgBBUEL4SLVAoi4gqFwaDBVqilxdoxWDulXkA9To8H3LyMzVsrHVaxHa64FXVaxbXHmdbJnFUO0FFZD4rlroKKBbG4TnBQCl7aAMmzP6ypEVACJAH5vM7JWfnxJHknZ7Zfk1+edDLM/M7F+r7h8u4nxe8OmPdvQ9Te8f2HeaS651xyGyKiRw+HSCIi6jHtNkT3HHvQNkSqtjv/q1b/cH1uQ0T0aOAQSUREffKgbYhU95xvef82RM03ALWG2xARDVYcIomIyCAkEkBmeefysG2IWm7d2YLo7jZEAne2Ibr7yie3ISIaeDhEEhGRUfV0G6LbKuCbG3deteQ2REQDD4dIIiIaEHq7DZHq+0+KcxsiIuPiHzEiIhrQerMN0a1WoK2LbYg0wvj9RI8qDpFERDQo9WYbIp5XSdR/OEQSEdEj5WHbEFlZmiyN6JHCIZKIiB55925DRET9gztxEREREZHeOEQSERERkd44RBIRERGR3jhEEhEREZHeOEQSERERkd4GxBCZlpYGV1dXyGQyBAUFobCw8IHrDx06hMmTJ0Mmk8Hb2xuZmZlGKiUiIiIiYAAMkR9++CFWr16NxMRElJaW4sknn0R4eDiuX7/e5fpTp05hzpw5WLx4McrKyhAVFYWoqChUVFQYuZyIiIho6JIIIUz6JVBBQUH4yU9+gnfffRcAoNFo4OLigl/96ldYu3Ztp/XR0dG4desWjh07pj321FNPwdfXF7t27Xro/bW2tmLUqFFoaWmBjY1N/z0QIiIioiHEpK9EtrW1oaSkBGFhYdpjZmZmCAsLQ0FBQZfXKSgo0FkPAOHh4d2uJyIiIqL+Z9JvrGlsbIRarYZcLtc5LpfLcfHixS6vU19f3+X6+vr6LterVCqoVCrtz62trX2sJiIiIiKTnxNpaMnJyRg1apT24uLiYuokIiIiokHPpEPk2LFjIZVK0dDQoHO8oaEBDg4OXV7HwcFBr/Xr1q1DS0uL9nL16tX+iSciIiIawkw6RFpYWMDf3x+5ubnaYxqNBrm5uVAoFF1eR6FQ6KwHgE8++aTb9ZaWlrCxsdG5EBEREVHfmPScSABYvXo1FixYgICAAAQGBiI1NRW3bt3CokWLAACxsbFwdnZGcnIyAGDFihUICQnBtm3b8NJLL0GpVKK4uBi7d+825cMgIiIiGlJMPkRGR0fjf//7HzZu3Ij6+nr4+voiKytL++GZuro6mJn98IJpcHAw/va3v+G1117D+vXr4eHhgSNHjuCJJ54w1UMgIiIiGnJMvk+ksXGfSCIiIqK+M/krkcZ2d2bmVj9ERNRX1tbWkEgkps4gMokhN0TeuHEDALjVDxER9Rnf1aKhbMi9na3RaPDf//63X/722NraChcXF1y9enXQ/EtkMDYD7Da2wdg9GJsBdhuTIZr5SiQNZUPulUgzMzOMHz++X29zMG4dNBibAXYb22DsHozNALuNaTA2Ew1Ej/w31hARERFR/+MQSURERER64xDZB5aWlkhMTISlpaWpU3psMDYD7Da2wdg9GJsBdhvTYGwmGsiG3AdriIiIiKjv+EokEREREemNQyQRERER6Y1DJBERERHpjUPkA6SlpcHV1RUymQxBQUEoLCzsdm1lZSVeeeUVuLq6QiKRIDU11Xih99Gne8+ePXjmmWdgZ2cHOzs7hIWFPXC9IenTnZGRgYCAANja2mLEiBHw9fXFBx98YMTaH+jTfS+lUgmJRIKoqCjDBnZBn+b9+/dDIpHoXGQymRFrf6Dvc/3NN98gPj4ejo6OsLS0xKRJk5CZmWmk2h/o0x0aGtrp+ZZIJHjppZeMWHyHvs93amoqPD09YWVlBRcXF6xatQrfffedkWrv0Ke5vb0dSUlJcHd3h0wmw5NPPomsrCwj1hINcoK6pFQqhYWFhdi3b5+orKwUS5YsEba2tqKhoaHL9YWFhSIhIUEcPHhQODg4iHfeece4wd/Tt3vu3LkiLS1NlJWViQsXLoiFCxeKUaNGif/85z8DuvvEiRMiIyNDnD9/XlRXV4vU1FQhlUpFVlbWgO6+q7a2Vjg7O4tnnnlGREZGGif2e/o2p6enCxsbG3Ht2jXtpb6+3qjNQujfrVKpREBAgJg5c6bIz88XtbW1Ii8vT5SXlw/o7qamJp3nuqKiQkilUpGenj6guw8cOCAsLS3FgQMHRG1trcjOzhaOjo5i1apVA7b5d7/7nXBychLHjx8XNTU1YseOHUImk4nS0lKjNRMNZhwiuxEYGCji4+O1P6vVauHk5CSSk5Mfet0JEyaYbIjsS7cQQnR0dAhra2vx17/+1VCJXeprtxBC+Pn5iddee80Qed3qTXdHR4cIDg4W7733nliwYIHRh0h9m9PT08WoUaOMVNc9fbt37twp3NzcRFtbm7ESu9TX/2+/8847wtraWty8edNQiV3Stzs+Pl5Mnz5d59jq1avF1KlTDdp5L32bHR0dxbvvvqtz7OWXXxbz5s0zaCfRo4JvZ3ehra0NJSUlCAsL0x4zMzNDWFgYCgoKTFj2YP3Rffv2bbS3t2P06NGGyuykr91CCOTm5qKqqgrTpk0zZKqO3nYnJSXB3t4eixcvNkamjt4237x5ExMmTICLiwsiIyNRWVlpjFyt3nQfPXoUCoUC8fHxkMvleOKJJ7Blyxao1WpjZffLn8m9e/fi1VdfxYgRIwyV2UlvuoODg1FSUqJ9+/jy5cvIzMzEzJkzB2yzSqXqdGqGlZUV8vPzDdpK9KgYct+d3RONjY1Qq9WQy+U6x+VyOS5evGiiqofrj+41a9bAyclJ51/Ehtbb7paWFjg7O0OlUkEqlWLHjh14/vnnDZ2r1Zvu/Px87N27F+Xl5UYo7Kw3zZ6enti3bx98fHzQ0tKClJQUBAcHo7Kyst+/h747vem+fPkyPv30U8ybNw+ZmZmorq5GXFwc2tvbkZiYaIzsPv+ZLCwsREVFBfbu3WuoxC71pnvu3LlobGzE008/DSEEOjo6sGzZMqxfv94Yyb1qDg8Pxx//+EdMmzYN7u7uyM3NRUZGhlH/okE0mPGVSNLaunUrlEol/vGPf5jsgxP6sLa2Rnl5OYqKirB582asXr0aeXl5ps7q1o0bNxATE4M9e/Zg7Nixps7pMYVCgdjYWPj6+iIkJAQZGRkYN24c/vKXv5g67YE0Gg3s7e2xe/du+Pv7Izo6Ghs2bMCuXbtMndZje/fuhbe3NwIDA02d8lB5eXnYsmULduzYgdLSUmRkZOD48ePYtGmTqdO6tX37dnh4eGDy5MmwsLDA8uXLsWjRIpiZ8T+NRD3BVyK7MHbsWEilUjQ0NOgcb2hogIODg4mqHq4v3SkpKdi6dSv+9a9/wcfHx5CZnfS228zMDBMnTgQA+Pr64sKFC0hOTkZoaKghc7X07a6pqcGVK1cQERGhPabRaAAA5ubmqKqqgru7+4Bq7sqwYcPg5+eH6upqQyR2qTfdjo6OGDZsGKRSqfaYl5cX6uvr0dbWBgsLC4M2A317vm/dugWlUomkpCRDJnapN92vv/46YmJi8Mtf/hIA4O3tjVu3bmHp0qXYsGGDwQez3jSPGzcOR44cwXfffYempiY4OTlh7dq1cHNzM2gr0aOCf93qgoWFBfz9/ZGbm6s9ptFokJubC4VCYcKyB+tt99tvv41NmzYhKysLAQEBxkjV0V/Pt0ajgUqlMkRil/Ttnjx5Ms6dO4fy8nLt5Wc/+xmeffZZlJeXw8XFZcA1d0WtVuPcuXNwdHQ0VGYnvemeOnUqqqurtYM6AFy6dAmOjo5GGSCBvj3fhw4dgkqlwvz58w2d2Ulvum/fvt1pULw7wAsjfLtuX55rmUwGZ2dndHR04PDhw4iMjDR0LtGjwcQf7BmwlEqlsLS0FPv37xfnz58XS5cuFba2ttqtTWJiYsTatWu161UqlSgrKxNlZWXC0dFRJCQkiLKyMvHFF18M6O6tW7cKCwsL8fe//11nW5EbN24M6O4tW7aInJwcUVNTI86fPy9SUlKEubm52LNnz4Duvp8pPp2tb/Pvf/97kZ2dLWpqakRJSYl49dVXhUwmE5WVlQO6u66uTlhbW4vly5eLqqoqcezYMWFvby/efPPNAd1919NPPy2io6ON2novfbsTExOFtbW1OHjwoLh8+bLIyckR7u7uYvbs2QO2+fTp0+Lw4cOipqZGfPbZZ2L69Oni8ccfF83NzUZrJhrMOEQ+wJ///Gfx2GOPCQsLCxEYGChOnz6t/V1ISIhYsGCB9ufa2loBoNMlJCRkQHdPmDChy+7ExMQB3b1hwwYxceJEIZPJhJ2dnVAoFEKpVBq9WQj9uu9niiFSCP2aV65cqV0rl8vFzJkzTbaPnr7P9alTp0RQUJCwtLQUbm5uYvPmzaKjo8PI1fp3X7x4UQAQOTk5Ri7VpU93e3u7eOONN4S7u7uQyWTCxcVFxMXFGX0g06c5Ly9PeHl5CUtLSzFmzBgRExMjvvrqK6P2Eg1mEiGM8D4DERERET1SeE4kEREREemNQyQRERER6Y1DJBERERHpjUMkEREREemNQyQRERER6Y1DJBERERHpjUMkEREREemNQyQRERER6Y1DJBGZRGhoKFauXNnva4mIyDj4jTVEfRAaGgpfX1+kpqaaOgXAwOt5kK+//hrDhg2DtbV1v64lIiLjMDd1ANFQ19bWBgsLC1Nn9JharYZEIoGZWd/eyBg9erRB1hIRkXHw7WyiXlq4cCH+/e9/Y/v27ZBIJJBIJKipqcHixYvx+OOPw8rKCp6enti+fXun60VFRWHz5s1wcnKCp6cnAODUqVPw9fWFTCZDQEAAjhw5AolEgvLycu11Kyoq8OKLL2LkyJGQy+WIiYlBY2Njtz1Xrlx54GPIy8uDRCLB8ePH4ePjA5lMhqeeegoVFRXaNfv374etrS2OHj2KKVOmwNLSEnV1dVCpVEhISICzszNGjBiBoKAg5OXl6dz+yZMnERoaiuHDh8POzg7h4eFobm4G0Pkt6h07dsDDwwMymQxyuRy/+MUvtL+7f21zczNiY2NhZ2eH4cOH48UXX8QXX3zRqTk7OxteXl4YOXIkZsyYgWvXrj3w+SAiop7jEEnUS9u3b4dCocCSJUtw7do1XLt2DePHj8f48eNx6NAhnD9/Hhs3bsT69evx0Ucf6Vw3NzcXVVVV+OSTT3Ds2DG0trYiIiIC3t7eKC0txaZNm7BmzRqd63zzzTeYPn06/Pz8UFxcjKysLDQ0NGD27Nnd9ri4uPTosfz2t7/Ftm3bUFRUhHHjxiEiIgLt7e3a39++fRtvvfUW3nvvPVRWVsLe3h7Lly9HQUEBlEolzp49i1mzZmHGjBnaYa68vBzPPfccpkyZgoKCAuTn5yMiIgJqtbrT/RcXF+PXv/41kpKSUFVVhaysLEybNq3b3oULF6K4uBhHjx5FQUEBhBCYOXNmp+aUlBR88MEH+Oyzz1BXV4eEhIQePR9ERNQDgoh6LSQkRKxYseKBa+Lj48Urr7yi/XnBggVCLpcLlUqlPbZz504xZswY8e2332qP7dmzRwAQZWVlQgghNm3aJF544QWd27569aoAIKqqqnrcc68TJ04IAEKpVGqPNTU1CSsrK/Hhhx8KIYRIT08XAER5ebl2zZdffimkUqn46quvdG7vueeeE+vWrRNCCDFnzhwxderUbu/73tbDhw8LGxsb0dra+tC1ly5dEgDEyZMntb9vbGwUVlZW4qOPPtJprq6u1q5JS0sTcrn8YU8JERH1EM+JJOpnaWlp2LdvH+rq6vDtt9+ira0Nvr6+Omu8vb11zoOsqqrSvp18V2BgoM51zpw5gxMnTmDkyJGd7rOmpgaTJk3qdbNCodD+8+jRo+Hp6YkLFy5oj1lYWMDHx0f787lz56BWqzvdp0qlwpgxYwDceSVy1qxZPbr/559/HhMmTICbmxtmzJiBGTNm4Oc//zmGDx/eae2FCxdgbm6OoKAg7bExY8Z0ah4+fDjc3d21Pzs6OuL69es96iEioofjEEnUj5RKJRISErBt2zYoFApYW1vjD3/4Az7//HOddSNGjND7tm/evImIiAi89dZbnX7n6OjY6+aesLKygkQi0WmRSqUoKSmBVCrVWXt3yLWysurx7VtbW6O0tBR5eXnIycnBxo0b8cYbb6CoqAi2tra9ah42bJjOzxKJBIKbURAR9RueE0nUBxYWFjrn+J08eRLBwcGIi4uDn58fJk6ciJqamofejqenJ86dOweVSqU9VlRUpLPmxz/+MSorK+Hq6oqJEyfqXO4Opff39NTp06e1/9zc3IxLly7By8ur2/V+fn5Qq9W4fv16pxYHBwcAgI+PD3Jzc3vcYG5ujrCwMLz99ts4e/Ysrly5gk8//bTTOi8vL3R0dOgM5k1NTaiqqsKUKVN6fH9ERNQ3HCKJ+sDV1RWff/45rly5gsbGRnh4eKC4uBjZ2dm4dOkSXn/99U7DYFfmzp0LjUaDpUuX4sKFC8jOzkZKSgoAaF8BjI+Px9dff405c+agqKgINTU1yM7OxqJFi7SD4/09Go2mR48jKSkJubm5qKiowMKFCzF27FhERUV1u37SpEmYN28eYmNjkZGRgdraWhQWFiI5ORnHjx8HAKxbtw5FRUWIi4vD2bNncfHiRezcuVP7afJ7HTt2DH/6059QXl6OL7/8Eu+//z40Go32k+v38vDwQGRkJJYsWYL8/HycOXMG8+fPh7OzMyIjI3v0eImIqO84RBL1QUJCAqRSKaZMmYJx48YhPDwcL7/8MqKjoxEUFISmpibExcU99HZsbGzw8ccfo7y8HL6+vtiwYQM2btwIANrzJJ2cnHDy5Emo1Wq88MIL8Pb2xsqVK2Fra6vds/H+nrq6uh49jq1bt2LFihXw9/dHfX09Pv7444fuXZmeno7Y2Fj85je/gaenJ6KiolBUVITHHnsMwJ1BMycnB2fOnEFgYCAUCgX++c9/wty881k0tra2yMjIwPTp0+Hl5YVdu3bh4MGD+NGPftTtffv7++OnP/0pFAoFhBDIzMzs9BY2EREZDr+xhmiAOnDgABYtWoSWlha9zi/UR15eHp599lk0Nzf3+txDIiIamvjBGqIB4v3334ebmxucnZ1x5swZrFmzBrNnzzbYAElERNQXfDubaICor6/H/Pnz4eXlhVWrVmHWrFnYvXt3n25z2bJlGDlyZJeXZcuW9VM5ERENRXw7m+gRdv36dbS2tnb5OxsbG9jb2xu5iIiIHhUcIomIiIhIb3w7m4iIiIj0xiGSiIiIiPTGIZKIiIiI9MYhkoiIiIj0xiGSiIiIiPTGIZKIiIiI9MYhkoiIiIj0xiGSiIiIiPT2f8/0u1oR73RBAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "sns.relplot(\n", " data=recall_at_precision,\n", @@ -3441,7 +1117,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "id": "76d64549", "metadata": { "ExecuteTime": { @@ -3449,18 +1125,7 @@ "start_time": "2023-06-22T09:38:51.906527Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAHuCAYAAABK9tJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xcZ3m2r9Onz/aiVW+We5VsbGMDwRiMCaYTCDjUD0ILTjCY3oJJKHFoIQRMqKEnJhgMxIBx77bcZHVptb1NL6e87/fHmV3tStu02pVW0nv5t7+ZnTnnzDnr3Zlbz3O/96NJKSUKhUKhUCgUigVDP9onoFAoFAqFQnG8owSXQqFQKBQKxQKjBJdCoVAoFArFAqMEl0KhUCgUCsUCowSXQqFQKBQKxQKjBJdCoVAoFArFAqMEl0KhUCgUCsUCc8IJLikluVwOFT+mUCgUCoXiSHHCCa58Pk86nSafzx/tU1EoFAqFQnGCcMIJLoVCoVAoFIojjRJcCoVCoVAoFAuMElwKhUKhUCgUC4wSXAqFQqFQKBQLjBJcCoVCoVAoFAuMElwKhUKhUCgUC4wSXAqFQqFQKBQLjBJcCoVCoVAoFAuMElwKhUKhUCgUC4wSXAqFQqFQKBQLjBJcCoVCoVAoFAuMElwKhUKhUCgUC4wSXAqFQqFQKBQLjBJcCoVCoVAoFAuMElwKhUKhUCgUC4wSXAqFQqFQKBQLjBJcCoVCoVAoFAuMElwKhUKhUCgUC4x5tE9AoVAoFIojQRCAkOFtIPbfF7L2fSAJggDH1mmsU/UIxfyiBJdCoVAoFiXjBdKYKBLhbSiQBIEfIIRA+AFCCoQX4HoCEQR4o7d+uB1CIEQAgY8MvPBWeMjAB+mhyQAR+NS1NNJ48TlH+/IVxxlKcCkUCoViXhgTQ5MIpNHqURCEIkgEofgRvsD3AvxA4Lnh454f3koRIPwApIcMPDTfRwofhBfeImq3AVIGCAIkAWg+GgJ0gdQkUpOgCdBBIpGGxNdAmuGtMARCAx9JqVwm7bdxJkpwKeYXJbgUCoXiBGVMDIlZVI+EIKgJpcAPq0e+Fwoo3w8I/FAgySAURML30WrCSBMeQgRo1LbBR0qBxEcQoGkBIJD6qDCSoTDSa2JJh0DXEJbA10HoEqFJfCRCA6lBoGlIQGgaAonQNCSSUGJpaLVrloBW+15DQ0dHw6jdahTdEhHco/W/RHEcowSXQqFQHCNMJZCEkAR+rXpUqxoJUasiBQG+t7+KFIze+gFSCGTgjokkGfgQeCAChAzQpAThI3WBED6SUCyhCdAEUgNtrIoUfi81AbqO0CWBAYEuCHSQmsTTQCAQmo7QJFLTQ3GEjtQkAoGsXasGE+5r4/4bFUf7bzWsg57bv/2hUJbZefw/plDsRwkuhUKhWARICRUXKpWASrlKtVShWKjguz6+P1ptCsBzkTKAwEUGAQg3FE4iACnQpEAQttmEDBCaj67VpIwuQZNIXQASqYfVIWFoSE0S2BBoAqFr4a0W3k6sHoGAmkCStfrRgQQAB4mf8TLJnPD4xO0UiuMRJbgUCoXiCBIENWFVdqmWKlTLFfK5CuVCCVnJIapFAr9KQBF0D6mHrTZJ6EESmgYGSF3DN0PvUaCH7Tcf8DWJHBVGGmO3AEFNIoXfamP3wzbbeIFErc2moWGiTyGSlEBSKGaPElwKhUKxAPg+VKqSSqlCpRwKq0K+QrWQR5RzCLeCDCr4sow0fIQV4Nk6lZSgYgpcTeJpkgBxUHttVCBN1V7T0TGmqSIpJiEQaEGAUXHRNP9on43iOEQJLoVCoTgMPB/KZX+sWlUuVijkyvjFHEE1j3CrSFFFaFV8wyewJYGlUYkJyobA08DV/DH3komBhYmNSRwTQ+VTzx4h0GrGNq0moDQR3mf8934Ano/ueWh+gO75Y/uKwhBmYxEuO9oXozjeUIJLoVAoZkBKcF1JpexSGSesirkifilsAwrPRYgKQvcIzIDA0vAjGpVkUBNWEhcfxoSViYWBjUmCGLoSViEyzJMIhVKAVgvi0kZFVO1xAoE2Kpo8H90PwK8JKlFLNa2JLU1KGFu1GFYGpa4jdQ0MvXZfR5ommhTovqpwKeYfJbgUCoWihpTjTOvlCm65QjFfoZTLE5SyCK+K8FykDKtVwhQEtk4Qh5IVUNYFnhbgMfqBrWFhYGISwSB5IgmrA8XR+O9HhVBNNGm+XxNPtftCjlWqRitPmgy9achR35kGugajYmn0vmEgbAv0UFSh66DNvo0qcsbC/UwUJzRKcCkUihMOKaFc8qgUy+OEVYlKLktQKeJ7LgRVpPTDNqCl4dsafhTKlqCs+fiEwkpCzVAetgJjRDAxjw+vlJRTCyb/AEHlemOCSfcCEKPtPLm/1SckmgSQoNVEk8aYaKImnKShIw0LGdEnCieF4hhGCS6FQnFC4HqQy5QoZrKM9A/iZfoJ3AoEHj4BgRUQWAaBA24SKoZPRfPx8PFrq/tGhZWNRQwLC/PYWKU3nZ9ptIrkBzU/U9iiCytPQa3aFOxv0QmBJiSydtmaJGzXjRNG0girStI0EfZ+IXWo1SaF4nhCCS6FQnFcEgSQL0ry2QLZwQzFwX5EcQjpF/Fsj2rMwEtrlDWfqubhElatgFqQpolV81eZGEdfWB0ojsT+qtMEj1MQoLnhGBzd9cPvAxFmdPlif9VqtNKEtr9dp9U8TVpYZRoVT9IywltNH2vjHW8IIfBcSbmkjf0eKBTziRJcCoXiuEBKKJYhVwjIDefIDmbws71QyWBqJfyopNSgMWL4FLUKPj4GxlgrMLlYhBWgeT5mroCRyWNUquEqupqBPBRPNdE02qLTgFFLuKaBVqsy6dqYIRzDQtj7TeLHk2iSQuL5Eq8a4LsBgecjPQ/pu+h+FUNUMYIylqzgyBIRikS1AjGtQELPkzTypIwsetjv5MHBjcAnj+5FKY47lOBSKBTHLFUXciXIZj2GB7JUsiOQ78YWeSyzQhDVKKQ1hnWXElUEAhuLJDGsxfb25weY+SJmJo89lMEoVcJKk2XOmyF8seL7Eq8S4HkBgeshPB/pe+h+FT2oYIgqlihjyxIRSkS1AlGtSELPkdRDsWTpU6wsnMX/5gDIWCZZy2DAjLDb0jh3Xq9QoVCCS6FQHEP4PuTLkCvC4FCFwnCGoDiEVe0jToGU5VJO64xYMKxXqeAikURwqCOBwSJbgSYERqGEmS1gD4xgFEsgQcQiuE11x0QVSgSCqivxqwH+OLGk+VX0wMUIKliyhC3LY9WlmFYgrudJ6HlSRo6oUZn84EbtaxZIIGuYdOn19BhJ+qwkQ1aUYcsm61jkbIO8rVO0oegIyragZPuULJ+KNVGsrc3X88rD+qkoFAejBJdCoVi0SAmFmsAazkpGRoq4uQxaeZCEGKBRLxI4HoU6ky5TkNGqVKmgYRDFpoHU4othkBKjWMbMFbAGRjAKJXQ/IIg6ePVpMI+cKBz1LXnVAN8LEK6H8Dy0IGzF6aKCJSpYo2JJKxKjQEwvkNRzJI0cCaM4+cH12pc1+/PJ+UkGSNNrpOi34gzZUUYsJxRMjkHB1ik6kpIjKdmCsu1Ttn1KlkfJ9BCanOSobu1rZpzAIOYZJD179ietUMwSJbgUCsWiolwNBVauCH3DgnIuT1DKEPN7SJIhYpSoRiU5y6Tb8MhrFap4GOjEiJCgflFGMuilSiiyhjKYuSJ61UVEHIJUAt869LdiKSS+J3Bdge/6BK6P9P2ab6lS8y1VsOVoK65IVCsS1/Ik9AIJI0fKyI35liagcUhCCaAYxMgHKQoiSU4mGTDjDDlRMrZDxjEpOCYFR6PoQNmRlJyAsh1Qtj3Ktk/RdCkZLp4uxh119mJpFFPoxAOLeGATC2wSE27Dx0e/JjwmbEypk+/bi5OsP7SLVyhmgRJcCoXiqOL5kC+FAmsgA9mcT7WQxfZGSMle6vUsll6lEA19NkNGQIESLn4t98ohRXxRmN0PRKu6NZGVxRrJobsewrYI4lH8+tRB20shKRY8qtkiRmmYiD+CI0s4Nd/SaCsupedImVlMbYrVdIf4zl4VNrkgRSFIUZBJSjJBWcYYsWJkIzY52yLv6BSiOmUHSo6kHAko2z4Vx6dieRRNj5LhUjBcKoYPeLWvQ0eTTBBJo6Jpv1iaKJzGP2bLxbHwQaE4ECW4FArFEadQgkwBhnMwmIVyqYpWyRBnmCbZS0zLIwyPvKnTY+oMGx5FKvgEtRmDUeoPtQRzhNBcDzNfxBrJYg3n0MoVMM0JIksIQTFTxc0VMMvDJL0e2vS9rLK3kTQK4YHs2tcMBFInF6TJBSmKYlQsxalocapEKVkOOceiEDEoRaAUgXJEUokEVByfqlNryRkuRcOjaLi1rzxSyx/WzyISmOPE0tQiafxXLLCICmtRVikVisNBCS6FQnFE8H0YykHPEPSNQLVYIiIypLUB2uUAllbElQF526DPpLaysIJAEsFenCsLR/EDzHwBcySPPZTFKJWRuo4XcchZCbx8HnOgl7TfQ7u+h1X2dmJGOdz3AGHlCZPd7mq6glXk9BY8PYZrWhQjBuWoRjkqKUck1UhANeJTsUP/0n6hNPqVo2QMHtCiO3QsoU8qlKZq140+FgsszMXmn1MojiKL9N1LoVAcL4y2Cvf1Qzbn4viDNOk9JBlEFyWqmmTEMsiYMKKVKdc8O1Fs6kkuvpWFowQCsxDGOGj9I5T6i5QqZUyZI00vS/TdrHJ24Og1D5JT+6pRFTa7qmvoFivJGEvwIk2Iuhh97UV2JIfYFhui2+miONaimzu61KYUSTO162y5SH/+CsUxhhJcCoVi3vH8sFXYMxga30VxhDp9gHV0YYkcFaDfMhiyJTmtRBUXDY0YERoX48rCGn7Zw93ZB909xHLdJIIulph7WensDHOgYgfvUwqi7HTX0StWkDXb8aKNOKkE8ZRN3nbZFh9ka2yQbbHH2BMdIZh0pV1ILLAOMn7P5GmKBzYRcYyMIFIojmOU4FIoFPOClOOqWQNQyBaI+EO0a13EtSG0IMC34nQ7cfZpgxQpY2AQI0KS2KISBF7Zo7JvBK2/j1huH42V3SzTdrDc3o2h1Vp0B4irfJBgl7uOXrGcvNWOH23ATiWIpyx0XUciKdp5tsYH2RbbybbYEH1O4aDXrveirC82sa7UyMpyPakgQjywiAYWxiIVogqFYmaU4FIoFIeF64XVrO5BGBzyEKUhGvRe2ujDlEWkHiOwmigYAd0M0s8wNhbN1B91keUWXKr7htAG+4jnumhyd7Nc285ye8/EDSP772b8Ona5a+lnOXmzFRFrxE7HiScsNF1DB9KApwXsjozUBNYQ22KDFMyJEQeahI5qekxgrS810egtLvGpUCjmByW4FArFISMlZAuh+b17QFLMZIgHA3To+4hqeZAagV2HZzYRENDPCF0MUMGlnuRRM7+7riT/aCfLuv/EKdxPh921/0mNCR6rAa+JPdU1DMilFOxWZKKRSF2caMxE0zUMoG7csQuGy/bYaHtwiF3R4YMM67YwWF1uYF1NYK0tNRIXKmRToTgRUIJLoVDMmqq7v5o1NFSC0hANdNGhD6FrLsJM4VntoIVG6xxFuuhnkCxxorRw5AMlPV+n84kSLbvu4FncRIfTNWFVYK/Xxh5/LQMspUwDuh4jlrBx2uKIiIOlaQedtUTSbxfZNk5gdUdyB712yndYV2xifSkUWCsq9ZhStQWPBlKCAIQAIcPva3PAEYEE18UsVXD6hoimD2+RgkIxGUpwKRSKaZEyzMzqG4buPp9ybphU0MNSvY+IVkQaEQKrnsDYXx7y8OllkB6G8BE0kT6iqw39QGPr0xGiTz/IRf4veXnivrHq1bDfwD3GC8i2nEE8ZpMoFzCKFZKaRiwWQUQd0HXG16Z8BHujmQkCK2sdPP+vvZqcILBa3YRqDy4gQtbEk4BAAlUPvVDGKJbRi2WMcgWzVMYslrHKZaxSBbNcxiqVMUslzFL4vFGqoAX7/49X1nfAPx6961IcnyjBpVAoJqVSDatZXf2SzHAOrTRAk9bFMi0Dhoaw0nhmA2j7BYVEkiHPPgbIkCdFnLrxfboFJAg0nthZR+WJ3ZxbvJn31v0vkUgVAF8aPCQvobflGTjNrUSGC8SLOShJRDSCd8Cg6LLusb3mu9oaG2RHbBhXn5jqbgiNVZWGMf/V2lITqeDIXOvxipQgPR+tUEYvVjCKZbSagDKKFYxSORRQpXJNOFX2f18qo/tTJO/P9vUNHRFzIJWYpytSKPajBJdCoRhDCBjJh9Ws3v4K1ewgSdHNMn0Q26gizAS+1Qb6wW8dVVy6GaSPYQCaqVvweIdAwFO7m9j7WIlThn/Pm+p/yBKnZ6yatUucxK6GSxBta9AzgnSxhLan76BB0UNWaUL1qjOSQR5QmIr7FmtL+6tXq8oNKqNqKvwAo1Y50gthtUkvhveN0lQCqoJZLGN4cxsHNIrUNWQ8gkxEkYkoIhlHJmPIZLx2P45MJpCpBCKVQCaTyHR4n2iEwmAPTiLNinn6USgUoyjBpVAoKFXCFPh9vQG5oWHMSj8NWg9JI4+07NAAb0Qm3VcgGCbHPvopUCZNHGc2M2nmiBDw9N4GHt2cYGnv7bwifT2bUvdDW/h8VtazNXEpldZT8MoJ9GIZc28OEXHw65JI02TAKrI5uWtMYA3ZpYNep9mN19qDjawrNbGkmjqxxs0IgVGq1MTRqFCqhOKpVMYolMOB3LX2XSicaiKqemgDpw9EaiBjTk00RRCJGDIRC4VTKjFOOMUniCaZTCLjMTBn99EmpEBIiUCE90UFT7hHqCarONFQgkuhOEHxfRjOQ98Q9A8U8XP9pP19LDdHME2JsNN45rIJLcMDKVGhiwH6GcHGpJm6BfEsSQnb99Vz1+ZWIruf4qXJr/Dexl/iLAs/2H1psj26iULTGeSCDvSii97ro0c8gnQC3zSRSJ6ODfLbpq08nOyeUMHSpcbySt1Ye3BdqYl6Pzrv13HEEQK9XB0TS0bNzzReQBmlmt9pXNXJKJYxK9XDf/mojYhHaqIpConImHAKhVIcmUogE3FEKhneT8WRySQYJmg66LOrIgoZEEiJRBAEFQSCAIGUgkBKBAFShqGymqYhpERHQ9cMDE1D13Q0dGJ6jIQRP+xrVygORAkuheIEYjTOYTALXQOQzXlE3S5axHbiWg4RSxBYrfiTtAzHExAwQIZ9DFCmQgOpeY96kBJ2dqe5c/NShreOcGX0p3yt9fu0re4b26bHXMtQ0zkMsx5R0tCHA/RIQJBK4Fvh+fia4N70Hn7buJU90czYvhuKzZxcaGFdqZE15UYiYpG+HUqJXqmGYqg4riVXqmAUS/urUJNUo4xyBU1OnVw/G4RjIeIRgriDjEcRichYy45UDJmKQypRE0sJRDKBTCWRyRiY9jjRZIQ+uWkEPIRVJ4kkkAIhfUTg1oSTJKiJpkAGSA00qRE6B8HUDDRNw8BA1zR0dCKahalb2JqFqRmYmomhGRiajqHp6OHWGJqBrumYmg7VLFpECS7F/LNI32EUCsV8Mtoy7B4Ib6uuoNHoZ43cjkM/wknjWctn/DCE/VEPQ2SJEaGVhnk7Tylhb1+KOzd38OQTEZ5t/i8fbH0f565/aGybglZHX8N5DOqnUHbr0HM+wjEJUhF8y9p/nkaVPzbs4NaGHWMrCm1hcFFmBZcNraOjmpq3855XgoDk49up//ODxLfvDVfQicMbQB3YJkEsgog5iFgEkRgnnmpeJ5mMhWbxdAItnUCmU8hkAmwrFE2aEX7po/f1CQsNJkNIQSBFWHWSHlIIAuRYNWq06iQJf/WkZELVSdN0dHRMDCzdwtJNTM3AqgkoXQslk6FpoXiqCSkDMxRd2qF7CA/vJ61QTI0SXArFcYrnw3AuNMD3jUChDI4NDXaGlNyFVeoEzcSLLR3LzZr2ePj0MUw3A/gIGucx6mFff5I7N3dw72MtnO7fydVtH+SF63+FrYcGah+T/tQZ9Nunk/WWQVkgbYsgEcW3rYnHcrL8tnEbd9ftGQserfMiPHdoLc8eWU1ika4ktAZGqL/jIerveBg7c3CmlzAN/FiEIOYQRMNbkYjUvE61Vl0igkjFIBFDpmJo6SSkU+jRKLpZqzSNCqfRypOmH9S6O7AmJms+p7DqJBD4CBkg/HFVp1oVarxkNzQD0MZVlHQczcDUo5iaia2ZE6pOYwJqXNUp3FctTlAc+xx1wfXVr36Vz33uc/T29nLmmWfy5S9/mU2bNk25/Q033MC//du/sXfvXpqamnj5y1/O9ddfTyQyuaFXoTiRGG0ZDmSgazC8r+mQjsHyhjJOaQ9OdjeaqOI7zUhjZvERRj0U6KKfEfIkiVHH4f+99QzGufOxDu7cvJR0fjdXt36DG1b/gBZ7YGybkcgK+qNnMRisJ/BNhG4TJKLIA0SWQPJYopffNm3liUT/2OOrSvVcPrSejdmlmItsDqGQIKo+iYe30Hz7A6S37mR0brWXiJK74BTKF52CaExDKo4Wi6IbFrplYRgGumGg6fsrTpqmo+kG+gytu4lVJ4nEC6tN/n4PVNjWO7DqpNeqRgajzThbN7B0E1uzsLAwdQMNDXNUQI1WndBrVSt9TlUnheJ44KgKrh//+Mdcc801fP3rX+f888/nhhtu4PLLL+fpp5+mpaXloO1/+MMf8oEPfIAbb7yRCy+8kK1bt/I3f/M3aJrGF7/4xaNwBQrF4uDAlqHrQyIKbY1gaj5WuRtnaDuGmyGwGxGR5lkdN4x6GKKPIeDwox6khDsf6+B/bltHbsDnr5p/yM+X/CdnJx4Z26ZipuiNncWAPIVyUI8QYSVLOgevfKxqPnfU7+Z3jdvorQ2C1iScl1vK5YPrWFtuXBTBo4EEPwDflwjPJ9rbS9s9D9F0/5NYxfLYduXTV1N+/oUEzzwbPR4naligmZO27karSoGsGcORCDyEdAmCqatOo+bw8VUnSzOwtUjN7xRWncZXl0arTuMf09HRZtGCVigUIZqUh+moPAzOP/98Nm7cyFe+8hUAhBAsW7aMd73rXXzgAx84aPt3vvOdPPXUU9x6661jj/393/899957L3fcccesXjOXy5FOp8lms6RSi9TDoVDMgslahhEb0glwLEBKzOogdn4HVrkXYcYI7IZZ+bQmRj2USJEgcphRD9s66/j2zWcQG9rNh5d/iisabsbSwxEqgWYyGD2Ffu1UMsEyAidCEJ9cZEGYm/V/Ddv5U8NOSkbYdowFFpcOr+K5w2tp8o6e6dkXo+JKIH0fTXoY0sXyXZo2b6PxnieIbd8/wzFoTFN9wcVUX/gsxNK2scc94VOWFQIZ1OIL9ledqJnFw7bb/qqTjoapmROqToZe80GpqtOsEEPDaIk49oUXHO1TURxnHLUKl+u6PPjgg1x33XVjj+m6znOf+1zuvvvuSfe58MIL+f73v899993Hpk2b2LlzJ7/+9a953eteN+XrVKtVqtX9y5tzuYO9EQrFscLomJ3BzMEtw2Ut+7WU7uWxCzuxi50AeNH2ScNKJ6NEhW4G6WcYC5Nm6g+rSjSci/D9W07l/kcb+MTKj/Lus/8VQwu9VVl7GX3G6QyyHs9KhcbuyNRtzu3RIX7XuI370/sQtf5bazXBZUPruDizgqiwptx3vpEyFFeBAN8LEIGHLj1MPEwNojY4SYtYzzDp2x8ndvuj6KXQvC8NHe8ZZ1G58ll4558xFsAayICSqFAOKpiaQdyIEjVS2GM+J2NC1UlHm/CYqjopFIuXoya4BgcHCYKA1tbWCY+3trayZcuWSfd5zWtew+DgIBdffDFSSnzf521vexsf/OAHp3yd66+/nk984hPzeu4KxZGmVNkf5TCcD6tbYy3DcX5iLahiFTtxCjvR/RJ+pBk5RWDpgQQIBsmwj37KVKkneVhRD1VP55e3r+MXf1rPcxK/Y/N5f8vKyB4A+pwz2KttomS3E8SiiIg9ZeXNR/BgqovfNm1lR2x47PFTCi08b2gdZ+bbFzyQVNQGHfu+JAh8ZOChCR9L97EMiFs6dtLCsqMY0SacQBC9fTOR39yFuXXP2HGC9maqVz6LyhXPRDbV144dUAqKlIMKuhbmQK10lpI04ySMmKo+LQDhwOral68RBCACDeGDN2hhVAxm13RXKGbPUTfNHwp/+tOf+MxnPsPXvvY1zj//fLZv38573vMePvWpT/GRj3xk0n2uu+46rrnmmrHvc7kcy5YtO1KnrFAcNoMZ2LwDssWwZVifrLUMxyMFVrkHO78dszpEYNXhxWf/e56nRDcDDJIhgkML9XM+Xynhzs0dfPc3p6GX8ty45nW8uuVHAJTNBraZlzMcWY9fl5y2vVnUXf7UsJP/a9zOsBX6nEyh84zscp43tI7llbo5n+N07PdbCUStJagJD1sXOAbYtontmJiRJFYkjhVx0C0LdBvzqV043/sVzh/vRauEoazSMnGfeS6VFz0b/5yTw8HYUlAJSpSCsOIVM6Isd5aQMhM1kaVW5c0VIUD4oYAKgnH3ffA9Da8KgafVBFd4K8X+lZnBiENC6EpwKeadoya4mpqaMAyDvr6+CY/39fXR1tY26T4f+chHeN3rXseb3/xmAE4//XSKxSJvfetb+dCHPoQ+ibHUcRwcZ3EuA1coZiJfgid2Qak6sWU4HqM6hJPfiVXuRuoOXmxZ2GecBRVc+hiij2F8AupJYR5G1MO2zjpuvPkMtu6p541tN/LPp76POjODRKMzdiF75QVU65um9GYB9Nh5fte4jTvqd48NjE75Ds8ZWsNzhteQDuZvRXIgw2ph6Ldy0aSHKT0MHWImOHELy7EwnSRWLIZl22imDYY9FqOgZfI4v/ozzq9uw9y935vlr1hC9UXPonr5xci6ZCiyhEvZKyOQRPUIS5xW0maChJ7AnGWi+onKpFUpPxRMvgeeq+FXtf3bBBpCMOZ3A0ADw5BjcWKWI/YnY9T+tsqVgGOsFqE4Rjhqv1W2bXPuuedy6623ctVVVwGhaf7WW2/lne9856T7lEqlg0SVYYRvUkfR+69QLAhVF57cFQ6TXjqJ2NL9IlZ+N05xN8gAL9IK+uw8TAEBg2Tpop8SFZLEqTuMCXJD2Qg/+O2p/Onh5ZwU3cIfz3oJz0zdDkDOWco27XnkneX46cSkqlEieTLez2+btvJosnfs8WXlNJcPreeC7DKseRoUHUgoVwS4RUzNw9QkEUsnkrQxnQhmtBHTiWA5NXGlWwevEhQC64HHcf73T9i3P4jmheZ/GbGpPucCqldein/aOiTURFYGXwbEjAitdhNpI0XSiGPN0ld3vDNalQpqFaex+z54VQ3fg8ANRZYUtW1qCaWjv02aITFq4smwJFZEhukYqiOrWCQc1b/2a665hquvvprzzjuPTZs2ccMNN1AsFnnDG94AwOtf/3o6Ojq4/vrrAXjRi17EF7/4Rc4+++yxluJHPvIRXvSiF40JL4XieCAIYMte6B6CjuYDNIrwsEtdOPnt6F6OwGlCmLNblTeaqdXNACPkiOIclim+6hrcdPta/vu29Ug/4MPLP8mHVvwjtubi6za7o8+hW5yF11B3UHYWgKsF3FW3h981bqMrEi5o0SSclV/C5UPr2FBsnrdYBy+AclWg+wVilk+yJYmdaMF2bAzbCatWxvSCVRscIfLrsJpl9OzPC/NPWkXlyktxn/sMZCJGJahS8nP40idiODRZ9dSZociy9YUb7L3YGK1KBf7+9l1Qq0oFXk1MjQqp8S0+NLRaVSoMtJfoBuiGRLdG7x/li1MoDpGjKrhe9apXMTAwwEc/+lF6e3s566yzuOWWW8aM9Hv37p1Q0frwhz+Mpml8+MMfpquri+bmZl70ohfxj//4j0frEhSKeUdK2N4FO7tCU7yh73/CrPTh5HdgVvoRZhIvNrtxPABFyvQwxAAjaGg0Uocxx0wtKeGOR5fyvVtOZTAb46LUHXz7lDexxt4KwGB0A9v5CypOM37q4KpWxixza8MO/tiwg7wZep2cwOCSzCqeO7SWNjc5p/OajKoHFVdgiSL1tku8PkmsqRk9kobZ/EPND7DufZTIr27DuvsRtCAsrYh4FPd5F1K58lkE61fiCpeiKOO5Qzi6Tb2Zot5Kk9LjOLMImD3WGG3djQqo0fuBD76r4buhVyoUU2F7T4j9FSm08UIK9NGqlDHrX2mF4pjiqOZwHQ1UDpdisbO3Dx7dHuZpxWt2JcPNYOdHx/EY+JHmWY3jAXDxGGCEHoao4FJHApu5xyds66znxl+dztN7G0kbGf5lwz9wdeO3AKiaSbZHn8+QvxavMY20Jr6ORPKrpi38d8sTBHr41tPkxrhsaB3PHFlJXMxP9UdIcGtCK6KVSNoVEukEkfoWtEjdrISW3t2Pc/NtRH59O/rgyNjj3hnrqV75LKrP3oRr65RFmapwsXWLpJGgwawjacSJznJ16GJDCmqr9g5ewed7oZDy3FolKghbfzIA0MKQVQ20USGlh1Upbez+0b66mSl3F7DqHFa+/tyjfSqK4wxlIFAoFhH9I6FJPubsF1tWcR+R7BPoQWXW43hgf3hpFwPkKJIkdlirDwdrPq3bHl4OSF7d9mO+uv6d1DEIQFfyfPYEF1G10wSN8YPKFFXN51sdD3BvXZgNtq7YyOVD6zknt2TOlbYDCSSUq2F8Q9wosSRWJpZMYNetgkgdGDO85bke9h0P4fzvH7EfeGLsYZFO1sJJL6WyvJWyqFARBczAJGnEWeYsCUWWHlnUOVjj23sT2nzefjHle6NiSiMQoQAbRdNqbb2aeDJsiaWrqpRCMRuU4FIoFgnZAjy+M1xPVZcEpMQu7iWSeRypW+GQ6VmSo0gPgwySGQsvnWtW1XifVtUzWep08l/nvpELzf8DoOC0si1yBTm/Hb8hjbQOflsZNkv864q72B0dwZAar+s+h2ePrJ7T+UxG6M8KF8/EzTL1yRLRRAwzuQKi9TN6s4zdXTi/ug3nljvQs/mxx92Np1F90bMoX3gmJTMIA0mDAgkjyhK7haQRJ27EjrrIGqtKjfqjxokpz9UIXPC8sEoVbjuuKlXzSo1v7xmGRLf3V6aOO4IAggBZu8UfvS8QJQH1x2Z1UrG4UYJLoVgElKthZStfho4mQArs/E4i2SeRZpzArpvdcajSyzD9DBEgDyvmQUq4vebTGsrG0An41GnX8w9Nn8IWZYRmsDv9HLqqZ+NbCYKGyY3726NDfGn5nWStKknf5p17L2RDaX5SjqoelN3Q55ayy9Q5RSKxKHpyeU1oTdOiLFdw/ngfzq9uw3ps69jDoqmeygsvofyCiym0JWuBpGViHPlA0umiEAIf3KpG4NV8VD4IUYtCEKGQGps8YOxv8Rm2xDbkhCiE44KaYJogpEbvSxl+AWgammGEvzSGAYaBloigOTbYNmbVxlCCS7EAKMGlUBxlfB+e3B3OQ+xoBk0GOPltRHJPE1h1CCsx8zEIGCRDNwMUqZAmTuQwYh627q3nxl+dwdbOBgAubbuH/zz1TSz3ngQBI/E1bDOfT9mrw29KIc3J30ruqNvNt5c8iK8LllbS/N2ei2g+zDmHQoZCq+qBZUJTrELSKhCJRdBiSyHWAObU164NZ4n+4Fc4N9+GXhscPTpqp3zlpeTOW0dJq81nRD8qgaRSQCmnkR/ScSvapAGdGmEUwlh7zxrX3jteqlJCjBNOYqKIEmKiiNK1sGVcE1JaNAK2jRaJoNkWmmmCaYZiyzTHvg+zJPYrTy8ToMePJyWqWCwowaVQHEWkhK2doVG+vREMPCLZLTj57fhOE9KMTb8/kgx5uhlkhDzRWkr8XKMUBrMRfnDLqdz2yHIA6iM5vv2Ma3ih+Da6J/CMKNvTL2CgvIHAikxZ1RJIftK6md80h5Wjc7MdvLVrExEx97ecMX9WECbut6UqJMwitmNDtCMUWtbUlQktXyTyX78m+tNbxlLgg/ZmKldeSuby8yk2OLVAUoMlZsNRCSSVAkp5jfygTjGjo+nhyj3LPI6iEKQ8uKU3XlCNW8el6aNVqNqtbaE5CTTHQXNsNNMKxZU5XkSF948f1ak4XlCCS6E4iuzugW37oLkObK1KZORJ7OIu/EjrjDMQC5TpZbAW86DTSHrO5vOqa/A/f17Hf/95Ha4Xvi38/cbv8+H695GqhEGkvemz2ak9G8+NTlvVKuke/7bsHjbXAkxf3H8yV/WfOmcP2Zg/i3AxQWvaJU4e07Yg1gaxRrCiUx+gXCHys98R/eHN6IUSAP6GVWTe8JeMnLsaX5NhIKmZOmqBpFJCOa+RG9QpZXTQIJoSM3r8FxXT+KIOdN5rtVZeKI4stFgMzXEg4qCPVqJGhZNh7K9GHReKU3Giciz9OSsUxxW9Q/DUHkjGIWaUiY48jlXqxI+0I6fxHrl49DFML0NU8Q4r5qFYMfnDAyv45R1rGcqG1bQLV2/h3097N6dkfg8VKNv1PJ1+MbniEoJ4lKB+6qpbr53nhhV30uPksYXBm/dt5Pzc3GaXTvBnxSAV9YhpeXTDhGgLxJrAnqYC6HpEfvkHot/9JfpIGKrqr+og96ar6L9gLbbh0GSmjmogqZRQKYRCq5gJxXIkuYiE1qhgEgHSH1eNEkHY253Q0tNDATWJL0q37VAwmQaaYU5s6enHm5lMoZicxfJnrVCcUIzk4fFd4WdNvV0gOvIYZrkXL9oBU1RXAgTDZOlmgBwlksRIM7O/azK6B+P8+q41/OHB5VTcUKw11xX410s/x1WFf8HJ5JFo7G28lL3BBYiyideYCj9Qp+DxeB9fXX43JcOjwYvynj0XsbJyaDEUB/qzGlOQjHhEyaPpBkSbakJrGh+YH+D89g6i3/5vjL4hAIIlLRTeeBX9l54Khk6r1UCb1UR8hpbtQiElVIph67AwooOESELMtJhyfhhNIPX9/W28UUE13hcFaIa+3xel65P7ogxzYkvPGG3pKRGlUIxHCS6F4ghTqowbSJ3KEh3ejFkdwot1TBlmmq2N4xkmi409p5gHKeHR7c3cfOdaHtraipTh/stacvzNBX/k7fpHaR3eDEAutowtyRdTzicR8di0VS2J5PcN2/mv9kcRmmRtqZF377nwkIZMH+TPaoCE7WPLWkRDtClsHdoH53uNIQT2H+8j9q2fY3SG7UzRVE/x6hcz+PzzqOg+jWaadqeZlJE8alEOlWJY0SqM6EgRCi3zcIXWgb6oAwXVZL6o0YrUgb4o44CWnjmupad8UQrFnFGCS6E4gnh+KLYGMrAiNUxseDO6m62Jrck/zEbIs51OfALqSR9yzEPVNbjtkWXcfNcaOvv2T1c4b0MPL7/gIV4sv8maPb/GEC6BbrG9+Qp6K6dDEbym1LSp7J4W8N32h/lzwy4ALh5Zyd90nzPrQdMH+bMaIG4HmH4+FA2ROkg0g52cWmhJiXXXI8S++TPM7XsBEOkE5b9+ESN/eRF50ydpOCx3ltFopo/YSsMDqRbDVYf5ER0RQCQuMGfqYtaEE4FABv7sfVGGgRaNhr4ox0a3rP0i6sBVesoXpVAcEZTgUiiOEELAlj2wrx+WJ/pJZDaj++Wa2JpcTFRw2UsPAYJG0of0eoOZKL+5ZzW/v28lhXL4yR6xPZ5z7l5efP5jXJT/MWt3/RLLD43kg+lT2Bq9Aj9rEaQiiNg0RnQgZ1T40vK72BYfQpPw6t4zuXxo3axWSLp+WOEb82fFIeYIdC8fqrBIHcSbQqE1TfKm+fBTxL7xE6zHtwMgYhEqr76C3Mufw4jjEzEMVpptNNsN2PqR6NcdTLUcCq3CkI7vh0LLmimxo1JB5AsgJZptTfRF2XYookZ9UeNM5coXpVAsXpTgUiiOEDu7YUc3LI12k8w+hiYDvNiSKbcPEHTSR54SzbMcySMlbN3bwP/euYZ7nliCEKFYaa0vcsWFO7js7K2c2n8z6x77BY4XGsmzyRVsb3wh+ZEmKEr85uSMswb3RDL86/I7GbJLxAKLt3dewBmFthnPL5BQLIOuQUMK0nGIWALNLUDVh0gKYi3gzCC0ntxB9D9+OjZ+R9oWlZddRv6vriCbCNtn7XYzbVYzMWN64bhQuGWN/LBOYVjDdzWcuCA63fhWKZHFIrJQQnNs9NZmjJZmtGhM+aIUiuMAJbgUiiNA1wBs2SNp1Tupyz+G1C38SOu0+/QxRD/D1JOasWrk+Rp3PdbBzXetYfu+hrHHT1s9wJUX7eC89Z2s6v4DJ937E6LVYQAKsXaeWvtqhr1VRPb2IeI2Ij6zOLk/tY9vLL0PVw9oqyb4uz0X0+4mZ9yv4oZfyXhoho/ZAtwCVPxQYMWbwUlN2+IydnYS++bPsW9/EABpGlRf9CyKr3sR2XoLV/o0mOna2J3EUfFpuRUoDOvkh3S8qkYkLogk5NQ7+D4yl0e6Lloijr52FUZDA1r88AJiFQrF4kIJLoVigRnKwpO7JGl3J03iSaQRm3FUT5YC++gnThRrmj/TbMHmd/et4pZ7VjGSD8WSZQZcclYnV1y4g1VtGTp67mDDnT8iUQqN5KVIE0+vfSWdrZfg7Osn2tmHn4ojotP3uQSSm1qe5H9angTgtHwrf9t5AXExvRHJF1Aog21CWyPUJUD3i1AuhwIr3gRO3bRVNb2rj9i3foH9f3ejSYnUNarPu4jyG15CvjVBMSiT1BxWRpbScJR8Wl4VCkM6uZrQcmKSZKOYeodyBZHPo+kaWl0dRmsLen0dWEc+nkKhUCw8SnApFAtIoQSP7wgwM9to17YQ2HUIa/pqUBWXvfQSIIgx+Uq/XT0pbr5zLbc/uhTPD8VFfbLM8y/YxfM27SIdr9LWfz8n3/FDUoXQSF6x02xb83J2L7sMKXSiu7twuvrx6lNIZ/oP+arm842l9/FAuguA5w+u55W9p08btColFKuhv7suEVa1HFNAJROO3qlfBZH66YXWwDDR79yE86vb0IIgPJdLN1J+08soLW8iGxSIIljlLKXpKPm0fBfyIzq5AR23rBGJTyO0hEAWiohSCT0SQV/SjtHchJZOqRWACsVxjhJcCsUCUXXhiR0+Xu8WVprbZjWqRyDopJ8MhYN8W4GAB55q5+a71vD4zv3Dn9d0jHDlRdu58PQuLFPSNLiZUzb/gPrsNgA8M8a21Vexc8ULCcwoWtUluqsTp28QrzGNtKYXKYNWkX9dfid7o1lMoXN19zlcklk17T6jpvixiIco6MKFcjYcKp3smDa0VBvJEf3Br4j89/+hueFcQ/f8Myi95eVU1y0nG+TQRIUlTgttVjPRGVL5FwLfhcKITm4wFFp2NBRak3YxPQ+Ry4PvoyUTmOvWoDc2hP4shUJxQqAEl0KxAAQBPL3LpbD7SZbbO/GjM4/qARggQx+DNJAay9kaTYP/9V1r6BsJfT26Lrjg1G6uvGgHJy0fRtOgfuRpTt76A5qHHwfANxx2rryS7atejFcbgK1XqkR37sPuH8Ztqp82yBRga2yQLy2/i7xZJeU7vHvPhawrN0193TLMGQNoSkFdCmwD8IrgVyG5BBJtTBWlrhVKRH78G6I/vgWtHB7IO2M9pbe8AvfM9eSCAp6fodGqp91uIWXOLfj1cPA9KGV0MgM61ZKGE5EkGiYXWrJUQuYLaKaJXl+H3lJrG04xFkmhUBy/qL96hWKekRJ27KkwtPVxOsy9iNj0o3pGyVFkL71Ex/m2ugcSfOQ/Lh7zZyWiLs/btIvnX7CLproyAKncbjZs+yHt/Q8AEGgmu5dfzrY1L6Pq1I0dXy+Wie3oxBrJ4TZP38oDuK1+F99pf5BAl6wo1/GevRfR6E1dkal4oSk+EYXGNMQdwqyoSgYMG+pXQrRh8pV2lSqRn/8+nHeYKwDgr1tB6f+9EnfjaRRlmZI3QtpMsDqyjHozjX6EW3CBD8WMTnZAp1rUsSKC5GRCKwiQ+QKyUkaLRtFXLMdorEdLptQqQ4XiBEYJLoVinunqLtL31GM0a93I5NSjesbj4o35tkbH9fSPxPjYty5iJB+ltaHASy7dxqVndeLYoZcpXuxmw7Yf09FzBxoSic7epc/m6bWvpBxtnnB8I1cktqMTI18MxdY0kQsBgh+1beZ3TWFLcmN2KW/ZtxFHTn4dvoBiJSyWtTVAOgGGBgQeVLMQrQsrW5ON4/F8nP/9I7Hv3IQ+nA2Pt2IJ5Te9DPfS86hIj5w/QsyIsDqyjCar4YgPlg58KGZ1cv06laKO5QgS9cHBlivXReRyICRaMom5cjl6fT1Ejny7U6FQLD6U4FIo5pHBvhz7Nm8mKQYxGpZOOapnPAJBF/1kyNNU820N5yJ87JsXMZSN0dGc51Nv/TN1CReASHmQk7b/hOVdf0CvpY3va7+Ip9e+mkKi46Djm5k8se170SouXnP9tFWWou7y1eX38ESiD4CX9p3KXw6cPGkshZRQcsNxPOkY1KchOmoHG2shttVaiAf4xAKB87s7iX77Fxg9g+FDbU2U3/hSqpddiKdLskEWQ9NZ6rTRajURMWZKC51fRFATWgM65byOaU8utGShiCwU0GwbvakJvaUZva5uxgqiQqE4sVCCS6GYJ3KDw+x95DHMSganZepRPQcyQIZuhqgjiY5GtmDz8W9dRN9wgtaGAh9/0x3UJVzsaob1O3/Byj23YEgfgN7mc3lq/WvIpSY3sVtDGWI7OtE8H6+pbtrz6LZz3LDiTvqcAk5g8NZ953Ne/mABB2EYfLESmuJb6iEZDcNMkSKsaukm1K0MDfIHVNPMx7YS/6dvYe7pBkA0pCld/WKqVz4LYRlkgzyBH9Bo1dNmNx9xn5YIoJQNW4eVgo5hCuL1wcTLCAJkPo+sVNASCfTVK8PsrERCtQ0VCsWkKMGlUBwmMhAUB3vpfPwp3GKZVMvUo3oOpECJTvqIYGNjUShbfPLGi9jXn6IxXeITb76T1tgQa7fexJrdv8IMQiP5YMOpPLn+tYzUb5jy2Hb/MNEdnaBpeI11057Ho4ke/m3ZPZQNnyY3xnv2XMTy6sH7CBkKLQhjHuqTYb5W+KQHlSxE0mEL0TlYKNm33kPiM99Acz1EMk75tVdSedllSMemIEqUvQp1ZoL2SCt1ZuqI+rSECIVWblCjlNMxTEksHUzMYR0duQNo6RTm6lWhCd4+stU3hUJx7KEEl0IxB1wPckXIDw2R27cTP9NNJXBIt7bPusDh4rGHXlx8mkhTrpp86tsXsqunjrpEhU+86U5WOLt55u0fHEuHH0mv4an1r2Wg8cxphzk7PQNEdnUhbYsgOXViuY/gly1P8cvmJ5EarC828a69F5IKDhYQo6b4eKRmio+wv9HolcCvQKI1bCMeuEhASiI/vJn4138cXvvF51D44FuRyTjloEreGyZmRFkbXUGjWY95BAcqSwGlnEZuUKeY1TEMSTwt9gut8SN3IjZ6WytGcyNaOq0GPysUilmjBJdCMQuEgHwJcqUwOX5kMI8c2U20shfbCDBSLdTb9qzFlkTSxSBDZGmhnqpr8JnvXMC2zgYSUZePvelOVqa7ufCeTxKtDlOItfHkSa+np/X86atnQuB09RPd1YWIRQgSU68q7LMLfH3pveyMhWLuWcOreV3P2ZhyYlUpkGFS/JgpPh4OnQ4vRIRVLcOEuhXhKsQDDfl+QPxfvkPkl38EoPyKyym94zV4miDrDmPpJsuddlqsRpwj6NOSAkp5jfygTjGjo+kHCK2DRu6sxmioVyN3FArFnFCCS6GYglIlrGJlCtA/Avky+OUKyWAfDcFOYmYR0TRzmOlkDJKhhwHqSRL4Jv/8g008sauZqOPx0TfeyermAc6/7zMkit2UIk3cef6nqEQapz9oIIjs7SG6t6c2qmfy1XESyW31u/hh2yNUjYBYYPE3Xedyfm7ZxO1qpngvgFQt6iE6vnAlPKjmwjmIyY5JW4iUyiQ/+hXsezcjNY3Su15L5RWXk/VzBELQbDfSZjWRMI+siPE9GNpnUBzRQYNoSuyPBiuHbUNNJxy509YamuBnCIhVKBSK6VCCS6Go4fmhwMqVoH8YssXQr6TrELd82oweEsYOjGCYIFJHYC+f0+sUKLOXPmwszMDh8z/ayMNb23Asnw//zd2sWzLEeQ99gYbMVlwrwd0bPzqj2NJ8n8jubiL7+qYd1ZM3qtzY8QAPpULD+smFZt7StemgfK0pTfFjG9RaiPFmSLYf3EIE9P5hku//Aub2vUjHJv+xv8V75rlk/RyaprMuspx6M33EB0yLAIa7DHKDOvG6mtASApkrIkpF9EgUvaM2cieVVCN3FArFvKAEl+KERdSGKueKMJyDwWwoMvwgFBrxKDQkJVa1H6ewE7PchzCjeLFlc/4Q9gnopJcKLg2iji//7BzufWIJphHwgdffw8krBjnj8X+nbeABAt3mnnM/SCGxdNpjaq5HdFcXTs8AXkMaaU9eiXks0ct/dNxP1qpgCI2X95/O8wfXjyXaQ2iKL1XC24YUNIw3xUNtFWIuvP70Mog1TZrpZWzfQ/LaL2AMjCAa0uQ+ew3ByavJBaHhfJWzjAYrfeg/wMNEChjuNcgNGsTrAgzhIYZqI3dSScz169Ab6tXIHYVCMe8owaU4oShX97cJBzKQL4ZmcNMIBVbLuGk3RnUEe2Q3VqkTNAMv2j6rENOpCH1b/QySpVHW8Y3/OYs/P7IcQxe877X3cebaAU7a9mNW7vs/JDoPnHXNtKsQgXAu4o5OnIFhvKY65CQjY1wt4Cetm/l903YAllSSvG3fBayo1E3YruqFP594NFyBGI8yMX1L+lDOgJOC1JKwlTgJ1r2bSX7ky2jlCv6KJeQ/9w+I9mYKQRFfBKyJHiWxJSHTr5Pp1YnGqmjDI0jDQG+oD0fu1KXVyB2FQrFgqHcXxXFPvmZ0H8iEQqtUBSREI5BKQMsB3TDdL2Lld+MU94DwCCLNyHkwcw+RpYsBUjLBd28+k9/fvwpdk7znVQ+w8eReVuz9LRu2/wSAR099C72tm6Y9nl6qENuxF2s4G85FnCRoc28kw9eX3ktXJAfAZUNreWXvGdhy/7ZeEP5MDB2a68OoB/PAopVfBq8M8RZITd5CBHB++QfiX/wOWiDwzj6Z/D++B5mMUwrKuMJjVS0t/miQH9YZ6TGwKaLn8ujtrRhL2tESSZWdpVAoFhwluBTHLUEAXYPw9N6wdejYYZRBXWLyyTZaUMUq7sMp7kL3cgROE2KezNwlKuylFwuT//79mfzqzrUAvP2lD3HxGV209d3HmU/8BwBPr3kFe5ZfPu3xjEIpHNWTzeM2H7wyUCD5beNWftb6OL4uSHsOb+rayJmF9rFtfBG2DzUtXHlYnzzAFA9hWaiaq220tNZCnCQKQQhi3/gp0R/8CoDq5RdReP+bwTIpBxVKQZmVkaW02DMY/xeIYkZjqFNDLwxjxwlXHC5pV7EOCoXiiKEEl+K4JF+CrZ3Q2R8OU17eOs3GIsAq92AXdmBWhxBWGi+2fN6qHgEBnfRRosrtf9rEz/4Ytgnf8peP8Bfn7aV+ZAvnPfJFNAR7lv4FW9a9etrjmdk80R37MIplvKaDk9yHzRL/sfR+nkz0A3B2bglv7DpvLFsrqPm0pAx/NvUpiDkcPLxH+lDOhjMQ0x1hK3Eyqi6Jz3wD5w/3AlB6w0sov+EloGlUgyoFUWKF00Gb3Tz5/gtMpaAxuEsgh0aIdsQxV61Eq6s7KueiUChOXJTgUhxXjK9qFcvQ2gBTeMhBSszqAHZ+J1alF6kfniF+KroZYIAR7rvrHH7w29MAeN3zH+cFz9hForCPCx78DIZw6W0+l0dPfdu0Qs8azhLd0Yle9cJRPQdse1+qk/9c8iBF08MWBq/pOYtnjaxCQyOQoUcrEDWhlYBY5IDVh6P4lXAeYrw5DDI1J2+patk8yetuwHpsK9IwKL7/TVRf8EwAXOGSDQosd9ppd5qP+GpEALesMbClijdcJrmhBXPFcnBUKrxCoTjyKMGlOG44sKq1bJqqluFmsAq7sUudaBK8yOEZ4qdimBxdDPLgA6dx4/+eDcArnrOFl1y6jUhlmGfc/0lsr8Bweh0PnPX3yGlaXNbAMLEd+0DKg+YilnWP77c/zB31ewBYVarnbfvOp81NhisPq6FXKx4JW4eJA2MeRpES3Dwgx61CnPyc9H19pN73eYx9vYhEjPyn341/7qkAeMIn4+dZ6rTR4bQd0RE9o3gVQf+jeaplm+S5KzGXtKmIB4VCcdRQgktxzHMoVS3NL2EX9+IUdqMFFfxIM9KYPCD0cClTZQ+93P/oKr75i9AA/6KLt/Hq5z6F6RW54IFPEasMUogv4d7zPkRgTn0edu8g0Z37wDDw6yauDtwWHeTfl93HgF1Ek3DlwMlc1X8KhtQpueD6YcuwpWGSPK3xyAAqGbDi4SrEyNQrCc3HtpK87gb0bJ6gtZH85/6BYFUYX+EJnxE/S7vTzNKjJLb8QpX+R/OU9EbqLliKUV93xM9BoVAoxqMEl+KYZtZVLeFhl7qw8zswvSy+3YiILJynKCBgL73c+WQz//GTi5FS43mbdvE3VzyOITw2PfRPpPN7qDh13H3eR3DtKfxRgDmSJbpzXzgXcdyonnAO4pP8svkppAZNboy37tvE+mIzVR8KVYg4sKQRkrFx43gmw6+AW4RYYyi2pmghAth/vJfEp/8dzfXwT1pF7p+uQdaGYwcyYMTP0Go3s9zuwNCOvCndH84wtMOnFFtG/ZlL0GMLI6gVCoXiUFCCS3FMcihVLbPSj5N9GrM6gDBTuPNoiJ+KXoa4bWuMb/7w2Qihc+nZe3nrix9BQ3DO5n+lefhxPCPKPed+mFJs6t6n5vlEOvvQpMQfJ7YOnIN44cgKXtdzNnrVIuuCY0FbTWhZ02me0VmIulFbhdg8abxEuK0k8l+/Jv5vPwLAvehs8h/72zBfAxAyYMjL0Gw1ssLpOKIDqAFkEBD09pPJxCmkTiK9oRndUasQFQrF4kAJLsUxx6F4tcxSD9GRzWjSx4sthSNQcRkhz6274Ovffy5+YHDBaV2882UPoWuS07b8Jx29dyE0k/vPuZZsevW0x7J7B8OcrZYwu2qqOYhnDS+jXAXLhOa6MObBnumv26+Efq1oPSTaJ5+FOLZtQPyG7xK56Q8AlF92GaV3/fVY2UxIwaCXodGqY2WkA2sB/HDTISsVgv4B8lobufRK4ktTGI7yaykUisWDElyKY4ZDWoEIWKVuoiObAQ0/2nZEzrGCyx87q3zpO3+B65mcs76X977qfgxDsmbnTazZHeZUPXTGOxloOnPaYxm5IpF9ffipOOj6QXMQNxSaeePeTTj5GJ4BTSlIJ8Lq1rSMjefRILUsXIloTPNWUKqQ/NhXsO95NBxA/c7XUHnl88eeDsXWCPVmmlXOUmx98lDUhUKMjCCLJSoNa8l5S4kkbazIsS22vLLg6VvK9D3pIuW4gqw2yX2NsRWg027HxG3HPz56nIPvawc9rtX2Pfi+NvFxff/zM73+VMedcttJ7k92rlPdH912stf0SoJYk0HHWaoVrZhflOBSHBMcSlULwCp1ER3ZjNR0AqfpiJxjgOD2njKf/fazqFRtTls9wPv++l4sU7K06zZOe/q7ADy+4Wq6llwyw8EEzr5eND9A1KcOmoP4kt7TuXjfeixNI1UTWtGZhBaAXw2rWpFUOHR6qmytGtrgCKlrv4C5bQ/SsSl89O24l5w39ryUkmEvQ52ZYFVkKc48JPLPFhkEiN4+tIiDt/pMRjKNGFENJ3Hsii3flWz9bYknbipSzcujfTonLI1rTDZePf3fhkJxqCjBpVjUHGpVC8Aq7gvFlm4SOEcu2fz+/gofvfEZlMoOJy0f4rrX341jCZoHH+Xsx74KwPaVL2LHqhfPeCx7YBhnYIRqY5qftG7m181PA9BeSfK67eezrFRPKh6m5sdmo3GkgGo+/Gd8sgMSzWBM/4M0dnSSvPbzGP3DiLok+c9eg3/q2v2HlJJhP0PciLEqspzoAq32nAxZLhP0D2C0t+F3rGO4O4oUEGs4Nj1bgS/ZfmuZx/+7SHlEAJBsN9jwghhWTAMJyPDmwPtS1oSZDFM9Zr4ffiNrxxl/f+JjcsrXPHh/efCxJttPhm3x6a/n4HOd6npmOoeDrm0W2wWepG6Z+mhUzD/qt0qxaDnUqhaAVeysiS2bwDkyM/sCBE8MV3nft84hX4iyakmGD//N3USdgHR2J5se+id06bOv/WKe2HD1jMfTi2Uinb0EsQh3Nu0bE1uX9K3hxZ1n0OCY1LdOkQ4/6Qm6YQvRSYUhptPEPYxi3fcYiY98Cb1UG0D9z3+PWNIyYZsRP0tEd1gdWUbMiM7mTOYFMTyCLJUwT1qP7FjF8I6wBZdoOfbezkQg2fXnCpt/XqA4EAqteJPO6S9PsPqSCLqhZjweacqZADuufu6K+efYe4dSHPeMVrW2dkKhNLuqFowXWw6BU7/w54lghBwP9Xt85j8vYiQXZ1lLjo+98U7iUY9YqY8LHvg0ZlBhoOE0Hj79XTMHbwpBpLsfo1ShZ2mU77c/DMALO0/jZZmTqW+cJh3+QKQAtxDmayXbIdEy5dDp8Ti/+hPxz387HEB91gbyn/k7ZHLiTMkRP4utW6yOLCcxT/MmZ0L6PqK3Hy0WwTr3bERTO4NbPcqZgETLsVXZkkKy554qm39aINcdABCp0zn9pXHWPieKYakPfIXieEMJLsWiYi5VLQCruDcUW0aUwK5b0HMMCBghT1cwwk/+vJKbbz0bPzBoayjwsTfdQSruYlezPOP+TxJxM2STK7jvnPcjZmjhAVhDWeyeQaoNSf6j4y7Khs/KfCOvKZ9EU9MshRbsr2rZiTBXy0nNHIUhJdFv/ozYd38JQPV5F1F4/5sOUrs5P4+BwarIUlLmNCsb5xFZKiEGBtGXtGOefBIylmJ4u0ehLyDRaqDN+gdzdJFSsu/BKo/+uEhmrw+Ak9Q49cVx1j8vhukcG9ehUCgOHSW4FIuCuVa1AOzCHiKZxxZcbI0KrR6GeKzL5ns/fw6dPWHb8pz1vbz9pQ/TkKpi+BUuePAzJEo9lKLN3HPeR/CtmatAWtUl0tmLtC1+37aHpxID2IHBuwY20pTUZ1nVqo3mkX7YPky0zqqqheuR+Ox/4Pz+bgBKV19F+U0vPUik5YMiAsGayArqzJlbk/OBGBwC18XYcBLm2tVgWgzt8Mh2+cRbjGOi7SalpPcxl0d+XGBoeyi0rKjGyVfG2HBFDDt27Br9FQrF7FCCS3HUmWtVCymxi6NiK7ZgYssnYIQcvQwz4JX4zf+dx2/vOAUhdJKxKm+88jEuOasTTQNNBJz3yBeoz27DtRLcfd5HqERm4SWTEqerHzNXYPdyi5+0bgbgtf1nclo0OTuxFXhQzYZVreSK0Ks1i4BXLV8ked2/YD36dDiA+n1vpPrCg1dRFoMSnvBZHV1Gg1U3ixM6PMIWYh9aIo552lnoS9oBGNnrk9njE2swMMzFL7b6t4RCq/9JDwDDgQ3Pj3HKX8aP6RWVCoXi0FCCS3HUOJyqFlJiF3YRyT6BMOIIe/6rLfuF1hA5iuzc2cF3fnEFvUNhG+3iMzp544s2U5dwx87pzCe+TtvAg/i6zT3nfohCYumsXsvM5HB6BqjUx/n3pXfi6YLTC628itUziy0pQ6+W8MKKVrJtdlUtANcj+aF/xXr0aUQ8SuHT78Y777SDNisFZSqiyqrIMpqthV+MIIslxOAgescSzJNPQk+FS/Sz3T7DO32ctL7o229DOz0e/XGB7kfC3w/dhPWXxTj1qhjRumPLc6ZQKA4fJbgUR4U5V7UgFFv5naHYspIIa37zcnwChseEVgG/EuOm3zyL398XpsI3pMq89cWPsOmU3gn7bdj2I1bsuxWJzoNnXcNI/Umzer2x8T3Afy/dye7YCHHf4v3FjRgzVaiEB5Uc2DGoWwaRutmPLZKSxD99C+vhpxCxCLkvf4hg3YqDNisHVUpBmZWRpbRYCxuzIaVEDg2B62GcsgFzzWo0K1ThhYGAoe0eVlRb1C24TKfPoz8p0HlfFQiHG6x5VpTTXxon3qSElkJxoqIEl+KIclhVLaiJrR01sZVGWMl5OzcPf5zQKhLBZvdTJ/ON/zmb4VwYe/C8Tbt43QseJx7xJ+y7Yu9vOWnHTwF49LT/R2/rplm/7uj4nieXw69angLgnblzaJXTRC1ICV4hbCMmmiHRNu3A6cmIfuvnOL+7E2kYFD797knFVjWokg8KrHSW0mY370/+XgCk7yN6etGSScwzTkdvax17vXImYHCbCzo4ycUptvK9Po/+tMjuOythtpMGqy6OcMbL4yTb1FutQnGio94FFEeMw6pqwQFiqw5hzc8Kuf1Ca5A8ZRws7EILN/7qLG5/dBkA7Y0F3v7Shzlt9eBB+3d038GZT/wHAFvWvpI9yy6b9WuPju8ppCL8+7I7EJrkktIynusun3on4YUrEM0oNCwFpw70QxMhzs23EfvOTQAU3/dGvI2nH7SNK1yyQYHlTjvtzgKLrUIRMTSEsWwpxob16Mn9QrpaEAxs9fBdSDQvvgpRcTDgsZ8X2fGnMjKM0mL5+Q5nvDJB3VL1FqtQKELUu4HiiLCvH7bsnWNVC0AKnPwOItknCeZJbLl4tVWHgxQo4WDTKNPc8chybvzVGeRLDrom+ctnbuNVf7EFxw4OOsayfX/g7Me+hoZg97LLeHrtq2Z/ArXxPXgB31+7k/5onoYgwnvy50y+vZTgFcPIh1hz6NU6xKoWhKGm8c/dCISrESczyHvCJ+PnWeq00eG0os+UHzZHpJTIgUEIAoxTTw5biOb+tyWvLBjc7lItiEWXtVXOBDz+P0W2/b6MqBU8l5xtc+YrEzSuPtRfcIVCcbyjBJdiwckW4MndYZflkKtaEIqt3DYiuS3zIrZcvLHWYYESERyaqGc4E+P6/zmLh54OB12vaMvyjpc9xNqlmUmPs3LPLZz55DcA2LXseWw+9a2z908Rju+xBzLc1VbltvZtAPxDdiMpOYnhXfpQzoIVhfqVEKk/5KoWgLF9D4mPfAktEFQvvyiMfjgAXwQM+xmW2C0sddrQtYUROtLzwlWI6RTmyRsw2ib+cgSeZHCHR3FQkGw1FrTCdihUC4Inf1lkyy0lgtCmRespFme+KkHLhiM7uFuhUBw7KMGlWFCEgO1dUK7C0paZtz8IKXByW0OxZTcgDiPV3MVjiGxNaJWJ1YQWQuN3963ie7ecSrlqYRoBr/yLLVx1yTZMY/IBwmt2/ZLTtvwnADtWvJDHT37jIYmt0fE9PabOD9Y9CMCVpdVsdNsO3jhwwzmI8eZwFaI1t5mFev8wyWu/gF6q4J1zMoX3v/mgcw5kwLA/QpvdzHKnA2OhxFahiBgexli+DOOkdeiJiSJaBKHYyveEKfKLIdjULQm23FziqZtLeOXw96JprcWZr47Tdpq9aAShQqFYnCjBpVhQeobCdmLLXCbtjBNbvt2INGNzOgcXj0Ey9DJEkQoxHJqpR0ejayDBv/3ibJ7c3QTASSuGeMdLH2ZpS37K463f/lNO3vZfAGxd/VKeWv/aQxJbo+N7KiMVfnr+DkbsMkv8OG/NnznJtjW/VrIjbCHOoaoFoBXL4SDqgRH8lR3kP/0esCb++QsZMORlaLIaWO4swdQXSGwVS4hMBuO0UzBXrZzQQoSwzTiy2yO3zyfeZKAf5awtvyp5+rclnvxlkWo+FFr1K0zOfFWCjnOU0FIoFLNDCS7FglGuwrZ9ELHn4NkSAU7uaSK5rfjO3MVWgGA3PfQxTIzImNDyA43/uX0dP751A55vELF9/vryJ3j+BTun1jRScvK2H7J+x88BeGrdX7F17SsO+ZysoSz+nkHuX1PgnsY96BKuzW4iKg/4c5QCKtlwBmKydc5iC98n8ZEvY+7oRDSkyX/uHw6ajSikYNDL0GjWsSqyFFtfGA+SrFRCc/wpGzDXrplUrGQ6fYb3+kTqdQz76ImZwJNsv7XMY/9dpJIJ3fCpJQZnvjLB8vOdRVF1UygUxw5KcCkWjJ3dMJKHZYfaShQBTnYLkfxWfKcZaU4TjzAD/QwzwAgNpLBqv+47u9N89efnsKu7DoCz1/fy/656hJb68tQHkpLTtnybNbt/BcDjG65mx6oXH/L5aFUXsaOXfDzgv9Y+AsArixs41Ws64PUElEcg2hBWt+ZabZKS+Oe/jX3/Y8iITe6f/x7RNvG1Rj1bdWaqJrYWxockq1VE/wDG+nWY69ZOKrbyvT5DO32cuI4VOTrxDyKQ7LytwmM/L1AcDIVWvFnnjFckWHVx5JgYJaRQKBYfSnApFoTBDOzuhabZTZfZz3ixFWlBGnPzKwHkKbGPfqJEsDCpejo/vXUD/3P7OoTQSURd3njlZi49u3P6c5SCM574Bqs6fwfAo6e8hd0rXnDoJyQlYmc/VjbPj571NDnDZbWX5vWFUw/ajkoGIqkwzNSY+59p9Ls3Ebn5z0hdI//xdxKctGrC85WgSi4o0Gw1sMJZgmMc+qrH2TBqkDfWrMY8aR3aJNW64lDA4HYP09aw40debEkh2X1Xhc0/LZLvDVekRut1Tn9ZnDXPjh4TY4QUCsXiRQkuxbzj+WErUQiIHYpeEj6R7FM4+e2HLbY8fPbSi0dAmgRP7mrka784m+7BMN/pojP28aYrN1OXrE57HE0EnPX4V1ne9SckOg+f/rd0Ln3O3M6pL0e0e4CHzs7wQLwHS+q8P7sJiwPERTULVgxSy2Y/omcS7N/eSeybYfuz+Hevx7vo7AnP54ICnvBY4Syh3WlZOIO87xN092KuWI55yoaDPFsAlaxgYJuLEBCvP7JiS0pJ5/1VNv+kSKYzzHdwUhqnXRVn3WUxzKPY1lQoFMcPSnAp5p3OfugdhiVNM287hvCJZJ+sia3WwxJbAD0MMkyOeLWRb9xyBrfcM34sz6NsOqVnxmNowufcR2+go/cuhKbz0Bl/R9eSi+d0PpWij7O7j6C5zLfbHgfg6sKprPbrJm7o5sOKVnoZ2HNvpZoPPUnis2EYa/mvrqD6kueOPSekYMTPYusWa6MraDTrF8z4LYVAdPdgdLRjnnbK2Jie8bilUGz5ZUmi5ci9JUkp6Xk0HCw9vDMUWlZM45QXxdhwReyotTQVCsXxiRJcinklV4QdXZCKgznbgsk8i60RcnQziJdp5qPfvYTdPXUAXLZxF69/wRPEo96Mx9ADl/Me+QLt/fcjNJP7z/57elvPn9P5VD2gc5AWkeGTp26hrPuc5jbx8uIBsxa9UujdSq8AZ+5ZY8auLpIf+lc0P6D6nPMpvW1/GKsnfEb8LHVmkuVOB8nDiNmYCSklorsHvbUF6/RT0ZyD25V+VTK4zaOSFSRaj1yw6dAOjwe/m6d/S/i7YDoaG66IcfKVMZyEEloKhWL+UYJLMW8IEYqtYvkQAk6FRyTzBE5hJ36kDXmYHqIqLnvpZdfeZr76veeQKUSoS1R476vv5/Q1B4/lmQwjqLLpoX+iZfARAt3mvnOupb95ivT3GXB9qPQXWV3o4/en9PGYM0hEGFyb3YjBuKqSXwW/AnXLITqXDI0QbShD8trPoxdKeKevp/DBt46tbiwHFfJBkTa7iWVO+4KZ42G/2NLq6jBPPxUtdvAq08CTDO3wKPQHJNqOXLBpvs/n958cwa9IdAtOel6MU18cJ5JWQkuhUCwcSnAp5o3e4bCd2NIwyx3mWWwJBPsY4A+bW/neTy/F9Q1WtGX54NV301w3zQrEcZh+mfMf/AxNw0/gGxHuPfc6BhsPnjM4G1wf8jnB6mIv2XSWbzc+DcDb82fRHoyrYAkvHESd7IDYofRhD6BUIfX+L2L0DhIsbSN//d+BE4qqnJ/HlwErnaW0O00Llh4/iujrR0vEsc48bcJcxFGkkAzv8sh2+8RbDPQjFLEgfMmdX87hVyRN6y0ueW+aWMPiGhmkUCiOT5TgUswLlSps6wzztpxZRDhpgUsk8wR2cRd+pB15GObwUQZklm/+YSn/+39hNeq8k3t476seIOr4s9rf9Io844FP0ZDZimfGuOe8DzFcf/KczsUPwmHdS/1h6qvDfPTUp/A0wfmVdl5QHrdScCxrqzXM25prlccPSH7iq5hP70Kkk+Q+/w/IdBIhBcNehojhsC6yjAarbm7HPwTEwCBYFvopp+HbKURWEHgS4UsCD3xX4JYkxf6AWKNxRFf/PfaLIoPbPKyYxsXvVmJLoVAcOZTgUswLu3thODe78T0LIbaGvCof+vla7nl0JQB/+cxtvO75j2PMsktkuzmecf8nqMvtwrUS3L3xo2TSa+d0LoEI50e2OmU6+nr5z+V72WFnSQmba3LnoY22EidkbS05vKytL30P+65HkLZF/p+uQXS04gqPjJ+l3qxjhbOE+BzDYw9ECBA+iEAjCML7QaAhfKgO5AgqEeTKtbAzjgiqCD+saKEBEjRdQzchWm8c0RWA/VtcHv9FEYDz35wi0azElkKhOHIowaU4bIaysKsbGtIzh6FrQZVI5nHs4h686BKYh0TzvrzO2763gW2dDRi64K1XPcJlG/fMen+nOsKF932CVGEvVTvFXRs/Ti61ck7nEkjIFKAxKVg23M/Teh8/atgBwHuy59IgagsC5jFrK/KjXxP571uRmkbho2/HP3UtpaBMISjR7rSw1G6fdXK8CCAYFVO1W+GHj7lVjcCDwNMQQe05AVJqaEhEqYTuaVjrV2Kk6tFNMKOhuDpSLcOpcEuCO7+SRUpY9cwIKy86vIUZCoVCcagowaU4LHwftu8DX0BihhSDhRBbT/dEeft3V9GfiRKPulz72ntnbY4HiJQHuej+j5ModlN2Grhr08cpJJbO6VyEhEwe6pOwnCxBfx+fPXkLQoO/KC/nkuq4445mbaUPM2vrj/cS/9qPACi946+oXnIeGT8LwOrIMlrtJnRt5jJfMaMx0mfUqlEQ+BpSwOjobg3QDIlhgKaDYUmsiETXw+9luYwMipinrUVvn8uU8oXlvm/lKQ4IEi0GG994sKdMoVAoFholuBSHRdcgdA/Bksbpt9OCCtGRx7BLnbjRDtAP/1fvT0+led+PVlJ2Tdqacnz46ntY0lSc9f6xUh8X3vdx4uU+StFm7tz4CUrxtjmdi5AwUoC6BCxLuUSe6OVLS3fQZRVpCqK8IzcudLQ6LmvLOoysrc1bSXz63wEov/x5lF5xGUPeMHEjyvJIB/VmelbHcSsw1GXgu2A5YNgSOyrR9FlayioVZL6AvnoVettsl6ceOXbdXmb3HRU0HS56Vwo7plYjKhSKI48SXIo5UyiFifLJGEwSHr4fKULP1jyJLSnhu3e08PnfLEVKjQ1ruvngax8iMYt8rVHixW4uuu9jRCtDFGLt3LXp45SjzXM6HyHDmZHJWDg3MrqrnweDPfyyoROAf8huJClrVSyvBAhIrTysrC29s5fkB/8FzfVwn3kumb99BRk/S6NVx3JnCTFjdkJOCsj0GngVjXi9OHTPvushMln0VSswly6Zu+l/gSj0B9z3rTwAp780TvP6hYvCUCgUiulQgksxJ6SEHd3hSrzlMxQ1rHIvdmkfXqT9sMWWF8A/3rScn90fiqOLN23hnX/5JPYhDBRO5vdw4X2fIOJmyCWWcdfGj1GNzDbLYiKjla1kDFa0QiSXo9TdzT+ftBWAFxfXcq5b+wGNZW2tgGjdnF4PQBvJkXrf59CzBbyTV9P3ob+hIIssddpYYrdiHcLPuDCikxvSiSXnILZ8HzE8hL5sGebyZWFvcREhAsmdX8nilSXN6y1Oe+nChbwqFArFTCjBpZgTfcOwtw9aZsjo1AIXO78DqduHvRoxWzK45oeruXdHCk2TvOKK+7jqot3Y2uyPm87u4Bn3fxLHy5NNruSujR/DdWbXejuQoObZSsdD0elIH3N3L19esoUhs8JSP8Gb87UMrwlZWzP0X6ej6pK87l8wuvoJ2pvp/PRbwNFZ6yyl2WqYlV9rFLcCI706li0xDtVOFwQEg4MYS9oxV62c+wrLBeTx/yky8LSHFdW46F1p9EMQ5QqFQjHfKMGlOGSqLmzvAsOAyAxaxyp2YlYH8GLLDus1dw84vOM7a9kzFCFmB7z9r+7g1A17iDB7A3T9yNM844FPYfklRtLruHvjR/CsubX1RsVWXSJsIzoWGLsHuc3fxq31vegSrs1uIoIJMgiztpJth5e1FQgSn/o3rCe2I5Jxdl//ZpzGJlZGOkiZh2YEP7CVeEgIgRgYxGhtxVy9OvxFWGQMbHV57Gehn2/jm5IkWhbfOSoUihMLJbgUh8zuXhgYmTlzS/fyOIUdBFbdYbWb7t2R5L0/WE2ubLKkrsq1V99JpG03aepmfYzGoSe44MF/xAwqDNWfzD3nfgjfmlsuVSDC6If6ZPgzcEzQhvOMdO3hhjVhK/Gviidzste4P2sr1gSJw8jaAmJf+y+c2x5AWiZ7P/lGUqs3sMLpIDKHhP6xVmLqEFuJUiIGBtGbGjHXrIZJhlEfbbyy4M6v5JACVl4UYdXFKgJCoVAcfZTgUhwSwznY2Q0NqRkyt6TELuxC90t48blXt352XxOfvmk5vtA4c1mBD7/uQYaSu6gntT9AdAaaBx5h00OfxRQuA41ncO85HyAw5/YhHIiwstWYho5msDWBvm8IY2c3X+h4nLzhsc6r47WFU/ZnbUXrIN1xWJWgyM9+R/QntwDQe+1radp4EUvsNsw5CLgJrcRDfAcQA4NodWnMtWtgkmHUi4H7v52n0BcQb9bZ9KbkEZvRqFAoFNOhBJdi1gRBOJzaCyAxQ3HIrA5iF/fiR+a28i8Q8MXfLOU7d4SG8yvOHOb9L3uSXVYnMSJYs/zVbR54hPMf/AyG9OltPpf7z34fYo5eMj8IE+Sb6mpiq1LB2NmD3jPM/y7p577UEJbUuTa7CQsdKiNh1lZq6WFlbVm3P0jsS98HYPgtV9H8wpfQbDXMSUiMbyUmGg6tlSgGh9CSCcx1ayE69ziLhWTP3RV23lZB0+Cid6Sx44vLyK9QKE5clOBSzJquwfCrfaYFfcLHzm8HQBqHXkkqVnWu/dEqbttSB8A7n9vFm57TxTatFxePplm2EhOFfWx85PMY0qe79QIeOOu9yDmGrXoB5IrQ3AAdDRJ7YARjRw9ascyeNp2vNz8JwBvzp7PST4dZW6Z92Flbet8gyU/9G5qUFF90Cc1vfCtpa+7BneNbiYeCGBpGiziYa1ejxRfnar/iYMC9/5ED4NSXxGk5WUVAKBSKxYMSXIpZUSyHw6njkRkytwCr3I1V7sOLth/y63SP2Lzju2vY1hvDMQX/+IrdPP+METoZYIjsrMWW5eY5/8HPYPklButPOSyx5fph/EVLPSxJuDjbezE6B5CORU+Hw/sb/0RFDzjDbealpXW1rC0JqWWHlbUFEPvyD9HKVdzT19H8gQ8RmaPvDMAtawz3HHorUWayaIaBuXYNWmpuKzoXGiEkd341i1uUNK41OeNli1MUKhSKExcluBQzIiXs7IJcKVyRNx2aX8bJb0eYsUPO3Hp0b5x3fW8NwwWLxoTHV16/ndOXlRghTxeDpIhjMHOLSBM+Gx/+HIlSL8VoC/ef/b7DF1t1kmXksB/rQc/kCRrTDEZ9rm34IwNGmWV+kg9nLkCfkLV1eOLEunczzm33I3Wd6Pv/jogzd7ElBWT6dPzqobUSZaEAQmCctB6tfoYMkKPIkzeV6H/Sw4xoXPyuNLqpfFsKhWJxoQSXYkb6R2B3H7TUzZxoYBf3YLoZ3NjyQ3qNXz9az4d/thLX1zmpvcRXXr+d9jqPKi576QUgyixM2lJy+pPfpHn4cXwjwr3nXjfnnC3Xg3wZ2pM+Hfl+7L19oGkEbQ1kDI8P1P+ZbrNImx/nn4cvpd43wMtDcsnhZW3VXjx2w3cB8F/+fBo3nHFYh8vPoZUoiyWoVDDWr0NvOszrWUAGt3s8+tMCABvfkCTZduy/rQkhcfMSt1RbRaqBptcGgRu1W1NDN1D5YgrFMcKx/86kWFBcLxzfY+gQmUHvGNURnMIufLtx1llTUsLXbm3n325dAsCzT87wT6/aRcwRCARdDJCnNOtW4qo9v2ZV5++QaDxw1jXkkytmtd+BVD0oVGCpkWdJdw/mYBZRn4SYQ0Fzua7hz+yxcjQFUf555FKaAjs0ySfbINF62CNuIj/+Dea+PoKGNPVve/thHcsta4wcaiuxXEEWixhrV6O3Lr75iKN4FcGdX8kiA1h+gcPqS4/tCAi/KqnkBFJInKRO83oL3dQIPIlfkfjV8Fb4kqAqCXyQgdx/AG0SQVa71XQlzBSKo4kSXIpp2dMLA5lwVd60SIFd2AmBi4jM0HesUfE0PvKzlfxmc+jCf8Mlvfzd5V0Yta7hEFl6GKKOBPosIiCaBx7h9Ke+DcATJ72OvpbzZnUeB58XlIsBK6sDtI30oQuBaGsAQ6es+Xyw/na2WxnqAod/Hr6Udj8G5aFxWVuHtzJO7xsk+p2bADDf/WbsVN2cjyUFjPTpeFWN5GxbidUqIptFX7MKY8mSOb/2keDB7xTI9wTEGnXOf0vqmIyAkELiFiVuUWBYGolmg0SLQbROx7AOvh4pJcKHwJMIDwI/FGDCB78qwglSVYFflQRV8Erhc1JKJKAxrlo2rkqmm6AZHJM/Q4XiWOCoC66vfvWrfO5zn6O3t5czzzyTL3/5y2zatGnK7TOZDB/60If4xS9+wfDwMCtWrOCGG27giiuuOIJnfWKQycPOnjBN3ZhBQ5jlPqzSPoJZiq3BvMm7v7eGzZ0JTF3y0Zfs4aXnDY09X6LCXvpwsLCZ2X81uiJRQ7Cn4znsWPXiWZ3HgZRd8IZLrMn30FQahnQckQhXGVYJ+GjdHTxlD5MUFv80cgnLgiS4WbATkFoyL6nrsS/9AL3q4p91Ms0vnNt1jJIf0ckfSivR8xAjGfSVKzCXLV10w6jHs/feCtv/UAYNLnxHGidxbEVABK6kkhcErsRJaDSuNok1mjhJbVrRo2kahsWkYmw8IgiFlvBlKMq8mkjzwa8IvFq1LPAlgSsRQbjteHRTQzPAqN3qZk2oqWqZQnHIHFXB9eMf/5hrrrmGr3/965x//vnccMMNXH755Tz99NO0tBz8we26LpdddhktLS387Gc/o6Ojgz179lBXV3fkT/44JwjC8T0VF5pmsEBpgYuT3w6znJe4pSfKO7+zlt6sTTrq8y9/vYNNqwv7X5uATvooU6WFmY3a4YrE67H8EkP1J7P51P83J6FQKgu07mHW5nqos1xkaz2YoYDyEHyy7i4ecQaICZPrhy9htV8HfhnQwmBT8/CDQK17N+P8+QGkrpN8/98fVrXhkFuJvo8YGkJfuhRzxeIbRj2e4lDAPf9ei4D4yxhtpx4bERBS1qpZBYFmaMTqdZKtBtEGA9OeXxGjG2H1CmcGYebLMSE2Jsxqj/lliVepCbJaW1MEE9uYml4TY+MFmaHamArFgRxVwfXFL36Rt7zlLbzhDW8A4Otf/zo333wzN954Ix/4wAcO2v7GG29keHiYu+66C6s2UmTlypVH8pRPGLqHYN8AtM2UucX4eYlLZ9z2T0+led+PVlF2DVY1V/jq67ezvKk6YZs+hulnhEZmNrtrwmfjI58nUeqhFG3mvrPfhzjkScxQyVSwd/XSUR0k1RxBpvdfeIDg+rp7uC/SiyMNPj1yMSf5DSD9MAIivQyc1CG/5kG4HrF/+U54Xa98EdF1J835UIfcSgwCgsEhjPbFO4x6FCkkd38th1uUNKw2OeOVhxe9cSQIfEk1F7b57JhG/UqTeJNBJKkfdVESiqTpz2HSNqYXesgCV+CVwzZm4EmCCri+RAbhfqNoxkRP2Zi3TLUxFScIR01wua7Lgw8+yHXXXTf2mK7rPPe5z+Xuu++edJ9f/vKXPOMZz+Ad73gHN910E83NzbzmNa/h/e9/P8YUrZxqtUq1uv8DPZfLze+FHIeUKrB9H8QiYM3wG6J7BZziToSVDt85p0BK+M4dLXzhN0uRUuOCNTm+8NqdpKPBhO2yFNhHP0limMzwoS8lpz/5LZqHHsM3Itxz7gdxnbpZXuX+Y3hdGWK7u2kzy8RXpCdctEDy+fQD3B7pwpI6Hx+5kNO95tqMxCzEm0Pv1jwQ+dGvMbv6EY11NPy/tx3WsQ61lSgGhzCamzDXrJo5aO0o89TNJXofdzEcuOhdaYxFHAHhlgRuXoCmEUlrNK21iNbrWJHFWz2cjENtY4YVs4kiza8K3HJYLQt8SVCqmf6FhHGdzPFVsrF2pmpjKo4Djto76+DgIEEQ0HrACqjW1la2bNky6T47d+7kD3/4A6997Wv59a9/zfbt2/nbv/1bPM/jYx/72KT7XH/99XziE5+Y9/M/XpEynJWYKcycuRXOS9yJ7hXw4lPHQHi+xqduWs4vHgiFySs2DfDBv9yLdYCecvHopI8AQYyZV5ut2vsbVnX+NlyReOZ7D3lFolZ1ETv6iHcP0NhsEl/SMKEVKZF8KfUQ/xfdgy41Ppy5gPPctvDJah7seLgqcR6qQXrvINHvhkb56Hvejp6ce9VmrJXozK6VKLM5tHgMY/VKsBZ3a25op8cj/xW2n8+7Okl6yeIThyKQVPMCrxRWs1JLTBItBpG0ftxHOIy2Es1p2pij1bKwlckEYRZ4Ar9C2Mas1tqY5VobU0w0/U/0lo2rmKlqmWKRsvjeraZBCEFLSwvf+MY3MAyDc889l66uLj73uc9NKbiuu+46rrnmmrHvc7kcy5bNfZjy8c5ABnb3QnPdzDaosXmJzvRLGD/8sxXc/GgjuiZ53wv38dcX9h90bImkm0GGyc3Kt9U8+AinPXUjAE+e9Nf0tW6ccZ8J5z6SRWzrJZLJUb8qRaJ+otCQSP49uZmbYzvRJHwgu4kLqx3hk345/OHMk28LIPql76FXPeTZpxF7wQvmfBwhwsHUs24luh6yWsU8+SS02OJOZ/erkju/nEUEsGyjw9rnLK55jn6lFukgJZGUTv0Ki1iDjh07tqpZC834atl0U6+kCCtgYx4zb3QBQG0VZiU0/09oY/rh3y4S0GurMQ/0lpkqu0xxdDhqgqupqQnDMOjr65vweF9fH21tbZPu097ejmVZE9qHJ598Mr29vbiui20f/K9zx3FwnPn5UDze8fywlagB0Zl+ZCLAzu9AkxJpTv2u+fvH67j50UYMXfKl123n0g2Tt3SHydHDIHUk0WdIk08Uutj48OfRpWBvx7PZvuqqGU52P5rn43T3I3b2oaNRd1IDyUkGHH838SQ/j28F4JrceTy7UqvgSR+88vz5tgDznkeJ3P4Q0tBJX/sPh/Uv9MKITn54lq1EKQmGhzGWdqA3z23I+JHkwe/lyXUHROt1Lvh/iyMCQgpJtRBGOpiORqLVIFmLdFBp94eHpmuYNjDDYoKxVZgHVs08cMvikLPLAm9hr0tx4nLUBJdt25x77rnceuutXHXVVUBYwbr11lt55zvfOek+F110ET/84Q8RQqDXso62bt1Ke3v7pGJLcWjs7YO+kVlkbjE6L7EHLzp1TlOmaPDpm0Kh8sZLeqcUW2WqdNKHgU6E6f8/jp+ROFS/gUdPfdusVyQauQLRPd24PVlEKkFzR4TEJFrxx/EtfD8RDqN+R+5snl9eFT4hBZQzEG85/CT5UVyP2A2hUd561Usx162Z86Gqh9hKFMMj6Ok05vJlizr+AaDzgQrbfl8G4MK/TeEkj27VKHDDapbwJXZCo2mdRbzBOOrndSJyyKZ//4CVma7Aq+zPLjNn4VVTKObCUW0pXnPNNVx99dWcd955bNq0iRtuuIFisTi2avH1r389HR0dXH/99QC8/e1v5ytf+Qrvec97eNe73sW2bdv4zGc+w7vf/e6jeRnHBdkC7OiC9Cwyt2Y7L/Gfbl7GUMFidUuZt/9Fz6TbCAT76CdPacZWYrgi8QvjViReO7sViYHA6R0ksreHUiEgaK6ntdkgMYlN7KbYdr6ZfAyAN+VP56rS2v1PVvNhVSvVPm+r+Oz/+hVW1wCyqZ7kW9885+MIAZlDaSWWK2iAuWo5LPIKcGkk4J6vh2L95CtjtJ9xdM53fKSDbmpEa5EOsQZDfUAvcmZr+h9tYy7yf38ojlGOquB61atexcDAAB/96Efp7e3lrLPO4pZbbhkz0u/du3eskgWwbNkyfvvb3/Le976XM844g46ODt7znvfw/ve//2hdwnGBEKHYKldh6SzGDtrFvRjuCN408xJv25Lifx8OfVufftlubFNOut0AGfoZooEU2gxp8qc/dSPNQ5vDGYnnXDe7FYlSEtndTaSzl6wRRW9N0dYI8Uk+s2+J7uIrqYcBeG3hZF5d3LD/Sa8UvgunlsAsssZmg94zQPx7/wtA/O/eiZaYu4eqMHwIrcQgQGQz6KtXodXPIvfjKDIaAVHNS+pXmpz16iMfATEh0iGu0bDSJN5k4qSmDyhVHHuMtTEVigVAk+ODUk4Acrkc6XSabDZLKjU/Hpxjna4BeGALtNSDPUPByHAzxAfuQRhRhDX5h1+ubHDVDafQn7O5+pm9vO+Krkm3K1BiC3vQ0UgQm/Z1V+75DWc++R9INO475/30tk49jWA81sAwsad2kbESmAmbtgaITSK2/hTp5Pr0PQgNXlZcx//Ln7lfAAoPKjmoWw6J2SXpz4bIdZ8nfsejaOecQd2/f2XOH97VskbvjrDiFonP/Ocs+gfRG+owT95wDERAFHnwuwUMC674bCPppUfmfKWUeOVwtaGmaUTrNZKtJrEGY9oVeAqFQjEVi/vdVrHglKvhcOqIPbPYQgrs/C40UUVEpjZ6feE3HfTnbFY0VnjXZd2TbuPX0uRdvBkHUzcPPsrpT30LgCfXv3bWYksvlnF295ATFlbCpq0RopP86/Vup5vPpu9FaPDC0uqJYksKqGRDoTVPeVsA+l0PE7/jUaShk3r/3I3yh9pKlIUCmm1hrFyx6MXWyB6Ph38YRkCc+/rkERFbY5EOZYEd1albahJvNoimj35AqUKhOLZZ3O+4igVnVzeM5GeRuQWYlX6sUue0MRB3bUvy8/vD5z/5sj1ErMkrLj0MMESWxhnEVrzYzXljKxKfxfbVL5n5RAH8AHt3N5WhMtayRloaIDqJoHzI7uNTdXcTaJK/KC/n3blzJrY2q7nQt5VsP+yh1PuP6RL/1+8CEHn1y8Ow0TlSGNbJDxnE0sHMG/s+sljCPGk9WjI559c8Eviu5I4vZRE+dJxrs+6yhY2A8CqCal6CgEhao2GlQ7ReRTooFIr5QwmuE5jBTJi51ZiehUlUeOG8RM1EGpOblotVnY//Igwffc0z+jl3VWHS7UbI08UgSeIY00RAWF6BCx78DLZfZLjupENakajvG8DfO4yzrJ6mJrAn8bg/bg3ysbo78TTBxZUO3pfdiD5ebHmlcJ7gPPq2AIwf3oTdPQjNjcTe+qY5H6da1hjp1bEjYnarEgeH0Je0obfNX1t0oXj4+3my+wIiaZ1nvC29IF4pISRuQeIVBWZEI9lqkGhWkQ4KhWJhUILrBMX3w1ZiICA+c6g7drETs9I/7bzEf7mlg+6MQ0d9lb+7fHLflovHPsLstShTrzbTRMB5D3+eRLGbUqSJ+855P2KWoifoz6Hv6CPRHqeh1WCyjMOnzWE+VH87FT1gY7WND2YumCj+hAd+JfRtOfNXDZLdvaS+/xugZpSPT+9dm4rRVqLvaiTqZ9FKzGTQkgnM5csX9VBqgK6Hqzz92/0REJHU/J+v8CWF/lDQNa23iDUYOInF/XNRKBTHNkpwnaDs7YfeYVgyC1uS7hVwCtPPS7x/Z4If3RNWTj7x0j3EnINFgETSRT9ZCjTNEAFx2pYbaRldkXjudVRnOSOxlHWJbe+hOSVIdESZzHazy8xyXcPtlHSfM6vNfGzkQqzxYkuKsJUYb4boPOVt1Yh86bvorodx3tnYz/uLOR+nMKxTGDaIpmbRSqxUwPMx1q2D6OJKZz+Qcibg7n8LIyA2vCDGkrMWJgKiNCxItBq0nmyrSAeFQnFEUP+kOwHJl8IYiFQczFnESdmFXehensCum/T5sqvx0Z+HrcSXbxzggrX5SbcbIksPQ7U0+ak/5FbuuYXVe8Iq0INnvodcamaPk5SQyQmi+3pZYuRIrUhNKrb2GXmurb+NvO5ystvAJzMX4Rw4JLuSData8+nbAsSd95G48zEwDOLve+9hrUoc6dWxnFm0EoUgyGTQlnagNy7yCAgpufvrOSpZQd1yk7NfszAREH5VggZ1S00lthQKxRFDCa4TDCHC8T2FMtTN4vPMqIzOS5y6FPbl33XQORyhNe3y91fsm3SbEhX20ouFic3UyyGbBjdz+lPfBEZXJJ4/4zkKCSMFSOVGWFEZIL40PalQ6jWKXNtwGxmjyhqvjs+MPJOYPOBcvBIYJiQ75tW3JSpl0l/6LwAir3nFnI3y41uJzmwiIIaH0RsaMJd1LPo0x62/LdP9sItuwcXvSmPMMNJlrpRHApJtBtF69fanUCiOHOod5wSjdxg6+6F1NsUOEeDkd4AUSHNyr9Eje+J8766wlfjxl+whGZm8lbiPfkpUSTF1uGe82M3GR8IViZ1LLmXb6pfOeIqBCFdZ1osSqwrdRNI2OAcLukG9zLX1tzFglFnhpfjs8CUk5AGCatS3lWwHZ36rK3rNKK81NxF98xvmfJyxVmJyFr6tYgnNMDFXrgBrcac5Zjp9Hvx+WBk957VJ6pYvjNthdOZhXYepQksVCsURRQmuE4hKNaxu2dakmuQgrHIPVqUHPzL5qraqp/GRn69ASo0XnzPIM0+afFZihjxDZKgnOWWavOkVOf/B67G9AsN163nktLfPWJFxfcgUoCnms7rYQ8RzkZOU7Ub0Ctc23EaPWWSJH+ezI5dQJw/wBo3mbS2Ab8vd10n9D34HQOy9czfKV0ujsxJn0UoMAmQ+h758KVp6FuMDjiLBaASEB0vOsjnp+QvjM5NSUskK0h1q5qFCoTjyqHedE4jdvTCUhcZZBOxrQSWcl2hEp5yX+LVb29k1EKUp6XHtCydvJQYIehhCQ8eaYo2GJgI2PvIFksWuWa9ILLthW7StAVZU+7EHRxAtBwuLvObygfo/02nmaQ6i/PPwpTSJST7QqzmIpCDZNr++LSlIfPmH6K6HufEc7MueM7fjCBjp1fG9WbYSB4fQW1sx2tvn9HpHkof/q0Bmr4+T0njG21MLVnmq5iROUiPZrtYKKRSKI48SXCcIQ9kw5LRhcnvTQdiFPRjuMIE9ee/x8X0x/vP2/8/eeYfJVdZv/3PK9L69pPdKAoQqSJGmgnSxIBIlFkBU5FVQAQUVLD8EKaIIKFgAAUVEAQ2iApGSEJKQAglJNsn2Mr2ec573j5NsstndZHdndpNNns917XXBzDnPeWazc+Y733LfNQBcf/ZmQt6+p+W6iNNFjNAeSolz1j5IVftyDM21fSJxzxOMiQzk8jCmEsYQw9XQggj7QOs9AfCz4DLec8SImC5+1HkC1VYf+yikbTPqEvdtAeRfWkLglVXbG+W/MuRgItmhkuoaYCkxFkfxetDGj+vzd7I/0bg8x9q/pQE45oshPOHh2a9lCQppi/A4Bw63vO1JJJKRR955DgIMw55KNCzwD6Bao+ZjOJOb7GCrD82mgmGXEk1L4YOHdPKB2bE+1ylgsI02HDjQdp8E3M74hueYtPlvACw7ZM8TiULYJUQFmFAD1e4cjvcaQVEQ3t5iYktcjbzo2YIqFG7uOo4xZh96Wt19W3Ul79vKppNU3vk4AO5PfBRt0tAa5fNZ6GoZYCkxX0DkcmgTxqP4hm6GPRJk4xavbJeAmHa6hzGHDY8EBECmy8JTpuKv3L8DUIlEcuAiA66DgG3t9k9VeAAHC4Er8R6qlcVy9C34+csXa3i32UvEV+C6s7b0u1QHMRKk+m2Ur+hYySGrd0wkfoKmmqP7XWvHJKLbCRNqIeKz0DY2o0aTWH3USFNKgZ8FlwFwQWoa040+MnU9+rZKK5lgCQvn75/C2dSOUlWJ57JLh7xWKqqSzwyglCiEPZVYV4taWTrfx+HAloCIkY3aPVWHXTx8VkNmQSAMCI91SBkIiUSyz5DNDAc4ybStKB/wDsyrWM+27NEvcV2Th/v+ZfcFffMjWyjzG30elyNPI214cKP2Edf7Uk0c8eaPUYXJlrr38+6k8/vdk2FCLGXLWNRX2gbU6rZOtC1tmBV9+xLd719Ju5ahzvBxSXJ23wvnYuAOlbxvCyC1ZSPj/7AYKK5R3shDokPF5R2IBEQXSiiEPm7sfq8m/+4/M2xbmkfV4X1XhdCHSQICbBkIX5WGr3z//p1IJJIDG3kHOoARAjY02kKnkYEkEKyCLQOhaH36JRomXP/4eAxL4QOzuzhjble/S7XSRYosfnrXMO2JxB/YE4mhqSyfc3m/E4l5ww62KkIwrtoOtpR4Cn1DI8Lvtkcud2OVo52nfRsA+Gp8QW9hU9jet6XbpcRS921ZeSruehxlR6P8KScNea10XCWfUXF69hJwZbIogD5xHLiGrzRXLKkOk/f+k2HpQ7YExPyP+ymbMICR2SFSyFooqkJ4jI7SlxKuRCKRjBAyw3UA09JpW/hU7bkHvRtnett2v8T6Pp9/8L81rG70EfQYfPsjDf2qNqTJ0kInAby9ZCAUy2TB9onEjLuc1w6/tt+JxHQOsnmoLYOactBUIG+grW+EnIGo6f3C8pjcFnoDgDPSE5mf70PSwtzhkzih5H1bQgiM//4P/5LtjfJfH7qivGlAvM3u3drjEqaJFYuiTpqIEtl/1OSFECSaTFrW5GlbW6BlTZ5U286m/9pDnMz80NAyfwMlG7UIj9WHrRlfIpFIBooMuA5QcnlYv80OUtwDSOCoRsqWgdADffolbmh1c88/7VLiN87cQmWw71IiQAsdZMlT1Ydf4uy1v6Z6x0TiYf1PJCbSYAoYU2X3nikAQqBtaUVt7cKq6Tuw+L1/DVv0BGWmm88lDul9gLDsUmKgBjwDjEQHQSLdwdi7/wSA+5MXoU2cMOS1MnGVXFrFG96zX6LV0YVaUYFe33egPFJYliC62aB1bYHWNXla1xbIxnpOVSoKRCbq1Mx2Mvsc37BmnXJJC4dbIVQvb3MSiWTfI+9EByibmqGtyw5YBoIjsQm1kKDgHdvrOdOCGx4fT8FUOX56jI8c2tnvOnFStNLVZ6P8+Ibnmbz5GcCeSIyFJvU6ZsckokOHCdUQ2SUBpbbH0DY1Y0WCfcodbNRjPOJbC8CV8UMJ7K4kD5CL2n1b/tL3beWtAoE/PIfe3Sj/6SGvZVmQ6FRQNWuP2xTJJIrTgTZh/MCa9EqIWRB0bCjQuqZA69o8besKFDI9S5+qAyomO6ia6aRqhoOKaQ6c3uHvZBCWIJcwqZzmxOmTnRMSiWTfIwOuA5CuBLzXCGXBgcUUWq4DV2qT7ZfYR+3qty9X8dYWP36XyY3nbu63vCUQtNCJgYWbnsGOPZF4HwBrpn68z4lEU0A0YUtXjKncTcIinUXb0GQHWt7ePUomgtuCb2Aqgvdl6zgu10e2p5Cy+7WC9aCVtm9ICEGq4T0m79oo7x16uSyTUEjHVLyhPehuGQYimUKfMQ0lMHxTfjsoZCza3inYGay1eTreLWAWeh7j8ChUTHNQvT3AKp/sGDZPxD2RjVu4gxqBGnmLk0gk+wfybnSAYZq2fU/BAP9AKmbdfolmn36Jm9td/Ox5O3i55kNbqQkVeh2zgyhJ2ugiTM++qF0nErfWHs87ky/oda5h2pmtSMAOtnqUQU0L7b1mlFgKq7bvUuJT3vWsdXbitXSujB/W20LILICRs/u2nKXXp0pYKeruecpulD/y8KIa5YWwJxNRbD3W/rDaO1DralCrB5jGHCTZuEXbujyta+z+q65NBmK3+M8VULqzV1UznUTG66javm1Ot0yBkRWUT3IM6/SjRCKRDAYZcB1gbGuHrW1QO0A7QEemCUemiYK7utdzlgU3PjmenKFy9OQ45x/R3u86toVPOwpKDwsfu0n+NpyFJF2hKbw5t/dEYr5gq8dXlUFdOTh2CzLUxna0be1YlX1LQDRrKR70rwTgc4l5va17du3b8pa+qdwSJvp/l+JdshJ0vahGeYBsys5uuf39Z7dENIoS8KOPG7fnqGwQpNpNWtfmu0uEsa29e8d8lSpVM5xUzXRQNcNJsE7b70ygM10W3nIpciqRSPYvZMB1AJHKwLtb7FKcYwD/soqZxZXcgFDddrPNbjz6aiVvbAzgcZp89/z+S4mww8InThk9RUgnb3yKcHwDed233SOxZzmwexKxwvZF3D05okST6BubEf28KIHgjuBSsqrJ3HwFH8z0oeaei4EnbPdtDUNwEEt1MuGep4DtjfITxhe1XrJTRVig91f1zOXAMNCmTAFP8UbP0a0G//m/KPHG3gFWqF7rkcHyVezfQYyRFwgLwmMcqPr+FQhKJJKDGxlwHSAIYfdtxdMwdoAVJmdqC1quo89G+W1dTm571i4lXn3GNuoj+X7XMTBpoh0Heg8LH1+qkRnrHwVg1cyFZN09027xNCBgXBVUhNm9CAi5AvqGRsibiOq+e5QWuxt4w9WCQ6hcHVuAuvsqRtaeuvTXlrxvC+xG+fJf/Bm9qQ21ugrPZy8par1cWiHVpeLy9ZPdsizMri608eNRKwaYxtwDQghevz9OvNHsniDsDrBmOHEHR1fDeabLJFir45UipxKJZD9DBlwHCK1d9mRiVXhgSRzbL/E9TGeklyq5EHYpMZPXOHxCgouOatvjWh3EiJGigtAui1gcuvJuNKtAa8V8ttTv7GmyBMSStmbpmEpbQb4XQqBtbkFtjWH207cVVXL8PLgcgE8lZ/X2ShQW5JMQGltyva1u/v4CkT//BwDvddcU1SgPkIoqGAXw9HYrAmw1eTUSQR9bX5JsXfPKPC2rC6g6nHVbOYHq0XtLyKctNIctA7G/lTklEsnwcOKJJzJ//nxuv/32kh47HIzeu6ukm3zBtu/RVHAPRGRcCJzJjahGhoKvt+feE2+U87/1QVy6xU3nb97jpGOewnYLH2cPC58JDc9R3rUGQ3OzfPYXuoMDc7vsQ2D7JKKvt+c0AGprFG1LK2ZFcLviaW9+HlxOXM0zqRDiwtT03gfk4nYp0Ts8voLGO+up/qmdwXMvuhTncccUtV4hB4nO/m18RDqNomnoE8aDo3h1fCEEyx9JAjD1VM+oDraEEGSjFmWT9FGXlZNI9nUgsDv72372xJNPPonDMbDqxWCOHQ5G7x1W0k1DC7RFbZ/BgaBnW3GmGzDcvU9ojjn4yTN2ifGq07YxviK3x7Va6SJJpofIqSfTxux1DwOwetonyXjtGmfBhHgSIkE72HL183evpLJoGxoRut6vauurziZe8DSgCrg6tgB9d5cqI2sHef4a0IbhzzyeJHL93ai5Ao5jjyrKnHoHqahKIavgL+ujnGiaiHgCdcpklHC46GsBbH0jR8cGA80Fc84p/eTmSJJLCJx+hWCtvKVJDk7y+TxOZ2ltyoYT0zRRFAW1SD3EsrKBD0IN5tjhQH4VHOVEE7ZfYtjfbyKoJzv8EtEQWs/0khDw3T+NJ5nTOGRskovf17rHpTLkaKYDP56dMgxCMG/Vvehmlo7IDDaO/yAAuQLEU1BZBuOr+w+2bAmIJpRkBhHpuwyYVgrcEVoKwLnpaUw3dnsT7SgleqvANQz6VJaF5/s/x9nYjlJbg+/mG1D6EGIdDEbBloJwuEWflUKroxO1ugq9rrao63SvZ+3Mbs38kG9UW99YliCftgiP0UdEVFUiKSWXXnop//73v7njjjtQFAVFUdiwYQOf/exnmThxIh6Ph+nTp3PHHXf0Ou+cc87h+9//PnV1dUyfbmf5X3nlFebPn4/b7WbBggX8+c9/RlEUli9f3n3uqlWr+OAHP4jf76e6uppPfepTtLe397ufTZs27fE1vPjiiyiKwjPPPMMhhxyC2+3m6KOPZtWqVd3H/PrXvyYcDvOXv/yFWbNm4XK5aGhoIJfLcc0111BfX4/P5+Ooo47ixRdf7LH+yy+/zIknnojX6yUSiXD66afT1WV7+Z544ol85Stf6T72nnvuYerUqbjdbqqrq7nggp0yRLsf29XVxSWXXEIkEsHr9fLBD36Qd999t9een3vuOWbOnInf7+eMM86gqalpj7+P/pB3p1GMadrBVi4PwQEmKJzpRvRsiy1yuhtPv1nGf9eFcGgWN5+/ea8BXDOdZMnh28Wgekzjv6lufxNTdWw3pVYxLUhmoK7Czmzpe/hs17a2oTZ2YFX0LQEB8KB/FW1ahhrDx6eTs3sfkE+AOwj+Aab8Bon74b/gfWUFwukg8OPvoYb6abgaBOntNj6uPkyqRTKJ4nahjR/Xp8L+UNj0cpbYVhOnT2HmmcPrZzjcZKMW3rAqRU4lo5I77riDY445hkWLFtHU1ERTUxNjxoxhzJgx/PGPf2T16tXccMMNfPOb3+Sxxx7rce7ixYtZt24d//jHP/jrX/9KPB7nrLPOYu7cuSxbtoybb76Zb3zjGz3OiUajnHzyyRx66KG88cYbPPvss7S0tPDRj3603/2MHdt7sKov/t//+3/83//9H6+//jqVlZWcddZZFAo7tRvT6TQ//OEP+dWvfsXbb79NVVUVV155JUuWLOGRRx5hxYoVXHjhhZxxxhndgc/y5cv5wAc+wKxZs1iyZAkvvfQSZ511FqbZe6r6jTfe4KqrruKmm25i3bp1PPvss7z//e/vd7+XXnopb7zxBn/5y19YsmQJQgg+9KEP9drzT37yEx5++GH+85//0NDQwDXXXDOg38fuyDvUKKapA7a02nIKA0Ex0jh3+CWqPf/p2xM6t/7VflNdfkoTk6uze1wrQZo2OntY+LhyUeaueQCAdVM+StI/BoBYCsqDUN2H7EOP/XUl0DY2I4LefnUtVjs6eMq7HoCvxA/HI3Y7zswDYnspsfS1esdrK/He/yQAnm9cjT6jj96xQWKZkGhX0Z3W7vMLYFmIZBJt2lQUX2nKfqYhWPHHFACzzvLh8o/e712mITALgtAYB5pDNspLRh+hUAin04nX66Wmpqb78e9+97vd/z1x4kSWLFnCY4891h0YAfh8Pn71q191lxLvvfdeFEXhvvvuw+12M2vWLLZt28aiRYu6z7nrrrs49NBD+cEPftD92AMPPMDYsWN55513mDZtWp/7GQg33ngjp556KgC/+c1vGDNmDH/605+691woFLjnnnuYN28eAA0NDTz44IM0NDRQV1cHwDXXXMOzzz7Lgw8+yA9+8AN+9KMfsWDBAu65557u68ye3ccX7e3r+Xw+zjzzTAKBAOPHj+fQQw/t89h3332Xv/zlL7z88ssce+yxAPzud79j7Nix/PnPf+bCCy/s3vO9997L5MmTAbjyyiu56aabBvV72YEMuEYp6azdKO9xDUxzC8CZ2IhWiFHwjuvxuBBw81PjiGd0ZtWluPT45j2uIxA000EBkzA7u/Tnrv4VzkKSaGAi6yee3b1Pp26Lmu5RgDyXR1/fCKZla271QQGL24JvIBQ4NTOew/O7ibUKy26UD9SCq/is0+6oTW34v3s3ihCIs0/He/aZJVk3HVfJJBV8fdj4WF1RlEgErbq3MO1Q2fCvDMkWE3dIZcYHR3d2K9Nl4avQ9nt9MIlksNx999088MADNDQ0kMlkyOfzzJ8/v8cxc+fO7dG3tW7duu6S3g6OPPLIHue89dZb/Otf/8Lv792ysWHDBqZNmzbkPR9zzM7BobKyMqZPn86aNWu6H3M6nRxyyCHd/79y5UpM0+x1zVwuR3m5LXuzfPny7uBnb5x66qmMHz+eSZMmccYZZ3DGGWdw7rnn4u1jenzNmjXous5RRx3V/Vh5eXmvPXu93u5gC6C2tpbW1j232/SHDLhGIULAxiZ72m+gmltarhNXajNmH36Jz62MsPjtCLoquOmCzb2U3ncnRpJ2ooR2yW7VNv+P+uZXsBSV5XOvQKg6pgWZPIyrBt+epieFQNvYgtqZwKzp34/oEd9aNjvihE0XX4jP631APglOP/irSi9wmssTuP5O1HiKwoyJVHx9aCnl3REWJDoUVE30FozPF8Cy0MaOKZkxtZEXrHzCzm7NOdeH7h69WSEjZ5dfw2P3vZ2QRFJKHnnkEa655hr+7//+j2OOOYZAIMCPf/xjXn311R7H+YaQ9U4mk5x11ln88Ic/7PVcbW1pekT7w+Px9JBsSSaTaJrG0qVL0XZrl9gREHoGIe4cCARYtmwZL774Is8//zw33HAD3/nOd3j99dcJD3HYaPepRkVREKLvSfK9MXprCQcx7TE74NpDm1NPhLXdL9HA0nu+QTuTOt//i11KXHRSEzNqM3tcaoeFD4AT+w/RUUhyyOpfArB+4jnEQpMAu5QYCdjlxD2htnTZEhDlgX7dtjdrcX7vXw3AFYlDCYrdIjizAMK0s1ta6Sd1fLc/jL5uI2bQh/vW76C5+tGzGCSZpEImoeL29X4DW11dqNWVqCWcrHnnufT2rJDK1FOKV6nfl6Q7TYI1Gp6wvI1JRjdOp7NHT9KOMtfll1/OoYceypQpU9iwYcNe15k+fTorV64kl9s5Xf7666/3OOawww7j7bffZsKECUyZMqXHz44Abvf9DJT//e9/3f/d1dXFO++8w8yZM/s9/tBDD8U0TVpbW3vtZUc585BDDmHx4sUD3oOu65xyyin86Ec/YsWKFWzatIkXXnih13EzZ87EMIweQWxHRwfr1q1j1qxZA77eYJB3qlFGwbDtewC8A/zMt/0SGzHcvdNhtzw9lq6Ug6nVGT534p5LibDDwidBaBeD6tlrf4M7FyXhq2fdFLtWn87Zpc6asj1PTyqJDNqGJoTbCa6+AyULwW2hNzAUwdHZWk7Ijul5gBB2KdFbAe5Qn2sUg+vpF3H/9UWEqpD57lWExkwqybpC2DY+0Fu5QqTSKC4XWn1pBE7BFgZ9+yk7u3XIBf5R3fOUT1k43AqhMVLkVDL6mTBhAq+++iqbNm2ivb2dqVOn8sYbb/Dcc8/xzjvvcP311/cKnPriE5/4BJZl8bnPfY41a9bw3HPP8ZOf/ASg+31yxRVX0NnZycc//nFef/11NmzYwHPPPcfChQu7g6zd92NZ/fu67spNN93E4sWLWbVqFZdeeikVFRWcc845/R4/bdo0PvnJT3LJJZfw5JNPsnHjRl577TVuueUWnnnmGQCuu+46Xn/9dS6//HJWrFjB2rVr+fnPf949Vbkrf/3rX/nZz37G8uXL2bx5Mw899BCWZXVPcO7K1KlTOfvss1m0aBEvvfQSb731FhdffDH19fWcffbZA3q9g0UGXKOMhhZo6YKq/itvPVDMHM7EeoTq6uWXuPjtEH9fUYamCm6+YBMOfc9pUtvCpwMdDX27hU9l+3LGb12MQGH53MuxNCemgEwOqiP9C5vaC5poGxtR0llEn3LzNk97N7Da2YHX0rkqfthOCYod5JPg9IK/uuSlRG3te/hufwiArs9+hIpjT9rLGQMnl1ZIRVVc3t1uZkIgEnGUMXUoffRZDJW1z6TJJQTBOo2J7y9Nhm5fIIQgG7MI1WujuuFfItnBNddcg6ZpzJo1i8rKSk4//XTOO+88LrroIo466ig6Ojq4/PLL97pOMBjk6aefZvny5cyfP59vfetb3HDDDQDdfV11dXW8/PLLmKbJaaedxty5c/nKV75COBzu1sTafT8NDQ0Deh233norX/7ylzn88MNpbm7m6aef3qs22IMPPsgll1zC1772NaZPn84555zD66+/zrhxdq/xtGnTeP7553nrrbc48sgjOeaYY3jqqafQ+2izCIfDPPnkk5x88snMnDmTe++9lz/84Q/9Ntk/+OCDHH744Zx55pkcc8wxCCH429/+NmziqIoYajFylBKPxwmFQsRiMYLB0jdWDyexJLy62m7nCQ1UBiK+Hk90he2XuMsIXCytcfbts2lPOPjsCU189YzGva7VQifvsoUKQqioaEaGk176Kr5MK++N/yArZ9mTMF0JW6ZiQi3oe/g81DY2o72zBasq0q9WRKua5rKK58ioBl+KHcpHMlN6HmAVIJeAsongKa2onRJNELrserSWDhLHzkG/9QbqvaXrcWjfohFrU/FHegZcIhoFlxvH3FklUZQHyMYtnrqqnUJGcPxXQow/ZvQGXNmYhaIJ6ua5cLhlwCWR7Inf/e53LFy4kFgsNqh+qMHw4osvctJJJ9HV1TXkXqmDAdk0P0qwLNiwzc4cjRlg1UzNx3ElN/Tpl/ijZ8bQnnAwsTLL5R/Yu4ibbeHTjnsXC5+Z7/weX6aVtLuC1dMuBuwmeU2zS4l7CraUjrgtARHy9xtsCQR3BJeSUQ1m5cs5MzN5twO2lxJ9leAK7/U1DArTwn/Tz9FaOijUVxL/5iKmu0tnEZTPKKSiCi7Pbtktw0DkC+hTppQs2AJ4+y8pChlBZILOuKMG4v+0f2KZgnzKonq2UwZbEkkfPPTQQ0yaNIn6+nreeustvvGNb/DRj3502IItycCRd6xRwg7NrYGWEm2/xPdQjQyWo2cm77/rgjy1rAJFEdx0/iZcjr0nOdvoIkmaAPZ4baRrLZM2/w2A5XO+iKl7sIQtA1EdgX6UHWyyefQNTYBA7KHm+KJ7C6+5m3EIlatjC1B3LyUaadA94Kvut9l+qHgefBLn6ysRbidbvrOQmvIJONXSpZlTXQqFnIJjt5dvdUZRqypRK0qXrUt3mrzzbBqA+R/zo6ijt+cp02XhrVDxV0oZCImkL5qbm7n44ouZOXMmX/3qV7nwwgv55S9/WdSaX/jCF/D7/X3+fOELXyjRzg98ZIZrFJDJ2Zpbbic4B/iZr+facKa39PJLTGRVvvOn8QB86thWDh2f2vv1ydFEZ7eFj2rmOXTl3SgIGupPoq3SFpaLpyDotacn+8Wy0DY1o3btWQIiruS4J7AcgE8kZzLe3K38KwwwchCZQK+opUgcLy/D+5unAGj+2sfxT5tFuV66ZnwjD/FOFefuqvKZLIpDRxtT1ysjWQwrn0xhFqByhoO6+aPHa213zIJAmBAZK0VOJZL++PrXv87Xv/71kq5500039auuHgwGqaqqGrJUwsGEDLhGARsb7b6ogWpuYRnb/RLVXn6Jt/19DC0xJ2PLsnzptG0DWq6FTrJkqcLOukzb8DiB1DayzjCrZlwKQLZg96vXVOzZukdt7kJraMMsD+4xK3Vv8C2iWo4JhSAXpWb0PiAbt3u23ANN+Q0MdWsL/u/9AoDU+aeQ/MACprsqUJXSZVTSMZV8ViGwm0m1GYuhTRyPEihdb2Gi2WD9C7bUx6Ef84/qib5Mp4m/WsdbJhPzEslIUlVVRVXVQD+AJP0h71z7Oe1R2NQM5QPV3AKc6W3omeZefon/Wx/gj6/ZGa+bzt+Mx7n3byRJ0rTSSWC7yGkwvpGp7/0JgBWzF1FwBrAEpNJQGYHgHkqJSjyNtqER4XHuwb0a3nA28w/PZhQBX40vwLH7n2khDbrLtu8pZSkxmyPwrTtQk2kKc6exZdEZVDjKCGmlC4BMA2LtKk5XT5NqEY2hBvzoJRYeXPF4CmFC3XwnVTNHb3arkLFQNIXQGG1Ul0QlEsnBiwy49mMMA9ZvA9Pai7zCLihGGmdyPZbu7+GXmM6p3PikXUr82NGtHDEpude1bAufTgoYeHChWCaHrrwbVZg0Vh9NU41t45BIQ8AHVeE9LFYw0N5rQsnk9ygBkVEM7gguBeCc9FRmFcp325QJRtaWgHCWsAlUCPw/egD9vS1YZSHablyE0+WlxlFR0qxQOq6SS6m4vLsEu6aJyGZtRXlX6Rraow0GG1+yPTHnXVQ6eYl9QSZqy0B4QrJ3SyKRjE5kwLUfs6XVbpYfcKM84ExuQs/H7MnEXbj9uXq2dbmoC+f46hkDKyXutPCxP6wnb3yKcPw98g4/K2bbEhD5gj0sWFPOHi2BtC1tqM2dWFV77oX6jX8VzXqaKtPLwuSc3gdkY+AOl1wCwv3kP3H94xWEphL/zhXEIg6qHeX49NJ5DVoWxNtUdEdPk2qrqwu1sgK1snRTkABvPZYEAeOOclE+aXh0ZUaCXMLC6VUI1skOCIlEMnqRAdd+SiJtZ7eC3j33RO2KluvEldyE4SzvUX9cutHP75fY9ffvnLcZn2vvqsEWFi10IhA4ceBPbmPG+kcBWDVjITlXBEvY+6wM2/vsDyWRQdvahgj5bM2Ifljr6ORP3ncB+ErscDxitw/YQho0BwRq6G08OHT0le/gvfN3AKS/+DGih4zDq3mocpbv5czBkYkrZJMKrl1tfLJZFEVFG1Nf0tfUvr7AltdzKAoc8tHRm90SliCXNAmN0XF65e1KIpGMXgb8lfG8884b8KJPPvnkkDYjsdmhuZXKDqJRXlg4kxvBKmA5dn7AZvIKNzxhlxLPW9DOsVMTA1quiwTtxIgQAGExf9U9aFaB1or5bKk/EYBkBvxeOwO3p6Kbuq0dMnlEJNDvMQYWtwXfwFLgA5lxHJGv6fX6KGQgPBacgzds7Q+lI0rghrtQTJPcyUeRvvA0MkaUKZ7xuNTSlfeEBYlOFUXtGVdZ0Tjq+LEoJRYLXP6IXTKe+H434TGjNzOUiVm4QxqBmtH7GiQSiQQGEXCFQqX3qJP0TXOnbeEzmFKiI9OMM721l1/i3f+sY3OHm6pgnms+tHVAa5mYNNHebeEzoeHvlHetwdDcLJ/9BVAU8gaYJtRUg3MPf0VKLIXW1IkV2XOW5VHfOjY6YoQsJ1+Mz+99QC4KnjB4Slh2MwwCN96F2t6FMb6O5DcuI2YlCesByvXSTj9mUwrpmIrbtzO7KBIJFL8XvbZmD2cOnuZVeZpX5lE12zNxtGIZAjMrqJziQHfKRnmJRDK6GXDA9eCDDw7nPiTbyeZg/Vbb+HkPg3w9UMz8dr9EJ0LbOYm2osHLQy9VA3DDOQ0EPQNzf28nRpQE5YTxZFqZve5hAFZPv5iMtwqxvZRYFYHQnj7PhbCzW4YBnv4n/Rq0OL/zrwbgi/H5hMRumSUjC4puTyXuoSQ5WLy/eAzHW+uwvG4S3/8yBbeOaaSpdVehl7C8B3Z2Swi7IgrYjfKpFPqM6VBCBWghBMsftbNbU07x4K8avU3m6S4LX6WGT4qcSiQHBXfffTc//vGPaW5uZt68edx5550ceeSRfR779ttvc8MNN7B06VI2b97MT3/6U77yla+M7IYHiWyK2M/Y1Awdsb2Ih+6GI7UFPdfeQwYibyh8+4kJWELhzPkdnDgzNqC18hRooh0XTjShMG/VL9DNLB2RGWwcdwYAiQx43VBdtudSotKVRGvec3bLQnB7aCkFxeKIXA0nZ8f1PEBYtjm1vxpcpcvWOP/1Kp5H/g5A6pufwxpfR8xMUO6IENZL67GZS9km1btmt6xoDLWiArWycg9nDp5ty/K0v1NAc8Kcc0tXeh1pjLzd5xYao6NqMrslkRzoPProo1x99dXceOONLFu2jHnz5nH66afT2tra5/HpdJpJkyZx6623UlNT2irBcDHgDNehhx464PH4ZcuWDXlDBzMdMVvktCw0cHkptZCw/RId4R7q5Pe+UMt7rR7K/QWuPXPLgPfQTpQEaSqJMLbxRarb38RUHSyfcwUoKnkDDBPGVYFrT389loW2rQ0swNW//tMznvdY6WzHbWl8OXYYyu4hXC4O7hB4S1dK1DZtw3/LfQBkPvFh8iccQdbMoSkqNc5K1BKqvAMkoyqWAfqOX0M+jyIsW1G+D8f7oSIs0d27NeODXryR0ZsZynSZBGulyKlEUgxiu93avsDrHrh2JMBtt93GokWLWLhwIQD33nsvzzzzDA888ADXXnttr+OPOOIIjjjiCIA+n98fGfDd/pxzzhnGbUgMw26UN6y9+BDuSrdfYpqCb2z3w6u3ebj/33bE/+2zGwj7BlZKtC18OvDhwZOLMWeNXUZeN+WjJP31dikxBZVlEO6//x0AtSOB2hLFKuv/wHY1w68CKwD4THIu1dZuGRkja79jA7WglSYwUVIZAt+6AyWTo3DYTNKLLgQgbiYZ46ohqJe25ymfhWSn0sPGx+qKotbXoYRL2ye2eUmOaIOBw6Mw6yOjN7uVT1voToVQvT6qlfElkn1NOgvBM/bNtePPgm+An2X5fJ6lS5dy3XXXdT+mqiqnnHIKS5YsGaYdjjwD/hS78cYbh3MfBz3b2u2fukEoEei5dpypnn6JBUPh249PwLQUTp/byalzogNer4VO0mSpIsLc1XfjLCSJBieyfuLZACSz4HFDzV6mEjEt1K1toCp2M1ofCAQ/Cy4jrRrMyJfxkfSU3Q7YXkoM1INrL9HdQBEC3y33oTU0YVZGSHznCtA1UmYaj+aiylFaGQiA1HYbn2CFXU4UySSK24VWXzu4r397wTKErbsFzDrLi8s/OjNDQgiyUYvyyTru4Oh8DRKJZHC0t7djmibV1dU9Hq+urmbt2rX7aFelR85a7wck07Y5dcA7iAqTZeBMrAfo4Zd4/7+reafZS9hr8M2PDLyUmCRDK50E8VHX/Cr1za9gKSrL51yBUHUKJhQMqK/dezO/2h5DbYthVfbfiPYf11aWuBvRhcLX4gvQdg/h8glwBcFfuh4n9yN/w/Xv1xG6RvLmqxCREJawSJkZJrrG4NEGKOc/QIw8JDpUXDuyW5aFSCbRpk5B8ZY2A7Xh3xkSzSauoMKMD5VOrHWkySUEzoBCsFbemiSSYvG67UzTvrq2pCdDuquZpslPf/pTHnvsMRoaGsjn8z2e7+zsLMnmDgaEgA2N9tTfuOq9H78DR6YRR6aZgqeu+7F3mt3c+y/bi++bZzVQ7jcGtgcEzXSQx6CyoHDI6l8CsH7iOcRCkwCIp6EiCHtRd7AtfBpaba2IfhRb40qeu4JvAvCx1EwmGLsFZmYeELbAqVYahXR92Wq899rCramrLsaYbWfUEmaSgOanwlla5XqwbXzyaRV/mV3SFdEYSjiMVj2If+gBYOYFK59IATDnHB8Oz+jMDFmWIJ+yqJ7pHLWvQSLZn1CUgZf19iUVFRVomkZLS0uPx1taWkZNQ/xAGNJd7bvf/S633XYbF110EbFYjKuvvprzzjsPVVX5zne+U+ItHti0dEJD6+A0txQjgyuxHkv3dfslGiZc//gEDFPlpJlRPjiva8DrxUnRTpQwfmav+TXuXJSEr551Uz4K2AKnboc9lbg332C1LYbSmcDag1/ifYG3iGo5xhkBPp6c0fNJYdmN8t5KO8NVAtTWTgI33oViCbJnHEfunA8AYAqTvDCoc1XiVEtrfWMaEG9X0Z2WXTksFBCGgTZ2LDhKe613/pEm3WHhLVeZdurozW5loxbeiDqqpSwkEsngcTqdHH744SxevLj7McuyWLx4Mcccc8w+3FlpGVLA9bvf/Y777ruPr33ta+i6zsc//nF+9atfccMNN/C///2v1Hs8YMnlbfseTQV3/4N8vXCmNqPno5i7ZGUeeqmat7f5CLoNrj+nYcDtQRYWzXQgENS3v834bS8gUFg+93IszYlpQc6wvRI9e9tjroC2pRXhcdovqg+WOVt41rsJRcDVsQU42e3DNZ8Epx/8VaXpcSoY+G+4EzWawJgyjtTXLu1eN2YkKNNDlOmlF/XNxFWySbXbxsfqiqLWVKGWl7ZRvpCxWPVnO7s193wf2igVCDUNgVkQhMc60Byj8zVIJJKhc/XVV3Pffffxm9/8hjVr1vDFL36RVCrVPbV4ySWX9Giqz+fzLF++nOXLl5PP59m2bRvLly9n/fr1++ol7JUhlRSbm5uZO3cuAH6/n1jM1ng688wzuf7660u3uwOcTc3Q1gVjBmrfA2i5LlzJjT38Et9rdXHXP+3S4tfP3EpVsDDg9aIk6SBGmaEzf9XPAdg4/oN0RmYCEEtBeQD24MrTjdoWRelKYtX2XZ7LYnB7cCkAZ6UnM7uwm9SDWQBhbp9KHEQEuge8d/8ex9vrsfxeEt+7Cty2qGressvgtc5KVKW0GRXLgkSngqZbqCqIdBrF6USrq+sh3VEK1v4tTS4uCNRqTD5hFNQO+iHTZeGv0vBVyFKiRHIwctFFF9HW1sYNN9xAc3Mz8+fP59lnn+1upG9oaEDdRS+psbGRQw89tPv/f/KTn/CTn/yEE044gRdffHGktz8ghhRwjRkzhqamJsaNG8fkyZN5/vnnOeyww3j99ddxuUrnP3cg05WAjU1QFhy45pbtl/gemHms7RY+pgXXPzGBvKHyvqkxzj6sY8B72GHho6JyyDuP4s20kfZUsnraJwF7pNipQ3U57FV7MptHa2hF+D39vqCH/atp0lNUmh4+k5y722sTkIvZAqfu0mScnP96Dc8T/wAg+e0vYNXv7J2KGglqnZUEtRJNQO5CJmHb+HiCFgiBiMdRJ01ECZT2Wrmkxeqn0wDMu9CPqo/OzJCRFSgKtgzE3mrWEonkgOXKK6/kyiuv7PO53YOoCRMmIITo89j9lSF9nTz33HO7a61f+tKXuP7665k6dSqXXHIJn/nMZ0q6wQMR07Tte/IF2/x5oOiZFhzprZi7+CX+/pUq3mrw43OZfOe8zYOqwnUQJ0qCiV1bmbT5bwAsn/1FTN2DaUEmDzVl4B1Asklr7kSNpxHBvl/Qu3oXj/vWAXBV/DB8Yrc+pnzSNqX2V5eklKhubcF363Zx00+eSeF9O78Jpc0sbtVFjbOy5DpPQkCyUwXFlg4TsRhKKFRyv0SA1X9JUcgIwuN0xh8zer/oZKImwRoNT1hmtyQSyYHLkDJct956a/d/X3TRRYwfP55XXnmFqVOnctZZZ5Vscwcq29phaxvUDkL2STHzuBLrYRe/xIYOJ3c8Xw/A1z64ldrwwEuJtoVPG25TcPjKn6MgaKg/ibbK+YBdSowE7AzcXveWyqJuacMKevsMlgws/i/0BpYCJ2bGcnSurucBVsH+CY8BvQSBQy5P4IY7UdNZCodMI33ZBd1PCSFImknGu+rxaqUvweVSCqmYittvgWEg8gX0KZPBWdqAKBM1Wft3O7s1/2P+UZsZyiUtHG6FoBQ5lUgkBzglEbs5+uijOfroo0ux1AFPKmNnt/yefjVB+8T2S2yj4B0D2H1CNz45gWxB5chJcS44on1Q+2gnSpw079/wdwKpbWSdYVbNuBSAdM7eW01Zv73vPVCbOlDTWcy6vu13Hve9wwZHlIDl5PLE/J5PCmFPJfoqwRUe1GvoD9+dv0N/dzNWKEByu7jpDhJWCr/mpXIYZCDAzm4JC3QHWK1R1MoK1PLSX2vVkynMPFRMdVB/WGn63UYaIQS5uEXFVMeoFWqVSCSSgTKku9wtt9zCAw880OvxBx54gB/+8IdFb+pARQh4r3Fn9migqIUkrtR7WI4QbG/wfuy1Cl5/L4DHYfLd8zcPvA8MyJKniQ7GxFuY9t6fAFgx+3MUnAFMAZkcVEfANwDhOiWRQWvswAr1LQPRpKX4rX81AJ9PzCNi7baokQbdA77qQTSz9Y/zH6/gfuoFhKKQvOGLWJU7gx1LmGTNHLXOalxq6UtwuYxCMqri8lqQyaLomu2XqJa2KT/ZavLuPzPA9uzWKM0MZWMW7pAUOZVIJAcHQ/qE+8UvfsGMGTN6PT579mzuvffeojd1oNLaZU8mVoYH0aa0wy+xkMR0hgFo7HJy29/tTNeXT9/G2LL8HhboYx90krVSHLvyV6jCorH6aJpq7AxlPAlhP5QPsG9d3dYO2Tyij+hMILgn8CY5xWRerpLTMuN3O8AAI2cLnDqKlyVWNzfi/7H9RSBzydkUjuzZmB8zk0T0EOWOcNHX6otUl4KRB4cLzFgMpa4WJVh6yYkVjyexTKiZ66RmzujMblmmsPvPxjrQXaMzYJRIJJLBMGRZiNra2l6PV1ZW0tTUVPSmDkTyBdu+R1PBM4jkiu2X2IDhsi1uhIDv/Gkc6bzGoeOTfOKYtkHtI0mGFjpZsPFFwvGN5B1+VsxeBNhN8ppmlxL1AYTiSiyF1tTZr8jpK65G/uduQhcKX4ofhrK7fU82Dp4ycJdAmyqbI3DDnd2m1JmF5/Z4umAZWJZFjbsSrcQyEACFHCQ6VVxegYjFUf0+9Lre75FiiW012PifLGBnt0YjZkGQ7jDxVaj4K6XIqUQiOTgYUoZr7NixvPzyy70ef/nll6mrq+vjDElDC7RFoSI8iJMsE2diA4oQCN1u8P7T0nJeeTeES7e4+fxNg6rCCQStdOJKNjB3/eMArJqxkJwrgiVsGYjqiN1ftvfFBOqWNttgsY8IMqMY3L3dvufC1HTGm7t13xfSdoO8v6YkpUTfTx9Cf28rVlmIxA2X92o+ixlxKpxlhPVhkIFIKnRs0yhkFRwOA5HN2orywyCR8tZjSYSAsUe4qJhSWsX64cbICpKtBpkuC1+FRtlEx6iVspBIJJLBMqQM16JFi/jKV75CoVDg5JNPBmDx4sV8/etf52tf+1pJN3ggEE3Yfolh/8Ca0Hdg+yU2dfsltsQc/PgZu5R4xamNTKjMDWofcVK0ig7OXPUwmlWgpWI+W+pPBCCWhJBv4AGh0plAa+nEKus7gHnY/zZtWoYaw8snkjN7PilMMLIQHg/O4icFXX/7D+6//QehKiRuvBxRHu7xfMbMoasa1Y4K1BIKjxZyEGvXSLTZjfLekIWIdqGWl6FW9j1AUAwd7xVoeDUHCsz76OjIbgkhKKQFuYSF5lAI1OgEqm0JiNE6WSmRSCRDYUgB1//7f/+Pjo4OLr/88m7jarfbzTe+8Y0e0vsSe5pwQ6Nt41MxiHaenX6JXlB1hICb/jyORFZnzpgUl7yvZe+L7LqP7RY+0xteoLJrHYbm5q05XwBFIVuwk0zV5QMrJWJZaNvaQCjg6p1l2ajHeML7LgBXJg7DvfufWTYG7jB4ii8lau9twXfbbwDIfOY8jMNm9XheCEHCTDLGVUNA9xV9PQDLhGSXSrRVJZ9WcPstHC4gl0MoKtqYers2W2LeejQJwMTj3ITH7d+N5sIS5JKCfNLC6VWITNDxV+q4g3IaUSKRHJwM6a6tKAo//OEPuf7661mzZg0ej4epU6dKlfk+aNyuuVU9yNjCmWpAy3dR8I4D4JnlZfx7bRhds/jeBZt2VToYEFGS5DIbOGKdXUpcPf1iMp4qLAGpNNRWQnCAySa1I47aEsUq7y3SZSG4I7gUSxG8L1vPUbnd+pgKadAcdqN8sdN76Sz+G+5CyeXJHzGXzKc+0uuQhGnLQNQ4i884CWGryMdaVVJRDYfLwl9mdQ9AWF0x1LH1KOFw0dfanZbVeRqX51E0OOSC0gSOw4FlCLJxCzMncAYUKqc78FVoOL0y0JJIJAc3Rd0Fm5ub6ezsZPLkybhcrlEnsz/cpLN2o7zbOTjNLS0fxZXciLndL7E9oXPL02MB+OLJTUypzg5qHyYmTaKN9616CIeZpSMyg43jzgAgnoKAD6rCA13MQt3SatdG+3hRz3s28bazA7elcXl8fs8nhQWFjK0m7ywyaBAC/08eQN/ciFkZIXn9F3r1ghUsg5zIU+cqXgYin4WOLRrNG3QyCRVf2MTtF93BlkgmUXwetPra0phu74IQguXbs1tTTvYQqNn/sltGXpBsM0l1mDh9CtWzndQf6iYyziGDLYlEMiDuvvtuJkyYgNvt5qijjuK1117r99gnn3ySBQsWEA6H8fl8zJ8/n4cffngEdzt4hnQn7Ojo4AMf+ADTpk3jQx/6UPdk4mc/+1nZw7UdIWyvxGgS+kgE7eFEC2diI4qVw3LYfTo/+Ms4YhmdGbVpPnNC86D30kmcisbnGNO+ClN1sHzOFaCo5LcL09eUg2OAySa1LYraFsfqQ0gspuT4ZWAFAJckZ1Nl7Wbzk4uCJwye4rNNrqf/hesfSxCaSvI7VyAivX/JMSNGhR6hXA8P+TqmAdFWlab1OtFWW2PLF7Z6JueEQCSTqPV1KJ5BeDUNkMbledrWFtAcMPe8/Su7VchYJFoMsjELX4VK3SEu6ua5CNbq6E7ZoyWRSAbGo48+ytVXX82NN97IsmXLmDdvHqeffjqtra19Hl9WVsa3vvUtlixZwooVK1i4cCELFy7kueeeG+GdD5whBVxf/epXcTgcNDQ04PXu/IC56KKLePbZZ0u2udFMe8zW3KoIDS7hoWdbcaS3dMtAPL8yzPOrIuiq4HsXbBpwYLSDAgYdufUcs+ZRANZNuYikvx5LQCJtZ7ZCA40RCgZaQ5vdt9VHTfNXgRUk1DwTCyHOTU/t+aSRBUW3pxKL7G/S3t2M747fApBedCHGIdN7HZM2MzhUJ3XOqiE1ygsBqahC8wad9gYdRYFAuYXeh+yViCdQgkG0qspBX2fv+xAsf8TObk07w4u3bN/LKAghyCUt4k0GRlYQrtepn++kZrYTX4WGulenc4lEMiIIAfnUvvkZZMXrtttuY9GiRSxcuJBZs2Zx77334vV6+xRZBzjxxBM599xzmTlzJpMnT+bLX/4yhxxyCC+99FIpfnPDwpBqE88//zzPPfccY8aM6fH41KlT2bx5c0k2NpopGLZ9jxDgHYyep1Ww/RIVHaG56EppfO8vdg/XZ09oZkZdZtB7aaOLeat/hauQIhqcyPqJdp9TImMbZ1cOordMbY2idMWxqntb1axytPOsdxNgm1Pru8bywrLNqUNjwVXcdJ2Syth6W/kC+WPmk/34h3odYwmLpJlmgmsM/iE0yufSdp9WslMFVeCLmP0rVwiByKTRx88AR+lFSLe+kaNrk4HuVpj9kX2b3bIs24rHyAgcPoWKyTq+Sl3a8kgk+yuFNNy8jyaar08OuHUkn8+zdOnSHkN3qqpyyimnsGTJkr2eL4TghRdeYN26dfu1282QAq5UKtUjs7WDzs5O2TiPrbnV3An9WAv2izO1BT3b2u2XeOvTY+lMOphSneHzJw9eUDZLHkfzs0xqXoqlqCyfcwVC1ckb9qRdTTU4B/oXkCugbWlDeN29tC0MLO4ILgXgg+mJzCns9sKzUVvg1FtkBkgIfD/8FdrWFszqcpLf+lyfGl4xM0FYD1DlHIQ7OGAUINGhEm9TKeQVPAELfS9SVyIWQwmFUCsGd62BIIRgxeMpAGZ80LvPJvxMQ5CNWVgFgSuoUjbBgbdcxeGWgZZEIime9vZ2TNOkurq6x+PV1dWsXbu23/NisRj19fXkcjk0TeOee+7h1FNPHe7tDpkhBVzHH388Dz30EDfffDNgTy1alsWPfvQjTjrppJJucLQRT9l+iSF/n1W3flELSVzJnX6J/1od4pm3ylEVwc3nb8KpD34goavQwNGrfw3A+knnEgtNQuwoJUbsPQ54fy1dKNEkVm3v7NaT3nfZ5IgTspxcluhpp0MhZQucBmqLLiW6n/wnrn+9htA0kt+9EhHq3UeWt/IIIahzVeNQB/bnLSxIRW2Zh0xSwe0VBMqsvZ9oWYhsDn3SRHCUXoR069Kd2a2ZHy59b9jeMHL2xCECPBGFYK0Db5mG5pAlQ4lkVODw2pmmfXXtYSYQCLB8+XKSySSLFy/m6quvZtKkSZx44onDfu2hMKSA68c//jEnn3wyb7zxBvl8nq9//eu8/fbbdHZ29qlAf7BgWbBhG6QyMLZ678fvijO5EbWQoOAbRzyjcdOf7VLip49vYe7Y9KD3kiLDuDX34M3FSPjqWTf5QsAuJXrdUF3G7kY7/ZPN29mtgKdXRqlVTfOw/20ALkscQlDskuG0CrZXYmQCOIt782lr3sN71+8ASF/+MYzZU3odI4QgaiSodVUS1gY2qZBN7SwfarogELEYaMuXiMdRwiHU8uHJbq3cnt2afroHV2Dkskn5tEUubqHqCoFqDX+VhjcihUolklGHohQ/ET4CVFRUoGkaLS099SVbWlqoqanp9zxVVZkyxf4smD9/PmvWrOGWW27ZbwOuQd/FC4UCV111FU8//TTHHXccZ599NqlUivPOO48333yTyZMnD8c+RwVNHXY5sap3EmiPaNkdfol2Ke5Hz4yhLeFkQkWWK05pHNJerLbFTNn2HwQKy+dejqU5yRtgmlBbBq7ByFQ0dqAm0ohA76DpnuCbZFWTOfkKTstM2PmEsGyBU19l0V6JSiJF4MY7UQyT3PsXkL3w9D6PS1ppvJqbOkc1yl4mFYw8dDaqNK/XSXapeIIWnqAYcLCFaSJyeVvkVC+9TMO2N/N0bjTQXDDzzOG/YQrLzmbFGw2svCAyXqd+vouqGQ585ZoMtiQSybDhdDo5/PDDWbx4cfdjlmWxePFijjnmmAGvY1kWudzgHFhGkkF/UjgcDlasWEEkEuFb3/rWcOxpVJLJ7dTc6kN8vX8sE1diAwgLoXt5+Z0gf15agaIIbjp/E27H4EuJSaONmW/fCcDG8R+kMzKzu5RYGYHwIOwElVQWbWs7VsjXa9xyiauRl92NaELhqvhhqLvmzHIJcAW3C5wWkZ0RAv8PfonW1I5ZW0nq2sv6HPs0LJOMmWWqZwJurf8+QsuCVJdKtEUlm1Lw+C08gxls2LGtWBy1LIJaNsjoeiBrC8HKx+0ywPTTRqZ3K9Vu4fAghUolEsk+4eqrr+bTn/40CxYs4Mgjj+T2228nlUqxcOFCAC655BLq6+u55ZZbALjllltYsGABkydPJpfL8be//Y2HH36Yn//85/vyZeyRIX01v/jii7n//vu59dZbS72fUcvGRuhKwNiqwZ3nyDThyDZRcNeSzKrc+OR4AD5xTCuHTUgNeh8WFmXv3Ekg00HaU8nqaZ8EIJm1PaZrIoMoJQJqYwdKJosV6dkIv6s59fmpaUw0dvEtMrJ2UBSsBa24yT33o8/ifGkZwqGTuPlLiEDf2Z6oGafCEaHCEe53rR0q8ckuWyU+UG4NTaPUNBGGgVZbfF9aXzQuz9Oxwc5uzTpr+LNbliFAQMUUW9ZBIpFIRpqLLrqItrY2brjhBpqbm5k/fz7PPvtsdyN9Q0MD6i5f3lOpFJdffjlbt27F4/EwY8YMfvvb33LRRRftq5ewV4YUcBmGwQMPPMA///lPDj/8cHy+nh8Kt912W0k2N1poj9qaW+WD1NxSzKztl6h5QNW57dkxNMecjInk+PLpQywldv2PSZv/DsDy2V/E1D0UTFuqor52cNk3JZ5Ga2zHCvfurv+9bw0tWpoq08vFqV38C4Vpa7CEx9oZriLQV72L915bPyz1pU9iTp/Y53EZM4uuqNQ6q1CV3gHDDpPpeJsKAnxhsyhXISsas7Nb5cV7Qe7Orr1b00714g4Nf6YpG7dwRxQ8EZnVkkgk+44rr7ySK6+8ss/nXnzxxR7//73vfY/vfe97I7Cr0jGkgGvVqlUcdthhALzzzjs9nttb78yBhmHA+m1gWuAbZGnKmdyMlu+k4B3Laxv8PPaqLZvw3fM343UOYEpuNywzw/iVP0RB0FB/Em2V8wGIp6EiCJFByrGoje2QKyDKegZOm7U4f/StA+CK+Hw8YvufkRB235YnUrSavBJL4L/xbhTTJHfyUeTO+UCfx1nCImGmGO+qI6j3foGZhELHNo1scheT6WIw7EY4ta62eC/IPmh6K0/7+gKaE2adNfxTPsISmDlBcIpDCpZKJBLJMDKkgOtf//pXqfcxatnSajfLD1ZzS83HcCY3YTrLSBd0bnhyAgAXHtnGUZMTQ9pLYMPPCaa2kXWFWTXTrnsnM+B2QE0ZDKbvWYkm0Ro7e1n4CAR3hJZiKoJjsnUcm6vf+WQhCbobgnXFldosC//3foHW2oE5pobU1z/bb+owbiYJ6n6qdjOnFsLW1Ops1LBM0cNkuhisaBS1ohy1bHiyWyuesLNbU0/14gkPf3kvl7RNpr3lspQokUgkw4msIRRBNmdrbgW9g9PcQghcifdQrSyWI8DPnqtja6eLmlCer31w65D2osVXM+a9RwBYMetzFBx+DBNyhu2V6B5MK5UQqFvb7bTdbif+w72Zlc523JbGFbuaU5t5MAt235bDM6TXsAP375/B+b+3EE4HiZuvRPj6Xi9vFTAtk3pnNU51Z63UNKCjUaNts4aqCnxhURo/6UIBRYBWV8PAxxkHTvPKPO3v2J6Jsz8yMrpb+aQlfQ8lEolkBNgvAq7BOITvyiOPPIKiKJxzzjnDu8F+MEzIGwx6yk3PtnT7JS7b5ON3S+xO+++cuxm/e/ClRCyD2pU3oQqLbTVH01RzNGCXEssD0IfP9B5ROhNoLZ1Yu9Ug40qeXwbfAuCTqVlUW9t794QFuTj4q4uWgNCXr8X7q8cBSH3lEswp4/s9NmrEqXSWE9F3Nuzns9DWoNHVpOL2W7h8g5/y7A8rGkOprEAJh0u25g52VZWfesrIZLfyaQuHR5GN8hKJRDIC7POAa7AO4TvYtGkT11xzDccff/wI7bREWAVbBkLRyFhubnhiAkIonHN4O8dNjw9pydDGXxOIryfn8LFy1iIA0lnbtqe6HAbVmmNZaFvbQNCrw/6BwEpiap4JhSAXpKbtfCIXA3fIDriKSCUpXTEC37kbxbTInf4+cmee0O+xSTOFR3NR66zs7htMxxVaNtq6Wv5w30bTQyZfQFEUtNphym6tytO2roDqgFkjlN3KJSz8VVICQiKRSEaCfX6nHaxDOIBpmnzyk5/ku9/9LpMmTRrB3RaPM70NPduK4a7knn/WsandTWUgz//78NBKic7kJqrX3w/AqhkLybkimBZk8nbflneQQYfaEUdtjWKV9UyLrXZ08Iz3PWA3c+pCGlQdAnWgFWFvY1r4b/o5akcUY3wdya9d2m/wZgmTtJml3lmDV/MgLIi1qrRu1CnkwB+xSt7PbkVjKFUVKKHQ3g8eJLtOJk79gAdv2fBnnIy8QFEV/NUyuyWRSCQjwT4NuHY4hJ9yyindjw3EIfymm26iqqqKz372s3u9Ri6XIx6P9/jZV6hGypaBcARZuTXAr/9r64vccE4DIY85+AWFRdWqm9CsAk0Vh7C13vaxjKXsMmLZYGMDw0Td0mo3vDt2zlOYu5hTn5aewNzCdhNqYUAhA/4acBXnSO956Cmcb7yNcDtJ3nzVHuu0USNBuR6mwhGx+7W2abRt0VB1gS9Uon6tXcnlUDR1e3ar9L1OLW8XaF1bQNVh9tkjY8ORjVn4KtR9ZogtkUgkBxv79G67J4fw5ubmPs956aWXuP/++7nvvvsGdI1bbrmFUCjU/TN27Nii9z1UHIlNqIUEGSXM9U9MwBIKH57XwUmzYkNaL9LwOIGuFeQ1FyvnXA6KQjpnx0o1ZYMsJQJqewy1LY5V1jN4+rN3Pe85YgQsB4sSh9gP7pCA8FWCtzgvQf2Nt/E8+CcAkl9biDmxvt9js2YOUKhzVWFkdVo3aURbVDx+C5e3dP1au2LF4ihVlSiB4nTF+mPFE7aq/JQRym5ZpkBYgmCNftDJuEgkEsm+YlR9vU0kEnzqU5/ivvvuo6JiYDoM1113HbFYrPtny5Ytw7zLvtFyHbhSmzBcFfzyxVrWt3go8xW49qyh7UfPNFG5zrbvWTn9E2Q8VZjCthiqjgxeE4yCgdbQhnA5ekg6tKlpfrOLOXV4hzl1PgEO33brnqEHCUp7lMBN96AIQfbDJ5A/47h+jxVCEDeT1Dgr0JJBWjZqpOMqvlL3a+1KNoui62i1xfWn9UfL6jytq0c4uxW38IRUPOFR9faXSCSSUU3pXXcHwWAdwjds2MCmTZs466yzuh+zLHuqT9d11q1b18s82+Vy4XIVq3ZZJLv4Ja5pLedXL9YC8K2zG4j4hlJKFNSu+j6amaE5MpWt4z4MQCwJYT9UDKHNSG2NonTFsap7egP+PPgWGdVgVr6cMzLbld6NHGDZfVt6Eb9bwyTw3btRu+IYk8aS+uolezw8YSbxKV48XdW0tuigCHzh0uhr9YcVi6OOqR++7NZ2z8QpJ3nwjYAWlhACIyson+RA1WV2SyKRSEaKffoVd7AO4TNmzGDlypUsX768++cjH/kIJ510EsuXL9+n5cI94cg248g0knFU8e3HJ2BYCqfO6eL0udEhrRdqfAZ/+/8wVJ3lc64ARSWTt7XAaspAG+y/ai6PtqUN4XX3OPk1ZxP/dW9FFQpf3mFOLSw7u+WtBk9xDeSeB5/EsXwtwuMmcfOXwNV/mqpgGWRyBXxtY4lv86I7Bd7gMPRr7Uomi+JyotVU7/3YIdC6Jk/L2wVUDWafMzLZrXxS4PQrIxLcSSQSyWAYjETUr3/9axRF6fHjdg+2tDOy7NMMFwzOIdztdjNnzpwe54e3ayLt/vj+gmLmcCXWI1QPD7w0hrVNXkIeg299pGFI62m5dqrW2F6Vy6ecQ84/DkvYMhBjKsE/BM1RrbkLJZrEqt2Z3cphctd2c+pz01OZZITtJ7JR27rHX1wQ4nh1Bd6H/gJA8uufwRpXu8fj2xMp3O3jIBPGGzKLGogcKFYsjjphHIq/uIGA/tihuzX5JM+IaWHlkhYVk3V0l8xuSSSS/YcdElH33nsvRx11FLfffjunn34669ato6qqqs9zgsEg69at6/7//b0ndZ8HXIN1CB9tOFOb0XIdrElM5d7FdlBx7VlbqAgYQ1qvZvWP0Qtx2oPj2DLxfFTsUmLIBxXhISyYyaFuaUMEPLDL7/kP/jU06SkqTQ+XJLebUxdSoDshUFuUdY/a0oH/5p8DkD3nA+RP6Z3N3JWuToNCYzkVlOEvE4zEn4NIp1HcLrTqymFZv3VtnuZVeZQRzG4VMhYOt4Kvcp+/7SUSyQgghCBjZffJtT2qe1AB0K4SUQD33nsvzzzzDA888ADXXnttn+coitJn+9H+yn5x5x2MQ/ju/PrXvy79hkqEmo/hTGwkp5Vx/ROTKJgqJ8yIcub8ziGtF2h+gWDzYixF5ZW5l6GqLrIFO06qLgd9CIGI1tSBmsxg1u2cNNyiJXjUtxaAL8bn4xUOsAp271Z4AjiLCBAMA/937kaNJTGmjid15Sf6PVRYkGh10NaoUOsOU142AmmtHdeOJ1EnjkPxDk8wtHK7Z+LkEzz4K0couxW3CNTpuPyj9wuMRCIZOBkry9SlJ++Ta797+At4tYGVXHZIRF133XXdjw1EIiqZTDJ+/Hgsy+Kwww7jBz/4AbNnzy5678OFvPMOF0LgTG5ENTP85rUprNzqw+8yueGchiH1HamFODVv/xCAtyZ9EDM4C0tAKg2VEQgOoZSoJDNoW9uxQr7uCTyB4GfBZRiK4MhsDcfl6u3IJxsDX4VdTiwC7y//iGPVu1g+zx77tsyCQnybh9YtEPS6qBmsP1ERiGQKxetGrx6e3q22d/I0rbCzW3POHZnsllkQoCoEpNCpRCLZzxiKRNT06dN54IEHeOqpp/jtb3+LZVkce+yxbN06NBHxkWC/yHAdiOjZVpzpBtYnx3LXP+oA+H8f3kJ1qDCk9arX/BQ930HMV8eayefhQyWagoAPqsJD26Pa2IGSyWHtEsy84G5guasVp1C5MnEoCortk+j026XEIup5jpeX4fnD3wBIXbsIq77vgKaQ0kg0uUnFQA/mqPPXog2DnU5/WMkE2pTJ4CnOhLs/dmS3Jr3fjb9qZAKgbMzCG1HxhOR3LInkYMGjunn38Bf22bWHk2OOOabHcN2xxx7LzJkz+cUvfsHNN988rNceKjLgGg62+yVaQuP6P08jZ6gcMyXOeQs6hrScr+1/hLc9jUDhxbmX4NXC5AuAAjXl4BjCZ7YST6E1dmCGdwZbSSXPvYHt5tTJWdSafjCyoAChetCGLnalNrXh//4vAchceDr5E4/odYwQkIs6SDS5MfMKhWAHVa4Ifm14mtb7QiSTqH4/euXw9G61ry/QuDyPoo5cdsuyBJYhCNbqKOr+3VQqkUhKh6IoAy7r7UsGKxHVFw6Hg0MPPZT169cPxxZLgvy6Oww4043o2RYefnM2yzYF8DpNvnve5iGVEhUjTc3b3wdg7fhTSUXmIoRCIg1VIQgNxedYCNSt7ZAvgHenjtYD/lVEtRxjjQAXpqZvl4BIbbfuKUKHqmDgv/Eu1ESKwsxJpL/4sV6HWCakWlzEGuwXZIXieHQXlXpZr2OHE5FMotbWwDCNF+/Q3Zp4vJtA9ch838nFLVxBFU9Evt0lEsn+x2AlovrCNE1WrlxJbe2eJ973JTLDVWIUI40zsZ6GRCW3P2frgl19xjbqIvkhrVf1zt04M02kPVX8b9pHKMNDLAN+r927NaQ9RpNozZ09Sonr9E7+6t0A2ObUDlTIdto9W97isj3eXzyGY817WAEfye9e2cOnEcDMqySbXGQ6XTh8BoqzQNIoMM5di0MdwUb5RALF70erGsbs1pt2dmvueSOT3RJCUMhYlE1woTlkdksikeyfDEYiCmxP5aOPPpopU6YQjUb58Y9/zObNm7nsssv25cvYIzLgKjHOxEbUfIxvP30KmYLGgokJPnpU25DW8nQtJ7L5MQBenn0JXr2cvGFng2qqwTmUfz0h0La2gyXAbZcITQR3hJYiFPhAZhzz81W2uKnuhmBdURIQ+op3cD/2LADJb34Oq7ZnMJNPaSQa3RRSOq5QHlWDqJEirAcI6yPXKI8QiFQKfcZ0cA6PM8HK7Z6JE49zE6gZmbdePiVwelW8ZTK7JZFI9l8GKxHV1dXFokWLaG5uJhKJcPjhh/PKK68wa9asffUS9ooMuEqIluvEldrMIyvn8Op7QdwOi5vO2zykPnPFzFG78mYUBA31J7O5chYVwkVnGqoiEBpiW5PSEUdt6Zndetq7nncdUfyWg88n5oGZB7MAZWPAUUT9P5fHf+t9tk/iB4+ncNxh3U8JAdkuB8kmN5ah4g4XUBTIWjl0RaPSUY4yghVvEU+gBIOoFcUZcfdHx3sFti3LoygwZ4SyWwD5pEXZRB2HRwZcEolk/2YwElE//elP+elPfzoCuyod8i5cKoSFK7GBxqiDHz9n+zl++bRtjKvIDWm5ig2/wpXaTN5Vxn9mnkcIH4kMeN1QXWb3sQ8a07KzW4oKTrtU16FmeNC/CoDPJOYSMZ32VKK/GtxFSkA8+Ce0Lc1Y5WHSX/pk9+OWqZBsdhHf4kVR6Q62LGGRNrOU6xG82ghaNFgWIpNBq68Hx/C4YO+YTJxwnJtg7ch8zzGyAs2h4KuQ36skEolkXyMDrhLhyDShpxu54e9HkMppzBuX5BPHtg5pLVd8HeXvPQTAslmfIe/wgeHANKG2DFxD/PxUO+KorVGsyM702L2Bt0irBjPyZXw4M8nW23KH7ICrCJsEbc17uP/wDADJaxYiAnZWx8ipxLd4SDW7cXgNHN6d5t1JK41f91DmKM6jcbCIeBwlFEItH54G/c6NBba+kRvx7FY2YeGr1HAFZO+WRCKR7GvkV98SoJg5nIn1/GnlRF56N4xTt7j5/E2DN5EGsAzqVt6EIkzaat7PqppZhIWf+PZSYniobU2Gibal1daQ2N60vtTZwoueLagC25y6kAFVg0AdRZkV5gv4b/kliiXInXJMdykxn9S392tpuEK2afMOCqKAEIJKvRxdGcE/S9NEZHPokyaCY3ga9Hdkt8Yf6yZUNzKvzTQECPBXafu9v5hEIpEcDMgMVwlwprfQ0Z7ilufsZr0rTmlkUtXQSonlG3+LO74OwxFkyaxP4kAjm9XwuKA6MsRSIqC2xVA6Et3ZrTwmPwsuA+Ds9FSmFAK25lagFlzF6V55Hv4L+sZtWOEAqS9/CoBMp4PoJi9mVsUd6RlsCSFIGGkiepCgPnKaW7C9dysSRq2oGJb1uzYV2PJ6DpSRm0wEWwrCE1HwSikIiUQi2S+Qd+Mi0QtxXIkN3PjcEcSzOrPqU3z6uJa9n9gHzuQmKtbb4qDvzvw8zS4Nj+mjYNgCp66hJmDyBlpDK8Ll6J44fNS3lkY9Sbnp5tOJWXYp0VMO3uKaxrV3N+N5+GkAUld/GhEObFeO96CoAlfI6FWpTIssbs1JhWNkNbcwTUQ+j1Zf3CTmnlixI7t1jIvQmJHJbglLYOQEwRopdCqRSCT7CzLgKgYh8KTf4/lVEf61thJds/jeBZvQh/LZLSxqV92MauWJVxzNm3Xz8eAimVYpD0KkiMSP2hZF6UogQnaGZauW4A/+7ebUifn4cllweCFYS4/U02AxDPy33IdimuROWED+xCPtBvlWN8JQcPrMXqeYwiRn5ql0lOFSh6dhvT+saAy1vGzYere6NhfY8tr27Nb5I5e5yyUFroCCt1z6JkokEsn+ggy4iqGQJtXVyfefPxSAz5/UzLSa7JCWijQ8jrfrLUzNy4o5nyepZCDjxe2AmjIYcqIil0fb3ILwuUFTEQjuDL5JQbE4PFfN+5OVIEy7b0svTn/K8/u/ob+7GSvoJ/XVT4OikG53ku1y4Ar27SGZNNOEdD9hvQgl+6FgGGCaqLVFBpl7oLt362gX4RHKboEtBRGs1aXQqUQikexHyICrKAT/t3gm0YyDaTVpLjuhb1fzvaFnmqhcdxcA26Z/gY0eB27TQ8FQqCnv1icdElpzF0o83Z3d+rd7K8tcLTiEypdi81HySfDV2JOJRaBt3Irn138CIHXVxYjyMPmkRrrNhdNn0Jf3dM7KoygKlY5y1BH+U7RicdSyCGpZeFjWjzYYNLxq9/HNPW/kslv5tIXTq+CrkNktiUQi2Z+QAVcR/GWJxuJ3atEUwfcu2IRDF4NfRAhqV/0AzUyTjszn7XEnkCWLkfJQHoBIMWLr6SzqljZEwAuKQkop8PPAcgA+npxJfcoATxj8VUVJQGBa+G65D6VgkD9mPvnTjsUyFJItboSpoLutXqdYwiJlpqnQI/hG2lzVMMCyUOuHMbv1pK0qP+4oF+FxI5fdysUt/NUaTq98a0skEsn+hLwrD5GOGHztXrsEd+lx25hVnxnSOqFtz+BvX4KlOtkw5xpalSh61ofLAdXloBURB2nNnajJDCJgBzS/9q+iU8tSb/i5KDoWdOd2CYjiAgL3H5+1vRJ9HlLXLLRLiW1O8jG931Ji2srg0zyUO8JFXXsoWNEoakU5aqQ4Ydf+iG412Py/7dmt80duMtHIC1RdwVcps1sSiUSyvyEDriGyrR08LphQlmTR+7cMaQ0t10712tsAaJuyiE1+P1nLQORd1JSBt4hSopLIoG1txwr5QFF4V+/iL971AFwVPQSnUQB/LTiLCwjUhia89z0OQPrKT2BVlZFL6KTb3Tj8Zp+lREOYGJZBpWOENbcACgUUQKutoc/NlYCVTyRBwNgjXETGj5z5djZq4SvXcAfl21oikYw+7r77biZMmIDb7eaoo47itdde6/fYE088EUVRev18+MMfHsEdDw55Zx4ih0yGJT9L86NzluJyDKGUCNS8/SO0QpxMcAYbJ55LO1FI+YkEoKxIsXW1qQMyeYTfY5tTB5diKXBSZiyHxV3gqwBPkdN5loX/h79CyRfIL5hN7sMnYBYUUi0uEALd1buUCJAwkkQc4RHX3AJ7MlGpqEAJh4dl/dg2g81Ltme3Lhi57JZlCIQQBGqk0KlEIhl9PProo1x99dXceOONLFu2jHnz5nH66afT2tq3Y8uTTz5JU1NT98+qVavQNI0LL7xwhHc+cKTSfBH43DAukgYGHx0FmhcTbHkBoWg0zv02zWqMdF4Q0h3UlBVXSlTiKbTGDqywHdD8zfMe65xdeC2dL7RPAqffFjgdiqv2Lrj/tBjHincQHhepr38WgT2VmEs48ETyfZ6TsbI4NQcVjgjKkGVch0jebtLX6mqL61nbAyufTIGAMQtclE0YwexW3MITVvFIoVOJRLIdIQSk0/vm4l7voL783XbbbSxatIiFCxcCcO+99/LMM8/wwAMPcO211/Y6vqysZ8LgkUcewev1yoBL0hO1EKfm7R8B0DHp0zQFa2kVm3FkA1RX2YHckBECdWs7FAwoD9KlZrk/sBKAhbEZlFkuiNSBVpzmldrYivcXjwKQ+uLHsGorycd10q1uXP5Cn/GMJUwyZo56VzVutTgJiqFgRWOotdUoweGRoIg3Gmx+2ZYFGcnerR1CpxVTHKjFROoSieTAIp2m1V+9Ty5dlWwB38Dug/l8nqVLl3Ldddd1P6aqKqeccgpLliwZ0Br3338/H/vYx/AN8Jr7Avl1eB9Qvean6PkOcr4JtEy+lCbaSac0KvwaFUWWEpWuJFpzZ7eFzy8Cb5FSC0zNhzmrqwJ81UVLQCAE/h/ej5LJUZg3ndzZJ2PmFZLNbhRVoDn7LrEmzDRB3U9EH1lzagByORRNQ6spzpR7T6x8MoUQUH+4k/JJI5fdyiUFLr+Ct0w2y0skktFHe3s7pmlSXd0zOKyurqa5ee9yS6+99hqrVq3isssuG64tlgSZ4RphfG3/I7ztaQQKTXOvp03L0lxIEFbDdimxmBDYstC2tYMlwOXkTWcriz0NKAK+3DYVzVMOvqqiX4Pr6RdxLFuNcDlJXrsIoaik2lzkU3q/pcS8lQcUKh0RtGFqVt8TVjSGWl+HEhyeYC/eZLDpJTu7dcgFI9ubVkhZlE91oLtkdksikeyC12tnmvbRtUeK+++/n7lz53LkkUeO2DWHggy4RhDFSFPz9vcB6Bp/EbHILLaJjVhZJ3UVKv4i5ajUjgRqSxdWxE8ekzu3m1OflRzHdKsSQsV7BqotHXjv/j0A6UUXYI2pJhd1kGl34Qr0V0q0SJoZqp3l+LV9kO7NZlGcTju7NUys+tP27NZhI5vdyqctdLeCXwqdSiSS3VAUZcBlvX1JRUUFmqbR0tIzOGxpaaGmpmaP56ZSKR555BFuuumm4dxiSZAlxRGk6p27cWaayHvqaJ12Oe1EaUqnqfP6qAgXubhpoW5ts8tlTgd/9L3DFj1BxHSxsHOC3STvLDKiEwLfTx5ATWcpzJ5C9oLTMfMqqRYXiibQ+pnWTJgpArqHCsfw6F7tEcvCjMZQaqpRAsWoyPZP1+YCG/+7o3drZLNbuYSFv1LD6ZNvZYlEMjpxOp0cfvjhLF68uPsxy7JYvHgxxxxzzB7P/eMf/0gul+Piiy8e7m0WjcxwjRCeruVENj8GQPOcb5LWNTYVOvArHmrLFfQiPy/V9hhqWwyrMkSTluT3/tUAfKF9En5vffESEIDzuZdx/m8Fwukgde1lCEUl2eKikNFwh/sWOE1ZGXRFo9pRNfKaW4DV1o5WUY4+tn5Y1t/0cpb//TKOsKDuUCcVU0Yuu2XmBYqq4K+W2S2JRDK6ufrqq/n0pz/NggULOPLII7n99ttJpVLdU4uXXHIJ9fX13HLLLT3Ou//++znnnHMoLy/fF9seFDLgGgEUM0ftyptREETrzyJVcTTNoomOXJa5kQjBYp1tDBOtoRUcGkJXuTP4JnnF4tBMGSeZUyFYfKO40h7Fd8fDAKQXnos5oZ5sl4NMhxOn3+hz+YIoUDDzjHHXjrx9D2C1d6AEA2hTJoGjuKnM3THzgjceSvDuP2yHgapZDo75wsgacGfjFt4yVQqdSiSSUc9FF11EW1sbN9xwA83NzcyfP59nn322u5G+oaEBdTcpo3Xr1vHSSy/x/PPP74stDxoZcI0AFRt+hSu1GcNVTsvMr5Ikw4Z0JzVuH1WR4hud1dYoSmcCqzrMS65tvO5qxiFUruqchRKsL1oCAiHw/9+DqMk0xvSJZD/2IYysXUrUHFafpURLmCSMNNXO8n0ylShicRSHjj55EoqntM2biWaD//w0RtcmA4A55/o45ELfiEoyWKbAMgTBWh1Flc3yEolk9HPllVdy5ZVX9vnciy++2Oux6dOn21pjowQZcA0zrthayt97CIDmWddiOgJsLmwjrxpMLA/gKLYalDfQtrQiPE7SusU9weUAfDQ6jjGeyeAqvm/J+cKrOF9ahtA1ktdehlA1Uq0ujGzfpUQhBHEjSUj3U+EovpQ5WEQ6DYUC2oxpKKHSBnsNr2ZZ8vM4hYzAFVB435Uh6uaPvKZYLmHhDql4pdCpRCKRjApkwDWcWAZ1K29CESbxmg+QqDmJqEjSkI0yOeInVILEi9rahRJNYdVEeMi/gnYtQ23Bw8dzh0G4ouj1la44vp/aAWPmko9gThlHttNJptOJK9B3KTFtpXFqTmqclejKCPcX5fOIRBJtyiTUysqSLWsWBMt+m2Dds3YJsXK6g+O+HMJXPvL9U0IIChlB2UQHqi6zWxKJRDIakAHXMFK+8WHciXcwHUGaZ30dC4t3Mh24PYIxkRI0V2fzaA2tCJ+bDc44f9puTv2l6BxcgTGgFh8M+G5/CDWWwJg0lszFH6GQsRvldZeFqvdO5easPIawGOesGXk1edPE6uxEHTcOrb6uZMsmW03+e3uUjg12CXHWR7zMv8i/z4KdfErg9Cl4y2R2SyKRSEYLMuAaJpzJTVSsvw+AlplXY7rKaSnE6RQx5oX9OEvwm9eaO1HjaQp1Zfws+CqWInh/qoojnIeCoxh/IBvnf97A9cKrCE0l+c1FCE0n1ejCzKp4ynqXEk1hkjIz1DorRt6YWgistg7Umhr08eOgROKqW163S4g7gpxjrwgx5vCRLyHuSj5pUTZRx+GWAZdEIpGMFmTANRwIi9pVN6NaeZIVxxKr+zCGMHk3005lmUpFoAS/9nQWdUsbVtDLs95NrHZ24LE0vph9H/iL71tS4kl8//drADIf/zDm9Ilk2p1kO524Qn33bcWMJBE9SIVz5Pu2rLYOlLIw+qSJoBf/+7UMwZu/T7LmGdv4tWKqg+O/EsK3jwVGC1kLzangr5RvXYlEIhlNyLv2MBBp+CPerrcwNS9Nc74JisLGZJyCJ8HUcIhSFKK0pk7UdJb2MX5+FVgBwKWJWVR4J5bEK9B75+9QO2MY4+vIXHoOhbRGqsWF7rb6rFTGzRQ+zU2NsxJ1hPV0RVcUxetGnzwJXMVnn1LtJv+9PUb7u3ZgOePDXg79hB9tP+iXysUtArU6roDMbkkkEsloQgZcJUbPNFG17i4A2qZ/CcNTQ7JQoJE2xoYdeB3Ff1AqiQzatnaskJ/7AitIqAUm5wOcrR0HWvH/pI4ly3E/+xJCUUhdexmW7rRLiQUVT6R3ditrZVEVqHFW4lRHTvgTQCSTAGiTJ6L4iy9jbl2W45W7Y+STAodX4djLg4w9ovjybCkwCwJQCFRJoVOJRCIZbciAq5QIQe2q76OaGdKR+XSNOx8hYEMqiqM8zbhAaaxt1G3tkM3zVlWWf3g22+bU2RPQ3MVLQCjJNL4fPwBA9qNnYMyZSqbVSTbqxBXqbUxdEAZpM0e9q3rkfRKzWUQmiz5tKmpZcSrDlil469Ekbz9llxDLJukc/5UQger95y2SjVt4IgqesMxuSSQSyWhj//k0OQAIbXsGf/v/sFQnTXO+DYpKazJPwtvBpJAbrQSlPiWWQmvqJBf28rPgfwD4UHYyM50zil4bwHvPH9DaujDHVJO+7HzyKY1UqxuHx+hVSrSERcJIUeEIU+4Il+T6A6ZQwIpGUSdNRK2uKmqpdKfJf++I0bbWzt5NP93DYZ8KoDn2fQlxB5YlsAqCYK1DCp1KJBLJKEQGXCVCy7VTvfY2ANqnfI68fwJ5A7ZZnfjCWSqcJchuCYG6pQ0MgycqGtnsiBM2nXxWnAJa8VkPxxurcD/9IgDJb1yG5XCTanQjTAU9YPU6PmEmCeheqp0VKCXpTBsgponZ0YFWX48+dkxRPWuNb+V4+c4YuYTA4VE4+vNBxh+zf5QQdyWfELgCKt4yWU6USCSS0YisTZSImrd/hFaIkwnOoGPixQgBW5MZrFAn4/0+lFJkt7qSaK1dNFao/Nb3NgCfy7+PQCmsc9JZfD+6H4DseadgzJ9But1JLqbjCvbu20pZGXRVp2YfmFJb7R1olZXoE8cPWWvMsgTLH03ywi1RcglBZILOB28p2y+DLSEE+ZRFsFbbr7JuEolEUkruvvtuJkyYgNvt5qijjuK1117r99hCocBNN93E5MmTcbvdzJs3j2effXYEdzt4ZMBVAoKt/yLY8gJC0WiaewOoOrG0IOXuJBAqENBKoNtkWWhbW8GCuytWkVMt5uWrOUVbUPzagPcXj6E1tWPWVJD6/EXkkzrpNhcOr9lL0qogChhmgWpHBV5tZAMUq70dJRhEmzxxyIbU6S6TxTd3serJFAiYeoqHM24uI1i7fyZ888ntQqf7QNVeIpFIRoJHH32Uq6++mhtvvJFly5Yxb948Tj/9dFpbW/s8/tvf/ja/+MUvuPPOO1m9ejVf+MIXOPfcc3nzzTdHeOcDRxGjyfmxBMTjcUKhELFYjGAwWNRayWiSd174G3Pf/iKOfCftkz9D27TLKRiwKZkkV7uJ8SE3bqVI82hAbYuhv7WBl+oS3Fj5KrpQuDf3acarxfUvAehvrSN05fcAiP/0G+TmzyW6yUshpffySrSESZeRoMZZQY2zdNY5A0FEY6CAPmsGSnBoWb3mVXle+lmMbMxCdykc9fkAE9/nKfFOS4dlCZItJlXTHYTHjuwEqEQiGd3ssAHbFzg8yqAqO0cddRRHHHEEd91lT/lblsXYsWP50pe+xLXXXtvr+Lq6Or71rW9xxRVXdD92/vnn4/F4+O1vf1v8CxgG9s+v9KOIsVvuw5HvJOebQPvkywBoi1tYZR34/aIkwRamhbqllYxuclfkLQAuKBxWkmCLbA7/rbYifvbMEyksmEO6yUk+ruPeTQJih7hpWA9Q6ShuKnCwiFQaTBNt+rQhBVuWJVj1ZIoVj9tZrfBYneO/GiJUv3+/BTKdFt5ylUDN/r1PiUSy/1HICH525LZ9cu2rXqvH6R1YwJXP51m6dCnXXXdd92OqqnLKKaewZMmSPs/J5XK43T0rLB6Ph5deemnomx5m5F28CLRN/6Sy/Z8IFJrmXo/QnCTSUHAnUcMxKrXS2Nuo7THU9jgPTWqgTc9SY/r5JO8vydre+59A29qCWRkhfcXHycV10u1uHP7epcSUlcaluahxVqKVyDpnQOTziFQKbfJE1MrBG3JnYxYv3RmjeaUtazH5JDdHLAyiu/bvfigjLxAWRMY6ZO+WRCI5YGlvb8c0Taqrq3s8Xl1dzdq1a/s85/TTT+e2227j/e9/P5MnT2bx4sU8+eSTmKY5ElseEjLgGiq5BK7nrwKgY8wFZCLzMEyI50yobcfrVHGWopm8YKA1tLLRn+aJ4HsAXGmdhpviy0v62+txP2Y3Gaau+QyGy0dykwuEQHf1nErMWTlMIah3Vo6sKbVh2IbU48cPyZC6ZbVdQsx0WWhOOPKyIJNP2H9LiLuS6TQJ1ut4y2WrpUQiGTwOj8JVr9Xvs2sPJ3fccQeLFi1ixowZKIrC5MmTWbhwIQ888MCwXrcYZMA1VNrXgZEh56ymedLn0ICOOOjhODl/nCq1BJODgNoaRXTGuX3makxF8D5zMkeJKcUvnMvju+U+FEuQO/195I+ZT7rJRT7pwBPpKXBqm1JnqXNWjawptRBY7dsNqceNHZQhtWUKVj6RYuX2xvhQvcbxXw0THjs6/uRzSQuHWyE8Ri/JhKtEIjn4UBRlwGW9fUlFRQWaptHS0tLj8ZaWFmpqavo8p7Kykj//+c9ks1k6Ojqoq6vj2muvZdKkSSOx5SEhvzoPlfoFpBe+wbtTv42le0lmQHUYWJF2fKoTXSnBRFmugLa1jWerGlnlieEWOpebpxa/LuD5zVPomxuxykKkrrqYfNyeSnT5Cz1krSxhETOSlOkhKpzhklx7oFht7ajlZYM2pE61m/zjpi5WPmEHW5NPdHPGD8pGTbBlWYJcwiI0Vsfll29RiURyYON0Ojn88MNZvHhx92OWZbF48WKOOeaYPZ7rdrupr6/HMAyeeOIJzj777OHe7pAZHZ9A+yuecjLeyegWJDPgrY+ScqaoVUtk4dPSRTzWwX2H2KXES8zjqKK4yUoAbd0mPL//KwCpr12K4Q6Q3ORG0QSas+dES8JM49M81DgrUEYwPhedXSheD9ogDam3vJ5lyc/j5FO2kOmRi/bvKcS+yHRZeCPqfitTIZFIJKXm6quv5tOf/jQLFizgyCOP5PbbbyeVSrFw4UIALrnkEurr67nlllsAePXVV9m2bRvz589n27ZtfOc738GyLL7+9a/vy5exR+QdvQREkxAoz5P0t+NT3KilKAFl82gNrdw37l3iWoGJVgXnWocXv27BwH/LL1FMi9zJR5E7fgGpRpctAbFbKTFjZdEUhVpnJY4RNKUWySSoCvqUSSi+gfkzmnnB0ocTvPN8Btjuhfjl0Kib7jPzAmFCZLxslJdIJAcPF110EW1tbdxwww00Nzczf/58nn322e5G+oaGBlR155f+bDbLt7/9bd577z38fj8f+tCHePjhhwmHw/voFewdqcNVBMlokjX/+S+GI4RnfBeNzmbq1UhJem60jc2s3fQGV81ZDcBPC59gjhhT9LqeB/+E94EnsUIBog/fQkapILbZi8NnoDl2/ikUhEHSTDHGVUOZHi76ugMmk8VKJtGnT0XdbWKlP2JbDf57R4xogwHAzLO8zP+YH00ffQFLotkgWKdTNcMhe7ckEonkAGJ0ff3fD9E1CFRkaXZ1EcZbGgufVBaxeQu3TdkEwBnm3JIEW9qGLXgeegqA1Fc+heGLkNzoQtVFj2DLNqVOUuGMECmFbdBAKRSwYjHUSRNQq/auMSaEYMO/srz+6zhmDlxBhfddEaJu/ghOUZaQXNIWY5WN8hKJRHLgIQOuInA7oToCHcFOMlaeMr1EvVvb2njCu45N7jRB4WGReWLxixom/lvuQzFM8scdRu6ko0k2ujAyWi81+biZJKgHqHaMoCn1DkPqMWMGZEidT1u8+ss4m5fkAKiZ6+TYK4J4I6PT/kZYglzCpHKaE1dANspLJBLJgYYMuIpA18BTlqFFiVKmBUqyphJP07FtLb+ZZY/HLjJPJEjxTd/uR/+Ovm4jlt9L8msLycadZDqcOP1Gj9gmZaVxqDo1jooRNaXuNqSesHdD6vZ3C7z0sxjJVlucdd5FfmZ/xIuijt6sUCZq4Qlro67nTCKRSCQDQ97di0AIQYPVhalYeEph4QOomzdzd90msqrJHGsMp1lzSrBmI94HngQgfdXFFPxlpDa50ZxWj1Ji3spjmAZj3LV4RtCUeochtT55Ejj6b84XlmD102mWP5pEmOCrVDnuqhCV00rzu99XmHmBVYDIdAe6c/QGjRKJRCLpHxlwFUHGytIp0kRKJAOhdHbxWnwtL03rQhMqV5mnohZb0jMt/Lfeh5IvkD/qELKnHUdqmwsjq/YoJZrCJGlmqHaWE9aLl54YKCIaRXE60adMBE//mbxM1OSVu+M0rbAnKccd7eLozwVx+kZ/+S3dZRKo1vFVjP7XIpFIJJK+kQFXEQhAIIoPigAsi/yGddw1fgsA51sLmCgqi17W/cTzOFatx/K6Sf2/z5CNuch0OnEFdpYShRDE94EptW1IbaFNnbpHQ+rGt3K8cnecbMy251lwaYApJ3sOiMbyfMpCdyqEx+qjuiQqkUgkkj0jA679BKVpK39wb6TZlaVKBLnYPLboNdWtLXh/+UcA25g6WElyowvdZaHqO0uJSSuNR3NR7awYOVPqXM42pJ4yCbWi7yDPNARvPZJk9dNpAMJjdY77SojwmAPjz1ZYgmzcpGKyA3dQZrckEonkQObA+OQa7eSSbG3dxB/rtwJwhfEBPBTZl2RZ+H/4K5RcnsJhs8h++CRSW12YeRVPZGcpMWvlsISgxjWCptSGgdXVhTphAlpdbZ+HJFoMXvpZjI71trbW1FM9HH5J4IDqccpELdwhjWDdyInKSiQSiWTfIAOufY0wURq3cWf4HQxFcLQ1mWPF1KKXdT31Ao7laxFuJ8lvfJZ0l4tspwtXaKeavCFM0ttNqQPaCJlSW5ZtSF1X268h9aaXs7x6X5xCRuD0KRz9+SDjjhq5Jv6RwCwIzLygcpoD3XXgBJESiUQi6RsZcO1rEm28kGvgrfJO3MLBlcYpRS+pNrfj+/mjAKQ/fxG5cC3pjS50t9mtuGAJi7iRpNwRHlFTaqu9E7WiHH3iBNB6yj8YWcHrv46z4V9ZACqnOXjfVSH8laNTW2tPZDpNAjX6AfnaJBKJRNIbGXDtS3JxktEEvwzZ9j2fNI+lmiKV3YXA96P7UTJZCnOnkT77FJJbXZiGimeXqcSEmcKve6h2lo+YKbXV0Yni86BNmgjOnuXLrs0F/nt7jHijCQrMOcfHIRf6ULUDL/uTT1uoju2K8rJRXiKRSA4KZMC1rzDzkEnxG2sVUT3HeKuc860FRS/r+tt/cL6+CuF0kLz2MjJdbnJRZ49SYtrKoCkqNY4qHMrI9A+JRAJF09An9zSkFkLwzvMZlj6cwCqAJ6LyvitD1MwZ3dpa/SGEIBu1KJ+s4w7JRnmJRCI5WJAB175AWJDuYF0mzl997wJwlXkaDoorL6ltnXjv+j0A6cvOJ1s+htRGNw6P0V1KLIgCOSvPGFcNPq14BfuBINJpyObQpk9FiezULMslLf53b5wtr9v2PHWHOjn28tABPbGXjVm4QyqhetkoL5FIJAcTMuDaF2S6MFUvd/I3AE4z53CIGFvcmkLg+8mDqMk0hZmTSJ//IVJb3QhLQfdYwA5T6hSVzrKRM6XO5RDJFOqkiT0MqVvX5HnpzhjpDgtVg0M/6WfGh0pj/r2/YhoCIyuomCwb5SUSieRgQwZcI00hDYrC0+l32KB3EBDukphTO//xCs5XliMcOqnrFpHudJOL6T3U5HeYUlc5ykfGlHoX+Qd9TB0oCpYlWPVkipWPpxACAjUax305RPmkAz/jk+k08Vdr+GSjvEQikRx0yIBrJLEMyMZpd4d4yHwJVLjMPIEw3qKWVTqi+O74LQCZS88hUzmB9CYXDq/ZrbqQMtM4VQe1I2VKbZqY7e1o9fXd8g+pDpOX74rRutoOAice7+bIzwZweA7cEuIO8mkLVbMV5Q/EQQCJRCKR7BkZcI0UQkC6A/xV/LLjGTJqgVlWHWdYhxS9tO+nD6HGkxhTx5P66Jkkt7rsUqLbLiXmrDyGMBjjrMU9EqbUQmC1taNVV3fLP2xdmmPJz2PkEgLdpXDkZwNMOmFkesj2NTsa5csm6XhCMrslkUgkByMy4BopcjFwellqdvFfsQZVKFxlnla0D6PzX6/h+vfrCE0jed0i0l1e8nEd93Y1eVOYpMwMNc6KETOlttraUcoi6JMmInSdFY8lWflECoDIBJ3jvxwiWHfw/OllYxauoEKo/uB5zRKJRCLpifwEGAmMHJh5cpEp3N3wEwDOtQ5nsqjay4l7Rokm8N32awAyF59Funoy6c1uHH67lCiEILbDlNpZVuyrGBBWeweK34c+ZTLC5eKtR1Os+pMdbM34kJdDP+FHcxw8JTXLEBgZQfVsJw73gV86lUgkEknfyIBruBEWZDohPJ7Huv5LE1EqLB+XmO8remnfzx5GjSYwJtaT/PjZJBtdgEB32aXEhJXCq7mpcVaijoC4qYhGUZwO9CmTwevlrcd2BlsLLg0w44PF9aqNRtJdFr4qDX+VLCVKJBLJwYz8yj3cZDrAW85Wj85j8X8AcLl5Cl6KM4p2vLQM1z+WIFSF5LWfIx3zk086cAZss+eslUMIqHFW4FKHX0RUJJNgCbQpkyEYZMUfU6x6cnuw9emDM9gqZC0UBSLjZKO8RCKRHOzIgGs4ySdBdSDC47l72+8wFIsjCxM4TkwralklkcL/kwcByH7sQ6Trp5Fuc+HyF1CUnabUNY7yETGlFpkMZLNokyehlpez4vFUd8/W4ZfY+loHG0IIMp0WoXoNT1hmtyQSieRgRwZcw4VVgHwKQuN4MbeG5fl3cVoaV4rTitbA8t71e9SOKObYGhIXn0+yxY2iCTSn6GFKXT4SptT5PCKeQJkwAbW6ihV/TLLycTvYOuxTfmZ+2LeXBQ5McnGBKyAb5SUSiURiIwOu4WCHBESglqQ3yH2NfwDgE4WjqCVc1NKOV1fg/tt/EIpC4tpFpGIBCikdp98uJSbMFIGRMqU2DKzOTtRxY9HH1LHiiRQrdgRbF/uZdebBGWxZhiCftoiMdxwUGmMSiUQi2Tvy02A4yHaBKwjhcfym7U90iQRjCyEuVI4ualkllcH3owfsS1xwGqlxs8l0uHAG7FJi2sqgKxrVI2FKvV3YVK2rRR8/jhVPplnxx12CrbMOzmALIN1p4a/U8EtFeYlEIpFsRwZcpaaQASwIT2Cd0cQzXS8CcJVxKs4ih0K9P38ErbUDs7aS+CUfJdniQtUFmkPYptRmnmpnxfCbUu8QNq2sRJ80kZV/zrDiMTvYOvSTB3ewZWQFioqtKK/LRnmJRCKR2MiAq5QIE7JRCIzF9IS5e9tDCASnpCYzX5tU1NL6stW4n3oBgOTXLyOVCGGkNRw+A0uYJIw0Vc7yETGltto6UCJh9CmTWfXXAm/tCLY+4Wf2Rw7eYEsIQbrLJFir4YnIt5ZEIpFIdiI/FUpJugN8lRAawzNd/+Ld3Gb8ppPPKacWt24mi/+H9wOQPftkEpPnkelw4goaKArEjSQh3U+FY/jFTa2OThSfxw62/m6y/JEkAPM/7mf22QdvsAWQSwicPoXQGB1FkdktiUQikexEBlylIhcH3QWRCXRaSX7T+gQAn0kcQaRISx3vfY+jNbZiVpUTX/hxUi1uNKeFqgtSZgqn5qTGWYmuDG/PkIjGUHQNfcpk3v6nsjPY+pifOecc3MGWZQoKKYvIOAdOr3xbSSQSiaQn8pOhFFgFMLIQngCuAL9sfoS0lWVGtoIPuY4qaml9xTu4H38egOT/+wzJVAQjq+LwmttNqS1qHJW41eKEVPeGSCbBNNGmTGH1vx0s/4MdbM27yMeccw/uYEtYglS7ibdCJVAtG+UlEolE0hsZcJWCTBQCNeCrYlnybf4dfxVVKHw5dQKaVkSjfC6P/9b7UIQg+6H3k5i2gEynE1fAwMI2pa5ylBHSAyV7KX2SySIytrDpmlfcvPn77cHWR33MPW/4hVX3Z4QlSLaaeEIqFVOcslFeIpFIJH2yXwRcd999NxMmTMDtdnPUUUfx2muv9Xvsfffdx/HHH08kEiESiXDKKafs8fgRwROB8ATymNzT9DAAZ8emM8U3sahlvQ88ibalGas8TOyzF5NsdqG7LBTNImYkiehBKobblDqfx4rHUSeMY+3rAd78nR1sHfJRH3PPP7iDLWtHsFWmUjXDicu/X7ydJBKJRLIfss8/IR599FGuvvpqbrzxRpYtW8a8efM4/fTTaW1t7fP4F198kY9//OP861//YsmSJYwdO5bTTjuNbdu2jfDOAUUFh88uJeou/tj+DNvyLZSbXi413gfq0H+92pr3cD/yNwCSX1tIMl2OmbdLiQkrhW8kTKl3CJuOHcM7K8pYtiPYusDHIQd7sGUKki0mvnKVqulOnL59/laSSCQSyX6MIoQQ+3IDRx11FEcccQR33XUXAJZlMXbsWL70pS9x7bXX7vV80zSJRCLcddddXHLJJb2ez+Vy5HK57v+Px+OMHTuWWCxGMFhcM3vKTPNq56sE3RW0Fzr5woZvUxAGNzQfz/GRo2Gok2r5AqHLrkffuI3cqcfQcvlXSGzx4grlySs58qLAeFct/uH0STRNzLZ2tLoa3n2njqW/TQMw9wIf8y48yIMtw85s+as1Kqc5cLhlsCWRSCSSPbNPPyny+TxLly7llFNO6X5MVVVOOeUUlixZMqA10uk0hUKBsrK+S2u33HILoVCo+2fs2LEl2Xs3DhdCCO5uepiCMFiQG8PxjrlDD7YAz0N/Qd+4DSscILro06RbXOhuE0u1TamrHRXDG2wJgdXegVZRzrvranYGW+fLYMvcHmwFajWqpjtlsCWRSCSSAbFPPy3a29sxTZPq6uoej1dXV9Pc3DygNb7xjW9QV1fXI2jbleuuu45YLNb9s2XLlqL3vTsvJ5ayLPU2DjSual4AgaEHJdq7m/H89mkAEl/5NIlsJaahonkKO02pHeES7bxvrPYOlFCQ9e+NYenvsgDMOc/HIRce3NOIZl6QajMIjdGpnOZEd8kGeYlEIpEMjOK8ZvYxt956K4888ggvvvgibre7z2NcLhcu1/BJJmTMLL9qeRSAT8TnURsqIoNmGPhvuQ/FNMmdcATRue8nu9WJO5zvNqWucVagMHwf9FZHJ4rHzfpN41j6iF2KnXOuj3kf9R3UYp5GXpDuNAmNcVAx2YHmOHh/FxKJRCIZPPs0w1VRUYGmabS0tPR4vKWlhZqamj2e+5Of/IRbb72V559/nkMOOWQ4t7lHHu94li4jRr2I8LHOWeAduo+h5/fPoL+7GSvoJ/r5hf+/vXuPjqq89wb+3Xv23CeTyXUmCbkAuXApEoEQgiDoCSeHoxTsiy+th3JRvAFKS+3RVguu1VVZtbayFJaWt6/a461IK9jXUk4lbRQCyEWDVIFwCReFhISEJJNkMpf9vH8MRHIEzWX2zCTz/ayVtZydvffzmw3b+bL3nt+D9gtGGCx+dEjBSaldeicUSbuMLJpbIOl0OHE2Bwf+4ANwOWzNi/Gw5RFobwggIVNBSi7DFhER9V5EA5fBYMD48eNRXl7etUxVVZSXl6OkpOS62z399NP4+c9/jm3btmHChAnhKPWaPm2vxnuXdgIAVtQXQ0lM6vO+dDWfw/zKFgCAe/l8tHhdEKoEYeqE7/Kk1Bbdta/ihYJwtwF+P058MRT7NwYAAKNnW2I+bPk8KjouBZA4VEHScD37bBERUZ9E/JbiypUrsXDhQkyYMAETJ07E2rVr0dbWhsWLFwMAFixYgIyMDKxZswYA8Mtf/hKrVq3CG2+8gZycnK5nvWw2G2y28D3QHRABrDq9FgIC0wIFGN+eBtXRx1uX/gCsa/4PJJ8f3smFaCq8Bd5aBYZ4D5r97XBqPSm1xwPR3o6TdbnY/6fgl1ZHz7ag8Hu2mA5b3nYVna0qEocqSMzRQ5Jj91gQEVH/RDxwzZs3D/X19Vi1ahVqa2tRWFiIbdu2dT1If+bMGchX9bN64YUX4PV6MXfu3G77Wb16NZ588smw1b3ffQj/bK+GGUbc/8UYqEl9D0SmTdugP3wSqtWMpgfvRftFExSzH61qGCal9vqgXmrGibrhOLA5eJxHfZthy9umwusWSBquR0KmwrBFRET9EvE+XOHW0tKC+Pj4kPTh2t18ALs+3ox/vZABXfrXP3N2PfKZ83AsfhyS14eWR5agbvS/w9euwG+7BFnSIduYrt08iX4/1PoGnDw/FPv/HLxdOWqWBTf+R2yHrU63Cl+7QNJwBY5MJaaPBRERhUbEr3ANZGOQCbk+GaojDn2aslhVYfvl7yB5ffAWfQtNRTPgrVUgxbchIFRkGFzahS1VhdrQiJNfZGH/u8GwNfJ2hi1Piwp/p0BKvh72dF1MHwsiIgodBq5QkPr23QPT29uh/6QawmxC09L70N5ghs7qhVt0IM2QArui3TNpan0DTp5Jx/6twd5aI2+zYNz82A5bHZcCUP1AaoEe9jSeGkREFDr8VIkQ+dwFWH4b7N/lvm8emsUQCKho07VcnpQ6QbOx1foGnKxxYv+2OADAiNssGPf92A5b7U0BSABSR+gR5+RpQUREocV5SSJBCNh++X8hebzwFY7AxUn/Dq9bD4+lGVadGWkaTkotGptQczwJ+7c5AAAjZlowPsbDVtvFAGQJSB1hYNgiIiJN8NMlAoz/7x/Qf/QZhNGAxqX3o/2iGcLihk4GXIZk6GW9JuOKllacPGzHvu3Bbz2OmGnB+IUxHrYaAtAZgJR8A6xJfXoSj4iI6BsxcIWZXHcRlvVvAgDcd9+JZl0OArIPnboODNG7YNNpM1+haGvHySoj9v0jGRBAwb+ZYzpsCSHQ3qBCMQEpBQZYEhi2iIhIO7ylGE5CwPqrlyC3e+AbnYuGKbPQ6ZbhMTUj2eBAol6j5qYeD2oO6LDvH6nBsFVmxoRFcTEdttouBKC3SHCONDJsERGR5niFK4yM23bC8OEnEAY9Gpc9iPYmC7yWJtj1Vjj1Gk1K7fPh5IcCeytcgJCQX2bGhMUxHLZUAXd9ACa7jNQCA4xx/DcHERFpj582YSI1XILludcAAO7vfweX9MPQKbfDYJTh0qdoMyl1IICTu33YW5EWDFszzCiK4bClqgKtdQGYHTKcIxm2iIgofPiJEw5CwPbrlyG72+ErGIr66d9BR5sATB1w6VO0mZRaVVFT6cXev6cDQkLeDDOK7o7hsBUI3ka0JstIHWGAwcq/+kREFD781AkDQ/keGHZ+BKHocHHpg2i/ZITX2owUYyIcSv+mF7qemspO7P1HGgAJeaVmTLw7LmbnA1T9Au66AKwpOqQWGGCw8K89ERGFF5/h0pjU1ALr2lcBAG13zcYlcx7avK1INFmRok/SZMyayk7s/XsahJCQ+y9mTLwnNsOWGhDwNAen6olL0yElzwDFGHvHgYiIIo+BS2PWtf8FubkV/uGZqLv1TrQ0eWFLkuEypEDXxymBvs6pPT7s3e4Mhq1bzSheEnthK+AX8FxSoQYEzA4ZKXl6WJJ00Olj6zgQEVH0YODSkOH9fTD+/UMInYyLDy5FyyU9dHHtcOm1mZT69L4APvzvlC/D1r2xFbYCXoGOZhVQAUuiBHu6AZZEGbISO8eAiIiiEwOXRqQWN6y/+T0AoO3O29Fgy0dnoA1Z5kRNJqU+fUBgz9YkCCFh+C2mmApb/k4BT3MAkCRYk2XYXQrMCTJkXWy8fyIiin4MXBqxPvca5MZm+LPTUVs6D82tHqSl2JBscIR8rDNVEva86wiGrekmTLrPHhNhy+dR4WlWIeskxLkUxDl1MDvkmHjvREQ0sDBwaUC/qwrG/66EkCQ0PPAgLrbIiE+Q4NQnQQrxF0PPfCJj9zt2CCFh2DQjJt0/+MOWt11FZ4sKnV5CfLqCuDQdTHY5ZlteEBFR9GPgCjHJ3Q7rMy8BANrvmInz8QXQyz5kmJ0hn5T67CEddm+OC4atm42Y9ED8oA5bnW4Vna0q9CYJCdkKbKkKTHa2eCAioujHwBVilvVvQlffBH+GE5+XfQ+eDh+GORNg1VlCOs7ZTxXsetsWDFtTDJj0YDzkQRi2hBDwugU6W1UYLBKShimIcypsXEpERAMKA1cI6fcdgundCgBA/f0P4KJbRlqqGQlKaCel/vywHrv+ZIUQEobepMekZY5BF7aEKtDpFvC2BWCwyUgp0MOarGPTUiIiGpAYuEKl3QPr08FbiW2zZuBMQj4cJiNcxtBOSv35YT0qN1khVAk5JQpKlicMqrClqgKdLSp8HQLGOAmpBQZYU3TQmxi0iIho4GLgChHrbzdCV9uAgDMZJ2fOg+JXMCQuMaSTUn9+5KqwNVHG5IcTB03YurorvCleRuLQ4BUtxTA43h8REcU2Bq4Q0H9SDdPb2wEA55csQVunDcNS42EO4aTUXxzRY9dbwbCVPUHC5B8kD4qwxa7wREQUCxi4+knq9CL+N/8FAHCXTcdZ57eQZrUhwRC6Sam/OKpH5VtWqKqE7HHATStTBnxTz4BPoONSsCu8OVFCPLvCExHRAXSLzQAAFipJREFUIMbA1U+OjeVQzl1AIDkB1TP/N+yyDa44R8j2/8VRPSo3BsNWVqGKm37kHNBhy+8V8FwKAJBgSZYRn8au8ERENPgxcPVDYN/HsP9lFwDg7OKFECIVWUmOkE1Kfa5a6bqylTnGjyk/dkFWBubD436PQEdzALJOgi1VgT2NXeGJiCh2MHD1kfB40LnsPyEJgeZpk3Ahsxg58fEwKYaQ7P9ctYKdG21QAxIyR/sw9T9dkBVdSPYdTqpfoL1JhSQB9vRg0GJXeCIiijUMXH3k+/ggxBfn4Y+34fht30Wy3oEEizUk++4WtkZ2YuqPnZANA+uPSojL3zr0CFhTdHBkKrAkDLzASEREFAoD61M8ihhKimHa9VccfflPMOmykZEYF5L9nj/2ZdgaUuDB1EdSIZuNIdl3uHjbVXguqTDFy0gapoctVcdntIiIKKYxcPWDzjkUvvRJyHDYIcv9f7bq/HEFO/5wOWzld2Dqj5Ih28whqDQ8Aj6B9sYAFIOEpOEK7OkKG5YSERGBgatfFEmPZCUJJn3/D+P54wp2vBkMWxm5bZj6g0To4m0hqFJ7Qg22eFB9QJxTgSOTk0oTERFdjYErCnQLW8PcmPJQPHRJjkiX1SOdbhWdrSosCTIcmXpYk/nNQyIiov+JgSvCak8o2Hn5NmL6UDemLLVC70qOdFnfyN8p0NEUgN4kISVfD3uawu7wRERE18HAFUG1J4JXtgJ+Cek5rbjpfiP0Q5yRLutrqQGBjiYVQgD2DAWOIQqMNt4+JCIi+joMXBFSe/KqsJXdipvu0cGYkwFEaX8qIQQ6WwW8bhXWlODtQ0si+2kRERH1BANXBNSdVLDjjWDYSsty46aFARiHDwVC1KE+1HweFR2NKgxxEpyjDYhL1XHOQyIiol5g4AqzuhoFH1wVtqb8hwfG/DxAF31NQQP+4O1DSQIShwbbPBgs0RkKiYiIohkDVxjV1Sj44PUrYasNN81zw1iQD+hDMx1QqAhVwNPyZZf4hCwFZkf0BUIiIqKBgoErTC6c+vLKliurHTd9pxHGESMAc3Q1Nr26S3zycD2sKewST0RE1F8MXGFw4ZSC91+3IeCT4Mpux5RZ9TCOzIdki57GpgGvQHtTsEt8cq4Ce7oeipFBi4iIKBQYuDR24fTl24g+Ca4cD6bMrIVhRB4khyPSpQEAVFXAc7lLvN2lIH4Iu8QTERGFGgOXhupP6/DBazb4fRKcOZ2Y/K9nYSgYDjklOhqbdraq6HRf7hKfpYc1iV3iiYiItMDApZH6Mzq8/3pcMGwN9eKm0tMw5GZBdrkiXRq7xBMREYUZA5cG6s/o8P5rcfB7L4etfzkJQ84QKJlDItrYVA0ItDeqAID4jOAk0wYrbx8SERFpjYErxBquClupOT5MvrUGhkwXlJxsQI5MawUhBDpbBLztKqzJ7BJPREQUbgxcIdRwVoeKK2FrqA9Tbj0JQ1oilGE5gBKZQ+3rUNHRdLlL/Ch2iSciIooEBq4QaTirQ8WrX17ZmjLjNPSJduhyhwEGY9jrCfgFOhoDkGQJiUMVxGco0Jt5+5CIiCgSGLhC4OI5BTve+jJsTZ35ORSrEUrucEhmS1hrEapAR7OKgFfAlqqDYwi7xBMREUUaA1c/NdUbsGebA36vhJRsH6befh6KIgXDVlxcWGvxtqnwNKswOWSk5LJLPBERUbRg4OqHuiN+7NmWCr9XRkq2DzfPqYcS8EKXmw8pISFsdbBLPBERUXRj4OqjC0e8eOfHbvi9MpKHeHHz/2qEzuOGnDsMckpKWGpQVYGOJhUiANjTFDiGKDDG8TktIiKiaMPA1UdxLh3saTqorW2YMrsRuvYWyEOzoUtPD8v4na0qOtuCXeITsi63eWCXeCIioqjEwNVHZocOc56x4os/nYKuvRXy8EwoWZmaNzb1ewQ6LgWgN0tIzdcjzsUu8URERNGOgasfTHYZihGQnWlQhuZo2tj06i7xjiHBSabZJZ6IiGhgYODqB8logJyaAmWoU7PGpld3ibclByeZNiewSzwREdFAwsDVD5JeD13mEMCozZUmX4cKzyUVBpsE12gDbCnsEk9ERDQQMXBFoStd4mWdhIShCuLT2SWeiIhoIGPgiiJf6RKfqcAczy7xREREAx0DV5TwtqnwtARgitchJU8PazK7xBMREQ0WDFwR5vcGbx8qRgnJuQbY0xUoBgYtIiKiwYSBK0JUVaCjUYVQAXs6u8QTERENZgxcEeBpUeFtU2FJvNwlPoltHoiIiAYzBq4w6tYlvoBd4omIiGIFA1cYqP7LXeIlwJF5uUu8hbcPiYiIYgUDl4aEEPA0q/B7BKzJl9s8sEs8ERFRzGHg0oi3Pdgl3miX4BzFLvFERESxjIErxAK+y13i9RKShimwZyjQm3j7kIiIKJYxcIWIUAU6LqkI+NglnoiIiLpj4AqBzjYVfo8Ks0OHlHw9bCk6SDJvHxIREVEQA1c/SVLwJznPAHsau8QTERHRVzFw9YNilJCQrYfZIbNLPBEREV0XA1c/yDoJjkweQiIiIvp6vCxDREREpDEGLiIiIiKNMXARERERaYyBi4iIiEhjDFxEREREGmPgIiIiItIYAxcRERGRxqIicK1fvx45OTkwmUwoLi7G3r17v3b9TZs2YcSIETCZTBgzZgy2bt0apkqJiIiIei/igWvjxo1YuXIlVq9ejY8++ghjx45FWVkZLly4cM31d+3ahe9973u455578PHHH2POnDmYM2cO/vnPf4a5ciIiIqKekYQQIpIFFBcXo6ioCOvWrQMAqKqKzMxMPPTQQ3jssce+sv68efPQ1taGd999t2vZpEmTUFhYiBdffPEbx2tpaUF8fDyam5tht9tD90aIiIiIriOiV7i8Xi8OHDiA0tLSrmWyLKO0tBS7d+++5ja7d+/utj4AlJWVXXf9zs5OtLS0dPshIiIiCqeIBq6GhgYEAgE4nc5uy51OJ2pra6+5TW1tba/WX7NmDeLj47t+MjMzQ1M8ERERUQ9F/Bkurf3kJz9Bc3Nz18/Zs2cjXRIRERHFGCWSgycnJ0On06Gurq7b8rq6Orhcrmtu43K5erW+0WiE0WgMTcFEREREfRDRK1wGgwHjx49HeXl51zJVVVFeXo6SkpJrblNSUtJtfQB47733rrs+ERERUaRF9AoXAKxcuRILFy7EhAkTMHHiRKxduxZtbW1YvHgxAGDBggXIyMjAmjVrAAArVqzAtGnT8Otf/xq33XYb/vCHP2D//v3YsGFDJN8GERER0XVFPHDNmzcP9fX1WLVqFWpra1FYWIht27Z1PRh/5swZyPKXF+ImT56MN954A0888QR++tOfIi8vD1u2bMG3vvWtHo13pQsGv61IRERai4uLgyRJkS6DokDE+3CF2+eff85vKhIRUViw5yNdEXOBS1VVnDt3rlf/6igqKsK+fft6NU5vt+np+t+0XktLCzIzM3H27NmYOcn78uejlXDUEsox+rsvnhvRjedG5PZ1ZXte4aIrIn5LMdxkWcaQIUN6tY1Op+v1/6B7u01P1+/pena7PWY+VPry56OVcNQSyjH6uy+eG9GN50bk9hVNx56iw6DvwxUKy5Yt03ybnq7fl1oGu2g6JuGoJZRj9HdfPDeiWzQdE54bFOti7pbiYMe5IomujecGEUUSr3ANMkajEatXr2azV6L/gecGEUUSr3ARERERaYxXuIiIiIg0xsBFREREpDEGLiIiIiKNMXARERERaYyBi4iIiEhjDFwx5I477kBCQgLmzp0b6VKIosrZs2cxffp0jBo1CjfccAM2bdoU6ZKIaJBhW4gYUlFRgdbWVvz+97/HH//4x0iXQxQ1zp8/j7q6OhQWFqK2thbjx49HdXU1rFZrpEsjokGCV7hiyPTp0xEXFxfpMoiiTlpaGgoLCwEALpcLycnJaGxsjGxRRDSoMHANEB988AFmzZqF9PR0SJKELVu2fGWd9evXIycnByaTCcXFxdi7d2/4CyWKgFCeHwcOHEAgEEBmZqbGVRNRLGHgGiDa2towduxYrF+//pq/37hxI1auXInVq1fjo48+wtixY1FWVoYLFy6EuVKi8AvV+dHY2IgFCxZgw4YN4SibiGIIn+EagCRJwubNmzFnzpyuZcXFxSgqKsK6desAAKqqIjMzEw899BAee+yxrvUqKiqwbt06PsNFg1Zfz4/Ozk7MmDED9957L77//e9HonQiGsR4hWsQ8Hq9OHDgAEpLS7uWybKM0tJS7N69O4KVEUVeT84PIQQWLVqEW2+9lWGLiDTBwDUINDQ0IBAIwOl0dlvudDpRW1vb9bq0tBR33nkntm7diiFDhjCMUUzoyflRWVmJjRs3YsuWLSgsLERhYSEOHToUiXKJaJBSIl0Ahc/27dsjXQJRVJoyZQpUVY10GUQ0iPEK1yCQnJwMnU6Hurq6bsvr6urgcrkiVBVRdOD5QUTRgIFrEDAYDBg/fjzKy8u7lqmqivLycpSUlESwMqLI4/lBRNGAtxQHCLfbjePHj3e9rqmpQVVVFRITE5GVlYWVK1di4cKFmDBhAiZOnIi1a9eira0NixcvjmDVROHB84OIoh3bQgwQFRUVuOWWW76yfOHChXjllVcAAOvWrcOvfvUr1NbWorCwEM899xyKi4vDXClR+PH8IKJox8BFREREpDE+w0VERESkMQYuIiIiIo0xcBERERFpjIGLiIiISGMMXEREREQaY+AiIiIi0hgDFxEREZHGGLiIiIiINMbARURERKQxBi6iPpo+fTp+8IMfRLqMAeXUqVOQJAlVVVX92k9OTg7Wrl0b9nGJiPqKgYuIBpx9+/bhvvvuC+k+X3nlFTgcjpDuk4joCiXSBRAR9VZKSkqkSyAi6hVe4SLqB7/fj+XLlyM+Ph7Jycn42c9+hivzwTc1NWHBggVISEiAxWLBzJkzcezYMQBAfX09XC4Xnnrqqa597dq1CwaDAeXl5d847pNPPonCwkK89NJLyMrKgs1mw9KlSxEIBPD000/D5XIhNTUVv/jFL7ptd+nSJSxZsgQpKSmw2+249dZbcfDgwa7fnzhxArNnz4bT6YTNZkNRURG2b9/ebR85OTl46qmncPfddyMuLg5ZWVnYsGFDr47byZMnccstt8BisWDs2LHYvXt3t9/v3LkTU6dOhdlsRmZmJh5++GG0tbV1q+HqW4pHjhzBlClTYDKZMGrUKGzfvh2SJGHLli09GreiogKLFy9Gc3MzJEmCJEl48skne/WeiIi+liCiPpk2bZqw2WxixYoV4siRI+K1114TFotFbNiwQQghxLe//W0xcuRI8cEHH4iqqipRVlYmcnNzhdfrFUII8Ze//EXo9Xqxb98+0dLSIoYNGyZ++MMf9mjs1atXC5vNJubOnSs+/fRT8ec//1kYDAZRVlYmHnroIXHkyBHx0ksvCQBiz549XduVlpaKWbNmiX379onq6mrxox/9SCQlJYmLFy8KIYSoqqoSL774ojh06JCorq4WTzzxhDCZTOL06dNd+8jOzhaJiYli/fr14tixY2LNmjVClmVx5MiRb6y7pqZGABAjRowQ7777rjh69KiYO3euyM7OFj6fTwghxPHjx4XVahXPPvusqK6uFpWVleLGG28UixYt6lbDs88+K4QQwu/3i4KCAjFjxgxRVVUlduzYISZOnCgAiM2bN/do3M7OTrF27Vpht9vF+fPnxfnz50Vra2uP/iyIiHqCgYuoj6ZNmyZGjhwpVFXtWvboo4+KkSNHiurqagFAVFZWdv2uoaFBmM1m8dZbb3UtW7p0qcjPzxd33XWXGDNmjPB4PD0ae/Xq1cJisYiWlpauZWVlZSInJ0cEAoGuZQUFBWLNmjVCCCF27Ngh7Hb7V8YYPny4+O1vf3vdsUaPHi2ef/75rtfZ2dli/vz5Xa9VVRWpqanihRde+Ma6rwSf3/3ud13LPv30UwFAHD58WAghxD333CPuu+++btvt2LFDyLIsOjo6umq4Erj++te/CkVRxPnz57vWf++9964ZuL5u3JdfflnEx8d/43sgIuoL3lIk6odJkyZBkqSu1yUlJTh27Bg+++wzKIqC4uLirt8lJSWhoKAAhw8f7lr2zDPPwO/3Y9OmTXj99ddhNBp7PHZOTg7i4uK6XjudTowaNQqyLHdbduHCBQDAwYMH4Xa7kZSUBJvN1vVTU1ODEydOAADcbjceeeQRjBw5Eg6HAzabDYcPH8aZM2e6jX3DDTd0/bckSXC5XF3j9MTV26elpQFAtzpfeeWVbjWWlZVBVVXU1NR8ZV9Hjx5FZmYmXC5X17KJEyf2elwiIi3xoXmiCDpx4gTOnTsHVVVx6tQpjBkzpsfb6vX6bq8lSbrmMlVVAQTDVFpaGioqKr6yryvfznvkkUfw3nvv4ZlnnkFubi7MZjPmzp0Lr9f7jWNfGae3tV8JrFfXef/99+Phhx/+ynZZWVk9HqO34xIRaYmBi6gfPvzww26v9+zZg7y8PIwaNQp+vx8ffvghJk+eDAC4ePEijh49ilGjRgEAvF4v5s+fj3nz5qGgoABLlizBoUOHkJqaqkmt48aNQ21tLRRFQU5OzjXXqaysxKJFi3DHHXcACIafU6dOaVLP9YwbNw6fffYZcnNze7R+QUEBzp49i7q6OjidTgDBthG9ZTAYEAgEer0dEVFP8JYiUT+cOXMGK1euxNGjR/Hmm2/i+eefx4oVK5CXl4fZs2fj3nvvxc6dO3Hw4EHMnz8fGRkZmD17NgDg8ccfR3NzM5577jk8+uijyM/Px913361ZraWlpSgpKcGcOXPwt7/9DadOncKuXbvw+OOPY//+/QCAvLw8vP3226iqqsLBgwdx1113hf0K0KOPPopdu3Zh+fLlqKqqwrFjx/DOO+9g+fLl11x/xowZGD58OBYuXIhPPvkElZWVeOKJJwCg2+3eb5KTkwO3243y8nI0NDSgvb09JO+HiAhg4CLqlwULFqCjowMTJ07EsmXLsGLFiq6GnC+//DLGjx+P22+/HSUlJRBCYOvWrdDr9aioqMDatWvx6quvwm63Q5ZlvPrqq9ixYwdeeOEFTWqVJAlbt27FzTffjMWLFyM/Px/f/e53cfr06a4rQ7/5zW+QkJCAyZMnY9asWSgrK8O4ceM0qed6brjhBrz//vuorq7G1KlTceONN2LVqlVIT0+/5vo6nQ5btmyB2+1GUVERlixZgscffxwAYDKZejzu5MmT8cADD2DevHlISUnB008/HZL3Q0QEAJIQl5sGERENEpWVlZgyZQqOHz+O4cOHR7ocIiIGLiIa+DZv3gybzYa8vDwcP34cK1asQEJCAnbu3Bnp0oiIAPCWIlFUGj16dLe2CFf/vP7665Eu77qeeuqp69Y9c+ZMzcZtbW3FsmXLMGLECCxatAhFRUV45513NBuPiKi3eIWLKAqdPn0aPp/vmr9zOp3d+m9Fk8bGRjQ2Nl7zd2azGRkZGWGuiIgoOjBwEREREWmMtxSJiIiINMbARURERKQxBi4iIiIijTFwEREREWmMgYuIiIhIYwxcRERERBpj4CIiIiLS2P8HAPPbaN19Ti0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "g = sns.relplot(\n", " data=recall_at_precision,\n", @@ -3476,7 +1141,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "id": "1b3f5f18", "metadata": { "ExecuteTime": { @@ -3484,18 +1149,7 @@ "start_time": "2023-06-22T09:38:52.559991Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACEUAAAXWCAYAAABvhIEmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVfrA8e/0nl4hjd6kQ6QooIKCiigWBBTW+nPtZa1r76uui7q6rrsrogJ2rIAFRBEQAoHQQwslBNJ7MvWe3x8TBiIBAQMJ4f08zzxz59x27sCTc+fc97xHp5RSCCGEEEIIIYQQQgghhBBCCCGEEEK0MPqmroAQQgghhBBCCCGEEEIIIYQQQgghxPEgQRFCCCGEEEIIIYQQQgghhBBCCCGEaJEkKEIIIYQQQgghhBBCCCGEEEIIIYQQLZIERQghhBBCCCGEEEIIIYQQQgghhBCiRZKgCCGEEEIIIYQQQgghhBBCCCGEEEK0SBIUIYQQQgghhBBCCCGEEEIIIYQQQogWSYIihBBCCCGEEEIIIYQQQgghhBBCCNEiSVCEEEIIIYQQQgghhBBCCCGEEEIIIVokCYoQQgghhBBCCCGEEEIIIYQQQgghRIskQRFCCCGEEEKIk9qf/vQnLr744sNuk5aWxpQpU47oeO+88w4RERF/uF5CCCGECDqStloIIYQQx06n0/H555+3mPMIIURjk6AIIZqxxx9/nF69ejV1NU4YuaESQgjRXEgb3PJkZGRw4403NnU1hBBCHIa0vyeX7du3o9PpWLVqVVNXRQghRCOTNvnks2fPHkaNGtXU1RBCiGZLgiKEEEfM5/M1dRXwer1NXYWj0hy+MyGEECe/5tCenGxt8G/FxsZit9ubuhpCCCFOItL+nlzkuxJCiJZL2uTfl5CQgMViaepqCCFEsyVBEUIcR5qm8cILL9C+fXssFgspKSk888wzofX3338/HTt2xG6307ZtWx555JHQDd4777zDE088QVZWFjqdDp1OxzvvvANAWVkZ119/PbGxsYSFhXH22WeTlZVV79xPP/00cXFxuFwurr/+eh544IF60b2apvHkk0+SlJSExWKhV69ezJ07N7R+34iPDz/8kKFDh2K1WnnrrbcICwvjk08+qXeuzz//HIfDQWVl5WG/D6/Xy6233kpiYiJWq5XU1FSee+45IJjSGuCSSy5Bp9OFPu+LSv7vf/9LmzZtsFqtR/z9H419abI///xzOnTogNVq5bzzzmPXrl31tvviiy/o06cPVquVtm3b8sQTT+D3+0PrdTod//rXv7joootwOBw888wzlJaWMnHiRGJjY7HZbHTo0IGpU6eG9lmzZg1nn302NpuN6OhobrzxRqqqqkLr96UZfemll0hMTCQ6OppbbrmlWfwYEEKI5kra4PqaaxtcUVGBzWZjzpw59cpnzZqFy+WipqYGgF27dnHFFVcQERFBVFQUY8aMYfv27Qcd73Bt5W+nzygrK+P//u//iI+Px2q1ctppp/H1118fsq6/dw8ghBBC2t/faq7t7z6ffvop3bp1w2KxkJaWxt///vd66xsaNRsRERH6d2nTpg0AvXv3RqfTMWzYMAACgQB33303ERERREdHc99996GUqnccj8fD7bffTlxcHFarlTPOOIOMjIx62/z000+kp6djsVhITEzkgQceqNf2Dhs2jFtvvZU777yTmJgYzjvvvEb4VoQQomWQNrm+5twmFxcXM378eFq3bo3dbqd79+7MnDmz3jbDhg3j9ttv57777iMqKoqEhAQef/zxetsc2G7v+w4/+ugjzjzzTGw2G/3792fTpk1kZGTQr18/nE4no0aNorCwMHSMjIwMRowYQUxMDOHh4QwdOpTMzMzjct1CCHHCKSHEcXPfffepyMhI9c4776gtW7aohQsXqv/85z+h9U899ZRatGiRysnJUV9++aWKj49Xf/vb35RSStXU1Kh77rlHdevWTe3Zs0ft2bNH1dTUKKWUGj58uBo9erTKyMhQmzZtUvfcc4+Kjo5WxcXFSiml3n//fWW1WtXbb7+tsrOz1RNPPKHCwsJUz549Q+d++eWXVVhYmJo5c6bauHGjuu+++5TJZFKbNm1SSimVk5OjAJWWlqY+/fRTtW3bNpWXl6duuOEGdf7559e7zosuukhNmjTpd7+PF198USUnJ6uff/5Zbd++XS1cuFDNmDFDKaVUQUGBAtTUqVPVnj17VEFBgVJKqccee0w5HA41cuRIlZmZqbKysho89o4dO5TD4Tjs65lnnjlk3aZOnapMJpPq16+fWrx4sVq+fLlKT09XgwYNCm3z888/q7CwMPXOO++orVu3qu+++06lpaWpxx9/PLQNoOLi4tTbb7+ttm7dqnbs2KFuueUW1atXL5WRkaFycnLU999/r7788kullFJVVVUqMTFRjR07Vq1Zs0bNmzdPtWnTRk2ePDl0zMmTJ6uwsDB10003qQ0bNqivvvpK2e129dZbb/3udy6EEKcqaYPra85t8GWXXaauuuqqemWXXnppqMzr9aouXbqoa6+9Vq1evVqtX79eTZgwQXXq1El5PB6l1JG1lampqeof//iHUkqpQCCgBgwYoLp166a+++47tXXrVvXVV1+p2bNnK6WC9wXh4eGhfY/kHkAIIYS0v7/VnNvf5cuXK71er5588kmVnZ2tpk6dqmw2m5o6dWpoG0DNmjWr3n7h4eGhbZYtW6YA9cMPP6g9e/aE/j3+9re/qcjISPXpp5+q9evXq+uuu065XC41ZsyY0HFuv/121apVKzV79my1bt06NXnyZBUZGRk6Rm5urrLb7ermm29WGzZsULNmzVIxMTHqscceCx1j6NChyul0qnvvvVdt3LhRbdy48Xf/TYQQ4lQhbXJ9zblNzs3NVS+++KJauXKl2rp1q3r11VeVwWBQS5cuDW0zdOhQFRYWph5//HG1adMmNW3aNKXT6dR3330X2ubAdnvfd9i5c2c1d+5ctX79ejVgwADVt29fNWzYMPXLL7+ozMxM1b59e3XTTTeFjjFv3jz13nvvqQ0bNoTa8Pj4eFVRUdHgeYQQ4mQiQRFCHCcVFRXKYrHUu9n8PS+++KLq27dv6PNjjz1W74ZRKaUWLlyowsLClNvtrlferl079e9//1sppdTpp5+ubrnllnrrBw8eXO9YrVq1OuhmrH///urmm29WSu2/cZoyZUq9bZYuXaoMBoPKy8tTSimVn5+vjEajWrBgwe9e32233abOPvtspWlag+sbuqF67LHHlMlkCt2MHorP51ObN28+7GvfzXlDpk6dqgD166+/hso2bNiggNAN6DnnnKOeffbZevu99957KjExsd413HnnnfW2GT16tLrmmmsaPO9bb72lIiMjVVVVVajsm2++UXq9Xu3du1cpFXzQk5qaqvx+f2ibyy+/XI0bN+6w34kQQpyqpA0+WHNug2fNmqWcTqeqrq5WSilVXl6urFarmjNnjlIq2NZ26tSpXt09Ho+y2Wzq22+/VUodWVt5YFDEt99+q/R6vcrOzm6wTr8NijiSewAhhDjVSft7sObc/k6YMEGNGDGiXtm9996runbtetj6HRgUse87W7lyZb1tEhMT1QsvvFCvrklJSaGgiKqqKmUymdT06dND23i9XtWqVavQfg899NBB7f/rr7+unE6nCgQCSqngA6LevXsf9nsSQohTkbTJB2vObXJDLrjgAnXPPfeEPg8dOlSdccYZ9bbp37+/uv/++xu8hn3f4X//+9/Q+pkzZypAzZs3L1T23HPPqU6dOh2yHoFAQLlcLvXVV181eB4hhDiZGE9AMgohTkkbNmzA4/FwzjnnHHKbDz/8kFdffZWtW7dSVVWF3+8nLCzssMfNysqiqqqK6OjoeuW1tbVs3boVgOzsbG6++eZ669PT05k/fz4QTFWdl5fH4MGD620zePDgg9Kd9evX76DjdOvWjWnTpvHAAw/w/vvvk5qaypAhQw5bbwhOAzFixAg6derEyJEjufDCCzn33HN/d7/U1FRiY2MPu43RaKR9+/a/e6zfO0b//v1Dnzt37kxERAQbNmwgPT2drKwsFi1aVC/VXCAQwO12U1NTE5qn/Lff2Z///GcuvfRSMjMzOffcc7n44osZNGgQEPx/0rNnTxwOR2j7wYMHo2ka2dnZxMfHA9CtWzcMBkNom8TERNasWfOHrlcIIVoqaYMP1pzb4PPPPx+TycSXX37JlVdeyaeffkpYWBjDhw8Hgt/7li1bcLlc9fZzu92h7x2Orq1ctWoVSUlJdOzY8YjqeKT3AEIIcSqT9vdgzbn93bBhA2PGjKlXNnjwYKZMmUIgEKjXph6N8vJy9uzZw+mnn16vrv369QtNobF161Z8Pl+9fw+TyUR6ejobNmwI1W/gwIHodLp69auqqiI3N5eUlBQA+vbte0z1FEKIlkza5IM15zY5EAjw7LPP8tFHH7F79268Xi8ej+eg35k9evSo9zkxMZGCgoLDHvvAffb1M3fv3r1e2YHHyM/P5+GHH2bBggUUFBQQCASoqalh586dx3x9QgjRXEhQhBDHic1mO+z6JUuWMHHiRJ544gnOO+88wsPD+eCDDw6aw/O3qqqqSExMZMGCBQeti4iI+AM1btiBD+v3uf7663n99dd54IEHmDp1Ktdcc029jopD6dOnDzk5OcyZM4cffviBK664guHDhx80F9yR1OG3du7cSdeuXQ+7zUMPPcRDDz30u8c6lKqqKp544gnGjh170LoD55T7bX1HjRrFjh07mD17Nt9//z3nnHMOt9xyCy+99NIRn9tkMtX7rNPp0DTtKK9ACCFODdIGH6w5t8Fms5nLLruMGTNmcOWVVzJjxgzGjRuH0Rj8qVJVVUXfvn2ZPn36Qfse2Dl1NG3l7/0f+a0jvQcQQohTmbS/B2vO7e+R0Ol0oUCGffbNN99cHMl3JYQQpxppkw/WnNvkF198kVdeeYUpU6bQvXt3HA4Hd955J16vt952x9I/fOA++76n35YdeIzJkydTXFzMK6+8QmpqKhaLhYEDBx5UFyGEOBlJUIQQx0mHDh2w2WzMmzeP66+//qD1ixcvJjU1lb/+9a+hsh07dtTbxmw2EwgE6pX16dOHvXv3YjQaSUtLa/DcnTp1IiMjg0mTJoXKMjIyQsthYWG0atWKRYsWMXTo0FD5okWLSE9P/91ru+qqq7jvvvt49dVXWb9+PZMnT/7dfQ4897hx4xg3bhyXXXYZI0eOpKSkhKioKEwm00HXe6RatWrFqlWrDrtNVFTUYdf7/X6WL18e+g6ys7MpKyujS5cuQPC7z87OPqbI39jYWCZPnszkyZM588wzuffee3nppZfo0qUL77zzDtXV1aGb7EWLFqHX6+nUqdNRn0cIIYS0wYfSnNvgiRMnMmLECNatW8f8+fN5+umnQ+v69OnDhx9+SFxc3O+OXDpSPXr0IDc3l02bNh1Rtog/cg8ghBCnCml/G9Zc298uXbqwaNGiemWLFi2iY8eOoSwRsbGx7NmzJ7R+8+bN1NTUhD6bzWaAetcQHh5OYmIiS5cuDY3c9fv9rFixgj59+gDQrl07zGYzixYtIjU1FQgGW2RkZHDnnXeG6vfpp5+ilAo9xFm0aBEul4ukpKTDXrcQQpzqpE1uWHNtkxctWsSYMWO46qqrANA0jU2bNv1uoMXxsGjRIt544w3OP/98AHbt2kVRUdEJr4cQQhwPEhQhxHFitVq5//77ue+++zCbzQwePJjCwkLWrVvHddddR4cOHdi5cycffPAB/fv355tvvmHWrFn1jpGWlkZOTk4oxbPL5WL48OEMHDiQiy++mBdeeIGOHTuSl5fHN998wyWXXEK/fv247bbbuOGGG+jXrx+DBg3iww8/ZPXq1bRt2zZ07HvvvZfHHnuMdu3a0atXL6ZOncqqVasaHIX5W5GRkYwdO5Z7772Xc88994g7JF5++WUSExPp3bs3er2ejz/+mISEhFAkcVpaGvPmzWPw4MFYLBYiIyOP+PtujOkzTCYTt912G6+++ipGo5Fbb72VAQMGhG7IH330US688EJSUlK47LLL0Ov1ZGVlsXbt2noPb37r0UcfpW/fvnTr1g2Px8PXX38dCrSYOHEijz32GJMnT+bxxx+nsLCQ2267jauvvjqU0kwIIcTRkTb4YM29DR4yZAgJCQlMnDiRNm3a1Eu5PXHiRF588UXGjBnDk08+SVJSEjt27OCzzz7jvvvuO6YHI0OHDmXIkCFceumlvPzyy7Rv356NGzei0+kYOXLkQdsf6z2AEEKcSqT9PVhzbn/vuece+vfvz1NPPcW4ceNYsmQJ//znP3njjTdC25x99tn885//ZODAgQQCAe6///56o0vj4uKw2WzMnTuXpKQkrFYr4eHh3HHHHTz//PN06NCBzp078/LLL1NWVhbaz+Fw8Oc//5l7772XqKgoUlJSeOGFF6ipqeG6664D4Oabb2bKlCncdttt3HrrrWRnZ/PYY49x9913o9frj/m6hRDiVCBt8sGac5vcoUMHPvnkExYvXkxkZCQvv/wy+fn5TRIU0aFDB9577z369etHRUUF995771FnWhRCiGZLCSGOm0AgoJ5++mmVmpqqTCaTSklJUc8++2xo/b333quio6OV0+lU48aNU//4xz9UeHh4aL3b7VaXXnqpioiIUICaOnWqUkqpiooKddttt6lWrVopk8mkkpOT1cSJE9XOnTtD+z755JMqJiZGOZ1Ode2116rbb79dDRgwoF7dHn/8cdW6dWtlMplUz5491Zw5c0Lrc3JyFKBWrlzZ4LXNmzdPAeqjjz464u/jrbfeUr169VIOh0OFhYWpc845R2VmZobWf/nll6p9+/bKaDSq1NRUpZRSjz32mOrZs+cRn+NYTZ06VYWHh6tPP/1UtW3bVlksFjV8+HC1Y8eOetvNnTtXDRo0SNlsNhUWFqbS09PVW2+9FVoPqFmzZtXb56mnnlJdunRRNptNRUVFqTFjxqht27aF1q9evVqdddZZymq1qqioKHXDDTeoysrK0PrJkyerMWPG1DvmHXfcoYYOHdpo1y+EEC2NtMH1Nec2eJ/77rtPAerRRx89aN2ePXvUpEmTVExMjLJYLKpt27bqhhtuUOXl5UqpI2srU1NT1T/+8Y/Q5+LiYnXNNdeo6OhoZbVa1Wmnnaa+/vprpdT++4ID/d49gBBCCGl/f6u5t7+ffPKJ6tq1a+jf6sUXX6y3fvfu3ercc89VDodDdejQQc2ePVuFh4eH/l2UUuo///mPSk5OVnq9PtTu+nw+dccdd6iwsDAVERGh7r77bjVp0qR6bXVtba267bbbQm374MGD1bJly+qdf8GCBap///7KbDarhIQEdf/99yufzxdaP3ToUHXHHXc09tcihBAtgrTJ9TXnNrm4uFiNGTNGOZ1OFRcXpx5++OGD2s2G2rwxY8aoyZMnhz4f2C/d0Hf4448/KkCVlpaGyn772zczM1P169dPWa1W1aFDB/Xxxx8f9Fu6of5vIYQ4GeiU+s3kgEKIFmnEiBEkJCTw3nvvNcrx3nvvPe666y7y8vJCKTNPZu+88w533nlnvdErQgghRGOQNlgIIYQ48aT9FUIIIZoHaZOFEEI0BzJ9hhAtUE1NDW+++SbnnXceBoOBmTNn8sMPP/D99983yrH37NnD888/z//93//JjacQQghxAGmDhRBCiBNP2l8hhBCieZA2WQghRHMlk/AJ0QLpdDpmz57NkCFD6Nu3L1999RWffvopw4cP/8PHfuGFF+jcuTMJCQk8+OCD9dY9++yzOJ3OBl+jRo36w+cWQgghmjtpg4UQQogTT9pfIYQQonmQNlkIIURzJdNnCCEaTUlJCSUlJQ2us9lstG7d+gTXSAghhDg1SBsshBBCnHjS/gohhBDNg7TJQgghfo8ERQghhBBCCCGEEEIIIYQQQgghhBCiRZLpM4QQQgghhBBCCCGEEEIIIYQQQgjRIklQhBBCCCGEEEIIIYQQQgghhBBCCCFapFMuKEIpRUVFBTJriBBCCHHiSTsshBBCNB1ph4UQQoimI+2wEEIIIUTTOeWCIiorKwkPD6eysrKpqyKEEEKccqQdFkIIIZqOtMNCCCFE05F2WAghhBCi6ZxyQRFCCCGEEEIIIYQQQgghhBBCCCGEODVIUIQQQgghhBBCCCGEEEIIIYQQQgghWiQJihBCCCGEEEIIIYQQQgghhBBCCCFEiyRBEUIIIYQQQgghhBBCCCGEEEIIIYRokSQoQgghhBBCCCGEEEIIIYQQQgghhBAtkgRFCCGEEEIIIYQQQgghhBBCCCGEEKJFkqAIIYQQQgghhBBCCCGEEEIIIYQQQrRIEhQhhBBCCCGEEEIIIYQQQgghhBBCiBZJgiKEEEIIIYQQQgghhBBCCCGEEEII0SJJUIQQQgghhBBCCCGEEEIIIYQQQgghWiQJihBCCCGEEEIIIYQQQgghhBBCCCFEiyRBEUIIIYQQQgghhBBCCCGEEEIIIYRokSQoQgghhBBCCCGEEEIIIYQQQgghhBAtkgRFCCGEEEIIIYQQQgghhBBCCCGEEKJFkqAIIYQQQgghhBBCCCGEEEIIIYQQQrRIEhQhhBBCCCGEEEIIIYQQQgghhBBCiBbJ2NQVEEIIIYQQQgghhBBCCCGEEEII0bwF/AH8Pi9ejxufx43f58Pvc+PzeDBZLLRq07GpqyhEgyQoQgghhBBCCCGEEEIIIYQQQgjR7B3uoXzA78fv9eD3eQj4/AR8XgJ+D35/cFnzedECfjSfj4Dfhwr4Cfh9aH4fSvOj+f2ogA8VCKACfjS/D5SGFvCj/H7QNJTmg0AApWmoQAACflAaBAKgBeqWtbplhU4LoAIaOqWBpqHTNNCC5WgaOqXqPtctKw29VlemNHSaQqdxwLJCp/a/6zUOKAP9b5c1gtsFFDoVLNNrHLC8b1sOWFZ1nw9crntXB/+bGOpea/qG0Wp53on+LyHEEZGgCCGEEEIIIYQQQgghhBBCCCFEs6EFNL7+z1Pw0Tt0W1aM1a397kN50cS0Bv5xhGgmJChCCCGEaAEK8nJZ+c10SjN/InbASM6ZfHtTV0kIIYQQQgghhBBCCCGOysbs1Sz55120/yGL0ze6j+kYAT0oHQQMOjQ9KJ2OgAE0vQ6lA+3AZX3dNnXv+8r3fVa6/euVHjSdrsFlpdMHl3X7ttWjQut1ByzrQVe3Xq8LLaPXo3R60B/wWa8HvQHqPgeXdSi9AfQGdHo9GIzo6rbR6Q2hzzqjAd2+ZYMR9Eb0BgM6owm9wYTOoEdvMGEwmdDpjehNJvRGEwaTBb3egMFsxmAyozeYMJpMGE0W9EYjRrMFk8mCwWjCaLFgslgxGk2YrFaGmq2N/L9BiMYjQRFCCCHESUQLaGQu+p5tP39OYEMmrp17SNhZRatcL7204DY/F+4FCYoQQgghhBBCCCGEEEKcBLxeLx/OfB715bukzy/k/LJAsNykY82AWPRX/InWvQZjNJsxmiwYTCZMJgtGixmD0YzZYsVkDT6cN5rMGIySN+JEUJrCU6VwV2hUFWoYLDpi2jV1rYRomARFCCGEEM1UQeFeMubMoGTlT5hzNhO1q4TW22tJLgmQ3MD2ZeEGdrexoSU2tFYIIYQQQgghhBBCCCGajxUblvPz+w/RdsFqhi+pCk2NURRrYuuIPpz+6D85v1OXpq1kC3dgYIOnQsNd9wotl9cv31+m8FRpKG3/sdoNs3LJP2Ob7mKEOAwJihBCCCGamBbQWJ65gK0LZuHdmIlz527idlWRst1DP8/B87BpOtjT2kxBiovKtCQsXfvRafjltO87CMNCDwN7m5vgKoQQQgghhBBCCCGEEOLwaty1TP38eQI/fMCA7wqZsMsbWre5exSGq69jwF1/pZtRHmEeKaUpPJXq4ICGBj57yg8sV7grNTi4C/qoGMxgDdNjceob54KEOA7kL4oQQghxAuUXF7Bk/keUZM7HmLOZyF3FtNpRS+puH6kNbF9r07E71UZxSgz+dh2I6X8OvS+8kj6xcaFtPJUaa2ZV8/ZjeynPDXDmneGcfn3YibsoIYQQQgghhBBCCCGEOIyfsn5m/nfPkPbTOi74oRxb3WCwGrue7Wf3otcTUzijT58mrmXT0QLBzAuecnXogIZDLVeqPxzYYLTosITpsIbpgwEOde+/XbaG/3adDpNVgiFE8ydBEUIIIcRx4Pf5yVi3hE0LP8O7cQWOXbnE7qwiNcfDwIpAg/sUxxjZm+qiMqU1pm596DB8LO3PPJs0fcM3lSXbfaycUcXaz6vx1QTveq1hevQyZZ4QQgghhBBCCCGEEKKJlVaU8dZ3L1C7dBYDvyvm5tU1oXV7U1zoJ19Dt/seoo3T2YS1bDxaQOGprD/FxBFlb6jQ8FQ1QmCDVRcKVGgwoOG3wQ7h+5eNFl3jfAlCNFMSFCGEEEL8QXuK81m8+HMKM+dh3JZNxO5iErfXkrrDS1v/wXeyfgPsTbJSlBqFt217ovqfRc+LxhOflETX3zmX0hTbl7jJfL+KnIXuUHl0eyN9JrroeqEdk00ic4UQQgghhBBCCCGEEE1j9rJv+C7zVZKWZDP6qzKiS/0ABAywe3A3Oj3yHD3OOQudrvk9iNf8wSkl6k85cWTZG7xVfzCqATDadL8JYjjy7A1Gc/P7PoVoLiQoQgghhDhCfp+fpeuXsGHpV3iyM7DvyiVmVyUp2zycUeBrcJ8qp569qU4q0lph7NyLNudcTLuzR9DaYjmqc3trNNZ9Wc3K6VWU5AR/RKCDdkOt9LnKRcrplmb5I0IIIYRoiQpKCtmct5nckhz2VuZS5NlLWaCQCl0Zp5nTufeiR5u6ikIIIYQQQghxQu0pzufNBX+jZNN3DPquhHsXVmCsS5hbGWmFqyfS5oEHaZWYcNzrovkPk6Gh/PDZG7zVfzywwWTT7Q9cCD98cEO9z+F6DCbp4xXieJCgCCGEEKIBeUV7+Hn5bApXzUO/fSPhuUXE76yl3VYP7Wu0BvcpSDBTlBKJp107IvsOoduFVxDXsQPt/kCwQlmun1Uzq1jzWVVwbjjA7NDRfayDXuOdRKaYjvnYQgghhNgvv6SQLfsCHSp2UeTdS1mgiApdGZWmKirMHiosAUqtUGOsm6vKWvc6gNq17ITXXQghhBBCCCGaghbQ+HjRh3y7423iMnO4+PNS2mz3hNYX9WhL2oOPEXfpRehMx9aPqZSiaLOPqoLAEQU2uMu10FTDf4TJfogMDeG/zeRw8LIENgjR/EhQhBBCiFOa3+dnyYbFrF01F3f2Mmy7dhGVW0lKjochOz0YGoh/8Jp07E1xUJ6agKFrT9KGXkjqiHOJDw9vlDoppdiV4SHz/Sq2LqhF1dUhMtVI7wlOTrvYgdkhU2QIIYQQv2dfoMOu4hz2Vu6i+IBAhwpTFZVHGOiwnwGUIrzcT2quhw67PKTs1mi1J0BcvkZ0kY+Ss1rDpSfoAoUQQgghhBCiCWzbncNbS15gR8kiBn9bxiNzyrDXBjsxvVYj6vJLaHX/vcR3+73Jgg/PV6sx9+ESsr+tPab9zQ7dobMyHCbAweKSwAYhWhoJihBCCHHKyC3I4+fV37J37XzYvoGw3UXE7ayl/WYPY+vmtfutinAjBWkRuNu2IbzfmXQZNRZ799NINjZ+E+pza2z8pobM6VUUbto/HUfaICt9rnLS5gwrOr3cjAshhDi15ZcUsmX3JnaW5JBfmVsX6FBIub6cSuO+QAc/JVY9tca6IEJb3atBhtCSza8RXRMgNU+Rkget9upJLIDYIkV0sZfw4hpsBWXoa92HrF/bM6Ia7VqFEEIIIYQQornw+/y8//NU5pbMxJmdx9jPSum7sjq0vjo1gfh7/oJt8gT0YWF/+HwVe/x8fnsRBRt86I0Q097UYFaGhgIcLGF6rC49eqP0pQohgiQoQgghRIvj9XpZsuFXsjZ8T+2mZVhydxK1u4KkHC9nbHVj8R6cPk3TQ2GijbK0eHRdupMy9HySzhlBXEI8Hf7A9BdHojLfz6oPqlj9cTW1ZcGIaqNNR7eL7PSZ4CK6nUyRIYQQouVSmiK/tJCteZv3Bzp49lCqFVFxQKBDudVPqeVIAx32/9S1+TUiPRrhbiMur4XIGhtJBWaSSkwklBqIK1dEl3oJK6lEv3svWu5u8DccLHkgfUI8+pRkDKnJGFJT9r936fSHvxMhhBBCCCGEaC7W5qzjf8v/zga1kkHfl/Pw5yXEFgV/M2l6HYwaQfQ9dxA3bAi6RupHzVvl4fM7iqgp1rBF6hkzJYakvpZGObYQ4tQkQRFCCCFOajv27mTh+nns2vQTupz1OPOC2R/abvUwbre3wX3cVj0FqeHUtE0jrM8gOowcg6NPLxLt9hNWb6UUe7K8rHi/ks0/1KLVPXsJa2Wg93gn3cc6sYbLFBlCCCFOTr8NdNhbuYsSz95GDnRQhLsNuLwWXH4nYVoEkYYYErwRpFRbSaox0apaw15cRmDHTgI7dqHt2ImWX3DIeodmzTIaMSQnoU9NxnBA4IN+X/BDchI66yHn2BBCCCGEEEKIk5rb4+Z/8//F955ZkFfKpZ+VcM+CckyB4HpvVDiRt9yE7cZrMSS1btRzr/28mu+fKCHgg9iOJi5+LYbw1vI4Uwjxx8hfESGEECcFr9fLonWLWJmzgKotGVhydxCRF8z+cPrmWkZUag3uVxZtpiQtDtWlG8lDR5I47GwMbduQqm+agIOAT5E9NzhFxt61+4M2kvpZ6HuVk3Zn2dAbJK2bEEKI5kcLaOSXFbItbws7i7extyqXYs9eyrQiKvRlVBqrDwh00FFrrJuW4igCHaLcijDP/kCHcC2CCEMM0eYEEsKSSY5Ipb0xksiKarSCYKBDKOBh52YCO+ajKirqnaGmgbPqHI5gwMO+IIeU5P0BD6kp6BMT0BkMDewphBBCCCGEEC3X0g1LeXftK2Q6s0lfUMlfPi2mw1bP/g0G9Cf8jpuxjB2Dzmxu1HNrfsVPL5ex4t0qADqcY2PUc1GY7TJwTAjxx0lQhBBCiGZne94OFm6cz7btv8COdTj2FBGzq5b2WzxckeMORSQfKGCAwqQwqtum4OwzgHYjLsTWrzfx0dEn/gIaUF0UIOvjKrI+rKK6KBjAYTBDlwsc9JnoJK5z4/6IEEIIIY7EvkCHrXmb2VWcc+SBDva6V4P2/8y0+wNEugkFOoT5nISpukAHSyKJriSSotrQvlUH4qNiUV4vgdzdaDt+E/CwY2Hw865c8Hop/Z3r0sVE15/SIjW5bqqL4LIuKqrR0roKIYQQovnQAhp6gzw8E0KIo1FRVclbP07hR923lFdXc/mnJdz9TSnOmmAfpma14Jg0Adst/4epx2nHpQ7uCo2v7y1m+yI3AAP/HMagP4eh08vvNiFE45CgCCGEEE3G7XGzaP0iMnf8QtnODCy7dxC2u4Kk7V56bqrl3MKG5/OucRopSY1B69yVVkNGEDdkKMYunWhlaX7zyuWvD06RkT2nhoAvWOaMM9BrnJMelzuwR8koVCGEEI1LC2jklxawdc8WdhbnkF+VS7FnD2Va8QGBDm7KrQFKLHrc+6auOIZAhzCvBdcBgQ4xlkQSfhPoUK9ulZXBgIeduXUBD9kEdnyPtmMXhTt2ou3ZC0od/gL1evStW9UPeEhNCS6nJGFISUbncBzz9yeEEEKIk8vCNQv5Mvs9suxr6F3bk79d+mZTV0kIIU4K81bO44Mtr7M0Zhc911dz0yfFpC+vDq3XtW+H89YbsU6eiD4i4rjVoyTHx6zbiijd7sdo1THqmSg6nXfipjkWQpwaJChCCCHECbFtdw4LN85j896lBHatx5FXQHSum3ZbPFy2xY29tuHpL0ri7VS1TcbeJ53Us0dh69cbfXISbZrx6E7Nr9g8r5bM6ZXsztw/RUZiTzN9J7roMMKGwdR86y+EEKJ5UJpCC2gEAgH8fj+ltWXk7N0WDHSo3EWxd19Gh3IqjVVUmj2UWQOUHlGgg47fBjpEuCFi39QVPidhRBChjyXGkkCCK4nkmLa0T+xAXGRMw/VVClVYGMzosHEngW+XU7FzF9oBGR9U6e/leACsVgwpyfunsjhwmovUFPStEtGZTEf7dQohhBCihfD7/Hz+66fM2/sZWZE57AgzQEpwnSrOatrKCSFEM1dYWsS/f/o7P1kWsBcfl8wr5b1ZJSQUBEdzKb0e6+jzsd1yI+ZzhqE7zlMQ5yyq5eu/FOOpVLgSDFz8WgzxXSSjrhCi8UlQhBBCiEbl9rj5Zd0vZO5aSOHeVZjythO2p4LWOV46bXZz7k4P+gYGgPrMekpSovB36kTCGecQc+aZGLt3Iz4s7MRfxDGqLQuw+tNqVs2sonJvcI4PvRE6nWenz1VOErs3v0wWQghxqvB7/WzJXEPB6iWokm2gAqAF0KkAqAA6pdW915WhhZZ1KoDugM/gx2fQ8OkD+PUBfIYAXr0WLDNoeA0aPoPCq9fwGhR+vYbXCF6DwmsAr17hMejwGsGjB58B3AYdngNfej1ugw63QY9Hr8d7YBroowh0iHRD+L5AB7+LMG1fRocEElzJpMS0pX1ie2IPEehwIOX3o+3Ow7vml9DUFtqOXQR21gU97MyF2trfPY4uMjIY4JCSfFDAgyE1GV1srExtIYQQQoh6yisrmLFoKkuqvyMrpoAimxFSAQwYNY3Tikz08vRm7GnXNHVVhRCiWfJ6vdz/xf8xO3Et7Qo9TPykmOHzKzD5gx21utgYbNf/CftN12FIST7u9VFKseK9Kn56qQylQateZsZMicERI1l1hRDHhwRFCCGEOGZbdm3ll03z2VS4HPfe9dj3FBCZ66b9Fg+jN9cSVRpocL+qcAuV7Vpj7dmX5LPOw9K3J4aOHUgynpzNUuFmLyunV7H+6xr87uAPCVuUnp5XOOk1zokzVm7mhRDiRCvZW8zWpb9SvWkx4SVL6KBbRqzNw85IFznxFmoNhrqAg2DggVuvD77vex3w2aOvX+Y55DzV+rrX8WP3BYj07At0sOLyO/cHOlgTSXAmkxLT5ogDHQ6kamrqAhz2BTzsDC0Hduai7c6DQMNte4hOhz4xYX+GhwMyPuyb5kLvcv2Bb0AIIYQQp4rteTuYkfEfVqhFrI6rpibKAFEARhy+AD0LXPQ3nMn49OtJjKimdtoMzLZC6NTUNRdCiOYlY+Ny/rrtdqJ3lvPWw/l03uQOrTMNSMd2y41YL78E3QmamtjvVfzwZClrPw9O1XHaJQ6GPxKJ0SzB8UKI4+fkfPokhBDihNICGovWL2Jxzg/kla7GkLcd595g9oeOm92cvc2NxXtw+gdNB2WtI/B26kDcoKFEDT4DY8/uxCfEN8FVNC4toNj2s5vM9yvZudQTKo/rYqLPVS46j7RjtMiNvBBCnAgBX4CtWevZu2oJ+twltK5dTIp5E06XjY1RLma1dbE8sj3bnbZGP7dB6TErY93LhIXgu5ngy4IZi86MJbRswaqve9dZsOjNWPWW4Mtgxaa3Bt8NVmxGG/a6d5vRSpjFRWRYxDHVUymFKikhsDP34ICHundVVPz7BzKZQoEO+n0ZHg78nNT6hHWkCSGEEKLlWbYhg8/WTyXLmsW66ACBxH2/qw3E1frpUZTAma5RXHnGZOxuD+4PPqH2masoXrYcAP+adVjOP6/pLkAIIZqZF798gg/MX3LTG/lc9E1ZsNBqxTrhCuy33IipT68TWp/qogBf3FlE3iovOj0MuzeCPlc5JVugEOK4k6AIIYQQB8ktyGPuqi9YU76EsopNRG0tofvKGoavriYpz9fgPh6bkYo2iZh69Kb10HOw9O2FsVsXEu0N5vc+aXkqNdZ+Xk3m9ErKc4OjZXV6aH+Ojb5XuWjdxyw38UIIcZyVF5axeelSqrIX4ypeQgeWkmCpZk+kk6XtXCyPcpIZ0Y8q08E/dzra2tDF1h6HwbY/GEFn2b9c96oXrHDAettv1ht1zeMnlQoE0PbsDQU5aDvrBzxoO3ahqqt/9zg6l6t+wMO+DA8pwWV9Qvxxn1NWCCGEEKcOLaDx1dIv+H73x2SFb2VbhB5CWdt1tC3X6FHWjuGtL2PMGRej0wJ4535P7aQbKfxqDni9wU0NBsznn4ftmqua6lKEEKJZ2VOcz90/TcKdl8f/ns4lMd+H0ulw3HM7jgfvQR8VdcLrlL/By+e3FlGZH8ASpmP0izGkDbae8HoIIU5NzaMHTwghRJPxer3Mz5rHkl3z2KLWUaQrID67hvTl1UzMqCJ1l/egfSpjHHg6tid64JlEDByAsVcPDG3SWvRDkpLtPlbOqGLt59X4aoJZMaxherpf5qD3eCdhidKkCiHE8aD5Nbav28TuzMWwawmJNUtoY1xPlNPCtkgns1NcrIhMI9tlQ/0mKM2ht9Pb2ZV+zu70dXanj7MbEcawJrqSY6OUArcbVVWFVloWnMZix87QlBb7Ah4Cu3LB7//d4+njYg8OeEhNCS6nJKGLiJDgPiGEEEIcV1U11XzwyzR+qZhDVsxeCuxGSAXQY9AUXYsN9KrtwZiukxmYPgClFP5Vq6m+5wFqZ3yEKiwKHcvYqwfWyROxTbgcfVxck12TEEI0J58s/JBXKl7k8pkFjPukBABd2zQi3/0P5sEDm6RO2d/WMOevJfjdiqg2Ri5+LYaoNFOT1EUIcWqSJzhCCHGKyd65iR/Wfc26qmXk2HaRa/XQab2b9IwqbsiootMmN/oDZsLQ9DqqO7Uh6oILcZw7HFPfXsQ3QSRxU1BKsX2xm8z3q8hZuH+uveh2Rvpc5aLLBXbM9pYbCCKEEE2hsrSSzUuXUbFxCY6CxbRXv5JoKacg3MHyVBf/i3SyIrIPJZaDO09SLa3p6+xeFwRxGp3tbU94Jgfl86GqqlCVVcH3qmq0ykpUVXW9MrWvrG5brYGyfcsEAkd2coMBfXIShpSkgwMeUpMxJCehszX+FCJCCCGEEL8ntyCPmb/+h4zAQrLiKqiKMEAEgBG7P0D3Qgd91SDG97+etgPaABDYm0/131/FPW06/jXrQsfSx8dhnTgO6+SJmHqc1iTXI4QQzZHX6+XeL29ga8lKXn4ql5Tc4GA328034HrhaXQOxwmvk9IUi96o4Nc3KwBIO8PKhS9EYw2TPlUhxIklQRFCCNGCVdVU8/3KOWTsXcBWfTY54eXkW/V0y60hPaOKC5dX02NNDSa/qrdfoENbnCPPxXzOMMxDz0AfEdE0F9BEvDUa67+sIXN6JSU5daNuddBuqJU+E12kDLDIKFohhGgESlPs3LCVXZlL0LYvJr56Ce2Ma4i3G9kV6WJ+DyfLo1qzLqwjfn39v7sWnZkejs70c3annyuYCSLWdHRBe0rTUNWHDlbQKhsOYPht0IJ2wP54PI35FdWjczrRJ7cOZXUwpKbUy/qgb5WIzmA4bucXQgghhDgamZtW8tnaqaw0Z7IuxocvYd8DMAPRbj89C2MZ5DiXCYOvJdwVzOal3G7cH31K7bQZeL/9YX9wqNmMZcwF2CZPxHzecHRG6dYWQogDZWxczmPZtzLkq3zuf78QgwaqVQKR77yFZcTZTVInb43GnAdL2DyvFoB+k10MuTscvUH6VYUQJ57cPQohRAuhBTRWbc3ix+zZbHSvYLtzD1siNHwGHe3dbtKXV3N5RhV9VlbjqNHq7atLbo1l+NnBIIizh2JITGiiq2ha5bv9rJxRxZrPqvBUBgNFzA4dp13ioPcEJ5EpktJNCCH+iJrKGjYvXU7p+sXYCpbQLrCERFMRxeEOlic5mR7pYnlkT/baLAftm2CKCWaBcHWnn7MH3ewdsOjNR3V+X9Yaqp97Cd9PvwSDGqqrG+vSDmY2o3M50Tmd6JwO9C4XOqejXpluX5nTic7lRN9AWWhbh0MCHoQQQgjRrGkBjW9XzGXujg9YHZbNpkg9JO1bqyelIkDPsjTOiruESwdejtEU7JpWSuFdshT3tOm4P/wMVVYWOqZpQDrWyROwjrsUfWTkCb8mIYQ4Gbz45RP8XPQJDz2bR4etwUB9y9XjCXv1xSYb7Fa+28/ntxVRuMmHwQQjHo/itDEnPlOFEELsI0ERQghxkioqL2Zu5tesKv6FbaYtbIuootBmhHhovdtL+sIqrs6oIn15FZFl9dNu66KjMJ81JBgEcc4wDO3bnbKZD5RS7MrwkPl+FVsX1KLq4kUiUoz0meik2xgHFqekcxNCiGPhrnaT+eUX+LYtIq5yMe0NWbSy6tgT5eSXri6ej4wlK6INHkP9v7MGDHSzd6gLgAi+Wpnjj7mt8mWsoPrpF/B8+U3DG+j1BwQjHBCY4HIFAxUOFazgqgt4+G0Ag9OJznx0ARtCCCGEECcjt8fNh7+8z8+l35AVncsehxFSAfTolKJLiY6e1acxusPVDB0+pN6+gZ27qH1vJu53ZxLYtDlUrk9Ownb1lVgnTcDYqeOJvSAhhDiJ7CnO5975V9Puhy38638FmALgj4og+n//wnrx6Car167lbr68q5jaUg17tJ6LX4mhVa+DBz8IIcSJJEERQghxEtACGovWL2Lhtm/J9mex3VVATpiOgEMHDogq9tH/52pOz6hi0LIq4vJ99Q9gt2MeMjgUBGHs2R2d/tR+0O9za2z8pobM6VUUbtr/faUNstJ7opO2Z1rR6U/NQBEhhGgMG39diWHWVURG57AsPoxPOztZEXUa2x3Wg7aNNIbT13laKACip6MLdoPtD9fBu2gJ1U/9LZh6GUCnw3LFWOy33YQ+MSGUmQGr9ZQNDhRCCCGEOFp7iwuYufi/LPUtICuujAqXAVwARiwBjR4FVvpoAxjX9zo6nV4/qEGrqsLz2Ze4p03H++PPoOqm87TbsV52MdZJ4zGfNfSU77MQQojf88nCD5mx5VlueSmP09YHp6cwjrmA2P/8E31sbJPVa/UnVfzwdCmaH+K7mhjzSgxhifIoUgjR9OQvkRBCNEO7Cnbz7aovWV2xhBzLdrZGuik3GyAxuN5RpRi0uIqhiys4PcNN65219Q9gNGI6vT/mc4ZiPmcYpgHpMmK1TmW+n1UfVLH642pqy4JpIYw2Hd1G2+k90UVMO5kiQwgh/oiAL8DCN16gW+mTPDgohTmJPeut16Gjk60NfZ3dg9NhOLvT1prcaEEJSil8P/5E1dMv4Pvx52ChwYB14jgcD/1FRhsKIYQQQhyDtTnr+Hjl26w0ZrAm1oM3fl/QgoFIT4AehVEMsJ7N+IHXEjswpt6+StPwLfiZ2mkz8Hz6Rb0pzExnDcE2eSKWS8egdzpP4BUJIcTJyev1cu/n12NdtJh//Dsfq0fhc9qIfvOfWCdc0WQB/wGfYsGLZaycUQVAp5E2Rj4VhckmQW5CiOZBgiKEEKKJeb1e5mXN49ddP7CF9eSEFbMjzAARBF+AyatjQEYl5/5STZ9ML0lbKtBrqt5xjD27hzJBmM4chN7lOtGX0mwppdiT5WXF+5Vs/qEWzR8sD2tloPd4J93HOrGGyw26EEL8UTs3bqNs2iQcsVlcMKwLu+0WjBgZFNYnlAmit7Mb4cbGb6OUUni//YHqp/6Gb/GvwUKTCdvkidgfuBtju7aNfk4hhBBCiJZKC2jMz5rPN1tnsNq1no1ROkjat1ZP66oAvUqSGRo9hssHX4m5gYEY/s1bcE+bTu17H6Dt3BUqN7Rvh3XyBGxXj8eQmnJiLkgIIVqAjI3LmbL4Jia8vot+mcEAM23YGSS+9z8MSa2brF615QG+uruYnUs9AJxxWzin3+iSjIxCiGZFgiKEEOIEy9m9nW9Wf8q66gy223axJcJHjclwQOeCAX1Accaqas5eHKDnaj9J2UUYPN56xzG0axvKBGE+a0iTpkVrrgI+Rfbc4BQZe9fu//6S+lnoM9FJ+7Ns6I1ycy6EEH+U0hS/THubHpvv5MvOYbzQqRsBvY5US2vebP80PRydj9+5lcLz5TdUP/0C/uWZwUKLBdv1k3HcdxeGlOTjdm4hhBBCiJbE6/XyyaIPWFD0BVnRu8h1GiAVIPi7uVOJomdlF85vO55zhg5Hbzh4cIFWVob7w09xT5uBb8nSULkuPBzruLFYJ0/ENPB0eVAmhBBH6cUvHid/0XSeej0fR42Gz2oi8uUXsd90XZP+TS3a6uPzW4so2+XHZNNx/vNRdDjH3mT1EUKIQ5GgCCGEOM6qKqr4aslHLCn9lvXh28mO0qFF6yB63xYG7F4/Z6zTODPDTM8NAVqty0VfXlHvOPr4OMxnDw1lgzCkpZ7wazlZVBcFyPq4iqwPq6guCk6RYTBDl/Md9LnKSVxnmUpECCEaS+GufHLevIHO1rncNLgdP8dGAHBx1Aieb3M/LoPjuJxXBQJ4PvsiGAyxem2w0G7HftN12P9yB4bEhONyXiGEEEKIlqS4vIQZi/7Hr+55ZMWWUOowgAPAgDmgcVqhmd7+/lze81q6p5/W4DGU34/3u3nUTpuO54tvwBMcKYxej/m84dgmT8By0QXobLYTdl1CCNFS7CnO54lZ4xjx9kYmLQlOTVHb5zSSPprR5BkRty6o5Zv7i/FWK8JaG7jktRhiO0q/qxCieZKgCCGEaGR+r59fl/zIgl2fscG2mtVxHkoiTRAJEBxFkVIRoHeOkzPWOOi9TSN61SbU7j31jqNzuTANOxNLXTYIQ7euMpLid+SvD06RkT2nhoAvWOaMM9BrnJMelzuwRxmatoJCCNHCLJ31Je2WXY87wcPw3j0ospqw6iw8k3YP42IuPC7tlvL7cX/wCdXPvEBg4yYg2Gbabv0/HHfdIpmThBBCCCF+x6ZdW/hg+X/I1P/Kmlg37ph9GR8MhHkD9CyIIN00jPGDriNxYPwhj+Nbsxb3tBm4p3+Itjc/VG48rSvWyROxThx3wgJV3eUa8/9WSr9JLhkIIYRoMT75+QOWfvsYd/9zL+EVAfwmPY4nHyPu3jvRGZqun1MpxbK3K1k4pRxUMCvvRS9HS9+rEKJZk6AIIYT4g5SmyF61ll/WfcwaFrExrph1EVZUx30Pgkw4fBrdisMZWNGNS5f6Cf/+FwLZy/YfA8BsxjR4QCgThKlfH3RG+TP9ezS/YvO8WjKnV7I7c/8UGYk9zfSZ6KTjCDsGkwSTCCFEY6osrWTVa3cx0P8/XjotmX+2b4vS6ehsa8u/2j9NR1ubRj+n8npxvzeT6uf+TmDrNgB0ERHY7/gz9tv/jD4qqtHPKYQQQgjRUixcs5Avs98jy76G9dEK1Xrf72Q9idV+ehS3ZkjkBVwx+Crs1kNndNAKC3HP+IjaaTPwr8wKletiorFOuALb5IkYe/c8oYM6ti2s5bvHSqkqCFC02cfVH8XLoBIhxEnN6/Xy6PuT6P7+z/zlx2A24YqOKbSZ9SnGrl2atG5+j+K7x0pY/3UNAD0vd3D2Q5HS/yqEaPbkaZsQQhyDPdtyWb7kS1bXfMfm6G1kxFko67TvT2qw86BNuYnu7k6cl3oRI+O64/v4DWremgq1tQQAdDqMfXuHgiDMgwegs8t8a0eqtizA6k+rWTWzisq9AQD0Ruh0np0+VzlJ7G5p4hoKIUTLtHr+L0R8N4m2Ybu5rH83MqJdAEyMHcMTqXdi01sb9XzK7aZ26ntUP/8y2s5dQLDT3XH3bdhuuRF9WFijnk8IIYQQoiXw+/zMWvIJ8/JnsToyhx1hBkjZt1ZHh1KNHhUdGZl6JSOHjEJv0B/yWMrjwfP1HGqnzcA75zvw+4MrTCYsF47EOnkillHnojOf2AwN3mqNH18oY82n1QBEtTEy4pFICYgQQpzUVmRn8tH0q5n8z91El/oJGHSou26h/bNPoTOZmrRuVQUBPr+jiL1rvOgMcPaDEfS+0tWkdRJCiCMlQRFCCHEEygpLWfvTPNblf8XWsCxWJWis67BvjvTgu8MLp1W2ZkjEWVzR8zJa2ePxb95CzQtTKJ82CXzB+RyMfXvj+MvtmM8bjj4ysomu6ORVuNnLyulVrP+6Br9bAWCL0tPzCie9rnDijJM0bUIIcTx43V4Wv/oYQyr+xnfJEdzVsxcVZj0ug4MX0h7goujhjXo+VVNDzVtTqXlxClpecIopfXwc9nvvxH7Tdegcjt85ghCNR/Mr3JUa7nINT4VGbXlw2V1R937ActshNnqNczZ1lYUQQpyCyisrmLFoKourv2V1bCFFViOkAhgwahqnFZno5enN2NOuoW96n8MeSymFP2MFtdOm4/7gU1RJSWidsX9fbJMnYL3yMvTR0cf3og5h5zI3cx8poWJ3cJBE36udnHFHOCbroYM7hBCiuZsy869EvPcOd88pB6A0OYo2n8zCkt63iWsGe9Z4+OKOYqoKAljD9Vz0cjQppzfuoAghhDieJChCCCEa4K52s+GXxWzb+DU5lkVsTCjjl8QwKlOM7MsEAdC2wkW6qR9ju47l9JheGHXBP6u+1Wspe+5+PB99BpoGgGnYmTgeuhfz8LNk1MJR0gKKnIVuVrxfyc5fPaHyuC4m+lzlovNIO0aLfKdCCHG8bF6xlsDHVzPQksVjp6XwdttEAHo5uvBGu6dItbZutHNplZXUvvEfqv/+KqqwCAB9Umsc99+F7brJ6GyHTucsxOEopfDVqoOCGOotVzRc7q1SR3weZ6wEaAohhDhxtuftYEbGf1ihFrE6rpqaKANEARhx+AL0LHDR33Am49OvJ3lA0u8eL7A7D/d7M6l9dwaBDdmhcn2rRKxXj8c2aXyTpm731WosfKWczPerAAhrbWDkU1GkpMuDOSHEyWtPcT5vvnYRl7y5icR8H5oOKv50BZ3eeAOdten/vm34ppq5j5QQ8EJ0OyOXvBZLRIo8XhRCnFzkr5YQQgABX4DsZSvJy/yeXb7v2B6/k1/inWwcaAf01PUo4PQa6O3rxAVpFzAqaRgxpvrzl3uXLKX62Zfwfj0nVGa+YCSOh/6CedCAE3hFLYOnUmPt59VkTq+kPDc4+kOnh/bn2Oh7lYvWfcwSYCKEEMeR5tdY+NYrnL77QXZH6Di/T082RgQ7ZP4vYTwPJP0Zs75x0ndqZWXUvPYmNVPeCI1ENLRJw/7gPdgmTzzh6ZhF86X5Vf0ghoYCGw4R+KD5/9i5zU4d1nA91jD9Id9jOjRtSlshhBAt39INS5m17h1W2VazPjpAIHHf72IDcbV+ehQlcKZrFFeeMRmn/feza6maGtyzvsI9bTreH34EVRcMaLNhvWQ01skTMZ8zDJ2haQP/8rI8zPlrCaXbgw16j8sdDPtLBGaHZIcQQpy8PvvuXUrf+Cs3f1EKQEm8ndbTPyTxnLOauGbBgWq/vFrOsv9VAtBumJXzn4/G4pS/u0KIk48ERQghTklKU2xft5ldv86jrHAuedGrWZpo5pe+4dQYDUAcADoF7d3xnB09lNFp59LD0RmDrn4ngFIK77wFVD/zAr4FC4OFOh2WK8bieOAeTL16nOCrO/mVbPexckYVaz+vxlcT7IyxhunpfpmD3uOdhCVK8yWEEMfb7i07Kfjfnxhq/JFPk2O4r0d73EaINIYzpe0jDI8Y3Cjn0YqKqJnyOjWv/RtVUQGAoWMHHH+9F+v4y5t8zlRxfCil8NWoow5qcJdreKuPPGtDQ/RGggEMBwYzHGr5wDKXHr1RgjGFEEKceFpA46ulX/D97o/JCt/CtggDpOxbq6NtuUaPsnYMb30ZY864GL3h9x9WKU3D98tiaqfNwPPxLFRlZWid6cxB2CZPxHL5JejDwo7PRR0Fv1ex5I1ylr1didLAGWfgvCcjaXOGZBATQpy8vF4vr7x4KcPeXMTgXC8AuRcNoff0j9A7m346Pk+Vxjf3F7PtJzcA6de5OOP2cPQG+U0khDg5yVMlIcQpo2DnXjb/PA/Ptu8odS5mdSsfC9pGsKWnDUgIbRfmszLQ0oeL0s5jSPjpRJnCGzye0jQ8X35D9bMv4c9YESw0mbBOmoDjvjsxduxwAq6q5VBKsWOxhxXvV5Kz0B0qj25npM9VLrpcYMdslyhkIYQ43pSmWDxjOt3X30KkpYrbunXks9RgZqSBrt681u5xEs1xf/g8gb351Pz9VWr/9V9UdTUAhm5dcD58H5bLxzb5SERxZAK+/YENngqN2vL6y566daHlisbL2mBx6bCE6bHVBS9YwvXYwvRY6gIZbOENL5tsOsk0JYQQotmrqqnmg1+m8UvFHLJi9lJgN0IqgAGDpuhabKBXbQ/GdJ3MwPQjz0zp35aD+90ZuN+dSSBne6jc0CYN66TxWCdNwNi2TaNfz7Eq2Ohl9oMlFG32AdD1QjtnPxiJNVz6B4QQJ68Va35l5VPjmfhpIQYNSqPMOF9/g75XXtnUVQOgbKefWbcVUrzVj9Gi47wnI+lywe9nHhJCiOZMgiKEEC2S0hS7NuWQuzIDX85iVGA+21oV8mNcBItHhOE2xIS21SsdXbQ0zk8azjlRg+lm74Bed+gf18rvx/3BJ1Q/9xKB9RuDhTYb9huvwX7P7RiSf3+OTrGft0Zj/Zc1ZE6vpCSn7umIDtoNtdJnoouUARZ5cCGEECdIyd5isl//M4P5mPURdq7tk86uMNCj567W13JHqz8dlDHpaAVyd1P94hRq35oK7mAQnLF3TxyP3I9lzIXo9NLBfaIppfBWH1vWhn0ZnY6VwXRw1oZQoMNvlg9cL1kbhBBCtES5BXnM/PU/LAv8zOq4SqoiDBABYMTuD9C90EFfNYjx/a+n7YAjD1zQKirwfDyL2mnT8S1cHCrXuVxYLr8E2+QJmM4Y1KzuwzS/Yun/Kljyrwo0P9ii9Ix4JJKOI+xNXTUhhPhD/jvlFrq99gGjt3kA2DysCwM+nosxJrqJaxa0c6mbL+8uxl2u4YwzMOaVaBK7W5q6WkII8YdJUIQQ4qSnNMXe7bvZkZmBO2c5rtIM2qrlGJ3VLE6JY9aAaLY7ncD+tGNRARfnRJ3B8NgzODOsP+FG1++fx+2m9p33qXlhSmg0hS4sDPutN2K/8xb0sbHH6QpbpvLdflbOqGLNrCo8FcEHKmaHjtMucdB7gpPIFEmXLoQQJ9Lyr+aStOhaBpj2MDUlkSe6t8Gn10gwxfDPdk8wMKzPHzp+YPsOqp//O7VT3wdvMDWoaUA6jkfuxzzqXAmAawQBnzqyoIaKg9erwB87tyVMFwxaCDu6KSmMVsnaIIQQLZ3SFEW7C9i7dRsVu3MI1FTgbN2exM6dSUhrjU5/arcDmZtW8tnaqaw0Z7IuxocvYV9ggoFot5+ehbEMcpzLhMHXEu468qksVCCA94cfg1khZn0FtbXBFTod5hFnY500Aeslo9HZm1+QQfFWH3P+WsLetcF7xg7n2Bj+aCSOaMkkJoQ4NE+Nh9xN29ibs5GNZRlkGzawObyAQruPMI+JcK+T8EAE0fo4Yi2tSQpvQ9v4jnRO6Yzdevyn49mTv5u5d41g5Ec7MQWgPNxA7RMPc8Yd9x73cx8JpRSrPqhi/vNlqAAkdDdz8SsxOOPkb68QomWQoAghxEmncHcB21csp3pLBvbi5aQGlpNo2ksioAE/J4Tzl9R4vo/vSKCuc8Wg9PSxduPcuCGcFT6AzrZ2R9wBr1VVUfvvt6n5+6toe/YCoIuNwXHXrdhuvgF9eMPTa4iDKaXYleFh5fQqtvxYi9KC5REpRvpMdNJtjAOLs/mMTBFCiFNBTWUNy1+5lyGeNyi3GZjYvQ8/JZkBjbPDBzGl7cNEmyKP+fj+zVuofu7vuN+bCf5gRiDT0DOCwRBnD5MH4keoZLuPLfNrqS09dNCDr/YPZm0wc+hAhkMENVjD9FhceplXVgghTnHV5dXkbcmhdGcOtXu3Qek2bNU5RAW2kajPIdZQQ71hBDuBJVAVcLBL60SJpTO+iM5YWnUmul1nUrp0wOqwNtHVHF9aQGPuijnM3fEBq8M2sTlSD6GEk3pSKgL0LEvjnLixXDLwMoymo+u+9a/fQO20Gbjf/wAtb0+o3NClE7bJE7FedSWG1q0a74IakdIUK96rYuErZQS8waDLcx6KpMsFdrlnFEIAEPAFyNu2k/zNm6jJ3YQq3ozRnU1B+Ha2xtWQEe1iRbyT2tYHPsg3EOw1rqh77QSWB1eVga5UEeUJEFWrJ9xjIdwXRqQWRZQxgUR7CsmRbenUugtpCanoDcfWb/nN+1MIe/ppzs8OZkvcmJ5I/0/mY09OPubvojEFfIr5z5aS9XFwasuuF9oZ8XgkJqv00wohWg6dUuqP9ZydZCoqKggPD6e8vJywsCOPrhZCNI3ywjK2ZiynYstyrIUZJPuW09q086DtCkwW3mzdjc/bOsl3eEPlA1y9uDruEoZHDMZpOLp5z7SSEmpee5OaV/6FKi0FQJ+chOPeO7BdN7lZjqZorvwexYZvqsmcXkVhti9UnjbISu+JTtqeaT3lRwedKqQdFqJ5WbdwGfavr6aNeROZEU6u7deHQpsXk87Ig0k3c0PCuMNOKXU4gR07qXr8WdzvzgAtGAVnHnF2MBjizMGNeRktWl6Wh4y3K9k8vxaO5JebDiwu3SEDGA4X9CAdXi2ftMNCiGMV8AXYk5NL0fYcKndvI1C0DVNVDuGebcSRQ5wp/7D7a0rHHn8Shbq2ePUuYgKbSTFuwahrOFWRpnTk+tPI13emxtUZXWxnwtM606pLZ2ISY0+634+17lo+WjSdn0u/Jit6N3sc+wMddErRpURHz+rTGN3haob2HHLUx9eKi3HP/JjaaTPwL8/cf+yoKKzjL8M2eSLGfn2adWBB2S4/cx8pIXd5MJ182hlWznsiEld8yxnTJ+2wEEdGaYr8nXvYu2kTFbs2owo3Ya3aRIxvM0nGrdRaAmREulgWHcbSKBerIxz4fjP9j8Orp1NlNF21DrQzt6W4Zi9FvjxKKabcWE6ZxU2ZzU+RVY//CKcOMgc0YtwaEW4jER474f4wIoklxpxIK2caabHt6ZrSjejwqNA+HrebT246hzNmrsbqVVQ59Oy4fRJnPfNas/mbXFMS4Mu7i4N/f3Uw5K5w+l/jajb1E0KIxiJBEUKIZqOqrIqty1dSlp2BKX85rTwZpJm3HLSdpnTk+DqRZ+3HhnZp/Ny+hF9Ma/Cp4MN2l8HBZdGjuDruEjrZ2x51PQJ79lLz8mvUvvk/VFUVAIaOHXA8cDfWiePQmc1/7EJPIZX5flZ9UMXqT6qpLQ0+EDPadHQbbaf3RBcx7WSKjFONtMNCNA8+j49Frz/LGSVPodcFeCmtE/88LZqATiPF0op/tXuKXs6ux3RsraiI6mdfoub1t0LTZJgvHIXz4fswnd6/MS+jxVJKse1nNxlTK0MPBiD4cCC6nTEUyGALM2AJDwZA2MKDyxanZG0QhybtsBDiUJSmKCssZe/WHMp2bcOTvw19eQ6O2m1EB3JoZdyBWe877DHK/BHsUW0pN7XB7WiLProt9sQ2xLRpS2KbFCz2+vORe91ecrO3UbhlI7W7szGWbCTCvZEk3UYijGWHPU+u6kyZtTP+qM7YkjoT274zyZ3aYrI0n9+Ye4rzmbn4fyzzLSArrowK8/5Ry5aARo8CK320AYzrex2dUjoe9fGVz4dn9re4p03H8/Vc8NX9+xiNWM4/D+vkCVguGInO0rzngVdKsfrjaha8WIavVmGy6zjrvgi6X+pocQ/kpB0Wor6SvcXkZW+mbMcm/PmbsFRuJtK7iST9ZpyG6tB2+RYTS6OCQRC/RrnYGGZH/ebvQ7QWRj97D4bEnc6AsN50tLU5ogB/v8/P1j3b2JS3kV1l28iv2UVxIJ9yfQll5irKLR5KbIpSyxFOIaEUaXs89Mz20HGLn16/ltFlbQ0AG3qF0+5/X5Dcp9+Rf0nHWWG2l1m3F1GxO4DZoeOCF6JpN/T4TyUihBBNQYIihBBNwl3tZsuKLEo2Lkefl0GCezltjBsw6LSDtt3pbctuSz88sf2J6NSP+D6d+S6wmPcKPmND7dbQdt3tnZgUN5aLo0dgNxz9zVsgZzvVL/wjONe5J/gAwtizO46H/oLl0ovRGWT+tCOhlGJPlpfM6VVs+r4GLZgpnbBWBnqPd9J9rBNruIxEPVVJOyxE08tZs4ma6VfTzbSMIrORyb3PZFVccI7p0VHn8ELaA4QZnUd9XK2qipopr1Pz4iuoigoATGcNwfX8k5jSm0+nT3MW8Ck2zq4h451KijYHH2zojdD1Qgf9rpFgQvHHSTssxKnNU+Mhb+sOirdvo2bPNlRJDpbqbUT4ckjUbSPcWH7Y/b2aiTx/GsWGNlTb2qIi2mKOa0NESlsS27chIvbIptvSlHbYB1VKUxTtLiAvO5vy7RtRhRuxV24kXttIknE7el3DXZk+zciuQDsKjZ2pDeuMMb4zEWmdSera6Yjr9ketzVnHxyv/x0pjBmtivXgPSLMe6QnQozCKAdazGT/wWmIjY476+Eop/CuzqJ02HfeMj1BFxaF1xt49sU2egHX85ejj4hrleo63yr1+vn20lO2Lg+nkk/pZGPl0FBFJLSc7xIGkHRYCtq/bTMn0m0lTmUQZSw5ar4Addgu/RoUzPzKRzBgHe5wH9xe3sSRzuqsnp7t6cbqrFymWVsc1kKqiqpKNuzaSU7iJ3PLtFHp34ynNxZG3l4i8MmJ219Jqp4e07R7CK+pnQaq16sj801mMeW0WBmPz6V/ePK+G2Q+U4KtVRCQbufifMfKbUwjRoklQhBDiuPN7/WxduZb8tRmQt5y46gzaGdZg0vsP2jbPl8ROYz/cMf1wtu9P2359iUqIBmB9zRbeLfiMz4q+pVoLRthadWYuih7BpLhL6OXoekw3v/71G4Jznc/8GALBm1bToAE4/nov5lHntriRCcdLwKfI/raGzPer2Lt2/xQmSf0s9JnopP1ZNvRG+S5PddIOC9F0lKZY+N9/0W/7X7Abapkb0Yq/DOxCqbEaq87ME6l3MTF2zFG3e8rrpfY/U6l+6m9o+QVAsFPe+fyTmEecLe3oEfDWaKz+pJoV71ZSuTd4L2J26OhxuZO+VzlxJbTMBwPixJN2WIhTR8AXIHPOt7hXfUZY7WZi1TYSjLsPGVCwT74vgQLaUGFpi8/VFkNMG1yt2xLbpg0Jqa0xmH7/YY5SimJ/Kdvdu9nuyWW7O7fuPfi51F+OQ2/HZXAQbnThMjgIMzgJMzhxGZ37lw1OwgwOwowuwgwOXAYnJo+Ryi0F1GzLwZuXjalsI1GejSTrs+uNKv6tQl8cebrOlNs7o6I7Y0/qRHzHzrRul3pE13QoWkBjftZ8vtk6g9Wu9WyMqn/f07oqQK+SZIZGj+HywVdiPsbMk4E9e3FP/xD3tOn4164Plevj47BedSXWyRMwdT/tmK/jRFNKsf6rGuY/V4qnUmG06DjzznD6THSedFOjHA1ph8Wprry4nOIXT6etKTtUttvXmmXh7VmRGMOGeB3ZEWWUGqrq7adDR1d7e0539SLd1ZPTnb2IM0efsHprxcX4120IvtauDy0fGJh2IKXXU90qmsKkMAqSnSRdfx99zh1zwur7e5RS/PpWBYteCw5mSBlgYfTfo7GFN5+ADSGEOB6kd00IcVxlLs7G9cVYOpnX02lfYV3AaZEvlhx9f6qj+2Fr25+0vn1plZJIqwP2d2sePimaw7sFn7Giam2ovJ01havjLuHymPOJMB7bD0lfxgqqn3sJz6yvQmXm84bjeOgvmM4cLA9xjlB1UYCsj6vI+rCK6qJg5LbBDF3Od9DnKidxnWW6ESGEaGp7t+eR+9a1DDF8i98Id7c/k486+1FU08Gaxr/aP0UXe/ujOqbSNNwffEL1I08R2JYDgKFdW5xPP4LlikvRHeG8rKey6qIAK2dUseqDKtwVwTbUHq2n79Uuel7hxBom36EQQoijsys7h61fvU2noqn0N+0OFh7Q+1cdsJMXaEuJqS1uexuIbIstsS1RKW1IbJdGfLiD+CM4j6Y08n1FBwQ85LLdszv47s6lqm4gw6FUazVUazXs9RUe03Xq2+hxtXfUBVJ0w6VPx+I1YqjwYaqsxVFRQURtCYnefFK0QsL8Hly+TFr5lhFWEsCV78eaofBoFrb6O1Js7ownvDOmhE5Ete1MctdOOCMazpzl9Xr5eNEH/FT8BVlRu8h1GiAVINiH0KlE0bOyC+e3Hc85Q4ejNxxbe67cbjxffE3ttBl4v/0BtLqR0hYLljEXYJs8EfO556Aznlzdu9VFAb5/spQt84OZyhK6mxn1TBTRbWV0shAtmebXyH75KtJN2fxob8NPw25kS1g+K93rKAtUArtD25p0Rno6ujDA1Yt0Vy/6ObsTbnQd/zqWle0Pfli3gUBdEMS+4P+D6HQY2rbB2K0Lhm5dMJ7WFWO3Lhg7dUBntdLuuNf46PlqNeY+XEL2t8G/wb0nOBl2bwQGk/SDCyFavpPrrlkIcdJwe2DmG98wtmAC4eYKKgIutpBORUR/LGn9SO7dn9btkok5xAiAHPcu3i/4nA+LvqHUH0zhadQZOC9iCJPixzLY1feYghaUUvh+Wkj1sy/h/X5+qNwy9iIcD/4FU78+x3bBp6D89V4yp1eycXYNgbqpS51xBnqNc9Ljcgf2KIkuFkKIpqI0RUHuXnZlZVG1NZMe+X+nn7GEbWYXNwwaxkZX8AHE+NjRPJly11FNO6WUwjv3e6oefAx/1hoA9AnxOB59ANv1f0Jnkg7t31O608fydypZ+3k1gbrkSpGpRvpf46LraAdGi3RICSGEOHLuajeZX3yOde1/6WOYRzKACUr8UaxxXYUpbQBhrdsQ374tMYmxdDjCkfh+5SfPW8B2dy457lx2HJDtYYc7F7fyHnJfHTpameNJtbSmjTWJNGsSaZYkUq2tiTVGUa3VUBmoptxfSWWgmspAFeWBSir91VQEqqgIVFG5791fTUWgkopA8N2vAmholAcqKQ9UwoHVsNa9YvcVRNa9DmYOaLj8AVw+P2H+DYT51hLm9+PKCxC2I4DOY0cLxGLQtcJhTwGbg0z/YrLiiil1GMEBYMAc0Dit0Exvf38u73kt3dOPPWODUgrfkqW4p03H/eFnqPL9U5qYBg3AOmk81ivGoo88MdOBNLZN39fw/ZOl1JZq6I0w6OZw0q91SVZJIU4BP7/yBMP0X/NmWhJPdY8HvoC6BD92vY1+zu7BLBCuXvR2dsWmtx63umiVlQTWbzwo84O2O++Q++jTUoMBDwe+unRCZ7cft3o2tsq9fj6/vYj89T70Rhj+cCQ9Ljv6qTOFEOJkJUERQohGt3yDYvEbz3Jr+CPojYps/Rkk3PIJfRIOP97Er/x8X/oL7xbM4ueKZaHyVuZ4JsaOYXzsaOLNRz/nJtQ9wJn9LdXPvoRv8a/BQoMB68RxOO6/C2PXLsd03FON5ldsnl9L5vuV7M7c3/OU2NNMn4lOOo6wS2SxEEKcYD6Pj5zVGyjYmEVgdxauiixSVBbxxsL9Iz2N8HZ0X14cFEEFhTj1dv7W5n4ujj73qM7l/XUZVQ88iu+nXwDQhYXhuP8u7HfcjM7haNwLa4H2rvWybGoFm7+vRdUN9kzobib9Whftz7ahN0gbKoQQ4shtyljNnu//R4/K9xhkLIW6uPQVgRF4elxP34vGMNRuOewxvJqPnZ68ukCH/dNd5LhzyfXuwacOnvZyHwMGki0JoYCHNGtSXRBEMsmWRKz6w5372NKeK6Vwa55Q0ER5oIpKf9VvAimqqfAHgygq923nr6pbDgZdKBReg55ig55iy+ECOr3A9rrXPkbCvAF6FkSQbhrG+EHXkTjwSPJrHFpgx05q352B+92ZBLZsDZXrU5KxTRqPddIEjB2OLqtXc1JbHmD+s2Vs+CaYQSS2o4lRz0ZJZkkhThFLP/2cYWVPsiTaxTOnJQOKs8IHcEZYfwa4etHN3hGTvvEfValAAP/6Dfgzs+pNf6Ht3HXIffRJrYMBD/uyPnTrgqFrZ/TOkzt4YM9qD5/fXkR1kYYtUs9F/4gmud/xCzwRQojmSIIihBCNxuuDF9+pokvmn7g95lMAcpL/TKdrp4Dx0D9093gLmFn4FdMLvgilztShY1j46UyKG8vZEQMx6o7tz5UKBPB8MovqZ1/Cv7pu+g2LBdt1k3DceyeGtNRjOu6ppnirj41zalj7eXVornO9ETqdZ6fPVU4Sux++o00IIUTjKM4rYsfqLCq3ZmEozCLWnUUbw3o66n103LdR3QORgNKz3deRXFsP3utnZ07cRqCaHvbOvNH+SdpYk4/4vP4NG6l66HE8n38dLLBYsN92E44H7kYffeLmcj0ZKaXYvthNxtuV7FzqCZW3OdNK+rUukvpZZMouIYQQR6yipIJVn31A9Jb/0s2UEWz/jZDnS2JT7LW0v/Aa+nZKq7dPbcAdDHqom94ip27Kix3u3ez25qOhHfJ8Fp2ZFEurAwIfWocCIFqbE47LQ6zD0el02AxWbAYr8RzboAlNaVRrtVT4q6gIVIYCJSr8+wMrCiuL2VOcS1l1AdX+Uty6SgI6L+0qExgSeQFXDL4Ku/XIM201WI+qKjyffE7ttOn4Fizcf40OB5bLLsY2eQKmoWee9FOSbfu5lm8fK6G6UEOnh9OvD2Pgn8NkQIUQp4gtK9fTdcXV7HGYuLZvTzSdn7HR5/Fq28ca9XeQUgpt+w58GSvwLVuBb9lyfCtWQU3D0znpExP2Bz3sC4Lo2hl9eHij1am5WP91Nd8+WkLACzEdTFzyzxjCW8ujQSHEqafJ//K9/vrrvPjii+zdu5eePXvy2muvkZ6efsjtp0yZwr/+9S927txJTEwMl112Gc899xxWq0S1CdGUVm+FR/62laedF9M9Zi1+TNSOeJ02Q25ocHtNafxSsZz3CmbxbelCAgQftEcZIxgfO5qJsWNItbb+Q3VSNTWUXTEJ7zdzAdA5ndhuvgH7Xbdi+J2sFQLKd/vZOLeGjbNrKMz2hcptUXp6XuGk1xVOnHEyRYYQQhwPAV+AHes3s3d9Ft5dq3CUZZGsZZFgyqs/rrJuYONuXQRL7aexNTqVwvgoKmItlIV5yPXvJdebFxrleX38OB5KvhmL/shG5QV25VL12DO4p00PzmOt12P901U4H38IQ3JS4150C6P5Fdnf1rDs7cpQO6o3QudRdvpf4yK2o4yMFEIIcWSUpljz02Iqfvovvb0fMcRQAybwaUZW6MdgTL+e3iNH0Mq0//fZ+potfFD4FXNKfyLPm3/Y49v1tgaDHtIsSSSaY9HrTu6H8r+l1+lxGRy4DA5ac2L7BpSm4f3xJ9zTZuD+9Iv9D+t0OsxnDcE6eSKWsRed9COSATxVGgteLGPNp8H8+FFtjIx6JorEHjKoQohTRXlhGcYPLsZiqebivgOosPjpYmvPC2kP/OGACK2wEF9GZjD4oe5dFRUftJ3O6cTYtxfG7t3qTX2hj4r6Q+c/GShN8cur5Sz9byUA7c6ycsHz0ZgdLatdF0KII9WkQREffvghd999N2+++Sann346U6ZM4bzzziM7O5u4uLiDtp8xYwYPPPAAb7/9NoMGDWLTpk386U9/QqfT8fLLLzfBFQgh/H54cSYsmvUd73a8kihTKbXmBGyTP8WVMuig7Ut85XxU9A3vF3xOjmd/qrJ0Z08mxV3C+VFnHfGDmsPRiospu/ByfL8uA5stmNr7tptOiRveP6K6KED23Bo2zqkhL2v/9Bh6I6QNttLlfDsdhttlrnMhhGhE5cXlbF+5mvKtWejys4iqyaKNfi1tDbW0rdvGZ9Sx22bmZ3s4K61JbHImsifCSVE4FFoqqVDVgB/YWvciND8rQKwpihfSHuDcyDOPqE5acTHVz/2dmn/+GzzB7AaWS0bjfOYxjF06N9alt0jeGo21s6pZ/m4lFbuDQZ8mm44elznoO8lFWGKTx6ULIYQ4SRTuLmD9rHdJzv0vPUzZwUIDbPV2JjflerpefDUDWu/vPyv3V/JFyfd8UPg1WdUb6h0r3OCijTWJ1AMCH/Z9jjVFSdai48y/aTPuadOpfe8DtF25oXJDh/ZYJ0/AdvV4DClHnsWrudu5zM3ch0uoyAuADvpe7eSM28MxWeVBnBCnioAvwKYpE+lv3swdXbqzMUoRbnDx3w7PYTMc3QBXVV2NL3NVKAOEPyOTQM72gzc0mTD27I4pvS+m/n0xpffF0KkjOsOpN6jLW60x+8EStsyvBSD9Ohdn3hGOTi/tvRDi1NWkPXIvv/wyN9xwA9dccw0Ab775Jt988w1vv/02DzzwwEHbL168mMGDBzNhwgQA0tLSGD9+PEuXLj2h9RZCBG3cAdc8pzij8u980fV+DDoNb8Lp2K7+DMJahbZTSpFZvY538z/jq5J5eFTwYbtTb+eymFFcFXcxXeyNNzdmYOcuSs8bQ2DjJnSRkUR88wnmgac32vFbGne5xqbva9g4t4ZdyzyhOc7RQUq6hc6j7HQYYcMWfur9gBBCiMZWU1nDxoWLqdjwC7bSVbTyZ5Fs2k4PoMRsZIfDypZYC/PskWy1JbPZHsVul4liqx+lUwccqaruBdQVxxgjSbG0JtXaihTLvldrUi2tSDDHYtD9/t9xVV1N9ZTXqXlhCqqiAgDTsDNxPf8kptP7N+p30dLUlAZYOaOKVTOrqC0LNqa2KD19JjrpdaVT2lEhhBBHJOALkDnnOwIZ/6Wv9iVD9X4wQXXAzkrLOMKHXs9pQwbSru6hhlKKJZUrmVn4FbNL5uOu+71t0hkZEXEm42IvoK/zNCKNLS8deHOnlZbi/vBT3NNmBAds1NFFRGAdNxbr5ImYBqS3qIAUX63GwinlZE4P3qeGJxkY+VQUyf0lw68Qp5qFUx5jmH42M1on8kk7Bzp0vNbucdKsh884qHw+/GvXhzJA+Jctx79uQzBz4W8YOncMBT+Y0vth7HEaOskoTvluP7NuLaJosw+DGc57Ioquox1NXS0hhGhyTRYU4fV6WbFiBQ8++GCoTK/XM3z4cJYsWdLgPoMGDeL9999n2bJlpKens23bNmbPns3VV199yPN4PB48nv1z91bUde4KIY5dIACvfgLPvF3Da2nXM77tTABUn2sxj34DjPtTIXo0L9dvfpD55YtDZd3sHZgUN5ZLos/FYbA3at38a9dROvIStN156JNaE/nt5xi7dmnUc7QE3hqNrT/WsnFODTm/uNH8+9cl9jTTZZSdjufZccbKAxzxx0g7LE51tVW1bPhlMRVrFxBV/COd9ctIsSq+SYwmp5WVnQ4LO23d2WG3UWM61Mi54NQLVp2ZFGtrks2JpFpbk2JpRaol+J5sSfxDbary+aj9z1Sqn3weLb8AAGOvHjifewLzecNbVGd9YyvL9bPi3UrWfFaN3x2MUAlPMtD/T2F0u9guIyJFk5J2WIiTx67sHLZ+NZWORVPpb6rLJKCHdb50ijtcT69LxnFGVFho+z3eAj4qms1HhV+z3bM7VN7J1pYrYy/k0uiRRJsiT/RlnPKU34937vfUTpuO58vZ4K3LwGgwYD5vOLbJE7BcdEGLfGiXt8rDnL+WULoj2MHQ83IHQ/8ScUqnaZd2WJyqfv34M4ZVPMPaMDsP9WoLBLi79XWcE1E/q7BSisDWbfiWrcC/bxqMzFXgdh90TH3rVqEMEMb0vpj69UEfLgF/v5Wb6eGLO4qoLdWwR+u5+NUYWvWUaYuEEAKaMCiiqKiIQCBAfHz9ufvi4+PZuHFjg/tMmDCBoqIizjjjDJRS+P1+brrpJh566KFDnue5557jiSeeaNS6C3Eq27obrn0Odm7awffdLqa3cxVKb0R3/hR06TfDAQ9NNKVxT84zzC9fjEVnZnTUOUyKH0sfR7fj8nDF+8tiykZfgSorw9C1M5HffoEhqXWjn+dk5fcqchbWsnF2DVt/coce3ADEdjTR+Xw7nUbaiUiStN6i8Ug7LE417mo3G35ZQvnaBUQW/Uhn/VL66IOd4btcFp5o15qZKfF4DA23gwmm2AMCHlqRXPeeYmlNnCm60dtPpWm4P/yE6keeJrB1GwCGtm1wPP0I1nGXodOfup3Yv6dgo5dlb1eS/W0NKjhLBvFdTfS/NoyOI2zoD/FvLMSJJO2wEM2bp8bDii8+x7rmv/Qx/EAygAlK/FGscV1N4rnX0a1f99D2Xs3HD2WLmFn4FQvKf0UjOGrWqbczJnoEV8aOprejqwQzNgFf1hrc06bjnv4hWkFhqNzYvRvWyROxThyHISH+MEc4efm9isWvl5MxtRKlgTPewHlPRNLmDFtTV63JSTssTkVbMtdx2spJlFoNXJXeH5/ewznhg7izVTBbuKqtpWbK63gXLMSXkYkqLT3oGLrwcEz9+2BK74sxvR+m/n0xtEo80Zdy0lkzq4rvnyhF80NcFxMXvxoj0zcKIcQBdEop9fubNb68vDxat27N4sWLGThwYKj8vvvu46effmpwSowFCxZw5ZVX8vTTT3P66aezZcsW7rjjDm644QYeeeSRBs/TUERucnIy5eXlhIWFNbiPEOJgmgb//gLuexPSLT/yYdcriDEVoRyx6MZ9DG2GHrTP33L/zat572DUGXiv48sMCU8/bvVzf/E15Vf+CdxuTIMHEvHlh+ijoo7b+U4Wml+xc6mHjXNq2DyvBk/l/j/5ESlGOp9vp/MoOzHtTE1YS9GSSTssWjpPjYcNi36lbM0CIgp/pLP+V6x6T71tfrGm8nqXjvzSugqtbgqMno4unO7qFQp4SLG0IsmSgFV/YkZwKKXwfvsDVQ8+hn/VagD08XE4Hn0A2/V/Qmc2n5B6nGyUCrarGW9Xsn3x/tFLaYOs9L/WRcrpFnkQJZoVaYeFaJ42LV/Dnu/+R/fK94gyloTKMwPDcZ92HX3GXIzVsT+TwKbaHGYWfsWnRXMp9u9/eHS6qxdXxlzIhVFnYzfIA+gTLZCfj3vGx7inTceftSZUrouNwTZxHNbJEzH27N6i7w3yN3iZ81AJRZuDmc26jrZz9gORWMMlsBakHRannrLCUspeSifZvIWL0weRGa+RamnN7G5vE2EM/p8vv+5m3G+/u38niwVT754Y+/fBlN4PU3pfDO3bSYD+UdACip9eLmPFtODURR3PtTHy6SjMdvkOhRDiQE0WJhYTE4PBYCA/P79eeX5+PgkJCQ3u88gjj3D11Vdz/fXXA9C9e3eqq6u58cYb+etf/4q+gYbSYrFgsUh6ICH+iJ35cP3fYN4Kxa2tXuPldndj0AWgVR9042dBRMpB+8wo+JJX894B4IW0B45rQETNf6ZSedMdoGmYR59PxAfvoLM37rQcJxOlKXav8rJxTg2bvq2hpmT/nHvOeAOdR9rpfL6d+K6mFt05I5oHaYdFS+Op8bBx8TJKV/9IeOECOuuX0Etf93C87s56ry+RrZazyO7Uje867WZhIBOoBODMsP7c2moSg119m+xvsG9pBpUPPIpvwUIAdGFh2O+7E/sdN6N3OpukTs2dFlBs+r6WjLcryF8f7PTX6aHTSDvp17qI6yxBJKJ5knZYiOajoqSCVbM+JHrzf+lmWkZHACPs8bUmO+Za2o2+hj6d2oS2rwpU80XxD3xQ+DWZ1WtD5fGmGC6PGcUVMRfSznbwb3FxfCmPB89Xs6mdNgPvnO+C84sCmM1YRo/CNnki5pEj0Jla9sADza9Y+t8KlrxZgeYHW5Secx+NpMPwU7cvpiHSDotTScAXYMs/JtDPvIWHO3QjM17Dqrfw3w7PhwIiPN/MDQZE6HQ4X3ga81lDMHbvJkH5f4CnUuPr+4rJWRjslxj45zAG/TkMnV76fIUQ4reaLCjCbDbTt29f5s2bx8UXXwyApmnMmzePW2+9tcF9ampqDgp8MBiC8903UcILIVo0pWDqbLjndfDUuJnW5Sauip0WXNnzKhjzFpgOHo2yoOxXHtj+AgB3trqGcbEXHqf6Kaqf/hvVjz4NgPW6yYS9+Qo646mXFkwpRcEGHxtm15A9t4bKvYHQOlukno7n2ug8yk5SH4vcFAshxFHwur1sXJJBSdaPhBUsoDOL6WmoDa6sa27yfQlsNQ/Dn3IWSelD2ZVcxj/3vsfiyq8gADp0jIocyi2JV9PL2bXJrsW/YSNVf30Cz6yvggUWC/ZbbsTx4D3oY2KarF7Nmc+tse7zGjLeqaA8N9i2Gq06uo910HeSS6acEkIIcViaX2P1jwupWjyN3p4PGWKoARP4NCMr9Bdh6H8dfUadR6Jpf99WRtVqZhZ+xVcl86jVgg84jDoDwyMGMy7mQs6OGIhRJ+3PiaKUQtu5C1/GCrzzFuD+8LN6qd6N6f2wTZ6A9crLTplslcVbfcz5awl71waniOsw3MaIRyOxRxmauGZCiKa08B+PMMwwl69i45na2QXAi2kP0tXeHgCtuJiK628BwH7XrTj+ckeT1bWlKN3pY9atRZRs82O06hj5dBSdR0pwmhBCHEqT/oq6++67mTx5Mv369SM9PZ0pU6ZQXV3NNdcE55eaNGkSrVu35rnnngNg9OjRvPzyy/Tu3Ts0fcYjjzzC6NGjQ8ERQojGsacYbnwRZi+B1uZcFg0YS1dTRnBY5MiXYOCd0MAI13U1m/m/LX8lQIBLo0fyl9Y3HJf6qUCAytv/Qu0b/wHA8dd7cTz16CmX+aB4m4+Ns2vYOLeG0u3+ULnZqaPDOTY6n28nJd2KwXRqfS9CCHGsfB4fG5dkULxqAa6CBXRmET0MNcGVdbebhb44tpiH4Us+i6T0YbTp3okYncac0p+4Je95Vm/eCAQfYIyNHsktiVfR3pbWNBcEBHJ3U/X4s7invhecD0uvxzp5Is7HH8KQktxk9WrOassDrPqgiszpVdTWZVyyhuvpPcFJ7wlO7JHy20MIIUTDlKbYsGQFhT/PpGP5h/Qy7Q6uMMA2Xyd2JV1P1zFXMyA5PrRPgbeYj4tm80HR12xz7wyVt7OmMD52NJfFnE+s6dR44N7UtMJCfBmZ+DJWBN+XLUcVFtXbRt+6Fdarx2ObNB5jl85NVNMTTwsoMt+vYuErZQS8YAnTcc5DkXS5wH7K9cUIIepb8uHHDKt8jm0OK3f17wR4uTb+csbGnBfapvK2v6DtzcfQuSPOpx9tusq2EDuXufnyrmLc5RrOeAMXvxpDQjfJuCGEEIfTpEER48aNo7CwkEcffZS9e/fSq1cv5s6dS3x88Ifhzp0762WGePjhh9HpdDz88MPs3r2b2NhYRo8ezTPPPNNUlyBEi6MUzPwBbn8FSithWNQvfNnzUhyBArBFwbgPod3wBvfN8xYwKfseqrQaBrr68FKbh47LD2PldlN+9fV4PvkcdDpcr76I/dabGv08zVV5np+Nc2rYOLuGwmxfqNxo0dF2mJUuo+y0OdOG0SKdEkIIcaRKiqpZ/a/76Vf7Dt0N1cHCuufeRb5YNpuG4UseRqv+w2jXswuxdVl3vJqPD4u/5o0977O17iGGVW9hYuwY/i9hPK0tDU8LdyKoQIDaf75J1cNPoaqCc4taLr4Q5zOPYezapcnq1ZxV7PGz4t1KVn9Sja82mIkurJWBfpNdnHaJQ+ZkFUIIcUhbV21g1w8zSSv8gK7mzcFCE1QEwlhtuZSwM6+l+7DBtK27h/BpfuaXL+aDwq+ZV7aYAMGMRHa9jYuizuHK2NH0c3aXh83HkVZZiX/FynpBENr2HQdvaDRi7N4NU3pfLJdejPnsoehOscFZZTv9zH2khNwVHgDSzrBy3hORuOIla4kQp7pNy9fQI+tP1Jj1TEgfRK2hhv7OHjySfFtoG/cns3DP/Bj0esKnvYXOdnDmYXHkVn1YxfznStH8kNDdzMWvxuCMPbXaJSGEOBY6dYrNO1FRUUF4eDjl5eWEhYU1dXWEaFYKy+Dml+Gzn4Kfn+75Jg9E3IZO+SG+B0z8HCLbNLhvZaCaS9bfxIbaLXSwpvF513+H5otrTFp5OWUXXxmcB91sJvy9/2C94tJGP09zU10UIPvbYCBEXpY3VK43QtogK53Pt9P+LBtmhzysEc2btMOiuVEK5s7KoOOvE2lnCT7AKPZHs9k4DG/SMBL7nUX73l0PmnqoJlDL9MIv+PfemezxFgAQbnDxp/hLuS7+CqJNkSf8Wg7kW7Waihtvw5+xAgDTwNNx/v1ZzANPb9J6NVeFm7xkTK1k45watLrES7GdTKRf66LTeXb0RnkgJVoGaYeFaFy5m3awZe4HJObNpJMpK1ReE7CRZRyNvud4eo4cidVhDa3bUruDD4u+5pOiORT4ikPl/ZzdGR87mgujzsZpcJzQ6zgVKI8H/+q1+JYtDwVBBDZkB28Gf8PQqQOm/n0xpffF2L8vpp7dT9kHeEopsj6q5qeXyvDVKkx2HWfdF0H3Sx0SsHMMpB0WLU1pfgmV/+hPsmkbE3qfwc9JfuJM0czt9g7x5uAUjVpBAUXd+qOKinH89V6cTz/WxLU+eQV8ih9fKGPVzOCghy4X2Dn3iUhMVukPFkKIIyHhvEIIAD77GW7+ezAwwm70sGDk7fSteAsUcNoVcMnbYG64Y8an+blpy1/ZULuFWFMU73V6+bgERAT27KVs1CX4s9agc7mI+Hwm5rOHNfp5mgt3ucbmH2rYMKeGXcs8KK1uhQ6S+1vocr6dDsNt2CIkElgIIY7F1l0BFv7zeSYaH8dk8ZPvb83eIf+j+4gRDDA23KlQ6i/nnfxP+F/+x5T6ywGIM0VzY8KVXBV3Ca4mfoihqqupeuI5al5+DQIBdOHhOP/2JLYbrkGnl46SAymlyF3uYdnbleQsdIfKU0630P9aF2mDrNLZL4QQ4iCFu/LZMPtjInNm0t20mCQAE/g0I6s4D2+X8fS44CIGRrpC+1QHavi6ZD4zC78io2p1qDzGGMllMaO4MnY0HZpwqq2WRgUCBDZm41u2IpQBwp+1Bny+g7bVJydh6t8HU3o/TP37YOzbG314eBPUuvmp2OPnu8dK2b44eJ+U1M/CyKejiEiS7mTRci14+x0o2kzbi64jpXPbpq5OsxbwBdj2ynj6mrbxQko3fk7yY9QZeKv9M6GACKUUFf93O6qoGGOP03A8+mAT1/rkVVse4Kt7itn5azBjz5l3hJN+vUt+swohxFGQu1ghTnGllcGpMmZ8H/w8rN0evuh1Gc7CxaDTwfDn4Mz7gssNUErx0I4XWVC+FJveyrQOL5FsSWz0evo3b6H03DFo23egj48jYs4sTL17Nvp5mpq3RmPrglo2zq4h5xd3aLQqQGIPM51H2ek00i4p0YQQ4g/w+uC/7+XQK+tq/hS2CIANzstp9+c3iQ9reL7uvd5C3to7k/cLvqBaqwEgzdKaPydexWUxo7DqLSes/ofimfs9FX++M5T22XLFWFxTXsCQ2HRTeDRHWkCxZX4tGVMr2bM6mH1Jp4cOI2z0/5OLxO5N/28phBCieSkvLGP1N7Owb5pJL/08hug0MIGmdKwODKWi3XhOu/BS+idE19uvwl/FlLy3690/6NFzdsRAxseO5pzwwZj00jX3Ryil0LbvqJcBwr9iFaq6+qBtddFRwQwQdUEQxv59MNRN4Sv2U0qx/ssa5j9fiqdSYbToOPPOcPpMdB6UPU2IluS7L1Zwbs41AGjvP8evukuwn3033YcOkv/7DVj4j78yzPAdP0bE8FrPcEDjseQ76O/a31/rnv4hns+/BpOJsHf/g85sbroKn8SKt/mYdWsRZTv9mGw6LvhbNO3PPjUzGAkhxB8hv7yEOIXN/hVufAH2FINeD6+MXcqfa8eiK8wDazhcPhM6jjrsMV7bM40ZhV+iR88b7Z6kp7Px5yj3Lc+k9PyxqMIiDO3aEvHdFxjbNjyNx8nI71Vs/8XNhtnVbP3Jjb92f/rOmA4mupxvp9Mou4zGEEKIRrBoteKbN9/ngfBbCAurpFq5qDr7n3Q56+oGAwBz3Lv4157pfFw0G68Kji7sYmvPba0mcUHUWRh1Tf+3OZCfT9VdDwTnaAX0KcmEvfEPLBeMbOKaNS9KKbb95ObnKWUUbwlGHRrMcNrFDvr9yUVkiqmJayiEEKI5qamsYdU3X2NYO5NeajZn6r1QF5u+ztefopTxdBx1Bb3atD5oX01pfFw0m2d3vUGRvxSANpZkroy9kMtiRpFgjj2Rl9KiBPLz8Wdk1guCUMUlB22nczgw9u1VLwhCn5YqI2p/R3VRgO+fLGXL/FogODhj1DNRRLWR+yTRsmXvUFjn3wthUOBPJM64hwF8BvM/Y9236ZT3vJv0Sy/FaG7633/NweKZHzKs8m/ssZq4ZWAPNGoYG30e18RfFtomsDuPylvvAcDx2IOYenZvquqe1HIW1fL1X4rxVCrCWhm45LUYYjtJcIkQQhwLacWFOAVV1sDd/4S3vwl+7pgMX4+bSrsVN0HAC7FdYOIXEN3hsMeZVfQtf8v9NwBPpd7FuZFnNnpdPd/No3zsBFR1NcY+vYiY/WmLGMmh+RU7l3nYOLuGzfNq8FTuD4SISDbS+Xw7nUfZiWkvHQ9CCNEYSivhqTdLGbDlJp6N+wiAgrBBxF73Po6ogwPt1lZv4vU97/F1yXw0gvMXpTt7cmurSZwdPrBZdKgrpXC//S6V9z6MKi0FvR77HTfjePJh9E5nU1evWclb5eHnf5STuyKYatQSpqP3lS56T3DiiJHsS0IIIYK8bi9Z337//+zdd3gUVRfA4d/WJJve6KF3UJr0KkWQjggiioKCDQUEVHrvCiggAqJgQaVJkSYIqHRQBKVI7yWkl91k28z3x/BRpCVhQ0g47/PwZDI7c++NQmbmzrnn4Nj7PY87V1DLkAw6QAfHHWU5n/d5ijTpRLlyxe/Yxl/JBxl6Zgp/WQ8BUNS7ICMK9n7g9w9KQgKpi5fhWLsenZcXurBQ9GGh6END0IeFat+HXt+n83n4VpwqCQm4/vzrpjIYyrnztx5oMmGs8JgW/FC1CqZqVTCULoXOINf49Diy3sYvo+JIiVfQG6F2z0CqdvNHb8z6+14hMpMtFaaPX8OM8M04VC9C+u3g+NlkLq36mKr2byhn2g2HOnFhf0GOR/SiYqfuBIY+umV2juzeT4V/XsFh1NGpWgMSjEmU8SnOpMIDrl3nVFUlsXtP1IQEjFWr4PtB3ywedfajqip7v03m1w/jURXIX9lM66lh+IbKtU0IITJKgiKEeMTYHdB6APy+X1sQ26e9k/EF+2LaPUM7oExbaP81ePnftZ2diX/R99RYAF7L8zxdb4gE9pSU7xaR+PJr4HJhbvwkgT9+h97/7uPKDv78Joldnydii1Wu7fPLbaBUMx/KPO1L7nKmh+JlmxBC5ASqCgs3wZJ5m5ma7yUicp3HjQF77RHkajIADDffDu9K2seMi1+zKWHHtX0NA2vxTr6XqOb/8JRtch05SuLrvXD+thUAY6UKBHw+A1OVSlk8sodL7CknWz5J4Ngv2mpHo5eOyi/6Ue2VALwD9Vk8OiGEEA8Dt9PNP5u3kLjre8rbllDVeDXrgAHOOQtzIqQT+Z58nhJVHqP4XdKnRzljGX9uJgujtdUHfnoL7+Z/hVdyd8SsfzDB7qqi4Nj0G6nzvyX1x5WQkpL2ky2Wm4Im9GGh6G7Y1oeGoAsLu/lzDwZSqKmpOPf9jWvPn9eCINxHjt16oE6HoUyp6xkgqlbBWOExdF5S/iqjUhLcbBwbz79rtBIv4aVMNB8XIiuRxSOj1xQX71reB8DxRC/8wgpRPAyKV/6cqAtj2bXwM8pFfUp+01nyX+5P0uQR/ObfnaLP9CKiVM7JZJsWsZdj8PmxHb4mGz3K1uV4YBKBBn/mlhiPj8H72nEpc+fjWLcBvLwI/Go2OqO8hkoPt1PllzFx/LNUKwVVvq0vjYcFYzTLfLEQQtwPuRoJ8QhRFOg6XguICPCFVUOvUPtQB/jjd+2AhiOh/hCtlsZdHE85zavHPsChOmke/CRDI972+FitU2eQ3HcAAF6dniXwqzk5ou7coVVWNk+MB8AnSE/Jp3wo3dxCgcpeUp9QCCE87NQl6D3FTt2ooSwq/BF6nYrNrwSWF77FUqDaTcfGuRJ49+QYNsRrQQZ69LQKaUTPfF0oZ7l75qQHSbXbsU6cgnXsh+BwgMWC3+ihWHq9KRNNN0iOcrNjZgJ//2hFdYNOD+Xa+FLrrQAC8sp/JyGEeNSpisrh7X8QteV7SiUspKLpovaBEa44c3PYvyMhtZ+nfL0aRNzjOc2puPgycjFTL35Bklt7edEhrDkDC7xJbnNYZv8oALiOnyB1/rekfP39TZkUDGVK4d25IzqLBSU6BjU6GiUmFiU6Rvv+6jZuN9hsKGdtKGfPpb1jH5//BE38JxtFaAj6sLCb91ksqC4XrkP/agEQV4MgXP8cBJfrli70hQtdzwBRtTLGKpVyxGKJh8XJ31P4eXgs1igFnQGqdw+g5hsBGEwyPyEeDfPWgH7/fMqVPITTFIJf00E3fR6ePxf1+w4n1foBWxYtIO+RKRQ3HaK+7WPc30xjp64dvo36Ur5ezRw/r+dyuDg9rROVTaeYlbcsa4pq5SWnFRtOYe8C145znz5Dct+BAPiNG4GxTOksGW92ZYtzs/LdGM7/YUenh/r9gqjykp8soBNCCA/Qqaqq3vuwnCMxMZHAwEASEhIICAjI6uEI8UB98Bl89AOYjPD7oD+p9lc7SDinZYVo/y2UaX3PNqKcsbQ62J1zjktU9i3PojLT8dF73/O8tFJVleQBw7BNmgqApfdb+E2ZgO4egRrZweUDDn54+Qouu0rVbv7U6RUoEw3ikSPXYfEgOF3w8SJYuPAQnxd9gUp++wBwV+qBocUU8Lq5tMQB6xG6HxvIOcclzDoTHcKa82beFyjiHZEFo78zx5ZtJL72Du5/jwJgbt6UgE+nYChcKItH9vCwJynsmZfEH98k4UrRHnOKPelN3d5BUpJKCOQ6LATArh9XkHtXfwqbj1/bF+8K4h+f9vhWe54KjRpgMKUtNfXvCbsZemYKx1PPAFDBtwyjC/Wlil/5TBn7jZTEROyLl5Ey/1ucW69nuNIFBeH9/LP4dH0RY9Uq93yJoqoqamLi1aCJmP8ETWhfbxtIcZsAhjTx8dFSeaWm3vKRLjwMU7UnbgqC0IeHZ6wfcVf2ZIVfP4y/tgo5pIiRp8eFkPcxybiRmeQ6/HD5+wQ0esvK/golyOd1CZ6eCrX63PUcVVHZu3Y9bJtCFcP6a/sPOKuTWLEv1Z55BqM5ZwZh/zbhPepbP2K3XyjPPVkWB0765nuVfgW6XztGVRTiGrXA+esWTHVqEvzrOilllA5RxxwsezuaxAtuzH46Wk4KpWi9h6+8lRBCZFc58wothLjFzGVaQATAmu6rqLa1A7hSIbQEdF4Bucrcs40Udyrdjr7HOcclCnvlZ37JSZ4NiHA6Sezek9SvvwPAb8IoLO+/myMiYa3Rblb0jsZlVyla35t67wbm+AhyIYTICjsPwhsfqdRN/ZQt5d7Dx5CKyysU4zNzMZRte8vxC6NWMfD0h9hVBwW98vF58fGU9y354Ad+F0pcHMkfDCXl8/kA6HPnwn/ah3h1eCZHXCM9weVQ2b8wmZ2zE0mJ18pT5atgpl7fIApUkcl9IYQQkBibyN/TelPHPR/MYHVb2G9sjaHS81Rs2pS6lrRfL86kXmDUuWmsi9OyLoYagxkY8QbPhbVEr8u8gH5VUXBs/o3U+QtIXbrienkMvR7zU43w6fYiXq1boPNO+3O6TqdDFxiIPjAQihVN2zhUFTUpKU2BFDd+jtN5bcw6f3+MT1S6qQyGvmCE3Ns8AGd3p7JuSCyJF92ggypd/KjTKxCTd/ZfjCJEWiVaoeMweDPXFPJ5XUINLoKu2pv3PE+n11GlRVNo0ZRjfx4gcvVUqtq/pbxpFxx8jgv7CnI8ojcVO71KYGjgA/hJHozt331PfetHxJkMvF7nCRwk0DCwFu/mf+Wm41JmzML56xawWAiYP1sCItLhxK8prHo/BqdNJSjCSNsZYYQVk8B+IYTwJMkUIcQjYMVWeHaoVj5jZpfDvH6pGjiSoWRzeHYB+ATdsw236qbHsUH8HP87QYYAVpb9nGI+BT02RtVqJb5DFxxr14PBQMDcT/Hp+qLH2s9KbqfKoleucOEvByFFjLzwXW68/GWyQTya5DosMktCMgz+HJatucwXJbvRLGQdAGrxZuie+RL88950fKpiZ9iZqSyIWgFAo8BaTCs2nCDjw/P3UlVV7IuWktT7fZTIKwD4vNYNvwmj0AcHZ/HoHg6qonJ4jY2t0xNIvOAGtJWOdfsEUryhj7xYEeI/5DosHlX71v9K2KauFDCdQVF1/B7wPk+8NgS/IL97n3yDFHcqMy59zWeXFmBXHRgw0C33s/TN/yqBxswr6eA6cZLUrxaQ8tV3N5W3MJQuiU/XF/F+sROG/PkyrX9P+H8ghRoTi+pyYShWNEdkhMxOnCkKWz5OYO+CZAACCxhoNjqEiKqeW+wi7k6uww8HVYXnR8JvWyM5Vq04foZk6PgDPPZchtqLOhfJwUWfUT76U8KM0QAkuv35y787xZ7pRYFShT04+gfvyK59RKyohZchhZa1m/N3SCyFvPKzptyXNz0/u44eI6ZiLUhJwX/mVCxv9sjCUWcfqqqyZ14Sv09NABUiqnnRekooPkESUCKEEJ4mmSKEyOF2HoQXRmkBEW+3SOQ1azstIKJIAy1DhCFtvwZGnp3Gz/G/46UzM7/kJI8GRCjR0cS37IBz1x7w8SFo8Td4tWjmsfaz2qZxcVz4y4HZT0fbaWESECGEEB6kqrD0N+gzDaqygn2VuxNujkY1eqNr+iG66j3hPy/Gz9sv0ePYIP62/YsOHf3z96BXvpczdWVnerlPnyHxrXe1YEG0muABs6dhrls7i0f2cFBVlTPb7fw+NZ4r/2q1bH3D9dTuGUj5tr7ojRIMIYQQAlKtqeyaNoj6tqlggrPOIsQ/9TUNGtZJVzuqqvJT7EZGn5vBRUckAHUCnmB0ob6U9CmSGUNHSUq6Xh5jy/Zr+3WBgdfLY1R7ItsEAOp0OnQBASAvgrPExX121g6OJe6MVvakQgdf6vcPwuz78Nz/CvGgzFwGizfDZyVGaAER+atC+Y4Zbi88IjcN+o0gJfkDtixaQL4jUyhmPkx921Tc33zCDl17/Bv3pXz9Gh78KR6MmIvR+C5ri8WUQp+SDfg7JBZvvRdzS0y4KSBCdbtJfPl1SEnB3PhJfN7ofpdWxf+57CrrR8Ry6CcbABU6+tJwYLCUWxZCiEwiQRFC5GDHz0ObgZBih+Y1FKbmewndkSMQUAA6LkxzQMTcywv5InIRAFOLDqWqfwWPjdF95ixxTdvgPnIMXUgIQasWY65Z3WPtZ7X9i5LZv9gKOmg5KZSQIpL2TAghPOXMZXj7Y/h1l5Upxd6lR97PtQ/yVED37ALIXe6Wc36N30nPE8OJdycSZAjg02IjaRD08ExOqS4Xtk9mkjxsDNhsYDbjO/g9fD/oi85LykAAXD7o4Pep8ZzdaQfA7Kej2isBVOnih8lHJvaFEEJoDu/Yi2l5F+qbDwGwxdSDin0nUzA4fRkdDtuOM/TMVHYk7QWggDkPwwv25ung+h4PSFAVBedvW0iZv4DUJcu1ewEAnU4rj9H1BbzatETnI/XFRdq4HCrbP01gz7wkVAX8chtoOiqYIrXl75B4NO05DP0+hVI+/9L9/8+PzT66JZA+I3z8fKj7SncU1yv8sXY9uh1TqGLYQE0Wwy+L+WdtTZIr9aVqu7YYzQ//axmXw8XZ6c9RyXSGb8PKsLhUKgAfFh5IWUvxm461ffQJzp270QUEEPDFzGwTsJeVrNFulveO5tJ+BzoDNBwYRKVOmZd1SgghhARFCJFjRcVD8/chOgGqlIIljcej/30FGMzw/FLwy5WmdtbG/sqIs58AMDiiJ21CG3tsjM5/DhDfrB3KxUvoIwoQ/PNyjGVKe6z9rHZ+r52N4+IAqNs7kKL1ZNJBCCE8weWCaUth+JdQ1riHvVVeoITPMVR06Gr3g8ZjwHhzAIGiKnxycT6TL8xFRaWCbxnmFB9LAa+8d+jlwXP++ReJPd7G9dd+AEz16xAwexrGUiWzeGQPh/izLrZMi+fIOq0WucEEFZ/3o3qPACzBklpUCCGExuVwsXXmBGpHjcRkdnHFmZszNb+gbpsW6WonzpXA5PNz+erKjygoeOvMvJ3vJd7I+wI+es+WG3CdPHW9PMaZs9f2G0qVuF4eo0B+j/Ypcr7Iww7WDool+piWVatsKwsNBwTjHShBpOLRFJsIz40Apwvm1xqAHjeUbg2F63m0H71RzxOtmkGrZhz94x+urJ5KVccCHjPtgAMdOPdXYU4W7EWlTq8SEPLwZs/ZNvkD6hs3ccA7mFE18wApvJK7A8+ENb3pONeBg1pQP+D/ySQMBSOyYLTZS+RhB8vfjiYp0o1XgI7Wk8MoVFNKGQkhRGaToAghciBbqpYh4sQFKJwH1r22Fq+VQ7UPW82EAtXS1M7e5IO8fXIEKiovhrflzTwveGyMji3biG/VETUhAUO5MgSvW56jJnkSL7lY2ScaxQWlmvlQ7VWJ9BVCCE/Ycxje+Aj+Pu7mg4gJjCg8AqPOBQEF0LX/Coo2vOWceFcivU6MZGOClnr6hfA2jCr0Lt76hyPzgpKcjHXYGGyfzARFQRccjP9HY/Hu1kVW2ADWGDc7Zyeyf1EyigvQQdkWFmq/E0hgfnmcEUIIcd2pf45iXfASDUy7QA87eJaSvT6jar6wNLfhVt18F7WSiednE+dKAKBF8JMMK/iOR4MpleRk7EuWa+Uxftt6bb8uIADvTu3x7tYFU/Wqci8g0s3tVNn9RSI7ZiWiuMAnRM9Tw4Ip0diS1UMTIssoCnQdp2Ub7Fh0C9VYAXoDPDUxU/st+cRjlHziS66cHcehRTN5LGYmEabTRFzqS+JHw/nNvwfF2veiQMlCmTqO9Nr27bfUt03BZtDTo35trERT1e9xhka8c9NxqtNJwkuvgcOBueXTeL/subnjnOroBhtrBsXiSlEJKWKk3YwwggtJZmEhhHgQZBZRiBzG7YYXRsOuQxDsD+uHnCBkZWet6HrV16HKq2lq50zqBboefY9UxU7DwFqMLdzPY5Mxqct/IqFTV7DbMdWuSdBPi9AHB3uk7YeBM1VhRe9obLEK4aVMNB0VIhNZQghxnxKtMOwL+HQZFDSfYkvlLtTw26Z9WL4jtJ4FPrdeSw5Yj9Dj+CDO2i/ipTMzvvB7PBfe8gGP/s7sq9eR+Na7KGfPAeDduSP+Uyegz5W2jE45mcOm8MdXSeyZl4TTpgJQuI439foEkqu0OYtHJ4QQ4mGiKipb5s7kidPvYTGlkOAK5EC5T6nVuTM6fdqfxfYk7WfImSkcsB0FoJRPUUYVepc6AU94aJwKzt+3kjJ/AfYly1GtVu0DnQ5zk4Z4d30B77atpDyGyLDoE07WDooh8qCWHaJEYx+aDAvGEiJZtcSjbfIPsHoHeJlV5lboDzFAle4Q/mAy1uYqmIdc/UeRkjyQ33/4hvzHplLM/C/1bVNwff0JO/Tt8W/cl/L1sr6k8OEde6l8uAeqHl56ohVnzZHkMoUyu/hYzPqbX95bx07C9dd+dCEhBMyZLvOfd6GqKjtnJ7JtRiIAhWt70/LDULwDJHuPEEI8KBIUIUQOoqrw7nRYuRW8zLBylJViv7WD1HiIqAHNP0lTO3GuBLoc7UuMK47ylpLMKj4ao84zvy5sc74k6c0+oCh4tW5B4A/zc9SEj6qqrB8eR+QhJz7BetpOC8NskZtbIYS4H8u3QK9P4EKUSpdc3/BZ6bfxIQm8/KHlp1DhxdvWgF0YtZpBpyeRqjqIMOfl8xLjecy3VBb8BLdyX7pMUu/3sC9eBoChSGH8P/sYr6aeK1OVXbmdKv8stbL9swRsMQoAucuaqN8viILVJaWoEEKIm106eZ6Lc1+hnmEDGGCvuxF5us+jdrG0p+++5LjCuHMz+THmZwACDf70z9+Dl3K388izsPvUaVK+/o7Ur77Dfer0tf2GEsXx6fYi3l2ez1GZE8WDp7hV/vwmia3TEnA7wCtAR+PBwZRubpGXlOKR9/t+GDxX2175wmJ8T+wGsy88OeKBj8XHz4d63V9DcXVnz5p1GHZOobJhIzXVRbBhEf+sqUVy5b5Ua9cWg+nBBzNFX4wiYEU7fEypDC3ckB25IjHqDMwuPpbc5puzLjn//Avr2A8BCJg5BUPePA98vNmFM0Vh3dDYa6Ugq3Txo36/IPRG+f0shBAPkgRFCJGDTFmoraDV6eCrgSq1jveAyH/ALzd0WnJLffXbsSsOXj02gBOpZ8lnzs1XJT/C13D/KRZVVcU6egLW4WMB8OneFf/PPkZnzFm/hv74KonDq23oDNBqcqik9RZCiPtw7ooWDLFyKwQZ4/ip8hs091ukfViwNjz7DQQXueU8u+Jg6JkpLIhaAUDDwFpMKzaMYGPggxz+TVSnE9ffB3Du2IVzx27sq39GTUgAgwFLv174DR+IzvJopzRWVZWj61PY8kkC8WddAARFGKnTO5BST/mka6WvEEKInE9VVLZ//z3lDvSkijEem9uHPwpNos6rb6E3pi0w3a44+PzyD3xycT42JQUdOjqHt+aDAq8Tarr/bIaq203SW31ImTPv2j5dQADezz2Dd9cXMdWsLi+sxX2LP+ti3dBYzv9pB6BIXW+ajgzBL5dkhxDiShx0Hqll1n2psZ1GsQO1D+q8D/63vsQ/lnKai45IavlXwaTPvDk9vVFP1dbNoXVzjuzeT9SaqVRzfsdjpu3wz3bO7i3CqUK9Kd/mBbws1wPDb7xm3Ph8dNP+O23f43i3y8356R2paDrLsoAyfPVYKgDDI3pTzb/CTeNXU1NJePk1cLnw6tAO7+eezfB/i5wuKdLF8neiiTzkRG+ExkOCefxZv6welhBCPJLkbZ0QOcQPG+H9z7TtD9+EDt4fwz/fg94Izy2GgHuvOlFUhb4nx7AraR/+Bl++KTmZPObw+x6b6naT9HZfUmZ9AYDvkPfxHTU0x03+nN6Wyu9TtJqzT74fRMFqsppVCCEy6sxlqP46RMVD45BNLKrwMoHu89p17ckRUPcDMNx6K3vBfpnXjg9in/UwOnT0y/8qvfN1Q697sFl7lKgonDv34Ni+SwuE2LMXbLabjjFWrULAnOmYKj7+QMf2MDq7W7uGXj7gALTa17XeDODxZ/0wmHLW/YIQQoj7F3s5hiOfvkltFoMRDjqr4tP5G+o9nvaMUL/Eb2P4mY85bT8PQBW/8owp1I/HfT2TSl1VFJLe6E3K3PlaeYxGDfDu1gXvti0f+UBI4RmqqrJ/kZXfPorHmaJisuh48v0gHmvvm+PmW4TICLcbXhwNl2KgTCGYVfczdBtPgl8eqNX3luMTXEm0PtSDRHcyocZgngltSsfwFpS1FM/UcZaqVoFS1eYTeXY8/y76lPIxsyhoOkXBi33gsz6Z2veNjEBFIxw3BTG0fgRuEnkmtCndct8a8JA8fCzug4fR5wonYObUBzbG7CbqqIMlr0dhjVLwCdLTemooEVVlvlgIIbKKBEUIkQP8tg+6jde2ez0LfZ7YDF+/p+14egoUrpumdiaen83y2A0YdQbmFB9HaUux+x6bqqokvvwaqQsWgk6H//SPsPR8/b7bfdjEn3Wx6r0YVAXKt/OlUmeJ+BVCiIxKsUP7IZCQYOeLikN4OWAyOrcKoSXg2QVQoOptz/stYRc9TwwnzpVAkCGAGcVG8GRQzUwfr+p24zpw6FoWCOf2XbiPn7jlOF1QEKYaVTHVqo6pVnXMDeqhMzzaK/iijjj4/eMETm3RViGZfHQ80dWfql39MftK+SkhhBC32rNyDQW3v0pN02WcipFtoUOp8/YgjOZ7T3GpqsqupH18eulbNiVsByC3KYzBET15JrSpx14kq6pKUq/+WkCEXk/gd1/KKlrhUYmXXPw8LJYzO7TsEBFVvWg2JkSyVQpxgzFfw8Y/weINSwbH47V0tPZBo1Hgdeu83fdRP5HoTgYgxhXH55E/8HnkDzxmKUXHsBa0DX2KEFPmZR/MXTAvufuPwZY0iN8XfkOB41MpajqSaf3dTrQSQI+GDYnjImV8ijOp8IBbro2O7TuxfaSVaPafMx19WNjtmnrkxZ11srhHFLYYhdDiRtrNCCeogPyOFkKIrCS/hYXI5g6dhmcGg8MJ7erBRy+cQzfnOVDcUKELVH87Te0suLKCGZe+BmBS4YHUC6zmkfGlzvtGC4gwmQhc8AXeHZ7xSLsPE4dVYVmvKFITFfJWMNN4aLCsyhBCiAxSVXj9Qzh0PJUtlZ/kCd+d2gdPvKYF+pl9bzlHURWmXfyKjy58jorK45bSzCkxjgivvJkyRiUuDufOPTi379SCIHb9gZqcfMtxhrKlMdWsjrlmNUy1qmMoVRKdXl70AyRcdLFtegKHVtlA1RKAPN7Bj5qvB+Ab9mgHigghhLi95Phk9k7vRz3HHDDBCUdp7K2/oUHtJ+55bqQjmsXRa/ghahWn7OcAMOmM9MjTid75uuJnuPX+IqNUVSX5vcGkfDoHdDoC5s+WgAjhMaqqcmiljU0T4rAnqRi9dNR7N5BKnf2k1JgQN1i/B0Z/pW1/1g9Knx4PKbEQXhYqdbvleJfqYl7kYgDGF36PfObcLIxazYb4LfxjO8I/Z48w6tw0mgTV5bnwFjQIrI5RlzmvViz+Fup1fx1VeQ2bNeXaflVRbzpOVdXbbt/rM25oR+Xmzz6Mn83RuBUEGvyZW2I8PoabsxqoNhuJXd8ARcH7pc54t2mZvh/uEZF4ycXi7lpARHgpE899mQvvQJkLEEKIrCZBEUJkY5dioMX7EJ8MtcrDNwNSMXzTHqxRkKcitJ4FaXg5vzl+BwNPfwjAu/le4bnwFh4Zn/vUaZJ6vw+A35hhOTIgQlVU1g6KJea4C99wPW2mhmE0y0SEEEJk1IylsGADTCk+UAuI8AmGdvOgTJvbHh/vSqT3yVH8Er8NgM7hrRldqC/eei+PjEdVFNz/HrlaBmM3zu07cf979JbjdP7+mKo/galmNUy1amCq/gT64PuvRZ7TpMS72fl5Ivu+S8bt1PaVaupDnd6BBBc0Ze3ghBBC3OT80TNEHj9G3lKlyFukQJa+cP178zaCfn6JeqaTAPxm6UO1D8bh4+dzx3OciotNCdv5PuonNsXvwI0bAF+9hTahjXkjzwsU8yno8bFah43GNnkaAP6zp+HT5XmP9yEeTdZoNxtGxXF8k/aSNO/jZp4eG0JIEbmHEuJG569Al9FawH2PVvBitTPwiZbZgKaTbluGcX3cVs47LhNsDKRDWHN89N40DqpNrDOBFbHrWRi1mn9sR1gTt5k1cZvJZQqlfWgzOoa3oKRPkUz5OXR6HRb/zC+3pKoq/9iOsChqNd/GrQBgWrHhFPYucMuxSQOH4z52HH3+fPh/MinTx5YdWWPcLHktisSLboILG3l2TrgERAghxENCgiKEyKaSbNDqAzgbCSUKwLIxKj4b3oYLe8AnBDovA/O9b5wPWI/y+vEhuHHTPrQZ/fJ398j4VLebhJdfQ01OxlS3FpZ+vTzS7sNmx6xEjm1MwWCCtp+E4ZdLVrcKIURG/bYP+s2EJsHr6Z3vY23ns99Cyea3Pf6A9SivHR/EGfsFvHRmxhXuT6fwVvc1BiUxEeeuP7RSGNt3aVkg4uNvOc5QorhWBqNmNUw1q2MsV+aRL4VxN84Uhb0Lktn9RSL2JG01UkQ1L+q9G0jexzwTwCKEEMJzbMl2jF/WpIrpEuyAJLcfZ5WyxHmXxR1aFkvBsuQpXZb8xQqhN2beRL/dZmfHjBHUTZyEwaRwwRnBlSe/on7TJ+94zomUs/wQ/ROLo9cQ5Yy9tr+q3+M8H96KliEN8TVkzkum5DETsY7RXhL5T/sQS49bVyMLkRFH1tv4ZVQcKfEKeiPUfjuQql390RtlUYYQN3K6oPMoiE6AisXh43eAn4aCyw5FGtzx2fKLyIUAvBjeFh/99ewIIaZAuuXuQLfcHThkO86iqNX8GPMzV5wxfHZ5AZ9dXkBF3zJ0DGtJm9DGBBkDMv+H9ABVVTmccoKVMb/wU+xGTtvPX/usb75XaRxU+5ZzHJt/I2XaZwAEfDETfVDQgxputpGaqLD09ShiT7nwz2Ogw+fh+IbKPIEQQjwsJChCiGzI6YLnhsNfxyA8CFZPgrDjc+DPL0Cnh44/QHDhe7Zz0XGFl4/2w6rYqOVfhY+KDPJY2QfblOk4t2xH5+dH4FdzcuSLomMbbWyfmQhA42HB5H1cXuoIIURGnbuiXduCdNF8/1hXbWe1t+44abUoajUDT08iVXUQYc7L5yXG85hvqQz3r6oqSb3fI2XGbG1J0Y0sFkzVqmilMGpVx1SjqtRNTSPFrXJwuZVtMxNJjtRW6IaXNFGvbyCFa3tLuSkhhHhIbV+6ksamS9gVM3oU/A3JlDPsBvduuIL25w+wuX04o5Qh1qsszpCy+BQoQ66SZYkoVRSj+f6mnI7u+RuWdqGB6W/QwVbDyzzW5xPyh95az93mTuGn2E38EPUTu5P3X9sfZgymQ1hzOoW3pLhP4fsaz71YJ0/DOlSrV+/34Vgs77yZqf2JR0NKgpuNY+P5d40NgPBSJpqPCyG8lDmLRybEw2nw57DtHwjwhUWjwDvmL/j7W+3Dph/dNqPuP9Yj7Ezah1Fn4OXcd85yW9ZSnBGFejM4oiebErazKHo1v8RvY5/1MPushxl59hOaBtejY1hz6gVWw6B7+OZCj6WcZmXML6yM/YXjqWeu7ffWe9EosBbtw5rxVFDdW85TEhNJ6KZd13xefwWvpo0f2JizC4dNYVnPKK7868QSoqfD3HAC8srrNyGEeJjIb2UhshlVhbemwM+7weINP02AYu4dsPod7YDG46B4k3u2k+S28tKRflx2RlPSpwhzS4zHrPdMykXn3wdIHjIKAP+PJ2IoUtgj7T5Moo87WTNQW3VUqbMfj7Xzy+IRCSFE9pVqh2eHQFS8yoaqrxHMJQgrDU0/vOVYu+Jg2JmpfBu1HICGgTWZVmw4wcZbX5Ckh23yNFKmzwLAUKTwzVkgHi+Pzii3zemVcMHFmoExXNjrAMA/r4E67wRStqVFal4LIcRDTFXB65954AP7cven8uvDOXHoOFHHDmG/cAhz3CFCHYcoZDiCxZBCGcNeUPZCNNqffWBXzJx0lSLaqyyOoLJ45S9LeMmyFCxTHLP33V/mup1uts6aTI3LQ/EyOYh2hXG8yhzqPNvuP+NU2Wc9xPdRP7EiZgPJivbSWI+eJwNr0DlXaxoF1sakz/xruO3T2ST3HwSA7+ih+Pbvnel9ipzvxG8prB8RizVKQWeA6t0DqPlGAAaT3EcJcTsrtsLkH7TtLwZAsXwqzH9Pu7A93hnyV7nteXMva1kiWgY3JK851z37MemNNA2uR9PgekQ7Y1kWo5XXOJxynJWxWsBBHlMYz4Y9TYewFhT3KeSxnzEjTqWeY2XsRn6K+YXDKSeu7ffSmXkyqAatQhrRJKjOXbMoJfcfhHLmLIYihfH7cOyDGHa24nKorOwTw4W/HHgF6Hh2TjghhaW0kRBCPGx0qvrfpXA5W2JiIoGBgSQkJBAQkD3SWQlxo9HzYcQ80Oth2Vho+dhl+KwKJF2Esu2h0+LbRj3fyKm4eOloP35P3E0uUyg/lf2cAl55PTI+1W4ntlp9XH8fwNyqOUErFua4VaCpCQrfPh9J/FkXEdW8eHZ2uExKCJFGch0W/6Wq0H0izF8L7xT+go8LdgeDCV7bBfkq3XTsBftlXjs+iH3Ww+jQ0Tf/q/TJ1w297v7Sdtt//oX45s+AouA//SMsb79xX+0JOLzGyoZRcTiSVcy+Omq9FUjFTn4YveR6KURWkuuwSIut2y5Qc21BDDqFxO5HCShU4rbHuRwuzh87ReSRQ6ScO4Qp9hAh9kMU0h/GYki57TlOxchZVwmizGVJDSyLOV9ZwkqUpWDZknj7enP235PEz3+Zx01bAdittKLIG58THpH7WhuxzniWxqzjh6if+Dfl5LX9hb3y81x4SzqENU/TSy1Psc2dT1KPtwHwHdQfv7EjHljfImeyJyv8Oimef360AhBSxMjT40Kk5FgOINfhzHPqEjzRHeKToXcHmPI2cGwdfP00GMzQ+8hts+peccRQfX87HKqTVWXnUsmvXIb6V1WVg7ajLIpew48xPxPnSrj2WRW/8nQMa0HrkMYEGB/Moqpz9kv8FLuRlTG/8I/tyLX9Jp2RegHVaB3amKeC6qZpPPa167XnZSD417WY69+aSeJRprhUfnovhmMbUjD56OjweTj5KsrvayGEeBjJkjchspH5a7WACIDpfaBldSfM66gFRISXhWfm3TMgQlVVBp/5iN8Td+Oj92Z+iQ89FhABkDx8LK6/D6ALDyPg8+k5LiBCcausei+G+LMuAvIZaDU5VAIihBDiPsxaoV3fSlqO8VGR3uAGGo25JSDi94TdvHViGHGuBIIM/swoNpIng2red/+u4ydI6NQVFAXvV1/Gp+fr993mo8yepLBxbByHVmmrdfNVMNN8QihBEfLYIYQQ2cWJNd9SR69w3FiH4ncIiAAwmo0ULleCwuVKAG2u7VdcCudOnOHyv4ewnTuEIeYQwSmHiNAfJsCQRDHzYYpxGBKWQgJwGNwr9Jx2FiPMcJGCJitJbj/2lfiEOi93Q6fX4VbdbEnYw/fRP/Fz3O84VRcA3jozzUMa8nx4K2r4V7zvQMn0Svn2B5Je07I2Wvq+g++Y4Q+0f5HznN2VytohsSRdcoMOqrzkR513AjF5P9i/20JkJ6l2rRRjfDLUKAsTXgcUN6x7Tzugxjt3LDP8zZVlOFQnlX3LZzggAkCn01HetxTlfUsxOKInG+O3szB6FZvjd/Jn8gH+TD7A8DNTeTqkAR3DWlAn4AmPX7MuOq6wKnYjK2M28pf14LX9BgzUCXiC1qGNaBZcnyBj2gNylLg4Erv3BMDSp6cERPyHqqj8PCKWYxtSMJig7bQwCYgQQoiHmMxOCpFNrN8Dr1/NIv7BC/BGG2B1PzizBbwCoPMy8PK/ZzvzryxhQdQKdOiYWWwUFfzKeGyMjq3bsU2aCkDAnOkYcue+xxnZz5aPEzi9PRWjj46208KwBD989QGFECK72Po39JkGRp2TTXVexJhqhSINoHa/a8coqsL0S1/z4fk5qKg8ZinF5yXGE+GBgD4lKYn4tp1Q4+Mx1ahGwKdTclww34N0Ya+d1QNjSLzgRqeHmm8EUOO1APRG+W8qhBDZxckLKtVT54EFfGt2y1AbeqOeiFJFiChVBGhxbb+qqFw6fYGLhw+RfOYQ+uhDBKYcoiAHCTLGU9h8DID9rnqEdJ1P3VJFOGe/xMKoVSyMXs1FR+S1th63lKZTeCvahjYh0Hjv5+DMkLr4RxJffg1UFZ+3euD30Ti5jxAZ5kxR+H1qAn99lwxAYAEDzcaEEPGEdxaPTIiHX/+Z8OcRCAmA70eA2QT8+RVcOQA+wVB/8G3PsysOvr7yIwDd8zznsfF46c00D2lA85AGXHHE8GPMOhZGr+ZoyimWxaxnWcx68plz0yHsaTqENaeId0SG+7riiGF13CZWxmxkd/L+a/t16KjpX5nWoY1oHtyAUFNwhtpP6vUeysVLGEqVwG/ciAyPMydSVZXNE+M5uNyGzgAtPwqlUE35nS2EEA8zCYoQIhvYfxw6DgOXG55vDGO6A/u+gZ3TtQPafwNhJe/ZzpaEPQw/8wkAgyPe4qlgz0X3KklJJL6kTQh5d30R77atPNb2w+LQKit75iUB0Gx0CLlK370WrhBCiDu7EAUdh2vXtkX1R5M3dTd4B0H7r0GvBZwluJLofXIUG+K1FNrPh7diTKF+eOvvf+WFqigkvvwa7oOH0efNQ+DSBei8ZEVHRigulR2zEtk5JxFVgYD8BlpMCCV/JfnvKYQQ2c2qhTvpZTlCqmohb/0OHm1bp9eRt2gB8hYtADx1bb+qqFw5H8mFw4dQXG5KN67NL8nbeO/fqWxN/AMVreprkMGfZ8Ka0Sm8FeUsd85g8SCkrlhFQudXrmWa8p8+WQIiRIZd3Gdn7eBY4s5oGVAqdPSlfv8gzBbJDiHEvfywET5brm1/PRgK5gYcVtg4VNtZf7AWGHEbK2I2EO2KI685F82DG2TK+HKZQ3kj7wu8nqcz+62HWRS9muUxG7joiOSTi/P55OJ8qvtXpGNYc1qGNMTP4HvPNmOd8ayO28zKmI3sTPoLBeXaZ9X8KtA6tBEtghuSyxx6X2NPXbaS1G9/AL2ewK/moPPxua/2cprtnyayd4EWyNZsdAglGlmyeERCCCHuRYIihHjInbsCLT+AJBs0qAhffAD6y3thxWvaAQ2GQpnW92znVOo53jg+GDdu2oc24408L3h0nMl9B+I+dRp9oYL4fzLJo20/DC4fdLB+eBwA1bv7U7qZ3OgKIURG2R1asF9kLHQpvY1nGKt90HoWBGqrZFIVO+0Ov8GRlJN46cyMLdyP58Pvfb1LK+uYidiX/QRmM0HLvseQz3OlpB4l8edcrB4Qw6X9DgDKtrLQaHAwXn4yiS+EENlNsg0Cjs6DcIgu8CwF0pCJMD0UVSFFScXqTsGq2LC6U7ApKVjdNqx+KVgrp3DAdoQfD3xIvDvp2nl1Ap7g+fBWNAuu75HAyPtlX7eBhI4vgcuF9wvPETB7Gjq9XPdE+rkcKts/TWDPvCRUBfxyG2g6KpgiteXFoxBp8e8ZeO1qVt1BXeDpGlc/2P6xVmo4qDBUf/u256qqyheRiwDomqs9Jn3mvibR6XRU9CtLRb+yDCvYi/VxW1gcvYZfE3axK2kfu5L2MeTMFFoEP8lz4S1vKQkV70pkXdxvrIzZyNbEP3DjvvZZJd9ytA5tRMuQRuQz5/LIeJWoKBJf7wWA5YO+mKpX9Ui7OcUfXyWxY1YiAI0GB1Gu9b2DWYQQQmQ9CYoQ4iEWnwQt3oeL0VCuCCwdA16uGPj+GXClQsnm8OSIe7aT6Eqm29H3iXcnUcm3HJOKDPDoKhb7T2tImTsfdDoCv5qNPiDttemyA2uMmxW9o3HZVYrU9ab2O4FZPSQhhMjWek+DnYcgIiCRz4u9iC5JgQpd4LHrKUvnXP6eIyknCTeF8HXJyTzuW9pj/aeuWIV1uBaIETDrE5ngyQBVVTm00sbGcXE4rCpe/joaDw2mTHOZDBJCiOzqu7U2OgX/AEC+Jt1QVIXLzmhsbtvVQAYtgEELZLhNYMPV/Tbl+vG2m/anpHksec25eC6sBc+Ft6SgV77M+pHTzbHpV+LbPQ8OB17PtiVg/mx0BimpKNIv8rCDtYNiiT7mBKBsawsNBwTjHSABNkKkhS0VnhsO1hRtEdnwrlc/SL4CWydq203GgfH2wXS7kvZxwHYUb70XncPbPIghX+Ot96J1aGNahzbmkuMKP0b/zMLoVZxIPcuSmLUsiVlLhDkvHcKaE+GVl1Wxm/g9cTdO1XWtjcctpa8FQniitOSNVFUl8Y3eqFHRGB8rh9/wgR5tP7v7e0kyv34YD0CdXoFUej5ryngJIYRIPwmKEOIhZXdA+yFw8BTkC4PVkyDI1w1fPw/xZyCkGDz7LdxjRYpbddPzxHCOpZ4mjymcL0pM8OjqGiUqisTuPQGw9H0Hc33PleR4GLidKj/1jSHpspvgwkZaTgpFb5C0qEIIkVFzVsLnP4FOB9tavoPp/GltBU/LGdeOueS4wvSLXwMwPKKXRwMiXIcOk/hidwB83nkDn25dPNb2oyI1QWHD6FiOrNNebhWo4sXT40MIzCePFkIIkV0pCpzY8CMB4UkkmIsQULgubQ+/wR/J/3i8Lx06fPU++BosWPQ++Bp8rn0NN4XSOqQR9QKrYdA9XMEGjq3biWvVEVJTMbdqTuB389AZ5don0sftVNk1N5GdsxNRXGAJ0dNkeLCkXRciHVQVek6FA6cgTwgsGAbXfh1vHgn2JMhXBco/d8c25kYuBKB9aDNCTFm3+CmvORc983Xhrbwvstd6kEVRq1kRu4FzjktMufjFTceW8SlO69BGtAppRBHviEwbU+r3i7H/uBKMRgK+/lzKTN7g33U21o/UMglXfcWf6j0kIEIIIbITeXoT4iGkKPDqRPh1H/hbYNVEiMgFrB8MJzaAyQLPL7tjTbwbjT/3GZsStuOtM/NliYnkNod5bJyqqpL4ei+UK1EYy5fFb8wwj7X9sNg0IY7zf9ox++loOy0ML39ZtSGEEBm14wD0+kTbXtJxEfnPfw06vRbk5309y9D4c59hU1J4wu8x2oY+dYfW0k+JiyO+TSfU5GRMT9bDf/J4j7X9qDj3RyprBsSSdNmNzgC13wqkWnd/CRgUQohsbv0eaGKcD4B39a4cc5y9FhARZPDHYrBcDWTwwaK34GvwuSWw4abtq8dYrh7je8N+b72XRzMXPgjO3X8Q37w92GyYmzYmaPE36EymrB6WyGaiTzhZOyiGyINadogSTXxoMjQYS8jDFQAkxMNu3hr4ep22TmzBMMgTevWDqCPwx2xtu9lHd1xIdtZ+kZ/jtgDQPc+dAyceJJ1ORxW/8lTxK8+IQr35Oe53FkevIdaZQJPgOrQKaUQJn8KZPg73xUskvd0PAN9hAzBVfDzT+8wuTv6ewpoBMaBChQ6+1Hs3MNvdzwghxKNOgiKEeAgNmQvf/wJGAyweBRWKAweWwJar6d/afgF5HrtnO4uj1/DZ5QUATCk6lAp+ZTw6ztSvv9PqsZtMBHwzF523t0fbz2p/L0lm/0Ir6KDFhFBCi8qklxBCZNSlGOgwDJwu6FHvHG3iXtc+qDcICtW+dtyfyQdYGrMOgFEF3/XYJIPqdpPQ+RXcx0+gL1SQoEVfy8uMdHA7VbbPTGDX3CRQISjCSIuJIeR9XFYNCSFETvDD0jN8GbQJBR1e1V5mU/xWABoEVmdBqY+zdnBZzPnXfuKatkVNSsL0ZD2CfvxOVs2KdFHcKn9+k8TWaQm4HeAVoKPx4GBKN7fICzUh0mn/cXjnY2171CvQoNINH24YCIobSrWEIg3u2Ma8yCUoKNQLqEZJnyKZONqM8dF70zb0KY8uEEgLVVVJ7PE2alwcxicq4zug3wPt/2F27o9UVr4bg+KCMi0sNBoSLL+/hRAiG5KgCCEeMrNWwEQtjoHZ70GTqsCVQ7Csq7azdj94vNM92/kz+QDvn5oAQK98XWkT2tij43SfOUvSO/0B8Bs5OMdFDl/Ya+eXMVo6tDrvBFKsgU8Wj0gIIbIvh1Or93opBsoVVphR6GV0Z+KhQDV48nqWIUVVGH5mKgDPhbXwaDBf8qARONZtAB8fgpb/gD7Mc5mTcrq4M05WfxDL5QMOAMq386XhgCDMvpI9SQghcoIjZ6HQpa/QF1ax5W+EJagQv1yaBECjwNr3ODtncx04SFyTVqjx8Zhq1yRo5SJ0FilzINIu/qyLtUNiuLBXu48qUtebpiND8Msl2SGESK9Eq/ZcmeqAZtXhgxdu+PDMVji8TMtE+NTEO7aR7LbyQ9RPwMOTJeJhoLrdWMd/hGPNz+DlReBXs2URwVWXDzhY1jMal12lWANvmo0JkUyJQgiRTUlQhBAPCVsqfPfL9WjnEd2g69NAagJ81xYcVijaEJpMuGdbFx1X6H5sAA7VSdOgeryXv4dHx6oqCgldX9dWytSqgeX9dz3aflZLuuxixbvRKC4o2dRH6sMJIcR96jsDtv0DgX6wscNkjLs2g9lXK5thuD7RsjRmHX9ZD+GrtzCgwJse6z/l+0XYJmnBFoHzPstxgXyZRVVVDiyzsml8PM4UFa8AHU8ND6FUU3kZJIQQOcnMpQq9c88HwFKjK4muZPYk7wfgyaAaWTiyrOU6cpS4xq1QY2IxVq1C0Jql6P38snpYIptQVZX9C638OjkeV4qKyaLjyfeDeKy9r6wuFiIDVBV6TIJj57USw18PvqE6hqrCz+9p21VehVxl79jO4ug1JLqTKepdkCcDH91r3I1cBw+R2P1tnDt3A+A3ZhjGsp7NNpxdRZ9wsvSNKBxWlYhqXrSaHIbBJL/DhRAiu5KgCCGyUEwCrNoBK7ZoNVxT7Nr+V1rAkJcBRYElXSDmGARGQMcfwHD3f7Yp7lRePfoBV5wxlPYpyrRiw9DrPLuS0/bxpzh/3YLO15eAr+egM+ScFQ7OVIXlvaOxxSiElzTRbHSITFgIIcR9+HI1fLYcdDpY8c5fhO8crH3w9McQWuLaccluK+PPfQZAn/zdyGUOvbWxDHD+tZ/EV3sCYBnQD+/nnvVIuzldSoKb9SPiOLYhBYCIql48PS6EgLzy+CCEEDlJQjIc3/47RUufwmUMwFj2GbYk7sKluinqXZAi3hFZPcQs4TpxkriGLVAir2Cs+DjBPy9HHxCQ1cMS2UTiJRc/D4vlzA5tkieiqhfNxoQQmF/uo4TIqE9/hCW/gskIP4yA0MAbPjy4FM7tBJMFGo68YxuKqvDF5cUAvJq7g8fnS7Mb1W7HOu5DrOMng9OJzt8fvwkj8XnTs4vrsqv4cy4Wd79CSrxCnsfMtJsehtFL5oiFECI7k7txIR6ws5Gwciss3wK//w1u9/XPCueBF56CoS9rL4/4dQwc+QmMXvD8j+Abfte2VVWl36lx/G37lxBjEPNKfoifwdej43cdPETyoBEA+E0Zj7FYUY+2n5VUVWXDyDgiDzrxCdLTZloYZsuj/YAkhBD3Y/dh6KklaGDMyzbqHn0B3E4o01ZbwXOD6Re/JtIZTWGv/Lyau6NH+leuXCG+bSdIScH89FP4jRl275MEZ3elsmZQLMmRbvRGqP1OIFW7+kuKUCGEyIHmrYHngucBYKjwHJgtbIzfBkCjwFpZObQs4z57TguIuHgJQ7kyBK9fgT44OKuHJbIBVVU5uNLGpvFxOJJVjF466r0bSKXOfuj0ch8lREbtPgz9Z2rbk96EGuVu+NDlgA0DtO3a/cE/7x3b2ZSwg1P2cwQY/OgQ1jzzBpwNOLZuJ7HH27j/PQqAV+sW+H86BUOB/Fk8sodD8hU3i3tcwRqlEFbCRPtZYVI+UgghcgAJihAik6kqHDqtBUGs2Ap/Hrn588eLQdu60KYOVCh+NRgC4Mhq2DxC2271GeR/4p59Tbv0FStiN2DUGZhTfCwFvfJ58kdBdThIeLE72O2YWzTDp0c3j7af1f78JplDP9nQGaDV5FCCCsivSCGEyKjIWHh2KDic0LoOfBD2Ppw8rE1Stfn8hgsenEm9wJzL3wMwvGBvvPTm++5fdTqJ7/gSytlzGEoUJ/C7L3NUZqPM4HaqbJ2ewJ55SaBCcGEjLSaGkqfc/f//EEII8fBxu2H+8iS2FV4CgK5yNxRVYXPCTgAaBtXMyuFlCffFS1pAxNlzGEqWIPiXVejD7744QQgAa7Sb9SNjObE5FYC8Fcw8PSaEkCKme5wphLib2EToNAKcLnimPrzT/j8H/DEbYk+AX26o895d25p7eSEAz4e3wtfwaJYEVBISSB44nJTP5gKgz50L/xmT8WrfVjLlXmWL0wIiEs67CYow8uyccHwCZS5BCCFyAnnjJ0QmUBTYeUgri7F8Cxy/cP0znQ7qPKYFQrSuA0VvF7cQcxyWvKBFVFR7EyrfO/hgXdxvTDo/G4CxhfpTM6Cyh36a66wjx+Ha9ze60BAC5n6ao26Wz+xI5beP4gFo0D+IgtW9s3ZAQgiRjTld2sTVhSgoVRAWPLcG3eJPtQ+fmQ++YTcdP/rcdByqk3oB1WgSVMcjY0jqOwDnb1vR+fsTtOIH9EFBHmk3p4o56WTNgBgiDzkBeLyDLw3eC5KMSUIIkYOt3glPuBbja7ChhJRCH1GDg7ajXHHG4Ku3UN2/4gMdj+vfI9jXbsBU8TFM1auiszzYF1buyEjiGrXAfeIkhiKFCd64CkOe3A90DCJ7OvKzjV9Gx5ESr2hZtt6+mmXLmHPmTITICooCXcfBmctQLD/Mff+m2HpITYDNV8tlNBwJXn53bOuI7SRbEvegR0+33B0yd+APqdQVq0h6612Ui5cA8H71Zfw/HCPZkG5gT1ZY+kYUMSdc+OU20GFuOH7hEhAhhBA5hQRFCOEhdgds/ksLgli5TVsh+39eZmhcBdrUhVa1INfd7jXtyfBdO+3GPqKmVnP9Hg7bjvPOCe0hoFuuZ3kxV9v7+llux7F9J9YJUwAImD0tR00OxZ9z8VP/GFQFyrW1UPnFOz9ECSGEuLf3ZsLv+8HfAisGX8Gy/GpwX83eUPypm47dkrCHtXG/YcDAiIK9PRJwl/Ll16TM0AIFA76di7FM6ftuM6dSVZW/F1vZPCkeV6qKd6CepiODKdH40Vw5JYQQj5IZS2FoHq10hr5KN9Dp+OVq6Yy6gU94JHNTWqlOJ/GtOuI+fkLbYTRirFwRc52amOrUxFy7BvpcuTKtfyUmhvgmrXH/exR9RAGCN62WFOLinlIS3GwcE8+/a20A5Cpt4ulxIYSXlCxbQnjCRz/A6h3avOqikRD43+m63yeALQbCSkPlV2/bxv99EbkIgGbB9YjwunOJjZzIfekySe/0w750BQCGEsUJmDMNc4N6WTyyh4szVWHZ29FaWeVgPR3mhBOYX16fCSFETiK/1YW4D4lWWLtLywixdpf2/f8F+kHzGlpGiKbVtBdD96SqsPxVuHIA/PJApyVgvPvDdIwzjm5H38empFAn4AlGFOp9fz/UbSjJySS+9BooCt5dnse7fVuP95FVHDaF5b2iSU1QyPOYmSZDQ3JUBgwhhHjQvvkZpi/VtucPVCnxx6tgvQK5ykOTCTcd61JdjDj7MQAv536GUpai992/Y+duEt/sA4DvqCF4t25x323mVLY4N+uHx3F8UwoAhWp48fS4UPxyyUoYIYTI6Q6chDMHj1G32lZUnR5dxS4AbIrfAUDDwFoPdDwpX3yF+/gJdAEB6Pz9UC5cxLX7D1y7/4Ap0wEwlCyhBUhcDZQwFC/mkWc3JT6euKfa4PrnIPq8ebSAiMKF7rtdkbOd+C2F9cNjsUYr6AxQvUcANV8PwGCS+QQhPOH3/TBEq/DAJ72gYon/HJBwDnZ8rG0/NREMd37NEetMYGn0WgC653nO84N9SKmqSsoXX5HcfzBqQgIYjVje64Pf0A/Q+fhk9fAeKm6nysp3Yzj/hx2zn45nZ4cTWkzKHwkhRE4jQRFCpFNkrJYJYvkW2LRXq5X+f3lDoU0dLSNEg4pgTs+9kz0Jfh0DBxaB3gidFkPA7WprXOdQnLx2fBDnHJco7JWfWcXHYNR5/p91cv9BuE+cRB9RAP/pH3m8/ayiKiprB8USfcyJb5ietp+EYfSSCQwhhMiovUfhjauXiSEvQVvv2XBkFRjM0GEBmG4uTfTtlRX8m3KSIEMAffPffWVPWrgvXiLhmc7gcOD1TGt8B79/323mVKe3p7J2UAzWaC3Nc90+gTzxkj86vVwHhRDiUTDjR3g5z3wAdMWbQkA+Yp3x/GU9CEDDoJoPbCyq1Yp15HgA/MYNx+et11DOnsOxdQfOrdtxbt2B68Ah3EeP4T56jNQvvwZAnyscU52amOrUwlynJsaKj6Mzpe8FhpKURHyzdrj27kMXHkbwxlUYixfz+M8ocg57ssLmifEcWKatigkpYuTpcSHkfcwri0cmRM4RGQudR4LbDS8+Bd1b3uagjUPBlQqF60HpVndtb0HUclJVB49ZSlHNr0LmDPoh4zp6jMTX3sH521YAjE9UJmDup5gqPJbFI3v4KG6VNQNjOLUlFaO3jmdmhpO7rGT8EUKInEiCIoRIgxMXtCCIFVth+wEtocP/lYzQskG0rQtVS4M+vaW3E87BjmnwxxywJ2r7mn8Mhe5eU11VVYacmczOpH346S3MK/khwcbAdHZ+b/Y1P5My+0sAAufPQh/o+T6yys45iRz7JQWDCdp8HCYrY4UQ4j5Ex0P7IZDqgKdrwPCW/8LsvtqHT02API/fdHycK4EPz88B4L0Cr933NUxNTSXhmc4oly5jLF+WgK/moEv3RTnnczlUtnwSz59fJQMQUtRIy0mh5Cotkz5CCPGoiE2E79a7OVTxK21HZa3M1eaEnaiolLWUIK8580pV/Jdt2mcolyMxFCmMT49u6HQ6DIUK4lOoID4vaCt6lbg4nNt3XQ+U2P0nypUo7D+uxP7jSq0hiwVzjarXAiVMNaqi9/e/Y7+q1Up8i/Y4d+1BFxJC8C+rpOSWuKuzu1JZOySWpEtu0METL/lT+50ATN5yzymEp7jd8OJouBQDZQvDzL5wS1KgS/thnxYgR9MPb3PAdU7FxfxILZXhq3k65vjssKrTie3Dj0keNQHsdrBY8BszDEuvN9EZZN7zv1RVZcOoOI6sS0FvhDYfh1KgsgS5CSFETiVBEULcgapqNVbnroIDp27+rGppLQiiTR0oUziDHVzcC9sma5khFJe2L6wU1BsIFV+65+nzryxhQdQKdOiYWXw0JX2KZHAgd6ZER5P46lsAWPr0xNywgcf7yCrHN6ewbYYWhNJ4SDD5KsoNrxBCZJTLBc+PhLORUDw/fDvQgf77F8CZAsUaQ41bSztNufAF8e5ESvsU5cVcbe6rf1VVSXzrXe2lRnAwgct/QO/334KzIvq4k9XvxxB1VEtzVbGTH/X7BWLykYl8IYR4lHyxCmpbfqGA1wVUnxB0pVsDsCl+OwANAx9clgglNhbrxKkA+I4eis58+yA9fXAwXi2a4dWiGaAFQzr//Avntp1XAyV2oMbF4dj0G45Nv109SY+x4uPXS27Urokhn1ZHXk1JIb7Nczi3bEcXGEjw+hWYHi+f+T+wyHacKQrHNqZwcIWVMzvsAAQWMPD02FAKVJF5BCE8bfRXWmZeizcsGgm+t6vy8PN72sRt+eegQLW7trcmbjOXnVGEm0JoHdI4cwb9kHDu/oPEHm/j+vsAAOamjQmY9YmUhLoDVVX57aME/llqRaeHFpNCKVJHyooIIUROJkERQtzBx4ug/0xt22DQymG0rQuta0OBjC6aURQ4uhq2T4FTv17fX+RJqN0PSjydplQTWxL2MPzMJwAMjniLRkGer/eqqiqJb/bRVuyUKYXfuBEe7yOrxJxwsmZADAAVn/fjsfby4kwIIe7HwDnaxJWvD/w4FoJ2D9eC/3xC4Jmvbrm2HbGd5KvIHwEYUbDPfZd+Spkxi9R534BeT+CirzEWK3pf7eU0qqqy74dkfvsoAZddxSdYT7PRIRRrIBM+QgjxqHG54NNlMCH3fAB0j3cGoxdu1c2vCTsBaJwJz5d3Yp04FTUhAePj5fF+vkOaz9N5e2OuXRNz7Zr4vv8uqqLg/vfItQAJ59YduE+dxrV3H669+0iZ9hkAhqJFMNWpifvceZybf0fn50fQumWYqlTKrB9RZEOqqnLhLwcHl1s58rMNh/V6utAKHX2p3z8Is0WCSoXwtPV7YMzVBBCz+t9hIdrx9XBiAxhM0GTcPduce3kRAC/legYvfc7MjqckJ2MdOhrbtM9AUdCFhuD/yYd4d875mTHux845ifzxVRIAT40MptRTliwekRBCiMwmQRFC3Ma6XfD+LG17yEvQpyME3znr5r05bLD/G9g+FaKPaPv0Ri2iuXZfyFc5zU2dSj3HG8cH48ZN+9BmvJHnhfsY2J2lLliIfclyMBoJ/PYLdD4548VJaqLC8l7ROKwqBZ7w4sn3g7J6SEIIka19/wtMWahtzxsI5fgNtk7UdrT5HALy3XS8qqqMOPsJbtw8HVyfuoFV76t/x+bfSHp3AAB+H47Fq/GT99VeTpOaqLB2cAwnNqcCULi2N0+PDcE3TFKnCiHEo2jFNkiKjaNtyWXajqulM/YmHyDenUSQwZ9KfuUeyFjcFy5qL3AAv/Ej76vslU6vx1i2DMayZeC1V66179y241qghGv/P7hPnsJ98moqSB8fglYvwVzj7quMxaMj4YKLgyutHFppI/6c69r+gPwGyrX2pVxrX4IiZCpViMxw/gp0Ga0lgHitNbzQ5DYHKW5Y9562Xf1tCLl7MPyfyQfYaz2AWWeiS652nh/0Q8C+bgOJb/RGOXMWAO8XO+E/ZTz68PAsHtnDbe+3SWybrmUQfvKDIB5rJwvmhBDiUSB38kL8x5Gz0HmUltShW3MY8cpdS9PdXXIk7PoUds8Em5aZAO9AeOJ1qPEOBBZIV3OJrmS6HX2feHcSlX3LM6nIgEyJ+HWfO0/S2/0A8B0+EFPlih7vIysobpVV78cQd8aFf14DraeEYjBJxLQQQmTU/uPQY5K2PeAFaF8tHj7tos1kVX4Fyj1zyzkb4rfye+JuzDoTQyPeua/+3afPEN+hC7jdeL/YCcu7b99XezlN1BEHK/rEEH/OhcEM9fsGUamzHzq9XPuEEOJRNX0JdAr/AW+9HXI/Bnm1DAkb43cAUD+wxn1ncEor66jxkJqKqW4tzE8/5fH2DfnzYejYHu+O7QFQEhNx7tyDc+t2XAcOYen9FuZ6dTzer8heHDaFo+u18hjn9tiv7TdZdJR6ykK5NhYKVPGS+ychMpHzajnG6ASoVAKm3umxbt83EPm3Nrdaf/A92/3iapaINqFNCDeFeHDEWU+JiiLp3QGkLtBWKOgLFyJg1id4Nc3ZJUI84cByK5smxANQ660AqnS5n5WQQgghshMJihDiBvFJ0HYQJCRD7cfg03czGBAReRB2TIX934Lr6kN1UGGo1Ud7SeSV/pstt+qm54nhHEs9TR5TOHNLjMdb7/n6laqikNj1ddSEBEw1quE7oJ/H+8gqWz5J4PTWVIzeOtpND8MSIqtkhRAio2ISoP0QSLHDU9Vg1KvA0rcg4RyEFIPmn9xyjl1xMPKstv+1PM9TyDt/hvtXrVbi23ZCjYnFWKUSAXOmS2rQGxz6ycr6kXG4UlUC8hloPTWMPOVyZrpYIYQQafPXUdjyN3xYaZ62o3K3aw+8GxO2A2RKacbbcR05SsoXWo50v/EjH8g1XB8QgNdTjfB6qlGm9yUebqqicm6PnQMrrBzbkIIz5Wp5DB0UrO5Fuda+lGjsIyUyhHhABs2B7Qcg0A8WjgTv2013OlNg4xBtu/5gsITetc2LjiusjtsEQPfcHT084qyjqiqp3/5A0rsfoMbEgl6PpU9P/EYNQefrm9XDe+gd3WDj52GxAFR5yY+abwZk8YiEEEI8SBIUIcRVbjc8PwqOnoOIXLB4FHil592BqsLJjbBtMhxbd31/gepQux+UaQeGjP+TG3/uMzYlbMdbZ+bLEhPJbQ7LcFt3kzL9MxybfgOLhYCv56Az5oxfE4fXWNnzpVYnrtnoEHKVlhdDQgiRUW63llXp1CUomg8WDAXDgQXwz/egN8CzC8Dr1vSTcy8v5LT9ArlNYbyT76UM96+qKgmvvoVr/z/oc4UTtOz7HFPm6X65nSqbJ8Wz7/tkQCuX0WJiCD5BEggohBCPuulLoazlIFX992jlHCu8CMAlxxUO2Y6hQ0eDwOoPZCzJQ0eD2425VXPMtWs+kD6FiDvr5OAKGwdXWkm65L62P7iQkXKtfSnb2kJA3pwxByJEdrFi6/VyjF98AMXuFDe//WNIvACBBaH6vTMOfhW5FJfqpqZ/Jcr7lvLYeLOS+9RpEt/ojWP9RgCMFR4j4PMZmKpWyeKRZQ+nt6Wy6r0YVAUee8aXBu8FycIKIYR4xMidvhBXDZgN63eDjxcsGwu505pVzeXQXgJtm6KlcANttU2ZdlowRMH7X2mzOHoNn11eAMCUokOp4Ffmvtu8Hdfhf0kaMBwA/4/GYixRPFP6edAiDzv4eVgcANVe9af005YsHpEQQmRvQ+bCL3+AxRuWjoEQ92n46S3twwbDIOLWFyqRjmg+uTgfgIERb+JnyPgqFtukqdgXLgWjkcAl32KISF85qpwq6bKLlf1iuLTfAUDNNwKo+WYAeoNM9AghxKPuShx8vxHGFLiaJaJUS/DV6o1vjt8JQCXfcoSagjN9LM4/9mJfvAx0OvzGDsv0/sSjzZ6kcORnGwdXWLnwl+Pafi9/HaWaWSjX2pd8Fc3yYkyILHDyInQbr2336QDt6t3hQGsUbLl6YOOxYPK+a7sp7lQWRK0A4NUckCVCdbmwTftMCyi02cDbG7/hA7H064XOZMrq4WULF/baWd47GsUFJZv60GR4sPzeF0KIR5AERQgBfLXuelTyvIFQqWQaTrLFwp7ZsGs6JF3S9pl9tfIYNXtrqcM94M/kA7x/agIAvfJ1pU1o5tSGU51OErr0gNRUzM2a4PNG90zp50GzxrhZ3isaV6pKkbre1OkVmNVDEkKIbG3RJpj0nbY99wN4vIgbvnwJ7IlaIGC9Qbc9b8L5WVgVG5V8y9I+tFmG+7evXU/ywKsBfNM/wly3dobbyknO7k5lVf8YbLEKXgE6mo8LpVgDyZ4hhBBC8/lPoLicdM33rbajUrdrn21M2AZAw6AHk7EhedAIALxf7ITpsfIPpE/xaFHcKmd2pnJwhY3jG1Nw2bXyGDo9FKrlTfnWvhRr6I3JW8pjCJFVUu3w3HCthHHNcjDhjbsc/OtosCdBvsrweOd7tv1jzM/EuRKIMOflqeC6nht0FnDu+5vE7j1x/fkXAKYGdQmYMz3HLGR7EK786+DHnlHX5oZbTAiVhQNCCPGIkqAI8cjbcQDe+EjbHvISdHjyHifEntBStu39Epw2bZ9/PqjxDlR9HXw8t7LmouMK3Y8NwKE6aRZcj/fy9/BY2/9lHT0B159/oQsJIeCLmTkiWlZVVNYMiCHpkpvgQkZaTJSbXiGEuB//nIBXJ2rb/TvBcw2B3ybCmS3g5Q/tv7ltqah9yYdYFL0agJGF3kWvy9gEtOvoMRKe7waqis9r3bDkkAC++6GqKnvmJbHl4wRUBcJLmWgzNYyggnKbL4QQQuN0wWfLoVnwOkINkeCbC0o+DYBdcbAl4Q8AGgXdf5bDe7Fv3IxjwyYwmfAbNSTT+xOPlpgTTg6utHLoJxvJV66XxwgtZqRcG1/KtvTFL5eUFBPiYdDvU9h7FEID4fsRYLrT40vMMdj9mbbd9EPQ3/1ZUlVVvohcBEC33B0w6B7uf/OqoqBERaFcvIxy6TLui5dQLl1GuXgJ9/mLONauB7cbXVAQ/h+NxfuVl3LEnO2DYotzs6xnNPYklQJVvGg9JRSDSf77CSHEo0pmS8Uj7fwVaD8UHE5oUweGd7vDgaoKZ7fDtsnw73Lte4Dcj2slMh7rBEazR8eW4k7l1aMfcMUZQxmfYkwrOjzDL5HuxblrD9ZxWmRIwGdTMeTLmyn9PGh75idxZocdo7eONtPC8A6QVSBCCJFRcUnaNdOWCo2qwNgewIU/YJOWtYEW0yGk6C3nqarK0DNTAWgf2owqfhlbEaokJhLfthNqQgKm2jXxnz45oz9KjmFPVlg3JJZjv6QAULaVhSbDgjH5yPVOCCHEdUt+hUsx8HqFq6UzKnYBg5Zue3fSfqyKjVymUMpb0pIyMeNUVSV54AgAfN7sjqFwoUztTzwaUhLc/LvWxsEVNi7/c708hnegntLNLZRv40vuciZ5iSjEQ+S7DTBrhVZ9+OvBEJHrLgevHwiKC0o8DUUb3rPtLYl7OJJyEl+9hefDW3lu0Omkut0oUdHXAxyuftW+vyH44XIkuN13bcurQzv8p32EIU/uBzT6nEFVVNYOiiUpUlss125GmDwrCyHEI06CIsQjy5YKzwyByFh4rKh2E35LsLHbBYd+hO1T4Pyu6/tLPA21+0LRRtodvIepqkq/U+P42/YvIcYg5pX8EF+DxeP9AKhWq1Y2w+3Gu3NHvDu2z5R+HrRL/9jZOi0BgIYDgggrJjX2hBAio9xueHE0nLgAhfPA98PBqFhh8QvaBFW5DlDxpdueuyxmPXutB7DofRgY8WaG+lcVhYQXu+M+fAR9/nwELvkWndmzwYjZTcwJJyv6RBN7yoXeCA0HBFPhOV+Z8BdCCHGLGUshzBRF08CftB2Vul77bGP8dgCeDKyRaUH4/2dfthLXnj/R+friN/i9TO1L5GyKS+XU1lQOrrRyYnMKbqe2X2eAonW9KdfGl6L1fTCa5b5IiIfNv2fgjavx7YO6QLPqdzn47HY4tFSrfdN0Upran3tZq4/cMaw5AUa/+xztrVS3G+VK1G2DHdxXsz0oFy+hRF65Z7DDNTod+lzh6PPlRZ8vL4a8edDny4M+bx6Mj5fHXKuGx3+OR8Guz5M4tSUVo5eO1lNC8fKXgAghhHjUSVCEeCSpKnSfCH8egbBAWDYO/P4bc5CaAHPrQeTf2vcGs7aipua7kLtcpo5v2qWvWBG7AaPOwOfFxxHhlXmZG5LeH4L72HH0+fPhPyNnrLp1WBVWvx+L4oKST/nwWHvfrB6SEEJkayPmwbpd4OMFS8doKU5Z0RdijkJAfmg967ZBgla3jbHnZgDwTr6XyGu+2xKgO7OOGIvjpzXg5UXQ8h8e+RUy/66z8fPQWJwpKn65DbSeEkq+Cl5ZPSwhhBAPod2HYech6BuxAAMuyP8E5L6etWlTghYU0TCTS2eoLhfJg0YAYOn3DvpcGbsnEI+2qCMODqy0cniVDVuMcm1/eCkT5dv6Urq5Bd/QhztVvhCPMmsKdByufX2yEgzvepeDVRV+vhpAV7nbTdeuOzmZeo6NV69rr+TpmKExKleu4Nz9p5bJ4U7BDopy74YA9PrrwQ5582C4Guhw/Xvtqz53LnRGeU3jSWd3p7LtU22xXKMhQYSXerQXVQghhNDI1VY8kiYugIWbwGiARaOgyH9jDlQVVr6hBUT4BEP1t6F6T/DL/Jcw6+J+Y9L52QCMLdSfGgGVMq0v+8+/kDLzcwAC5s9GHxycaX09SL+MjSP+nAv/vAaeGh4iq2aFEOI+/Pg7jPtG2579HlQsARxeAX/M0QIh2n8NlpDbnvvppW+47IymoFc+XsvzfIb6T/1xBdbREwEI+HwGpicqZ6idnMDtVPn943j+/CoZgIhqXrT8MFQm/4UQQtzR9KUAKu8UnQcqUOl6zcjTqec5kXoWo85AvYBqmTqO1K8W4D5yDF1oCJZ+vTK1L5Gz2GLdHF5t4+BKK1cOO6/t9wnRU7aFhXJtfMlVWl52CfGwU1XoORUOnoI8IfDtUDDc7THm0DItU4TJBxqOSlMfX15eBEDjoNoU9Y5I/xitVmIq1Ua5eOnuB+r16HPnuhbgYMib+z9ZHq4GO+QKl2CHLJAc5WbVezGoCpRv68tj7TyfMUQIIUT2JFdl8chZuQ2GzNW2p/WB+hVvc9C+b+CfH0BvgC5rIOLBpCk7bDvOOydGAtAt17O8mKttpvWlxMaS2O0NAHzeeQOvxk9mWl8P0qFVVg6ttKHTQ4uJoXgHSmo0IYTIqEOnods4bbt3B3ihCZB0GZZ313bW6nfHuq7n7JeYdek7AIZFvIO3Pv2ZDJz/HCDxpdcAsLz7Nj5dMhZYkRNYo9381D+G83/YAaj2qj913glEb5TAPyGEELd3KQYWb4ZKfn9RUP0bjF7w+PVr6ab4HQBU9auQKSnG/09NSSF5hHZD4Tv4ffQBAZnWl8gZ3E6Vk7+lcHCljZO/p6C4tP16IxRr4EP5tr4Uru2NwST3QUJkF1+ugW9+1koXfzcc8oTe5WC3EzYM0LZr9YOAfPdsP8GVxMLo1QC8mjtjWSJss79EuXgJXXAwpjo1rwc73JjVIV9eLdjhrhEdIqsoLpVV78Vgi1EIK2Gi0eCgrB6SEEKIh4gERYhHyoGT0GW0Fp38Zlt4vfVtDoo5Dqt6attPjnxgAREHrEd46Wh/bEoKdQKeYESh3pnaX+Jb76JcuoyhVAn8J6Qt4vphF3/WxS+j4wCo+UYABSpLKnEhhMiohGRoPwSSU6BBRZj4BtoFdFk3sEVDnorQeMwdzx99djp21UHtgCo0C66f7v5Vp5OE9i+iWq2YGzXAb9Kd+8rpLuy1s7JfNNYoBbOvjmZjQijZ5L91v4QQQoibzV4BThcMKDtf21G6rZYJ8ar/l85oFFQzU8dhm/k5yvkL6CMKYHmze6b2JbIvVVWJPOTk4Aor/66xkRJ/PT197nJXy2M8bcEnSF5ECpHd7D8OvT7Wtke/eocFajf6Yw7EHAPfXFD3/TT18UPUKmxKCqV8ilI3oGq6x6impGCbNBUA/w/H4PPqy+luQ2S9bTMSOP+HHZNFR+spoZh8ZLGcEEKI6yQoQjwyYhKg7aDrL3emvnObg9xOWNwZHMlQuB7UG/BAxrY5fgevHx+CVbFRxqcYs4qPwajLvH+eqQuXYF+4FAwGAr+Zi86S/V+suJ0qqz6IwWFVKVDFixqvyeojIYTIKEWBl8bC0XMQkQu+HwEmI7BzBhxbB0Zv6LBAW3F6G9sT97I6bjN69Iws2CdDZYzsS5fjPnYcfa5wAhd+9UimHVVVlb8WJPPrR/EoLggtZqTNx2GEFDFl9dCEEEI85OwOmL0SzDo7rfwWgAutJvtVNncK2xP3AtAoqHamjUNJSMA67iMA/EYORuftnWl9iewpOcrN4VVWDq60EX3senkM33A9ZVv5Uq6NL2HF5N5HiOwq0Qodh0GqA56uAe93vscJqYmwWcuiS8MR4OV/zz7cqpt5kYsBLUtERp4/Uz6fhxJ5BX2hgng/whkKs7MTv6Wwa24SAE1HhshzsxBCiFs8erPL4pHkdMFzw+HUJSiSFxaOvPpy5782DYcLe8A7CJ79Viufkcm+j1rJB6cm4cZNnYAn+Lz4+ExNXaokJJDUW4uy9h3yPqaqVTKtrwdp24wELv/jwCtAR/MJIZJOXAgh7sOYr2HVdvAyw5LRkCsYiDwIP7+nHdD0Q8hV9rbnulU3w85oK2y65GpLGUvxDI3BNm0WAD5v9UAferfcqjmTw6awYWQch1fbACjVzIemo0IwW2SlixBCiHtbuAmuxMFrRX/CyxULAfmhWONrn29L/BO76qCAOQ8lvAtn2jhsH32CGhuLoWxpvF+615sw8ahw2VWOb07h4Aorp7elol5NCmEwQ4lGFsq1sVCohrc81wuRzakqdJ8Ixy9Awdzw1SCtfMZdbZkI1igILQlV0pZdaH3cFs45LhFsDOSZsKbpH2dqKtaJ2jOs74C+6MzmdLchslbCRRdrB8YCUPF5P0o/nf0XAAohhPA8CYoQj4S+M2DzX+DnA8vHQVjQbQ46uRm2TNC223wOgRGZOiZVVfnowud8fHEeAM+GPs2HRQZi1mduFKt1+FiUyCsYSpbAd2D/TO3rQTmzM5XdX16PBA7IK7/ahBAio1Zug5HapYmZfeGJ0oDLrmVSctmhxNNQvecdz/8uaiWHU44TZPCnf/7XMjQG554/ce7YBSYTPq+/mqE2srO4M05W9Ikh+pgTnQEa9A+i8ot+GVrxJIQQ4tGjqjB9qbbdr9Q8sAIVX7op6H9Twg4AGgXVyrTri/tyJNYpMwDwGztc6q8/glRVxRqlEHvaSdxp17WvF/bZsSeq147LV9FMuTa+lGpqwTtAAkCFyClmLIWlv2kL034YAaGB9zgh4Txsn6JtPzURDGmbI/0ichEAL4S3wUef/oxEKfO+Qbl4CX3+fPh065Lu80XWcjtVVvWPITVRIU95Mw3eC8rqIQkhhHhIyZtDkePNXgkzl4FOB18PgfJFb3OQLQaWdtFmj6p0h/LPZuqYHIqT906NZ0nMWgD65OtG//w9Mv1lh3P/P9imaytv/WdMRud1+7Tn2Ykt1s2agTGgwuMdfKXGuhBC3Idf/4Iuo7Xtnu2g69NXP/hlMET+DZYwaPeldlG9jXhXIhPPzwagX/4ehJjuNet1e7ZPZgLg3elZDHlyZ6iN7Or4phTWDIrBkaziG6an1eQwClTJ/tdrIYQQD872A7D3KBT2vUgx2zptZ6Wu1z5XVZWN8dsBaBhUK9PGYR0zEWw2TNWr4tWmZab1I7Kew6oQe9pF3BknsadcxJ1xEXfaSexpF06bettz/PMYKNfal7KtLYQUlhTnQuQ0uw7Be59p2x++CdVvn2jwZpuGgSsVCtWBMm3S1M8B6xF2JP2FUWfg5dzt0z1O1eHAOn4ycDVLRA6YK33U/PZRPJf+duAdoKfV5FCMZllMIIQQ4vYkKELkaL/vh14fa9ujX4U2dW5zkKrC8h6QeEFLzdb840wdU6IrmdeOD2JL4h4MGJhQ+H0652qdqX0CqIpCUs++oCh4dWiHV5OGmd5nZlNVlXVDYrFGKYQUNfLk+0FZPSQhhMi2fvwdXhgFDic0qgKT3776wYmNsE2bJKLdl+Cf545tTL3wJXGuBEr6FKFLrnYZGof70mVSF/0IgKX3WxlqIztS3Crbpidcq4Gav5KZVlPC8AuXVbVCCCHSZ9oS7eukmt+gcyhQsDaElbz2+dGUU1xwXMZbZ6a2f+aUU3SdPEXK7C8B8Jsw8pHOdnRwpZUj62z4hhnwy20gII8BvzwG/HMb8c9jwMsve2RGUFwqCRdc14Iebsz+YI1S7niezgCB+Y0EFzISUsRISGETYcVN5KtoRqd/dP9eCJGTxSRApxFaOeNn6sPbaYlVuPw3/DVf22764R0D8f9r7tUsES2DG5LPnCvdY035agHKufPo8+bBp3vXdJ8vstaRn23sXZAMwNPjQgjML6+7hBBC3JlcJUSOdfoSdBgKLjd0bAgDXrzDgX98DoeXaSnZOn4PZt9MG9NFxxVeOtKXwykn8NVbmF18DE8G1cy0/m6U+s33OLftQOfri/+UCQ+kz8z213fJnPw9FYMZWn0Yiskne0wmCSHEw2b2Snh7KigKtK0LC4ZqKU6xxcKPL2sHVX0dSre6YxvHUk4z/4r2FmZkwT6Y9Bm7zUyZNRecTky1amCqUilDbWQ3tlg3q9+P4cxOOwCVX/Sjfr8gDCZ5USCEECJ9zl2BZVsAVFr4zAcHULnbTcdsStCyRNQKqIKPIf1pxtPCOmwMuFyYmzbG3KBepvSRHVz62866obGo7jsfY/bV4ZfbgH9uA/55jFe/an+0/Ua8/HUPJLBEVVVsMTeWu9CyP8SddhF/zoXiuvO5lhA9IUVMBBcyElxYC34ILmwkKMIo9zRCPEIUBV4eB2cjoXh+mPt+GuMb1n+gLVwr1wEiaqSpryhnLCtiNgDwap7n0j1W1enEdjVLhOW9Pui8M+eaKDJH3BknPw+LBaDqK/4Ua+CTxSMSQgjxsJOgCJEjJdug3WCIToDKJeGLD+5wA37lMKzto203GQ/5KmfamA7ZjtPlSF8uO6PIZQrlm5KTKe9bKtP6u5ESF0fSe4MB8B0+EEOB/A+k38x05V8Hv30UD0D9/kGElzJn7YCEECIbUlUY8xWMmKd9370lzOwLBsPVD1e+fj2TUrPJd2lHZcTZj3Gpbp4Kqku9wGoZG4/dTsqsLwCw9H4zQ21kN5f+sbPy3RiSLrsx+uhoOjKYMs0zL0BTCCFEzvbZcnC74c0qu/BO+BdMFijf8aZjrpfOyJwAfef+f0j9Tlu56zduRKb0kR04rAqr3o9BdUPhOt7kr2gmKdJN0mXtT3Kkm9REBYdVJfaki9iTLsB+27ZMFp0WLHE1cELLNHE1eOL/gRMBaQ+ccNgU4s/+P+vDDSUvzjixJ92+3AWA0Vt3c9DD1ewPwYVMeAfIIgUhBHz4PazdCV5mWDQKAv3ScNKJX+DYOm3B2lPj09zXN1eW4VCdVPYtT2W/cukea+qChbhPnUafKxzL66+k+3yRdZypCivfjcFhVSlQxYu6vTJWulMIIcSjRYIiRI7z/4jkv09A7hD4cSxYbhfo67LD4ufBmQLFmkDNdzNtTL8n7KbHsYEkKzZK+hThm5KTKeCVN9P6+6/koaNRo6IxlCmVI1KRO2wKq96Lwe2EYg28qfR8Wp6whBBC3Mjthj7TYeYy7fshL8GIV24IIvzrKzi4BPRG6PDdXTMpbUzYzq8JuzDpjAwr+E6Gx5S6cCnKlSj0BfLj1S7zS0tlJVVV+XuJlU3j4nA7IbiQkdYfhxJeQoL8hBBCZEyKHT7/SdvuV2oenAfKtgcv/2vHJLqS2Z30NwANA2tlyjiSB48EVcXrufaYKlfMlD6yg43j4kg478Y/r4GWk0JvGzTgsCkkR7q1YIlIN0mXXSRfdl8Pnoh0k5qg4LSpxJ7SghjuGDjho7ueXeL/5TlyG/AJ1pN02a1lfzjjIu6Ui6TIu6Su0EFgfgPBhUyEFL4564N/boOUvBBC3NFv+2DIXG17Wm+oUDwNJykKrHtP2676JoQUS1NfdsXB11e0sovd83S8x9G3Ul0urGM/BMDSvzc6iyXdbYiss2lcPFFHnVhC9LT8MBS9Ua5NQggh7k2CIkSOM2o+LN8CZhMsHQ0Rdyont2EgXN4PljBo/xXoM2dVw8Ko1bx/ejwu1U1N/0rMLTGBIGNApvR1O869+0j5THsiCZgxGZ05+79s+XVSPLGnXPiG62k6OuSRrk8rhBAZYXdoAYSLN2tBEJ/0gp7P3HBA7AlYfTW4oeEoyH/neuMOxcmIM58A0CNPJ4p4R2RoTKqqYvtkJgCWt3qgM5ky1E524ExR2Dg2ngPLrQAUb+jD02ND8PKXFZZCCCEybsEGiE2E0nltFI76Qdv5n9IZvyfuxo2b4t6FKOTt+QyCji3bcKxeB0YjfmOGebz97OLfNTYOrrCh00OLibcPiAAwW/SEFNHKTtyJM0UhKVLLLPH/LBNJka5rgRPJkW5S4hWcKTcGTtybT5Bey/pQ5MasDyaCIowYveQZWwiRPpGx0HmkFuPQpSm82iKNJ+7/Fi7vA68AaDA0zf2tjP2FKGcseUzhNA9+Mt3jTf1hCe7jJ9CFhuDzZvd0ny+yzoEVVv750Qo6aDEpFL9chqwekhBCiGxCgiJEjrJ4M4z+Stue2Rdqlr/DgcfWwfap2vYz88Df81kbVFXl44tf8tEFLSChbUgTphQdgpf+wQUlqIpCUs++oCh4dXoWc8MGD6zvzHJkvY2/l1y98Z0QiiVYbnyFECI9kmzQfghs/BNMRvhqMDzX8IYD3C5Y0gUcyVC4HtR9/67tfRm5mFP2c4SbQuiVr2uGx+XcvhPX3n3g7Y3Pa93ueXx2pCoqh1fb2PJxAkmRbnR6qNM7kGqv+EuAnxBCiPuiqjB9ibb94ZPL0J1PhKDCULj+TcddL53h+SwRqqqSPGA4AD7dX8ZYPG2rfXOahAsuNozWapzXeC2AApW97qs9k4+ekMJ6QgrfJXAi9YaMEzcETiRHurHFKvjlMlzN+nA9+4NPkDxLCyE8w+2GF0fD5VgoVwQ+ffcOZYz/y5kCG4do2/UGgW9YmvpTVZW5lxcC0DV3e0z69L3iUN1urGMnAeDbrxd6P8lAm11EHXPwy+g4AGq9FUChGrdLDy2EEELcngRFiBzjr6PQ7WrZuT4doFvzOxyYHAlLX9a2q78NpVp6fCxOxcWA0xP5IXoVAG/n7cIHBd5Ar3uwK0BT532Dc+dudH5++E9Oe02+h1XiJRfrR2iTS9Vf9adgdbnxFUKI9LgSBy0/gD+PgK+PllGpSdX/HPTbWDi3A7wDof3XoL/zhHmUM5aPL34JwMACb+JvuHOJjXv5f5YInxc7oQ8NzXA7D6uL++xsmhjP5X8cAATkM9B0VIhM4gghhPCIX/+CA6e00pFNDPO0nZW63pQRUVEVNifsAKBhYE2Pj8Gxai3O7TvBxwffoQM83n52oLhU1gyIwZ6kkq+CmZpvPJgskSZvPcGF9AQXyrmZtoQQD69R82HTXu0Zc+EI7Wua7JgGCecgMAJq9kpzf7uT93PAdhRvnZkXwtume7z2Jctw/3sUXXAwPj1fS/f5Ims4rAo/9Y3BlapSuJY3NV9/cJmYhRBC5AwSFCFyhMhYaDdYq6H6VDWY+MYdDlRV+LEbWK9ArvLQdJLHx5LstvL68cH8mrALPXrGFu7HS7meufeJHqbExpL0gZZ2znfkYAz5PJ8N40FSXCqrP4jBnqiS93EztXoGZvWQhBAiWzl1CZ7uD8fOQ1ggrJ4ET5T+z0H7v4NfR2nbLWdCUKG7tjnp/GyS3FYet5SmQ9idohHvzX3uPPYfVwLg0+tOF/HsKeGiiy1TE/h3rQ0Ak0VHjR4BVHnJX1JTCyGE8JhpS7WvfRqfwXR2k/ZNpZdvOuaA7ShRzlh89Raq+1f0aP+q203yoBEAWHq/le2fPzNq5+eJXPjLgdlXR/OJUuNcCJHz/bwbxn6jbc/qB2UKp/FEazT8Pk7bbjQGTGmNpOBaloj2YU8TYkrf/KCqKCSPngiApc9b6APkxXp2oKoq60fEEXvKhV9uA80nhKDTyzVWCCFE+khQhMj2HE7oMAzOXYGSEfD9MDDe6W/2zulwbC0YvaDj9+m64U6Ly44oXjraj4O2Y/jovfms2GiaBNfxaB9plTx4JGpMLIZyZbC8k/1fMO2YnciFvdrkUouJoRhMcuMrhBBp9fcJaP4eXIqBQnlg3UfaNfMm+7+DpV1AVaDam1Ch813b/Md6hO+jfgJgVKF37ysbkm3m5+B2Y3qyHqbH7lT7Kntx2BR2f5HEH/OTcNlV0MFj7Xyp0ysQ3zBJVy2EEMJzTl2Cn7Zp272Kfw17VSjaEIIL33TcxnjtoHqBVTHrPZtRIPW7RbgOHEIXFITv+3082nZ2ceEvOzs+SwSg8dBgggrIlJsQImc7dwW6jNHWoL3eGjo3ScfJv40BeyLkqQgVXkx7n/ZLrIv7HYBXc3dM34AB+7KVuA8eRhcQgKXXm+k+X2SNfQuT+XetDb0RWn0UiiVEnqmFEEKknzyhiWxNVaHnVNj2DwT6wfJxEOR/h4Mv/w3rr9ZFbzYZcnv2pcsR20lePNqXi45IwozBfF1yMhX8yni0j7Ry7vmTlNlaOvOAmVPRmbJ3Cs3zf9rZOVubXGoyLJigCPnVJYQQabVlP7QZBAnJUL4IrP0I8v23VOvfP1wPiKjSHVrMuGubqqoy7MxUVFTahT5FVf/HMzw+1WYjZY6W5jsnTEqpisrBlTa2fBKPNUoBoMATXjz5QRC5y5izeHRCCCFyok9/1J6Nn6qqEH5qvrazUtdbjtsY///SGbU82r9qt5M8bAwAvgP6og8O9mj72YE9SWH1gBhUBcq2tFC2ZcZLigkhRHbgdMHzIyAmASqXhClvp+Pk2BOwWyufSLMPbyr1dC/zIhejoFAvoBqlLEXTNWZVVbH+P0tE7zfRBwWl63yRNS4fcPDrxHgA6vYJJH8lr6wdkBBCiGxL3iyKbG3GUvhytXbvvGAolCp4hwOdKbDoeXDZoVRLqPaWR8exLfFPuh8bQKI7mWLeBfm21FQKeuXzaB9ppbrdJL71Lqgq3i92wlwvazJVeEpqgsLqD7TJpXJtLJRpIZNLQgiRViu3aRNVqQ6o8xgsHw/B/w0e/GchLHnhakDEq9B69j0npVbGbmR38n589N4Miuh5X2NMWbAQNTYWQ5HCeLXKeAmOh8H5P+1snhhH5CEnAIEFDDToH0TxRj7odJLhSAghhOcl2+DLNdr2sAZbYNdJ8PKHsu1vOi7GGcc+6yEAGgbV9OgYUuZ8iXL6DPp8eXNElsL0UlWVDaPjSLzgJrCAgUZDHr2gECHEo2fgbNhxUFuktnAkeKfnPfX6geB2QvGmUKxxmk+zum3XshW+micDWSJ+WoNr/z/o/Pyw9Lm/51jxYKQmKKzsF639dWnowxMv32k1pBBCCHFvGc9z7CGffvophQsXxtvbm+rVq7N79+67Hh8fH0/Pnj3JmzcvXl5elCxZkjVr1jyg0YqHyYY90PdTbXviG/B0jbscvK4/RB0CvzzQ7kvw4IuJH6N/5oUjfUh0J1PNrwIrys7JsoAIgJQvvsL1x150AQH4fTg2y8bhCaqq8vOIWJIuuwkqaKTRIJlcEkKItPpyNbQfogVEtKwF6ybfLiBi0fWAiMqvQOs59wyISHGnMuaclkmiZ94u5DPnyvAYVVUlZdpnAPi8/To6Q/ZMgRl/3sXKftH88PIVIg85MfvpqN8vkG4r81KisUUCIoQQQmSab37WskGVKAA17FrmJco/B2bLTcdtTtiJiko5SwnymMM91r+SlHStNrvv8IHoLJZ7nJHzHPrJxr9rbOgM0GJiKF5+WT7VJoQQmWrZ7zB1kbb95QAomp5p0HO74OBibW626aR09bs4eg2J7mSKeEXQMDB9AX6qqmIdNQHQnj31ISHpOl88eKqqsnZIzLWgw2ZjQuTZWgghxH3J0kwRCxcupG/fvsyaNYvq1avz8ccf07RpU44cOUKuXLdOsDscDpo0aUKuXLlYsmQJ+fPn58yZMwRJqqtHzrHz8PxIUBTo0hTevVtw8OGV11Oytf8afD0zAaSqKjMufc2E87MAaBXSiI+LDsVbn3UpvJToaJIHjgDAb/QQDHlyZ9lYPOHvJVaObUhBb4SWk0Ix+8rkkhBC3IuqwsQFMPhz7fuuT8Ps/mD8713fgcWwpDMobi3FdpvP05S29LPLC7joiCS/OQ9v5O18X2N1bv5Nqz/u64vPK13uq62sYE9W2PV5In9+k4TbATo9PN7el1pvB+Ibmj0DPIQQQmQfigIzftS2322ThO7gYu2byt1uOXbT1dIZjYJqe3QMtqkzUKOiMZQojk+37Hctv1/xZ11sHBsHQK23AshXQVJ6CyFytpMX4VUtFo6+z0Hbuuk4WVXh5/7adqWukCftZRgVVeGLSO0692qeDuh16ZsjdKxdj+vPv8Biwbdvemp9iKyyZ14SJzanYjBBq8lheAfIvLAQQoj7k6VBEVOmTKFHjx5066Y9sM+aNYvVq1fz5ZdfMmDAgFuO//LLL4mNjWX79u2YTCYAChcu/CCHLB4CCcnQbhDEJUGNsjCr310SPyRehOWvaNu1+0PxJh4Zg0t1Mfj0ZL6NWg7AG3k6MziiZ7pvyD0teeAI1NhYjI+Xx+et17J0LPcr+oSTzf+vF9c7kDzlpQ67EELci6JAv09h2hLt+/c7w7jXbnOdPLAEFj9/NSDiZWg7N00BERfsl/n00jcADC34Nj567/sar+0TLUuE98uds1U9V8WtcmCZla3TE7DFKAAUrOHFk+8HEV5SrldCCCEejA1/wL9nwd8CLxVYDP/YIKwURNy8etaluvg1YSdAulfW3o0SFYXto2kA+I0Ziu7qPM2jwu1UWT0gBodVpUAVL6p3D8jqIQkhRKZKtUPHYdrcbK3y2rNmuhxeAWe2gskHGo5K16mbE3ZyMvUsAQY/Ooa1SNe5N2aJsLzVA3245zImicxxfq+dLZ8kAPDkgGDylJPnbCGEEPcvy4IiHA4Hf/75JwMHDry2T6/X07hxY3bs2HHbc1auXEnNmjXp2bMnK1asIDw8nM6dO/PBBx9guEO6Zbvdjt1uv/Z9YmKiZ38Q8UC53fDiGDh8BvKHw5Ixd6lZpyiw9CWwxUC+ytDYM6UkrG4bbxwfyqaE7ejQMbrQu3TL3cEjbd8Px87dpMydD4D/zKnoblkSnH247Cqr+sfgSlUpXMtb6sUJkY3JdfjBcTjhlQnw/S/a95N7Qp/bZVI6uBQWd9ICIiq+BG2/AH3ashqMPTeTVMVODf+KtAxueF/jdZ08hf0nrQRadqo/fnZ3KpsnxhN1xAlAcCEjDd4Lomh9b0nlKYR46Mh1OGebvlT72q05+Byar31Tqest0ZB7kw+S4E4iyBBAZb9yHuvfOn4yalISxsoV8Xq2ncfazS52zErk0t8OvPx1NJ8Qgt4g9wFCiJvltOtw3xnw1zEIC4Tvh4MpPVOPbies/0DbrvkuBBZIV99zLy8EoFN4K3wN6SvV5PhlM85de8DbG0v/Xuk6Vzx41hg3q/rHoLqhTAsLFTr6ZvWQhBBC5BBZtqw9Ojoat9tN7tw3p/fPnTs3ly9fvu05J0+eZMmSJbjdbtasWcPQoUOZPHkyY8aMuWM/48ePJzAw8NqfiIgIj/4c4sEaMhfW7ABvM/w4BvKG3uXg7ZPh5EYwWeDZ78B4/xGlVxwxPHu4J5sStuOt9+KLEhMeioAI1e0mqWdfALy7voi5tudW/2SF3ybHE33MiU+InqfHhaDTy+SSENmVXIcfjGQbtBmkBUQYDfD1kDsERBxaBouuBkRU6ALtvkxzQMSupH2siN2ADh0jC7573wEAKTNmg6pibtoYY+lS99XWgxB/1sWK3tEseiWKqCNOvAJ0PPlBEF2X56FYAx8JiBBCPJTkOpxzHT0Ha3dq8Q99Gh6HM1u0Ok4Vby1hsTF+OwBPBtXAoPNMeSf32XPYPp0DgN/4kejSkHEqJzn3Ryo752gvN5sMDyEgb/ZdlCCEyDw56Tr83QaYvVK77nwzFArcWvn67v6cCzFHwRIGdT9I16lHbCf5PXE3evR0y/1sus5VVRXryPEAWF5/BUPu7F1qOKdT3CprPogh+YqbkCJGmgwPlmdtIYQQHpOtnloVRSFXrlzMmTOHKlWq8NxzzzF48GBmzZp1x3MGDhxIQkLCtT/nzp17gCMWnvTtepj0nbY99wN4ovRdDr7wB2wYpG23mAbh9/+y5VjKaVod6s7ftn8JNQazuPSnNA2ud9/tekLK7C9w7d2HLjAQ/4npSz/3sDnxawp/fZcMwNNjQ/ANk5rsQmRnch3OfNHx0KQvrN8NFm9YMR5euF21qEPLYGFHUFxQ4UV4Zl6aAyLcqvt/7N11nFXVFsDx342ZO90wwNAlKkoppSBlEAIS0hhYlCgpIN2tYj4FVDpElJAuKQuwQLpjhqk7ce/cPO+PM5jEzM0B1vfz4cOZ4Z691/B8nHP2WXstRp6ZBUDnQi2pHFrRrZidmZmY53wOQEi/Xm6N5W2WTCfbp6czt+Uljm0xo9FB1U5h9FhblBrdwtEFyAKNEKLgkuvw7eu9lervzWpDqUufql+UfwwiEv7z2atJEY0i63ps/qzRE8FqJaBhfQIfda961FU/L89iQcdELh603PzDfpRjdLLujVRQoHLrUCo9kb8dy0KIO8ftch0+fBpemaEeD+8Gjz2YzwEsmbB1tHrccBQE5a/d0JzEZQA8EV2fkoZi+TrXtn0ntt17wWAgZPDr+TpX+N6+jzI4s8+CPlhDy1lxBIbcUq+vhBBCFHB+S2WPi4tDp9ORmJj4j+8nJiZSpEiRa55TtGhRAgIC/tEq4+677+by5ctYrVYCA/9bCcBgMGAwXK+/grhVfH8YXpqmHr/RBTo1ucGHLVmwvLP60ufedlD9ebfn35dxgB7HhpDuyKS0oTgL75pF6aD8lXnzFmdSElnD1USIsAkj0RbOb6p2wZGV5GD9m6kA1OgeRtl6wX6OSAjhLrkOe9fZRHhiIBw5CzERsGYK1LrnGh88/NVfCRH3d4Y2n+Y5IQJgWfJafjMdJUIXxpDiL7sdd87ni1AyMtBVrEDg4ze6qPuP067wyxfZ7H7PiDnVCUDph4NoMCiKuHJ3Vs90IcStS67DtydjFnz6jXrct40DdnymflHtuf989qI1icPm42jQ0CCylkfmtx86TM5nCwEInzTGYzs4f16aRdIfNpb1uELTSTHc9VjBSzZQFIWNY1PJvOwgqqSeRsOi/B2SEKIAux2uw9lmeHqU+nuj6jDyWRcG+XYqZCdBbAV4MH/Pk6k2I1+krAegR/y1yiHeWNbYyQAEv/AMumJF832+8J3Te3LY80FuFaYR0cSVl+duIYQQnuW3VLvAwEBq1KjBli1b/vye0+lky5Yt1Klz7dL/Dz30EMePH8fpdP75vaNHj1K0aNFrJkSI28PFZGgzHCxWaFEXxr1wkxPW9YOUYxBRHFr97z/9VPPrq5RNdDrSj3RHJjXCKrP6no8LTEIEQOYbo1DS09FXq0LwKzf7yym4nA6FdUNTMKc7KXx3APVei/J3SEIIUaD9fgoe7q0mRJQoDDtnXy8h4mtY2l5NiLivE7T5LF8JERn2LCafU6tyvZ7wPLEB0W7FrTidmN5Rxwvp+3KBLLd9ek8On7dPZPO4NMypTmLK6mnzQRztPiwkCRFCCCH87rP1kGWGu0tBk+gtkHEegqOhUsv/fHZb+l4AqofdS0xAlEfmzxo+BpxODE89SUCt/G4Xvj7jRTsAdovC6v4pfD83A0VRPDa+J/y2KpujG8xo9dB8SozsYBVC3NYUBXrNhEOn1RbGC0aALr8FXTMuqi2OAR6dDLr8PU8tuvIVOU4LlUMqUiu8ar7OtX67G9v2byEggNAh/fN1rvCtzEQ7a99IAQXubxfKvS1D/R2SEEKI25Bfn9769+/Pxx9/zGeffcbhw4fp2bMn2dnZPPecuruhe/fuDB069M/P9+zZk9TUVPr168fRo0dZu3YtEydOpHfv3v76EYSXmS1qQsSlFLinNMx/E2747uTXZbB/rpoI0W6BujDkho8uLabXiZFYFRtNox9haaXZHltI8gTr7r3kzJsPQPj7s9Dk+8mk4PhhXiZnv1PLo7WYGos+UMqRCyHE9ez5DR7pCxeuqC9Evn0P7i59jQ/+sRqWtgOHDe7rCG0/B13+CoW9fXEeyfY0ygWV5NnC+evfei3WjVtwHD2GJiKCoGe6uD2eJ6Wft/NlnyuseOkKycdsBEVqaTQsime+KCLVi4QQQhQIDge8m9s6o09b0ByYp35xf2cICPrP5z3dOsO673ssq9aAVkvYhFEeGRMgJ8OJJUNNgLi/nfoiZOdMI5vHpeG0F4zEiLQzNrZOTAfgoT6RFL3v1t79LYQQNzNnrdrOWKeDRaMgPsaFQbaOBJsZStaFe57K16k2p51Pk74A1CoR+a1MlD1uCgDBz3VFV6LgbHAT/+SwKawZmII51UnhSgE0Gureer4QQghxPX5rnwHQoUMHrly5wsiRI7l8+TJVq1Zl/fr1xMfHA3D27Fm0f3sDXqJECTZs2MDrr7/O/fffT0JCAv369WPIkCH++hGEFykKvDwNfvgDosNh1USIuFGSaPoZ+Pol9bj+MCjziFvz78nYz9hz7wDqjfeokq+i0xScpAPFbiezt5rlHNTjGQJr1/RzRK679IuFXbONADQeGkVMGdmFK4QQ17N2L3QYpSYO1r4Hvp4MsZHX+OCRNbCkrZoQUbkDtJ2f74SIE+azf/ZvHV3yNQK17v/7bHr7fQCCn++GNjzc7fE8xWZ2svyFJIznHWj1UK1TGHVeiSQoUnaACiGEKDi++Q5OXICoMOhWPx3e+VL9g2u0zrA4rXyb8QMAjaPcT4pQFIWsN0YCEPRsV/R3V3J7zKsycqtEBMdoeXRUNLHlAtg2NZ2fl2WTccnBk9NjCQz13zXZYVNYMzgFm1mhRE0DDz5XcO5hhBDCGw4eg1ffVo/HvwD1q7gwSOJvsD83ee/xafmu5rsubTuXrEnE6aNpFftovs617v0O66atoNcTOnRgvs4VvrXrHSMXDlgJDNPw5MxY9AbZKCeEEMI7/JoUAdCnTx/69OlzzT/bvn37f75Xp04d9u3b5+WoREEwYwks3KRmIy8bC+USbvBhpwNWdIUcIxSvBQ3d27FiddoYdnoaAF0KtWJsqdfdGs8bzB98jP3nX9FERxM+abS/w3GZJdPJmsEpKA6464lgKj8l5dGEEOJ6Pl8PL0xVd4k+UQuWjYHQaxUwOLIWFl9NiHharZ6Uz4QIgLHn3sGm2GkUWZdGUddub5Yf9j+OYF2/Mj4PHwABAABJREFUCTQagvu+4vZ4nrTvowyM5x2EF9HR/uNCkqAnhBCiQHpnhfp7jxYQemwJ2C1QuDIUq/6fz36XeRCT00x8QByVQyq6Pbd14xZsO3aBwUDYqKE3PyEfMi46AIgspkej0VCjWzgRRXWsfSOVU9/msOSZJJ56L47weP8sY+1+10ji72oVqWYTY9Dq5IWNEOL2ZcyCp0eprYyb14GBHV0caOMQUJxwT1u1UkQ+zUlcCkD3wm0waPPXOvtqlYig7p3RlS6V77mFbxzfZuaHeZkAPDEuhuiS8hwuhBDCe2TrmyiQ1u2DNz5Sj9/qC43+u77zTzsmwpldYAiH9ovy3Z/u3z5JXMqxnNPE6qMZVqKXW2N5g+NyIllvjgMgbNJotIUK+Tki1yiKwubxaRjPO4gopuPRkTH5LoUnhBB3ihlL4LlJakJE18fUCkrXTIg4ug4WtwGHFe5tD+0WupQQsS19L5vTd6PX6Bhdsp/7PwBgele9uBuebIa+bBmPjOkJycdt/PCpuhDTeFi0JEQIIYQokA6dhi0/qS0le7UGrrbOqP7cNXffXm2d0TCyttvPWYrTSdZQdfNBSO+X0JUs4dZ4/2a8oFaKiEj4qzpjhSYhdJhXiJAYLUl/2FjYOYmkP6wenTcvzn6Xw/dz1fuEx8dEE17E7/uLhBDCaxRFTcQ/cQFKxsOnw27Syvh6Tm5Vn021enhsUr5P35/1Oz9l/UagJoBuhfPZduOHn7B+o/b9CB0mVSIKqvTzdr4ZngJAjW5hVHw0xM8RCSGEuN1JUoQocA6fhi5j1ZvwF5+Enq1vcsLZPbB9jHrc4n2IKevW/Bcsl5l5YQ4AI0r2IUof4dZ43pA1+E2UjAz0D1Qn+IVn/R2Oyw59beLwWhMaHTSfEktQhPyTJIQQ/6YoMOQDGPyB+nX/DjBvKARcaz3+6Dew6Ck1IeKettDetYQIm9POqLNvAWoLqXLBJV3/AXI509PJ+XQhAMGvFpwqEYpTYdPYVJx2KN8omPKNrpVpIoQQQvjfbLWtOi0fgtK6Q3D+e/VlU5Wu1/z8VuNeABpHPeT23JblK7Ef+BlNeDihQwe4Pd6/XW2fEVnsn/ctRe8z0HlRPDFl9WQlOljcPYlTu8wen/96zOkO1g1NBQXubx9KhSbywkYIcXub/QWs3KE+by4dAzGuLIs6nbA+NxnhwVcgtkK+h5hzWa0S0Sr2UQoHxubr3OzxUwEI6tIBfTn31omFd9gtCqv7J2PJUChaJZD6/aP8HZIQQog7gLyBFAXKhSvQahhkZEO9++GdfjdpN5djhOVd1PYZ93eBqtdeDMqPUWffwuzMoVZ4VdrFNnV7PE+z7txFzvzFoNEQ8f4sNDrdzU8qgNLO2Ng8Pg2Aur0iSKhm8HNEQghR8Njs8PxkmL5E/XrKKzCt13V26hxbD4v/lhDx9GKXKyd9mrSCEzlnidVH81qx513/Af7GPHc+SnY2+sr3ENiogUfG9ITfVmVzYb+VgGANjYZG+TscIYQQ4prSMmH+BvX41Xb81aO9YnMIK/yfz5/KOcfJnLPoNTrqRT7o1tyKzfZnpcKQQf3QxsW5Nd61GC+o7TP+XiniqqjiejrPj6fEgwZsJoWVvZP5eXmWx2P4N0VR2DAyjawkBzFl9DQYFOX1OYUQwp/2/Q6D3lePp/eCmne7ONCvi+HSATBEQMOR+T79kjWJNWlbAXgh/ul8nWs78DOWr9eCRiNVIgqw7dPSSTyktqV6cnosugCpHCyEEML7JClCFBjHzkO9Pmp5tlJFYPk4CLzRuxxFga97QvppiC4DT77ndgyb03fzTdoO9BodE0sNLHCtHBSbjcze/QEIfuk5Ah6s4eeIXOOwKawZlILNrFD8AQO1Xih41TiEEMLfTDnQ5k34fD3odDB3KAzsdJ0PH9sAi1qrfcXvfsqthIgUW9qfFZPeKP4KEfow136Av1EcDsy5rTOCX+1ZYK6vpjQHO2YYAajbO4KIolIOWwghRME0Zw2YLXB/Oahf2QY/z1f/oPpz1/z81nS1SkTNsKqE60Ldmts85zMcx0+gLVyIkNf7uDXW9VyvUsRVQZFa2v2vEPc8GYLigE1j0tg5Kx3FqXglHoBfVmRzfKsZrR6aT40lMESW0IQQt68UI3QcDXYHtGsAvdu4OJAtBzYNU4/rvQGh+W/5+1niSuyKg9rhVakcele+zs0ePwWAoI7t0N9VMd9zC+9SnAp7PjBycIma3Nhscow8hwshhPAZeaITBcKBo1C/D5y5DOUTYOtbUCjqJif9vEDNPNbq1H7pQZFuxWB25jDizEwAXozvSKWQcm6N5w2mdz/C/tshNLExhE0Y5e9wXPbt28Y/s4GbT45BqysYL8eEEKKgSM2Ax/rDur0QbICV4+GZJ67z4eMbYVGr3ISI1vD0EpcTIgCmnv8fGY4sKodUpEOh5i6P83eWNd/gOHUaTUwMwV06eGRMT9gxI50co5NCFQOo3iXc3+EIIYQQ12S3w3tfqsd924Lm+HrISoTQwlCx2TXP2WrcA0DjqLpuza2YTGSPUXvBh44YgjbM/WTJazHmJkVEXCcpAkAXoKHpxBjq9lKT6r+fk8maQSnYLZ5PjEg5YWPblHQA6r0WSfzdgR6fQwghCgqnE7pPgHNJUKE4fDz4JpV7b+S72WA8CxEJUKdfvk83O3NYcGUVAD3i8/fsaPv1Nywrv1arRAwflO+5hXdZspx89VoKe97LANSNCWXrSftKIYQQviNJEcLvdv4MjV6DpDSoWh52vguli97kpNQTsLqXetxwNJSs43Yc7178nLOWixQNLMzrCZ4pFe5JjouXyB41AYCwyWPRxuavn15BcXp3Dj9+mgnA42OjCS8i2cBCCPF355Pgkb6w93eICoONM6HF9d5nHN8EC3MTIiq1gqeXgt71Rfu9GftZeOUrAMaWeh2dxjMtmkxvqzVYg198Fk1IwejFfe6HHH5fZQINPDoyWsp1CiGEKLC+3gNnEyE2Ejo1AQ58qv5Bla7XTIQ0OczszTgAuJ8UYXrnA5yXE9GWLkXwS955Ts7JcGLJUBMbIord+N5Do9FQt1ckTSfEoNXDkQ1mlvVIwpTm8Fg8dqvC2iEp2HMUStUx8EB3SZwUQtzepi6C9d9BUCAsHQMRrhYYMqXADnXtksbjITD/z35fJm8kzW6kRGBRHo+ul69zsydMA8DQrjX6e+/J99zCe1JP21jYOZHjW83oAtQ14bo93dvgKIQQQuSXJEUIv/p6NzQdCBnZUL8KbH0b4mNucpLDBss7gzULStWD+kPdjuNkzjnev7QAgDElXyNUVzBe2Pxd1qDhKJmZBNR6kODnu/s7HJdkpzhYNywFgCodQqnQuOD9PQshhD/9cQYe7g2HTkOxONgxG+pWvs6HT2yGhS3BngOVWkKHZW4lRKTY0uhzYhQKCh3jWlArvKrLY/2d7dffsG3bCTodIb1e9MiY7nLYFDaNSwOgSrtQilU1+DkiIYQQ4vre/UL9/aUnIdieDEdWq9+o9uw1P78r40csipUSgUUpH1TK5XmdaWlkT5kFQNi4EWgCvVMt4WrrjOBobZ5bVNzbKpR2/yuEIULDxYNWFnVJIu2MzSPxfPt2Okl/2AiO1tJ0YiwarSROCiFuX9sPwAi1eyLvvAZVyrsx2I4JkGOE+Puhard8n64oCnMSlwLwbHy7fCXp2w//gWXZSgBC3xyS77mF95zYYWZhp0RST9oJK6yj42eFua+NdypPCSGEEDciSRHCbz5fD+1GQI5V3QG7bhpE5uV+aOtoOP89BEVBuwVq+ww3KIrCm6dnYFVsNIysTbPoBm6N5w3WbTvIWbQMNBrC35+FRnvr/V9XcSp8MzwVU4qT2PJ6GgyK8ndIQghRoHx3COr3VUuW3lUSdr0Hlcte58MntsCCJ9WEiLuehA7L3UqIUBSF106O57ItmfJBpRhXqr/LY/2b+Z0PATA89SS6kiU8Nq47fpiXSepJOyExWuq9FuXvcIQQQojrOngMdhwEnQ5eaQX8slDdKFCsBhS575rnbDXuBdQqERqX659D9pRZKOnp6O+7l6BO7V0e52YyLqpVHm5WJeLfStYMovP8eCISdKSftbOoSxLn91vciuX07hx++kztc/7EuBjCCnmmapYQQhREl1Ogy9jc9hlPwPPX7siUN6kn4bt31ePHp7q0Xrsr40f+MJ8kRBtMp0JP5uvc7AnTQFEwtG5BwP3X21kgfElxKuz9yMiXfZKxZCokVAuk27J4it4vmxKEEEL4x633ZlXcFt5aBs9NAocDuj0OK8apPdNv6tR2+FbtZ0qrjyGqpNuxrEnbyo6M7zBoAhlXqr9bi0beoNhsZPRWX04F93yBgOpV/RuQi35akMXpXTnoDRpaTIslIEj++RFCiKs2fA9NXocUIzxYCXbOhlJFrvPhk1th4dWEiBbQ0b2ECICPE5ew1bgHgyaQD8qPJ0Tnmb6ezuRkzAuWABDSr5dHxnRX+lk7+z5Se5g2GBxFUKRcj4QQQhRc76qbXmn7CBQvDOyfp36j+nPX/LyiKGxJ3wNAIzdaZygmE+Z3PwIgbMIoNDrvJQcYL6iVIiIT8t9aMbZcAF0WxlOkciDmdCfLeyTxxzqTS3GYUh18M1ytbFi1UxjlGkifcyHE7cvhgK7j4HIqVC4D770Obi2JbhqmJu2VexQqPO7SEJ/kVonoENecSH3eWxfZjx4jZ/FyAEJHvOHS3MKzrNlOvu6fwu7ZGaCoFYOfnluY0DhJNhRCCOE/sgosfEpRYMQnMOA99et+7WHuGxCQl7UPUyqs6KoOUqMHVG7ndjxZjmxGn3kLgD7FulMmqGDsYP0709vv4zh8BE2hOMLGj/R3OC5JPGRl58x0ABoMiqJQBe+UXRVCiFvRok3Q8g0w5cCjD8LmWRAXdZ0Pn9wGC1qAzQwVm0PHFaB3b5fFz1mHmXjufQBGl+rHPSHu1Ev9J/Mnn0FODvpqVQh4qI7HxnWVoihsnpiG3aJQsraBu5tLGychhBAF15V0WLRZPX61LXDxAFz+GXSBcF+na55zxHySi9ZEgjSB1A2v7vLclvWbULKz0ZYuRWCLpi6PkxcZl9SkiIhi+U+KAAiN09FhXiEqNA7GYYM1g1P47uMMFEXJ8xiKorB+RCrZyWplw0cGSJ9zIcTtbfQ82HYAwoJh6RgICXJjsPPfw29L1ayKx6e6NMTJnHN/JvU9F5+/6kTZE6eD00lgi6a37Gay20naGRsLOydybLMZXQA8NjqaR0fEoAsoWBsRhRBC3HkkKUL4jMMBvWbCxPnq1+NfgBm9IU+dIBQFvnoRMi5AbEVo+pZHYppxYQ6XbcmUNiTQq2hXj4zpSY7zF8gePRGA8Knj0UZH+zmi/LNmO1kzOAWnHco3CqZKh1B/hySEEAXGOyug23iwO6BjY/h6EoRd7z39qe2woHluQkQz6PSF2wkRmY5sep4YgU2x0yy6Id0KPeXWeH+n2GyY3vsfoFaJKAiVmI5uNHN6Vw66AGjyZnSBiEkIIYS4nk9Wg8UKD9wFte8FDuRWibi7NYTEXPOcq60z6kY8QLDO9Tdcli++AiCoTUuvXy8zLqjtMyITXN89GhCs5cmZsdTorvbk/PZtIxtHp+Gw5S0x4uCSLE7uyEEXCC2mSGVDIcTt7Zt9f63PfjgQKpVyYzBFgQ2D1OMq3aBoVZeGmZe4HAWFxpF1KRec98rA9pOnyMmtThg2YohLcwvPOfmtmQUdE0k5YSe0kJYOnxbm/nZ56ZcthBBCeJ9rafhC5JPFCt0nwIrtatLwe/3h5Zb5GOCnT+DQStAFQPtFYHD/ZuqQ6ThzLi8DYHypAQRpC14/s8wBQ1GyswmoW5ug7p39HU6+KYrCprFppJ22Ex6v4/Gx8gJKCCFAXTd682OYvFD9um9bmNnnBomCp3bA/NyEiApNoaP7CRGKojDk1BTOWC5QPLAI08sM9ei/0ZZVq3Gev4C2cCGCOrpf3cnteDKdbJ2cBkDNFyKIKR3g54iEEEKI67PZ4QM1L4G+7UDjsMDPuTcO12mdAbAlfTcAjaNcr9CkWCxY1qwHwNC2lcvj5JXxonuVIq7S6jQ0HBxNVAk9Wyel8+sX2WRecvDkzFgMYddPcrhyzMr2aekAPNI/ikJ3SWVDIcTt61wSPKPuv+KVVtCpiZsD/rEaTu8EfRA0Ge/SEBn2LJZeWQvAC0U65Otc06QZ4HAQ+HgTAmo+4NL8wn2KovDdx5nsmm0EBYpVDaTlrDjCCkm7DCGEEAWHpL4Lr8syQcuhakJEgB4WjcxnQsSVP2BdP/W4yURIqOF2TE7FybDT03DgoFl0Qxq6sWDkLZbN27AsWwlaLeHvzUSTp5IaBcuvX2RzeK0JjQ5aTIslOEpuhIUQwm6Hl6b9lRAx/gWY1fcGCRGnd8L8ZmAzQYUnoNNKCHCntqlqSfJqvkrdhA4d75cfl6+erXlhevsDAIJffh6Nwf+Jh7tmG8m+4iS6lJ5aL0T4OxwhhBDihlbuhAtXID4G2jcAjqwBcyqEF1P7tV+D0Z7JD5m/AtAoqq7Lc1s3b0PJyEBbrCgBtWu6PE5e/VUpwjP7dqp1Cqf1O3HogzWc3pPD4m5Jf7bo+DdbjpO1g1NxWKFMvSCqdZHdrEKI25fVBh1HQYoRatylJua7xWGHjbnVGeq8BpGutSVekryabKeJisFlqBfxYN6nP3MW86cLAAgd+YZLcwv3WU1Ovu6fwq531ISIKu1D6TCvsCRECCGEKHBuvbes4paSYoTHBsDmH9XedF9Phqcb5WMAuwWWdVJ3xpZrAnX7eySu5cnf8EPWL4Rogxldsp9HxvQkxWIhs4/6swb3eZmAqvf7OaL8u3LEytZJ6QA8/GokCdX9/0JMCCH8zWyB9qNg7lo1CeKjQTC0m1pF6ZpOf/tXQkT5x6DTlx5JiDhqPsWbZ2YCMKT4y9QIq+z2mH9n++kAtt17ISCA4J4venRsV1z+zcqBxVmA2jZDb5CqRUIIIQq22SvU319pBYZAYH9u64yq3UF77ZcMOzO+x4GDCkGlKWko5vLcObmtMwxtWno9Od+S6SQnwwlARDHPvTwp1yCYjp8WJjROS/Ixtbd54iHrfz63c6aR5GM2QmK0PDE+RiobCiFua0M/gn2HIDIMlo7Jvb64Y/8cSP4DQmKhvmtJCQ7FwbxE9aLXI/7pfP07nD15BtjtBDZuQGDd2i7NL9yTdla9xh7bZEarh0dHRfPoqBh0AXI9FUIIUfBIUoTwmgtXoMGr8N0hiA6HTTPhsbwn+6o2DYPLByEkDtp+foNttHmXZjcy/ty7AAxI6EGCId7tMT3NNOtdHEeOoY0vTNiY4f4OJ9+sJierB6ZgtyiUqRdEzec8u/tYCCFuRemZ0HQgfL1LXXxaPhZeaHGDE87sgvlNwZqt7gjtvMojCRFmZw49j79JjtPCIxG16Fm0i9tj/pvpHbVKRNDTbdAVLeLx8fPD6VDYNDYVFLi7eQil6rj/dyiEEEJ40w+HYe/vaqXFl54EMi/BsW/UP7xh64w9ADRyp3WGzYZl1RoAgnzQOiMjt3VGcLSWwBDPLlEVuTeQLovjiS2vJ/uKkyXPJHFih/nPPz+xw8yBRWrSZNOJMYTGyo5WIcTta+VOeGu5ejxvKJQp6uaAlkzYOko9bjASgiJdGmZT+i7OWi4SpYugbewTeT7Pcf4C5rnzAakS4S+ndplZ0DGRlON2QuO0dJhXmCrtpeKSEEKIgkuSIoRXHD0H9frAodNQLA52zIba9+ZzkGMbYI+6i5Wn5kK4u3frqsnnPiTVns5dwWXpEZ+/PnW+4Dh7jqxxUwAImzYBbVSUfwPKJ0VR2Dw2jdRTdsLidTSdEINGK9nBQog728VkNVHw21/UXTnrp0Prejc44cxu+PxvCRFdvoKAYI/EMvrM2/xhPkmhgBjeLjcSrcazt4OOxERylqg7fUJe7enRsV1xcHEWiYdsGMI1NBgU5e9whBBCiJua/YX6e4dGUCQWODgfFCeUrAtxFa95jlNxsi19LwCNox5yeW7r9m9R0tLQFIojoJ7r4+SV8aLaOsOTVSL+LqKons7z4ylV24DNrLCqbzIHlmSSnexg/YhUAKp3DaPMw565zxJCiILoxAXoMVk9HtARWj3sgUF3z4CsRIgpBw++4vIwn1xeBkDXwq0J1uU9gT176iywWgmo/xCB9T3xA4m8UhSF7z7J4IueyVgyFIpWCaTbsiIkVJMqwUIIIQo2SYoQHnfgKNTvA2cuQ4Xi8O27cG+ZfA6SlQQrn1GPa/WGSk96JLb9Wb+z8IpaCnRS6UEEaD3Ts9STMvu/ASYTAfXqEtS1o7/Dybffvszm0BoTGh20mBZLSIzsthFC3NmOnoN6veHXk1AkBra/A/Wr3OCEs3vg8yfAmqW2jvJgQsTq1C0suLIKDRreKTuKQgExHhn378wfzlEXp2rXJKDmAx4fPz8yE+3smm0EoN5rUYTGyTVJCCFEwXYpBZZtU4/7tgUU5a/WGdWuXyXil+w/SLanEaYN4cEw19svWr5YBUDQU0+i0Xn/uplxQa0UEZngvWdzQ7iWNh8U4r42oShO2DI+nQUdEzGnOilUMYD6r0d5bW4hhPC3HAt0GAUZ2fDQfTDBE90NMy/Brmnq8aOTQO9aH47fso+yN3M/OnQ8E982z+c5Ll3G/D/12ihVInzranXgb98yggL3twulw7zChBWWZ20hhBAFX8F7IyxuaTsOQquhkGmCahVg7VSIz+/7FkWBL59Ts40L3wuPT/NIbA7FwdDTU1FQaBfblFrhVT0yridZNmzG8sVXoNMR/t7MW66f6ZWjVrZMSAfg4T6RFK8uGcJCiDvbT0eg+WC4kg7lE2D9jJuUKT2796+EiLKNoLPnEiLOWi4y6NQkAPoU7U79yJoeGffvFKsV8wefABDSz/9VIrZNSceare5cqdI+1N/hCCGEEDf1v6/BZoe6leGBSsC579V+7QHBUPnp65631ahWiagfWZNAbYBLcysOB5YvVwNgaNvapTHyy5jbPiOimHeXp3QBGh4bE01kcT273jGSedmB3qCh+bRY9IZb67lbCCHy4/V34cAxiIuERSPV1kxu2zoKbCYoURvubefyMHMS1SoRLWIaUSywcJ7PM017CywWAurWJrBRA5fnF/mTftbOqn7JJB+zodVD42HRVHla2mUIIYS4dUhShPCYr3dDx9Fgsao7YFdNVEuE59t378LRdaA3QPvFHnsZ9HnSSn4zHSVSF86bJft4ZExPciYnk/FKP0AtNx5wX2U/R5Q/VpOT1QNSsFsUSj8URM0e4f4OSQgh/Grzj9D2TcgyQ/WKaqJg4egbnHB2L3z+uNqbtWwj6LIaAkM8EovNaafX8RFkOrJ5IOw+BiS84JFx/y1n2UqciUloixX12cuU6zm508zRjWY0Onh0RLS0chJCCFHgnbwI73+pHve5umH2QG6ViHvaQlDEdc/dmr4HgMZRdV2e37Z7L86kK2iiowlsWN/lcfIj44LaPiMywfs7TDUaDbVfiiCquJ59H2dQ68Vw4sq5lkAihBC3goWb1GQ7jQbmj4Diec87uL6kQ/DTHPX48Wnq4C5ItqWyKmUjAD2KXD/p79+cSUmYPlTnDx35xi23oexWdWq3mbWDUsnJcBIap6XlzDgSZDOcEEKIW4wkRQiP+Gw9vDgVHA548iFYPAqCXbkvOrcPNgxSjx+fDkXu80h8SdYUppz/CIAhxV/xSrlwdyg2G+lPd8d5+gy6smUIHT3M3yHli6IobB6XRuopO2GFdTSbFCMvn4QQd7RlW6H7BHWnZ6Pq8MV4iLhRoYJz+/5KiCjT0KMJEQBTL3zEgexDROrCea/cGK+0j1IUBdPb7wMQ3OtFNAH+e8lgMzvZMjENgBpdwylcybVyrkIIIYSvHD8PTV6HZCPcUxra1AdsZvh1ifqB6tdvnZFsS+Vg9mEAGkTWdjmGnBWrADC0bOaz67ivKkX8XaVmIVRq5rn7LCGEKIgOnYZXpqvHb3aHxx700MAbh4DihLtbQ6mHXR5mftKXWBUb1ULvpUZY3jeGZc+YDWYz+poPEPhYY5fnF3mjKAo/zMvk27eMKE4oen8gLWfFEh4vr5WEEELceuTqJdw2aykMVN+B0P0J+HgQ6F35Lyv1JCxsCXYLVGoFtXp7LMZx594l05FNldC76Vq4lcfG9ZTMAUOxbduJJiyMqK+Xoo24/g6ggui3VdkcWm1Co4XmU2MIiZE+ckKIO9f7X8Krb6vdoNo1gM+Hg+FG7+TPfQefXU2IaABdPZsQsS19L+9fWgDAjDLDKG64Uf8O19n2fY/9x/1gMBDy0vVf3PjCvo8yMJ53EF5ER93et9Y1VQghxJ3n6Dlo/BpcTIZKJWHjzNzy5j9/CTlGiCoNpRtc9/xtxn0oKFQOqUiRwEIuxaA4nVhWfg1AUFvfPTP/VSlClqeEEMJTss3w9Egw5UDjGjDiGQ8NfGo7HFkDWh08OtnlYSxOK58nqaWRXshPlYjkZMzv/Q+AsBFDpEqEl1lNTjaMSOXIBjMA97UJpfGb0egD5e9dCCHErUmeOoXLFAVGfAKT1PcsvNYepvUCrdaFwUypML8ZZF+BYtWh3QKXy6/9256M/axMWY8GDZNKDUKnKVgv7M1zPsM8+0MAIuZ/jP7ee/wcUf4kH7exZUI6AA/1jqTEA0H+DUgIIfxEUWDMPBj3mfp1z9bw9qugu9Fl5/z38NljYMmA0vWh6xoIvFFJifxJtCbT7+Q4AJ4t3JamMQ08Nva/Xa0SEdT5abSFXHsh4wnJx2388GkmoPY4DQxx5cZECCGE8I0/zqgJEZdT1QoRm2dB/NXChldbZ1R75oYP2lvT9wJuts74/kecFy6iCQ8n8NFGLo+TH5ZMJzkZTgAiihWs53QhhLhVKQr0nAGHz0DRWFgw4ibPpHnldML6gerxAy9DobtcHmp16haSbCkUCYijeXTerzmmWe+iZGejr1aFwOZPuDy/uLn0c3a+6pfMlaM2tHpo9EY0VTqESiKKEEKIW5okRQiXOBzQexZ8vFr9esKLMKSLi3kMdgssbgPJRyCyhFoy3BDmkTitThvDTk8DoHvhp6gSdrdHxvUU6559ZPR8DYDQMcMJav2kfwPKJ6vJydf9k7HnKJSqY6DWi+H+DkkIIfzC4YA+b6n9WgFGPafuxrnhdfH8D38lRJSqB13XejQhwqE46HtyNCn2NO4JqcCIkn09NvZ/5jp/AUtuye2QV3t6bZ6bUZxqOyenHco1DKJ8o2C/xSKEEELczO+n4NH+kJgK95WFTbOgUFTuH6afhZNb1ONq19/ia1fs7DB+B0CjSNeTIixffAWAocUTaIJ8k+iekds6IzhaK0mMQgjhIZ+sgYWb1ESIxaOgcLSHBv5tKVz8CQLDoOEol4dRFIVPLi8F4Nn4dnlu7ehMTcU0W22NHDryDXk570Wn9+SwZlAKOUYnIbFaWs6Ko3h1V/pkCyGEEAWLJEWIfLNY1T7pK7arL3ve7w8vtXRxMEWBVS/C6R1gCFdfCEUU81isH19ewrGc08Tqoxlc/GWPjesJjvMXMLbpDDYbhjYtCX1ziL9DyrctE9JIPWkntJCWZpNj0WjlgUQIcefJsUC3CbByh3pdfPd1eOVmVacv/AifPaqWxC5VD7qt81hC4FXvXprP7oyfCNEG80G5cQRpvbeIYf7gY3A4CKj/EAFV7/faPDfz21fZnP/Jgj5YQ6Ohnlr9E0IIITzvlxPwWH+4kg5Vy8OGGRAX9bcPHPhMfV4u0xCiy1x3nJ+yfsPoyCRaH0m1MNeqDiqKQk5ucqPBh60zjBfV1hkRRaVKhBBCeMKBo9DvHfV4wgtQr4qHBrZbYNMw9bjeEAgr7PJQP2T9wq+mIwRpAulSqHWezzO98wFKZib6+ytjaNnc5fnF9SmKwo+fZrJzlhHFCUXuC6TVrFjCi8grJCGEELcHuaKJfMkyQdsRsPlHtcfp/DehfUM3Btw2Fn6er/ai67gCitznsVjPWy4x6+JcAEaU7EOUvuD0FFfMZtKf6oQzMQn9ffcS8dn/0LjUd8R/fluVze9fmdBoocXUWEJjZSFLCHHnyciGp4bB9oMQGKBeF9s1uMlJF36CT68mRDzslYSI7zN/Zsb5TwCYUGoA5YNLeXT8v1PMZkwfqdfbkH69vDbPzZjSHOycYQTgoV4RRBaT21whhBAF08Fj8NgASDFC9YpqQkTM3x9XFQUOfKoeV3v2hmNtTd8DQMPI2i63irQf+Bnn6TMQHIzhiUddGsMVGRfUShERCXLNFkIIdxmzoMNodTNb8zowoKMHB//uXUg/DeHFoG5/t4b6OLdKRNu4psQERObpHKfRiOkttV1j6JuDb7k11FvF9qnp/DQ/C4DKrUNpMiIavUE2wAkhhLh9yJOnyLMUI7QYAt8fhtBg+GIcPPqgGwMenA/bRqvHT34A5R/zRJh/GnX2LczOHGqFV6VdbFOPju0ORVHIeKkv9h/3o4mJIeqrpWjDPPsyzNuST9jYPCENgLq9IyjxoG/KqwohREFyOQWaD4aDxyE8BL6cAA2r3+Ski/tzK0SkQ8mHvJIQkWY30vvEKBw4aBP7BO3jmnl0/H/LWbwcJSUVbamSft2xs3OGEXO6k7gKAVTvKu2chBBCFEz7j6oVItIy4cFK8M10iP73ZevMt5B2Uq2meG/bG463JTcpolFkHZdjsnyxCgBD00fRhHquldfNGHPbZ0gioxBCuEdRoMcUOHEBShWBT4eBx/IGTKmwfbx63HgcBIa4PNR5yyXWp+0A4Pn49nkPYfaHKEYjunsqYWjb2uX5xfUd2WD6MyGi0bAoqnUKkxYlQgghbjvy5Cny5HwSPDEQDp9Rd7CsmQK1XKvMqTq1HVb1UI/rDYEHXvREmH/anL6b9Wk70Wt0TCw1sEDdxJlmziZnwRLQ6Yha/jm6MqX9HVK+WE1OVvdPxm5WKFXbQK0XCk4FDiGE8JUTF9Tr4smLao/WdVOhWsWbnHRxP3zaBMxpULIudP9GfdnhQYqiMODkRC5aEyljKMGk0t69BiqKgultdcdOSO+X0Oj9c2t57sccfluVDcBjo6LRBRSc674QQghx1Q+H1fuH9CyofQ+smwaR18qN3D9P/b3y0xB4/SSFC5ZEDptPoEXLI5G1XYpJURRyvvgKAEO71i6N4aqMC7ntMxKk6qAQQrjjnRXw5U61qu/S0f+qPuSunRPVpP7ClaHaM24NNS9xBU6c1It4kEoh5fJ0jjMzE9Os9wCpEuEtaWdtbBiZCkDNHuFU7yybDIQQQtye5C5C3NTRc1Cvj5oQkVAIdsx2MyHiyh+w6Clw2NRFniYTPRYrgNmZw4gzMwF4Mb5jnm+yfcGyYTNZg98EIHzWZAIbNfBvQC7YOjGdlBN2QuO0NJsci1YnL56EEHeWA0fV6+LJi1C2GHz7bl4SIg78lRBRog5083xCBMCnSSvYkL6TQE0AH5YfR5jOu7s9bTu+xf7LbxASQvAL7i2QucphU9g0Vq1edH/7UIpVNfglDiGEEOJG9v2utsxIz4KH7lMrRFwzIcKSBb8vV4+rPXfDMbcZ9wJQPezePJcg/zfHocM4jhyDwEAMzZ9waQxXSaUIIYRw377fYfAH6vGM3vDg3R4cPO0U7JutHj8+VW1/7KJsh4nFV1YD0CP+6TyfZ37/Y5TUVHQVKxD09I2rJ4n8s1sUVg9IwZqtkFAtkIf6uHY/IYQQQtwKJClC3ND+o1C/D5xNhArF1Rc/95R2Y8CsJJjfTM0wLlEH2nzqwXpuqncvfs5Zy0WKBhbm9YTnPTq2O+zHjmPs+Cw4nQQ9353gPq/4O6R8+/2rbH5blY1GC82nxhIaJzt6hBB3lu0HoGE/SEyFKuXV62L54jc56dLBvyVE1Ibu6yHI81V2fss+wtiz6oLViBJ9qRx6l8fn+DfTO+rqW3D3Tmijo70+37X8MC+T1JN2gmO01H8tyi8xCCGEEDey+1e1QkRGNtSvolaYirhe3uLvy8GaDbEV1cpSN/Bn64yoG3/uRnJWrAIg8LHGaCN8WwVQKkUIIYT7Rs4BuwPaN4ReT3l48M1vgsMKZRtDBfcS55Ynf4PRkUlpQ3Ea5/G6pWRnkz39bSC3SoROrheetn16OkmHbQRHaWk+NVaqLgohhLitSVKEuK7tB6BRP7iSDtUqwM531b50LrOZYVErNcs4uix0+QoCgj0VLgAnzGd5/9ICAMaUfI1Qnet97jzJmZFBeqsOKOnpBNSpRcT7swpUS4+8SDlhY9N4dSdunZ4RlKwZ5OeIhBDCt1buhKaDINMEj1SFbW9DkdibnHTpZ5jXGMypULyW1xIishzZvHJ8BFbFxmNR9Xguvp3H5/g3x+kzWL5aC0BIX/8k+qWfs7PvowwAGg6KIihSbm2FEEIULDt//uv+oWE1tRVl2I0eU6+2zqj2LNzgmdHitPJtxg8ANI50PSnCkts6I6htK5fHcGneLCc5GU5AKkUIIYQ7VoyD19rD/wbd8LKRfxd+hF8WqcePT3VrcKfiZG7iMgBeKPI0Wk3enttMH85BSU5BV64sQZ3auzy/uLYjG00cXJwFQNOJMUQUleuxEEKI25usHItr+moXNBv814ufrW+rPdNd5nTCF93h3D4IjoZu6yC0kKfCBdReqMPPTMeq2GgYWZtm0Q08Or6rFKcTY9cXcBw+gjahGJFfLERjuLVKe9vMTr4ekIzdrFCytoHaL/l2B5EQQvjb/76GDqPAaoPW9dQdntcsef13l3+BT68mRNSEZzZAkHdKUQ47PZ1TlnMUDSzMjDLDfZJ4Z3r3I3A6CXy0Efp7PFmjNW8URWHzhDTsFoWStQzc3aJgJEIKIYQQV20/AM0HQ7YZGteArydD6I32BeybDWe+BY0Wqna74dj7Mg9gduYQHxDHvSEVXIrPfuw49l9/B70eQ8tmLo3hqozc1hnBUVoCQ2VpSgghXBURCjP63KACkSsUBTYMUo+rdIVi1d0abrvxO07knCVcF0r7uLxdbxSzGdO0twAIHTYQjV5e2HtS+lk7G0amAlCzRzhl63t246IQQghREMmTp/iPT7+B9iPBYoWWD9+ktGdebRoKv68AXQB0+hIKeb6k9+rULXyb8QMGTSDjSvUvMJUYskeNx7p6HRgMRH25GF1Rd8pt+MfWSemkHLcTEqul+eRYtLqC8XcrhBDepigw/jPoOUPN73uhBSwbA0E3y227/KtaIcKUAgkPQnfvJUQsT17HFynr0aLl/XJjXe4pnh/OrCzMn3wGQEi/Xl6f71qObjRzelcOugBo8mZ0gbnuCyGEEACbf4QWQ8CUA4/VhK8mQciNiu39sRrWvaYeN5kAkTfuz/VX64w6Ll8Dr1aJCGz0CNqYGJfGcFXGxdzWGcWkFLoQQhQ4R9fBqe2gN0CT8W4P98nlpQB0KtSSMF3eFpnNH8/DmZiEtlRJgrp1cjuGvLKanFhNTp/N5w92q8LqgclYsxQSqgXyUB/vryEIIYQQBYEkRYh/mLUUekwGhwOeeQKW5+XFz8388D/YNVU9bj0Xyjzidpz/luXIZsxZtcdcn2LdKRNUwuNzuCJn+Uqyx6s/e8TH7xLwYA0/R5R/h1Zn8+vKbNBAi6mxhMbJopUQ4s7gdMKrb8OouerXw7vDhwPhpm1ME3+DeY3AlAwJD8AzGyE4yisxHjefYdjp6QAMSHiBmuFVvDLPv+XMX4xiNKIrX47Apo/5ZM6/s2Q52TpZbelU84UIYsoE+DwGIYQQ4no2fA+thoLZAk1rw5fjIfhGz9UXfoJlHUFxwgMvQr0hN51ja/pewL3WGTm5SREGH7fOADBeUCtFRCTIzl8hhChQHHbYMFg9rv0qRJVya7ij5lPsyPgOLdo8t3lUcnLInjILyK0SEeCb5z1LlpPP2yXy/iMXObbZ5JM5/WHH9HQSD9kIjtLSfGosugDZYCCEEOLOIEkRAlB3wg7/Hwx8X/26fwf4ZAi4XZns2HpYk7uDtNEYqNrVzQGvbcaFOVy2JVPakECvot6ZI79sB3/B+KzaYz1kwKsE+zCr2VNSTtrYNFZ96VS3ZwQla91oa5MQQtw+LFboMg7e/1Jtnfr2qzC2Rx7aqP49IaJYDa8mROQ4LfQ8MQKT08xDETXoW6y7V+b5N8XpxPTOBwCE9H0Zjdb3t5O73jGSfcVJVEk9tV6Qlk5CCCEKjnX74KnhkGOFJx+CL8bdZKNB+hlY0AJsJij/GLR476Y3HCdzznHKco4AjZ6HIx90KU7H6TPYf9wPWi1BrVu4NIY7jLntMyKLSVKEEEIUKAfmwZVDEBwD9Ye5Pdycy8sAeDy6HiUNxfJ0jnnu5zgvXkJbPIHgZ7q4HUNe7XnfSPpZO3azwlevp/D93AwURfHZ/L5wZKOJA4uyAGg6MYaIonIdFkIIceeQpAiBwwGvTIfJC9WvJ74EU3uC2+84Lv8CS58GpwOqPQMNRrgd67UcMh3/8wZ7fKkBBGndLW3hPueVK6S37ggmE4GPNSZs8lh/h5RvNrOT1QNSsJnVXu21X5aXTkKIO0OmCZ58A5ZthQA9LBgBfdrm4cTE39WEiOwras/VZzdBcLTX4hx/9l0OmY4Rq4/mnbKj0Gl8U8nHunkbjj+OogkPJ+hZ3yciXv7NysEl6iLOoyOi0RtkV4sQQoiCYfVuaPummlzZup7acssQeIMTcowwvzlkXYb4+6DDcrXl5E1szW2dUTO8CuF5LEP+n6lXfg1AQL26aAsXdmkMd2RcyG2fkSCVCIUQosCwZMGWkepxgxFuJ/in2Y2sSPkGgB7xT+fpHMViIXvSDABC3+iPxuCbdd4rR63sX6g+Z5apFwQK7JxpZOOoNBy22yMxIv2snQ0jUwGo2SOcsvWD/RyREEII4Vt5TgVs06ZNngdduXKlS8EI37NYodt4+GKHuhnl/f7wUksPDJxxUV3csWRCmQbQ8n952F6bf07FydDTU3HgoFl0QxpG1fH4HPml2Gykt++G88xZdOXLEbnkUzRul9zwva2T00k+ZiMkVkvzKbFodfLSSQhx+7uSDi0Gw49HIDRY3d35aF42YCYd+ishomg1eMa7CRHr03YwL2kFAG+VHUGRwEJem+vfTG+rZaWCnuuKNsK3CXNOh8KmsakoTri7eQil6kgFIyGEEAXDlzuh0xiw2aHtI7BwpJpceV0OGyxpB0m/Q3gx6LYWgvJ2Xf2rdcZDLsdryW2dEdSutctjuCNDKkUIIUTBs2emmqgXXQZq9nR7uEVJX5PjtHBvSAVqh1fL0znmzxbiPH8BbdEiBPd4xu0Y8kJRFLZMSEdxQIUmwbR6K479CzPZNiWdX1dmk37eTqtZcQRF3rr7S+1WhdUDk7FmKSRUC+ShPpH+DkkIIYTwuTw/fUZGyoXydpNlgjZvwpafIDAA5r8J7Rp4YGBLllr+M+M8xFWCTitBf6PtMa5bnryOH7N+JUQbzOiS/bwyR35lvj4E245daMLDifpqCdpo770U85ZDa7L59Yts0EDzKbGExsnuHSHE7e/0JXhiIBw7D3GRsHYqPFApDycmHc5NiEhSEyKe3QwhMV6L84LlMgNOTgDglSKdaeTDhED70WNY120AjYaQvq/4bN6rDi7JIvGQDUO4hgaDonw+vxBCCHEtK7ZDl7Fgd0CHRvD58Ju0olQU+PoVOLEZAkOh6xqILJGnubIdJvZm7gegsYv3AI6Ll7Dt2QeA4SlP7IrIP6NUihBCiIIl8zLsmqoePzoJ9O5VaLA57X8m8r8Q3wFNHjbLKTbbX1UihryOJsg3SfCHVps4/5MFfbCGhkOiAKjeJZzI4nrWDErh3PcWFnZJpM37cUSXvHlFp4Jox/R0Eg/ZCI7S0nxqLLoA2fwmhBDizpPnpIh58+Z5Mw7hYylGaDEEvj+s7oRdOR6aPOCBgZ0OWN4JLh2A0ELqbhcv7ZRNtRkZd+5dAAYk9CDBEO+VefLD9PE8zO+pVTEiF85Bf8/d/g4p31JP2dg0Jg2AOi9HUKq27MIVQtz+fjkBzQbBpRQoVQTWT4eKeXk3ceUPmNcQshKhSFWvJ0TYFTu9Towk3ZFJtdB7GFLct4kJpnc/AiCw2ePoy5fz6dyZiXZ2vWMEoN5rUZKwJ4QQokBYulWtvuhwQOdHYd4bN0mIANgxEfbPBY0WOiyDYnnbPQuwO+MnrIqNUoYEygWVcilmy5e5rTPq1EKXkLf+7p5kyXKSY3QCUilCCCEKjG2jwZoNxWtC5by1uriRb9K2c8maRJw+mlaxj+bpnJwFS3CePoM2vjDBLz7ndgx5mjPDyY7p6YC6DhpR9K/rUrlHguk8vzAreyeTdtrOwk5JtHo7lhIP3FprpUc2mjiwSG0N0nRizD9+RiGEEOJOcuvWfBIuO58Ej/RVEyJiImDzLA8lRCgKrHsNjqwBfRB0WQ0xZT0w8LVNPv8BaXYjdwWXpUd8B6/Nk1fWXXvI7N0fgNBxIzA82czPEeWfLcfJ6gEp2MwKJR40UKenb8uiCyGEP3z7MzR4VU2IqFwGdr2Xj4SIuVcTIqrAc95NiACYcWEOP2b9SrgulPfKjSVQ67tdKk6jkZx5CwAI6dfLZ/NetW1qOtZshaL3B1KlvWv904UQQghPWrgJuo5TEyK6PwGfDs1DQsQvi2HLm+px89lQMX/PjVvS9wDQKLJOnnbdXkvOilUAGNq2cul8d11tnREcpSUwVJalhBDC75IOw0+fqMePT/NIC+Q5icsA6F64DQbtzSsIK3Y72ROmARAysB+akBC3Y8iL3e8aMaU6iSmj54Fnwv/z54XuCqTL4niKVA4kx+hk+QtX+P2rbJ/E5gnpZ+1sGJkKQM0e4ZStH+zniIQQQgj/yXNaYLVq1fL8wL1//36XAxLedeSsWhr8bCIkFIIN0+Hu0h4afO/b8N276o1zuwVQopaHBv6v/Vm/s+iKurtlUulBBGj9m+HqOHceY9suYLNhaP8UocMG+TUeV22bks6VozZCYtRSalqdlFITQtzevt4NnUZDjhUevg9WTYLo/66D/NeVI7kJEZch/v7cChGxXo11p/F7Zl/8DIBpZYZSKijBq/P9m3neApSsLHR330Vgk4Y+nfvkt2aObjCj0cGjI6PRaOX6JIQQwr8+Ww89Jqt7A55vDh8NBO3N3u+f/hZWPqsePzQAauUvyVBRFLYYc5MiourmP2jAeeUKtp27AQhq45/WGRkXc1tnFJOqT0IIUSBsekOt/lupJZSu7/ZwB7J+58esXwnQ6OlW+Kk8nZOzeDmOEyfRxMUS/EoPt2PIi8TDVg4uUSsoNB4efd2WEmGFdHSYV4hvhqdydKOZb4anknbGzkN9Igr0s6ndqrB6YDLWLIWEaoE81EfaowshhLiz5flNcuvWrb0YhvCF/UfV0uBX0tUdsOunqyXCPeLQKlivVkngsalwb1sPDfxfDsXB0NNTUVBoF9uUWuFVvTZXXigmE+mtO+JMuoK+yn1EzvvQ5R07/nR4XTa/LM8GDTSbHEtYIVmgEkLc3uauhZeng9MJLerCktEQnJe2qclHc1tmXIb4++C5LRAa59VYr9hS6XdyLAoKXQq14smYxl6d798UhwPz7A8BCHm1p0+vczazky0T1LZO1buGUbjSzXcZCSGEEN40dy28NE1NiHipJbz3eh4SIpKPwqLW4LDCPW3V5+Z8+sN8gkvWJIK0BupE5L3lxt/lrFoDTif6GtXQlSnt0hjuMl5QK0VEJEj5biGE8LvTO+GPr0Grg8emeGTIq1UiWsU8SuHAm28eUBwOsieo18XQAa+iDQvzSBw3nNOpsHl8GooT7noi+KbtgwOCtTw5PZZds41893Em+/6XQeoZG00nxBAQVDCrHu2Ynk7iIRvBUermt+slfQghhBB3ijw/gY4aNcqbcQgv234AWg+DTBNUrwjrpkGhKA8Nfv4HWNFZXRF68BV1x4sXfZ60kt9MR4nUhfNmyT5enetmFEUh48U+2PcfRBMXS9SqJWhCb72S3qmnbWwcrb5wqv1SBKXr3lq98YQQIj8UBaYugmH/U79+tqm6u/Om5a4BUo6pFSIyL/ksIcKpOOl3YixJthTuCi7LmJKveXW+a7Gu24Dj5Ck0UVEEd+vk07n3/S8D43kH4fE6HuotO1uEEEL41/++hp4z1ONeT8E7/fJQZTz7CsxvBuZUKF4L2s3PQxbFf11tnfFQeA2Cta49s1m++AqAID+1zgAw5rbPiCwmSRFCCOFXigLrB6rHNV6EQpXcHvKy9QqrU7cA8EKRvLU7tixfiePIMTQxMQT3fsntGPLity+zufSzlYAQDQ0GReXpHI1WQ71+UUSXCmDj6FSObjCTcfEKT82OIzSuYG0uO7LRxIFFahWMphNjiCgq11whhBCiYKYxCo9a9S00G6wmRDSoClve8mBCRPoZWPgk2MxQ4Qm1J6oXd48mWVOYcv4jAIYUf4VCAd7t3X4zpulvk7NoGej1RK1YgK50Kb/G4wq7RWH1gBRsJoXiDxio2zPC3yEJIYTXOJ0w4L2/EiIGd4ZPhuQjIWJOA8i8CIUr5yZEFPJmuAB8eHkROzK+I0hr4INy4wjW+T5xzfTOBwAEv/isT5P/kk/Y+GFeJgCNhkURGCK3rkIIIfzngy//Soh4tV0eEyJsZljYClJPQHQZ6PI1BLjWz3urcS/gRuuMtDSsW7YDYPBjUkTGhdz2GQkF6wWSEELccX5bBhd+gMBQaOiZDZGfJa3ErjioFV6V+0LvuunnFaeTrHFqhYqQ13qhDc9LP0v3mI0Ods4yAlC3VwTh8flLGKjcOpT2HxciKFLL5V+tLOiUyJWjVm+E6pL0s3Y2jEwFoGaPcMrWd+2+QwghhLjduLSy7HA4mD59OjVr1qRIkSLExMT845coOOatg/YjwWKFVg/D2qkQ4al3GTlGmN8cshLVfupPLwWdd7NOx52bTaYjmyqhd9O1sP8WcQAs32wka8gIAMLfnkrgI/X8Go+rtk1J48oRG8ExWlpMjUWrl1JqQojbk9UGz0yEt5erX8/oDZNezmMuX8rx3AoRF6HwvT5LiPgp6zemnFfbVowr2Z+7Qsp6fc5/s/9+COvmbaDVEuKjXTugVmPaPC4Npx3KNQiifCNZyBFCCOE/s1dAn7fU49efhpl98nAP4XTCF8/Aub0QHA3d1kFYYZfmT7dn8GPmrwA0djEpwvL1OrDb0Ve+B33FCi6N4QkZUilCCCH8z26BTUPV44cHQ7j7PZbNzhwWJK0C4IX4PFaJWPkVjkN/oImMJKTvK27HkBe73jJiTncSW15P9S6uJWGUeDCILosKE11KT+YlB4u7JXHyW7OHI80/u1Vh9cBkrFkKCdUCeaiPVFsUQgghrnIpKWLMmDHMnDmTDh06YDQa6d+/P23atEGr1TJ69GgPhyhcNXMpvDBFXYd5tiksGwNBeemVnhcOGyxpB0m/Q3gx6LYWgrxbYWB3xk+sTNmABg2TSg1Cp/HfrhL7kaMYOz0HikLwi88S3PNFv8Xijj++MfHzsmzQQPNJsYQVlp06QojbU7YZWg2DRZtAr4PPhsNrT+fx5NQTakJExgUodA88t9XlFxr5YbRn0vv4SOyKg5YxTehU6Emvz3ktV6tEGFq3QFeqpM/mvbDfyvkfLegNGhoNi0bjxUpUQgghxI28tQxem60eD+4M03rlMaly01D4fTnoAqDTl26VJd9h/B4HDioGl6GEoahLY+Tkts4wtGvtchyeYLxaKaKYPH8KIYTffP8BpJ2CsCIea4W8KmUjqfZ0igcW4fHom28eU5xOsq9WiejXE21UlEfiuJFLv1r4eUU2AE2GR6MLcP05M7pUAJ0XFabEgwas2Qpf9k5m/8JMT4Xqkh3T00k8ZCM4SkvzqbFu/XxCCCHE7calpIiFCxfy8ccfM2DAAPR6PZ06deKTTz5h5MiR7Nu3z9MxinxSFLUs+KD31a8HdMxHafC8TvD1K3Bis1peresaiCzuocGvzeq0Mez0NAC6F36KKmF3e3W+G3EajaS36oBiNBLwUB3C3515S76oSTtjY+NotZRa7RcjKP2Q78uxCyGEL6QY4dH+sPF7CAmCVROh62N5PDn1hNoyI+M8FLobnvdNQoSiKAw8NYlz1kuUMiQwpfQQv1xrnKmpmOcvASDk1Z4+nfvqYtLdLUJkJ6kQQgi/mbZIbb0FMKwbTHwpjwkRP3wEu6aqx63nQplH3Ipja/oeABpF1nHpfGdmJtaNao/3ID+2zrBkOckxOgGIkOu7EEL4hzkdto9TjxuPVdd33aQoCnMuLwPgufj2edrMZlm9Dvsvv6EJDyekXy+3Y7gZp0Nh8/g0UOCeFiGUeND9tdDgSB3t/leIyk+Fojhh66R0Nk9Iw2lXPBBx/hzdZOLAoiwAmk6MIaKoXGeFEEKIv3MpKeLy5cvcd999AISFhWE0qj24WrRowdq1az0Xncg3hwNemQ5TFqpfT3oZpvbM46JNXu2cBPvngkYLHZZBsWoeHPzaPr68hOM5Z4jVRzO4+Mten+96FIcDY5ceOI4cQ1s8gcgvFqAJDPRbPK6yWxRWD0jBmq1QvIaBur28W+VDCCH85Wwi1O8D3x2CmAjYPAua1s7jyakncytEnIe4SrkVIuK9Gu9VC66sYl3aNvQaHe+XG0uEPswn8/6b+ZPPwGxGX+U+Auo/7LN5My7ZObZFLT1avYt/fnYhhBBi0nx44yP1eOSzMLZHHp+tj62HNb3V40ZjoGpXt+JwKk62GdUNKI2jHnJpDOva9WCxoKtYAd2997gVjzuuts4IitRiCHNpSUoIIYS7dk4Ec6paCbHacx4ZcnfmTxw2nyBEG5ynKoeKopA9djIAIX1fRuuDlty/rMgm8XcbgWEaHhkY5bFxdQEaHh8bTb3X1VYVBxdnsbJPMpYsp8fmuJn0c3bWj1A3v9XsEU7Z+tJ+UgghhPg3l55AixcvzqVLlwAoV64cGzduBOCHH37AYPBUfwaRXxYrdBwDn6wBrRY+HKiW9vSoXxbD5uHqcfPZULGZhyf4r/OWS8y6OBeAESX7EKX33wv8rBHj1MWkoCCiVi1BF++bl2Oe9v2cDJL+sBEcraX51Bi0+luv0oUQQtzModNQrzf8cRZKFIads6FWXt8BpJ1SEyKM59SEiOe3eaTHal4cNh1n9Jm3ABhavBdVw/zz4kKx2zG9q74JCunXy6eVKg4uyUJxQMlaBgpVvPWSD4UQQtz6xn0Kb36iHo/tAaOey2NCxKWfYUl7cDqg2jPQYITbsfycfZgUexrhulAeDLvfpTFyVqwCwNC2lV8rHWZcVFtnRCZI6wwhhPCL9DOw7x31+PGpoPNMNYFPLi8F4Om4ZkTqw2/6eeu6Ddj3H0QTGkrI6308EsONmFId7Hpb3dj5cJ9IQuM8ex3SaDTU6hFBy1mx6IM0nN6Vw+JuSRhzkwG9yW5VWD0gGWuWQkK1QB7qE+n1OYUQQohbkUtJEU899RRbtqhlF/v27cuIESOoUKEC3bt35/nnn/dogCJvMk3w5BuwcgcEBsCS0fCip1uPn9kFK59Vj+v2h1reL2sGMOrsW5idOdQKr0q72KY+mfNacpauwDRpOgARc94noIb3K2R4y5ENJgAeGRhFeLyUUhNC3H72/qZWiDh/Be4uBd++B3eXzuPJaafVlhnGsxB3l9oyw0cJESaHmZ7HR5CjWGkUWZeXinT0ybzXYvlqDc5z59HExRLUqb3P5rWZnfyyXO3xWr3LzRfThBBCCE9SFBg1B0bPU7+e+BIM757Hk43nYUFzsGZB2UbQ8n8eKdu4NX0vAPUjahKgzf/zm2IyYflmE+Df1hkAxgvqyyFpnSGEEH6y+U2wW6BMA49tdjuVc47N6bsBtXXGzSiKQlZulYjgXi+ijYvzSBw3snOWkZwMJ4XuCqBqR+9VI6z4aAgdPy1MaJyW5GM2FnZM5NIvFq/NB7BjejqJh2wER2lpPjUWXYBsfhNCCCGuxaWn0MmTJ/953KFDB0qVKsWePXuoUKECTz7p6Tfx4maS06HFEPjhDwgNhpXjockDHp4k5Tgsag0OK9z9lJpJ7AOb0naxPm0neo2OiaUG+m1Hi23/QYzPqb3UQwa/TnDnp/0Shyekn7OTcsKORgflG0opNSHE7WftXugwCswWqH0PfD0ZYvO6USLtNMxtoCZExFbMrRBR1IvR/tOIMzM5lnOaIgFxvFX2TbQa/5WVNr39PgAhLz+PJsj9Xqt5dXitiZwMJ5HFdZR9xHfzCiGEEIoCb34Mk3PbUU7tCQPymp9oyYQFLSDjglqOvOMXoPdMtaOtxj0ANI6q69L5lvWbwGRCW7oU+upVPRKTq67umI2QShFCCOF7F/fDzwvU48ene6zf8rzEFSgoNIqsS/ngUjf9vHXTVuzf/wjBwYQM6OuRGG7kwgELv32pJt43eTPa6xVzi1QOpMvieL7sk8yVIzaWPneFJybEUOmJEI/PdXSTiQOLsgBoOjGGiKKSdCiEEEJcj0eukrVr16Z27bw26BaedD4JnhgIh8+oL3zWTIGad3t4ElMKzG+m/p7wILRbAFrvL2CYHTmMODMTgBfjO1IppJzX57wWZ1IS6a07gtlMYNPHCJs42i9xeMrJnWqP9oRqBoIipIerEOL28vl6eGEqOBzwRC1YNkZNGMyT9DNqy4z0MxBbwecJEV8mb2BJ8ho0aJhdbgyxAdE+m/vfbAd+xvbtHtDrCe75os/mVRSFnxZkAlCtUzhanexwEUII4RuKAm98CNOXqF/P7AP98looyWGHpU/D5Z8hLB66rYXgKI/EdcWWysHswwA0jKzj0hiWL74C1CoR/mydAZBxIbd9hlSKEEII31IU2DBIPb6/MyTU8MiwmY5sll5ZA8CLRTrkIQyF7DGTAAh5pYfXWxM77QpbJqQBULl1KAnVfNP6O6Konk7zC7NmUAond+SwZmAKaWds1H4pwmPX4vRzdtaPSAXgwefDKVtfNr8JIYQQN+LSG9FJkyYxd+7c/3x/7ty5TJkyxe2gRN4cOQv1+qgJEcULwY53vJAQYctRK0SkHIOoUtB1NQR6Pqv1WmZf+oxz1ksUDSzM6wn+acuiWK2kt+uK89x5dBUrELloLhrdrb2j5eSOHADKye5bIcRtZsYSeG6SmhDR9TFYNTE/CRFncxMiTv+VEBFRzJvh/sOpnHO8cVqtwvRaseeoG1HdZ3Nfi+mdDwAwtGuNLsF3fw/nvreQctxOQLCGyk+F+mxeIYQQdzZFgYHv/ZUQ8U6/fCREKAqs7QvH1kNAMHRZDdGlPRbbttzWGfeHVKJwYGy+z1csFiyrvwHA4OfWGQAZuZUiIhMkKUIIIXzq2Ho4uRV0gdBkgseGXXJlNVlOExWDy1Av4sGbft62bQe2PfvAYCBk0Gsei+N6Di7NIukPG4YIDfX757WEpGcEhmhp/U4cNbqr7Tp2z87gm2Gp2K2K22PbrQqrByRjzVIoVjWQh/v69mcTQgghbkUuJUV89NFHVKpU6T/fv/fee/nwww/dDkrc3E9H1F7pZxPhrpL57JWeV04nfPk8nNkFQZHQbZ2668UHTpjP8sEltWbpmJKvEarzTSLGv2X2G4Tt2z1oIiKI+moJ2qgov8ThKVaTk3M/qEkRZR+R7GEhxO1BUWDIBzBYfY9P/w4wbygE5HWtPf2s2jIj7RTElM9NiEjwVrj/YXFa6XV8JFlOE7XCq/JawnM+m/tanElJ5CxaBkBIv14+nftqlYh7W4VKNSMhhBA+oSjw2jvw1nL16/f6Q+82+Rhg93T44UO1BHn7xVD85i+E8mOrUU2KaBTlWpUI66atKJmZaIsVJaCWZ2NzRcZFtVJERLFbe7OBEELcUpwO2DBYPa7d12PJew7FwbzEFQD0iH86TxUQssaqbbmDX3wWXdEiHonjerKTHeyabQSg3qtRhMT4/tqj1WloODiaJiOi0ejg0GoTK168ginN4da4O6ank3jIRlCklhbTYtEFSJVFIYQQ4mZcWm2+fPkyRYv+t5x0oUKFuHTpkttBiRvbth8avwbJRqhxF+yYDSW9kauwdST8uhi0erUfauF7vDDJfymKwvAz07EqNhpG1qZZdAOfzPtv1l17MH84BzQaIhfNRV/pLr/E4Uln9ubgsEFUCT0xZWRnjhDi1me3w/OT/9rZOeUVmNYLtHm9wzGeUytEpJ2CmHI+T4gAmHTuA34x/UGULoJ3y41Br/Hvv8+mj+aC1Yq+5gME1q7ps3nTz9k5sV1N3KvWOcxn8wohhLhzOZ3QZxa8u1LNafhoELySn2IKv6346yVT01lwt2crMdicdnYYvwOgUVRdl8bIyW2dYWjTEk2eb5C8w5rtxJzuBCBC2mcIIYTvHPgUkn6D4Gh4ZLjHht2cvpszlgtE6SJoG/vETT9v3bkL245dEBhI6JD+HovjenbMSMeapRB/TwD3t/dvJcKqHcJo+0EhAsM0nP/JwqLOSaSctLk01tFNJg4sygKg6cQYIorKNVUIIYTIC5eeiEuUKMHu3bv/8/3du3dTrJjvSizfiVZ9C80GQ6YJGlaDzbOgUJQXJto/D3bkllJr9T8o19gLk1zb6tQtfJvxAwZNIONK9fdLz1NFUcgaOgpQM5cNzW9+Y38ruNo6o2z9IL/3khVCCE/Q6UCnVX+f8wYM7JSPk43ncxMiTkJ0WTUhIrK412K9lk1pu/g4Uc3omFX2TYoFFvbp/P/mzMzE/MEnAIS82tOncx9YnAkKlH4oiNiyAT6dWwghxJ3H6YSeM+DDr9SEiE+GwAst8jHA2b3wRTf1uHZfqNPP4zH+lPUrGY4sYvRRVA3Nf69MxWbD8tVaAILatfZwdPlnzG2dERSpxRAmFaGEEMInrNmwZaR6/MibamKEh3xyWa0w2LVwK4J1N2/Tmz1Obbsd/Hw3dMW9uxnh3I85HFptAg00GRGNVuf/ddDSdYPovDCeyOI60s/ZWdQ1kbPf5eRrjPRzdtaPSAXgwefDKSeVgIUQQog8c+kp9MUXX+S1115j3rx5nDlzhjNnzjB37lxef/11XnzxRU/HKHLNWwftR4LVBq0ehjVTIMIbSa4ntsBXL6nHjwyH6r4r451uz2DM2bcB6FOsO2WCSvhs7r+zfrMR2669EBRE6MihfonB0xSnwslvzYC0zhBC3D40GvhwAOycDc82zceJGRfUlhmpJ9SEiB7bIdK315yL1iRePzUeUEuNPhZdz6fz/5vidJLR9QWcly6jLVGcoPZP+Wxua7aTX1dmA1C9q1SJEEII4V0OB7w4FT5Zo1aX+nRYPu8jUk/AwpZgz4G7nlSrRHjBFuMeABpE1kanyX/Jb+v2b1HS0tAWLkTAw65VmvCkjAtqqfDIBGmdIYQQPrNnFmRehKjSUKu3x4b93XSMPZk/oUNH98Jtb/p56559WDdvA72e0DcGeCyOa3HYFLZMSAfg/nahFL3P4NX58iOuXACdF8ZTrEoglgyFFS9f4ZcVWXk6125VWD0gGWuWQrGqgTzcN9LL0QohhBC3F5dqKw0aNIiUlBR69eqF1WoFICgoiCFDhjB06O3xArmgmbHkr17pzzVTXwDpvVEZK+kQLGkLTjvc1wkaj/PCJNemKAqvnxzPZVsypQ3F6VW0q8/m/kccTidZw0YDENLnZXQJt0f1k8TDNrKvOAkI0VD8gYLzMCCEEO7S66H2vfk4IeMCzGmQmxBRJrdChG8TIhyKg74nRpFmN3JfyF0ML+G5xSlXZY8Yi+XrtWAwELViAZrAQJ/N/fvX2VizFKJL6ynz0M13GAkhhBCucjjU1lsLNqoJEZ8Ph05N8jGAKRU+bwamZChWA55eDFrvvOTfmq4mRTSOquPS+ZYVXwJgaN0Cjc7/iQhXK0VI6wwhhPCRrET4Vq3OwKMTQe+59cA5l5cC0DymIQmGm/d1vlolIuiZLuhKlfRYHNdyYFEWycdsBEdpqdev4CUOhMbqeHpuYdaPSOWPdSY2jk4j7Yyd+q9HotFev6LFjunpJB6yERSppcW0WHQB/q9+IYQQQtxKXHoS1Wg0TJkyhREjRnD48GGCg4OpUKECBoO8aPU0RYFh/4Opi9SvB3aEya+oO2M9LvMyzG8GOUYo9TC0meelia7to8uL2Zj+LYGaAD4sP54grX/+e7Is+wL7z7+iiYgg9A3v97fzlZM71CoRpesEoQ+Um2YhxB0q44LaMiP1uLpT5vltEOXdBZlreevCPPZlHiRUG8L75cdh0PouAeFazIuXkT1xOgARn7xHQM0HfDa34lTYv1DdGVOtc9gNF4GEEEIId9jt8OwkWLxZbb214E14ulF+BrDAotaQchQiS0LX1RDonR7lFyyX+cN8Ei1aHomsle/zFYcDy6o1ABjatvZwdK65WikiQipFCCGEb2wbC9YsSHgAKnfw2LDJtlRWpWwC4IUiNx/X9sNPWNdvAp2O0KHerRKRleRg93tGAOq9FklwVMG85ugNGppPiSGmtJ4972fww7xM0s7YaTY5hsCQ/xb3PrrJxIFF6nNz04kxRBSVBEMhhBAiv9xq4nj58mVSU1MpV64cBoMBRVE8FZdA3cHy8rS/EiImvwxTenopT8FqUst/pp+B2ArQeZVHs4dv5ofMn5l47n0AxpR6jftC7/LZ3H+n2GxkjVBLmYcMfBVtbKxf4vCGEzuuts6QHbhCiDtUxkWY2whSjqkJET22Q1Qpn4exJ2M/b12cB8Dk0oMp66dWUVfZfjpAxvO9AAgZ/DrBXTv6dP7Te3JIO20nMExD5VbeebEkhBBC2OzQdbyaEKHXweJR+UyIUBT48nk48y0YIqDbOggv6rV4r7bOqBFWmWh9/ne52nbtwZl0BU10NIEN63s6PJdcrRQRKZUihBDC+64cgR8/Uo8fn6aWR/KQ+UmrsChWqoXeQ42wyjf9fNbVKhFdO6IvV9ZjcVzL9mnp2EwKRe8P5L42Bfv5UqPRULdXJM2nxKALgONbzSx9NonMRPs/Ppd+zs76EakAPPh8OOWkLbIQQgjhEpfuhlJSUmjcuDEVK1akWbNmXLp0CYAePXowYIB3sz3vFBYrdBgNc9aq96wfDYJBnb00mdMBK7rAhR8gJFZd3AnxXTJAii2NV46PwIGD1jGP0q2Q73qY/5t53nwcx0+gKRRHyGv+L2XuKdnJDhJ/twFQtr7cOAsh7kCZl9QKESlH1USI57f5JSEi1ZZO3xOjcOKkQ1xz2sQ97vMY/s5xOZH0Vh0gJ4fAZo8TNnG0z2P4aYG62+W+p0IJDPXcQp0QQghxlc0OncfC8m0QoIdlY6HtI/kcZMtI+GURaPXQ6QuIz0/vrvzbmr4XgMZRdV06P+eLrwAwtGqOJiDAY3G5I+NCblJEgiRFCCGE1216Q13zvasFlGngsWGtThufJ60E8lgl4sDPWFevA62W0GEDPRbHtZzZl8Mf35jQaKHJm9G3TBXCu5uH8vTcwgTHaEk8ZGNh5yQSD6sty+1WhdUDkrFmKRSrGsjDfQteOxAhhBDiVuHSyvPrr79OQEAAZ8+eJSQk5M/vd+jQgfXr13ssuDtVpgmefAO+3AmBAbB0DLzQwosTbhgMh1eplSE6fwWx5b042T85FSevnhzDZdsVygWVZEqZIWh82LLj7xSzmewxkwAIGz4IbXi4X+LwhpM71SoRRSoHEhpXMMvGCSGE1/w9ISKyJDy/HaJL+zwMRVF47eQ4LtuSKR9UivGl/JtIqlgsGJ/qhPPCRXSVKhK5aK7P+42nnrJxelcOaKBap9vnuiuEEKLgsNqgwyhYuUN9vl4xDlo9nM9B9s+DHWpFQVp+BOWaeDzOv8txWtiV8SMAjVxIilCcTiwrvwYgqG0rj8bmjoyLue0ziskzqRBCeNXpb9W1Xo0WHpvi0aFXp24hyZZCkYA4mkffvORS9rjJAAR1bIe+YgWPxvJ3DpvClglpAFTpEEb8Pf5tUZlfCdUMdFkUT0xZPVmJDhZ3T+L4NjM7pqeTeMhGUKSWFtNi0QXcGokeQgghREHkUnr+xo0b2bBhA8WLF//H9ytUqMCZM2c8EtidKjkdWgyBH/6AsGD4ciI0qu7FCb97H/bMVI+f+hRKPeTFyf5r9qXP2W78jiCtgY/KTyBM57+yZqb3/ofz4iW0JUsQ/MoLfovDG07uyAGgbH1pnSGEuMNkXlZbZiQfgcgSassMPyREAHycuIQtxj0YNIF8UH48ITr/Ve5RFIWMV/ph2/c9mqgoor5ehjbS9ztO9uf2RC33SBBRJWXXqBBCCM+yWKH9SFi7FwyB8MU4aFo7n4Oc2AxfvaQePzIcajzv8Tj/bV/GAczOHIoEFOKe4PxvWrB99wPOCxfRhIcT+Gh+eoR4jzXbiTndCUCEtM8QQgjvURTYMEg9rtEDCt/jwaEV5iQuA+CZ+LYEaG/877ntl9+wfLkaNBpChw/yWBzX8uPnmaSeshMco71lqylEFdfTeUE8qwckc2avhVWvJkNut/KmE2OIKCrXTyGEEMIdLlWKyM7O/keFiKtSU1MxGAxuB3WnOpcEj/RVEyJiI2HzLC8nRBxZC2v7qsdNJsD9vu0hvjvjJ6af/xiAiaUGcXeI7ypU/JvTaCR70gwAwkYPQ3Mb/Xdstyqc3pubFCE954QQd5KsRJjXCJL/UBMint8O0WX8EsrPWYeZeO59AEaV7Mc9frzmAZjeeo+cTxeATkfkss/RV/B9PJZMJ7+vygagelepEiGEEMKzcizQ5k01ISIoEFZNdCEhIvE3WNwWnHa4vzM0HueVWP9tq/Gv1hmuVFK0XG2d0eKJAvNsa7yots4IitBiCJN2WUII4TW/r4Dz30FgKDQa49Ghf8z6hZ+zDxOkCaRrodY3/Xz2hKkAGNo/hf6euz0ay99lXLKz98MMAB4ZEEVQxK17nQmK0NLm/UJUeTr0z4SIB58Pp5ys6QohhBBuc+kOoV69enz++ed/fq3RaHA6nUydOpWGDRt6LLg7yR9noF5v+OMsFC8EO2fDg967V4SLB2BZB1CcatZw/aFenOy/kqwp9D4x8s+e6h0KNffp/P9mmvEOSmoqukoVCerWya+xeNr5Hy3YTAqhhbTE310weskKIYTXZSWqFSKuHIaI4vD8Nogp65dQMh3Z9DoxAptip1l0Q7oXfsovcVxl2bCZrIHDAAifOQmDn3aQ/vplNjazQmx5PSVrFYwXNkIIIW4PZgu0Hg7rv4NgA6yeAo89mM9BMi/B/OZgyYBS9eCpueCjVo9b0vcA0CiqTr7PVRSFnKtJEe1aezIst2RcyG2dkSCtM4QQwmvsVtiUu8b70EAIL+rR4T++vBSANnFPEBMQdeNQDh3GsvxLAELfHOzROP5t29R07GaFhOqB3Nvyvxs5bzW6AA1NRkTTdGIMD/WJuGUrXwghhBAFjUs1l6ZNm0ajRo348ccfsVqtDB48mN9//53U1FR2797t6Rhvez/+Ac0HQ7IR7ioJ66dDyXgvTmg8DwtagDVb7YX65Ac+W9wBcCgOep0YyRVbKpWCyzKh1ECfzX0tzqQkTDPfBSBs/Eg0+turFNnJHWYAytYPRqOVvnNCiDtAVlJuQsQhiEjITYgo55dQFEVhyKkpnLZcoHhgEaaVecOlHZ+eYj96DGOHZ8DpJKjHMwT37emXOJwOhQOLMgGo3iXcr38nQgghbi+mHGg1FLbuh9BgWD0ZHqmaz0Gs2bDgSTCehdiK0PlL0Psmge+E+SynLecJ0Oh5OOKBfJ9vP/AzztNnICQEwxOPeiFC11ytFBEprTOEEMJ7fvgQUk9AWLyaFOFB5y2X+CZtBwA94p++6eezJ0wDRcHQpiUB91X2aCx/d2q3mWObzGh00GR49G3zbKnRaLi3pf/aTAshhBC3o3w/jdpsNl599VVWr17Npk2bCA8PJysrizZt2tC7d2+KFvVsBurtbtt+aD0MsszwwF2wZioUivLihDkZ6m6XzItQ+F7ouAJ0vq0eMOPCJ+zN3E+oNoSPyk8kWBfk0/n/LXvSDJTsbPQPVMfQppVfY/E0RVE48WdShH//noUQwieyktSWGX8mRGyHWP+1qliSvJqvUjehQ8d75cYSpY/wWyzO9HTSn3waxWgk4KE6RLw3028LRid35mA87yAoQss9LW79nTxCCCEKhiyTmhCx/SCEBcPaqfDw/fkcxOmAZZ3g4k8QEgfd10FIrDfCvaatRrVKRO3waoTp8v8yxPLFKgAMTR9Fc422p/4ilSKEEMLLzOmwfax63GgMGMI8OvyniV/gxMnDEQ9QKeTGmw7sR4+Rs2QFAKFvDvFoHP+Yx6qwZUI6ANU7h1HorkCvzSWEEEKIW1++kyICAgL45ZdfiI6OZvjw4d6I6Y7x5U7oPBasNmhUHVZOgHBvrlk47GrLjMRfIKwIdFsLQb4tv7UtfS9vX/wUgKllhlA+uJRP5/83x9lzmN7/GICwiaNvm2ziq1JP2TGed6ALgFJ1JClCCHGby74C8xpD0u8QXkytEOHHhIij5lO8eWYmAIOLv8QD4ff5LRbF4cDY8VkcR4+hLVGcyC8W+LXH+P6FapWI+9qFEhB86/Z7FUIIUXBkmuDJIfDtL+pz9TfToI4rG1O/6Q9HVquVIbp87fNqU1vT9wJutM5Ykds6o23BSviXShFCCOFl304GUwrEVYLqPTw6tMlhZtGVrwF4Ib7DTT+fPXE6OJ0EPtmMgGpVPBrL3/0wL4P0s3ZC47TU7S0tJoQQQghxYy6tQnft2pU5c+Z4OpY7yty18PQoNSGidT21pKdXEyIUBdb2hWPrISAYuq6GKN8mJFywJNL35BgAuhduQ+vYx3w6/7VkjZkEVisBDesT2KShv8PxuKutM0rUDCIwRF46CSFuY38mRPym9k19fhvEVvBbOGZnDj2Pv0mO00L9iJr0KtrVb7EAZA0ZgXXDZggOJuqrpejivdmn68auHLNydp8FjRaqdvTs7iUhhBB3poxsaDZITYiIDIMNM1xMiNj7Nux7Rz1uOx9K5j8xwR3HzKfZm7kfgEaRdfN9vuP3QziOHgODAUPzJzwdnlsyLqhJEREJkhQhhBAel34W9r6lHj82BXSe/bd2efI3GB2ZlDYUp3HUja9P9hMnyVmwBICwEd6rEpF+3s53/1OT7RsMisIQJuueQgghhLgxl+6Q7HY7c+fOZfPmzdSoUYPQ0H+WdJw5c6ZHgrtdTV8MQz5Uj59vDh/0B7231wV2z1D7ymk00H4xJOS/N6k7bE47vU6MIM1u5L6QuxhV8lWfzn8t9j+OkPPpAuD2rBIBcGJHDiCtM4QQt7nsZDUhIvHX3ISI7RBX0a8hjT7zNn+YT1IoIIZ3yo1Cq/HfAo35s4WYZqgveCI/+8irO3Xy4sCiLADKNw6W3aJCCCHclp4JzQbDd4cgKjch4oFKLgx0+Cv45nX1+PGpULm9R+O8GYvTSq8TI7EpdhpE1qJcUMl8j5HzhVolIvCxxmgj/Ney61oyLqrtMyKLSfsMIYTwuC0jwG6B0vWh0pMeHdqpOJmbuAyAHvFP3/TZNnvSDHA4CGz6GAEP1vBoLH+3bUoadotCiZoGKjUrOO2ihBBCCFFwubQS/dtvv1G9enUAjh49+o8/ux1fLHuKosDQj2DaYvXrQZ1g0stqnoJX/f4FbBikHj8xE+72fRnNyec/4MesX4nQhfFR+QkEaf1XsvuqrBHjwOnE0KoFgbVr+jscj8vJcHLhgAWAsvWD/RyNEEJ4icMOnz2mJkSEFYHntvk9IWJ16hYWXFmFBg3vlB1FoYAYv8Vi3fc9GS/1BSB0xBCC2rfxWywAZqODQ6tNAFTvIlUihBBCuCctE54YAD8egZgI2DgDqrlyG3D+B1jeSX1of/BleGigx2O9mUnnPuCQ6Rgx+ihmlnnTpbUVS25SRFABa51hzXZiTncCECEJkUII4VmXDsLP89Xjx6d7fKF5h/E7juecIVwXytOFmt3ws47TZ8j5bCGgPn96y4ntZk5sy0Grh8bDo+V9hBBCCCHyxKWn0W3btnk6jtuewwE9Z8CcterXk1+GQZ19MPG5fbAit2R3rT5Qp58PJv2nDWk7+fDyIgBmlhlOqaAEn8fwb7afDmBZsQo0GsLGj/B3OF5xencOigNiy+mJKiELT0KI25ROr17bNg2D57ZAobv8Gs5Zy0UGn5oMQO+i3agf6b+kO8f5Cxif6gRWK4bWLQgdPdxvsVz16xfZ2HMUClcKoHgN/ydICiGEuHWlGOHxAXDgGMRFwsaZUKW8CwOlnYaFT4LNDBWegObv+mDnwj9tS9/Lx4lqqfGZZYYTHxiX7zHsR49h//V30OsxtLzxSytfM15UW2cERWgxhEt5cyGE8KhNQ9Wkvvs6QvEHPT78J4lLAegY9yRhutAbfjZ7ykyw2wls0pDAOrU8HguALcfJ1slpANToFk5cuQCvzCOEEEKI24+8KfWBHAt0HQ9f7gStFj4cCD2a+2Di1JOwsCXYc+CuFtDsLZ8v7py1XOT1k+MBeDG+I01jGvh0/uvJGjYagKCuHdFXvte/wXjJyR1mAMo+IlUihBC3uWrPwL3tIPDGCzTeZnPa6XV8JBmOLGqEVWZgwot+i0Uxm0lv3RHn5UT0991LxPxP0Gj9+xLCaVf+bJ1RrUuY7OYRQgjhsivpakLEz8ehUBRsngWVy7owkDkd5jeHrEQoUgU6LPN4H/abuWJL5bWT4wB4rnA7Ho1+2KVxrlaJCGz0CNroaI/F5wkZF9TWGREJ0jpDCCE8rtnbsPlNaDLB40MfM59mu/E7tGh5vsiN20o5zp3HPOdzAEJHvuHxWK76/pNMjOcdhMfrqNOzYLWKEkIIIUTBJkkRXpZpgjbDYet+CAyARSPhqfo+mNicpi7uZF+BotWg/WLQ+nYBwuK08srxNzE6MqkeWplhJXr5dP7rsW7fiXXjFggIIGyM/3fNeoPToXBqVw4AZesH+TkaIYTwAT8nRABMvfARB7J/J1IXzvvlxhKg9c9tlqIoZPTohf2nA2jiYon6ainaMP+3qji+zUzmZQfB0Vrubub//72EEELcmpLS4NHX4bdTEB+jJkTcU9qFgexWWNIWrhyCiATougYM4Z4O94YURaH/yfEk29OoFFyW4SV7uzxWTm5ShKFdaw9F5zlXK0VESusMIYTwvLiK0HGZV4aek6iO+1j0w5Q0FLvhZ7OnzgKbjYAG9Qis95BX4kk7a+P7uRkANBgSRWCIVB8SQgghRN4ViDuH9957j9KlSxMUFEStWrX4/vvv83TekiVL0Gg0tG7d2rsBuig5HZq8piZEhAXD2qk+SoiwW2FxW0j+AyJL5C7u+P5lyLizs/k5+zBRugg+LD+OQK3/y5kpikLW0NEABL/0HLoypf0aj7dc+sWKOd2JIUJDQlUpTy6EEN62LX0v719aAMD0MsMobijqt1hMU2aSs3g56PVErVhQYK51+xeoVSKqtA9Db5AqEUIIIfLvcgo0fk1NiCgaC9vedjEhQlHg65fh5FYIDIOuayGyuIejvbm5icvZatyLQRPIe+XGEqx1LaHdcfoM9p8OgFZLUOsWHo7SfRkXpVKEEELcatLsRlYkfwPAC/EdbvhZx8VLmD/+FIAwL1WJUBSFrZPScVihVB0DFR+VyrhCCCGEyB+/J0UsXbqU/v37M2rUKPbv30+VKlV4/PHHSUpKuuF5p0+fZuDAgdSrV89HkebPuSSo3xd+PKL2N93yFjSq7oOJFQW+ehFObVN3uXRdAxE3zuT1hq9TNjMvaQUA75QbRYKhiM9juBbL6nXY9n0PwcGEDh/s73C85mrrjDIPB6PVy4snIYTwpkRrMv1yy14/U7gNzfzYKsqyet2fLaLC351B4CMF4z4p8bCV8z9Z0OqhSgepEiGEECL/LiZDo9fg0GlIKATb3oG7Sro42PbxcOBTtZpih2VQtIrnAs2jQ6bjjD/3LgAjS/alUkg5l8fKWfk1AAH1H0JbqJBH4vOkDKkUIYQQt5zFV1ZjduZwT0gFaodXu+FnTdPeAouFgIfqENDAOzsCj28xc+rbHLR6aDw8WtoxCiGEECLf/J4UMXPmTF588UWee+457rnnHj788ENCQkKYO3fudc9xOBx06dKFMWPGULbsjRuHWiwWMjIy/vHL2/44A/V6w5GzUKIw7JgND1Ty+rSq7ePg4Oe5izvLocj9Ppr4LyfMZxl0ahIAfYp2p3FUXZ/HcC2Kw0H28DEAhPTrha5owUjU8IYTO9TWGeUekdYZQgj/8sd12JccioO+J0eTYk/j7uDyjCz5qt9isf9+CGPn50FRCO71IiEv9/BbLP+2f2EmABUfDSE8Xl6ICCGEr9wu1+HzSdCo31/P2NvehgquFnY4uAC2jlSPW7wHFZt6LM68Mjty6H1iJFbFRpOoh3imcFu3xrOsWAVAUNtWHojO84wX1KSIiAS5BxBC3Flu1euwXbEzL1Hd7PZCfIcbJiA4EhMxfaSu44eOfMMryQpWk5Otk9MBePC5cGJK+78asRBCCCFuPX5NirBarfz00080adLkz+9ptVqaNGnC3r17r3ve2LFjKVy4MD163Hyxf9KkSURGRv75q0SJEh6J/Xp+/AMe6atWiqhUEr59DyqV8uqUfzm4ALaOUo9bvA8VHvfRxH8xO3N4+fhwspwmaodXZVDxF30ew/XkLF6O/bdDaKKiCB38mr/D8ZqMS3aSj9nQaKH0w5IUIYTwL19fh33t3Uvz2Z3xE8HaID4sP44grX9aFjlTUkhv2QElK4uABvUIf2uqX+K4luwUB3+sNQFQvavv23kJIcSd7Ha4Dp9NhIb94Nh5KF1ErRBRLsHFwU7tgFXPq8cPD4IHX/ZYnPkx9txsjppPUTgglpllhrv1Aslx4SK2vd8BYHiqpadC9Kir7TMii0n7DCHEneVWvQ5/k7aDi9ZEYvXRtIptcsPPmmbMBrOZgFoPEvhoI6/E893/Msi87CCimI7aL0V4ZQ4hhBBC3P78mhSRnJyMw+EgPj7+H9+Pj4/n8uXL1zxn165dzJkzh48//jhPcwwdOhSj0fjnr3Pnzrkd9/Vs3a/2N002wgN3qRUiShT22nT/9I/FncHw4Es+mvifRp6ZxWHzceL00bxXbix6TcHYCaJYrWSPHA9A6ODX0EZH+zki7zmZWyWiWNVAgiNl0UkI4V++vA772veZPzPj/CcATCg1kPLBpf0Sh2Kzkd6+G46Tp9CVKU3U8vloAgrOzplfVmThsEGRyoEUvT/Q3+EIIcQd5Va/Dp++BA1fhZMXoWwx2Po2lCnq4mBX/oDFT4HDBve2g0cnezTWvNqQtpPPk1YC8HbZkcQGuPdsavkyt3VG3droEnzfOvNmrCYn5jQnABHSPkMIcYe5Va/Dcy4vA6B74adumPjvvHIF03v/A7xXJSLlpI0fPlUrDzZ6I5qAYL8XvhZCCCHELeqWeiLNzMykW7dufPzxx8TFxeXpHIPBgMHg/V2bK3dCl7FgtUGj6rByAoSHeH1a1ZUjf1vcaQ+PTvLRxP+0PHkdi658jQYN75YbQ5HAgtPL1PzJpzhOnUYbX5iQV3v6OxyvOrHDDEDZR4L9HIkQQvjuOuxraXYjvU+MwoGDNrFP8HRcM7/Fktn/DWzbdqIJCyPq66Vo83iP5AsOm8LBJVmAWiVC+r4KIYRv3crX4ZMX1U0HZxOhfAJsfsuNTQdZSTC/GZjToEQdaPs5aH3/UuWSNYn+JycA8EqRztSPrOn2mDlffAWAoYC2zrhaJSIoQoshXF5kCSHuLLfidfhg1iF+yPqFAI2e7oXb3PCz2bPeA5MJfY1qBDZ9zOOxKIrC1olpOO1Qpl4Q5RpKRVwhhBBCuM6vSRFxcXHodDoSExP/8f3ExESKFCnyn8+fOHGC06dP8+STT/75PadT3XGg1+s5cuQI5cqV827Q1zBnLbwyHZxOeKo+LBwBBl9thMy+8q/Fnc/8srhzxHSSoaenATAgoQf1Ih/0eQzXo2Rnkz1uCgChI4agCQ31c0TeYzM7Ofe9BYCy9eVBQQghvEFRFAaemshFayJlDCWYVHqg3172m/43F/O7HwEQseAT9JXv9Usc13N0k4nsK05C47Tc9bivskWFEELc6o6fVxMizl+BiiVg8yxIcDXn3maGhS0h7RREl4UuX0GA7xPInYqTfifHku7I4L6QuxhS/BX3x0xKwrZzNwBBbQpm6wzjBTsAEQlSxVAIIW4FcxLVKhEtY5pQODD2up9zpqb++SwaOmKIV56Jj2wwc2afBV0gNB4aLUn2QgghhHCLX9P0AwMDqVGjBlu2bPnze06nky1btlCnTp3/fL5SpUr8+uuvHDx48M9fLVu2pGHDhhw8eNAvfdnMFpi8QE2I6NEclo72YUKEzQwLW0HaSb8u7mQ7TLx8fDhmZw71I2ryarFnfR7DjZhmf4jzciK6MqUJfvE5f4fjVWe/s2C3KEQU0xFXvuCUThdCiNvJp0krWJ+2k0BNAB+UH0eYzj/Jdtadu8js3R+A0PEjCWrVwi9x3Mj+BWqViCodwtAFyAKWEEKImzt6Dhr2UxMi7i6ltsxwOSHC6YQV3eD8dxAcDd3WQah/Khp+eHkRuzN+IlgbxLvlxhCodf95LWfVGnA60deohq50KQ9E6XkZF9WkiEhpnSGEEAXeZesVVqeq6/QvFOlww8+a3n4fJTMTfZX7MLRs7vFYrNlOtk9NB6BmjwiiSsp1RAghhBDu8fvdRP/+/XnmmWd44IEHqFmzJm+99RbZ2dk895z68rp79+4kJCQwadIkgoKCqFy58j/Oj4qKAvjP930l2ADrp8PSrTC0K/gsYdXphC+egXN7cxd31vplcUdRFN44PZVjOacpEhDH7HKj0GkKzg4QZ1oa2VNmARA6ZjiawNu7l/nJv7XOkOxpIYTwvN+yjzL27GwA3izRh/tC7/JLHI4zZ0lv2wXsdgwd2hI6bJBf4riRS79YuPSLFV0AVGkf5u9whBBC3AIOn4Ymr8PlVLi3DGyaCfExbgy4cQgc+gJ0gdB5FRTyz3X756zDTDn/IQDjSr1O+WDPJDBYcltnBLVr7ZHxvMF4QW2fIZUihBCi4Ps8aSU2xU7NsCrcH1rpup9zpqdjevsDwHtVIvZ8kEFWkoPI4jpq9gj3+PhCCCGEuPP4PSmiQ4cOXLlyhZEjR3L58mWqVq3K+vXriY+PB+Ds2bNo/dAOIj/KJcCwbj6edPMw+H056AKg05dQ6Po3qt606MrXrEzZgA4d75cfR1yAOytWnpc97W2U9HR0995NUOen/R2OVymKwsmdOQCUe0RaZwghhKdlO0z0PDECq2Ljsah6PB/f3i9xOLOySG/5NEpyCvrqVYmc+0GBTITbv1CtEnFX0xBC4+RFiBBCiBv7/ZSaEJGUBveVhU2zoFCUGwN+/wHsnq4ePzUPStf3RJj5lu0w0evESOyKg+bRDekY9+TNT8oDZ1oa1q07ADC0beWRMb3haqWIiKJ+X34SQghxAzlOC/OTVgF5qBIx+0MUoxHdvXdjeMrz7ZuSj9vYvyATgEZDowkIKtjvBoQQQghxaygQT6V9+vShT58+1/yz7du33/DcTz/91PMBFXQ/fgzfTlGPW8+FMo/4JYzfso8y4sxMAN4o8Qq1wqv6JY7rcVxOxPT2+wCETRiFRnd7v5C5csRGZqIDfbCGEg9KUoQQQnjasNPTOZlzlqKBhZlRZrhfEhEUp5OMZ1/G/stvaOMLE7VqCZqQEJ/HcTNZSQ6ObDABUL2L7OoRQghxY7+cgEdfh2QjVC0PG2ZAXJQbAx5dB2ty1xgaj4cqnT0RpktGnJnJact5igXGM7XMGx67f7B8vQ7sdvT33Yu+QnmPjOkNxgu57TMSCsTykxBCiOtYlbKRVHs6CYFFeDy63nU/58zMxDTrPQDC3hyMxsObGRVFYfP4NJx2KN8omHKP+L5VtBBCCCFuT5Jmeas5vhFW91SPG46Gql39EkaGPYuXjw/HolhpEvUQrxTx3yLT9WSPnwImEwG1a3qlt11Bc3KHWiWiVG0DekPB2zEshBC3suXJ61iR8g1atLxXbgwxAZF+iSN73GS1VHZgIJFfLkZXorhf4riZg8uycNohoVogRe69vVtXCSGEcM/BY2qFiGQj1LhLrRDhVkLExQOw9GlQnFD9eXhkmKdCzbevUjazNHktGjTMLjuKKH2Ex8bOyW2dUZCrRABkXMxtn1Hs9t6kIIQQtzJFUfjk8jIAno9vh15z/UQ283v/Q0lLQ3dXBQzt23g8lsNrTZz/0YI+SEPDN6I8Pr4QQggh7lySFHErufwrLGkHTgdU7Q4NR/olDEVRGHhqIqct50kILMJbZUeg1RSs/5Qcp05j/t88AMImjiqQZcU97cROM4BkUAshhIcdN59h2Gm1/Hb/hB5+q4yU88UqskdPBCDiw7cJrFPLL3HcjN2q8PMytXVG9a5SJUIIIcT1/XRETYhIMULNu2HjDIhxJ2/AeB4WtABrNpRrAi0/BD89C563XOKN02qFx1eLPUPtiGoeG9uZkYF1w2YAggpwUoTV5MSc5gQgophUihBCiIJqT+Z+DpuPE6wNomOh67d5cmZlkT3jHQBC3xzi8aq8lkwn26elA1D7pQgi5dohhBBCCA8qWG+yxfVlXIQFzcGSCWUaQKuP/ba4My9xBWvTthGg0fNh+fFE6/2zW/ZG/s/efYc3VfZ/HH9nNE1HkhbKKns5UVCWA8WB43GBIiKiIioucIATQVAEEScOFAdOVBAHuH0UURwoS9yDLZtC26Rtmn1+f0R5Hn/iI9A0J0k/r+visoT0nE/Bkzv3ne/53pVjJ0A4jOO4Y3Acbc72IsnkL42y6dsQAK2P0NYZIiKJEogFuWLlLfhj1Rzm6sxVxYNMyRFe9i3e8y8BIHf4MHIGn2dKjl3x87t+qktjuBrZaHeMCvVERGTnFv4Ex42Asgo4ZD947x4oqEktXcAHz58MFRuh4f5w9itgy0pY3t0RMSIMW3krvmglB+d1YHjxRQk9fvDt9yAUwrZ3e2z775fQYyfSH10ist0WnG4tP4mIpKonN88E4Kyik/5nV6PqqdMwtm3H1q4tzrPPTHiOz6d48W+PUdjKTpcLVGAvIiIiiaVZaToIVsILp4J3HRTtDQNeA7s5rai/rvyBceviFcG3NL+Sg/P3NyXH/xL5/gcC02cAkH/HreaGSZLVnwbAgIb7ZuFqpCpqEZFEGf/bw/zgX049ewEPtR2LzZL81s+xrVsp790f/H4cxx9L/l3jk55hVxmGwdLpFQB0GpCPLSvzOzWJiMju+/IHOOFa8FbC4QfAu/eAJ78GB4yG41tmbPkW8hvDeW+D07zi/Yc2Psuiym/Jt+bycNtbybImdo4W/H3rDGff3indFdG7IQKgO31FRFLYmsB6Pij/DIALG531t88z/H78d08GIO/m67DYE/vavvXnEF+/GO84eOzIQuyO1B3fREREJD2pKCLVxaIw6xzYuBTyGsB570BOoSlRyiJeLlsxmrAR4aTCo7mwUT9TcvyTytG3g2GQ3bc3WV0ONjtOUvyxdUYbbZ0hIpIw75V9wtNbXwHggTZjaOxokPQMRihEed+BxH5bh619Ozwznkn44lMibfg6xNafwtizLRx4Zp7ZcUREJAV9/h2ceB34quDIjvDOXeCuyZBhGPDWUFjxPmTlwrlvQkHLhOXdXYsqvuG+DU8BMLHVDbR0Nk3o8Q2/n+C7HwCQ3bdPQo+daL6N8aIIbZ0hIpK6ntoyCwODYzyH0i7n78fP6ieeJra1BGurljjPPTuhGYyYwYfjyzBisNfxObQ6XF1wRUREJPFUFJHq3h0Ov7wJdicMfAPqtTElhmEYDF81nvWhzbTKbsq9rW9OyTtSQl8uJDjnLbBayb/9FrPjJEU0bLDm8wAAbXtq0iAikggbgpu5dtUEAC5rfA7HFBya9AyGYVAxdAThzxZgcbspeGMm1kJzCiN31dIX4l0i9j0ll5yC5HfVEBGR1Db/G/jX9VDhh6MPgrcmQX5uDQ/66V2w+PftJfu9BE27JCTrnvBFKhm28lZixDij/omcUXRCws8RfO8D8PuxtmqJ/aCOCT9+Ink3xLfP8DTVewIRkVRUEa1iZslbAFzcuP/fPs8IBKiadD/we5eIrMRuT/XDG342LguRlWPh6BsKEnpsERERkT+oKCKVLXgQvnwo/nXf56H5IaZFeWzzi3xQ/hnZFgePtZuA216T3qa1p2rUbQA4Bw3Evu8+JqdJjg1fBwlVGuTWs9J4f3O2VRERySQRI8LQlWMpj1ZwUN5+3NjsMlNyVE95jOonnwGLBc+MZ7Dvs7cpOXaVb1OE5R/GOxcdPDA13yeIiIh55i2Fk2+Aqmro1QXeuBPyatro7ruX4YOb4l+f9ADse1qNc+4pwzC4ac1drA9tpkV2MXe0uq5WzhN8ZTaQ+ltngDpFiIikupklb1EZ89Pe2Yoj3d3+9nnV054ltmkz1ubNyBk0MKEZAt4Yn9xXDsChl7txNdaYISIiIrVDRRGp6qc34N1r4l+fcBd0ONO0KIsqvuGOdY8CMK7lcDrkpeaHMsEP5xH66BNwOMgfO9LsOEmz8pP4B1Ctj3Risab2opiISDq4d8M0FlV+i8uWx5S243BYE3sXzK4Izp1HxTU3ApB/13iy/3V80jPsrmUzKjGi0LxbNg32UpGeiIj8x4eL4dSbwB+AE7rB7Dsgt6ZN7tZ+Dq+dH//60KvhkCtrnLMmXtn+LnNKP8CGjYfb3obLlvhtpIxgkOBb7wGQfWafhB8/0bwb4kURnqb6gEtEJNVEjShPb5kFwEWNz/rbQjsjGKTqzvsAyBt5LRZHYud6nz3kpbo0Rr02djqf50rosUVERET+m4oiUtGGJTBrQHxv1K6XwuG1c4fJrtgeLuOyFbcQJcoZ9U9gYIPepmX5XwzDoPLmWwHIuewibC1bmBsoiVZ98sfWGTW9zUpEROZ7F/LQxmcBmNTqpoTvA74rIitX4e13PkSjOM8bQO61VyU9w+4KV8f49pUqQF0iRETkz95fCL1HQnUQTjoUXhsPOdk1POj2FfBib4gEYZ/ecOK9Ccm6p1YH1jFqTTzDtc0upnN+h1o5T+iDjzAqKrA2LSarm3nbhOwq38b49hnuYm2fISKSauaWf8Ga4AYKbC7OrP+vv31e9bMvEFu/AWtxE3IGn5fQDJt/CLFsZiUAvUYXYsvSzV4iIiJSe1QUkWrK18L0UyDsh/YnwskPx/dGNUHMiHHlytvYHC6hnbMld7a6IWXbcwZff4PIoiVY8vLIH3W92XGSpmxtmLI1Eax2aHloTW+1EhGp20rCpVy9ahwGBgMb9KZ3/V5JzxDz+Sg/7SyMsjKyunfF/fhDKTv2/ref3vYT8MbwNLPR9igV6YmISNw7X0KfmyEQglMPh1fGgbOmBRH+7fD8SfH/Nu0C/V4Aq3kfuodjEYatHEtVzM8hrk4Ma5LYD4z+W+DVOQBkn3EaFmtqL+eE/DGqy2KAts8QEUlFT26ZCcDAhn3Ise18TdEIh6m64x4A8m4cjsWZuLVHI2bw4fgyMGCfk3Jp0U3rmiIiIlK7UnsWXdcEvPD8yVC5GRodAGfNBJt5iwcPbnyWT3xf4bRm83i7O8iz5ZqW5X8xolEqR48DIHf4UKwNG5qcKHlWzY93iWjWJZvsfF3OIiJ7KmbEuGbVOLaGt7N3Thtua3FN0jMY0SjegRcR/fFnrMVN8Lz+UkIXnWqLYRgsfSF+d89BA1xYbalfxCEiIrXvzc/hjFEQCsPpR8LLt0F2TTtuhwPwYh/YvhwKWsLAN8GR+G0qdsc9G55gWdVPeGwuHmxzKzZL7RRoGOEwwTlvA+Dsm5odHP+bb1O8S0S224LTrbmqiEgq+dG/gs99S7BhY1DDvn/7vMDzLxFb+xvWRg3JGTI4oRm+e62Kzd+FcORZOOr6goQeW0RERGRnNDNNFdEwzDgTtv4ArmI4721wuk2L85lvMfdueBKAiS2vZ+/cNqZl+SeB518i+tMvWOrVI/e6q82Ok1QrP6kGtHWGiEhNTd38Ih9744WAj7a9/W/vlKlNlaPHEXrrXXA6KZg9A1uTxknPsCfWLQyybXmYrBwLHU4394MpERFJDa/Ph35jIByBM4+Cl8aCI6uGB43F4PXBsPYzcHrgvHfAZe5Y+blvCVM2PQ/AXa1voml2o1o7V2jefIyyMqwNG5DV47BaO0+i+DZEAPCoS4SISMqZtjneJeKkekf97dhlRCJUTbgbgNwbhmPJSdzao78syvz7vQAcPsxDfgNtsyQiIiK1T7PTVGAY8OblsPLD+F0u574FnuamxdkS2sawlWOJEWNAg1M5q8HJpmX5J0YwSOXYCQDk3TQCq8djcqLkCVbGWL84CECbnql/J7GISKpaUvk9k9ZPBWBci+GmFAJWv/gy/jvje5G7pz1CVtfOSc+wp/7oErF/7zzdCSoiIrzyMQwcB5Eo9D8GnhsF9kSsPMy9Bb6bAVY7DHgNGu6XgIPuudKwl6tW3oaBwTkNTuOUesfU6vmCr84GIPv0U7HYUv/DI+/GeFGEts4QEUkt28NlvL793wBc3Kj/3z4v8NIsoqtWYymqT+6lFyY0w6eTvQS8MYraZ3HQgPyEHltERETk72jlOhV8OgmWTAOLNb5lRvFBpkWJGBGGrhxDSbiUfXPacXvLEaZl2RXVj00j9ts6rMVNyB12qdlxkmrtggCxCNRrbaewRU1vuxIRqZu8kQqGrhhDxIhyWr1enNPgtKRnCC9agu+iKwDIvelacs45K+kZ9lT5uggr5sW7Fh10jhazRETquhlz4ZzfCyIGHpfAgojFT8L8O+Jf93kS2tRuAcI/MQyDG9ZMZHO4hDbOFrW+7ZYRjRKc/RYA2X371Oq5EsW3Ib59hqdp6hdwiIjUJc9vnU3QCNEpb18653fY6XOMaJSq8XcBkHfd1VjyEtcRcOM3Qb57tQqAXrcUYrVr+0URERFJDpXsm+27mfDByPjXJz8Ie5vbleHeDdNYUPE1edZcHms3gRxr6nYgiFVWUvnHG/QxNyW0jVs6+GPrjNZHpu6/kYhIKjMMg+tXT2RdaBMtsouZ1OpGLJbkLshEN22mvM/ZEAjgOOVf5I8fk9Tz19TXMyrAgFaHO6nfRgV6IiJ12QsfwAV3xHe5GHQiPHEDJKShwYoP4M3L4l8fNQYOGpSAg9bMCyVzeLfsE7Isdh5pO45cW+3ORcOffUFsawmWwkIcRx1Rq+dKFHWKEBFJPaFYmOe2vgbEu0T83fw38PKrRH9djqVePXKuGJKw88eiBnMnlAGwf+9cmh2cnbBji4iIiPwTzU7NtPZzeO33BZ3DhkP3oabG+ah8AQ9ufAaAu1uPpG1OC1Pz/BP/5CkYJduwtWtLzoXnmx0nqYyYwar5AQDa9qxbxSAiIokyvWQ2b5fNw26x8Ujbcbjtye10YAQCeE8fQGzjJmz77o3nhWlp0Q77DyF/jO9fi9/hc/BAdYkQEanLnn0PLrozvjPkRSfD1OvAmoi+lJu/gxlnQiwKHc+FY25NwEFrZnn1Gsb+NhmAm5pdzgF5e9f6OQOvzAYgu/fJWLLSowjxP50itOwkIpIq3ir9iC3hbTTKKuLkv9n2yYjFqLp9EgC5I4ZhdbkSdv5vZlWy5ccw2S4LRw4vSNhxRURERHaFts8wy/YV8GJviARh3z5wwt2mxtkQ3MJVq24D4IKGfeldv5epef5JbPt2/Hc/AEDeuFFpszCUKJu/D1FdGsORb6HpQaqqFhHZXT/5V3Dr2skAjGx2BQfl75/U8xuGge+SKwl/tQhLYSEFb7yM1e1Oaoaa+uGNKoIVBoUt7bTuoa5FIiJ11VNv/6cg4pLTElgQ4dsI00+GoA9a9Yxvm5Hkjk7/XzAW4oqVYwjEghzp7sYljc+u9XMasRjB194AwHlmn1o/X6L8p1NE+hR8iohkMsMweHLLTAAGNeqLw7rztdTgq7OJ/vQLloKChG5VXLU9ymcPegHocZWHvCKNDyIiIpJcKtk3g387PH9S/L9Nu8CZ08Fq3hvBcCzC5StHUxbxcmDuPoxpcZVpWXZV1aT7MXw+7B0PwNn/TLPjJN3K37tEtD7ciS1Le++JiOwOf7Say1fcQsAIcYzn0KR8oPGXDPc9ROD5l8BmwzPrOezt2iY9Q00YMYOvX6gE4KBz8rFYNRaJiNRFhgGvzY//94rT4cGrE1S3EKyEF04F7zoo2hvOeR3s5heDT1z3KD/6l1PPXsDkNrdgtdT+fSbhrxYR27gJi9uNo9fRtX6+RAj5Y1SXxgBtnyEikioWV37HN1U/4bQ4OLdB750+x4jFqPp9q+Lcqy/H6vEk7Pzz7ysn6DNouG8WHc9Sp0ERERFJPs1Oky0ShBdPh+3LoaAlDHwTHHmmRpq4/hGWVH6P25bP1HbjybY6TM3zT6IbNuJ/aCoA+RPGYknIbUjpZdUn1QC0OVJbZ4iI7K4xv93P8sAaGmUVJe0Djf8WfPffVN4wGgDX/XeSfWx6fMDx39YsCFC6OoIjz0KHPua+jxEREfNYLPDKOHj2fbjk1AQVRMSiMGsAbFwKeQ3gvHcgpzABB66ZeeULeGLLDADuaz2KRo6ipJw3+OocALJPORFLtvmFIbvCtym+dUa2y4LTXffm6yIiqeiPLhGnF51A/aydj6vBN94m8u33WFwucq++ImHnXr80yA9z/AD0Gl2I1aaiehEREUk+FUUkk2HA6xfC2k/B6YFz3wZXY1MjvV82n8c2vwTA/W1G09LZ1NQ8u6Lq9jshECDr8ENxnHSC2XGSrmJLhK0/hcECrY9Qu3IRkd0xe/u/eankTSxYeKjtrX+7GFRbIj//gvfsCyAWI+fiC8gZdllSz58oS6fHu0R0OD0PR54+7BARqcuc2XDpaQk6mGHAO1fDL2+B3QkD34B6bRJ08D1XEi7lmlW3AzC44ZkcV9gjKec1DIPAH0URfXd+V28q8m34Y+sMLTmJiKSCDcHNvFv6CQAXNTprp88xDIOqcXcCkHvVZVgLEzNXjkUM5o4vA+CAvnkUd0yPAj8RERHJPFrFTqaPxsK3L4LVDme/Co2Su3/5/7c2sGHHws4ljQdwYmFPU/PsisiKlVRPew6A/Im3YjF5T1kzrP40vnVG8YEOcutp/z0RkV21OrCOG1dPAuDq4gs43N05qeePlZVRflp/DJ+PrB6H4ppyX1qOY6VrwvGxyBLfOkNERCRhFkyGr6bEW06cOR2aH2J2ImJGjBGrxrMtUsY+OW0Y1WJo0s4dWbqM2Jq1kJtL9onHJe28NeXdGC+K8DRVUYSISCp4ZuurRIlyuLsz++a22+lzQm+/R+Trb7Dk5ZE7fFjCzv31S5WU/BrG6bFyxDWJ245DREREZHepKCJZlj4DH8cLEOj9OLQ91tQ4wViIy1aMxhetpHN+B25ulriWaLWpasx4iERw/Ot4HEccbnYcU6zU1hkiIrstFAtzxYoxVMb8dHd1YnjTC5N6fiMSwdt/ENHlK7C2aE7Bqy9gcaT2dlV/5+sX410i2hzppLBFlslpREQkY/z4Orx3bfzrE+6G/fuam+d3T22ZxUfeBWRbHExpO44ca/K69e3oEnHS8Vhyc5N23prybYhvn+EuVhG/iIjZ/NFqXtwaH08ubtR/p88xDIPK2+M3EOQMvQRr/foJOXdlSZTPH/YCcMQ1HnILNS6IiIiIeVQUkQyrPoI5Q+Jf9xwFBw82Nw8w7rcH+db/M4V2D4+2HU+WNfXv4Ah/8x2Bl2YBkD9hrMlpzBEOxFj7ZRCANj21dYaIyK66Y90jfOv/mQKbm4fa3Irdktxxr/KG0YQ++AhycymYMxNrw4ZJPX+iBCtifD+7CoDO57pMTiMiIhlj/UJ4ZWB8+4xul8NhI8xOBMAP/uVMWDcFgDEtrmSf3LZJO7dhGAR/L4pwptHWGaBOESIiqeSV7e9SHq2gVXZTehXs/Aaz0L/nElm4GHJyyLv2yoSd+5N7yglVGTTu4OCAM/ISdlwRERGRPaGiiNq29Ud46QyIReCAs+GYcWYnYs72D3lm66sAPNhmLE2zG5mcaNdUjroNgOz+fck6qKPJacyxblGQSLWBq5GNBnvr7lwRkV3xQdlnPLFlBgD3txmd9HGv+unn8d//MACe5x4nq9OBST1/In0/u4qw36B+WzstDtFesCIikgBlq2H6qRCuhr1OgpMejG+fYbLqaIChK8YQMsL0KjicQQ2T27ki+sOPRH9dDtnZOE4+Mannril1ihARSQ0xI8a0zS8DcGGjs7Ba/vpRgGEYVN02EYDcyy9OWAH/bwsD/PS2HyzQa3QhVpv5Y7uIiIjUbSqKqE2VW+D5kyHghRaHw+lPg9Xcv/KV1b9x/er4G90rmwzimIJDTc2zq0KfLyD09ntgs5F/+y1mxzHNqvkBIN4lIh33oRcRSbaNoa0MXz0egIsancXxhUck9fyhL77Ed9nVAOSNHYmzb5+knj+RYlGDpS9UAHDwQJfGIRERqbnqMnjuJKjaCo07wVkzwZYa3QVuW/cgywNraJRVxH2tRyV93Au8MhsAx/HHYnWlV3cmdYoQEUkN870LWRFYi8uWR/8GJ+/0OaGPPia84CtwOsm97uqEnDcaNpg7oQyAjmfl0bhDem4dKSIiIplFRRG1JeSHF06D8jVQrx2cMxuyzN3uoDoW4NIVN1MV83Oo6yCua3axqXl2lWEYVI6Mb5eRc+F52Nu3MzmROQzDYNUn1QC0OTLH5DQiIqkvakS5cuVYyiJeOuTuxajmQ5N7/nXr8Z5xDoRCZJ9xGnljRib1/Im2+tMA3vVRnG4r+56SPvuai4hIioqE4l0Vt/0M7mZw3luQnW92KgDeK/uE57e+DsDkNrdQP6sw6Rl2bJ1xZp+kn7smQv4Y1aUxANzFKooQETHTk1tmAtC/6BTybTvfvqLq9kkA5FwyGFuTxgk575LnK9i+MkJOoZUeV3kSckwRERGRmlJRRG2IxeDV8+L7oubWh/Pfgbwis1Nxy9r7+Kl6JUX2Qqa0HZf0/dT3VOi9Dwh/+gVkZ6f9B0o1sW1FGN/GKPZsCy26q2W5iMg/eWDjM3xZsYw8ay6PthtPtjV5d6cYfj/lfc4mtmUr9gM74H72cSwmd4uqqaXT410iDuibhyM3vX8WERExmWHA7Ith9ceQ7YLz3gZ3U7NTAbAptJVrV90BwOWNB3Kkp1vSM0R+XU7k+x/Bbif71H8l/fw14dsU3zoj22XB6db7BRERs6yoXsM875dYsHBho347fU7ok08Jf/IZOBzk3TA8Ieet2BxhwaM+AI4c4SHHo62UREREJDVohlob/n0D/Pga2BzxDhH125udiJdL3ualkjexYGFKu3E0cphfpLErjFiMyptvBSB36CXYmqXGQpkZVn0S3zqjRfdssnJ06YqI/C8LfEu5f8NTANzZ6gbaOJsn7dyGYeC98HIiS5dhKapPwZyZWPNT487XPbVtRZi1XwaxWKHTgPT+WUREJAXMGwffPA9WG/SfBY0PNDsREO8yddXKcZRHfRyQuzc3NLvUlBx/dIlwHHsU1sLkd6moCd+G+NYZ6hIhImKuaVtmAXB8wRG0dO58PXVHl4iLzsfWtDgh5513dznhaoPiTg469N55dwoRERERM+iT1URb+Ch8fm/86zOehZY9zM0D/Oxfyci1dwNwbdOL6eHuYnKiXRec9RqRZd9icbnIG3mt2XFMtWr+71tn9NTWGSIi/0tpuJxhK8cSI8ZZRSdzRtEJST2/f+I9BGe+CnY7Ba++gK1Vy6SevzZ8/UK8S0S7Y3Lw6EMOERGpia+fg3m3xr8+9VFon9xx+n+ZuulFvqhYQo7VyZS243BYs0zJEfi9KCK7b29Tzl8T3o3xoghPU71fEBExS3nEx6xt7wBwceP+O31O6PMFhOZ+DFlZ5N2UmDXXNV8E+PX9aixW6DW6EIvVkpDjioiIiCSCiiIS6dd34K1h8a97TYADzzY3D1AV9XPpilEEYkF6urtzdfEFZkfaZUY4TOUt4wHIvfZKrEXp0d2iNlSXR9m4LARAmyOdJqcREUldhmFwzarb2RzeRltnCya0TG5BXWDOW1SOug0A15T7cBxpfnFkTVV7o/zwph+Ag89VlwgREamB1R/DnIvjXx9xE3QZYmqc/7as8kfu2vAYAONbjqBtTgtTckRXryGy5GuwWnH2OcWUDDXh2xDfPsNdrHbpIiJmeankDapjAfbNacehroN2+pwdXSIuGIitRc07K0ZCBnPvKAPgoAH5NNwnedtXioiIiOwKFUUkyqZlMLM/GDE4+EI4cqTZiTAMgxvXTGJFYC2NsxrwUNuxWC3p809e/cx0ostXYCmqT+6IK82OY6rVnwUwYtBgryzcTXTHjYjI33liywzmer8g2+Lg0XbjybUlr7tO+Lvv8Z0b/6AnZ9il5F5yYdLOXZu+e7WKSMCgwd5ZNOucbXYcERFJV1t/ghdPh2gYOvSP30iQIiqjVQxdOZaIEeWUesfQv8i8YoTAa28AkNWzB9YGDUzLsafUKUJExFwRI8LTW14FYEjj/lgsf+3WEF64mND7H4LNRm6CukQsfqaCsjURcutbOXyYJyHHFBEREUmk9PmEPJV518P0UyBUCW2OhdOmwk7ecCbbCyVzeH37v7Fh49F2t1M/K332IjUCAapumwhA3s3XY3W5TE5krlXzAwC06akuESIif+ebyp+4Y90jAIxpcRX757ZP2rlj27bh7X02RmUljmN64rrvzqSduzbFIgZfv1QJxLtE7GxBTURE5B9VboHnT4JAObQ4DM54Bqypsxxxy9r7WRNcT7GjEZNa3WjqeBf8fesMZxpunQHqFCEiYrb3yuazIbSZ+vZCetc/bqfPqfy9S4TzvAHY27Su8Tm9GyN8+bgPgKOuKyDblTpjvIiIiMgf9A6lpsLV8YII3wZosB+c/QrYzNl39L99X/ULY9beD8DI5pfRzdXR5ES7x//IE8Q2bMTavBm5l19sdhxTxSIGqz+rBqDNkcm741lEJJ1URKu4YuUthI0IJxUexaCGZyTt3EY4THm/84iuXoOtTWs8Lz+HJcv89wKJsGJeNRWbouQUWtn3pDyz44iISDoK+eGF06B8DdRrB+fMgazUKfaes/0DXt72NlasPNz2VgrsbtOyBN9+j/CCr8BiIfv000zLURM+dYoQETHVtM0vA3Bewz44rX/t9BdeuozQW++C1Urezdcl5Jzz7iwnEjBo1iWbfU/JTcgxRURERBJNs9SasjvhwHOgaiuc/w7kFJidCF+kkktXjCJohDiuoAeXNj7H7Ei7JebzUXXH3QDkjx2JxZk6C2Zm2LAsSNBnkFNgpcmB2o9PROT/MwyDG1dPYk1wA00djbm79cik3uFZcc0NhD/+FEt+PgVvzMRav37Szl3blr4Q7xLRsV8+9mx1iRARkd0Ui8Ir58L6hZBTLz5nzisyO9UO64KbuGnNXQBcVTyI7q5OpmWJbtqM94JLAci96nJsxU1My7KnwtUx/KUxANzFWm4SEUm2byp/YmHlN2RZ7Jz/NzcKVN0e72roPOcs7O3b1ficq+ZXs+Kjaiw2OHZUgboLioiISMrSLLWmLBY44gboeik4zd8vzTAMrl19B2uCG2jmaMz9bUZjtaRXQxD/fQ9hbC/Ftnd7nIMGmh3HdKs+iW+d0foIJ1abJhYiIv/fzG1vMaf0A2zYmNL2tqTe4emf+iTVjzwBFgueF5/Cvv9+STt3bdv6c4j1i4NY7dCxv7pEiIjIHnj/BvjpdbA5YOAcqJ+8ra3+ScSIcOXKW/FFK+mc34HhTS80LYsRi+E7fwjGtu3YOx5A/qTbTctSE76N8a0zsl0WnO70WocQEckET26Jd4k4tV4vGjn+WoQY/vZ7grPfAouFvFHX1/h8kaDB3DvKAOh8rosG7XUzl4iIiKQuzVITJQUKIgCe2jKLd8rmkWWxM7XdeArtqZFrV0XXrMV/70MA5N9+Cxa76nZWzf9964ye2jpDROT/ixpRHt88A4Abml1CV9eBSTt36JNPqbgy3m40f8JYsk89KWnnToal0+NdIvY6LhdXI43HIiKym76aAl/cF//6jGehZQ9z8/w/D258lkWV35JvzeXhtrdht5g31vnve4jQh/MgJwfPS09jyf5ru/N04P196wx1iRARSb4toW28WfohAEMa99/pc6rGTwIg+6wzsO+zd43PuXCaD+/6KPkNbRx2hXnbT4mIiIjsCs1UM8jSyh+4fV28oGBM86s4KH9/kxPtHqOqivLe/TEqK8k6pBvZffuYHcl05esibF8ZwWKDVofV7W1ERER2xmax8fq+U3l266tc0eTcpJ03unoN5X0HQiRC9tlnknvTtUk7dzL4S6P89E4VAAcPzDc5jYiIpJ1f3oK3r4p/3esOOPBsc/P8P4sqvuH+DU8BcGerG2iRXWxalvCSr6m8+VYAXA/chX3ffUzLUlO+DfFOEZ6mWmoSEUm257a+RtiI0DX/QA7M++tYEvnhR4KvzAYgf/QNNT5f+boIXz3pA+Co6wtw5OneSxEREUltmqlmiLKIl8tWjCZsRDi58GgGNzrT7Ei7xTAMvBdcSuTb77E2bIDn5eewWPVm+o8uEc0Ozlb7URGRv+Gxu7iq+IKknS9WWRkv4tteir3zQXimPZJx+6Z+O6uKaAgad3DQpKNaoIqIyG7YuBRm9gcjBp0vgiNvMjvRn3gjFQxbeSsxYvStfyKnF51gWpZYZSXeAYMhHCa7b29yLr7AtCyJsKNTRBObyUlEROqWQCzI81tnA3Dx33WJmHA3GAbZfXtj71CzG+kMw+CjiWVEQ9DikGz2PlHdbUVERCT16VPWDBAzYlyz6nY2hDbTKrsZ97S+Oe0+nKm64+54tXJWFp5XX8DWvJnZkVLCqvkBANr0VJcIEZFU8Mee35HvfsDaqCEFs2dgyc01O1ZCRcMGy2bGt844eGB+2r2nEBERE5X/BtNPgbAf2h4Hpz4KKTSOGIbBTWvuYn1oMy2zmzKh1XWm5qm48jqiy1dgbdYU9+MPpf2Y69vwe1GEOkWIiCTVnO0fsD1SRlNHY04sPPIvfx755VcCM18FIG/0jTU+38p5AVbND2C1w7E3F6b9+CUiIiJ1g4oiMsDUzS/yYfnnZFscPNZuAm57erW5DrzxNlWjxwHgmnIfjh6HmZwoNYT8MdYtjBdFtO2pimsRkVRQdesEgq+/CQ4HntkzsDVranakhFv+QTWVW6PkFVnZ+8TMKvgQEZFaFPDC8ydDxSZo2AHOngW2LLNT/cmsbe/wRumH2LDxcNvbcNnyTMsSmDGLwDPTwWrF88I0rPXqmZYlUbwbf98+o1idIkREksUwDJ7c8jIAgxv1xW75a2Fa1R33QCxG9mknk9XpwBqdL1wd46M7ywDoMshF/TapNdaLiIiI/B0VRaS5ryqWcee6qQDc3nIEHfL2MjnR7on8+BO+cy8GIOeKIeQOGWxyotSxdkGAaBgKmtspbKU7bUREzBZ4+VWqbp8EgPvxh3Ac0s3kRIlnGAZLXqgAoGP/fGxZuuNHRER2QTQMM/rB1u/B1QTOexucHrNT/cnqwDpGrb0XgOuaXczB+TVrHV4T0TVr8V16NQB5o67HcWQP07IkkjpFiIgk34KKr/nRv5wcq5MBDU77y59HVqwk8MJMAPJuqXmXiK+eqMC3MYqrsY1DLnXX+HgiIiIiyaKZahrbFi7lihW3ECXKGfVP5JydvPFNZbGyMsp7n41RUUFWzx64Jt9ldqSUsuqT/2ydoTZ0IiLmCn/9Dd4LLgMg99qryBk00OREiWfEDD4cX8amb0LYsqBjv/TqPCUiIiYxDHjzclj5ATjy4Ny3oKCF2an+JBQLM3TlWPyxag51HcTQJueZlsWIRPCecyGGz0fWod3JGzPStCyJFK6O4S+NAeAp1lKTiEiyPLk5XvDQr+gkCux/LVKomngvRKM4TjqBrC4H1+hcpWvCLHraB8DRNxbgyNX9liIiIpI+NFNNU1EjyrCVt7I5vI32zlbc2er6tPrg3IhE8PYfRHTFSqwtW1Aw63ksWWq39gcjZrDq02pAW2eIiJgtumUL5b37Q3U1jhOPI3/S7WZHSrhYxOC90aX8+JYfLNBrTCF5RWp9LSIiu2D+nbBkGliscNYMKK7ZBy614d4NT/BN1U8U2Fw80GYsNot5Y1zVuImEF3yFxe3G8+JTWOyZsSzj+33rDEe+hWx3+qxNiIiku5ubX05jRxEXNur3lz+LrllL4LkXgZp3iTAMg4/uKCcahlY9nLTvpfVKERERSS+ZMfuugx7c+Ayf+haRY3XyePs7yLOl157flTeNIfTBR5CbS8HsGVgbNDA7UkrZ8lOYqpIYWbkWmnXJNjuOiEidZQSDeM8YSGzdemx7tcfz0tNYbJlVLBAJGbx9/XaWz63GaoeT7qjPPiel1/sKERExiWHAlu/iX5/8IOx9irl5duIz32KmbJoOwF2tR9I0u5FpWULzP6Nqwt0AuB97AFurlqZlSTTvxvjWGZ5ie1rdsCEiku7a5bTijlbX7/TPqu68FyIRHMcfW+PtH3/9oJo1XwSwZcGxIwv0Wi8iIiJpR0URaehT7yLu3TANgDtb3cBeOa1NTrR7qp9/Cf+9DwLgeWYqWZ0ONDlR6ln1SbxLRKvDnNrPXUTEJIZh4LtiOOEvvsTi8VDwxkysBQVmx0qocHWMOddsZ83n8cWtU+8rot3RuuNHRER2kcUCZ06HTufCXieZneYvSsNerl55GwYGAxv05uR6R5uWJVZWhvfciyEWw3nBuTjP/usdvenMtyHeKcLdNLOKR0VE0lV03Xqqn3oeqHmXiJA/xseTygHoepGbwpbq9isiIiLpR0URaWZzqIRhK8diYHBOg9M4s+hfZkfaLeFFS/ANGQZA3qjrcfY7w+REqWnV/AAAbXo6TU4iIlJ3VT/0KIGnngOrFc/MZ7HvvZfZkRIqWBnj9WHbWL84iD3HwukPFtHyUI07IiKym6zWlCyIMAyD69fcwebwNto6W3Bri6tNzeIbMizeeapdW1wP3m1altry350iRETEfFWT7oNwmKyjj8TR47AaHWvBVB8VW6K4m9rofrErQQlFREREkkuz1TQSMSIMXTmGbZEy9s1px7iWw82OtFuimzZT3udsCAZxnHoSeeNuMTtSSqraFmXz9yEA2hyhu3VFRMwQ/OAjKobfBED+3RPIPqGXyYkSq9ob5dVLt7H5+xCOfAt9H2lA04O1XZOIiGSO6SWzea9sPlkWO4+0HUeuzby5VfW0Zwm+OgeysvC89DRWV+Z9oOTbEC+KcDfVMpOIiNmiGzdR/eSzAOSPualGx9q2MsyS5yoAOHZkIVlOa43ziYiIiJhBs9U0cvf6J/iyYhn51lweazeBHGv63M0Z35P9HGIbN2Hbd28805/EYtWb6J1ZNT++dUbjDg7yitR6VEQk2SLLV+DtPyje3nrQQHKHDzM7UkJVbYsya0gJ25aHySmwcubjDWi0n8PsWCIiIgnza/Vqbv3tAQBGNruCDnl7m5Yl8vMvVFx9AwD5E8aS1eVg07LUJu/G+PYZnmLNYUVEzOa/ezIEg2QdcRhZPY/Y4+MYhsHcCWXEItD2KCdtj9LNWyIiIpK+VBSRJuaWf8HDm54D4O7WI2mb08LkRLvOMAx8l19D+MuFWAoKKJgzE6vbbXaslLXqE22dISJilpjXS3nv/hhlZWQd0g331AewWCxmx0oY36YIsy4uoWxthLwGVvo90ZCidtoPVkREMkcgFmToyrEEYkF6urszpHF/07IYwSDeAYPB78fR62hyr73KtCy1TZ0iRERSQ3TzFvxTpwGQd8tNNZrP/vyun3ULg9izLRx9U2GiIoqIiIiYQrPVNLAhuJmrVt4GwOCGZ3Ja/fRq4V398FQCTz8f35N9xjPY27czO1LKioQM1iyIF0W07anqaxGRZDKiUbznXEj0p1+wNi3G89qLWJyZU6BW9luYWReX4NsYxdXExlnTGlDYQgURIiKSWSaue5Qf/cupby9kcptbsFrM61BYedMYIsu+xVJUH/dzT2Rst8RwdQx/aQwAT7GWmUREzOS/90EIBMg6pBuOXkfv8XGClTE+vrscgO5DXBQ00+u7iIiIpDe9m0lxoViYy1bcQnnUR8e8fbmlxZVmR9otoY8+/s+e7HeNz7g92RNt/eIgYb9BfkMbDffVB1UiIslUefOthN55H5xOCmbPwNaksdmREmbbijCzLt5K1bYYha3s9HuiAe4mehsoIiKZ5aPyBTy5ZSYA97UZRUNHfdOyBN/9N/7JUwDwPD01o95X/H++37fOcORbyHZnToctEZF0Eyspwf/IEwDkjalZl4gvHvFSVRKjoIWdroPV8VdERETSn1bDU9wd6x5hadX3eGwuprYbT7Y1ffb8jqxaTXm/8yEaxXneAHJHpFdBhxlWfVINQOsjnBnVrl1EJNVVT5+B/677AfA8/WhG7fe9+YcQr15aQnV5jKL2WfR7ogF5RdrvW0REMktJuJThq24H4MJG/ehVcLhpWaJbtuC74FIAcq68jOxT/mValmTwboxvneEptmseKyJioqr7Hga/H3uXg3GceNweH6fk1xBLX6gE4NibC7Bn67VdRERE0p+KIlLYu6Uf88SWGQBMbnMLLbKLTU6062KVlXh798coLcXetTPuxx7U4sj/sG1lmIVP+PjpXT+grTNERJIpvHAxvouHApB383U4z+5ncqLE2bA0yKtXlBCqNGjcwUHfx4rI8aggQkREMkvMiDF81e1si5SxT04bRjUfaloWIxbDN+hSYltLsB+wP667xpuWJVl8G+KdItxN9R5DRMQssdJSqh9+DID8GnSJMAyDD8eXYUShfa8cWvfQGqWIiIhkBhVFpKg1gfWMWD0BgMsan8PxhUeYnGjXGbEYvvOHEPn+R6yNG1Hw+ktYcvQGeme2/Bjiy8d9LJ9bDUb8sb1OyKH1EZmzh72ISCqLbtxEeZ+zIRjEcepJ5N0+xuxICbN2QYDXr9pGpNqgWZdsTn+4iOz8zNzLXERE6rantsxinvdLnBYHU9qOw2nNNi2L/4FHCL3/ITideGY8g8WZ+XM736b/dIoQERFz+CdPwaisxN7pQBw16FD04xt+NiwNYc+xcPSNBYkLKCIiImIyzVhTUCAW5LIVo/FFK+mSfwA3Nbvc7Ei7pWr8JIKvvwkOB57XXsTWNH06XCTL+qVBvnzcx5rPAjsea98rh+5D3DTeP322SBERSWdGdTXlfc4mtmkztv33xTP9SSzWzCgaWDGvmjdHbCMahlaHO+k9uT5ZOZnxs4mIiPy3H/zLmbBuCgC3tLiKfXLbmpYl/PU3VN54CwCu++/Evt++pmVJJu+GeFGEu6mWmEREzBArL8f/wKMA5N1y4x53iQj4YnxybzkAh17qxt1Er+siIiKSOfTOJgXd9tuDfOf/hUK7h0fbjSfLmj7/TIHZb1I1Nt7hwv3oZByHdjc5UeowDIO1XwT58gkf6xcHAbDYYN9/5dJtiJuitlkmJxQRqTsMw8B3yZVEFi3BUq8eBXNmYnW7zY6VED+/4+ftkdvj7U6PzeHku+tjd2gLKxERyTzV0QBDV4whZIQ5rqAHgxqeYVoWo6oK74ALIBwmu88p5Fx6kWlZks23Mb59hqdY22eIiJjB/+CjGD4f9g77kd3n1D0+zucPe/GXxqjX2k6XQa4EJhQRERExX/p82l5HzN7+b57b+hoWLDzUZizFjoZmR9plke9/wHfeEAByrrqcnAvPNzlRajBiBivmVfPl4z62/BAGwJYF+/fJo9uFbgqa6zIUEUk2/z0PEJg+A2w2CmY9h71tG7MjJcR3r1by/q1lYMB+p+Ry4vh6WO0qiBARkcx027oHWR5YQ6OsIu5rPWqP74xNBN/VNxD9ZTnWpsW4n5xiapZk29EpQttniIgkXcznwz/5EeD3LhF72P1wy48hls2oBODYUYXYsurOOCYiIiJ1g2asKWRF9RquX30nAFcVD+LogkNNTrTrYtu3U35af4zKShzH9MR1zx1mRzJdLGLw83t+vnrSx/YV8UUiu9NCx355dLnAhauRLj8RETME33n/P62tH7gLxzFHmRsoQZY8X8G8SeUAdOyXR69bCrFYtZAlIiKZ6b2yT3h+6+sATG5zC/WyCkzLEpj1GoFpz4LFguf5J7DWr29almQLB2L4t8cAcDdVpwgRkWSrnvI4RlkZtn32Irtvnz06hhEz+HBCGUYM9j4xh5aHOBMbUkRERCQF6FPZFFEdDXDpilH4Y9Uc5urMtU0vNjvSLjMiEbz9BxFdvQZb61Z4Xn4OS1bd3QoiEjL48Y0qFk6roHxdvBjCkW/hoAH5dD7PRW49LRSJiJgl8tPPeAcMBsMg55LB5FxxidmRaswwDL56vILPHvIC0GWQi57XeerUHaoiIlK3bApt5dpV8UL8yxsP5EhPN9OyRH9bh++SqwDIG3ktjqN7mpbFDH9sneHIs+B079ndySIisudi5V6w28kbfSMW256tOX7/ehWbvgmRlWvhqOsLEhtQREREJEWoKCJFjFp7Dz9Xr6JBVj2mtL0NmyV9PjivvH4UobkfY8nLwzNnRp26K+a/hatjfPtKFYueqaByS3xhKKfASufzXHQakK8FIhERk8VKS+NdjXw+so44DNdD96Z94YBhGHw62cvCaRUAHDbUzaGXudP+5xIREfk7USPKVSvHUR71cUDu3tzQ7FLTshiRCN6BF2KUl5PVvSt5t44yLYtZfBv/s3WG3n+IiCSfa9Lt5F4xBGvT4j36/uryKPPvjxfYH3aFW51tRUREJGPpXU4KmFnyFjO3vY0VK1PajqOhI32KCqqfmY5/8hQA3M89TtYBHUxOlHzBihjLZlSy+PkKqkvjbUPzG9rocoGLA8/Mw5GrYggREbPt6Gq0YiXWli0oePUFLA6H2bFqxIgZzJ1YzrKX4vu+9rzOQ9cL3CanEhERqV1TN73IFxVLyLE6mdJ2HA6reV0Kq+64m/BnC7C4XLhffKpOdkz0bojfEODR1hkiIqaxtWyxx9/72QNeqstj1G9n5+CBrgSmEhEREUktKoow2U/+Fdy89h4Arms2hMPdnU1OtOtCXy7Ed+nvbULHjsR5Rm+TEyWXvyzK0umVfP1iBcEKAwBPMxvdLnSzf5887A7dJSMikioqr7uZ0IfzsOTlUfDGy1gbNDA7Uo3EIgbv31rKD7P9YIHjxhTSsV++2bFERERq1bLKH7lrw2MAjG85grY5e/4hUE2FPl9A1W0TAXA9Ohl7m9amZTHTf3eKEBGR9LLpuyDfvFIFQK/RhdiytJYpIiIimUuzVhNVRqu4dMUoArEgR3m6c2WT882OtMuiGzfhPeMcCIXI7nMKeWNGmh0paSq3Rln0rI9vXq4iUh0vhqjXxk73i93se1IuVrsmECIiqaR62rP4H3gE+L2r0YHp3dUoGjZ4+8bt/Prvaiw2+NeEeux3Sp7ZsURERGpVZbSKoSvHEjGinFLvGPoXnWJallh5Od5zLoRYDOd5A8gZ2N+0LGbzbogXRXiaanlJRCSdxKIGH44vAwP2OyWX5l2cZkcSERERqVWatZrEMAxuXD2JlYHfaJzVgIfa3IrVkh7bLBiBAOWnDyC2aTO2/ffF/dwTWKzpkb0mytdHWPSUj+9fryIajj/WcN8sDrnETftjc7BYVQwhIpJqQp8vwHf5NQDk3TYq7bsahQMx3hi+ndWfBrBlwSl316d9r1yzY4mIiNS6W9bez5rgeoodjZjU6kYsFnPmX4Zh4Lv0KmK/rcPWpjWuh+81JUeq8G2Mb5/hLtb2GSIi6eTbV6rY8kMYR76FntcVmB1HREREpNapKMIk00tmM7v0A+wWG1PbjadeVoHZkXaJYRj4LruayMLFWAoLKZgzE6srs/eb274qzFdP+vjpbT9GfL2Hpgc56H6Jm9Y9nKYtxomIyP8W/W1dvKtROEz2mX3IG32j2ZFqJFQV4/Urt7FuYRC700LvB+rT+vAcs2OJiIjUujnbP+DlbW9jxcrDbW+lwO42LUvgmekEX34N7HY8Lz2N1W1ellSgThEiIunHXxrlswe8APQY5iGvSIVtIiIikvk0azXBd1W/MGbt/QCMbHYFXV0Hmpxo1/knTyHw7Atgs+F5+TnsbduYHanW7NivfY4f4rtk0PLQbA65xE2zLtkqhhARSWFGVRXlvfsT21qCveMBeJ55LK27GgW8MV69ooRN34Rw5Fk4fUqR2puKiEidsC64iZvW3AXAVcWD6O7qZFqWyK/LqbjyOgDyb7+FrG5dTMuSCsKBGP7tMQDcTfWBmohIuph/v5eAL0bDfbLodHa+2XFEREREkkJFEUnmi1Ry6YpRhIwwxxccwaWNB5gdaZcFP/iIyutuBsB17x1k9zra5ES1a/5kLz/M9gPQ7pgcug9x0eSAbJNTiYjIPzEMA+/gy4gs+xZLgyIK5szEkpdndqw9VrU9yiuXlFDySxinx0rfqUUaj0REpE6IGBGuXHkrvmglnfM7MLzphaZlMYJBvAMGY1RV4TimJ7k3DDctS6r4Y+sMR54Fpzt9i09FROqSDV8H+f71KgCOHVWI1a6bvkRERKRuUFFEEhmGwbWrJ7A2uIHmjibc32Z02nQbiKxYibf/IIjFcF5wLjlXXWF2pFr16wd+Fj9TAcAp99RnnxO1X7uISLqomnAXwVmvQ1YWBa+9iK1lC7Mj7bGKLRFmXVxC6eoIufWt9HuiAQ32cpgdS0REJCke3Pgsiyq/Jd+ay8Ntb8NuMW8Jo3LUbUSWLsNSvx7u555I6w5UieLbGN86w11sT5u1DRGRuiwWMfhwfBkAHfrk0fQgFduLiIhI3aGiiCSatuVl3in7mCyLnantxpu6D+ruiFVUUN67P0ZZGVndu+J+dHJGL3iUrg7z3uhSALoMcqkgQkQkjQRef4OqW24HwPXI/Th6HGZyoj1Xvj7CrIu34l0fxdXYRr8nG1CvVZbZsURERJJiUcU33L/hKQDubHUDLbKLTcsS/Pdc/Pc+CIB72iPYmpqXJZV4N8Q7RXi0dYaISFpYNrOSkl/CZLstHDnCY3YcERERkaRSUUSSLKn8ntvXPQTA2BZX0Sl/P5MT7RojFsN33hCiP/6MtUljPK+9iMWZuXuYh/wx5gzfRqjKoFmXbI4crgmCiEi6CH/7Pb7zhgCQc+Vl5F58gbmBamD7yjCzhpRQuTVKQXM7/aY1wFOst20iIlI3eCMVDFt5KzFi9K1/IqcXnWBaltjWrfjO//39xRVDcPY+xbQsqea/O0WIiEhqq9oW5bOHvAAccVUBufVU0CYiIiJ1i2auSVAa9nL5iluIGFFOqXcMFzQ80+xIu6zq1gkE57wF2dkUzJ6BrbiJ2ZFqjWEYfHBbGdtXRMgrsnLK3fW1r56ISJqIlZRQftpZ8X2+jz0K1313mh1pj239OcSsISVUl8Wo385Ovycakt9AC1YiIlI3GIbBTWvuYn1oMy2zmzKh1XWmZvEOvpzYlq3Y9t8X1z13mJYlFXk3xIsiPE21tCQikuo+ubecUKVBo/2zOLBfntlxRERERJJOM9daFjNiXL1qHBtCm2mV3Yx7Wt+cNltPBF55narbJwHgfvwhsrp1MTlR7Vo2o5Kf3vZjscGp9xbpAygRkTRhhEKUn3kusbW/YWvbBs/Lz2Gxp+dbnI3fBHn18hKCPoNG+2XR97EG5BZqPBIRkbpj1rZ3eKP0Q2zYeLjtbbhs5n1wU/3Qo4TeeR+ys/G89DSWnBzTsqQi38b49hnuYr1XERFJZesWB/jxTT9YoNfoQqy29FibFhEREUkkq9kBAKZMmUKrVq1wOp10796dhQsX/u1zn3jiCY444ggKCwspLCykV69e//P5Znt00wt85P2CbIuDx9vfYeqCzu4If/s93kGXApA7fBg5559jcqLatfGbIPMmlQPQc0QBzTpnmxtIRER2WcXV1xOe/zkWl4uCN2ZirVfP7Eh75LeFAWZdHC+IaHqQg7OmNVRBhIiI1CmrA+sYtfZeAK5rdjEH5+9vWpbwN99Rcf1oAFz33kHWAR1My5Kq1ClCRCT1RcMGH44vA+DAM/NocoDWPEVERKRuMr0oYubMmYwYMYKxY8eydOlSOnbsyAknnMDWrVt3+vyPP/6YAQMGMG/ePBYsWEDz5s05/vjj2bBhQ5KT/7MvfV8zaf1jAIxveS3757Y3OdGuiW3bRnnv/uD34+h1NPl3jTc7Uq2q2h7ljRHbiUVgr+Nz6Hx+vtmRRERkFxmRCIavAiwWPC8+hX2/fc2OtEdWflLNa5dvI1xt0PKQbPo+1oBsl+lv00RERJImFAszdOVY/LFqDnUdxNAm55mWxfD78Z49CEIhHKeeRM4Vl5iWJVWFAzH822MAuJuqiFNEJFV9/WIl21dEyCmwcsTVHrPjiIiIiJjG9NX2++67jyFDhjB48GD2228/pk6dSm5uLk899dROn//CCy9wxRVX0KlTJ/bZZx+efPJJYrEYc+fOTXLy/21buJQrVo4hSpS+9U9kQINTzY60S4xwmPKzzie2Zm28BfnMZ9O2BfmuiEUN3r5hO5VbotRrbefE2+ulzfYmIiICFrsd9/RpFH4xl+xT/mV2nD3yy/t+5ly9jUjQoO3RTk6f0gBHrulv0URERJLq3g1P8E3VTxTYXDzQZiw2i3kftFcMv5Hoz79ibdIYz1OPaI64E39sneHIs+B0632LiEgqqtgS4fMpXgCOHO4hp0BFbCIiIlJ3mfppdygUYsmSJYwcOXLHY1arlV69erFgwYJdOobf7yccDlPvb1plB4NBgsHgjt/7fL6ahd4FUSPKsJW3siW8jb1yWnNnqxvSZhGlYsRNhOfNx5KfT8GcGWnbgnxXff6Ql9++CpKVY+G0yUU48rSYIyKSSMkYhy0WC45DuiX8uMnw/ewq3h9TihGDfU7K5V8T6mHLSo/3DCIikvrMmA/vic98i5myaToAd7UeSdPsRqZlCbw2h+rHnwaLBffzT2AtKjItSyrzbYpvneEutqfNeoeISLKZPQ5/fHc5Yb9Bk44OOpyeHls6i4iIiNQWUz8B3rZtG9FolEaN/rzg0ahRIzZv3rxLx7jxxhspLi6mV69eO/3ziRMn4vF4dvxq3rx5jXP/kwc2PsOnvkXkWJ081m4CubacWj9nIviffIbqh+PbfbinP4l9//1MTlS7Vsyr5qsnKwA44bZ6FLXNMjmRiEjmMWMcThdfv1TBe6PjBREH9M3jpIkqiBARkcRKh3G4NOzl6pW3YWAwsEFvTq53tGlZouvW47t4GAC5Nwwn+1jzsqQ634Z4pwh3se46FhH5O2aOw2u/DPDLe9VYrNBrVCEWq+aaIiIiUrel9W3xd955JzNmzOD111/H6XTu9DkjR47E6/Xu+LVu3bpazTTfu5D7NkwDYFKrG9krp3Wtni9RQl98ScUVwwHIGzcaZ+9TTE5Uu8p+C/PuzdsBOHhgPvuclGtyIhGRzJTscThdfDXNx9wJ5QB0Pi+f428txGrTIpWIiCRWqo/DhmFw/Zo72BzeRltnC25tcbV5WaJRvOddjFFWhr1rZ/Jvv8W0LOnAuyHeKcLTNHO32xQRqSmzxuFo2GDuhDIAOvbPp9F+jqScV0RERCSVmTp7LSoqwmazsWXLlj89vmXLFho3bvw/v/eee+7hzjvv5MMPP+TAAw/82+dlZ2eTnZ2dkLz/ZHOohGErb91xh0vfohOTct6aiq7fgPeMcyAcJrtvb/JG3WB2pFoVro7xxjXbCVYYFHd00PO6ArMjiYhkrGSOw+nAMAw+f8jHl4/H26Yecpmbw4e61XZaRERqRaqPw9NLZvNe2XyyLHYeaTvO1C6LVXfeS/iTz7Dk5+N58SksWeok+L/4NqpThIjIPzFrHF78XAWlqyPk1rPS40pP0s8vIiIikopM7RThcDjo3Lkzc+fO3fFYLBZj7ty5HHrooX/7fXfddRe333477733Hl26dElG1H8UMSJcsXIM2yNl7JfbnttaXmN2pF1iVFdTfvoAYlu2Yj+wA+5nHsNiTesGIv+TYRh8OL6Mkl/D5NSzcup99dWqXEREksIwDOZNKt9REHHkCA89hnlUECEiInXSr9WrufW3BwAY2ewKOuTtbVqW0IKvqBo7AQDXlPuwt2trWpZ04d2oThEiIqnItynCgqnxOWfPawtwujN3nVdERERkd5g+ex0xYgSDBg2iS5cudOvWjcmTJ1NVVcXgwYMBOP/882natCkTJ04EYNKkSYwZM4YXX3yRVq1asXnzZgDy8/PJz8837ee4e/3jfFWxjHxrLo+1m0COdefbeaQSwzDwDRlGZPFSLPXrUTB7BlYT/w6T4dtXqvhhjh+LFU69uz6uRqZfAiIiUgfEogYf3FbGd69VAXDs6AIOOttlcioRERFzBGJBhq4cSyAWpKe7O0Ma9zctS8zrxXvOhRCN4jznLJznDTAtSzrx/b59hrtYc2oRkVQyb1I5kWqDpgc72O80bRcsIiIi8gfTZ6/9+/enpKSEMWPGsHnzZjp16sR7771Ho0aNAPjtt9+w/lfngkcffZRQKMSZZ575p+OMHTuWW2+9NZnRd/iw/HMe3vQ8APe0uZk2zuam5Nhd/nsfJPDCTLDZKJj1PLbWrcyOVKs2fRfkozvi++n1uNpDi+6pX7giIiLpLxo2ePfmUn5+N16Ud8Lt9ejQO8/sWCIiIqaZuO5RfvQvp769kMltbsFqMecuVsMwqLj8GmJr1mJt1RLXI/erg9MuCAdiVG2LAeBpqu0zRERSxerPqln+YTUWG/QaXagxTUREROS/mF4UATBs2DCGDRu20z/7+OOP//T7NWvW1H6g3RCIBbl+dbyLxYWN+nFqvWNNTrRrgu99QOWNtwDgmjwJx9E9TU5Uu6rLo7wxYjvRMLQ7JoduF+ruXBERqX2RoMGb125j5ccBrHY4+a767H287tYREZG666PyBTy5ZSYA97UZRUNHfdOyBJ5/icBLs8Bmw/PS01g92nd9V1RsigKQlWvB6VFbdhGRVBAJGsy9oxyAgwfm02Avh7mBRERERFKMZq815LRm81T7SZxceDSjm++8sCPVRH5djvfsCyAWw3nRIHKGXmp2pFoVixq8fWMpFZuiFLSw868J9VQpLSIitS7kj/Ha0BJWfhzAnm2hz4NFKogQEZE6rSRcyvBVtwPxmwp6FRxuWpbIipVUDB0BQN5to3Ac0s20LOnGuzG+dYanqV1zaxGRFLHoGR/lv0XIa2DlsCtU5CciIiLy/6VEp4h0d1D+/jze/g6zY+ySmM9Hee/+GF4vWYcdgnvKfRm/iLFgqo81nwewOy30vr8+2S7VAomISO0KVsR47YoSNnwdIivHwulTimjRTds2iYhI3RUzYgxfdTvbImXsk9OGUc2HmpbFCIXwDhiMUVlJVs8e5N10rWlZ0pFvQ7xThLtYW2eIiKSC8vURvnq8AoCjri8gO19rnyIiIiL/n4oi6hAjGsU78CKiP/+KtWkxnldfwJKdbXasWrXq02oWTPUBcNyYQhrsrdZxIiJSu/xlUV69tIQtP4bJdlvo+2gDijtm9ngrIiLyT6ZteZl53i9xWhxMaTsOp9W8sbHyltuJLF6KpbAQz/NPYrHpw/3d4d3wn04RIiJivnl3lhEJGjTvls0+/1J3QhEREZGd0Qy2Dqkaczuht94Fp5OC2TOwNW5kdqRa5d0Q4Z0bS8GAjv3z2P+0PLMjiYhIhqvcGmXWkK1sXxkhp56Vfo83oOE+KsgTEZG67fuqX7lj3SMA3NLiKvbJbWtaluCH8/DfdT8A7mlTsDVvZlqWdOXbqE4RIiKpYuXH1az8OIDVDseOKsz4jsAiIiIie0pFEXVEYOYrVN1xDwDuJx4mq8vBJieqXZGgwRvDtxHwxWh8gIOjbyw0O5KIiGQ478YIsy4qoXxdhPxGNvo90YD6bbLMjiUiImKq6miAoSvHEDLCHFfQg0ENzzAtS6ykBN/5QwDIufRCnKefZlqWdObdqE4RIiKpYtnMSgA6n++iqK3mnyIiIiJ/RzPYOiC87Fu8gy8HIPe6q8k592yTE9W+jyaWseXHMDkFVk67rz52h6qkRUSk9pSuCTProhIqtkTxNLPR78mGFDTT2ywREZFbf3uAFYG1NMoq4r7Wo0y7g9UwDLwXDSW2aTO2fffGdd+dpuTIBL7ft89wF+u9joiI2fo8WMSyGZUc0FcdckVERET+F81gM1yspITy3v2huhrHiceRf+c4syPVuu9er+TbV6rAAidPqo+7if43FxGR2lPyS4hZl5Tg3x6jXms7/Z5sgKuRxh4REZF3Sz9meslsACa3uYV6WQWmZal+5HFCb74DDgeel57Bkqs91/dEOBCjalsMAE9TbZ8hImI2W5aFzue5zI4hIiIikvK0Yp/BjFCI8jPPJfbbOmzt2+F58SkstsxetNjyU4i548sBOHyYm1aHO80NJCIiGW3Td0FevTS+XVPDfbI48/EG5NbL7LFWRERkV2wMbeW61RMBuLzxQI70dDMtS/i776m49mYAXHePJ6vjAaZlSXcVm6IAZOVacHqsJqcRERERERER2TUqishgFdfcQHj+51hcLgrmzMBaWGh2pFoV8MZ4Y/g2IkGDNkc6OWSI2+xIIiKSwdYtDvDaFdsI+w2adHTQ99EGON36cEBERCRqRLl65TjKoz4OyN2bG5pdaloWo7oa74DBEAziOOkEcq683LQsmcC7Mb51hqep3bStUERERERERER2l4oiMpT/sWlUP/okWCx4XpiGfd99zI5Uq4yYwTs3b8e7Poq7qY2TJtbHYtUCjYiI1I7Vn1cz5+rtRAIGzbtlc/rDRThyVRAhIiIC8OimF/iiYgk5VidT2o7DYc0yLUvFtSOJ/vAT1kYN8Tz9qD7IryHfhninCHexOmOJiIiIiIhI+lBRRAYKffo5FcOuBSB//BiyTz3J5ES176snKlj1SQCbA3rfX6Q2niIiUmt+/cDPW9dvJxaBNkc6OfW++mQ5Ne6IiIgAfF35A3dveByA8S1H0DanhWlZAnPeit8sALifewJrw4amZckU3g3/6RQhIiIiIiIiki40i80w0d/WUd53IEQiZPfvS+7I68yOVOvWfBHgs4e9APQaXUij/RwmJxIRkUz145tVvDu6FCMKe52Qw8l31seWpTtORUREACqjVQxbOZaIEeWUesfQv+gU07JEN2zEd+EVAORedzXZxx9rWpZM4tuoThEiIiIiIiKSflQUkUEMv5/yPmdjlGzD3ulAPNMeyfjWoL5NEd6+cTsYcMAZeRxwRr7ZkUREJEN983IlH9xeBgbs3yeXE26rh9WW2eOsiIjI7hi99j7WBDdQ7GjEpFY3mjYfNaJRvOddjFFaiv3gTuRPGGtKjkzk3RjvFOEu1nKSiIiIiIiIpA/NYjOEYRh4L7qCyNffYCmqT8HsGVjy8syOVasiIYM3RmynuixGo/2yOHZUodmRREQkQy162scn98a7Eh10Tj7H3FSAxaqCCBERkT/M3v5vZm17BytWHm57KwV2t2lZ/HdPJjxvPpa8PDwvPY3FoW6CieL7vSjCo6IIERERERERSSOaxWYI/133E5zxCtjtFLwyHVtL8/ZtTZaP7ypn83chnG4rp95XhD1bH06JiEhiGYbBF4/4WPCoD4BuF7k44hpPxndiEhER2R3rgpu4ac1dAFxVPIjurk6mZQkvXEzlLbcD4HroHux7tTctS6aJBA2qSmIAuJtq+wwRERERERFJHyqKyADBd96ncmS8Hajrwbtx9DzC5ES178c3q1g2oxKAk+6sR0Ez/a8sIiKJZRgGH99TzpJn4+NNj6s8HHKJeXe9ioiIpKKIEWHYyrFURKvonN+B4U0vNC1LzOfDO2AwRCJk9++L84JzTcuSiXyb4l0isnIs5BRYTU4jIiIiIiIisuv0SXKai/zya3zRxzDIufRCci8fYnakWlfya4h/31YGwCGXuWlzZI7JiUREJNMYMYMPby/jm1lVABxzUwEHn+syOZWIiEjqeWDDMyyu/A6XLY+H296G3WLeMkPF0BFEV63G2rIF7qkPqLNTgvk2RIF4lwj93YqIiIiIiEg6UVFEGouVl1N+Wn8Mn4+sHofievAesyPVumBFjDeGbycSMGh1mJPDLtcduyIiklixiMG7o0r56W0/WOCE2wo54Ix8s2OJiIikHMMw+C24EYA7W91Ai+xi07JUT59BYPoMsFrxvDANa0GBaVkylXdjvFOEp1hLSSIiIiIiIpJeNJNNU0Y0ivecC4n+uhxr82Z4XpmOxeEwO1atMgyD90aXUrY2gquJjZMm1cNq090pIiKSOJGQwVvXbWfFR9VY7XDSxPrs869cs2OJiIikJIvFwgNtxzCwYW+6uTqaliOyajUVVwwHIG/sSByHH2palkzm2xAvinA31VKSiIiIiIiIpBfNZNNU5ajbCL37b8jJoWD2DGyNGpkdqdYterqC5XOrsWXBaffVJ7fQZnYkERHJIOHqGHOu3s6aLwLYHHDafUW0PUpbNImIiPwTMwsijHAY74DBGBUVZB1xGHmjbjAtS6bzboxvn+Ep1lxcRERERERE0ouKItJQ9Usv4590HwCepx4h6+BO5gZKgt8WBvh0sheAY0YW0uSAbJMTiYhIJglWxnh96DbWLwliz7Fw+kNFtDzEaXYsERER+QdVt04gsnAxloICPNOnYbHpA/vaok4RIiIiIiIikq40k00z4SVf47vwCgByb7oW59n9TE5U+yq2RHjruu0YMdjvtFwO7JdndiQREckg1eVRXr1sG5u/D5HtsnDGIw1oepCK70RERFJdaN4nVE28FwD3Ew9ha9Hc5ESZzbsxXhThKdZSkoiIiIiIiKQXzWTTSHTLFsr7nA2BAI6TTiB//BizI9W6aNjgzWu34y+N0WCvLI67pRCLxWJ2LBERyRBV26LMGlLCtuVhcgqsnPl4Axrt5zA7loiIiPyD2PbteM8bAoZBzsUX4DzzdLMjZbRI0KCqJAaAu6m6cYiIiIiIiEh6UVFEmjBCIbx9zyW2fgO2vdvjefGpOtEW9JN7y9m4LH7n7mmT65OVYzU7koiIZAjfpgizLi6hbG2EvAZW+j3ZkKK2WWbHEhERkX9gGAa+i4YS27AR297tcU2eZHakjOfbFO8SkZVjIadA83IRERERERFJLyqKSAOGYVAxbAThzxdg8XgomDMTq8djdqxa9/O7fpZOrwTgXxPqU9hCH1SJiEhilP0W5uWLSqjYFMVdbOOsJxtS0EJvi0RERNJB9WPTCM55CxwOPC89gyVPWyzWNt+GKBDvEqHujSIiIiIiIpJutPqfBqqnPkn1E8+AxYLnpaex772X2ZFq3baVYd4fUwpAt4tctDsmx+REIiKSKUqWh3hlSAlV22IUtrLT74kGuJvoLZGIiEg6iPzwIxXDbwIg/85xZB3U0eREdYN3Y7xThKdY75lEREREREQk/Wg2m+JCn3xKxVXXA/EFn+x/HW9yotoXqorxxjXbCFcbtOieTY8rM78rhoiIJMfmH0K8ckkJAW+MBntlcebjDcgryvztqERERDKBEQjgHTAYAgEcJx5H7tVXmB2pzvBtiBdFuJtqGUlERERERETSj2azKSy6Zi3lZ54LkQjOAf3Ivf4asyPVunAgxrujSyldHSG/kY2T76qP1a7WnCIiUnPrlwZ57YoSQpUGjQ9w0HdqETkeFUSIiIiki4rrRxH57gesDRvgfmYqFqvV7Eh1hndjfPsMT7HeO4mIiIiIiEj6UVFEijKqqijvczbGtu3YD+6E+8kpGb1vp2EY/Pyun/n3e6nYFMVqh9PurU9efS24iIhIza1dEOD1q7YRqTZo1iWbM6YU4cjTBykiIiLpIvjWu1Q//BgA7mcfx9aokcmJ6hZ1ihAREREREZF0ptlsCjIMA+/gy4h88x3Whg0omD0DS26u2bFqzcZlQebdVc6mb0MAuBrb6DW6kOJO2SYnExGRTLDio2revHYb0TC06uGk9/31ycpRQYSIiEi6iG7ajHfwZQDkDh9G9onHmZyo7vFujBdFeIq1jCQiIiIiIiLpR7PZFOSfeA/BWa9DVhaeV1/A1ryZ2ZFqhXdDhPn3l/PLe9UAZOVY6H6xm87n5+vDKhERSYif3qninZGlGFFo3yuHk++qj92RuZ2XREREMo0Ri+E7f0i8i2KnA8mfeJvZkeqcSNCgqiQGgLupujmKiIiIiIhI+lFRRIoJvvkOlaPHAeCach+OHoeZnCjxgpUxvnrCx5LnK4iGAAsccHoeh1/pIb+BFlhERCQxvn2lkn/fVgYG7HdqLifeXg+rXQURIiIi6cR/74OEPpwHubl4XnoaS7Y6Ciabb1O8S0RWjoWcAt3AICIiIiIiIulHRREpJPLjT3gHXgSGQc4VQ8gdMtjsSAkVixp891oVnz/kxV8av8ukRfdsjrq+gIb7OExOJyIimWTJ8xXMm1QOQMez8ug1uhCLVQURIiIi6SS8eCmVN98KgOuBu7Dvs7e5geoo34YoAO5iGxaL3k+JiIiIiIhI+lFRRIqIlZVR3vtsjIoKsnr2wDX5LrMjJdSaLwJ8fHc525aHAShsZeeo6wpo09OpRRUREUkYwzD48nEfnz/kA6DLBS56XuvRWCMiIpJmYhUVeAcMhkiE7DP7kHPRILMj1VnejfFOEe5iLSGJiIiIiIhIetKMNgUYkQjesy8gumIl1pYtKJj1PJasLLNjJcT2lWE+vqec1Z8GAHC6rRx6uZtOZ+djy9IHVCIikjiGYTD/fi+LnqoA4PBhbg651K2CCBERkTRUceV18Tly82a4H3+oToznkZDBio+qsdqg3dE5KbPtl+/3oghPUy0hiYiIiIiISHrSjDYFVI4cS+jfcyE3l4LZM7A2aGB2pBrzl0VZ8KiPZTMrMaJgtcNBA/I55DI3OR6b2fFERCTDGDGDuXeUs2xGJQBHXV9Al0Euk1OJiIjInqh+6WUCz74AViueF6ZhLSw0O1KtCvhifDOrkqXTK6gqiW81Wa+1nR5XeWjfK8f0ghDfxv9snyEiIiIiIiKSjlQUYbLq51/Cf88DAHiemUpWpwNNTlQzkZDB1y9W8OVjPoIVBgBtj3bS89oC6rXKjO4XIiKSWmIRg/fHlvLDHD9Y4LgxhXTsl292LBEREdkD0dVrqLjsGgDyRt+A44jDzQ1Uiyo2R1gyvZJvZ1USqorPn/Mb2YgGDUpXR3hj+HYad3BwxDUeWh7iNC2nd4M6RYiIiIiIiEh604zWROFFS/ANGQZA3qjrcfY7w+REe84wDJZ/WM38+7yUr4svmDTYO4ujbyigRXfzFm9ERCSzxSIGb92wnV//XY3FBv+aUI/9TskzO5aIiIjsASMSwTvwIgyfj6zDDiHvlpvMjlQrSpaHWPxMBT+97ScWnz5Tv52dboPd7HNSLpGAwaJnK1jybAWbvw8x6+ISWhySzRFXe2hyQHbS86pThIiIiIiIiKQ7FUWYJLppM+V9zoZgEMepJ5E37hazI+2xzT+E+PjuctYvDgKQV2Slx1Ue9u+dh9WWGnugiohIZrLYIL+BDVsWnHJPfdofm2t2JBEREdlDVeMmEl7wFRaPB88L07DYM2fJwjAM1i8OsujpClbND+x4vHnXbLoOdtH6COeObTJsWRZ6DPNw0IB8vno8vi3lb18GeeHLrbQ/LoceV3qo3yY5nRgjIYPKrfGiCHWKEBERERERkXSlGa0JjGAQb9+BxDZuwrbv3nimP4nFajU71m6r2BLhswe9/PCGHwywZ1vocoGLbhe5cOSm388jIiLpx2KxcPSNBRxwRh4N9naYHUdERET2UGj+Z1RNuBsA92MPYGvV0uREiRGLGqz4qJqFT1Ww+bsQABYrtO+VQ9fBrv/Z+SGvvo1jRhbS+XwXXzwSn3sv/6CaFXOr2b93Hodd4cbdpHaXdSo2xVtZ2HMs5BRqni8iIiIiIiLpSUURSWYYBr6hI+J3vxQUUDBnJla32+xYuyXkj7H4mQoWPl1BpDq+7+m+J+dyxDWeWl+QERER+f8sVosKIkRERNJYrLQU78CLIBbDOfg8nP3PNDtSjYUDMX6Y42fxsxWU//Z7YUG2hf375NJlkIvCFrve6cHT1M6/JtSnywUuPn/Ix4qPqvn+9Sp+eruKTmfn032Im9zC2tnawrvh9y4RxbYdnSxERERERERE0o0+wU6y6oenEpj2LFiteGY8g719O7Mj7TIjZvDjm34+fdBL5Zb4wkhxJwdH31hgyr6mIiIiIiIikt4Mw8A3ZBix9RuwtW+H68G7zY5UI9XlUZbNqGTpi5VUl8YAcHqsHDQgn04D8smrv+fFCw3aO+jzYBEbvwky/34v6xcHWfJcJd+9WkWXC1x0Od+FIy+x3Rx8G+MFHe5iLR+JiIiIiIhI+tKsNolCH31MxfCbAMi/azzZJ/QyOdGuW7c4wMd3lbPlxzAA7qY2eo4oYK/jc3S3iIiIiIiIiOyR6iefIfjaG5CVheelp7Hm55sdaY94N0RY8lwF375WtaOjorvYRpdBLjqcnpfQLSaLO2bT/+kGrPkiwKeTvWz9KcwXU3x8/VIlhwxx07F/PnZHYubp3g3xoghPUy0fiYiIiIiISPrSrDZJoqvXUN7vfIhGcZ57NrkjrjQ70i4p/y3CJ/eVs/zDagAceRa6X+Km87ku7NkqhhAREREREZE9E/npZyquvgGA/DtuJavzQSYn2n1bfgqx6OkKfnnfjxFvqEjDfbPoNtjNXsfnYLXXzrzZYrHQ+vAcWh3q5Jd/V/P5Q17K1kaYN6mcxc9VcPhQD/udmovVVrPz+zbGfyh3ce1szyEiIiIiIiKSDCqKSIJYZSXlvftjlJZi79oZ9+MPpXx3hYAvxpeP+Vj6QgWxCFiscOCZeRw21FOjdp8iIiIiIiIiRiCAd8BgqK7GcfyxaXPjAMS3/Fi7IMiip32sXRDc8Xirw5x0HeyixSHZSZvzW6wW9jkxl/bH5vDDnCq+eMRHxaYo740uZdHTPnpc5aHdMXve4VGdIkRERERERCQTaFZby4xYDN8FlxL57gesjRtR8PpLWHJyzI71t2IRg29mVfLFFB/V5fH9T1sd5qTn9R4atHeYnE5EREREREQyQeXIsUS++Q5LgyLczz6OxZq47SVqSyxi8Mu//Sx6qoKtP8e3lrTYYJ8Tc+k62EXDfcybM9uyLBx4Zj77npLL1y9WsvDJCravjDDn6u00OdDBEdd4aNHNudvHVacIERERERERyQQqiqhlVeMnEXx1DjgceF57EVvTYrMj7ZRhGKz+NMDH95RTuip+J0i9NnaOur6A1j2cKd/ZQkRERERERNJD8N1/4588BQDP01OxNW5kcqL/LeSP8f1rVSx+rmJHkYA9x8KBffPofL4LT3HqLK1kOa10u9DNgWfms/iZChY/X8Gmb0O8fGEJrQ5z0uNqD43337XijUjIoHJr/OdVpwgRERERERFJZ5rV1qLA7DepGjsBAPejk3Ec2t3kRDtXsjzEJ3d7WfNFAICcQiuHDXXT8cz8Wtv/VEREREREROqe6OYteAddAkDOVZeTffKJJif6e1Xbo3z9YiXLZlQS8MY7KebUs9J5oIuOZ+eR40nd7glOt5UeV3k46Jx8Fjzm49tZlaz5IsCaLwLsdUIOPYZ5qNc6638eo2JT/IYJe46FnMLU7+QhIiIiIiIi8ndUFFFLIt//gO+8IQDkXHkZOReeb3Kiv6raFuWLKV6+fbUKIwZWOxx8rotDLnHjdGvBQ0RERERERBLHiMXwDboEo2Qb9gM74Jp0u9mRdqrstzCLn6nghzl+IkEDgIIWdrpe4GK/03LJcqbPfDmvyEavUYV0Od/FF1O8/Pi2n1/fr2b5h9V06JPHYZe7cTXe+dKQd8PvXSKKbeoeKSIiIiIiImlNRRG1IFZaSnnvszEqK3Ec0xPXvRPNjvQnkaDBkucr+OoJH6Gq+AJP++Ny6Dm8gIIW+l9CREREREREEs8/eQqhf8+FnBw8Lz2Nxek0O9KfbPouyMKnKlj+YTXEp8o0PsBBtwtdtDsmB6stfQsDCprbOenO+nS90MVnD3pZ+XGA716t4sc3qzhogIvuQ1zkFPy584VvY7xThDuFtgcRERERERER2ROa2SaYEYng7T+I6KrV2Fq3wvPyc1iy/ndLymQxDINf3q9m/v3l+H6/46PRflkcfWMhzTpnm5xOREREREREMlV46TIqbxoDgOv+O7Hvt6/JieKMmMGqTwMserqC9YuDOx5v09NJ18EumnXOzqguCQ32cnD6ww3YsDTIpw94Wb8kyOJnK/j21Uq6DnbR+TwXjtx4JwzvhnhRhKeplo5EREREREQkvWlmm2CV148i9OE8LHl5eObMwFq/vtmRgPgdL/MmlbNxWQiA/EY2jrjaw36n5GKxZs4Cj4iIiIiIiKSWWGUl3gGDIRwm+4zTyLnkQrMjEQ0b/PSOn0VP+9i+Iv7hv9UO+56SS9cL3BS1S42bG2pL04Oz6f9MA1Z/FuDTyV5Kfgnz+UM+vn6hkkMudXNgv3x8G+M3U7iLbf9wNBEREREREZHUpqKIBKp+Zjr+yVMAcD/3OFkHdDA5Efg2Rfh0spef3vYDYM+x0O1CF10G/efuDxEREREREZHaUnH1DUR/XY61aTHuJx42tfNCsDLGt7MqWTK9ksot8Q/9HXkWOp6Vz8Hn5uNqVHeWSSwWC22OyKH14U5+fs/P5w/5KF8X4aOJ5Sx+rgIjXiui7TNEREREREQk7WlmmyDhrxbhu/QqAPLGjsR5Rm9T84T8MRY+WcHiZyuIBA2wwP69c+lxpadOLfKIiIiIiIiIeQIvv0rgqefAYsEz/Ums9eqZkqNya5Ql0yv45uVKQpUGAHkNrHQ+z0XHfvlku+ruTQMWq4V9T8pjr+Ny+e61KhY86t2x5SaAp6k6RYiIiIiIiEh606fjCRDduIny0wdAKER2n1PIGzPStCyxqMEPs6v47CEvVdtiADTrks3RNxTQaD+HablERERERESkbomu/Q3fJb/fPHDzdTiOOjLpGbavDLPomQp+fLOK2O+dD+q1sdN1sIt9T87D7tB2kn+wZVno1D+f/U/LZemLlSyc5sNisVC/TWZvJSIiIiIiIiKZT0URNWQEg3jPOIfYps3Y9t8X93NPYLGac4fJb18FmHdXOSW/hAEoaG6n57Ue2h2bY2p7UhEREREREalbjEgE78CLMLxesg7pRt7Ym5N3bsNgw9chFj3lY+XHgR2PN+ucTdfBLtoc6cRi1Rz572TlWOl+kZuDB+YTi4Ajr+520RAREREREZHMoKKImsrKwnH8MUSWr6RgzkysLlfSI5SuCfPJPeU7FnuyXRYOvczDQefkY8vSQo+IiIiIiIgkV9WEuwh/vgCLy4X7hWlYsmq/24ARM1jxUTWLnq5g4zeh+IMWaH9sDl0HuyjumF3rGTJJllPFECIiIiIiIpIZVBRRQxarlfxxt5B71eVYi4qSeu5qb5QFj/pYNqOSWAQsNujUP59DL3eTW6g9P0VERERERCT5Qp99QdW4OwFwTX0Ae5vWtXq+SNDgxzerWPRMBWVr4ntk2Bywf+88ugxyUa+Vtn8QERERERERqctUFJEgySyIiIYNls2oZMGjPgK+GABtjnTS87oC7fUpIiIiIiIipomVleEdeBHEYjjPP4ecc86qtXMFvDGWzaxk6QsV+LfH58bZbgsHne3ioHPyySvSzQIiIiIiIiIioqKItGIYBis/DvDJPeWUrY3f/VLUPoujri+g1WFOk9OJiIiIiIhIXWYYBr5LryL22zpsbdvgevjeWjmPb1OEJc9X8O2sKsLVBgCuJja6nO/igL55OHK17YOIiIiIiIiI/IeKItLE1p9DzLurnHULgwDk1rPS4yoPHU7Pw2qzmJxORERERERE6rrA088TnPU62O14Xnoaq8uV0OOX/BJi0dMV/Pyen1j8PgEa7JVF1wtd7H1CLrYszY1FRERERERE5K9UFJHiKkuifPagl+9nV4ER3xe1y/kuul3sJjtfd7+IiIiIiIiI+SK//IrvyusAyB8/hqyunRNyXMMwWLcwyMKnKljzeWDH4y0OyabbYDctD8vGYlExhIiIiIiIiIj8PRVFpKhwdYzFz1Ww8MmKHe1A9/lXLkdc48HTVP9sIiIiIiIikhqMYBDvgMHg9+M49ihyr7+mxseMRQx+/aCaRU/72PJjGACLFfY+IZeug1002s9R43OIiIiIiIiISN2gT9dTjBEz+OkdP5/e76ViSxSAJgc6OPqGAoo7ZZucTkREREREROTPKkfdRuTrb7DUr4f7uSewWPe8q2G4Osb3s6tY/GwF3vXxObHdaeGAM/LofL6LgmZaxhARERERERGR3aPVhBSyYWmQeXeXs/m7EACuJjaOHO5hn3/lqh2oiIiIiIiIpJzg+x/iv/dBADxPT8VW3GSPjuMvjfL1S5Use6mS6vIYADmFVg46J59OZ+eTW2hLWGYRERERERERqVtUFJECytdHmH9/Ob++Xw1AVq6FQ4a4Ofi8fLKce36HjYiIiIiIiEhtMQyDytHjAMgZegnZp56028coXxdh8XMVfP96FZFAfOtITzMbXS9ws3/vXLJyNCcWERERERERkZpRUYSJghUxvnzCx9LnK4iGAQsccEYePa70kFeku2BEREREREQkdVksFgrfe52qO+4hf/yY3frezd+HWPS0j18/qMaIN4ag0f5ZdLvQTfteOVht6pYoIiIiIiIiIomhoggTxCIG375axedTvFSXxld/WhySzVHXFdBwH4fJ6URERERERER2jbV+fVz3Ttyl5xqGwZrPAyx8qoJ1C4M7Hm99hJOug10075qtrSNFREREREREJOFUFJFkqz+v5uO7y9m+IgJAvdZ2el5bQJueTi3+iIiIiIiISMaJhg1+ftfPoqcr2LY8DIDVDvuclEvXC1w02Es3B4iIiIiIiIhI7VFRRJJsWxnmk3vKWf1pAACnx8phV7jpeFY+tiwVQ4iIiIiIiEhmCVXF+PbVKpY8V0HF5igAWbkWDuyXR+dzXbibaElCRERERERERGqfViBqmb80yheP+PhmViVGNH43zEHn5HPopR6cHqvZ8UREREREREQSqmpblKXTK1j2ciVBnwFAXpGVg8910fGsfJxuzYVFREREREREJHlUFFFLIiGDr1+o4MvHfQQr4otA7Y7Joee1HgpbZpmcTkRERERERCSxSleHWfxsBT/MqSIa3yWDeq3tdL3Axb6n5mF3qEuiiIiIiIiIiCRfStyeMWXKFFq1aoXT6aR79+4sXLjwfz5/1qxZ7LPPPjidTg444ADeeeedJCX9Z4Zh8OsHfp4+bROf3OslWGHQcN8sznqqAX0eLFJBhIiIiIiIiGSUjcuCzL5qG0+dtplvX4kXRBR3ctDnwSIGz2nMAX3zVRAhIiIiIiIiIqYxvVPEzJkzGTFiBFOnTqV79+5MnjyZE044gV9++YWGDRv+5flffPEFAwYMYOLEiZxyyim8+OKL9OnTh6VLl9KhQwcTfoL/2Px9iI/vLmf9kiAAeQ2sHHF1AfudmovVpgUgERERERERySxzrtnG8g+rd/y+3TE5dL3ARdODs01MJSIiIiIiIiLyHxbDMAwzA3Tv3p2uXbvy8MMPAxCLxWjevDlXXnklN91001+e379/f6qqqnjrrbd2PHbIIYfQqVMnpk6d+o/n8/l8eDwevF4vbrc7IT9DxeYInz7g5cc3/QDYnRa6XuCi64UuHLkp0YxDREQkJdTGOCwiIiK7pjbG4QVTvXz5mI/9TsujyyAX9duoO6KIiMjOaD4sIiIiYh5TO0WEQiGWLFnCyJEjdzxmtVrp1asXCxYs2On3LFiwgBEjRvzpsRNOOIHZs2fv9PnBYJBgMLjj9z6fr+bB/0s0bDB9wBaqSmIA7HdKLj2u9uBuYnoTDhEREdPV9jgsIiIify8Z4/BB57g4oG8++Q1sCT+2iIhIOtN8WERERCR1mNrGYNu2bUSjURo1avSnxxs1asTmzZt3+j2bN2/eredPnDgRj8ez41fz5s0TE/53tiwLnc9z0fRgBwNfashJd9ZXQYSIiMjvanscFhERkb+XjHHY6baqIEJERGQnNB8WERERSR0Zv7fDyJEj8Xq9O36tW7cu4efocr6Ls59tSJMDtGeqiIjIf0vGOCwiIiI7p3FYRETEPBqHRURERFKHqS0NioqKsNlsbNmy5U+Pb9myhcaNG+/0exo3brxbz8/OziY7u3aLFax2S60eX0REJF0lYxwWERGRndM4LCIiYh6NwyIiIiKpw9ROEQ6Hg86dOzN37twdj8ViMebOncuhhx660+859NBD//R8gA8++OBvny8iIiIiIiIiIiIiIiIiIiJ1k6mdIgBGjBjBoEGD6NKlC926dWPy5MlUVVUxePBgAM4//3yaNm3KxIkTAbj66qvp2bMn9957LyeffDIzZsxg8eLFPP7442b+GCIiIiIiIiIiIiIiIiIiIpJiTC+K6N+/PyUlJYwZM4bNmzfTqVMn3nvvPRo1agTAb7/9htX6n4YWhx12GC+++CKjR4/m5ptvpn379syePZsOHTqY9SOIiIiIiIiIiIiIiIiIiIhICrIYhmGYHSKZfD4fHo8Hr9eL2+02O46IiEidonFYRETEPBqHRUREzKNxWERERMQ81n9+ioiIiIiIiIiIiIiIiIiIiEj6UVGEiIiIiIiIiIiIiIiIiIiIZCQVRYiIiIiIiIiIiIiIiIiIiEhGUlGEiIiIiIiIiIiIiIiIiIiIZCQVRYiIiIiIiIiIiIiIiIiIiEhGUlGEiIiIiIiIiIiIiIiIiIiIZCQVRYiIiIiIiIiIiIiIiIiIiEhGUlGEiIiIiIiIiIiIiIiIiIiIZCQVRYiIiIiIiIiIiIiIiIiIiEhGUlGEiIiIiIiIiIiIiIiIiIiIZCQVRYiIiIiIiIiIiIiIiIiIiEhGspsdINkMwwDA5/OZnERERCR9uFwuLBZLjY+jcVhERGTPJGIs1jgsIiKyZzQOi4iImCdRa9NSt9W5ooiKigoAmjdvbnISERGR9OH1enG73TU+jsZhERGRPZOIsVjjsIiIyJ7ROCwiImKeRK1NS91mMf4oUa0jYrEYGzdu3O2qoq5du7Jo0aI9OueefO/ufs+uPN/n89G8eXPWrVunFw9q9m+aDMnOVxvnS9QxU/n629Xn6vr7s1S+/jLh2kvkcf84TqKqcTUO63XgD6n8OgCZ8Vqgcfg/dP39ma6/2j9XbVx/iRiLNQ7rdeAPeh2o/fPVhXF4V5+v6+/PdP3V/vk0Dtfse/U6UPv0OlD759M4/B+6/v5M11/tny9Vx2GROtcpwmq10qxZs93+PpvNtscDxp587+5+z+483+12a/CjZv+myZDsfLVxvkQdM5Wvv909vq6/uFS+/jLh2kvkcROdT+OwXgf+kMqvA5AZrwWp8DqgcTg16fqr/XOlwvW3MxqH9TrwB70O1P75UuF1QNdfatL1V/vnS4Xrb2c0Dut14A96Haj986XC64Cuv9Sk66/2z5cK15/IzljNDpAuhg4dmtTv3d3vqUm+uirV/86Sna82zpeoY6by9Zfq/x+lqlT+e8uEay+Rx02Vf6tUfh3Y03PUdan+d5YJrwWp8DqgcTg1pfrfWzLzaRzeNan8OrCn56jrUv3vTONwYo6j6y81pfrfma6/xB+npvQ6kHlS/e9MrwOJOY6uv9SU6n9nuv4SfxyRP9S57TPqMp/Ph8fj0d47IibQ9Scieh0QMY+uPxHR64CIeXT9iYheB0TMo+tPRCROnSLqkOzsbMaOHUt2drbZUUTqHF1/IqLXARHz6PoTEb0OiJhH15+I6HVAxDy6/kRE4tQpQkRERERERERERERERERERDKSOkWIiIiIiIiIiIiIiIiIiIhIRlJRhIiIiIiIiIiIiIiIiIiIiGQkFUWIiIiIiIiIiIiIiIiIiIhIRlJRhIiIiIiIiIiIiIiIiIiIiGQkFUWIiIiIiIiIiIiIiIiIiIhIRlJRhABw+umnU1hYyJlnnml2FJE6Zd26dRx11FHst99+HHjggcyaNcvsSCJiAo3DIubQOCwioHFYxCwah0UENA6LmEXjsIjUNRbDMAyzQ4j5Pv74YyoqKnj22Wd55ZVXzI4jUmds2rSJLVu20KlTJzZv3kznzp359ddfycvLMzuaiCSRxmERc2gcFhHQOCxiFo3DIgIah0XMonFYROoadYoQAI466ihcLpfZMUTqnCZNmtCpUycAGjduTFFREaWlpeaGEpGk0zgsYg6NwyICGodFzKJxWERA47CIWTQOi0hdo6KIDDB//nxOPfVUiouLsVgszJ49+y/PmTJlCq1atcLpdNK9e3cWLlyY/KAiGSiR19+SJUuIRqM0b968llOLSCJpHBYxj8ZhEdE4LGIejcMionFYxDwah0VEdo+KIjJAVVUVHTt2ZMqUKTv985kzZzJixAjGjh3L0qVL6dixIyeccAJbt25NclKRzJOo66+0tJTzzz+fxx9/PBmxRSSBNA6LmEfjsIhoHBYxj8ZhEdE4LGIejcMiIrvJkIwCGK+//vqfHuvWrZsxdOjQHb+PRqNGcXGxMXHixD89b968eUbfvn2TEVMkI+3p9RcIBIwjjjjCeO6555IVVURqicZhEfNoHBYRjcMi5tE4LCIah0XMo3FYROSfqVNEhguFQixZsoRevXrteMxqtdKrVy8WLFhgYjKRzLcr159hGFxwwQUcc8wxnHfeeWZFFZFaonFYxDwah0VE47CIeTQOi4jGYRHzaBwWEfkrFUVkuG3bthGNRmnUqNGfHm/UqBGbN2/e8ftevXrRr18/3nnnHZo1a6Y3piIJsCvX3+eff87MmTOZPXs2nTp1olOnTnz33XdmxBWRWqBxWMQ8GodFROOwiHk0DouIxmER82gcFhH5K7vZASQ1fPjhh2ZHEKmTevToQSwWMzuGiJhM47CIOTQOiwhoHBYxi8ZhEQGNwyJm0TgsInWNOkVkuKKiImw2G1u2bPnT41u2bKFx48YmpRKpG3T9iYheB0TMo+tPRPQ6IGIeXX8iotcBEfPo+hMR+SsVRWQ4h8NB586dmTt37o7HYrEYc+fO5dBDDzUxmUjm0/UnInodEDGPrj8R0euAiHl0/YmIXgdEzKPrT0Tkr7R9RgaorKxkxYoVO36/evVqli1bRr169WjRogUjRoxg0KBBdOnShW7dujF58mSqqqoYPHiwialFMoOuPxHR64CIeXT9iYheB0TMo+tPRPQ6IGIeXX8iIrvJkLQ3b948A/jLr0GDBu14zkMPPWS0aNHCcDgcRrdu3Ywvv/zSvMAiGUTXn4jodUDEPLr+RESvAyLm0fUnInodEDGPrj8Rkd1jMQzDqL2SCxERERERERERERERERERERFzWM0OICIiIiIiIiIiIiIiIiIiIlIbVBQhIiIiIiIiIiIiIiIiIiIiGUlFESIiIiIiIiIiIiIiIiIiIpKRVBQhIiIiIiIiIiIiIiIiIiIiGUlFESIiIiIiIiIiIiIiIiIiIpKRVBQhIiIiIiIiIiIiIiIiIiIiGUlFESIiIiIiIiIiIiIiIiIiIpKRVBQhIiIiIiIiIiIiIiIiIiIiGUlFESIiIiIiIiIiIiIiIiIiIpKRVBQhIiIiIiIiIiIiIiIiIiIiGUlFESIiIiIiIiIiIiIiIiIiIpKRVBQhIiIiIiIiIiIiIiIiIiIiGUlFESIiIiIiIiIiIiIiIiIiIpKRVBQhIiIiIiIiIiIiIiIiIiIiGUlFESIiIiIiIiIiIiIiIiIiIpKRVBQhIiIiIiIiIiIiIiIiIiIiGUlFESIiIiIiIiIiIiIiIiIiIpKRVBQhIiIiIiIi/8fefcdHUa0NHP9tLymbSkIghN576L0jIkUEFRWw4LUh6vXavYrX9tob167gVVAElKrSQboQegu9hySk121z3j8Ci5GOSTaE5/v5aDZzZs6c2SX7zO488xwhhBBCCCGEEEIIISokSYoQQgghhBBCCCGEEEIIIYQQQgghRIUkSRFCCCGEEEIIIYQQQgghhBBCCCGEqJAkKUIIIYQQQgghhBBCiGvMxIkTCQkJOW/70qVL0el0ZGZmXvE+SqIPIYQQ4lo3Y8YMateujcFg4NFHHy21/Vzs3EAIIa5mkhQhRBkbN24czZs39/cwyoxOp2PGjBn+HoYQQghxxSR2V3wHDx5Ep9OxadMmfw9FCCGueRJ3y48OHTqQlJSEw+EA5EKJEEKIMyRel6377ruPoUOHcuTIEV5++WW/jUMIIa5mkhQhxDXO7Xb7ewi4XC5/D+Gqp5TC4/H4exhCCCHKgMTuklWRjkUIIUTJu5bjrtlsJjo6Gp1O55f9CyGEEJeqIsfr3NxcUlJS6Nu3LzExMQQFBZXKfoQQoqKTpAghLpOmabz55pvUrl0bi8VCtWrVePXVV33tTz31FHXr1sVut1OzZk3+/e9/+07KJk6cyEsvvcTmzZvR6XTodDomTpwIQGZmJqNHjyYyMpLg4GB69OjB5s2bi+37lVdeoVKlSgQFBTF69GiefvrpYhm5mqbxn//8h6pVq2KxWGjevDm//fabr/30XZBTpkyha9euWK1WPv/8c4KDg5k2bVqxfc2YMYOAgABycnIu+Hy4XC7GjBlD5cqVsVqtxMXF8frrrwNQvXp1AG688UZ0Op3v99OZxF9++SU1atTAarVe8vN/OdLS0hg+fDhVqlTBbrfTpEkTvv/++2LrXOz1PHr0KMOHDycsLIyAgABatWrF2rVrfe0zZ86kZcuWWK1WatasyUsvveRLTlBKMW7cOKpVq4bFYiEmJoaxY8f6tv3444+pU6cOVquVqKgohg4d6mtzOp2MHTuWSpUqYbVa6dSpE+vWrfO1ny5B+uuvvxIfH4/FYuG7775Dr9ezfv36Ysf4/vvvExcXh6ZpJfPECiHEVUZid3HlOXYfOnSIAQMGEBoaSkBAAI0aNeKXX34BzsS+uXPn0rRpU6xWK+3atWPbtm3F+pg+fTqNGjXCYrFQvXp13nnnnWLt1atX5+WXX2bkyJEEBwfzj3/8gxo1agDQokULdDod3bp18+2zTZs2BAQEEBISQseOHTl06FCpHLsQQlQUEneLK89x969SU1Np1aoVN954I06ns9jUF0uXLuWuu+4iKyvL99qMGzcOKPr8+tRTTxEbG4vFYqF27dp89dVXxfpOSEigVatW2O12OnToQGJiYrH2C322hqI7dL/88ktuvPFG7HY7derUYdasWaX+nAghREUl8bq48hqvly5d6kuC6NGjBzqdjqVLlwIX/+ybkZHByJEjCQ0NxW63069fP/bs2VNsnYkTJ1KtWjXsdjs33ngjaWlpJX4MQghRbighxGV58sknVWhoqJo4caLau3evWr58ufriiy987S+//LJauXKlOnDggJo1a5aKiopSb7zxhlJKqfz8fPX444+rRo0aqaSkJJWUlKTy8/OVUkr16tVLDRgwQK1bt07t3r1bPf744yo8PFylpaUppZT67rvvlNVqVV9//bVKTExUL730kgoODlbNmjXz7fvdd99VwcHB6vvvv1e7du1STz75pDKZTGr37t1KKaUOHDigAFW9enU1ffp0tX//fnX8+HF17733quuvv77YcQ4cOFCNHDnyos/HW2+9pWJjY9Xvv/+uDh48qJYvX64mT56slFIqJSVFAWrChAkqKSlJpaSkKKWUevHFF1VAQIC67rrr1IYNG9TmzZvP2fehQ4dUQEDABf979dVXzzu2o0ePqrfeektt3LhR7du3T3344YfKYDCotWvXXtLrmZOTo2rWrKk6d+6sli9frvbs2aOmTJmiVq1apZRS6vfff1fBwcFq4sSJat++fWr+/PmqevXqaty4cUoppaZOnaqCg4PVL7/8og4dOqTWrl2rPv/8c6WUUuvWrVMGg0FNnjxZHTx4UG3YsEF98MEHvnGNHTtWxcTEqF9++UVt375djRo1SoWGhvr+PSxZskQBqmnTpmr+/Plq7969Ki0tTfXu3Vs9+OCDxZ6Hpk2bqhdeeOGir6UQQlRUEruLK8+xu3///qp3795qy5Ytat++fWr27Nlq2bJlSqkzsa9BgwZq/vz5asuWLeqGG25Q1atXVy6XSyml1Pr165Ver1f/+c9/VGJiopowYYKy2WxqwoQJvn3ExcWp4OBg9fbbb6u9e/eqvXv3qj/++EMBauHChSopKUmlpaUpt9utHA6H+te//qX27t2rduzYoSZOnKgOHTp00edYCCGuZRJ3iyvPcXfChAnK4XAopZQ6fPiwqlevnho1apTyeDxKqTOxNyMjQzmdTvX++++r4OBg32uTk5OjlFLq5ptvVrGxseqnn35S+/btUwsXLlQ//PBDsT7atm2rli5dqrZv3646d+6sOnTo4BvHxT5bK6UUoKpWraomT56s9uzZo8aOHasCAwN9r78QQojLI/G6uPIar51Op0pMTFSAmj59ukpKSlJOp/OSPvsOHDhQNWjQQP3+++9q06ZNqm/fvqp27dq+z89r1qxRer1evfHGGyoxMVF98MEHKiQkxHduIIQQFY0kRQhxGbKzs5XFYil2gngxb731loqPj/f9/uKLLxY7yVNKqeXLl6vg4GBVWFhYbHmtWrXUZ599ppRSqm3btuqhhx4q1t6xY8difcXExJx1AtW6dWvfRfLTJ4zvv/9+sXXWrl2rDAaDOn78uFJKqeTkZGU0GtXSpUsvenwPP/yw6tGjh9I07ZztgPr555+LLXvxxReVyWTynUCej9vtVnv27Lngf5f7BUj//v3V448/rpS6+Ov52WefqaCgoPPuo2fPnuq1114rtuzbb79VlStXVkop9c4776i6dev6TjT/bPr06So4OFhlZ2ef1Zabm6tMJpOaNGmSb5nL5VIxMTHqzTffVEqd+WJpxowZxbadMmWKCg0N9f1bSkhIUDqdTh04cOCcxyCEEBWdxO6zlefY3aRJk2IXQP7sdOw7fZFFKaXS0tKUzWZTU6ZMUUopddttt6nevXsX2+6JJ55QDRs29P0eFxenBg8eXGyd08/zxo0bi/UNXNJzKoQQoojE3bOV57h7Oili165dKjY2Vo0dO7bYOP+cFPHn9f/s9IWaBQsWnHMfp/tYuHChb9ncuXMVoAoKCpRSF/9srVTR8/T888/7fs/NzVWA+vXXXy/4HAkhhDibxOuzled4nZGRoQC1ZMkS37KLffbdvXu3AtTKlSt97SdPnlQ2m039+OOPSimlhg8fflYSyS233CJJEUKICkumzxDiMuzcuROn00nPnj3Pu86UKVPo2LEj0dHRBAYG8vzzz3P48OEL9rt582Zyc3MJDw8nMDDQ99+BAwfYt28fAImJibRp06bYdn/+PTs7m+PHj9OxY8di63Ts2JGdO3cWW9aqVauz+mnUqBHffPMNAN999x1xcXF06dLlguMGuPPOO9m0aRP16tVj7NixzJ8//6LbAMTFxREZGXnBdYxGI7Vr177gf2FhYefd3uv18vLLL9OkSRPCwsIIDAxk3rx5vtfjYq/npk2baNGixXn3sXnzZv7zn/8Ue83uvfdekpKSyM/PZ9iwYRQUFFCzZk3uvfdefv75Z1/5z969exMXF0fNmjUZMWIEkyZNIj8/H4B9+/bhdruLvZYmk4k2bdpc9LUcPHgwBoOBn3/+GSgqgda9e3dfWTchhLjWSOw+W3mO3WPHjuWVV16hY8eOvPjii2zZsuWsddq3b+97HBYWRr169XzP186dO8/5fO7Zswev1+tb9tfn81zCwsK488476du3LwMGDOCDDz4gKSnpotsJIcS1TOLu2cpz3AUoKCigc+fODBkyhA8++ACdTndJ4ztt06ZNGAwGunbtesH1mjZt6ntcuXJlAFJSUoCLf7Y+Vx8BAQEEBwf7+hBCCHHpJF6frbzH67+62GffnTt3YjQaadu2ra89PDz8rM/Pf26H4p+3hRCiopGkCCEug81mu2D76tWruf3227n++uuZM2cOGzdu5LnnnsPlcl1wu9zcXCpXrsymTZuK/ZeYmMgTTzxRkocAFH158FejR4/2zf02YcIE7rrrrkv6MqRly5YcOHCAl19+mYKCAm6++WaGDh16RWP4q8OHDxc7gT7Xf6+99tp5t3/rrbf44IMPeOqpp1iyZAmbNm2ib9++vtfjYq/nxdpzc3N56aWXir1mW7duZc+ePVitVmJjY0lMTOTjjz/GZrPx4IMP0qVLF9xuN0FBQWzYsIHvv/+eypUr88ILL9CsWTMyMzMv+rz82V+fR7PZzMiRI5kwYQIul4vJkydz9913X1afQghRkUjsPlt5jt2jR49m//79jBgxgq1bt9KqVSs++uiji+73cl3KsUDR87p69Wo6dOjAlClTqFu3LmvWrCnx8QghREUhcfds5TnuAlgsFnr16sWcOXM4duzYRff5Vxd7zU8zmUy+x6efN03TgIt/tj5XH6f7Od2HEEKISyfx+mzlPV4LIYT4+4z+HoAQV5M6depgs9lYtGgRo0ePPqt91apVxMXF8dxzz/mWHTp0qNg6ZrO52J2KUHTSdeLECYxG43nv6K9Xrx7r1q1j5MiRvmXr1q3zPQ4ODiYmJoaVK1cWu0Nj5cqVZ2Xfnssdd9zBk08+yYcffsiOHTsYNWrURbf5875vueUWbrnlFoYOHcp1111Heno6YWFhmEyms473UsXExLBp06YLrnOhLNqVK1cyaNAg7rjjDqDoC5fdu3fTsGFD4OKvZ9OmTfnyyy99x/JXLVu2JDExkdq1a593DDabjQEDBjBgwAAeeugh6tevz9atW2nZsiVGo5FevXrRq1cvXnzxRUJCQli8eDF9+/bFbDazcuVK4uLiAHC73axbt45HH330gs8HFJ38N27cmI8//hiPx8OQIUMuuo0QQlRUErvPrbzGboDY2Fjuv/9+7r//fp555hm++OILHn74YV/7mjVrqFatGgAZGRns3r2bBg0aANCgQQNWrlxZrL+VK1dSt25dDAbDefdpNpsBznncLVq0oEWLFjzzzDO0b9+eyZMn065duwsegxBCXKsk7p5beY67er2eb7/9lttuu43u3buzdOlSYmJizrnuuV6bJk2aoGkay5Yto1evXpc1/tMu5bO1EEKIkiPx+tzKc7z+q4t99m3QoAEej4e1a9fSoUMHANLS0khMTPR9N96gQQPWrl1brA+5CUAIUZFJUoQQl8FqtfLUU0/x5JNPYjab6dixI6mpqWzfvp177rmHOnXqcPjwYX744Qdat27N3LlzfdMYnFa9enUOHDjApk2bqFq1KkFBQfTq1Yv27dszePBg3nzzTerWrcvx48eZO3cuN954I61ateLhh8gFtc8AAQAASURBVB/m3nvvpVWrVr67Fbds2ULNmjV9fT/xxBO8+OKL1KpVi+bNmzNhwgQ2bdrEpEmTLnpsoaGhDBkyhCeeeII+ffpQtWrVS3pO3n33XSpXrkyLFi3Q6/VMnTqV6OhoQkJCfMe7aNEiOnbsiMViITQ09JKf79Olxa5UnTp1mDZtGqtWrSI0NJR3332X5ORk34nfxV7P4cOH89prrzF48GBef/11KleuzMaNG4mJiaF9+/a88MIL3HDDDVSrVo2hQ4ei1+vZvHkz27Zt45VXXmHixIl4vV7atm2L3W7nu+++w2azERcXx5w5c9i/fz9dunQhNDSUX375BU3TqFevHgEBATzwwAM88cQThIWFUa1aNd58803y8/O55557LnrcDRo0oF27djz11FPcfffdl3znjhBCVEQSu89WnmP3o48+Sr9+/ahbty4ZGRksWbLEl/Bw2n/+8x/Cw8OJioriueeeIyIigsGDBwPw+OOP07p1a15++WVuueUWVq9ezfjx4/n4448vuN9KlSphs9n47bffqFq1KlarlfT0dD7//HMGDhxITEwMiYmJ7Nmzp9iXd0IIIYqTuHu28hx3TzMYDEyaNInhw4fTo0cPli5dSnR09FnrVa9endzcXBYtWkSzZs2w2+1Ur16dUaNGcffdd/Phhx/SrFkzDh06REpKCjfffPMl7f9in62FEEKULInXZ7sa4vWfXeyzb506dRg0aBD33nsvn332GUFBQTz99NNUqVKFQYMGAUXTV3bs2JG3336bQYMGMW/ePH777bcSHacQQpQrSghxWbxer3rllVdUXFycMplMqlq1auq1117ztT/xxBMqPDxcBQYGqltuuUW99957yuFw+NoLCwvVTTfdpEJCQhSgJkyYoJRSKjs7Wz388MMqJiZGmUwmFRsbq26//XZ1+PBh37b/+c9/VEREhAoMDFR33323Gjt2rGrXrl2xsY0bN05VqVJFmUwm1axZM/Xrr7/62g8cOKAAtXHjxnMe26JFixSgfvzxx0t+Pj7//HPVvHlzFRAQoIKDg1XPnj3Vhg0bfO2zZs1StWvXVkajUcXFxSmllHrxxRdVs2bNLnkfVyotLU0NGjRIBQYGqkqVKqnnn39ejRw5Ug0aNMi3zsVez4MHD6qbbrpJBQcHK7vdrlq1aqXWrl3ra//tt99Uhw4dlM1mU8HBwapNmzbq888/V0op9fPPP6u2bduq4OBgFRAQoNq1a6cWLlyolFJq+fLlqmvXrio0NFTZbDbVtGlTNWXKFF+/BQUF6uGHH1YRERHKYrGojh07qj/++MPXvmTJEgWojIyMcx77V199pYBi2wghxLVKYndx5Tl2jxkzRtWqVUtZLBYVGRmpRowYoU6ePKmUOhP7Zs+erRo1aqTMZrNq06aN2rx5c7E+pk2bpho2bOh7rd96661i7XFxceq99947a99ffPGFio2NVXq9XnXt2lWdOHFCDR48WFWuXFmZzWYVFxenXnjhBeX1ekvt+IUQoiKQuFtceY67EyZMKPbcu91uNWTIENWgQQOVnJx8zs+d999/vwoPD1eAevHFF5VSRZ9fH3vsMV/MrF27tvr666+VUuf+7Lpx40YFqAMHDviWXeiztVJKAernn38uNn6Hw+H79yGEEOLySLwurjzH64yMDAWoJUuWFFt+sc++6enpasSIEcrhcCibzab69u2rdu/eXWydr776SlWtWlXZbDY1YMAA9fbbbxd7nYUQoiLRKaVUmWZhCCFKTO/evYmOjubbb78tkf6+/fZbHnvsMY4fP+4rIy2uTi+//DJTp05ly5Yt/h6KEEKIP5HYfeWWLl1K9+7dycjI8N2tI4QQQlyIxF0hhBCi/JN4LYQQoizI9BlCXCXy8/P59NNP6du3LwaDge+//56FCxeyYMGCEuk7KSmJ//u//+O+++6Tk8WrWG5uLgcPHmT8+PFSZlQIIfxMYrcQQghRdiTuCiGEEOWfxGshhBD+ovf3AIQQl0an0/HLL7/QpUsX4uPjmT17NtOnT6dXr15/u+8333yT+vXrEx0dzTPPPFOs7bXXXiMwMPCc//Xr1+9v71uUrDFjxhAfH0+3bt24++67/T0cIYS4pknsFkIIIcqOxF0hhBCi/JN4LYQQwl9k+gwhxAWlp6eTnp5+zjabzUaVKlXKeERCCCGEuBCJ3UIIIUTZkbgrhBBClH8Sr4UQQkhShBBCCCGEEEIIIYQQQgghhBBCCCEqJJk+QwghhBBCCCGEEEIIIYQQQgghhBAV0jWXFKGUIjs7GymQIYQQQpQ9icNCCCGE/0gcFkIIIfxH4rAQQgghhP9cc0kROTk5OBwOcnJy/D0UIYQQ4pojcVgIIYTwH4nDQgghhP9IHBZCCCGE8J9rLilCCCGEEEIIIYQQQgghhBBCCCGEENcGSYoQQgghhBBCCCGEEEIIIYQQQgghRIUkSRFCCCGEEEIIIYQQQgghhBBCCCGEqJAkKUIIIYQQQgghhBBCCCGEEEIIIYQQFZIkRQghhBBCCCGEEEIIIYQQQgghhBCiQpKkCCGEEEIIIYQQQgghhBBCCCGEEEJUSJIUIYQQQgghhBBCCCGEEEIIIYQQQogKSZIihBBCCCGEEEIIIYQQQgghhBBCCFEhSVKEEEIIIYQQQgghhBBCCCGEEEIIISokSYoQQgghhBBCCCGEEEIIIYQQQgghRIUkSRFCCCGEEEIIIYQQQgghhBBCCCGEqJAkKUIIIYQQQgghhBBCCCGEEEIIIYQQFZIkRQghhBBCCCGEEEIIIYQQQgghhBCiQpKkCCGEEEIIIYQQQgghhBBCCCGEEEJUSJIUIYQQQgghhBBCCCGEEEIIIYQQQogKSZIihBBCCCGEEEIIIYQQQgghhBBCCFEhSVKEEEIIIYQQQgghhBBCCCGEEEIIISokSYoQQgghhBBCCCGEEEIIIYQQQgghRIUkSRFCCCGEEEIIIYQQQgghhBBCCCGEqJAkKUIIIYQQQgghhBBCCCGEEEIIIYQQFZIkRQghhBBCCCGEEEIIIYQQQgghhBCiQpKkCCGEEEIIIYQQQgghhBBCCCGEEEJUSJIUIYQQQgghhBBCCCGEEEIIIYQQQogKSZIihBBCCCGEEEIIIYQQQgghhBBCCFEhSVKEEEIIIYQQQgghhBBCCCGEEEIIISokSYoQQgghhBBCCCGEEEIIIYQQQgghRIUkSRFCCCGEEEIIIYQQQgghhBBCCCGEqJAkKUIIIYQQQgghhBBCCCGEEEIIIYQQFZIkRQghhBBCCCGEEEIIIYQQQgghhBCiQjL6ewBCCCGEEEIIIYQQQghRHmVn5/D2vGfZYtlEbGFVrq88nL7tb0BvlHvNhBBCCCGEuFpIUoQQQgghhBBCCCGEEEL8SebJTL6a+wI/V13JgTgzAOs4yE+8Tr3FL9EyJY4eoTfTs/uNWOwWP49WCCGEEEIIcSGSFCGEEEIIIUQZO3TiMFXCYzCa5HRcCCGEEKI8STt+kp9nvcSsar+T0MAOmHE4Nbqn1OOw+QhbIgtIDDGTGJLE93xA82Wv0yKpCu3tN9Kp5zAckSH+PgQhhBBCCCHEX8i3sEIIIYQQQpShf09/lK9j12Lf7yUuy0BMfhjVqE2jiNZ0bdSTmIjK/h6iEEIIIcQ158TB4yyd8TIL4pbyW8sQwI7Zq7g+M56Xu71KmC2kaL3sFL7+4wuWupeyIyyHTeF2NoVn8I36inZ/vE/Lo5E0Mw6kebdhxNSK9echCSGEEEIIIU7RKaWUvwdRlrKzs3E4HGRlZREcHOzv4QghhBDXFInD4lp3LPkYfXYPJtNy/tzkmDwPVbMDqOKqQm1bE1rHdaZt/bZSVUII8bdJHBZCiLMdSTzAphmvsCpuKZOrR+DR69EpRffcJvxf+5epYo8+77ZJBSl8tWEiC/MXsceR7Vtu1DS6pmbR5nAQtbzXU6vDUOq0bIxOryuLQxLllMRhIYQQQgj/kaQIIYQQQpQZicPiWvfYD8P5seZBquZovBr6KhuPrmK/czvHLUkcDi4gxX7uxAe753RViXDidLVpGN6Kbo17Uzk8qoyPQAhxNZM4LIQQZ+zbtJODs15lS9wyPq0dTe6pBNT4wtr8X8sXaRhY+7L6O+JMYuL2H/g1ax6HArJ8y61ejZ7JGXQ6bKByQR8iWw6hcdeOGM2S8HqtkTgshBBCCOE/khQhhBBCiDIjcVhcy/bsTWTQiTvIMht5NGMQT/R9+qx1Dhw/yPJdi9mRsZ4jHOB4YDoHg8Fl0J+zzyq5Xqrk2KnqqkotW2NaV+9C23ptpKqEEOKcJA4LIQTsXL2B9F9f5WDVFbxTvyrJVjMAtb1VeLXR03QKbvW397Gn4CDfH5jBrLTfSLKcSZAIdHvoeyKDHkdchGT1wNZ4ME369MEeZP/b+xTln8RhIYQQQgj/kaQIIYQQQpQZicPiWvbIpEFMq5NCtWxY3n05RsOlJS4UOgtZuWMlG46sYJ9zB8ctSRxxFJBiO7O9TlMYtKKfgU4v1TP1VMkNJZaaNAxtRsf4/kRVubbntE5KS2biivGs0S0j1V5I5dxAqnpiqRvQjPa1utO8VjP050k+EaKikDgshLiWbVm8AufCV8isvJbXGlZj96lEhGgVzr9rj2VgWC/0upI9F1BKsT1/N1OP/8KM1N84aTwzxUaoy03/4+lcdzQHS3p7vLVvpEGfG4iIiSzRMYjyQ+KwEEIIIYT/SFKEEEIIIcqMxGFxrdq4cR3D8x8kx2Tkrc3due7b9ajcPNA08HpRXi94tb/87r1gu/J6UF4NvaZddP9Os45tbcJwXT+E/v98A5PFXAZH7X/ZuTlM/P0TlrvmsaFSLoXG81/oCHZ5qZ5lokpBJWoYG9C8cnu6NulBoD2gDEcsROmSOCyEuNYoTbHh1wUYV7yKFpHAqw3iWB1R9P4XTAD/rDaakZWGYNFf+NyocNrPFHz2NeZ+fbDdMxK9w3HZY9GURkLuNmakzmdGyjwy9bm+tqhCFwOOpzHgaDrGtGZkVR1M9W6DiGt0eVN4iPJN4rAQQgghhP9IUoQQQgghyozEYXGtGvtdL6bXzSMu08DsF4x41q7321hSoozs6lyLmveNI77XAL+No7S4XC6+WzaBRdkzSIhKI8ds8LXF5nhpnV6XhkGtOZC7g8P6AxwLyuJwEHj0ZydMGDWNatlQNddBrFaTBiEt6VyvJ7Vja5XlIQlRYiQOCyGuFZpHY93MWQSue40AxxbeqB/LrCoRAJgxcW/lW3mo8ggcxqAL95OdTc7D/6Lwf5N9y3RBQdjuGYl97AMYalS/ovF5lIfV2RuZmbaAOScXkUO+r61aXiEDj6cx6FgapvQaHAsfTKX2g2jQoRU6ve6K9ifKB4nDQgghhBD+I0kRQgghhCgzEofFtWjF0gXcZX6OfKOBTxN60ubB98FqxfHDRHR2OzqDHvR6MBiK/tPr0Z1+bDCAXnfm91PrFf/91Pp/6uPPv2voWPzth+RO+ZQmK5MIyj1TWWJ7s0DSenal55PvExZV2X9P0t+keTWmr/yRX1N+YH2lY6RZz0wtUqnAQ+vUavSPuYMBbQedc4qM7Nwclm1bwuYTqzng2cUxWwqHHG6y/5RQ8WeVCjzEZtmo6oyhprURrat1pX2DdpjN10YFDnH1kjgshKjoPC4Pa6f+SNTW1wgLSOT9OlX4X/Uo3Ho9OnQMjejHE1XupYol+qJ9uVasImvEvWgHD4Fej+3ukbhWrsa7M7FoBb0ey+AbsD82BlPH9uh0V5aw4NLcLMtay8z0BfyWtowCnL62Ojn5DDqWxqDjadgyw9kTOJCAFoNp0rMbZqucd1xtJA4LIYQQQviPJEUIIYQQosxIHBbXGqUpHpnciel1NWpkWZn1qgX3shXYxj5A8Advlfl40pOTWPTWo4QvWkajTWdKNucE6tnasTJBN99H95GPYDCeOxmgvJm3fh4zD0xgXcQ+jgecSYRwuLy0Sq5E79CbGN55BEaT8QK9nJvm1di4dxOr9i9hb+5mjpiPcDQoj2OB535ubB6N6ll6YvLDidPVpnFEW7o17kVUmMwLLsoPicNCiIrKVehi7eT/UW33/1HJeoAva0QzvnYVck1Fcbuboy3Pxj5EI3udi/al3G7yXnqNvNffAU1DXz0Ox3dfYu7YHqUUrnkLyX9vPK75i3zbGFu1xP7YGKzDbkRnMl3xcRR4C1mYtZKZaQtYlLkKl3L72ppk5jL4WBoDktIIyrWyzXg9NBhM4779CA6T9/SrgcRhIYQQQgj/kaQIIYQQQpQZicPiWrNg9hTuj3iHQoOBr3cPpvmIl8FsJmLfVgxVq/h1bAkLZ7P/s3HUX76PSske3/KDNSwc7NaM1v98h5qNW/hxhOe2dudaftj2GetCtnHAcSZBwe7x0jLZQTdbf0Z0uZdAe0Cp7P/4ySSWbV/E9pPrOMQejgWkcyhYUWg8uwKFTimq5mpUyQkk1l2NOoHNaF+rG81rNTtnxQohSpvEYSFERZOfk8+6776kzqG3iDIdZVpsJP9XrxoptqLEhMb2ujwX+xBdHG0uqT9P4m6y7hiNZ/0GAKyjbifow7fQn+M907N9B/nvf0zBt9+Ds6i6g75KDPaH78f2j7vQh4b+rWPL9uQyL/N3ZqYt4PesP/ByptpX6/RsBh9Lo//xdByFsEX1IL/GIOr0GkjlGv49xxTnJ3FYCCGEEMJ/JClCCCGEEGVG4rC4lnjdXv75Yxum1TFTKyuImW/bcM1fhO2+uwn+9EN/D8/H7XTxy/vPYJw7jSZr07G4ij4euEw6trUOxXn9IPr9800sNpvfxrjrYCL/S/iIP+wJ7Aw/s9ykaTRPttJR15M7Oz9IZGiEX8bncrlYuX0l648sZ59zO8csxznsKOSk7dwVKhwuL3FZJqoURFHDWJ8WMR3p0rhbqSVyCHGaxGEhREWRnZ7Nhm//S+MT7xFuTGVxpRBeql+TfY6iKSWqmqN5qur9DA7vjV538UREpRQFn39Nzj+fgfx8dKGhBH/2AdZhQy66rZaaSv6nX1Hw38/RklOKFtrt2O68HfsjD2Kse/HqFBeT7s5kbsYSZqYtYE3OJhRF52t6peh0MotBx9K47kQ6IW4v292tSY0eRNUug6nVvCE6/ZVN6yFKnsRhIYQQQgj/kaQIIYQQQpQZicPiWjJr8n95tMb/cBr0TEoaSYPBT4DBQMSezRhqVPf38M7p4I4trH3vn1Rbuomaewt9y1MjjezsXINqo5+jbb+hZTKWIyeOMnH1eNaYVrAl0oN2ap5unVI0STXQzt2RO9uPIS66WpmM50okHt7N8l2LSMzeyBH9QY4GZXI4SI/3HBcnTJpGbDZUzQ0hVqtBw9B4utTvRc0qNfwwclFRSRwWQlzt0o6fZOvkD2iR9hEOYxabHQH8u35dEipZAAgxBPFwzJ3cGXUTVr3lkvrUUlLIuuchXHN+BcDcsxvBEz+77Kpeyumk8Idp5L83Hs/mrb7l5hv6EfDYQ5i6d0Wn+/sJCkmuFOakL2Zm2gI25u3wLTdq0D05g8HHT9I7OYMAr8ZBV20OhQ4itM1gGnVuj8F0dUyRVlFJHBZCCCGE8B9JihBCCCFEmZE4LK4VhXmFPD2rDVNrBVAvO5zpH1hxzfkN65134Jjwqb+Hd0kWf/sRmd//l8Yrk3Bke33LdzYJIKVHJ3o89SERlUu2PHNGdiZfL/svK7QFbKpUgOtPU0zUS1e0yWvJHS0fonGNRpfUnyosxHv4CN4Dh/AePIT34GG8Bw6iTqaBXg8GQ9FPvR6dXg8Gve939Hp0f2o/vb5Oryv2u2/bs/rTFfv9dH+Fbhf7UvZzPPcwJ0kl05JLml0j36RH0+vQ9KB0+B4HejTCCs2EesOICKpFoyH30bh5uxJ93sW1Q+KwEOJqdeLgcRK/f4f4nM8INORx2Gbh33UbsbBaUWUIi87M3VHDGBMzkhDjpb+/Oef8SvY9D6KlpILZTOD//Qf7Iw8WxfYrpJTCvfR38t4d70u0ADA2a4L90YewDh+GznJpCRsXc6jwGDPTFzArbSE7C/b5lls80OtEBkOSUuiekolFU5z0RLLTOgBz00E07d0bW6D/qoBdqyQOCyGEEEL4jyRFCCGEEKLMSBwW14rpX7zCvxrPxmXQMzX7AWr1fhD0esJ3JpRICeWylJmawoK3HyV0wRIabcpBf+rTQ26Anq0dorANHU2vu/+FwXhldx7mFxbwv6VfsCx/DuujMsn/0x2M1bO9tM5oyLAG/6Bj4w5nbavcbrxHjuI9cBDtVMJDUeJDURKEdjzpisZUnrlMOjbFB7A3PpqC1p1o3/Qmujbtit5w5RdvxLVD4rAQ4mpzJPEAB358k7aFX2PRu0g3GRlXqzkza5vx6DR06BgS3pcnq/6DqpbKl9yvys8n51/PUvDJlwAYGzckePLXmJo0LtHxe3bvIf+DjymYOAny8wHQR1XC9uC92B8YjT4yssT2lZi/n5npC5iZtpCDzqO+5Xa3nj7H0xmWlESnk1kYFeR57WzT98FddzAN+9xAWHT4BXoWJUXisBBCCCGE/0hShBBCCCHKjMRhcS3ISsvi3wvbMb1GCI1yK/Pjxzac02diHT4Mx+QJ/h7e37Jpya/s/uxF6v2+h+gkt2/54TgL+7s2ouWjb1OnRZuL9uNxe5iyYjLz06eSUCmZDMuZRIjKeR5anazJoLhR9GneG06c+FOyQ/Gf2tFjoGkX3pndjqFGHIbqcb6f+qhKRW1eb9H2mobStGK/o2kor1bs96JlxdfB60Vpqtjvvv6K9anOs4+/9Kcp3zJnYQEZOSfJc2bi1PKxZxUQc9TlOzS3Ada3CmRVlyCSGleisr0J7Sv3om98f+xWuftTnE3isBDiarF/8y6O//w67TyTMOq8FOh1vBrXjikNzeTrnQB0Dm7N87EP0Tig3mX17U7YSNbtd+NN3AOA/bExBL42Dp3VWuLHcZqWnk7BFxPJ/+hTtGPHixZaLNhGDMf+6IMYGzUssX0ppdian8iMtPnMSl9EkivF1xbkMtLnaBa3JR2kTXoOesCr9Gz1diYrdhA1egyiWv2aJTYWUZzEYSGEEEII/5GkCCGEEEKUGYnD4lrw40f/5InWK/Ho9cz0/IvYjqMACN+6FmPjS5v2obxzO138Nv7f6Gb9SNM1J7G4ij5SeAywtXUoBf1u4LrH38IWEOjbRvNqzF03h9lHvmV95EGS7UZ0miI8zUP9Q4V0SAygbV4tGqgQtNNTXRw+Ah7PhQdjsWCoXq1Y0sOff+oiIkpk/u7y4vjK39n9+XuELltL9KFs33KvHja0CGBhDwdrOgUQprdTq6AGLUO7cEP8ECJDI/w4alFeSBwWQpR3u9ZsJGPua7RV09HrFF7gnZhuTGph4aQ+C4CG9jo8H/sQXR1tL6tv5fWS/+Z75L7wCng86GMqE/zN51h6dS+FIznPGNxuCqf9TP674/Gs3+Bbbu7TE/tjYzD37VWi5y2a0liXu4WZaQuYk76ENE+Gry3UaaHX4VzuTNpFs6w8Tu91t6sJxyMHE9VxMPXbtiiaEkyUCInDQgghhBD+I0kRQgghhCgzEodFRXfi4HFeXdedn+LCaF5Yg8mfWSmc/COWIQMJmT7Z38MrFUcSd7Dy3ceIXbqB2rsLfMvTwo3s6ByHuf+t7EhZwcn8vVgyPMQkualy3EWV4y4qn3Bjcl/k44jJhKFa7JkqD9WrYahRvSgRokZ19FGV/ta831czz569ZE3+kfTvJxGceMi3XNPB5qZ2FvZwsLh7MCcjTdTOhFo5MTS2t6Vf05uoG1vbfwMXfiNxWIhrR3Z6NhsmvEPN1G9xKws5+igKTFG4LFGogGgMjigsoVEERkThiI4iIiYKi93it/FuWbIS54JXaW34FQAFfBZxHZPa2tmvL6qsEGOO4smq/2BIeF8Musubtst78BBZI0bjXrEaAMvQwQR/9iH6sLASPY5LpZTCvXI1+e+Nxzljjq/ylaFBPeyPPoRtxHB0tpKt+uRRHlZmJzAzbQG/Ziwj25vra4sqDKTbwUJGJ22kYW6eb/kxdyx7gwYR1GIQTXp2xWQxleiYrjUSh4UQQggh/EeSIoQQQghRZiQOi4puyjt38a9OO9F0On4xvUB0q1tA0whLWIGpZXN/D6/ULf3+U9ImfUTjFUcJyfJe2kZ6PfrYques8mCoHoc+pjI6w+Vd+LgWeQ8eonD6TAqnzcCz5o9ibVsb2VjU3cGiHg6OVTEDUC3bS+2sCOobWtCr3kBa122N3nBtJpdcSyQOC1HxFeYVsnbixzQ++hrhxrTL2jbL4yBdiyJbH02+MQqXNQoVEIU+KApLWBQB4VGEREcTUSUKa8Dfn2pCaYoNvy7EsOJVmhuXAUVTOfwQMpgpXRwksBOAYEMgY2NGcVfUMKz6y0vcUEpR+N0P5Dz0T1RODrqgIILGv4N1xPByU0nKe+Ag+R9+QsFX/0Pl5ACgCw/D/sBobA/+A0Pl6BLfp1NzsTRrDTPTFjI/czkFWqGvLdYZRqcDbu45vI4Gzkzf8kxPCNvN16NvOJjGfa4jKDSoxMdV0UkcFkIIIYTwH0mKEEIIIUSZkTgsKrL9WxJ5Z+8AZlQNp427ARO/slA44VvM/a8jdM40fw+vTOVkZjDvjUdxLFhA/S055AYbcVWKpFLj1gTVr1886aFqFXQmueuwJHmPHsP500wKp8/EvXwV/Okj377aVn7t7WBhDweHq525sBRZ4KFOejB1tYZ0jL2OXs17Yzab/TF8UYokDgtRcXlcHlZP+oZaieOIMR0F4ICrLknNxmELj6IgLRl3ZjIqNxlj/gksrmQCtWRCSCbckIJZ776s/WV7g0n3RpGtiyL/VAUKLSC6WAKFIzqK8Jgo7EH2YttqHo11s2YT+MdrNDIVJfK5NBNzHLcyu2ck872rADDrTNwZNZSHK48izOS47OdEy8gg+/5HcP74EwCmDu1wfPclhhrVL7uvsqBlZ1Pw1f/I//ATtIOnKkCZTFiHD8P+2BhMzZuWyn7zvQUsyFzBzLSFLMlajUud+bdQ21WZ9vsVdxxYS2NPkm+5UzOzRfWkoOYg6vUZSFS1yqUytopG4rAQQgghhP9IUoQQQgghyozEYVGR/fjGYP7Z7QRKp2N+4GtENLsRPB5CVy/G3K6Nv4fnN0qpcnMn5rXIeyIZ58+zcE6fiWvJ777y3ADJsYGs6GJn6vVB7K5lgz+9TkEuL3XSLdR21qF1ZHf6xw/CESTv21c7icNCVDxKU6yZ9hNRG56jpikRgOPuquyrN472t4/CaDZeUh+ZqRmkJyWTk5JM/skTuLOSUTnJGAqSsbqSCfAm4yCZCEMyFr3rssaY4w0kXYsiS1dUgSLctZs65m0AFGhWFgffxbJ+VZjqnOe7IH9jeB+erHof1Swxl/mMFHEtXkrWqPvQjh4Do5GAcc8S8NQ/0Rkv/nz4m/J4cM6cQ/6743GvWuNbburWGftjY7Dc0K/Upg7L8uTwW8YyZqYtZEX2erwUVf7SoaOxtwat9uq4afc6WrC72Hbb3G05GTOY2C6DqNm0Pjq9nPudi8RhIYQQQgj/kaQIIYQQQpQZicOiotr2+1rGp41gdpVwOtOCzyeYKPj0K8y9uhO6YLa/hycEAFpqKoUz5xYlSCxcAh6Pry03thKbW4exoIvGwngD+X+5iGb2atTJ0FMzrxrNgjpwQ/ObiI2uWtaHIP4micNCVCwbflmI9fdnaGhaD0CaJ5xtVZ+l7Z0Plsj0FueiNEV2WhZpx0+QnZJMfloynsxktFMJFBZnUQJFCCcINyRj1TvP2U+2N4g1Yfez5YZafJ03nSxv0bQRHYPjeT52DE0D6l/Z+JxOcp97ifx3PgTAULcOju++xNQ6/soO2M/cf6wn773xOKf+DN6iBAVD7VrYH3kA6513oA8MLLV9n3SnMyd9CTPTFvBH7mbfcgMG4nUNaL7HyHU7NtJWt7bYdgdcdTkUOojwdoNp2LEtBpNMg3aaxGEhhBBCCP+RpAghhBBClBmJw6IiUppixhvdGNOz6K7JRWFvE9poALhchC77DXOXTn4eoRBn0zIycM7+lcJpM3DNWwiuM3f96mtU52iHxixtrLGiXgp7wvNIsxZPktApRY0sRe3sKBqa4+nT8Eaa1S6dst6i5EgcFqJi2LFiHYW/PENLwyIAcr0BrA/7Jy3uehxHePFpJtLdmRRohRh0Bow6A0adEaPOUPQ7RY9Lq6KT0hTZGdmkH08mO7kogcKdlYym03OkVyU+yvqOY64TADSw1eK52Ifo5mh3xePxbNtO1u334NlSVIXCdt/dBL3zOrqAgBI7Jn/xHjlK/vjPKPh8AiozEwBdSAi2e+/E/vD9GGJLN1HxmDOZ2emLmJm2gC35u3zLzToTHUwtaLrHRqctm2ilLSlWSSTVXYld9oFYmg6iae9epZasc7WQOCyEEEII4T+SFCGEEEKIMiNxWFRE62f/xqfaI/xaOYxe5vaMn2gk/4OPMXXuQNjv8/09PCEuSsvOxjn3N5zTZuD8dQEUFPja9NVisdw4kMSWNfgt4AC7dJvZG5LO0cCz7/qMyfNQOyOUujSlS41+dG/aHb2hdMp7iysjcViIq9u+TTtJnf487fgJAJdmYnXAAzQc9RyRVSqdtf57x77m3WNfoaGd1fZnevRnEiV0BgwUT6A402Y8lUxh+FOSheHshAv+tO6f1zm13eqcDWzP3wNAtCmSJ6vex9CI6zDorqyigNI0Cj76hJynXgCnE11kBI6vPsYy4Por6q8803JzKfxmEvnvf4x3776ihQYDlmE3EvDYGExtWpX6GPYXHmFW2kJmpi9gd8EB33K73kZ3e1ua7HXQZOMWWhT+gsOY5WvP9QawzdAXT93BNOrTn9CosFIfa3kjcVgIIYQQwn8kKUIIIYQQZUbisKhoNI/G3Lfjub+HFZ2CpVEfEdSwHxQUEDJ/FpbePfw9RACUUqV2F6ioWFReHs5f5xdVkJjzGyovz9emj6mMZchArDcNYm/VMH7bOYttzj/YH5TEvhAd2l/+jYU6vdRJt1PHXY+20b3o1+oG7FZbWR+S+BOJw0JcnY7tPcyBSeNo7/4Gg07Dq/SsNo6g+vBxVK1X/ZzbfJo0iZePjAeK7ub3KO9FkyPKUpAhgDGVR3JP9M3Y9FdePcB7PInsO+/DtWAxAObr+xL89ccYoqJKaqjlktI0nHN+Jf+98biXLvctN3Voh/2xh7AMHoDOaLxADyUwBqXYVbCPmacSJA47j/vaHIYg+gZ3psnBStT4Ywv1cmYRYzrqa/coA1u9XciuNphaPQdRtW5cqY61vJA4LIQQQgjhP5IUIYQQQogyI3FYVDQrv5vEZ46XWRQVSn97N9751kj+m+9hbNOKsDVLSjURwV2okZ+mkXfS6/uZd9JLXpqX/JMaeWleX1tgJQP93wgnurG51MYjKh5VUIBz/qKiChKzfkFlZ/va9JUisQy+AcvQGzF360xS1kl+2fAzG7NWsM9+iN1hHpx/qRJh82jUSTdSu6AGLUI60z9+CFFhkWV9WNc0icNCXF1OHk9l+zev0S73Y9+UBGvVYMKHvELtlo3Ou903yT/x7KG3AHiq6n2MjbkTAE1peJWGBw9e5cWjvL6fHuXFixe35sHLn9s8Zx7jPcd2Ht/P4tt5z7Fd0X6DDIHcFjmQMFPI33p+Cn+aSfa9D6PS08FmI+id17DdP/qaSwR1b9pC/nvjKfx+KrjdAOjjqmEf+wC2e0aidzgu0sPfp5RiU94OZqYtZHb6Qk64T/raIoyh9A/tQYukaoSv2krV1JnUNW8ttv0ud3NORA6icqfB1G3dDJ2+Yr6GEoeFEEIIIfxHkiKEEEIIUWYkDouKxJnvZPFHTRjdPRy90rGs6qcE1uuNyssjZPZULDf0u+w+PS5F/p+SGXxJDn9Nfkjz4sq9vNN4c6COmz6OpEpLy2WPSwjldOJatJTCaTNwzpxbdAHqFF1YGJZB/bEOHYy5V3d0ZjO5+XnMXT+LdSmL2WvaTWJ4Adnm4mXRDZqidibUzI2hia0t1zW5kXrV6pbxkV1bJA4LcXXIycghYcK7xJ98myBDLgCbPN0wXvc6jbu2u+C2U0/+wqP7XwZgTOWRPBP7QKmPt6xpOTnkPPIkhRO+BcDYsjmOSV9hrF/PzyPzL2/SCQo+/pz8T75EpRXFaV1QELZ7RmIf+wCGGtXLZhzKyx85m5mZvpA56YvJ8JyZQiPGHMXAsJ60y2mIadlmQo7MoolhOQbdmSomR91x7AseRHD8IBp364zJYiqTcZcFicNCCCGEEP4jSRFCCCGEKDMSh0VFsuyTD/gs9lOWVQphiKMvr08ykPfyGxibNyVsw8rz3qVYmK2x7ec8spM8ZyU6OLMv79TcYIaACAP2cAMBEfrij8MNBIQbsDj0LHw5g6PrnRhtOoaMj6Ba2ysvUy2EcrtxLV2Oc9rPFP48G5V65m5QncOBZUA/LEMHY+nTE52taLoMj9vDki2L+f3Qr+zWbWNvaCYn7GeX9a6W46V2ZgT1Dc3pUXcgbeu1Qf+XihPiykkcFqJ8K8wrZO03n9LoyKtEGIveW3e6W5Lf+XVa9ut90bvn56Yv4f69z6OhcXfUMP5T7bEKVzXBtXot2XeMxrv/AOh02J9+nMBxz6IzSzWs01RBAQXf/UD+e+Px7kwsWqjXYxl8A/bHxmDq2L7M/l24NQ8rstcxI20Bv2UsI1fL97XVtFZjUFgvunpb4Vy2BdPuGTTR5mE3FPjWyfCEssPcH32jwTTp05fAkMAyGXdpkTgshBBCCOE/khQhhBBCiDIjcVhUFNnp2az5uhF3damKQelYUWMC1ro9UFlZOKZ9h/WmwefddtFrGWycnHvedr0RAsIN2MOLkhyKEh3OkfAQYcAcqLukL7XdBRozH0nj4KpCDGYY9H4ENbvYruTQhShGeb24l6+kcPpMnNNnoiWd8LXpAgMx9++LdehgLP36oAsIKLZtQuIGFibOZIcrgX2OFA44DH/tnsgCD3UygqnrbUiHqn3o3aIvZrnwdcUkDgtRPnlcHlZP/paau8ZRxXQYgAOuupxo+Qptb7oJvfHiyWGLMldxz56ncCsPt0T05+0az6LXVZykMuV2k/fKG+S98iZoGvq4aji+/QJz547+Hlq5pZTCNW8h+e+NxzV/kW+5sVVL7I+NwTrsRnSmsqvCUKg5WZK5mhnpC1iYsYJC5fK1NbDVZnB4b3pbOpL5+3ZcW2bSoHCWLzmoaHsLW+lFQc1B1O89gErVosts7CVF4rAQQgghhP9IUoQQQghxlUs/kcaBhARy9iZgObkBfYs7aDtkkL+HdU4Sh0VFsfTtF/hvw2msinBwW/hAXvzBQN7z/8HQsD7hW/9Apz/3RQivW/FJt+MUZmk0GRJARB3TWQkP1mB9qdy953Ep5vwrjb2LC9Ab4Ya3wqnb217i+xHXLqVpuFevxTl9JoXTZqAdOXqm0WbD0q93UQWJ/tehP0cMOHj8EHM3T2dL7mr2BR5lb6iG+y9/S4FuL3XTLNR21qZVRHduaDUYR5DEk0slcViI8kVpirU/zSBy3XPUMu8EIMldhb11x9H+jjsxms+uqHMuK7MTGJn4TwqVi4FhvRhfaxwG3dmJZlcrz569ZN0xGs8f6wGw3nErQePfQe9w+HlkVw/P9h3kv/8xBd9+D04nAPoqMdjH3IftH3ehDwsr0/HkevNYkLGCGekLWJa1Frfy+NpaBDRicHhv+gV3I23NHjL+mEH1zBnEmfb51tGUju2edqRXGUxs10HUbHp1TJ0icVgIIYQQwn8kKUIIIYS4ipw8nsrBhARy9yVgPZlAVc8GqpoOFVtnme0Ruj77vn8GeBESh0VFkHL4BFumNWNUp5oYlYFVtb/BVK87Ki2d4ElfY7vt5vNuu3dxATPGniQgUs99C2LQG8u2pLXXrfj12XR2/ZqPzgD9Xgmj4YCAi28oxGVSSuFZl1BUQWLajKIy56eZzZj79iqqIDGgH/rQ0HP2kZaVzi8JM1mfvpR9lv3sDnOSZyp+kc/s1aidqadWbjWaBbXnhuZDiY2uWpqHdlWTOCxE+bFx3mLMS56hkekPANI9YWyt8gxt7nwIW+ClV3NKyN3GrbvGkq8V0DukE1/Ufh2T/tKSKco7pRQFX31D7qNPofLy0IWEEPzJe1hvHebvoV21tNRU8j/9ioL/fo6WnFK00G7Hduft2B95EGPdOmU+pgxPFr+mL2Nm+gJWZW9AQwNAh472QS0ZFN6L60O6kb7tGEd/n0nkiRk0Mq0r1sc+V32OhA8iou1gGnZsc0nVVfxB4rAQQgghhP9IUoQQQghRTqUcPsGhTRvI25eALS2BWE8CMaaj51z3oKs2SZaWFES2IKxlV5p3bF/Go700EodFRbDslQd5P34Zf4QHMyryJp6bbiL3iecw1KlN+M4EdIbz35k589GT7FlYQKtRQXR7IqTsBv0nmlcx/8UMts3IAx30fiGUZsOu7vmZRfmmlMKzeSvOaT9TOG0G3sQ9ZxqNRsy9umO5aRDWwTegj4g4bz+FzkLmb/iN1ccWsNu4kz1hOaRZi1/40ylFjSxFrexKNDK3oneDwTSv06y0Du2qI3FYCP/bsXI9BXOfJd6wAIBcbwDrwx6jxV3/whF+eZUPtuXt5uZdY8jy5tApuBXf1H0bq95SGsMuc1pqKtn3Poxz5hwATN274PjmcwyxkvhWEpTTSeEP08h/9yM8W7b5lptv6EfAYw9h6t61VCqXXUyKK4056YuZmb6A9blbfcuNOgNdgtsyKLwXfUO7kHs4kz0LZxFwYAZNdEsw692+dTd6utPi9cVlPvZLIXFYCCGEEMJ/JClCCCGEKAdOHDzO4Y0J5B/YgD0tgWreBKJNx8+57gFXXZIs8bgrtSS4TjxBTeNIMO5gcdZqfs/6gxerjeXWyAFlfASXRuKwuNod2r6XvQvaMrJDXUzKyOr6kzDW64aWnELw159gu2vEebctyPLyabfjeN0wanoUkfXMZTjy4pSmWPR6Jpu+zwWg+1MhxI8I8tt4xLVDKYV3x04Kp83AOW0Gnm07zjQaDJi7dcZy0yAsNw7EEB11wb40r8bqHatZvHc2u7TN7AtJ40jQ2UlJlfM81M4IpR5N6FLjero37Y7eUD7vIC1tEoeF8J/9WxJJnvo87ZkGgEszsdp+Pw1HPkdk7IXf785lT8FBbtr5IGmeDFoFNuH7eh9gN1x6hYnyzPnrfLLvur+okoHZTOBr47A/Nua805OJK6eUwr1kGXnv/RfXnF99y43NmmB/9CGsw4ehs/gn0eaoM4lZ6YuYmbaAbfm7fcutOjM9QjoyKLwXPUM64Mpwsn3er7BrJo09v7Ah9GG6PfGKX8Z8MRKHhRBCCCH8R5IihBBCiDKkNMWJg8c4vCmBgv0JBGQkUM27gSjTibPW1ZSOA+56nLDG44mKx1GnJTXjW2APtbMhdzuLM1ezOGsV2/P3FNtuaHg/Pqj1Qlkd0mWROCyuditfuIXXO+5gY2ggo6Nu4alZFnLGPoE+rhoRezajM5nOu+2mKbksfDmDyLomRv0UXYajPjelFL+/m8W6CTkAdBrroN0/5O9SlC1P4m6c02dSOH0mng2bzjTodJg6d8B60yAsQwZhqFrlkvrbcWAn87bPYFvhH+wPOs7eEB3aX+50DXF6qZtup467Hm2ienB964HYrRXjQuLFSBwWouwlHTjG3m/H0d41AaPOi6Z0rDKOIG74OGLr1biiPg8VHmPIzvs54T5JE3s9ptT/CIfx6k9uVAUF5Dz5PAXjPwPA0KgBjklfY2rWxM8juzZ4du8h/4OPKZg4CfLzAdBHVcL24L3YHxiNPjLSb2PbW3CQWemLmJE2n32Fh33LA/R2+oZ2YVB4L7oEtwGXoiCv4LKrrpQVicNCCCGEEP4jSRFCCCFEKVGa4tjewxzdsoHCAwkEZiQQp20g0pRy1rpepeeAuz7J1ng80fGE1ounRotmBIUWfbmZ4kpjSdYaFmetYnnWOrK8Ob5tdehoHtCA7o72dA9pT7OA+hh05y/f708Sh8XVbOeqBI4l9GJU2/pYMLGm4RR09buiHTtO0CfvY79/9AW3n3xHMsc3uej6Lwet7ywf//6VUqz+NJtV/80GoO29QXQa6/BLuWQhPPsP4Jw+E+f0mbjXFp8r3NSuDZahg7HeNAhD9bhL7jMpLZm5CdPZlLWCvfZD7A7z4PxLlQirR6NuhpFa+dVpGdKF/vFDiArz34Wf0iRxWIiytWryDzTaej8OYxYAa9Ugwm58hTrxja+4z+OuFIbsuJ8jriTq2mowvf7HhJlCSmjE/uPeuJms2+/GuzMRAPsjDxL4+kvobNdG0lp5oqWnU/DFRPI/+hTt2KnqhRYLthHDsT/6IMZGDf02NqUU2/P3MCt9ITPTFnDUdebmghBDMP3DujM4vA8dglv6bYwXInFYCCGEEMJ/JClCCCGEKAFKUxzdc5CjmxJwHtpAUGYCcWoDEcaTZ63rUQb2uxuSYmuJFh1PaP14arZoRoAj4E/reNiYu53FWWtYnLmqWLlQgFCjg26OtnR3tKeboy3hptBSP8aSIHFYXM0Snu3Fc92S2RoSyAPRt/PP3+zk3DcWfUxlIvZvu2Bp4YzDbr66/gQ6Pdy3KIbAyPKVuLRuQjbL3im6YNPyjkC6PxVSYRMjclO8nNjuAgXowHeYpx//dVnR/4q3nWov/vjUeufq68/rnGdfvvV0Z/qC4v2ZA/Xl7t9OafEePkLhT7NwTp+Be+Ua+NPHVmN8C6xDB2O5aRDGOrUvq9/c/Dx+XT+btSmL2Gvaze7wArLMxZ9Tg6aolQW1cmJobG1Dv6ZDqFetbokcl79JHBaibGSlZrJt/Bg6apMA2O5ujXbdBzTp1v5v9XvSnc6QnQ+wr/Aw1S1V+KnBp0SZI0piyH6jvF7y3/6A3H+/DG43+srRBE/8DEufnv4e2jVPud0UTv2Z/PfG41m/wbfc3Kcn9sfGYO7by6/ni0opEnK3MSt9IbPTF5HiTgOga3BbJtd/32/juhCJw0IIIYQQ/iNJEUIIIcRlUpri8K79HNuSgOtQAsFZG6iuNhBmTD9rXbdmZL+3ESm2eFTlloTVi6dmy6bYg+xnrZvqTmdJ5moWZ61medYfZP6pGgRQrBpE84AG5bYaxIVIHBaXImn/UfYs/gXzwd/wGuyE9nmUhh1b+XVMCXMXkHrwFu5pXQ87VtY0/hGtUTe0g4cIev8N7I88dMHtV/43i9WfZFO9o5Whn5XPO9A3/pDDolcyAWg6LIDe/w5Fp684iRH56V7WfpnNph9y8br8PZor13RoAN2fDsFkvXbmVfcmncD58ywKp83AvWwFaJqvzdi0sa+ChLFhg8vu2+P2sHTrUn4/+AuJuq3sC8kkKcB41nqxOV5qZ4bTwNCCbrVvoH2DdugNV99rIHFYiNK3af5SIhePpIrpCB5lYEXo83R6+HmM5rPfWy5HhieLYTvHsLNgLzHmKH5u8AlVLZVLaNT+4T18hKyR9xa9twOWIQMJ/vwj9OHhfh6Z+DOlFO6Vq8l/bzzOGXN8cdjQoB72Rx/CNmK43yt6eJWX1TkbmZW2kE7BrRgY3suv4zkficNCCCGEEP4jSRFCCCHEBWgejcOJ+zi+OQH34QSCsxKoyQZfCdw/c2km9nsbk2qPR1WOJ7x+S2q1bIo1wHrOvr3Ky4bc7SzJWs3izNVszU8s1h5iCC6qBhFSVA0iwhRWKsdYliQOi3Pxur3sXLWOk3/MITptLvVNm85aJ8HbB2OP52jWq0uZj0/zaOx6vhVje3nYGRzAw5VH8cjiILLvvA99pUgiDmxHZz870ek0pRRf9ksi66iX/m+E0aB/wHnX9betP+cy/8UMlAYNb7Bz3Sth6I1Xd2KEM1dj/cQc1v8vB3d+0Uef8FpGzIF6UKcKEKii14k/fTI6s/xPPzmz3unl519fnXP56W0UxffrW48z651ZVrSRM7voZ0QdEwPeDie8lqlkn6yrgJaSQuHMuTinzcC1aCl4vb42Q4N6pypIDMbYtPEV3726YfdGFuyawQ73BvYFJ3PAcXYSYkSBhzoZQdT1NqRj1b70btEXs9l8pYdVZiQOC1F6nPlOVn/0Al1y3kKvUxxy1yKn37c07vr3qkMA5HrzuHXXWDbm7SDSFMZPDT6lpjW2BEbtPwWTfyTnwcdQWVnoAgMJ+vAtrHfeUWErVVUU3gMHyf/wEwq++h8qpyiJXxcehv3+e7A9dB+GytF+HmH5JnFYCCGEEMJ/JClCCCGEOEXzaBzcvpukbRvwHE7AkZ1ATd1Ggg3ZZ63r1Mzs8zblZEBLqBxPZMN4ajZvjMV+/vL5UFQNYmnWGhZnrub3rLVnVYNoFtCA7o52dHe0p0Vgw6uyGsSFSBwWp2WlZbF9wTy0XXOp7/yl2FQzmtKxw9OWk9H9MWbuoZ1nEkZd0YXPzZ7OuDs+R/z1fcqsisGqyT9wMvMhHmhVl0CdndVNp6I17Yl39x4C33iZgCcfu+D2xzY4+X5kCia7jgeXxWCyle+7y3f9ms8vz6SheaBObxs3vBmOwXT1XaBwF2ps+iGXP77MoSCz6I7GqIYmOj3ioHoH61V50eXQ6kLmPp1GfpqG0aaj9/OhNBpUfpNsSpuWno5z1i8UTpuBa/4icLt9bYbatc5UkIhv8bde74PHDzF3809syV3F/sCj7AnVcOuL/x0Hur3UTbdQq7AWnSv356ZOw654f6VJ4rAQpWPvhu14frzDl9i53DSaFmPfIzAk8G/3XeAt5I7dj7EmZxMhhmCmNfgvDeyXN3VQeeJNTib3sacp/H4qAKb2bQn+9guMtWr6eWTicmhZWRR8/S35H36CdvBQ0UKTCevwYdgfG4OpeVP/DrCckjgshBBCCOE/fk+K+O9//8tbb73FiRMnaNasGR999BFt2rQ57/rvv/8+n3zyCYcPHyYiIoKhQ4fy+uuvY7We+y7cv5KTTyGEEFB0Z/qBbYmc2JaA90gCITkbqKnbSJAh96x1CzUL+7zNSAuMRxfT8lQCRCPM1ovfEepVXjbm7vBVg9iSv6tYe4ghiK6OdnQPaUc3RzsiK0A1iAuROHztUpriwLbdHFk+B8fROTTSr8Ck9/jas73BbDdeh7d2f+r36kdEzJkpJg7v2s/BqW/StnACFn3RvAc73fFktXqONoMHoTeWXpKBq9DFsXENuKt3IHuC7DxeZTQP/B5E9m13owsLI+LgdvRBQRfsY/5L6WyZmkejwXb6vXJ1lIPeu6SA2f88idcNNTpbGfhe+FUzXYPXrdg2I4/Vn2aTm1yUTBNWw0jHhx3U7WW76qcEyTvpZe5TaRxe6wSg0WA7PZ8NxWy/Ol6f0qJlZeGc8xvOaT/j/G0hFBb62vRx1U5VkBiEqW1rdPq/91xlZGcyZ/3PJKQtY691H7vDnOSZziQxdjoWyJQbF/ytfZQWicNClCzNo7H8i/G0PfokVr2TNE84e1t9SdubBpdI/07NxT17nmJJ1hoC9XZ+rD+eZoGXP1WQPymXC/eqNTjnLcI1fxGeDZuKGgwGAl58hoBn/oXO+PemFhH+ozwenDPnkP/ueNyr1viWm7p1xv7YGCw39PvbcbcikTgshBBCCOE/fk2KmDJlCiNHjuTTTz+lbdu2vP/++0ydOpXExEQqVap01vqTJ0/m7rvv5uuvv6ZDhw7s3r2bO++8k1tvvZV33333kvYpJ59CCHHt8bg8HNi6i+TtRQkQYTkJ1NRvIsCQf9a6+V4b+7VmpAfGo6saT6WGLanZrCEmy6WXKD/pTmdp1loWZ65mWdZaMr3FK000sdejR0h7XzUIo+7a+RJQ4vC1xZnvZNuS38ndPJfq2XOIM+0r1r7PVZ+jof1xtLyBRl07XvTvLOnAMXb/8A6tcj7z/f3udTciucmztB1289+eq/tcfv/8v5zUXuThlnVw6INY3XQa7pY98W7fScDL/ybw+acuuL3Hqfik2zGcOYqbv4qkWttLS+QtDw6uLGTGIyfxFCqqtbUw+KOIcn3hXWmKXb/ls3J8NpmHixJugiob6PBgMI0GBFz104D8meZVrPk8m9WfZKM0CKtpZMA74UTWKf/TN5QFLTcX1y/zKJw2A+fceZB/Jt7rq8RgGTIQ69DBmDq2R2f4+xWZXC4X8zb8xqqj89hj3ElrfWeeGvjS3+63NEgcFqLknDh4nKOf300rwzwA1nuvI/b+r4mqVrlE+vcoD/fvfZ5fM5Zh1Vv4vt4HtAlqViJ9lzbP3n245i3EOW8R7iW/o3KLJ54b27Qi+MO3MLVt7acRXr6krU7WfpFDyzsCqdbm6jmfK0vuP9aT9954nFN/9k1vZahdC/sjD2C98w70gX+/csrVTuKwEEIIIYT/+DUpom3btrRu3Zrx48cDoGkasbGxPPzwwzz99NNnrT9mzBh27tzJokWLfMsef/xx1q5dy4oVK865D6fTidPp9P2enZ1NbGysnHwKIUQF5Xa62b95Byk7NqCOJhCWm0BN/WbshoKz1s3z2tmvNSc9KB5DbDxRjeKp0aT+ZV9Y9Sovm/J2siRzNYuzVrMlb5dv/ncAhyGILo429HC0p5ujHZXMV8ed4iVB4vC1J+XwCRIX/YJp3xwaaQuKVV9xama2qa7kxt5A9a79iWtY65x9KKXYnr+HRVmrMGJgcHgfqliifO0nj6eybdIHtMz4yDe9zSF3LQ7XfZq2t428pCoulyInI4fcN2szrHdlDgTaeKrqffxjTShZN92OLjiYiEM70IeEXLCPxPn5zP5nGkHRBv4xv/JVV6XgyPpCfnrwJO58RUxzMzd9EoklqHwlRiil2L+skBUfZpG6u2j6BFuYnvb/CKbpzYEYzVfXc345Dv9RyNyn0shL1TBadfR8JoTGQwKuyqlBSovKz8c5byHOaTNwzv7VN/85gD6qEpYbB2AZOhhz184V8k5licNClI41U3+i7oZ7CTOmU6BZWRf3Dp1HP1BicV5TGo/sf5mf0n7DrDPxTd236eI4f1VVf9NycnAtXoZr3kJc8xbh3X+gWLu+UiTmPj0x9+2FuXd3DFFR5+mpfHLla0wcfILs414MJhjwTgS1e9j8Paxyy3vkKPnjP6Pg8wmozEwAdCEh2O69E/vD92OIrerfAZYhicNCCCGEEOWH35IiXC4XdrudadOmMXjwYN/yUaNGkZmZycyZM8/aZvLkyTz44IPMnz+fNm3asH//fvr378+IESN49tlnz7mfcePG8dJLZ9+lIyefQghx9XMVuti/aTupOxJQxzcQnptALcNmrHrnWevmeAPZr1qQGdQSQ2w80Y3jqdG4HgbTld0hmubOYGnWWpZkrWZp1loyPFnF2hvb69IjpAM9HO1oEdiozKpBaOnp6Gw2dLby8SWdxOGKT/No7Fq7gZQ1c6iUOpeGpvXF2pPd0ey298fUsD+NevYiKPTcU004NRerszewIHMF8zNXcNyV7GvToaOboy3DIwfSO6QTZn1RRYms1Ew2TvovTZLfI9yYBsBxd1X2xD1B6ztGYw+y/61jW/ruSyQH/Jd/tqhFqMHB6mbTcLXpi2fjZgKef5LAl1+4aB8/j0ll39JC2twTRJfHQv7WePwlaYuTafen4sxWRDU0MfTzSGwhf//u+pJwZF0hyz/I4vimomlVzIE62twVTMsRgeW6qkVJykvz8usz6RxcVTRdRIP+dnq/EIo54No4/suhnE5cCxYXVZCYOdd3oQZAFx6GZfAArEMHY+7RFZ25YlTdkDgsRMnKychh84eP0MkzAYCd7paYb/2OWs1LbkoLpRRPH3yT71JnYMDAl3Vep09o5xLrvyQoTcOzcfOpahALca9aC54z06JhMmHq2A5L316Y+/bC2KzJVT2FwtK3Mln/TQ46PSgNdAa4/vUwGlwf4O+hlWtabi6F30wi//2P8e49VTHOYMAy7EYCHhuDqU0r/w6wDEgcFkIIIYQoP/yWFHH8+HGqVKnCqlWraN++vW/5k08+ybJly1i7du05t/vwww/517/+hVIKj8fD/fffzyeffHLe/UhGrhBCVAzOfCf7N20jdUcCJCUQkbeBWoYtWPSus9bN9gaxX7UkKzgeY7V4KjduSfVGddEbr/yLOK/ysjlv16lqEKvY/JdqEMGGQLo62tLd0Z7uZVwNQnk8uH5bQME3k3DO+oXgzz7EducdZbb/C5E4XDHlZOSwfdFC3NvnULfgF6JMJ4q1b3e3JrVSfyq1vYH6bVuc928v3Z3F4qxVzM9YztKsteRpZ0rc2/RWugS3Iduby+qcDb7l4cZQhkZcx/DIgdSxVQcgLyuP9ZM+p97ht4k2HQfgpCeSbZX/Scs7HiQ47PL/raUeS8HwcS3696rN4QArz8c+xN0bIsi8YSi6gAAiDm5HHxFxwT7y07182uM4mgfunBlNRK1Ln4anvEnZ5WLqvakUZGhE1DEx7ItIAiL8lxhxYruLFR9k+RIBjFYdLW8PpPXdQdgc5SNhoywpTfHH1zms+CgL5YXQ6kYGvB1OpfoV48J+aVAuF64lv+OcPoPCn2ejTqb52nQhIVgGXl+UING7Bzrr1VsmXeKwECVn69JVOH4bQTXTfjSl4/fgp+kwdlyJVaiCooSI/xz5iM9PfI8OHeNrjWNweJ8S6//v8J5IxjV/UVEixILFqNSTxdoNtWth7tsTS99emLp1Rh907kTYq03yDhff3ZqM0uDG8REkzstnx+x80EGfF0NpOlSmhLgYpWk45/xK/nvjcS9d7ltu6tAO+2MPYRk8oEJWawKJw0IIIYQQ5clVlRSxdOlSbr31Vl555RXatm3L3r17eeSRR7j33nv597//fUn7lbnbhBCi/CvMK2T/xq2c3JmALimByPwEahq2Yda7z1o3y+NgPy3JdsRjqhZPTLN4qtWr9bcSIE5Ld2f6qkEsyVpzVjWIRvY69HB0oEdIe1qWYTWI09xbtlH4zSQKJ01BS07xLbfeMwrHl/8t07FcKonDV69DO/ZxcNkcAo/MpYluabG/xxxvINsNfXDXvIF6PftRqVr0efvZX3iE+RnLWZC5nD9ytqCh+dqiTBH0CulIn9DOdAyOx6YvuhB5oPAIP6TO4ceTc0lxn7lw2TqwKcMjBzIgrAd2gw1nvpO1kydSY+//EWs6CECmJ4RNEWNpevtYwqIvPVlp2atjOVppCk82q0mkMYxVTadR2Ol63GvXYX/iUYLefOWifWyYlMPi1zOJamhixI/nf06uFif3uZk6OoW8VI3Q6kZu/jKSoOiyfd9L2+dmxfgs9iwomhJJb4QmNwXQ/j4HgZWuvWSIvzq6wcncJ9LISfZiMEP3p0JpdrNMp3ExyuPB/fsKCqfPxPnTLLQTf6pUExiIZUA/LEMHY7muNzr736tA428Sh4W4fG6nm5UfvUznzFcx6DSOuuNI6/UtzXqVfPWGd45+ybvHvwLg7RrPMDxyYInv41IppxPXilW45i3CNX8Rns1bi7XrgoIw9+iKuW/RtBjGmjX8NNLSo3kUk25LJnmHm/r97NzwVjhKUyx8NYPNU/IA6PZECK1GVYwEkLLg3rSF/PfGU/j9VHAXfZ7Qx1XDPvYBbPeMRO9w+HmEpUvisBBCCCGE/1xV02d07tyZdu3a8dZbb/mWfffdd/zjH/8gNzcX/SWU4pOTTyGEKF8KcgvYl7CZ9MQN6JISqFSQQE3Ddkx6z1nrZnhCOaCLJ9vREnNcPFWaxlOtfs0Snbt3c95OlmStYXHmKjbl7TyrGkTn4Nb0DOlAN0c7oswXvku8NGipqRRO/pGCbybj2bjZt1wXGYHt9luwjrodU/OmZT6uSyVx+OrhdrrZvmwlWRvmEJs5h5qmxGLtB121OeS4gaDm/WnUrTMWu+Wc/XiVl4TcbczPWM78zOXsKzxcrL2BrTZ9QjvRJ6QzTQPqo9ed/3zOozwszlzN5NRZLM5cjRcvAIF6O4PCe3Nb5ECaBTTA4/Kwdsr3VN7+OrXMuwDI9QaQEPwADW57/IJJGwCHd+0ndFIDevRqxHGbhXHVHmHktigyew8Aq5WIA9sxRF98Luzvbk3mxDYXPZ4OoeUdFePL8ozDbn68J5WcJC/BVQzc/GUlQmJLPzEi67iH1R9ns31WHkoDdNDwBjsdHnSUyf6vJvkZXn57Lp39vxdV0ajX10afcWFYgq7esuVlSXm9uFevxTltBoXTZ6IdPXam0W7Hcn0frDcNwtz/uqvyLmiJw0JcngNbd5M/6Q4amdYBsFI/gsZjP8IRXvIXbj9NmsTLR8YD8FK1RxkdfUuJ7+NClFJ4d+85NSXGIlxLl0P+mSpe6HQY41tgOZUEYWrXBp3p6q2CdSnWTcxm2dtZWIJ13D2rsq9KllKK39/LYt3XOQB0eDCY9g8ESxLiZfAmnaDg48/J/+RLVFo6UJRoY7t7BLaxD1TIJBuQOCyEEEII4U9+S4oAaNu2LW3atOGjjz4CQNM0qlWrxpgxY3j66afPWj8+Pp5evXrxxhtv+JZ9//333HPPPeTk5GAwXPzuMDn5FEII/8nPyWdfwiYydiWgP5FApYIN1DTtwKjznrVumiecg7p4ckLiscS1pGrzeKrWqV5iCRCnpbszWZa1lsVZa1iatYZ0T2ax9ob2OvRwtC+qBhHQGJO+7C++KZcL59zfKPxmMs65v52Zr9dkwjKgH9ZRt2Pp1+eq+FJS4nD5t372PNzrvqahex4O45nqKG7NyFatCzlV+xPb+QZqNKnL+b73zfPmsyzrD+ZnLmdR5qpif1cmnZH2QS3pE9qJ3iGdqGqpfEXjPOFKZerJX/ghdTYHnWcuWjaw1WZ45ACGRPQlWAXyx08/E7rxVeqbNgFQqFn4w3YPNW9+kqp1487Z98oXb2dPtUU816QG0aYIVjabRn6PQbiXrcA29gGCP3jrnNv9Wdp+NxMGnkBvhPsWxRAQXnGqGGQnefjxnlQyD3sIjDIw7ItIwmuWzvtP3kkva7/IZvOPuXhPFSep3cNGx4eDiawjU0Ocj9IU67/JYfkHWWgeCIk1csPb4UQ3kufscihNw/3HepzTZ1I4bQbawUNnGi0WLNf1xnLTICwD+qEPCfHbOC+HxGEhLo3SFMu//oL4/Y8RYMgn0xPCzqaf0n546SQqfJP8E88eKjq/eKrqfYyNubNU9vNXWlYWrkVLfYkQ2qHiyav66CjMfXsVTYvRqzv6yMgyGVd5kHnUw8QbT+ApUPR9KZQmNxWfJkMpxdrPi6auAmg1Koiu/3JIYsRlUgUFFHz7Pfnv/xfvzlNJ2Ho9lsE3YH9sDKaO7SvUcypxWAghhBDCf/yaFDFlyhRGjRrFZ599Rps2bXj//ff58ccf2bVrF1FRUYwcOZIqVarw+uuvAzBu3DjeffddPv/8c9/0GQ888ADx8fFMmTLlkvYpJ59CCFE2cjNz2b9hExmJCRhPJBDl3EAN404MOu2sdU96Ijmoiyc3NB5rjXiqNm1JldrVSjwBAoqqQWzJ28WSrNUsylzNprwdxapBBBkC6Bzchp4h7enmaEe02T9f/Cml8GzYRME3kyic/KPv7hkAY6uW2EbdhnX4MPThlz4dQHkgcbh8W/frMlqv6ub7/aQnkl2W69E3uIFGvXpf8K7I464UFmSsYGHmClZkr8elzkyv4TAE0TOkA71DOtHN0Y5gY8nNvawpjdU5G/khdTZz05fgVC4ALDoz/UK7MrzSQNoHtGDD3HlYV71CE9NqoCjJY615BFWGPE2NJnV9/e1as5G4X+Pp1KMFJ2xmXo37F7ftjiajS18wm4nYtxVD1SoXHdfyDzJZ+0UONbtaGfLfincBITfVy9TRKaTt82AP0zPsi0gi65XcBffCbI31E3NI+DYHd0HRe3S1thY6P+KgctNzVyURZzu+2cmcJ9LIPu7FYIKu/wqhxW2BFeriQllRSuHZuJnCaTNwTpuBd8/eM40mE+bePbDeNAjLoP7lOjZLHBbi4lKPpXDg43too58DwAZvTyqPnkjlmlVLZX9TT/7Co/tfBmBM5ZE8E/tAqewHiqrheBI24py3ENe8RbjX/AHePyWom82YO3c4lQjRC2OTRtdkzFBKMf2BkxxcUUhsaws3fx153uch4dsclryRCUDTYQH0ej4UveHae87+LqUUrnkLyX9vPK75i3zLja1aYn9sDNZhN14VNwFcjMRhIYQQQgj/8WtSBMD48eN56623OHHiBM2bN+fDDz+kbdu2AHTr1o3q1aszceJEADweD6+++irffvstx44dIzIykgEDBvDqq68Scol35sjJpxBClLzs9Gz2J2wka88GjMkJRBcmUMOUiF53dohJdkdz2BBPXmhLbDXjqdY8nujqVUolAeK0dHcWv2evZXHmapZmrSXNk1GsvYGtNj1D2tPd0Z74wCZ+qQZxmjfpBIWTplAw8Tu823f6lusrR2O941Zso27D2Kih38b3d0kcLr/S0wvJ+L9m1LLs5g8GYe/9DA3at8ZgOnfJfaUU2/N3Mz9zBfMzlrM1v/j0GtUtVegd0pk+oZ1pHdi0TP6uMj3Z/Jw2j8mps9mRv8e3vJolhlsjBzAs7HqSl21HLXuVloaiL1u9Ss9a/TAiBjxL3dZNWf/sdWysvZlxjasTY45iRdMfye83DNf8Rdjuu5vgTz+86DiUpvi8bxI5SV4GvBNOvb72Ujtmf8pP9zLtH6mk7HJjDdZz02cRVG7y9xIW3AUaGybnsu6rHAqzi5LoopuY6fyIg7h21pIY9jWnMEvjt3+ns3dxAQB1etro+58wrA6ZTuNKKaXwbNteNMXGtBl4d+w602gwYPvHXQR//L7fxnchEoeFuLA/Zsyhxpp7iDSl4NTMrKnyf3T+xyPojaXznjk3fQn3730eDY27o4bxn2qPlXgSgvd40qlKEAtxLViCSk8v1m6oVwdz315Y+vbC3LUTuoCAEt3/1WjnL3nMfTIdgxlG/RRNWPULX4zf+lMu817MAAUN+tu57pUwDCZJjLhSnu07yH//Ywq+/R6cTgD0VWKwj7kP2z/uQh8W5ucRXjmJw0IIIYQQ/uP3pIiyJiefQgjx92SlZbF//Qay9yRgStlAZWcCNcy7z7nuCXcMhw3x5IfHY6/Rkmot4omuHlPqY9SUxta8RBZnrWbxqWoQGmcqVATq7XRxtKHHqWoQlc2VSn1MF6IKC3HOmkvBxEm45i0E7dRYLRYsg2/AducdmHt1R2f0X7JGSZE4XH79/MLz3KheJcVTmcCndmIPObsqhFNzsTp7A/MzlzM/cwVJrhRfmw4d8YGN6XMqEaK2Ne6Kv9RXeXk4Z/9C4fSZoNNhGzEcc78+l/w3oJRia34ik1NnMSNtPjnePAD06OnuaMdtlQYSvcWIa/4btNHP9m232dOFOpYVtOvRgjSriTerP83NB6uQ3rYbGAxE7NmMoUb1i+7/8B+F/Hh3KpYgHQ8srYLRUnG/FC/M1pj+QCpJm12YA3QM+SSSqi0vPzHC61ZsmZ7Lmk+zyTtZ9B4YXttIp4cd1O5huybvUi1JSik2Tspl6duZaB4IrmJgwFvhUnWjhHh27qJw+kyc02fi2bSFgHHPEvjis/4e1jlJHBbi3PKy8kj48F90cX0KwG5XExg2ibqtmpTaPhdlruKePU/hVh5uiejP2zWeRa8r2eSLwh+mknXH6GLVIHQOB+aeXX2JEIa4aiW6z6tdQZaXrwecoCBdo+PDwbS/7/yV0v5s16/5/PJMGpqnaKqvG94Kr9DngGVBS00l/9OvKPjv52jJpz532O3Y7rwd+yMPYqxbx78DvAISh4UQQggh/EeSIoQQQpxTRnI6R3fuIvNgIt7kXdhyEolyb6e6ee851z/ursoRYzwF4fEE1IonrnlLKlWLLrvxerL4PeuPU9Ug1nDyrGoQtegR0oHujna0KqO71i9EKYV77ToKJ35H4ZSfUJmZvjZT+7ZYR92G9Zabrpo5yi+VxOHy6ZcZW+m9riUmvYe9nadTu88QX1u6O5NFWauYn7GCZVlrydPyfW02vZWujjb0CelMz5AORJiu/K4t5XTi/G0BhT9MwznrF8jPL9aurxyN7a47sN49EmOtmpfcb4G3kDkZi/k+dTZrczb5lkeawhgWcT1tk+oQMOcr2mpT0esUn9SqzCsN46hmieH3JlPIHXwbrtm/YL3zDhwTPr2kff72fDrbZuTRdGgAfcZdvXeyXSpXnsbPY05yZJ0To03HjR9GENf+0qo6aF7Fzrn5rPo4i6yjRRdsHFUNdHjQQYP+dik/XcJObHMx+18nyTrqRW+ELo+FED9SptMoSZ69+9AFBGCoXHbnQJdD4rAQZ9uxYh222Xf4Er2X2f9J27GvYg0ovQpFq7I3MCLxMQqVi4FhvRhfaxwGnaFE96GlpXGyXgtUWjrGFs2w3HAd5r69MLVtXSGSrUvLb/9OZ9vPeYTXMjJyWvRlVXzYt7SAWf88idcFce0sDPowArNdKjP9XcrppPCHaeS/+xGeLdt8y8039CPgsYcwde961ZzLSBwWQgghhPAfSYoQQohrmMfl4eieA6Ts3kXBsUT06btw5CcSo9tFhPHkebc76o7jqLElhRHxBNaKJ65lSyKrlG21BU1pbMvfzeLM1SzOWsXG3LOrQXR2tKaHowPdQtoR4+dqEKd5jxyl8NvvKfhmMt7dZ8r762OrYhs5HOvI267KO14ulcTh8ufoCS8n3uxIq4C17AoYTP2nf2ZfwWEWnKoGsS5nS7G/rShTBL1DOtEntDMdglti01/5BQPlduNavKwoEeLn2aisLF+boVZNrLcMQbncFHwzCZV65j3J3LMbttGjsAwegM566fvfW3CIH1JnM/XkL8USp9oFNadnYWuqzfudf3XcTY5F8W6N5xlyLJb0Fh1Aryd8Z8Il/W26CzQ+7nocd77i1m8qUTX+2rgT312gMfPRNA6uLMRghoHvRlCrm+286yul2Lu4gBUfZZG21wNAQISedvcH0/SmQCk5XYqcORrzXkxn9/yi6TRqdrXS79UwbCElezFOlE8Sh4U4w+PysOLj/6Nj6kuY9B6S3FVI6vYNLa/rWar7Tcjdxq27xpKvFdA7pBNf1H69VBK2s+8fS8FnX2Ns3JCwDSvRmS48BYQ4U+0LYPi3lajS4vLP4w6vLeTnMSdxFyhimpsZ8nEk1mBJjCgJSincS5aR995/cc351bfc2KwJ9kcfwjp8GDpL+T73ljgshBBCCOE/khQhhBDXgMzUDI7uSCTz4C48yYnYsncR4U4k1rgXs9593u2Ou6tyQl+PXHt9iKhHQGx9qrdoQXhMRBmO/oxMTzbLsv5gSVZRNYhUd/H5cOvbatLd0Z4eIR1oFdgEs758fPGn8vMp/GkWhd9MwrVoKZwOvXY71psGYR11G+buXdHpK/6XZRKHyxdNg0+e/oiHLGPJ1YJRj23inpPvsDI7odh6De116BPSiT4hnWkSUO9vlXZWmoZ7+UoKf5hG4bQZqJNpvjZ9lRist9yEdfgwjPEtfHd8KZeraIqZL7/BNX+R729IFxaGbcSt2EaPwti40SWPwa15WJi5gsmps1matcaX9GHUGfAoLzUssSxtOpncYaNwTp+JdfgwHJMnXFLfp+egdlQ1MPqXyuj0187FfY9LMedfaexdXIDeCP3fCKdeX/tZ6x1aU8jyD7I4sdUFgDVYT+t7gmgxPFDupiwjSik2T8ljyZsZeF0QFG3ghrfCr+jij7i6SBwWosjhXfvJmjiCJqZVAKzW3Uz9hz4hNKp0Kzxty9vNzbvGkOXNoVNwK76p+zZWfcm/97rXJRRN/6UUob/Pw9y5Y4nvo6JxF2p8MySZzMMemt0SQO9/X/m/heObnUx/IBVntqJSAxNDP4vEHibJhyXJs3sP+R98TMHESb4Kc/qoStgevBf7A6PRR0b6eYTnJnFYCCGEEMJ/JClCCCEqCI/Lw7E9B0nZm0j+0V3o0xIJLthFjEok0pRy3u0KNCuHvfVIN9fD6aiPKboeYTXrE9ugLoEhgWV4BGfTlMb2/D0szlrN4sxVbMjdXuyO9QC9nc6OVnR3tKe7oz1VLFF+HG1xSincy1dS8M1knFN/RuXk+NpMXTthG3U7lqGD0QcF+XGUZU/icPky8fsj3LSlIUHGXJI7fsyc5uG8cPg9TDojHYLi6R3akd4hnahqqfy39qOUwvPH+qJEiB9/Qjue5GvTRUZgHXYj1luHYurY/qLJQd5DhymY8C0FX3+LduSob7mpbWuso0dhvXUo+sBLf+867krhx9S5/JA6myOuonF9VHMcA5NjSWvcBoDwbX9gbNTwkvqbdn8qB1cU0u7+YDqNubQ5qCsSr1vx67Pp7Po1H50erns5jEaDAgBI2uJk+YdZHF7jBMBk0xE/IohWdwbJHZR+krLLxezH08g45EFngE5jHbS5K+iaSua51kgcFtc6rxcWT/iOdvsfIMiQS7Y3mK0N/0uH224v9fe+PQUHuWnng6R5MmgV2ITv632A3XD+qkpXSnm9pLfrjmf9BqwjhuP43xclvo+KaMWHWaz5PJvASgbumhmNJejvnZuk7HIx9R+pFKRrhNU0cvOXlQisJIkRJU1LT6fgi4nkf/Qp2rHjABhbNic8YYWfR3ZuEoeFEEIIIfxHkiKEEOIqk5WayZGdiWQeTMRzYhfWnEQiXLuINe7Fonedd7skdxVO6OqRE1APFV6fgNh6RNetT0zNWPTG8nMxKtOTze9Zf7Akaw1LslafVQ2inq0m3R3t6BHSgdaBTctNNYjTvAcOUvC/yRR+MxnvgYO+5YYa1bGOug3riOEYa9bw3wD9TOJw+bHzgOLAOwO5PnQOSQEdCXl8Pu23DSPVnc4b1Z/ijkqD/1b/Sik8W7cXTY3xw7Rifw86hwPLTYOw3joUc/cuVzSvtfJ6cS1YTMEXE3DO+gU8RVMw6AIDsd46tKh6RJtWlzy/sKY0VmYnkO3N5frQbmTfcQ+Fk3/EMmQgIdMnX1IfeSe9fNrjOEqDe+ZGExpXvt6fyormVcwfl8G2n/MA6PhwMMnb3exdXDRdg8EEzW4OpO29wQREyMUBf3Placx/KYNdvxTdZVm9k5XrXwuTO1orKInD4lqWsCWHE/97iP62bwHY7OlM+J3/o2q96qW+70OFxxiy835OuE/SxF6PKfU/wmEsneTo/E+/JOeBR9EFBxOeuBFDdPlJHC+vUve4+HZYMpoHBr0fTp1eZ1e6uhLpB9xMHZ1KTrIXR1UDw76sREjVkp8qRRRNy1c49Wfy3xuP7R93Yb/3Ln8P6ZwkDgshxJXJz8lnx7LlaB43eqMJvdGI3mDEYDKhNxjRG4seG4xGDCYjRqMJg8mIwWjEaC56bDKbMJqMGI3GcvVduBCi7EhShBBClENet5dj+w6RvHsX+UcT0aXtIjg/kRi1i0qm5PNuV6BZOeKtS5qpeNWHqg3qEhRaPisSKKXYnr/7VDWI1WzI3Y4Xr689QG+nU3AreoS0p7ujHVUs0X4c7blpOTk4p82g4JtJuJeduSNFFxiI5eYh2EbdhqlTh2tieoyLkThcPrg98OJjP/JayC24lQnjw5v4TNvIy0fGU80Sw+9Nplzx3Nae3XuKKkL8MA3vzsQzDXY71kH9sQ4fhrlPzxKd79ebnEzh/76n4Mtv8O7e41tubNwQ2+hRWO+4FX14+KUfw569pNVvCZpG2IaVmFo0u6Tt1n+Tw9K3MqnczMztk67tCxBKUyz+v0w2Ts71LdPpodHAANo/GIwjRi4IlCdKKbZOz2Px65l4nIrASgb6vxlGbCurv4cmSpjEYXEtysiBzz5J4KaUW6lj24tX6UmoMo740c9iMJV+AthxVwpDdtzPEVcSdW01mF7/Y8JMIaWyLy01lZP1WqIyMgj68C3sDz9QKvupSJSmmDwihaTNLmr3sDH4w5KdKjLrmIcf70kh66iXwCgDw76IJLzmtZk4WxaUUqBUuf3sLXFYCCEuz641G0lZ+AXN8ycRbMgusX69So9HGU/9Z8KDEa8y4sGE99Rj76nHmq7osXb6sa7osdIZ0XQmNF3RY6UzofSnHuuLHqMzogwm0BlBbyy6S0RvROf7WbRMZyh6rD/1WG80ojeeeWz4ayKI8VTCx58TQUynEkEkAUSI85KkCCGE8KPs9GyO7kgk/cAuPCcSsWbvItyVSKxxD1a987zbnXBXJklXnxx7PVREfQKqnqr6UKvaVXGik+XJ4ffsP1iSuZolWWtIcacVa69rq+GrBtEmsFm5qwYBoDQN15JlFH4zmcLpM33zmKLTYe7ZDeuo27HeOABdQIB/B1rOSBwuH17/PIO79jUg2pxMTtsX0fV7gvabh5LuyeTdGs9zS2T/y+rPe+gwhVOmU/jDNDwbN59psFiwXN8H661DsfS/rtT/HpRSuFesouDLbyj88ScoLCxqMJuxDBmI/d47MXXrctEvSbPufoDCCd9i7n8doXOmXfL+/zf0BCm73PR6PpTmt/p3+qHyQCnFig+zWDchh9o9bHR8yEF4rfL3fi7OSN1dNJ1G+gEPOj10eCiYtqOD0RtkOo2KQuKwuJYoBd/NU+yd+j7PRT+FWe8mjVh0N08mrEmnMhnD71l/8Nj+lznhPkl1SxV+avApUeaSvej+Z1mjH6Lwq28wNm9K2Lrfr6ga17Vm4w85LHolE3OAjrtmRhMUXfLPWW6Kl6n3ppC2z4MtTM/QzyKJamAu8f2I8k/isBBCXFx2ejabpk8mct8XNDBt8C0/5o4lk2gMeDAoN3o8GPBg1LmLlp16bNQVPTbp3Jj1bj8eSflwpQkg3lMJH0XJIKZTSSCnkj90RpTeiKYvSvhQeiOcSgQxVKpH5zvLZ8UmISQpQgghSkGhE1KzICXj1H+ZkJ9ynKCTq4jMWUVU4UaiVSLRpqTz96FZOOKpw0lzfZzB9TBVrk9o9XpUbViP4LCr6/2rqBrEHpacqgaRkLutWDUIu95Gp+BWdA9pRw9He6paKvtxtBfm2bOXwm8mUfC/79GOHPUtN9Stg+3U9BiG2Kp+HGH5JnHY/9Zshx0fjObuqK/IsjfA8cRGPkr5gf87+ik1LLEsbToZo+7iXwZ7TyTjnPoThT9Mx71qzZkGgwFzn55FiRCD+qN3OErxaM5Py8yk8PupFHwxsViihqFmDWz3jMR65x0YYs5+r/EePMTJOs3A4yF09WLM7dpc0v5Sd7v4ZkgyeiM8sCwGm0OmHjhN8yj0RrmofrVw5WssejWD7TOLkv2qtbPQ///CZaqTCkLisLhW7DgIz72fyr2uO7k+/BcAUmNuJHLUl2APK/X9F2pO/u/Ip3yR/AMAtazVmFzv/VL9nONavZaMDj0BCF25EHOHdqW2r4oiJ9nDhIEncOUpej4XQovhpVddMT/Dy/T7Ukne4cYSpOOmTyKJaV5yldPE1UHisBBCnJvSFNt+X03W0i9o4fqRAEPR51GnZibBcCPWDvfSvFf3K7oZUPNouF1uPG4PHo8Hj9ON1+PB6/HgcZ967Pbg9T12o3k9aB4P2unHXg+ax43yelB/eYzmPvXTg/K6QfPAqeVoHnRa0WOdKnqsO/1YedAr96mfRY/1yoOeU49PJXqcKwHEiBuDzoNRV/TYqPOUmwSQ9d7raPXar/4ehhDnJEkRQghxCTweSMsuSnA4neyQeirZ4XTSw+nfUzMhL89D08AttA9eRYfgVbQPXkV166Fz9p3sjub46aoP4fWxV61HVN16VKkVVyblXEtLtie3WDWIZPfJYu11rNXpHtKeHo72tAlqhkVffu+U0TIzKfzxJwonTsK9eq1vuc7hwHrrTVjvvANT29bodHLR72IkDvtXXgHc/9BSvq3SvWjB6OVkV2lO+81DyPTm8FHNcQyJ6Hve7bW0NAp/moXzh2m4li4HTStq0Okwde2E9dahWG8ahD6i9O6AvBLuDZso+HIihZN+RGWfKrdoMGC+vi+20aOwXN/Xdydl9gOPUPDpV5h7dSd0wexL3seydzJZNyGHOj1tDPqgfB2/EFdi28w8Fr6SgadAYQ/X0/+NcOLayXQaVzuJw6Kiyy+EV/4HCb8uZkKdO4ixJOHRWaDfexjb3Q9lcL6+K38fY/a9yM6CfQCMqHQjL8Q+jN1gK7V9Kq+X9Fad8WzagvWuETi+/qTU9lWRzBh7kr2LC6jczMzw/1Uq9cpIzhyNnx5M5dhGFyabjsEfRUhsvcZIHBZCiOLST6Sx9advqXLoC2qbd/iW73M14GjcvTQePILwGPmO5VJ53d6i5A+3B8+pRJBiyR+eouXaqcelkQCii6xHl9H/8PdTIcQ5SVKEEOKapBRk5RZPavhzokNqZvGkh7Tsom3OJ9SYTrugNbR3FCVAtA1a68toPU1Dz3FjM1KCOpAf0ZrQGg2o2rAejnD/3EVd0pRS7CjYy5LM1SzOWs36nK3FqkHY9NaiahCO9vQIaU9sOa4GAUVfLLoWLKZg4nc4Z8wB56npTPR6zH17YbvzdiwD+6OzypdYl0PisH89+k4BDx5vRl37HpzN78dy0ye8e+wr3jn2JXVtNVjY+FsMuuLJWFp2Ns6Zcyn8YRqu+YuKssROMbVrg/XWm7AMG3LOqgvljcrPp3DaDAq+mIB7xWrfcn3laGx33YG5Xx8yet4ALhehy37D3OXSSmtrXsXnvZPITfEy6INw6vS0l9YhCFGmTu5zM/vxk6Tt9YAO2t8XTPsHZDqNq5nEYVGRzV4Jj3/o5k7rOJ6OfR29TuEKbYD5tikQ3aTU968pja+Tp/LakY9xKhfhxlDervEMfUI7l/q+88d/Ss7D/0IXEkLE7o3oIyNLfZ9Xuz0L85n5aBp6I4z4MYrIumWTpO/K15j5yEkOrXZiMMPAdyOo1a30EmZE+SJxWAghiio3bFq4lMJVXxDv/QmL3gVAvtfGBvPNBHe9lyZdO6DTy+dOIUTJkqQIIUSFtnE3/LAIktLOrubg9lxk47/Q6SA8GCqFKlqG7aZd0Cqam1dSW1tFpHvnWesrqwNdbHuI7QDVOkDVNmApvXKc/pDtyWV59jqWZK1mSeZqTvylGkRta5wvCaJtUPNyXQ3iNM/2HRR8M5nC735ASzrhW25o1ADbnXdgvf0WDJWj/TjCq5vEYf/5dQ1s/OQ5nq32GoXWGKyP7yDDCO0330SON49Pa7/CgLCiksuqoADn3N8o/H4qzrnzziQFAcbmTYsqQtw8BEON6n46mr/PsyuRgq/+R8E3k1Cpxd+7TJ07EPb7/Evu6+CqQqb9IxWrQ88DS2MwmOSDu6g43AUai/8vk63T8wCIbW2h/xvhBFa6eqtZXcskDouK6NAJeORD2LL+/9m76zipyi6A47+JnZ3Z7l26u7tBkJAGQVq6Q1BKeBVBBVRaOqS7pJVOkRaku2G7d3rmvn/cdRUBqd2djefLZz/M3DxDzK3znHOPlYU7UNUzMfGxfC9oOB00KZ+sGGIO59M733I4Vq4qV8ezKlPyjCZA45vi+7aFhBBRqCxSTAzuc6bh0q9Xiu8zvTPF2VnSPJj4UBuVe3tQ/ZPUHahgNUvsGBbBrQMGlGpoNMGXwo1EUm1mII7DgiBkZiEPnnL156XkefoTuZxuJ02/ZilDaL5elGrRHk9/L8cFKAhChvfqhtGCIAjp0L2n8OVPsHrvfy/n4QoBXhDgDf6Jvwd4g78n+Ce+DnTTk9V4Gs/I4ygfHYcHx8EQCRJg+sfGfAvKyQ85q0KOqij8i4DyzfucpWWSJHHVcDuxGsRxzsRfxCo9Ww2imke5pESInM5ZHRjt67NHRGBcswHDstVYz5xLmq7w9UHboQ26Lh1Rly0t2mMI6VZEDEyZ/ie/5PsBAG3LWaD1ZMGj+cTZEiiiy09j79pIdjvxo77CMGchUnx80vqqggXQtm+Ntm0r1EUKO+pjJCt14UK4TxqP2/ivMG3fhWHRMsy79wHgNnb0G23ryjb5YXHhhi4iIULIcJx0ShqM8yFnRWf2jIvi4WkTy1oH02iiD3mqiZGtgiA4jtkC0zfAN8ugkdsGzpXrhZc6BsnZE0WLhVD8o1SJ49eowwy7O5EoawxahYYvcw6iS0CrVLt2iB85BikmBnW5Muh6d0+VfaZ3R2fEEB9qwzuXmsp9Uv/BtFqjoOkUX379IpKrO/XsGBmBWW+nZGu3VI9FEARBEFKSzWLj3K5fsZ9eRDm2857CBk4Qa3PnvK4j/u/3pEjVcmSMO03JS5Ik/voFyK8kkHh+Oi+c/vJt8LrLJk7n38siJS3/72V1Ki1ZNQEp/wckCG9BJEUIgpChRMbCxJUwa7N8kwzgo9pQofCzSQ8BXvJ75xcVLoh5KCc+PDgOp47D0/Nyf6x/Umvlyg9/VYHIURlcM16JUkmSuG28z8m4C5yIO8/x2LMEW8KeWSafNie1PavwvldVKrqXQqt0dlC0b0ayWDD9sgfjslWYtv8ClsR/MGo1zo0/QNulA86NP0ChSfvVLQThv0gS9J9sY3xgL5yUVmyFWqIq2pJISzQ/Ba8HYFj2nigVSkx79qH/YRoAylw55YoQ7VqjLlUiwyYFKTQatK1aoG3VAtvDR9ijonEqWfy11zfr7dzYbwCgaFMxwk/IuIo0diWwmIbtQyMIu25hU59wKvZwp/ogT5TqjPn9IAhC2nX4PAycBncf6JmWbwi9siyUZ+SojOKjNeCdO8VjSLDpGftgBqvDtgFQzKUAs/KNo6AuT4rv+y/mY8cxLlsFCgUec6ahUIkqPq/y+A8T59fJyb/1vvJG7eyYY5jKSUGjiT5oXBVcWJ/AnrFRWAwS5T7OWNUlBUEQhMzp0Y373Nq+mIJhi6ng9AgSD7cXLVWJLtyTsi3bUNPT9bW2FW9LYE3YdrZF7MdgN8K/H8QnPqD/e5r0zEN+kua8aNl/rCO9YNm/9iW9w7J/xSC9YNmXJDqkZ7U9K7Oy0DRHhyEILySSIgRByBCMJpj9M0xYAdGJg5vrlIXv+kK5Qv+xos0CwRcSkyB+k3+PffT8cu5ZIWe1vytBBJUGdcZ7WG6VrFzR3+Jk3HlOxp3nVNyfRFijnllGq3Smmns56nhVobZnFXJpszko2rdjOf8nxmWrMKxa90zJfHWZUui6dEDboY3owStkKKv2QtCt2VTKfwqbkweqZrMAmPN0JQl2PSVdCtPAqyYA+h/nAqDr2wP3OdMzbCLEy6hyZEeVI/sbrXNzrwGrQcI7l5osJTPecUEQ/skntxMdVwdy8IcoLqxL4NRPcTw+Z6LxD754ZBGXloIgpLzQKBgxF1bshuIuFzlbvh2FtFeQFAoUNT6HOuNA5ZTicfwRf5mBt8dyz/QIBQr6BnVgePbeqdouULJaiev/KQC6nl1wqlg+1fadXtksEnvGyVUfi7dwJWdFrUPjUSgV1P3SGycXJWeWxnHw+2jMCXYq9/HIdOfhgiAIQvpnNpo5u207TucXUla5h+wKCZwg0urDRY/OZGvQkxJli7329p6YQ1kcvJ5VYVuJtcW/egXhnSn++UvxgmlJCz4/VQEoFAp0SseeXwnCfxF3rgRBSNfsdli9D75cBA9C5Gkl8srJEA0qwnP3EfQR8PD3vytBPD4FFsOzyyhVctJDYhsMclYFzxwv2Fj6Z7SbOB9/hZPxFzgVd54zcReJt+ufWUar0FDGrRgV3UtR2b1MuqoG8Rd7aCiGVesxLluF9cLFpOnKwAC0Hdui7dLxjUaGC0J68SAEvp/zgN+Lyu0gVB98Dx5ZCTVHsCR0IwDDsvdCoVBgvXkL867dALh8NkjciH1Nl7fLrTOKNnURf2ZCpqB2VlDvSx9yVNCy56tIHv9hZnnrEBpO8CFfLdFOQxCElGG3w4Lt8L8FEB0v0TfrPKbl/wwNRnALQtF6JeR7P8XjsEk2Zj5ZztTHP2HDRhZNADPyjqGaR7kU3/e/6WfNx3rxMgofH9wmjkv1/adHpxbHEnHLis5HSa1hno4OB5AfHtQa6omzm4LfZsXy26xYzAkSNT/zFOeWgiAIQrpw9+IN7u9cRLHoZVRxCoXEwlV/WOtgKNGLss1bUMv19R+UX0q4zvzgNWyL3JfUtjm/Nhc9gtqQ2/nvgSzyg/sXPJj/x/S/piU92lf8890/Hvj/azr/sSzwj/3+ay3Ffy/7d1qB4sXL/ms6Sb/LSQrP7vHFyypQwIuWfVmigzjfEDIRkRQhCEK6te8MfD4P/rgpv8/mD1/3gI/rQ1LV0PgQuLYdHiYmQYRff35DOm/IUUVOgMhVDbJVAM3rle9Kb2Kt8ZyJv5hYBeIC5xOuYJYszyzjoXKjvFtJKrmXopJ7aUq6Fk7VEU/JRTKZMO34BcOy1fKDXpt8Eo1Gg3OzRui6dkLToC4KtTgUChmT3Q7dJ0p8l7U/bqoEpJzVUZTvDcDspysw2k2UcS1GHc8qABhmLwBA06gB6gL5HRZ3ehIXbOXBSRMARZpkzOOGILxM4Q9cCCqqYfuwcEKuWPh5QDjlu7pTY7AnKidxU0UQhOTzxw3oPxVOXQVvdSR7K/Sijm6zPLNAQ/hwKbilfN/iB6YnfHJ7HKfj/wSgqc/7fJd7BF5qjxTf97/ZngaTMOZbANy+G4fS1zfVY0hvIu9aODEvFoA6I73QeaWdViMKhYIqfT3RuCo5+H00p5fEYU6wU/cLbxRKcUwVBEEQ0h5DvIGzWzbjdnkhpdWHyQPgBCGWIK76dCNP4+6UKfb695bskp2DMSeYH7ya32LPJk2v4l6Wvlk6UMezCkqFMvk/iCAImYp4EiQIQrpz4RZ8Ph/2nJLfe7jC5x3hk9agc0ZuiXH1Fzi3GG7sBLv12Q34Ff67DUaOquBXCJQZ86QqzBKZlABxMu48V/S3sGN/ZpkAJ18qupeikltpKnmUprAuLypF2rlB9CYkScJ65hyGZaswrtmIFBmZNE9dsbzcHqNda5Q+Pg6MUhBSx8xN4P9oPY2L7MSu1KBsvgCUSp6aQ1kR+jMAI7L3RqFQYI+Lw7B4BQAun/RzZNjpypWdepAge3lnvLKL02oh8/HKqab9ykCOTInm3Kp4ziyV22k0meSLZzbxf0IQhHcTEw9jfoI5W+Rkz/oBx1hfogPulodyi4x630GVISl+LSdJEpsifuV/9yYTb9fjpnTh29xDae3b0GEj6+KHjUaKi5OvcXp0cUgM6YkkSewZF4XNArmraSncyMXRIb1QuY/dcdIp2DMuigvrEzAnSDQc74NSLRIjBEEQhLThxpmLPN29kJLxK6mujgI12CQl56QPsJftRdkmjXnP+fVbmRntJjaH72ZB8BpuGu8BoEJFM9/36RPUgRKu/9UXWxAE4c2IO1WCIKQbD0Plm2IrdoMkgZMa+rWA/30Mfl5AyGX4YwmcXwEJoX+vmK0C5KuXmARRGVwy5igaSZJ4aH7Kidg/OBV/gZNxF7hjfPDccrmds1HRvXRSJYjcztnTfZks25OnGFeuxbB0Jbarf1cDUWbNgrZzB3Sd26MuUtiBEQpC6rp8F374KZJzpT4BQFlrNAQUAWDmk2WYJDOV3EtTw6MCAMblq5Hi4lAVLICmXh2HxZ2eSJLElW2JrTOapM0b64KQGtQaBXVGeZOjgjO/jonk6Z9mln8UzAff+FDgffF/QxCENydJsO4ADJ0FwZGgxMba9ybQWhqLwmIHn/zQZi1kS/mWFdHWWEbdm8S2yH0AlHcrwcx8Y8npnDXF9/0y5kNHMK5eDwoFHnOmocigCf7J6dLPCTw6Y0KtU1D3S+80ff1bsrUbGhclu0ZHcHWnHotBoslkX9SatBuzIAiCkLHFRcdzfvNafG4spJjTKQoCqOGxJSc3A3pQsHk3KuTL8UbbjLREsyx0E0tDNhFujQLAXeVKR//mdA9sQzbnwOT/IIIgZHoiKUIQhDQvOg6+Xw0zNoLJLE9rUwe+7Qn5fGPg4lq5KsSjU3+v5BoApTtD2W4QUNQxgacwu2TnhuEuJxOrQJyMO0+wJeyZZRQoKKzLRyX3UkmJEEEafwdFnLwkgwHT1h0Ylq7CvPeAPHwMQKtF+2EztF06onn/PRSq9Fn1QhDeltkCXcbDNzmGE6gJRfIvgqLm5wA8Mj1lddg2AIZn64VCoUCy29HPnAeAy6A+4sb6awq9aiHithWVBgo1EA9+BaFAXRcCimjYPiyC4Itmtg6OoGwnEzU/8xIPcgRBeG03HsLAabA/sWpy9dyP+blsJ3zCD8kTSnWCpnPA2T3FYzkee47Bd77miTkEFSo+zdadQVk7o1Y47laaZLEQO+AzAHR9e+BUrozDYkkvEsJtHJ4cA0C1AR7porpX4UYuOLko2PZZOLcOGPh5QBjNZ/ihcRHn6YIgCELqkOwSV347TcTBRZQxrqGGKh6cwGJXc1bZHHWlXpRpUJdsTm923/W24QELQ9ayIXwXRrvcjjSbJogegW3oENAMd5VoTSoIQspJ+1cCgiBkWiYzzN0C41dApNz6k1ql4fs+dio4H4TjS+DKJrAa5ZlKNRRsDGW7Q8GGcknVDMRit3JRf51Tcec5EXee03F/Em2LfWYZtUJFKdciVHIvTUW3UlRwL+mQHrcpRZIkLMdPYFy2CuP6n5FiYpLmOVWvgrZLR7QftUTp6enAKAXBsb5eCp6hB+leajEAiuYLQe0MwI9PlmGRrFTzKEcVj7IAmPcdxHb9Jgp3d7RdOjoq7HTnyna5SkT+2jqc3cUNakEA8Mympv3yAI5Oj+HMsjjOrYzn8TkTTaf44ZVDXHoKgvDf5m+DIT/KCZ7OGljScjttoruhCI8AjSs0mQNlOqd4HGa7hUmPFzD36SokJHI7Z2NmvnGUdSuW4vt+Ff2MOdiuXEPh54vb+K8cHU66cPCHaIyxdgKKOFGuU8on0ySXfO/p+HCOPz8PCuf+7yY29Q3jw9n+4rxTEARBSFHRYVFc2LSKoLsLKab5U56ognvmAtzP3pOiLbpQOcebVXGQJImTceeZH7yGvdHHkJAAKOVahD5B7WnsU9uhSaeCIGQe4ptGEIQ0x26Xy6V+sRDuBcvTiuaG6R/fo45iKYpflkL0/b9XCCgmV4Qo1QncMk5pLYPNyNmES5yKu8CJuD84F38Zg934zDI6pZbybiWSKkGUdS2GTqV1UMQpx/bgIYblqzEuX4Pt5q2k6cpcOdF1bo+2cwfU+fM5MEJBSBuOX4IZaw2cK9NbnlCxH+SqBsB942PWhe8AYHi23knr6H+cC4C2WyeU7unnRrEj2a0SV3fqASjaTIxiEIR/UjkpeG+4FzkqOPPL/yIJuWJh+UfBNPjah0L1RVUVQRBe7MA5uUKE3Q5NKplYVm4EXpd+lGdmKSO3y/ArmOJx3DTcY+Dtr7ikvwFAe/+mjMs5BFeV47+/bI8ekzB2AgDuP3yL0tvbwRGlfXeOGri2S49CCfXH+qBUp6/KRbkqa/logT+b+4fx+JyZ9T1CaTXfHxdvUQ1REARBSD6SXeLC/qPEH1tIOetGaimNoAGj3Zmz6ta4Vu9Fqfdrklv5ZsdRq2RlZ+QhFgSv5nzC1aTp9byq0zeoA5XcS6fpllaCIGQ8IilCEIQ05eA5GDkPzl6X3+fx07Oo6WZq2pegPHzg7wW1nlCivVwVIlt5yAAnUFHWGE7H/cmpuAucjLvAn/qrWCXbM8t4qTzkKhDupajkXoriLoVwUmbMr3IpIQHjpq0Yl63CfPCI3FwYULi64ty6BbouHXCqVUOU+heERPF66DoBRmf/hgK6W+CeFepNTJo/7clirJKN2p6VqeBeEgDrrduYd+0GwGVgH4fEnR7dO25EH2lH56Mkd9WMl4gmCMkh33s6Om8MZOeICB7/YWb7ZxE8aGuk9ghv1M7p/7xNEITk8ygUOoyTEyJG1r/OeK92KC6dl2dWGQL1v0uqepVSJEliWehmvnk4E6PdhJfKg0l5RtHI570U3e+biBs6CikhAaeqlUV1r9dg1tvZ943co7zsx24EFdM4OKK3k62MM22XBLChdxghVyys6xrKR4sCcPMXiRGCIAjCuwl7HMqVzcvI+WgRpTVyQihKuGEuQXCeXpRs1Ylq/m+ehBlvS2B12DZ+Cl7PI7M84lGr0NDarxG9gtqRX5crOT+GIAjCa8uYT9IEQUh3Lt2Bz+fDLycAJN7zO8mkyksoY1qL4nZiiwiFAvK+D2W6QdGW4KRzZMjv7Kk5NDEB4jyn4i5w1XD7uWWyaAKo5FaKSh6lqeRWmgK63CgVGTcJQLLbsRw5hmHZakwbtyDFxyfNc6pdE12Xjji3ao7Szc2BUQpC2jRsDrhE/8mwspPkCU1mywlkwC3DfTaF/yovl61X0jqG2QtAktA0rI+6QP5Ujzm9urxNbp1RpJELKifxcFcQXsYji5o2iwP4bVYMp36K48K6BJ5eMNN0ii/euTJWmzNBEN6O2QJtv4KwaBhcfCvjbR1RBCeAix98uBQKNU7xGMIskQy9M579MccBqOlRkWl5vyBI45/i+35dpn0HMa3fDEol7rOnisTw1/Db7Bhin9jwyKqi2oD03V4xoLCGdksD2NArjIjbVtZ2DuWjRf54ZhO3dQVBEIQ3YzFbubDnAJaTCyln30otpQU0EG9z5Q9te7zf60mx6hUp+IZVIQAem0JYHLKeVWFbibPJ90181d50C2xF54AP8XUSVa4EQXAscfYsCIJDPQ6DrxbDsl/BXxXMiJwr+CTfErLYrkJiLgReueX2GGW6gFf6zSQNs0TyW+wZjsac5ve4P7hvevzcMvm0OankXjrpJ7smKFOUEbPevoNx+WoMy9dgv/d3axRVvrxou3RA93F7VLnT79+9IKS0nb/DT9tt/Fa6J04KKxT9EIq2SJo//cli7Nip51Wd0m5FAbDHx2NYvAIAl0/6OSLsdMkUZ+f2QbmVUdGmonWGILyKyklBzU/ldhq7RkUSes3C8o9CqD/WmyKNxP8hQcjshs2GE1cgr2c4k4K6ojAnQJ7a0HoleGRN8f3vi/6NoXfGE26NwlmhYVSOfvQIbJOmEtEls5m4gZ8BoBvQG6fSJR0cUdoXfNnMuRVygn3dL73RuKSdv8+35ZvXiXbLAtjQM5Toh38nRvjkEUmGgiAIwss9emrmxqmzGK8fxjfyMEWUv1FeFSfPVMJlSwUiCvSizIftqOH9di1VLyVcZ37wGrZF7kuqepxfm4veQe350K8BOqWosCkIQtogkiIEQXCImHiYtAZmbbRQx3Unm4ssppHvLlTYwIZcBaJoK7k9Ru5akA5HwiTY9JyIO8/RmNMciz39XCUIJUqKuRSgonspKruXoaJ7SfycfBwUbeqzx8Zi2vAzhmWrsBw9njRd4eGBts2HaLt2xKlq5UyRFCII7yIsGnr9AAOyzqKix2m5OkTjmUnzr+vvsCViL/BslQjj8tVIsbGoCuRHU//91A473bqxR4/VJOGbT01gUXETWhBeV57qie00Rkby6IyJnSMieXDSRJ1RXjhp0995niAI727VXpj9s/x6b9MxqB5EQ1Ap6LIHVCl7u8pgM/LNw5ksC90MQGFdXmblG0cRl7RXOUs/dSa26zdRBgbg9vUXjg4nzbNbJfaMjUSyQ+FGLuStkb4rTP6TV3a1nBjRK4zIO1bWdAnlowX+BBROn61BBEEQhOSVYIBzV408PncS7h8he8Jhymh/p45KLy+QeAsjyurNn24dCarXk2IVS73VvuySnQMxvzP/6RqOx51Nml7FvSx9s3SgjmeVNJVkKgiCACIpQhCEVGa2wIJtsGHdJZq7LuFG6RUEaML+XiBHZbk9Rom2SWXf0wuL3cr5hMsciz3D0dgznI2/mJQd+5fiLgWp7lGeah7lqeBeEndV5hohKdlsmA8cxrhsFcbN28BgkGcoFGjq1UHbtSPaFk1R6DLOjStBSEmSBH0ng3PCfSYU/Z88sf73z4ysnPJ4ERISjbxrU9y1YOJ6EvqZ8wBwGdRHlGB+A5e3yzcTijZzFUlbgvCG3APVtFnkz/F5sZyYH8vFTQk8/dNM08m++OYTSUaCkJlcvA19Ejt+/djuT3I/nC+/aTQjxRMibhnu0+PmSG4Z5Qp1PQPbMipHP7RK5xTd79uwPXhI/DffA+A2aTxKLy/HBpQOnF0ZR+hVC1oPJbVHeDk6nGTnHqim3dIANvYJI/SqhXXdQ2k115+spdLev19BEAQh5djtcOMhnLmYQMSl33ENPkxB+xEqup+khtIkL5R42zna5stdbU3M2WrhX6omuUuXpJZa9Vb7NdpNbA7fzYLgNdw03gNAhYpmvu/TJ6gDJVwLJcOnEwRBSBkiKUIQhFQhSbB1bzR/bF5DY+clDCx0+u95boEoSneWkyECijgwyjcjSRI3DHc5Gnuao7Gn+T32DxLs+meWyemclRoeFRITIcpl2t5p1us3MCxbjXHFGuyP/m4boipcEF3XTmg7tUOVLeXL4wpCRrN8N2w5KrGjRH9clAmQqwaU+7saxKWEG+yMOogCBcOy9Uyabt53ENu1Gyjc3dF26eiI0NOlmMdWHp0xgQKKNnZxdDiCkC4p1QqqD/QkRzlndn4eQfhNCyvahVDvC2+KNc9cyaKCkFnFxEPrL8FggnoVJPprhoBkh2KtIU+tFN33pYQbdLg+hAhrFIFOfkzL+wW1PCul6D7fRdynI0Gvx6lGVbSd2jk6nDQv+pGV32bLfThrDfPE1e/tHvikdS4+Ktr8FMDm/mE8OW9mQ88wWs7yI2clUZ5cEAQho4qIgZNX4cKlWPQ3juEXdYSKLodp63YGJ6UV/tH5IopAQtxrocpfi2zla+GVvQhl3nEwTKQlmmWhm1gasolwaxQA7ipXOvo3p3tgG7I5B77T9gVBEFKDSIoQBCFFSRKc3X+CyN0/8oFmMy385UxVm0KNolBTlOW6oSjwAajSx+jAJ+bQxHYYZzgWe5pQS8Qz873VnlT3KJ+UCJFLm81BkTqePSoK47pNGJeuwnLy7yQYhbc32vat0XXpiLpCOTHSWhDe0r2nMHgGtPVfR0PvXaDSQPMFz7QbmvJ4EQDNfepSyCVv0nT9j3MB0HbtiNLDI3UDT8eu7EgAIGclZ9yDxGm0ILyLXFW0dNkUxM7PI3hwwsQv/4vkwWkj74/OGL3fBUF4MUmCbhPh1mPIGQjr225Bse0gqJ2hwaQU3ffZ+Et8fP0zYmxxlHApxKpC09J00rrp172YNm8DlQr32VPFddMrSJLEvm+isBokclRwpnjLjJ1op/VQ0nqBP1s+CefBCROb+oXRbJof+WqJqouCIAjpndkCf96GU1fh4qVIFPePUsB2mBqeRxjh9gcqZzsE/b18lDIHsQG1cC9SE+8StfD2K4B3Mp033DLcZ2HwWjaG78IomQHIpgmiR2AbOgQ0y3RVkAVBSN/E3VxBEFKEzQY794fDnpE00y2GxAELIZrieNXojnP5juAW4NggX0OMNY7f485xNEauBnHb+OCZ+VqlM5XcSlPDU06EKOpSIFP3S5OsVsy792FYtgrTtl1gSizXplKhaVgfXZcOODdthMJZlPZMCcZYO7/Pi6Fybw90XhlzVJQgs9uh+3egNkcyq+xgeWKt/4F/4aRlLsRfZU/0UZQo+TRbj6Tp1tt3MO/8FQCXgX1SNe70TJIkrvzVOqOpuOgXhOTg6qei9Xx/Ti6M5ficWC5v0cvtNKb44l9A9EcXhIxo0hrYegw0TrBhjBGPPUPlGdWGgXfuFNvv8dhzdLkxDL3dQAW3kiwvOAUPtVuK7e9dSSYTcYOGAeAyuD9OJYo7OKK079ouPfd+M6LSQL2vvDNFEonGRcmHs/3ZPiyc2weNbB0cTqPvfCn8gahoJgiCkF5IEjwMhROX5SSI61dD8Qg7QhXXw9T0PEx/t4uQ5dl1YjR5seSohVfxWqjz1cTbK3eyJUHIMUmcjDvP/OA17I0+hoQEQCnXIvQJak9jn9qoFeLRoiAI6Y/45hIEIVkZTLD8V4m7u5YxzHsYfjq5ksJJ5y7k+3AggUXKQRq+OWGymzkTfzGpGsSFhKvYsSfNV6KklGsRanjKlSDKuRVPk71nU5vl4iWMy1ZjXLUOe3BI0nR1iWJou3ZC26ENqiBRRi0l3dynZ9/4KBLC7Bhj7DQc7+vokIQUNH0DHD4PS4sMw0cZCv5Focbnzywz+fFCAD70bUB+Xa6k6YbZC0CS0HxQD3XBAqkZdroWfNFM1D0rap2CgnXFCDxBSC5KlYIqfT3JXs6ZHSMiiLxjZVW7UN4f7UXxD10zxUMtQcgsDpyD/8mnJ0z/BMpHToeou+Ce9bnzmOS0P/o4vW+OwiiZqeFRgcUFvsdFlbaP5QmTpmO7dRtlliBcvxrl6HDSPEO0jQPfRwNQuY8HPrnTRyXK5KB2VtBsqh+/fhHJ1Z16do6IwKK3U+LDtJv0IwiCkJnF6+HMdTkB4sRleHDzMYXsR6jpeZgeXocp4n0N/lXIKt6tMOq8NdEWrAW5a+LpmT1FYrNKVnZGHmR+8BouJFxNml7Pqzp9gzpQyb20uD57BUmS5JFMNlvS79Jf7xOnSTb7M8tI/5j3zDIv2sZf7193G//Y97+38Z/7ee1YpeemqUuVwHXkZ47+qxCEFxJJEYIgJIvIWJi3FXbvuMLXAf3oE3AEgBCn4mg+nEel4tUcHOGL2SU7V/Q3ORp7mqMxZzgZfx6j3fTMMvm0OanhUYEanhWo4l4WT7X7S7aWudjDwzGuXo9h2Wqs584nTVf4+aLr2BZtl46oS5cUJ8spLD7Mxv7xUdzcZwDAO7c6w5eKzewu3pYfKNT2OsDH/kvkRLMWC0H996jqM3EXORDzOypUfJqte9J0e3w8hp+WA+DySb9Ujz09u5xYJaJAHR0a18xbEUgQUkqOClo6bwzil9GR3PvNyO6vonhwykS9Md7i/5wgZACPQqHDOPleaecPoHetJ/Djt/LM+t+Bc8o8wN0ReYCBt7/CIlmp71WDufm/SfNJ7bZ790kYL7cScZsyQbQ6ew2HJ8dgiLTjm19Nxe6Z789L5aSg4QQfnFwU/Lkhgd1jorDoJcp2EvcuBEEQHO3GQ/jtIpy8Iv/EPblHDQ+5FcYPnofJX+j2c+uYfEqgyV8LRZ6akLsmbm4pO9AszpbAmrBtLApez2NzMABahYbWfo3oFdTumYE2jmK9cxfD3EVIsbHPPexPelj/Hw/qn32gL70k0eCv1/b/SDT4e/0XJhpIkqP/qBxOExUtkiKENEskRQiC8E4ehMgjllft0jPE/1v25Z+Ek9KKRemCvdZYAmsNAVXaGqVx3/hYToKIPc1vsWeJssY8Mz/AyZfqHhWo4VGe6p4VyKpJ+20+UotkNmPatRvjslWYdu4Gi0We4eSEc5MP0HbpiHPD+ig0ouR1SpMkiYubEjg8JRpTnIRSDRW6uVOlrydqZ5GIklGZzNBlAihtBlaU6C1PrNAPclZ9ZrlJjxcA0Na/Mbm1f48gMK5YgxQbi6pAfjQN6qZa3OmdzSJxbZecFFGsmUg6EoSU4uqrotVcP04tjuPYzBiu7tQTfNlM08m+BBQW5xaCkF6ZLdD2KwiLhlL5YfanoNg1GswJkL0SlOyYIvtdH7aToXcnYMdOc596zMg7Bidl2r8NFjd4BBiNONWuibbdR44OJ817cNLIpS0JoIAGY31QOWXOayGlSiEnErooObMsjgPfRWNOkKjU210MVBAEQXCA6DgYMhOOHb5DHa8D1PQ8zCjfI+TK9mxrZgklUlBplHlrQe5akKs6zi6pU/31sSmExSHrWRW2lThbAgC+am+6Bbaic8CH+Dp5v2ILKU+SJIwr1hA34DOk+HhHh5M8FApQqUCpBJUKxT9eo1Q8+z7x9d/TlH+//+c2kpZX/mv5f+9H8YJt/nM/ymemKf69jb/Wf9E2En9X5c7p6D9hQXiptH81KAhCmnTxNkxeC2v3Q12PX/i96ADy6u4CYC/YFKemM8HL8VmkAJGWaI7FnuFY7BmOxp7mgenJM/NdlS5U8SgjV4PwqEBBXR5x0+BfbE+D0f84F8OipUjhEUnT1eXKoOvSAW37j1D6+Tkwwswl6oGFPWOjeHhKrmoSWMyJBuN8xAOjTGDsErhwC6YV+positvgkQ3qTXxmmd9jz3Es9gxOCjWDs3ZNmi5JEvof5wLgMrC3fGEjvJa7R40YY+y4+ivJWTltjy4VhPROoVRQqacH2cs6s2N4BFH3rKzqEELtkd6UaiPaaQhCejRsNpy4Ap5usOFrcAk/DX8sk2c2miHfQE1mS0M28b/7kwFo79+U73OPRKVQJft+kptpxy+Ytu0EtRqPWVPEd94rWIx29oyLAqB0Wzeyls7c52kKhYJawzzRuCo4PieWYzNjMOvt1BjiKf4tCYIgpKI9p6H39zb6uf6PpRW/f2aepFChyFZeToDIUwtFzmootJ6pGt/FhOvMD17N9sj9WCUbAPm1uegd1J4P/RqgU2pTNZ6XsUdFEdtvCKZ1mwBwql4FTYO6/0gAeMGD/BcmGjz/sP/5pADlCxIA3nI/L9rGP5cRx2RBcBiRFCEIwmuTJLmH/aQ18OtJyKp5zKqCQ2jtv1Ge75kDReOZKIs0d2icYZZITsT9wYnYPzgZd56rhmfLkKkVKsq5lZArQXhUoLRr0XQxYsgRrFevkTD5R4wr14LZDIAyKBBtp3bounRAXbyYgyPMXOxWiTPL4zg+OxarSUKtVVB9kCdlO7qhVIsT6ozu2J/y929J1wsMDJoEEtBkNmj/LhEsSRKTH8vNutv7NyO7c5akeeZ9B7Fdu4HCzQ1t106pHX66dnmbPGKiSGNXlCrxf00QUkO2ss503hTIL/+L5M5hI/u+ieLhKSP1x/rg7C6SugQhvVi1F2b/LL9e/j/Il1WChZ/IE0p9DDkqJfs+5zxdyfiHswHoEdiGsTkHo1Sk/e8NyWAg7pPhALh8Ngh10SIOjijtO7kgjugHVtwCVNQYnLoPlNIqhUJB1f6eaFyVHJoUzamf4jDF26n7P295dKcgCIKQYuL1MGIurNoZx8rCHWnqu12ekbMa5HkPctdCkaNKirUN+y/3jI/YGXmQHZEH+FN/LWl6Vfdy9MnSnjqeVdLU+ZL5yDFiOvXE/vARqFS4ff0FLiM/k5MQBEEQ3pJ4CigIwivZbPDzUZi8Bk5fAyU2Psk2m/H5vsCFOFCqoMoQFLXHOuSk7rEphJNx5+VEiLg/uG188NwyRXT5qe5RnhqeFajsXhpXlUuqx5leSJKE5dhxEn6YjnnHL0nTnapVwWXYJzg3aYhCLQ4fqS3kqpndYyIJvSq3LMlV2Zl6X/nglUP8XWQGcXroOgEUko1NFXqhtNugaCv4VxLa0djTnIg7j7NCwydZuzwzTz9zHgDarh1Fb+o3YIixceewAYBiTcWxQxBSk85LRctZfpxZFsfR6TFc320g+HIwTaf4EVRMVEcShLTu0h3oKxdrYPTH0KQqcGE1PDwBGleoP/E/139TkiQx6fECZjxZCsDgrF0Znq13uhmNl/D9VGx376HMlhXXL0c6Opw0L+yGmVOLYwF4f7SXSJj7l/Jd3HFyUbD36ygurEvAopf44BsfkUwvCIKQQo5egO7fgS3iHkdLNaOk20UklTOKlj9BqZRpFfYqd40P2RF5gB2RB7ikv5E0XYWKZr7v0yeoAyVcCzkktpeRLBYSxo4nYeIUkCRU+fLiuXoxThXLOzo0QRAyAPEkRRCElzKYYPlumLoWbj2Wp1X1Ps2q0n3JaTsnT8hRGZrOgyylUiUmSZK4b3rMybjz/B4nV4L4dzsMBQqKuOSnsntpKruXoZJ7KfycfFIlvvRMstkwbdmOftIMLCdPyxMVCpxbNMFl+BA0VZJ/FJfwahajneNzYjmzLA7JBloPJe+N8KJYc5d0c4NXeHefzYK7T2Fs4ZnktZ8GrSc0mfnMMpIkMemRXCWiU0ALsmgCkuZZ79xNSnJyGdgn9QLPAK7/asBmAf9CTvgXEg9hBSG1KRQKKnT1IFsZuZ1GzCMbazqFUGuYF2U6uIljoSCkUTHx0PpL0BuhbnkY2w0wJ8CexIf9NUfLbcCSiSRJjH0wg0Uh6wAYnb0/A7J+nGzbT2nW23dI+G4qAO7TvkPplvqDDdITu01iz9go7FbIX0dHgboicfVFSn3khsZFwa7RkVzZrsdikGj8gy9qjTh2CoIgJBeDCcb8BNPWQ1X3Y2wu9yF+6jBwC0LRYUuKVMX6L7cND9gRJSdCXNHfTJquQkVVj7I08anDB9410+S9cuvNW8R07IH19FkAtN074z7jB3FeJAhCshFJEYIgPCcyFuZthZmbIFRuz0lOzxjWVv8fFePmoLBJoPWC+t9BuV4p0gP2L5Ikcct4P6kdxom48wRbwp5ZRoWKEq4FqZSYBFHRvRReajEK+nVJBgOGpSvRT52F7VZiqxFnZ3RdOuAy9BPUBQs4NsBM7MEpI3vGRhH9wApAoQY66ozyxtVPlIrLTLb9Bot3Qi7tfUZn+QJsQP0fwD3LM8sdjDnBuYRLaJXODMzS+Zl5htkLQJLQNKiLulDBVIw+/buyXW6dUayZq4MjEYTMLWspZzpvCOLXLyO5dcDAgYnRPDxlosHXPmg9xehgQUhLJEkeKXnzEeQIgFVfyi2UOfQ9xD4Gr9xQ9bNk259NsvH5vR9YHbYNgPG5htI1sHWybT+lSZIkt80wmdDUq4Nz65aODinNu7A+nqd/mtG4Knj/f16ODidNK9LYFSedku1Dw7m5z8CWQeE0n+6Lk04cOwVBEN7V6avQbSJcvQ9dApeyoFBv1FggSxnouBU8c6RKHLcM99iR2BrjquFW0nQVKqp7lKexT20aetfCx8krVeJ5U5IkYVyygrhPhiMlJKDw8sJjwY9oP/rQ0aEJgpDBiKQIQRCSPAiB6Rtg0Q5IkCuFkzNQYk699TSIGIIyLlieWLIjNJwCboHJHoNdsnPNcIcTsX8kVYKIsEY9s4yTQk1p16JUci9NFfcylHcvgZtKPKx6U/bwcPRzFqKfOQ8pPAIAhbc3LgN6oRvYB1Vg8v/9Cq/HGGvn8JRoLm6SH8a6Baio+6U3+WvrHByZkNpCo6D3DwASu2r0Q2VKgFw1oFzPZ5aTJInJj+UqEV0DWhGg8U2aZ4+Px/DTcgBcPumXWqFnCFEPLDw5b0ahhMKNxAhEQXA0raeS5jN8+WNVPIcmR3Nzv4GQa8E0neRLlpLOjg5PEIREk9fAlqOgcYL1X4OfFxB9H45Nkhf4YDI4aZNlXxa7lSF3vmZL5F6UKJmcZzRt/Rsny7ZTi2nbTsy7doOTE+4zJ4sKOK8QF2zl6PQYAGp86ol7oLi1+Sr56+hoOdufLYPDufebkU19w2k52w9nN5EYIQiC8DbMFhi/HCaukivvzi46kr5+U+SZRVtBq2Vyq7AUdNNwjx2R+9kReYBrhjtJ09UKORGiiU8dGnjVwsfJM0XjeFf2yEhi+3yCaeMWAJzeq4Hn8oWocmR3bGCCIGRI4spBEAQu3obJa2HtfrDa5Gkl88HYFrdoGjkA5e098kTfAtB0LuR7P9n2bZWsXE64mZQAcSruPNG2uGeW0So0lHUrIbfD8ChDWddi6FTJcxMtM7LeuYt+6kwMi1eAQc5+UebOhetnA9F174zCVSSYONKNvXr2j48iIdwOQKm2rtQcInrkZkaSBH0mQ1g0DC+2lsKmX0ClgeYLnqvQsyf6KBcSruKi1NE/S6dn5hlXrEGKiUGVPx+aD+ql4idI/65s0wOQq6oWN39RoUUQ0gKFQkHZTu5kLe3M9mHhcjuNzqHUGOJJ+S7u4mGiIDjYwXMwWs7TZNogqFgkccbuEWA1Qp73oGjyjPoz2k30vzWG3dFHUCtUzMo3jqY+yXetmhokvZ64wSMAcB0+WFT0eg37J0RjTpDIWkpD6TainPbryl1Vy0fz/dnUP4xHZ02s7xFK6/n+6LzEOa4gCMKbuHgbuk6A87fAXRXLgVodKCvtlGe+9yXUHptiVZWv6++wI/IAO6IOcMNwN2m6WqGipkdFmvjUob53DbzVaTsR4i/mg4eJ+bgX9sdPQK3G7dsxuAwbjEIljk2CIKQMkRQhCJmUJMHh8zBpDfx68u/pdcrC8DYm6hknoTjyLVhNoHaWe75WH/HOI3rMdgsXEq5yIjEJ4nTcn8Tb9c8s46p0oYJ7iaRKECVdi+CsFH3c35Xl9FkSJk3HtGkr2OUH7uqypXEdPhjn1i1RqMUhwZHiQ23snxDFzX1yoop3bjUNxvmQvZwY+ZpZLdkF245BoDaCb7INBiNQ6wvwL/zMcnbJzqRH8tOHHoFt8HXyTponSRL6mfMAcBnYG0UKtjvKaCRJ4sqOxNYZTUWVCEFIa4KKa+i8IYjdYyO5sdvA4ckxPDxtouF4H/GARxAc5HEYdPhavtT4uAH0aZY4494RuLQeFEpoOB2SIXlJbzPQ4+bnHIk9hbNCw4ICE6jrVe2dt5vaEiZMwn7/AcqcOXAdPdzR4aR5N/fpuXXAgFIN9cZ6o1CKRLg3ka2sM20XB7CxTxghly2s7RrKRwsDRPKvIAjCa7BaYco6+GoxWKxQxu8O+ys0wzPhMqi18OFSKNE2WfcpSRLXDLfZmdga46bxXtI8J4X6mUSI9NRKWjKbiR/zLfofpoEkoSpYAM/Vi3EqV8bRoQmCkMGJJ2CCkAmduQaDpsOpq/J7pRI+rAnD20N5zUHY3g/Cr8sz89WFpnPkKhFv6a7xIT9H7OFE3B+cjb+E0W56Zr6nyp2K7qXkShDuZSjuWhC1Qnw9JQdJkjD/soeESdOxHDqaNF3zQT1chw/GqXYtMaLSwSRJ4uKmBA5PicYUJ6FUQ8XuHlTu44HaWfzdZFZ3n8KnM+XXu+sNwykmDAKKQY2Rzy27K+oQVw23cFe50idL+2fmmfcfwnb1Ogo3N7RdOz23rvByj/8wE/PIhpOLgvx1ROsaQUiLnN2VNJ3sy4WKCRz8Poo7h40sbx1Ckx98yVZWJBUKQmoyW6DtV3Lrr5L5YM5nibkPdhvsGiIvVL4XZCn1zvuKtcbT+cZQTsf/iYtSx9KCk6jmUe6dt5varDdukjBpBgDuM34QFftewRRnZ994ubVmxe4e+BcQAyfeRmBRDW2XBrCxVxgRt6ys7RLKR4v88cwq7sEIgpA6Dp+HGRvkalI9myS22UrjbjyEbhPgxBX5/ciqh/nWrRXKhAhwzwodt0K28smyL0mSuGq4ndQa47bxQdI8jcKJWp6VaOxTm/peNfBUuyfLPlOT9foNYjp0x3ruPAC6Xl1xn/a9OA8SBCFViDNeQchktv8G7ceBwQRaDXRtCJ+2gfxeobB7OJyX+87jFggNp0GJdu80kueW4R5NrvQkzpaQNM1X7U0l99JJ7TAK6/KiUoiRCclJMpsxrl5PwuQZ2C4nZr+o1Wjbf4TLsME4lSzu2AAFAKIeWNjzVRQPT8uJQoHFnGgwzoeAwuIGX2Zms0HX8RBvgMFl91MiZqn8Pdx8Iaif/bdhk2xMebwIgF6B7Z4rkWhIrBKh7dIBpWf6KJ+YVlzZLh+3CtbX4aQTFTYEIa1SKBSUbutG1lIatg+NIOq+lbXdQqk+yJOK3d3FKGJBSCXD58Dvl8HTDTZ+Ay5/FRg8twSe/gFaT3j/m3feT6Qlmo7XP+VP/TU8VG6sKDiV8u4l3nm7qU2SJOIGDQOzGU3D+jg3b+LokNK8I9OjSQiz451LTeU+6Wc0bFrkl8+JdssCWN8zlOgHVtZ2lhMjfHI7OTo0QRAysNAoGDEXVuyW3289Bl8vgw51YeCHUPrtx+OlGLsdZm+GUQvke+kerrCjzSKq3u2HwmiVEyE6bAGPbO+0H0mSuKy/yY7IA+yMOsidfyRCOCs01PKsRBOfOtTzqo6HOn22jpIkCcOipcQNGQl6PQofHzwWzULbstmrVxYEQUgmIilCEDKR+dtg4DT5hK5BRVg6GgI87XDuJ1g+EgxR8oO3Cv2g7njQeb3T/mKt8XS/OZI4WwLFXQrSMaA5VdzLkl+bS1QnSCH2mBgM8xejnzEH+5OnACjc3dH17obL4P6ocmR3cIQCgN0qcXpZHL/PicVqklBrFVQf5EnZTm4oVeL/RmY3dR0cuwh+Lga+z9oHYoGK/SFnleeW3RaxjxuGu3ip3OkV1O6ZedY7dzFt3wWAy8A+qRF6hmE1SVz/VW7tVKyZGK0gCOlBQGENH68PZO/XUVzdqefo9BgenjHRaIIPLj4i+VYQUtKafTBrs/x62WjI99dzAWMM7Bstv679Fbj6v9N+QszhtL8+mOuGO/iovVhTaDrFXQu90zYdxbR5K+Y9+8HZGfcfJ4nr41d4fM7EhXVywmq9r7xFRb1k4JVDTfvlAWzoGUbk3cTEiIX++BcSCfqCICQvux0W7YDRCyAqTr713KEuXHsAZ6/LrUOX7IIaJWFgK2hRHdJCh997T6HHd3DovPy+Xjkr66sOx+PCdHlC8bbQcjFo3q7dpiRJXNLfYEfkAXZEHuCe6VHSPGeFhtpelWniXYe63tVxV6Xv+xL28HBiew3EtGUHAJr338Nj2QJU2bI6ODJBEDKbNHB4EQQhpUkSjPkJJqyQ33drBHOHglP4n7CoLzz8XZ4RVBqazYMcld55n3bJzqA7Y7ltfEAWTQArC03D38nnnbcrvJjt0WP0M+ZgmL8YKS4OAGWWIFyGDEDXuxtKLy/HBigkCbliZvdXkYRetQCQq4oz9cb44JVDHJIFuHALvvxJfr232TicntyWRxzUnfDcslbJypTH8sJ9snR4brSAYc5CkCQ0DeqiLpw+Hxg4yu3DBkxxEu5BKnKUFyX4BSG90LgqafSdDzkrOrN/QjT3jsntNBr/4EOO8tpXb0AQhDd26Q70niS/Hv0xNK32j5mHvoWEMPArBBUHvNN+Hpme0vbaJ9wzPSLIyY+1hWdSQJf7nbbpKPb4eHmUJOA68lPU+fM5OKK0zWaR2DMuEoDiLVzJWVF8nycX90A1bZcGsKlPGKHXLKztFkrref5kKSnOfwVBSB4XbsGAqXI1KYBS+eUWW5WLyferf78MszbBpsNw9E/5J0cA9GsBPRo7prWGJMFPO2HoLLmCp4sWpveKoXtCWxQXEstc1Pka3vvijasrS5LERf11uSJE5AHumR4nzdMqNNTxqkpjn9rU9aqGWzpPhPiLad9BYjv3wv40GJyccJs4DpdPB6JQioqcgiCkPvEERhAyOLNFvkn1V2myr7rBl+31KPaPheNT5R6vGje5lGmlgaBKnq+FKY8XsS/6N5wVGn7K/51IiEghlouX0E/+EePq9WC1AqAqWhjXYYPRdmiDwlnczEgrLAY7x+fGcmZZHJINtB5K3hvpRbFmLmJkmACAyQxdxoPFCp9UO0+J4MnyjCZzQPt8ieDN4bu5a3qIt9qT7oEfPTPPHh+PYdEyAFwG9U3x2DOaK9vkkYhFm7iI0vuCkM4oFApKtHIjqKTcTiPyjpX13cOoOsCDSj09REUmQUhGsQnw0RjQG6FueRjb7R8zw2/AiRny64bTnmsB9ibuGB/S9tognphDyKHJwrrCM8mlfbcy1Y6U8O0P2B89RpUnN66fD3V0OGneqcWxRNy2ovNRUmu4aAeX3Fx9VbRZHMDmfmE8uWBmfc8wWs7yE8kngiC8kzg9jF0MMzfLLULddPB1DxjQ8u8qEAoFVC0u/zwOkyscL9gGD0PlqhJfL4UO9eTWGqXyp07cT8Kh1w/w60n5fbUSsKLfLXLtawrh18BJBx8uh+KtX3ubkiRxIeFqUmuMB6YnSfO0Smfe96xKY5861PWqiqvq7apOpEWSyUT8/8ahn/IjAKrCBfFcvQSnMqUcHJkgCJmZSIoQhAzsr5tU+86ASiVXh+jxfiwsbwgPjssLFf0QGs0Az+Rrq7Ar8hDTnywB4Ps8IynlViTZti3IJ9OWQ0dImDQD8y97kqY71aqO6/AhaBrWF9m2acyDU0b2fBVF9EM5caXQBzrqfO6Nq58o5y38bcxPcPEOBHrZ+CFrLxQhNijWGoo831/RYrcmfc8OyNLpuREExpVrkWJiUOXLi6Zh/VSJP6PQR9q4e8wIQNGmGWNkhiBkRv4FNHRaG8j+8VFc3qrnt5mxPDxtovF3vuL4KwjJQJKg+3dw46E8onPVl/I1Z5Jfh4LNAgUaQsGGb72fq/pbtL8+mDBLJPm0OVlbeCZZNQHv/gEcxHr1WtLDAfcfJ6HQ6RwcUdoWedfCiXmxANT53Audp/j+TglaDyWtF/qzZVA4D06a2NwvnGbTfMlbU/z7FAThzUgSbD4Cn86UEx0AWtWCaYMg219dtO4dkatJZa8ElQeBWwDZ/OWkidGdYN1BmLkR/rgJi3fKP7VKw4APoXm1lGmtIUlyO7BPZsgtPpw18E0PGFLuAKoNreWW0x7ZoOM2yFr2tbd7Lv4yg25/9UxFCJ1Sy/teVWniU4f3Paviosp437XWq9eI6dAd6/k/AdD164n75AkoXDJO0ocgCOmTSIoQhAzqSTg0HQnnb4GrDtaNhYalomFZA3h0CrRe0HoFFGqSrPu9pr/N4DtfA9AzsC0f+TVK1u1nZpLVimnTFhImzcB69g95olKJ84fNcB0+BKeK5R0boPAcY4ydw1OiubhZHnXuFqii7hfe5K+d8S54hHdz+DxMWSe/3tPmR5yunQGtJzT+8YXLrw/fyX3TY/ydfOga8OwIBUmS0M+cB4BuYB+RJPWGrv2ix26FwGJO+OZzcnQ4giC8A42LkobjfclRUcu+b6N4cMLEslbBNP7el1yVxQhYQXgXU9bCz0dA4wTrv/5Xeeubu+H6DlCqoeHUt97HhfirdLg+hGhbLEVdCrCm0HT80nEFQkmSiBs4FKxWNE0b4dzk7ZNFMgPJLrFnXBQ2C+SurqVwQ/EgJSVpXJR8OMef7UPDuX3IyJZPwmn8vS+FGog/d0EQXs/dpzBoOvxyQn6fJwvMHAINKycuYLPC4W/h0Dcg2eH2XvhtMpTpAtWGgm8BtM7Q5QPo3ACOX4KZm+Qki8Pn5Z8cAdC/pdxawzeZigeFRUP/qbD5sPy+XCFYOhqKhs6DlYPAboXsFaHDFnDP8trbvWG4y8fXPyXaFoeLUkddr2o08alDHc8q6FQZ81pEkiQM8xYR99koMBpR+Pni8dMctM0aOzo0QRAEQCRFCEKGdPUeNBoBD0IgwBu2fwflc0bC0vrw5CzofKDrPshaJln3G22NpcfNkejtBqp5lOPLnAOTdfuZlZSQgGHxcvTTZmO7e0+eqNOh69YJl88Goc6X16HxCS92Y6+e/eOjSAi3A1CqrSs1P/XC2U08oBaeFZsA3SbKIxOGN7xH8dtfyDMaTHrhBbfJbk6qEjEwS+fnLqbNBw5hu3INhasrum6dUjz+jObKdj0AxZqJKhGCkFEUb+5KluIatg+LIPymhQ29wqjSx4Mq/UQ7DUF4G4f+gFEL5NfTBkHFfxYGtFngl0/l15UHgX/ht9rHybjzdL4+lHi7njKuxVhZaCpe6ufbiaUnpvWbMB84DFotHjN+cHQ4ad6lnxN4dMaEWqeg7hfeouVgKlA7K2g2zY9fRkdy7Rc9O4ZHYDFIFG8hzosFQXg5s0VOlvx2ORjN4KSGER1gVCfQ/dXVN+YhbOgI94/K74t9BDH35YF7p+fDmQVQpCVUHw45KqNQyK0rqpWAR6Ewbyss3C631hg1H8YtgY71YGArKJnv7WPfchT6TpYTI9Qq+KIzfN7BitOeT+HkLHmhkh2hxUK5dcZremwKTkzsjKOMazHWFp7xXIXPjMYeFkZMjwGYt+8CQFP/fTyWzkeVJcjBkQmCIPxNJEUIQgZz9AK0GA3R8VAgO+yaBHk9w2FJPQg+Dy5+ckJEluTt32WTbAy4PYZ7psdk1wQxL9+3qBXiK+Zd2END0c+aj372QqTISAAUfr64DOyDy4DeKP38HByh8CLxoTb2j4/i5n4DAD551NQf50P2ss6vWFPIrIb8CPeDIU8WiW8D+8EdPeSuCWV7vHD5NWHbeGIOIcjJj04BLZ6bb5g5HwBt144oPUXf5TcRcdtC8CUzSjViNKIgZDC++ZzouDqAA99Fc3FTAr/Pi+XhGRNNfvDFLUCUYxeE1/U4DNqPA7sdPm4Aff7d5evUXAi7Kl93vjfmrfZxOOYk3W+OxGg3UcW9LEsL/pDuHyTY4+LkUZOA6+hhqPLkdmxAaVxCuI1DU6IBqDbAA6/s4t5CalE5KWj0nQ9OLgoubkrg1y8iMevtlO3g7ujQBEFIgw79AQOmwrUH8vvaZWDWp1A41z8WurIFtnSXW1Bo3KDZPCjVUR4Zcv8oHJskV5i6sln+yVUdqo+Ago1BqSR7AHzbS05YWHtAbq1x/hb8tFP+ea+0nBzRtOrrt9aIjoPBP8LKxK7ExfLI1SHK5oiC1W3g9j55Rt0JUPNzeIPEvEhLNB2uD+GpOZQC2twsLzgl3Z/HvIpp9z5iu/bBHhwCGg1u33+Dyyf9ROVSQRDSHHFVIQgZyMZD0Hk8mMxQpRhsmQB+6lBYUhdCLoJrAHTbD4HFk33f3z+az6GYk2iVzvxU4Ht8nLySfR+ZhfXmLfRTfsSwbDUY5b72qrx5cBk6CF3XTqL/Whol2SUubk7g8JRoTHESSjVU7OFB5d4eqJ3FqCbhxX4+Ast+la+vd3Zag/rkr6B2hmYL4AUXjwa7kZlPlgEwKGtXtMpnk21sd+9h2rYTAJeBfVL+A2QwV7bLrW7yVNfi4iMekgpCRuOkU9JgnA85KzqzZ1wUj86YWNY6mEYTfchTTbS2EoRXMVug3VgIjZJHZc757F/PCBLC4cBX8uu634LO64338WvUYfrd+hKzZKGOZxUWFJiATpn+S0wnjJuI/clTVPny4jp8iKPDSfMOfh+NKVYisKgT5TqJh/GpTalSUH+sNxpXBWeXx3NgQjSWBIlKvdJ3tRZBEJJPaBQMn/N3UkGAN0weAB3q/uPcwGKAX4fBqTny+2zl4aM14Jtffq9QyANCcteE0CtyK40LK+H+MfnHr7BcOaJUR1A7o3WGrg3l9hq/XZRba/x8FA6dl39yBUH/FtC9Mfj8x9fVntPQ83s50VOphOHt4auu4Bx7A+Y3hYgboHGFViuhaIs3+nNJsOnpfGMYt4z3yaIJYFWh6fg4ZdzBKpLRSPyor9BPnw2AqmhhPNcsxalk8j97EARBSA4iKUIQMogZG2DobDnJtnl1WDUGdOZgWPw+hF0BtyDodgACirx6Y29oa8Q+Zj9dAcDUPP+juGvBZN9HZmA+cQr9D9Mwbdkh/0UC6orlcR0+GOeWzVCoxAO6tCrqvoU9Y6N4eNoEQFBxDQ3GeeNfSOPgyIS0LDhCLtMI8FWbCApdGiK/qfUF+Bd64TorQ7cQbAknmyaI9v5Nn5uvn70AJAlN/fdRF37xNoQXu3PEwJllcQAUFa0zBCFDK9LYlcBiGrYPjSDsuoVNfcKp2MOd6oM8UapFIqMgvMyIuXJ/b0832PgNuPw7V+HAV2CMhsCSUK7nG29/Z+RB+t36Ehs2GnvXZla+cWiUTskSuyNZL11OeljgPmsKCm36T/JISXeOGLj2ix6FEuqP9RHfyw6iUCh4b7gXGhclv8+L5eiMGEzxdmoM8RStTAQhE7PbYeEOGD1frlKsUEDvpjC+N3j/M4ct9CqsbysP0gOoNgzqjgf1S+6TBRSFlovh/W/g9x/h9DwIvwZbesD+L6DyJ1ChL+i8UCigekn552EozNsix3Q/GEbOg7FLoFN9GPghFP9Hx+F4vXwuM3+b/L5AdlgyCqoUR64MsfYj+TzGMwd03P7GVZbNdgu9b43mj4TLeKk8WFNoBtmcA99oG+mJ9dJlYjp0x3rxMgC6gX1w/+FbFDqRbC4IQtqlkKTEJ2+ZRGxsLJ6ensTExODhITKchfTPbpczc6dvkN/3bwnTB4Eq4QksqQPh18Ejm5wQ4Zf8yQqX9TdpdqUXRruJ/lk68b8cA5J9HxmZZLdj2vEL+knTsRz7PWm6pklDXIcPxqlGNXHDIQ2zWSTOLIvj+JwYbGZQ6xRUH+RJ2Y5uokf5S4jjsEySoPko2Pk7lMoPpz/oiurPZRBQHPqdfeGNAr3NQJULrQi3RjEp9yg6BDxbr1pKSCAseyGk6Gi8tm/AuUnD1Po46d6tgwa2fRqO3QoF3tfRdKqv+D8sCJmA1SRxaFI059fGA5CtjIbGP/jikSXjjh0Qx2Hhba3ZB52+kV9vmQBNq/1rgeCLMKc0SHbofhDyvPdG2zfYjVS50IowSyStfRsyJe/oDNGOUTIYiKz1AdbTZ3Fu2RSvzWscHVKaZtbbWdoimNgnNsp3cee94V6ODkkATi+J5fCUGABKt3fj/VFeKJTiXPltiOOwkJ6dvwn9p8LJK/L7MgVg9mdQqeg/FpIkOPsT7PpErhThGgCtlkGBD95sZ8ZYOLsQjk+D2MfyNI0blO8NVYfIiQv/YDDB2v1y9YgLt/6eXruM3FrDy02uDnH3qTx94IcwoTe46oCTs2HXYLDbIEcV6PAzuL1ZMoNdsvPJnXH8HLEHnVLL+sKzKOtW7M0+czohSRKG2fOJG/Y/MJlQBvjjsXguzo3f8O9YEATBAdL/FaYgZGJGE3SdCBsOyu+/6wPD2oMi9pGcEBFxUz5J7H4QfPIl+/4jLdH0uCH3eq3lUYnPs/dN9n1kVJLRiGHlWvRTfsR27YY80ckJbad2uA77BHXR5K/oISSvkCtmdo+JJPSaBYBcVZyp95WP6HcrvJZFO+SECI0TbOq2D9XuZfIQixYLXzpyYmnoJsKtUeRyzsZHfo2em29YuRYpOhpVvrxoGjVI6Y+QYdzYq2fH8AjsVijYQEfj70RChCBkFmpnBXW/8CZHBWd2fxXJ4z/MLG8dQsMJPuSrJUY4CcJfLt2B3pPk16M6vSAhQpLglyFyQkTRVm+cEAGwIXwXYZZIsmoCmZwngyRE2O3EfNwT6+mzKHx8cJ/+g6NDSvN+mx1D7BMbHllVVB0gHhinFRW6eaBxVbL3myjOr4nHorfTYJyo4iEImUWcHr5aLCcc2O3g7gJf95BbVaj/ebg2RMO2PnBpvfw+Xz1otRzcg958p1oPqDYUKg2Ci2vh2CQIvQTHp8KJH6FEO7m1RlBJAHTO0K2R3F7j2J9yrFuOwcE/5J+/5AqCRSOhTlnAZoHtg+HUXHlm6c7QfIHc0vQNSJLE2Acz+DliD2qFioX5J2TYhAhbSAix3ftj3rUbAE3D+ngsmYsqMONWxBAEIWNJ/1eZgpBJRcXBh/+DIxfASQ2LP4cO9YDo+7C4DkTdAa/c0P0AeOdJ9v1bJSt9b3/BQ/NTcjtnY3b+cagUor3Dq9jDwzEsWIJ+5jzswSEAKDw80PXricsn/VBlzeLgCIVXsRjsHJ8Ty5nlcUg20HoqqT3Ci6LNXERVD+G13H4stzsC+L6Hnjyn+shvKg6AHJVfuE68LYE5T1cCMCRrN5yUz57CSZKEfuY8QC5ZqFAqUyb4DOb6bj07RkQg2aBwIxcaTRA3dwUhMyrUwIXAIhq2Dwsn5IqFnweEU76LOzWGeKJyEt8JQuYWmwAfjQG9Ed4vB+O6v2Chq1vhzgH5IcIHk954H1bJyrynqwHoG9ThufOc9Cp+5JeYNm0FjQavLWtQ5czx6pUyseBLZs6tkCv31P3SG42LOJ9NS0q1ccNJp+CXLyK5vFWPWS/R5AdfcZwUhAxMkmDTYfh0JjwJl6e1fg+mDoRs/v9a+MHvsKEDRN8DpVpulVFtGLzrvQm1Bsp0htIfw81f5eSIuwfhwkr5J38DqDEC8tQGhQKFAmqUkn8ehMC8rbBwO0TGQvfGMGUAeLgC+khY95F8/qJQQL3v5CSLt7ivN/PpMn4KkRNBpuX5ktpeVd7tM6dRpl27ie3WF3toGDg74z55PLoBfcS9UEEQ0pWMcaUpCJnMgxBoNByu3pdP5DZ9m5jhGnUXFteWEyO888oVIrxypkgM3z6YzW+xZ3FR6vipwPd4qz1TZD8ZhfXSZfQz5mJYuRaMRgCU2bPhMmQAul5dUYqyienCg5NG9oyNIvqhFYDCDV2oPdILVz+RECS8HpsNuk6ABAPUKg2DvMfBlTvgkR3qTXjpej+FbCDKGkNebU4+9Hu+CoTl4GFsl6+icHVF161TCn6CjOPqrgR2jYpEskHRpi588K2PqBAhCJmYV0417VcGcmRqNOdWxnNmWRyP/zDRZJIvntnEZbOQOUkSdP8ObjyEHAGwagyo/n3aazXBr0Pl11WHvlVC/s7IQ9w3PcZb7Ul7/6bvHngaoJ+7EP3kGQB4LJmHpsa/y2sI/2S3SuwZG4lklxNV89YQ1XrSoqJNXXHSKdgxPIKbew38PCic5tN8cdKJBBZByGhuP4ZB02H3Kfl9vmzw42D4oNK/FrTb4ej3cOBLuf2Edx74aA3k+PeC70ihgIIN5Z/HZ+TkiMsb4dZu+SdrWag2HIq1BpV87p4zUG6R8WUXCI6EPH+NQwu7BiubQuQtuSVH61VQpNnL9/0fVodu4/tH8wEYl3PIC+/XpHeSwUDciC8wzJI/p7pEMTxXL0ZdPGNWwxAEIWMTZ62CkM5cuAVV+8kJEdn84fDMxISIiFvwUy05IcK3APQ4nGIJERvDf2FhyFoAZuQdQ2GX/27NYfnzEsaftyGZTCkST1ol2e2Ydv5KVL2mRJSohGHRUjAaUZctjcfyhfjduYTr0E9EQkQ6YIyxs3tMJOt7hBH90Ip7oIqWs/xoMslXJEQIb2TSGjh+SS43ubLnHyh+nyLPaDoHnN1fuE6MNY75iaMnh2br8cJy0vof5SoR2i4dUHqKJLVXubwtgV2fywkRxVu4ioQIQRAAUGsU1Pncm+YzfHH2UPD0TzPLPwrm5n69o0MTBIeYshZ+PiJXJlw3Dvy9XrDQ8elylUL3LFBz1BvvQ5IkZj9dDkCPwI9wUaX/h+GmXbuJGygnirh+OwZdhzYOjijtO7sijtBrFrQechU+Ie0qUNeFlrP8UWsV3DtmZFO/cEzxdkeHJQhCMjGZYfxyKNlVTojQOMEXneHCkhckRMQ9hWX1Yd9oOSGiRDvo/0fyJ0T8W7by0HYdDLkJlQaAkw6enIMN7WF6ATgxE8wJSYvrnP+REHFzNyyoLCdEeOWGXsffOiHil8hDjLz3PQADs3SmZ1Dbd/xgaY/lz0tEVKiZlBDhMrg/PqcOi4QIQRDSLYUkSZKjg0hNsbGxeHp6EhMTg4d4ECmkM/vOQOsv5V5uxfLAzh/kETuE35ArRMQ9Ab/C0G0/eGRNkRguxF+l5dW+mCQzg7N2ZUT2Pv+5vD06mvDcxZBiYlAGBqDr3wuXvj1QBgSkSHxpgT0+HuPSleh/nIft5i15olKJc8umuAwZgFO1KqK0WDohSRI39xnYPz6KhHD5Rk/pdm7UGOKJs5vIK3wbmfk4/McNqNIPLFZY8rmVzvcqw5OzUOwjaLf+petNfrSQaU8WU0iXl73Flz/Xqsh29x7h+UuC3Y7vlTOoixRO6Y+Srl38OZ7dY6JAgpKtXak3xhuFUnwnC4LwrJjHVnYMj+Dpn2YAynZ0o+ZQL9Sa9P19kZmPw8KbWbUXuoyXq0XM+hT6tXjBQnFPYXpBMMfLPcNLf/zG+zkUfYKONz7FRanjZKmf8XFK38mdlvN/ElWjPlJ8PNrunfFYNFtc+71C9CMrS1sEYzVKNPjamxIfujk6JOE1PDpnYnP/MMzxEkHFNbSa74fOUwwYeBVxHBbSsgu3oP04uP5Afl+nrHwOUOhFY+5u/AKbu0BCGDi5QOOZULbbW7WfeGcJ4XBqjpwMoU/s86HzkRMmKg0EtwD5hObEj/DLZyDZIVd1aL8ZXP/dB+T1/B57jo7XP8UkmWnv35RJuUdlqOO9ZLdjmDmXuJFjwGRCGRiAx9L5OH9Qz9GhCYIgvBPxREcQ0okVu6HxCDkh4r3ScGRmYkJE6FW5QkTcE/AvCj0OpVhCRJglkh63PsckmanrVY1h2Xq9ch3DnIVIMTEA2ENCSfhqPGE5ixDTcwDWS5dTJE5Hsd27T9yw0YRnL0TcoGHYbt5C4emJy7DB+N2+iNfGVWiqV81QJ8kZWXyoja2DI9j2aQQJ4XZ88qhptzyAul94i4QI4Y0ZTdB5vJwQ0aIGfOz+o5wQofWCxj++dL0oawwLg+XKPJ9l6/FcQgSAfs5CsNvR1KsjEiJe4c+N8ez+Uk6IKNVWJEQIgvByntnUtFsWQPkuchWfc6viWdMphOgHVgdHJggpb+sx6DZRfn7QvyX0bf6SBfeOlhMisleEkh3fal+znq4AoIN/s3SfEGF79Jjoxq2Q4uPRvP8eHvNmiGu/V5AkiX3fRGE1SuSo4Ezxlq6ODkl4TdnLOtPmpwB0XkqCL5lZ1zWMhHCbo8MSBOEt2e3w8bdyQkSgD6z4AvZMfUFChNUkJxasaCQnRASVgn5noVx3xyREALj6Qe0xMPS+XIXTJx8YIuHQNzAlF2zrC1t7wa4hckJE2e7Qdf9bJ0RcSrhBt5sjMElmPvCuyXe5R2So473taTDRjT4kbshIMJnQNGmI78WTIiFCEIQMQVSKEIQ0TpLg+1Xwv4Xy+7Z1YMkocNYAIZdgyfuQEAqBJeQKEW95QvcqFruVttcHcTLuPPm0OdlR9Cc81P89gkPS6wnLXRQpLByPxXNB64x+2mysp88mLaOpVweXTweiaVAXhTL9PWiWJAnLsePop8/GtGWHfBUBqAoWwOWTvmi7dETpJka6pCeSXeLPTQkcnhKNOV5CqYaKPT2o3MsDtXPGuchxlMx6HB42G6atl28uXJx+F99lxcGih+YLoXzPl6438eFcZj1dTlGXAuwuthSl4tnvSSkhgbDshZCio/Hath7npo1S+qOkW+fXxrPv2ygAynRwo84orwx140IQhJRz+5CBX/4XiTHGjsZNQYNxPhRq4OLosN5KZj0OC69v3xlo+jmYLfBxA1j8ObzwMu3RaZhfUX7d+3fIUfmN93U2/hLNrvRCrVBxvOQmsjkHvlvwDmSPjSWqRn2sf15CVawIPsf2ovTycnRYad7VnQnsHBmJSgNdNgfhk9vJ0SEJbyj8loUNvUJJCLPjnUvNR4v88cjyfLs/QSaOw0JateUotPoCPFzhxuqXtMyKuAnr28mtKgAqD4L6P4CTNjVDfTW7Da78DMd+gMen/56uUEKDSVD107dO4LhvfEzzq70Js0RS2b00KwtNQ6dMY5//HZi27yKmez+k8AjQanGfOhFd357i3okgCBlG+nsCKQiZiNUKA6b+nRAxrB2s/DIxIeLpBbllRkIoBJWGbgdSLCECYOyD6ZyMO4+7ypXFBX54ZUIEgGHxcqSwcJS5c6H9uD269m3wOXkI72N7cW7VHJRKzHsPEN3oQyKKlUc//yckffro2SyZTBhWrCGyfA2iajbAtHlb0khtr52b8L16FpcBfURCRDoTec/Cuu5h7B0XJZcBLaHh4/WBVB/oKRIihLd28JycEAGwcLiE76F+ckJE7lpQrsdL14uwRLE4ZAMAw7P1ei4hAsCwah1SdDSqvHnQNGqQIvFnBOdWxSUlRJTrIhIiBEF4M/ne09F5YyDZymgwx0tsHxrB3m8isZoy1fgCIRP4/RK0/J+cENGyJiwa8ZKECEmCX4bIr0t9/FYJEQBzEqtEfOj7QbpOiJCsVmLadsH65yWUQYF479wkEiJegyHaxoHvowGo0sdTJESkU375nWi/LBCPrCqi7ltZ0zmUqPsWR4clCMIbkCSYKB+S6d/iJQkR51fAnLJyQoSLL3TcJle9TGsJEQBKFRRvDX1OQvdDULAxeOWCTtuh2mdvnRARZomkw/XBhFkiKaLLz+ICP2SYhAhJrye2/xCim7VBCo9AXaoEvmeP4tKvl7h3IghChiJSdwUhjdIb5T5uO47L52rTB8HAVokzn5yDpfXkUmBZy0GXPeDik2KxrAnbxtLQTShQMDPvWPLrcr1yHcliIWHSDABchw9GoZa/bhQKBZpqVdBUq4Lt7j30M+dhWLQM27UbxPUdTPz/xuHSpzu6AX1QZc2SYp/pbdlDQ9HP+wnD3EXYg0PkiVotuo/b4fJJP9TFizk2QOGt2CwSZ5bFcXxODDYzqHUKanziSZkObihV4uRfeHsx8XL5aYBeTaGx62q4tRvUztB8wX9ejM9+ugK93UAp1yLU86r+3HxJkjDMnAeAbmAfFCrRw/dFziyP49AP0QBU6O5OzU89xUW9IAhvzCOLmrZLAvhtVgwnF8VxYV0CTy+YaTrFF+9c4kGekP6dvwlNRsrXofUqwKovQf2yO0YX18KD43IP8foT32p/Nw33+DXqCAD9s3R6y6gdT5Ik4gZ+hvnXveDigtf2Dahyvaj5uvBvhyZHY4i045tfTYXu7o4OR3gHXjnVtF8ewIZeYUTelRMjPlroj39BjaNDEwThNew9A2eug84ZhrT510xTHGzvDxdWyu9z14KPVoFHtlSP840pFJCnlvzzjmKt8XS8PoR7psfkdM7KqkLT8FRnjGOX5fyfxHTohu3qdQBchn6C2/ivUDg7OzgyQRCE5CcqRQhCGhQWDXU/lRMinDWwbtw/EiIenZZbZhgiIXsl6LovRRMizsZfYvS9yQAMy9aLet7PP5h7EeOaDdgfPEQZ4I+u28cvXEaVJzfuU7/D79F13KZ9jypPbqSISBImTCY8d1FiPu6J5dz55Poo78Ry4SIx3fsRlrMICV+Nxx4cgjJrFtwmjMX/4TU8FswSCRHpVPBlM6vah3B0upwQkbuqlm5bgij3sbtIiBDe2Scz4GEo5MsGk7uGyz0sAWp9CX4FX7peiDmcZSGbAPm790UP8S2HjmC9dAVcXNB1S78PE1LSqcWxSQkRlXt7iIQIQRDeiVKtoMYQL1rN90PnoyT0moXlH4VwdVeCo0MThHdy/QF8MAyi46F6Cdj0TWJ1whcxJ8DuEfLrmqPf+qHI3Kfyw5UPvGtSQJf7rbaRFugnz8AwfzEoFHiuXoxT+bKODildeHDSyOUtelBAg7E+qJzE+Vl65x6kpu3SAPwLOaGPsLOuaxhPL5ocHZYgCK/hryoRvZr+q0rE47NydYgLK+XWE3W+lls3p4eEiGRktJvofnMkl/U38VN7s7rQdAI1fo4O651JdjsJU34ksmItbFevo8wShNeebbhPniASIgRByLBEUoQgpDG3H0P1/nDyCvh4wN6p0OqvhNaHJ2BpXTBGQ86qcoUInVeKxRJiDqfXzVGYJQuNvN/jk6xdXms9yW4n4bspALh8NgiFTvefyys9PHAdMgDfmxfw3LQKp+pVwGLBuHItkeWqE1mrAcYt25Fstnf9SG9Estkwbt1BZJ1GRJaugnHJCjCZUFcsj8fqxfjdu4LrqGEo/dL/iXBmZDHYOTQ5mlXtQwi9ZkHrqaTheB9azffDM5sopCS8u42HYOUeuez00tHgdngo6MMhoDhUH/6f685+ugKjZKacW3Fqe764JLX+x7kA6Lp0ECWaX+DEgliOTI0BoEo/D6oN8hAJEYIgJIs81XR02RhE9vLOWPQSO0dEsvurSCwGu6NDE4Q3dj8Y6n8mJ+aXLQjbvgPX/7p8O/oDxD4Cr9xyCeq38NgUwuaI3QD0z/LiBPr0wLhhM/EjvgDAfdp3aJs3cXBE6YPFaGfPOLmtWem2bmQtLR68ZBSuviraLg4gS0kNxlg763uE8fC00dFhCYLwH479CUcugJMahrZNnGi3w29TYWEViLwFnjmgx2Go/aXcmiITsUk2Bt0ey+9x53BTurCy0DTyaHM4Oqx3ZnvylOgGzYkfNhosFpybN8H3zxM416vj6NAEQRBSlEiKEIQ05PRVqNYfbj2G3EFwdBZUK5E48/5vsKw+mGIhVw3o/CtoPVIsFpPdTK9bowixhFNIl5dpeb94YT/7F667dQe2q9dReHqi69fztfepUKnQftgcn6N78Tl9BG2HNqBWYznyGzEt2xNRqAz6H+dgj4t724/1WuyxsehnzCaiYGliWrTDcvAIqFQ4t22F9+8H8D15CF37NiicRKnk9Or+CSNLWwZzZmkckh0KN3Kh27YgijV3FQ9NhWTxNAL6yblhjOwAVbV74fxyuXxji0Wgfnkp2SfmUFaE/gzA8Gy9X/hv0nbvPqZtuwBwGdgn+T9AOnd8bgzHfpQTIqoN8qDaAFEhQhCE5OUWoKLNIn+q9PUABVzclMCqDqFE3BZ91IX042kE1PsMHoVBkVywaxJ4uv3HCtEP4NgP8usGk8Dpv5PfX2Zh8FoskpUq7mUp51b8rbbhaObfTxLzcS8AdJ/0w2XwAAdHlD5IksSRqTFEP7DiFqCixmBPR4ckJDOtp5KPFvqTo6KcOLipbzh3jxkcHZYgCC8xMbErRpcPIHsAEB8KK5vAr0PBZoEiLaH/ecj1epWDMxJJkhh1bxK7og6hUTixuOAPlHAt5Oiw3ok9Ph793IVElKiEed9B0Olwn/8jnj+vEYP+BEHIFERShCCkEXefQqMR8gidMgXgtzlQONdfMw/D8gZyH7c8taHzL+Cccn3LJEnii/tTOBt/CU+VOz8V+A43letrr5swMbFKxIBeKD3eLnHDqXxZPFctxu/uZVxGfobC2xvb7TvEDR5BeI7CxA3/H7YHD99q2y9jvXOXuE9HEp69EHFDRmK7cxeFtzcunw/F7+5lvNYuQ1O5YrLuU0hdxhg7v34ZyYaeYcQ8suEeqKLlLD+a/OCLq2/mynYXUo4kQc/vITJW/j4f01EP2/rKMysNhByV/nP9H58sxSxZqOJehuoe5V+4jH7OQrDb0dStjbpokeT+COmWJEkcmxnD8dmxANT41JMqfcTNdkEQUoZSraDaQE8+WuiPi6+S8JsWVrQL4dJW0U5DSPsiY+GDoXKlwjxZYPeUf5XMfpHdI8BqlPuJF2v1ioVfsl9LDKvCtgIwMJ1WibDevkN0szZgMuHcrDHuU79zdEjpgmSXODAxmj9WxwPw/v+8cHYXtyUzIo2rkg/n+JG3pharSeLngeHc2Kt3dFiCIPzLuRvw60m5uuXw9sgtm2eXgpu/gFoLTedC+00p2rY5LZv8eCGrwraiQMGsfOOo5lHO0SG9NevNW3/f8+7/KVJkJOqypfE9dwyX3t3FIBJBEDINcfUhCGmAwQStv5BvTFUoDAd/hCDfxJl3DsCKhnLv1nz1oNMO0LxegsLbWh76M6vDtqFEyZx8X79RWTDzgUNYT58FrRaXwf3fORZV9my4f/c1/g+v4T5nGqqCBZBiYtBPnkF43uJEt+2M+cSpt96+JEmYDx0hukU7IvKXRD99NlJcHKrCBXGfN0Pe78RxqHJkf+fPIjiOJElc36NncbOnXPpZflBRur0bXbcGke+9txvhJggvM3+bfGPBWQPLvwDN0bEQdUcuOVl3/H+u+9D0lLVh2wEYlq3XCy9MJb0ew6JlALh80i/Z40+vJEni6PQYTsyXEyJqDfOkUo+Uq6gkCILwl1yVtXTZFETOys5YDRIPfjciSZKjwxKEl4rTQ6PhcOkuZPGFPVMhm/8rVrp3FC6tk6teNZou//4WloVuRG83UMylALU8/ztRNC2yR0YS3agVUngE6nJl8Fy9GIVKJFe/is0isWtUpJwQoYC6X3hT4H0XR4clpCAnrZLmM/wo9IEOuxW2D40QSYOCkMb8VSWibR3Inx3YMQDig8G/KPQ9DRX7vvXxPr1bHLyB6U+WADAx93Aa+9R2cERvTrLbMe3aTVTDlkQULC3f846JQZU/H+7Tv8fn9wOoC6fvyheCIAhvSjRNFwQHkyToPxXO35JH5mz4Btz/ujdwaw+sai6PxinwAbT/GZy0KRrPybjzjHkwFYBROfrxnteLe9m/jD6xSoSuZxeUAQHJFpfC1RWXfr3Q9emB+Zc96KfNwrz/EKb1mzGt34xT5Yq4fDoA5w+bo1C/+qtNMhoxrt2IfvpsrBcuJk3XNKyPy+D+aOrVQaEUeWMZQVyIlf3jo7l1QC7Z6ZNHTYNxPmQrK3rXCsnv5iMYPkd+PbE3FNX8Acfl71SaznlllZ8ZT5ZgkazU8KhAZY8yL1zGsGodUlQUqjy50TRqkJzhp1uSJHF4cgxnlsntlWqP9KLcxylXUUkQBOHfXP1UtJ7vz/l18RRvIdpxCWmXwQTNR8Hpa+DrKSdE5M36ipXsNtg1WH5drhdkKf1W+9bbDPwUsgGAAVk+Tnf/TySTiegW7bDduIkyZw68tm9A4ZqyAxYyAovRzvahEdw5bESphoYTfCjSSPy5ZQYqJwWNv/fFSRfFpZ8T+PV/kVgMdsq0E+fpguBoV+/Bz0fk1593BMKuw+PToFRB9wPgFujI8Bxqa8RexjyYBsiDVT4OaOngiN6MPSoKw5KVGOYsxHb7jjxRoUDTqAEuA/ugqf++uOctCEKmJZIiBMHB5m2F5b/KpcpWfwU5/sojuLEL1nwIVhMUagLtNoI6ZR/iPjaF0PvmaKySjWY+dekX1PGN1recOoN5/yFQq3EdNjhFYlQolTg3/gDnxh9g+fMS+umzMa5ah+XEKWLankKZMwcug/rKSRleXs+tbwsOwTB3IYZ5P2EPDZMnurig69IBl0/6iQzZDESyS/y5KYHDU6Ixx0so1VCxpweVe3ug1qSvG7BC+mC1QpfxoDdCnbIwqIUVFvWUHyQUbyN/l/+Hu8aHrA/bBcDw7L1fuIwkSRh+nAuAbmAfMTIR+c/k4PfRnFv5dynmMu3FjVZBEFKfUqWgbAfx/SOkXWYLtPkKDp+XE/F/mQRFc7/Gin8shad/gNYT6n771vtfE7adKGsMuZyzpbsRl5IkEdu9H5ajx1F4eOC9cyOqLEGODivNM8Xb+XlgOI/OmFA7K2g61Zd8tUSlvsxEqVLQYJw3GlcF51bGs//baMwJkqjoJggO9t0qeaBe8+pQPC+wL7FsRP4GmToh4kjMKQbf+RoJia4BrRiStZujQ3ptlj8vYZg9H8PKdaCXWxYpvLzQdf8YXb+eqPPnc3CEgiAIjieSIgTBgX6/BJ/OlF9/10d+iAbAte2wtjXYzFCkBbRZB2pNisZisBvpefNzwq1RFHUpwJQ8o9945E7CxMkAaDu2RZUrZ0qE+QynksXxXDwXt4ljMcxdhH7OQuwPHhI//H8kjJ2AtvvHuAzujzpfXiznzqOfMQfjmg1gsQCgzJEdl4F95AQKn8zZHy+jirxnYc/YKB6dMQGQpaSG+mO98S+Ysv+PhMzt+9Vw8gp4usFPn4Py1Ax4cg60XtBoxivXn/Z4MTZs1PGsSjm34i9cxnL4KNZLV+Rkru7psw93cpLsEvsnRnN+jZwQUe8rb0p95ObgqARBEAQh7bHZoPN42PU76Jxh+3dQ7nXywY2xsHe0/Pq9MeD6qj4bL2axW5kfvAaAvlk6oFakr9tRCV99i3H1elCr8dy0CnXxYo4OKc3TR9rY1DeMkCsWNG4KPpztT/ZyolpfZqRQKqg90guNq5IT82M5Oi0Gc7yd6p94pruKMYKQEdx5Amv2y69Hf4ycHXEhMSmiVOa9z3A+/go9bn6ORbLSzKcu3+T6LM1/R0kWC6atO9DPnIflyG9J09UliqEb2Addx7aiqpUgCMI/pK+rUEHIQIIj5FE6Fiu0fg8+a5s448rPsK4N2K1QrDV8tBpUTikaiyRJfH73B/7UX8Nb7cniAt/jonqz0RvWK1cxbdkBCgWuIz9NoUhfTBUYiNvY/+H6+VCMq9aRMG0WtstXMcych2HWfFRFCmG7ci1peaeqlXEZ0h/nls1eq9WGkH7YLBJnlsZxfG4MNjOodQpqfOJJmQ5uKFVp+0JGSN/OXoevl8qvfxwMOTV3Yf8YecIHk8H9v0cS3jLc4+eIPQAMy9bzpcvp/6oS0bn9C6vhZCaSXWLfN1Fc2JAACmgwzpsSH4qECEEQBEH4N0mCvlNgw0FwUsPGb6BGqddc+fC3kBAKvgWh0sC3jmFr5F4em4Pxd/KhjV/jt96OIxiWriThm+8B8Jj/I85101eVC0eIfWplY+8wIu9a0fkoaT3fn8AiIkE9M1MoFFQf5InGVcGRqTGcXBiHOUGizudeKJTiWl0QUtOkNXKyZL0KUL4wcP84RN+T230Wbubo8BziluE+nW58ht5uoKZHRWbkHYNSkXZbTNhDQ9EvWCJXQn78RJ6oUuHcsikug/riVKNamk/oEARBcATxNFAQHMBihfbj4Ek4FMkFi0aCQgFc3gTr28ql1ku0g1YrQJXy/01/ClnPxohfUKFiXv5vyeGc5Y23kfC93GvNuUUT1EUKJ3eIr0Wh1aLr0QVt986Y9x1EP20W5l/2yAkRajXatq1wGdwfpwrlHBKfkLKCL5nZ/VUkYdflSiC5q2qp95U3ntnEoU5IWQYTdP4WrDZoVQs61pVgRV+w6CHPe1C2+yu3MfXxYuzYaeBVk1JuRV64jO3+A0xbdwLgMqhvMn6C9EeyS+wZG8XFzXJCxAff+lC8uRj9IAiCIAj/JkkwdDYs3im3bFw1Bj6o9JorR9yE36fLrxtNe+vqhXbJzpyn8gjUnoFt0SrTT7UA0/6DxPaSk0FcRw9D172zgyNK+yLvWtjQK4y4YBvuQSo+WuSPT+6UHeghpB8Vu3ugcVGy79so/lgdj1lvp8E4HzGIQRBSyZNwWPqL/HpUp8SJF1bIvxdtBRoXh8TlSE/NoXS4PoQoawylXIuwsMAENMq0edyynDyNftZ8jOs3g9kMgDLAH13vbuj69ECVPZuDIxQEQUjbxJMiQXCAkfPgyAW5j+umb+XfSQiHn7vJCRGlOkHLJamSEHEs9gxfP5B7eIzJOYjqHuXfeBu2e/cxrloHgOuoYcka39tQKBQ416uDc706WK9ew3L6HJq6tVFlffNkDyHtsxjs/DY7lrPL45DsoPVUUnukF0WbuoisaCFVjF4A1x5AFl+YOxQUf66CW3tA7QzNFyRmvb3cNf1ttkXuA2BY9l4vXU4/ZyHY7Wjefw910RcnTmQGdpvEr19GcmWbHoUSGk30oUhjkRAhCIIgCC/y9VKYsUF+vWiknMD5WiQJdg0BmwUKfAAFG711DPuif+O64Q7uKlc6B3z41ttJbdYrV4lp1QmsVpzbtcb1mzGODinNC7liZmPfMAyRdnzyqGm9wB+PLOLWo/Cs0u3ccHJR8OsXkVzeosdikGj8nS8qJ3H9Lggpbeo6MFugWgmoWQqwmuDSenlmqU7/uW5GFGWNoeP1T3lsDiavNicrCk7BTZW27i9IRiPG9ZvRz5qP9fTZpOlOlSqgG9QXbesWKJzTT8KpIAiCIzm8BtDs2bPJnTs3Wq2WSpUqcerUqf9cPjo6mgEDBpAlSxacnZ0pWLAgu3btSqVoBeHdrdn3902pJaOgUM7EGUe/A1McZCkDHy5NlYSIh6an9L31BTZstPZtSI/ANm+1nYTJM8BmQ1O3dpqrwqAuUhhd5w4iISKDun/CyNKWwZxZKidEFG7kQrdtQRRr5ioSIoRUse8M/LhRfr1wBPiqw+GXxBZC740B3wKv3MaUx4uQkGjiU4eiLvlfuIyk12NYuBQA3Sf9kiP0dMlulfhldGJChAoaf+8rEiIEQRAE4SWmrfu7vdeMT6DLB2+w8rFJcGOX3Mrxg6lvHYMkScx6uhyAjwNa4qFOH62ubMEhRDVqhRQTg1P1KngumYdC6fBbaGnawzNG1nUPxRBpJ7CoE+2WBYiECOGlijVzpekUX5RquLHbwJZPwrEY7Y4OSxAytPBomL9Nfj2qU+L4jRu7wBAF7lnlSpeZiMFmpOuN4Vw33CHIyY81habj6+Tt6LCS2B48JG70WMJyFCK2S285IUKjQdulIz6nDuNz4iC6jm1FQoQgCMIbcOjVybp16/jss8+YN28elSpVYvr06TRo0IDr168TEBDw3PJms5l69eoREBDAxo0byZYtG/fv38crk/fUFtKPi7eh9yT59ecdoWXNxBkxj+DkLPl1vQmgVKV4LAabke43RyaVBvsuz4i3eohsCwnB8JN8k8t11NDkDlMQXsgQY+PwpBgubUkAwD1IRd0vvclXS+fgyITMJCoOenwnv+7bHBpWBjZ+BvpwCCwB1Ye/chuXEq6zK+oQChR8lrXHS5czrF6PFBWFMncunBu/yRONjMNmkdg1KoLrvxpQqqHJJF8K1st8pT0FQRAE4XUs2gHD5sivv+kJA1u9wco3d8Pez+XXjX6EgLevUHUq/gJn4y+hUTjRM7DtW28nNUkJCUQ3/Qj7/QeoCuTHa8taFFqto8NK024fNrD9swisJons5Z1pOcsPZzeRRCL8t4L1XGg5W8HWwRHcPWpkc79wWs7yQ+Mq/u0IQkr4cRPojVC24D9aaV2Q21tRqmOq3I9OKyx2K31u/Y8z8RfxVLmzqtB0sr9FO+nkJkkSlkNH0M+aj2nLDrDLyWLKHNlx6dcTXc8uKP39HRylIAhC+uXQpIipU6fSq1cvunXrBsC8efPYuXMnixcv5vPPP39u+cWLFxMZGcnx48dxcpL7OuXOnTs1QxaEtxYdB62/lE8+65aHr//57OvQ13K5stw1IX+DFI9FkiSG3p3AFf1N/NTeLMw/EZ3y7W7y6GfMBaMRdcXyONV+3VqsgvB2JEnixh4D+ydEoY+wgwLKtHejxmBPceNESHWDpsOjMCiQHX7oh9wy48IKebhF84XyyMpXmPx4EQAtfOtRyCXvC5eRJAnDj3MBcBnYB4Uq89yo+IvNIrFjRAQ398oJEc2m+pG/jkiCEgRBEIQXWXcA+k6WXw9v/4+e4a8j8jasbye3zyjXEyr0eadYZj2R+5R/5NeIQI3fO20rNUg2GzEde2A9cw6Frw9euzah9PV1dFhp2tVdCfwyOhK7FfLW0tJ0ii9OWnFtJryePNV0tJ7vz+b+YTw8bWJ9zzBazfND55n5rnkEISXFxMOszfLrz/+qEmGIgus75ImZqHWGXbIz7O4E9sccR6vQsKzgJAq75HNsTPHxGFeuRT9rPrbLV5OmO9WuicvAPjg3a4xCLaovCYIgvCuHfZOazWbOnj3LqFGjkqYplUrq1q3L77///sJ1tm3bRpUqVRgwYABbt27F39+fDh06MHLkSFQveUBgMpkwmUxJ72NjY5P3gwjCa7DbofN4uPUYcgbCqi8h6Z9s+A04t1h+XW/iK3vPJ4dFIevYGrkXtULFggITyOYc+FbbscfEYJi9AJCrRIh2BUJKiguxsn98NLcOGADwyaumwTgfspURZeLSsox6HF53QG6HpFLBsv+BqyoBtvWVZ1YaBDkq/fcGgD/iL7M3+hhKlHz6H1UiLEeOYb14GVxc0HX/OLk+Qrphs0hsHxrBrQMGVE7QbJof+d4TCRGCIAivI6Meh4WX2/k7dP5Wzmno0wwm9nmDS0xTPKxqAcZoyFEZmsx6p+vTK/pbHIg5jhIl/bJ0fOvtpKb4YaMxbd0Bzs54bV2HOr9jH5KkdefXxrNvfBRIUKSxCx9864PKSdwXEN5M9nLOtPkpgI19wgi+aGZ9tzBaL/DH1S/9J0aI47CQVszdIidGFMkFLWskTry0AWxmCCwJQSUdGV6qGv9wNhsjfkGFinn5x1PBvZTDYrHeuIlhzkIMS1YiJX4/KFxd0XZuj8uA3qiLFXVYbIIgCBmRw1K3w8PDsdlsBAY++zA2MDCQ4ODgF65z584dNm7ciM1mY9euXXz55ZdMmTKFb7/99qX7mThxIp6enkk/OXLkSNbPIQivY8IK+eaUswY2fgN+Xv+YuX8M2G1QqAnkrJrisdw03GPiQ3nE8dicg6nkXvqtt2WYuwgpNhZV0cI4N2ucTBEKwrMku8SF9fEsaR7MrQPyKPEqfT3ovDFIJESkAxnxOPw4DAYkttYe1REqFQUOjIWou+CZA+q+/LzknyY/XghAa7+G5NPlfOly+sQqEbqP26H0Tjv9LVOD1SyxdUi4nBChgRYzRUKEIAjCm8iIx2Hh5Q6eg4/GgNUGHerBrE/fIKdBkuDnbhB6CdyCoN0mUL/bufbcp3JJ7sY+tcmjTfv/9vQz56KfPhsAz2Xz0VSr4uCI0i5JkjgxP5Z938oJEaXbu9FookiIEN5eUHENbZf64+qnJOyGhbVdQ4l9anV0WO9MHIeFtEBvhOkb5NcjO4LyrydCf7XOKJ15qkTMfbqSecGrAZicZxT1vKunegyS3Y5p569ENWxJRKEy6GfMke+vF8iP+/Tv8Xt0HY8500VChCAIQgpQSJIkOWLHT548IVu2bBw/fpwqVf6+0BwxYgSHDx/m5MmTz61TsGBBjEYjd+/eTaoMMXXqVCZNmsTTp09fuJ8XZeTmyJGDmJgYPDw8kvlTCcLzfjkBTT+X7zEtGgndGv1j5pM/YG5Z+U5V//MpnpVrlaw0v9Kb8wlXqeNZheUFp7x1dQfJYCA8d1HsoWF4LF+I7uP2yRytIEDkXQt7xkXx6Iz8PZ6lpIb647zxL6BxcGTC68pox2FJgobDYe9pKFcIfpsDTqHnYF4FkOzQaQcUenWS2Om4C7S42he1QsWREuvIpc32wuVsDx4SnqcY2O34XjqVIS+KJUlCH2kn7qmNuGArccE2YhNfh92wEHnXitpZQYuZfuSuKvp5C4IgvImMdhwWXu7kFaj/GcQboFl1WD8OnN6kNujhibBvtNz+q/uhd07Yf2B6QvULbbBh49diSynhWuidtpfSTNt3Ed2iHdjtuE0ch+vnQx0dUpolSRKHJ8dwZlkcAJX7elBtgIeoHCkki6gHFtb3CCPuqQ2PrCo+WuSPd85XtyVMq8RxWEgLZm6EITMhdxBcW5V4fhB1D6bmke9JD30AntkdHWaKWx+2k0/vyoNYvswxkL6pXMXKHhWFYclKDLMXYLtzV56oUKBp1ACXgX3Q1H8fhVK0nxIEQUhJDmuf4efnh0qlIiQk5JnpISEhBAUFvXCdLFmy4OTk9EyrjCJFihAcHIzZbEajef4hmbOzM87OYiSx4Bh3nsDHiaVLezf7V0IEwL7/yb+XaJ8qZcrmPF3J+YSreKrc+SHP5+9008KweDn20DCUuXKibdc6GaMUBLlc/uklcfw+LwabGZx0CmoM9qR0ezeUKnGzLT3JaMfhuVvkhAitBpb/D5wUVtjSU06IKN72tRIiACYlVolo69fkpQkRAPo5C8FuR1OnVrpNiDDF2xMTHeSEh7inNmKD/34dF2LFZn75+mqdgg9n+ZGzkkiIEARBeFMZ7TgsvNift6HxCDkh4v1ysGbMGyZE3NgF+xOvTRvPSpYKhvOfrsaGjVoeldJ8QoTl7B9Et+sKdju6nl1xGfmZo0NKs+xWiT3jorj0cwIA743wonxndwdHJWQk3jmdaL88gA29woi6Z2Vt51BaL/RPtwMjxHFYcDSzBSavlV8P7/CP84MLq+Tf89TJFAkRe6OOMezuRAD6BnVI1YQIy8VLGGbOw7ByHRjklsAKLy90PTqj69cTdb68qRaLIAhCZuewpAiNRkO5cuXYv38/LVq0AMBut7N//34GDhz4wnWqVavG6tWrsdvtKBOz5m7cuEGWLFlemBAhCI6kN0LrLyEqTi6tPn3Qvxa4dxRu/gJKNbz/dYrHc0V/i6mPfwLg61yfkkUT8NbbkiwWEibNAMB1+GAUTuk3a19Ie4Ivmdk9JpKwGxYAclfTUm+MN57ZHHbIEgQArj+AEXInC77vC4VzAcemw9M/QOcNjWe81naOx57jt9izaBRODM7a9aXLSQYDhoVLAdB90u+dYk8pVrNEfHBiksNTm5z88FfCQ2IihDn+NYqSKcDNX4V7UOJPFhUeQWrcg1RkLeWMW0D67ycsCIIgCCnh5iP4YJh83VmlGGz+FrRv8vwt4iZs6CBn8lfoAxV6v3NM4ZZI1oZtB2BA1o/feXspyfbgIdFNWoNej6b++7jPmSYqHryE1Szxf/buOk6qsgvg+G9mtpsNlu4QpBsUBQVBBAGVEiQklBCQEgxAREIQMFAaRaREuqV8BUEJ6c6ldtnu2an7/nGXpWFnmdhdzvfz4cOdmXuf5+z7ys6N85yzflg0Z7emotHCK5/noWJrH2eHJXIhv/wutP9JTYyIOmtkaddI3poZQr4Kcu9XCGst2AxXIyF/EHRtmv6motxunVE597bO0FvSOJVynoNJx/nyyveYMdMmuBmfFO7rsBhSvp9B4gdDMl67VHwWzw/ex7NjOzReXg6LQwghhMqpT5gGDRpEly5dqFGjBrVq1WLatGkkJyfTrVs3ADp37kzBggUZP17N4uvduzfff/89AwYM4IMPPuDs2bOMGzeO/v37O/PHEOI+igK9v4bD5yAkQC1d6u52zw5/jFC3q/eAwJJ2jcdgMTLgwhiMiokmAS/wZlDTxx/0CPoly7FcDkObNwTPdzvbKErxtDOkWPh7egIHfklEsYBngJaGHwVQrrmX3JgUTmc0QZcvITVNXYHZpzUQcwG2j1R3aDIZfEIfO46iKEy6OguAt0Nep6D7g6tjAegXLUOJiUFbrCjuzV+1xY9hFYtZITnKfFeCw72VHlKiLZkay8NPi29+NeHBL79LRvLDrW2fvDrpQS2EEEJYKSxCbZkREQOVS8G6ieBjzf31tET4tRXo49XqEM2+tUlccyN+Q68YqOJdjnq+1Wwypj1Y4uOJe+1NLOERuFQoj/+yBZLw/xCGFAur+0dxeW8aOldoPimI0o3kYY6wH+9gHe1+CuH396MIP2pgWfebvPFDCIWqS9UFITLLZIKvFqnbg9vdkTR5/QBEnQJXTyj/htPis6VEczLHk89wNOU0x5LPcCzlNGdTL2PGnLHPy/71mFRsBFqNY1pU6JevJLH/UADcWzXH68N+uNZ/Tu5xCiGEEzk1KaJdu3ZERkYycuRIwsPDqVKlCps2bSI0VH2oEBYWllERAqBw4cJs3ryZDz/8kEqVKlGwYEEGDBjARx995KwfQYgH+nEVLNwCOh0sGQ2F7i3KcGYDhO1WTz4bfGb3eL65Pp8TKWfJ4+LPxOIfPdHJl2KxkDzhawC8BvZF4+lpqzDFU+zyHj1bPo8h/qp6sVLuNS8afhSAV6CsDhfZw/iFsO8UBPjAvOGg1Siw5n0wpkLxhlCtW6bG+V/Cv/ybdBh3jRsfFOjy0P0URSHlW7UshVffXmh0jvm3YDErbB4Vw5V/00i6acZievwxLh4a/PLr8A3V4ZvPJb3Kw+1t33w63LykL6YQQghhSxEx0GSwmhhRtghsmgwB1nQxsFjg9y4QeQJ8C0D75eDy5KuwE83J/BzxOwB983fOtjf+FaOR+Lc6YTp2Am3+fASs/x2tv7+zw8qWUuPNrOgdxY0jBlw9NbT6LpiidaStmbA/T38dbeeEsLJfFFf2pbH8vUhafhNE8efkPpQQmbFsB5y/BkH+alvnDLeqRDzTEjz8nBLbk4gyxnDsVgJEyhmOJZ/mUtq1B+4b6BJARa+y1PKtzHv5OuCqdczjMMP/dhHfqQcoCp7vd8f3h2nZ9pxICCGeJk6vRd6vX7+HtsvYuXPnfe/VrVuXvXv32jkqIbLu72Pw4Xfq9oT3oEHVe3awWGBrer/W2h+AXwG7xnM46STfXV8AwLiiQwhxDXyi8dLWbsB84hQaPz88+/S0RYjiKZYab+bPSfEcW6X2pPXNp6PxyDyUeEFucojsY99JGKv+GuX7D9MT3Q4thPN/gIs7tJwJmbi4VatEzAbgnbytyecW8tB9jX/txnTkGHh54dndcRV5zm5L5fiqlIzXGh345NWpSQ/p7Szu3fbw18rFvRBCCOFAsYlqy4wzV6BIKGz+GvLmsXKQ/42DkytB5wYdVoBvfpvE9uvNVcSbEynpUYSmeV6wyZi2pigKCb0HYti6A423NwHrlqMrUtjZYWVLSZFmlvdSWxh4+Gl5c0Yw+SvJSn3hOG7eWt74MZg1H0Zz8S89K/tG0XxSEGUaS6USIR7FYoEJv6rbA94C71u32cwmOLJY3c7mrTMUReGaIZxjKWc4mnw7ASLcGPXA/Qu65aOCVxkqeJdJ/7ss+V1DHH6/wnT8BHEt20NaGu4tm+P7/RS5ZyKEENmE05MihMhNwqOh7UgwmaFNQ/iw7QN2OrYUwg+Dhz/Ut2+VE70ljYEXv8CMmRaBL/N6UKMnGk9RFJLHTQbAs28vWUkjskxRFE5vTmX7uFhSYiyggaodfKg/wB83b1lRLrKPFD10/hLMZmj7EnRoBCRHwsYP1R0ajIKg0pkaa1v83/yXfBxPrQf9Cjw60eFWlQjPTu3Q5rH2KUfWKIrCvvmJAFTr6EPNbr54h+jQ6uTiXQghhMguklKg+TA4ch7yBcIfU6DwvZUJH+f0utstwFr8AIVr2yS2NIuB2eFLAOiTv5PDylNbK3n0l+jn/gxaLf5LfsK1WhVnh5QtxV0x8VvPm8RfNeMdouWtWSGElH7yaiJCWMvVQ0urb4NZPzyaM5tTWTskmqZfKDz7urezQxMi21r7Nxy/CL5e6e0/bzn/ByTfBO8QKPWK0+K7l1kxc1F/5XbyQ8oZjiWfIc6ccN++GjSU8ChMBa+yVPQuw7NeZajgVZZAV+ffpzZfvUZs09YocXG41quD/+L5Dqv8KYQQ4vEkKUIIGzGaoP1ouBEN5YvBnGEPWDhsNsK29HYZzw0Fryer2vA4X1+bw5nUiwS75GFc0SFPPJ5xx5+Y/t0PHh54D+xjgwjF0ygxwsTWsbGc36EHILCEC00+D6RgVVlxJLKf4TPUVZgFgmF6eh4EGwdBSjSEVoLnM/e7VVEUJqdXiegW+tYjq/aYw66QtnItAF4fvP9E8Vvj6oE0wo8acHHXULuXH95BcuEuhBBCZCf6NGj9Cew9AXl81ZYZpQpZOUjkafitIygK1OoD1bvbLL4V0ZsIN0aRzzWE1kFNbDauLSVP/obkMRMA8P1uMu7NX3VyRNlT5FkDy3tFkhxpwb+QjjZz8hJQSG4hCufRuWpo/lUQWzxjObYqmY0fx2BMUajS3sfZoQmR7SgKjP9F3e7TWj1nyHCrdUbF9qBzdXhst5xJvcjBpGMZSRDHU86SatHft5+LRkdZzxJU8CpDRe+yVPAqQ3mv0njrsl+1GEtcHHGvtsZy9Rq6sqUJWLNU2k4LIUQ2I1c0QtjIsB/hryPg5w2/jwWfB52bHZwHMefBOy/UHWDXePYnHmXGjUUATCo+gkDXgCceM3n81wB4du+MNq+1y5HE006xKBz+LZn/TY3DkKSgdYHaPf2o3dMPFzdZiS6yny37YPpKdXvucAj0A85uVm8iaDTQanambyJsiv2Toymn8dZ60Ttfx0fum/LjHLBYcG34Ai4Vnn3CnyLzblWJeLallyRECCGEENmM0QTtRsP2g+DjCRsmQcWSVg6iT4BFrSAtAYo+D69OtVl8ZsXMDzfUOt298nXAXZv9Kgqk/DibpKFqK0ufL0fh1aeXkyPKnq4fTmNF7yj0CRaCS7vy1qwQfELk3FA4n1anocmYPLh6afhvURJbx8ZiSLFQ610/Z4cmRLaydT/sOwWe7jCwzR0fpCWqrbMAKr/jlNgMFiOjwqax4OaK+z7z1HpQ3qvUHQkQZSnjWTxbnlPcS0lLI651B0zHTqDNF0qeTavQBgU5OywhhBD3kKQIIWxg0R/w7XJ1+6ePocyD2pEaU2HHGHW7wafgbr9s9lSznoEXvsCChbeCXuWVPPWfeEzj/oMYtu4AnQ7vIfZN6BC5T8xFI1tGx3L1QBoA+Su70eTzQIJLOS8rXYhHiUmA7uoiQvq2hldqAoZkWJNeuaFOfyhUK1NjWRQLX1+bA0D3fG0fmaSmpKaSOms+AF79e2c1fKtFnTdy4U89aKBGF9/HHyCEEEIIhzGbodt4WPc3eLjB6vFQq5yVg1gs8Ps7EHUK/ApC++XgYruHDJti/8cFfRgBOl865n3dZuPaSuqCRST2Uct+eY0YgvfHQ50cUfZ0eY+eVf2jMKYq5K/sxhs/BOPpLwkRIvvQaDW8NCIAN28N/8xO5H9T4jEkKzzXzw/NfeVahXg6jU8vBtGjOeS9sxvniZXq/emgMlCwhsPjummIpte5j9mXdAQNGur6VqOidxkqepWlgndZSngURqfJed85isVCfJdeGHf+hcbXl4CNK9EVK+rssIQQQjyAJEUI8YSOnIdek9TtEZ2g5fMP2fGf7yHxOgQUhRr2XZEy/uqPXEy7Qj7XEMYU/fDxB2RC8vjJAHh0bCcndiLTzEaFffMT2TMjHrMBXD011B/gT5UOPmh1csNCZF99p8L1KChbBCbc6mCxfRTEXQL/IvDy2EyPtS5mOydTz+On8+G9fB0eua9+8W8oMTFoixbBvUWzrP8AVtqfXiWi9Mue5CkqyUpCCCFEdqEo6nnJ4q3gooNlY6BB1SwMtPMLOLUGXNyhw0rwCbVhjArTb6h1uruEvomPzttmY9uC/vdVJHRTT+g8P3gfny9HOTmi7OnMHymsHxaN2QhF67rT8ptg3Ly0zg5LiPtoNBrqDwjAzVvLX9Pi2TszAUOyhYbDAtBo5T6DeLrtPgp/HgJXFxjS/p4PD6f31Kjc6QE9n+3rQNIxep0dQbgxCl+dN9+X/JxGAc85NAZ7SRr6CWlLfwcXF/xXLMK1SiVnhySEEA7ToEEDqlSpwrRp02y6r71IUoQQTyAuEd76DFLToHFN+Pzdh+yoj4f/pS85fulz9UaUnexJOMjciGUATC4+An+XJ1/xazp5irQVawDw/sg2SRYi97txNI0to2KJPGMEoNjzHjQemQf/AvLVI7K3xVth2XbQ6eDnj8HLA7h2AP5OLzH9+o+ZrvZjVsxMuTYXgF752hPg8vDSroqikPLtjwB49e2FRueYFRJJN82cWJcMQM1uUiVCCCGEyC4UBT6aAbPXglYLv3wKr9XNwkAnV8OO0ep2ixlQqKYtw2RXwn4OJ5/EQ+tO99C2Nh37SaVt3EJ8h25gseDR7R18p30lq8kf4OiKJLaMjkWxQJlXPGk2IUhaHIpsr3YPP9y8NWz7Mo6DC5MwJCu8MjqPLMAQT7Vx6XkPnZtAoTs7Hydchwvb1O3Kj27paWuLbq7hk8uTMShGyngWZ06pCZT0LOLQGOwlecp3pEz5DgC/+TNwb9TQyREJIbIiOzysv1N2i+dRVqxYgatr5hbYWbOvvciTKSGyyGKBd76E89egWD749TP1AdoD7ZoMqTEQUl7NxrWTZHMKgy5+CUDHkJY0DMjKHbMHjDtRfRDo3qo5LuWtrdMqnjaGFAu7p8dz8JckFAt4BmhpODyAcq95yQ1Ike1dvQn90nMfPu0MNcsBZhOs7gmKBSq2hzKZr+CwKvoPzuovEaDzpUe+e5dp3M34125Mh4+Cpyee3Ts/wU9hnYO/JmIxQcFqbhSobL+kPSGEEEJYZ9wv8PUSdXvGEGj7UhYGuXlSbZsBUOcDqNbVVuFluFUlokNwC4Jc8zxmb8cx7PwfcW+8DUYj7u3exG/292i0UvngXvt/TmTnpDgAKr7hTeNR8lBZ5BxVO/ji6qVl82cxHFuZjDHFQrMJQehc5b9h8fT57wxs+kdNpBz29j0fHl2sZlsWeQ4CSzgkHoPFyMiwqfxycyUAr+Z5kWklPst2FaWySr/kN5IGjwDAZ+IXeHZ69D0fIUTuZjAYcHOzXXtCezObzWg0GrRPeH0UGBhol33tRa4GhciisQtgwx61p+tvX0CQ/0N2TIqAPelP2BqNBa39Vv5+ceV7wtKuU8gtHyOLfGCTMc1hV9D/uhQA7xFDbDKmyL0u79Hz8xvhHPhZTYgo95oX3dbko3xzb0mIENmexQLvToC4JLVP94hbOWx7psKN/8AzDzSblunxTIopo0rE+/k74vuYC/+U72YA4NmpHVoHnSQaki0cXpYEQM1uD69iIYQQQgjH+m45jFRPI5jSD7q/loVB9PGwqBWkJUKxF6Hp17YMEYAjyaf4K2EfOnS8l//eJzDOY9j7L3HN24Bej1uLZvj/MsdhVbhyCkVR2PVtfEZCRI2uvrzyuSREiJynQktvWnwdhNYFTm9OZfXAKBSL4uywhHC48QvVv9s2hFKF7vnwUHoJiSrvOCSWCEMUbU715ZebK9Gg4aNC7zGr1LhckxBh2L6T+M5qe2zP/r3xGjrQuQEJIbKsa9eu/Pnnn3zzzTdoNBo0Gg3nz5+ne/fuFC9eHE9PT8qWLcs333xz33GtWrXiyy+/pECBApQtWxaAv//+mypVquDh4UGNGjVYtWoVGo2GQ4cOZRx77NgxXn31VXx8fAgNDeWdd94hKirqofFcunTpkT/Dzp070Wg0rF+/nkqVKuHh4UGdOnU4duxYxj4//fQTAQEBrFmzhvLly+Pu7k5YWBhpaWkMGTKEggUL4u3tTe3atdm5c+dd4+/evZsGDRrg5eVFnjx5aNKkCbGxsYBa1WLgwIEZ+/7www+ULl0aDw8PQkNDeeuttzI+u3ff2NhYOnfuTJ48efDy8uLVV1/l7Nmz98W8efNmypUrh4+PD02bNuXGjRuP/N/jUSQpQogs2LAXxvykbk8fBNXKPGLnP8eBIRkK1YJyrewW0//i/83IvJ1S4lObnWQmT/4GTCbcXnoR11o1bDKmyH1S481s/DSa33pGEn/VjG8+HW/8GMxrE4PwCpSbjyJnmL4Cth0AT3f4+RO1BycxF2B7et/ppl9b1X/796hNXEq7SpBLHt4NbfPIfc1XrpK2ci2g9rp2lCPLk0lLVAgs7kLJFz0cNq8QQgghHm7+BhioVmJmVDcY8OjTiAezWOC3jhB9BvwLQ7tloLN9qdJbVSJaBjWmsHt+m4+fFcZDR4h79Q2U5GTcXm5AwLIFaJxcpjW7USwK276MY++sBADqD/DnxcH+ksgucqwyjb1o/X0wLh4aCtd0R6OV/5bF0+XkJVjxP3V7xL1FisOPQvhh9Tzg2aycVFhnf+JRXj3ejf1JR/HT+fBzmcn0L9AVrSZ3PIoyHjlGXOv0SlRvtcJ3ygT5/hQiB/vmm2+oW7cuPXv25MaNG9y4cYNChQpRqFAhfvvtN06cOMHIkSP5+OOPWbZs2V3Hbtu2jdOnT/PHH3+wbt06EhISaNGiBRUrVuTgwYN88cUXfPTRR3cdExcXx0svvUTVqlXZv38/mzZtIiIigrZt2z40nsKFC2fqZxk6dChff/01+/btIyQkhBYtWmA0GjM+T0lJYeLEicyZM4fjx4+TN29e+vXrx549e1iyZAlHjhyhTZs2NG3aNCM54dChQ7z88suUL1+ePXv2sGvXLlq0aIHZbL5v/v3799O/f3/GjBnD6dOn2bRpEy+88MJD4+3atSv79+9nzZo17NmzB0VRaNas2X0xT548mV9++YX//e9/hIWFMWRI1hdvS/sMIax0/hq884Vacez9ltD11UfsHHcZ9qkrf2k0Dux0gpRgSspom9Et71s851fdJuNabt4kdc7PAHh9LFUixP0UReH05lS2j4slJcYCGqjawYf6A/xcsl9JAAEAAElEQVRx884dFzvi6XDyEgyfqW5P6g1lCqP+ol/zHhhTocRLULVrpsczWIxMvTYPgD75O+Gt83rk/ik/zgGzGdeGL+BasULWfggrmY0KBxYkAlCzq6/cOBRCCCGygeU7odckdfvDtvBZlywOtH0UnFkPLh7QYSX45H38MVa6oL/C+pgdAPTJ79j+5A9jOnWa2FdeR4mLw7VeHQJWL0XjIYmfdzIbFTZ9GsPJ9SmggUaf5qFKOx9nhyXEEyv+vCfd1uTDv4Dc7hZPn4mL1FsYrz8PFe7tjnE4vYREmdfAy75VKX+9uZpPLk/GqJgo41mcuaUnUsIjcw/zcgJz2BXiXm2NkpCAa/16UolKiFzA398fNzc3vLy8yJcvX8b7n3/+ecZ28eLF2bNnD8uWLctIXgDw9vZmzpw5GW0zZsyYgUajYfbs2Xh4eFC+fHmuXbtGz549M475/vvvqVq1KuPGjct4b968eRQuXJgzZ85QpkyZB8aTGaNGjaJx48YA/PzzzxQqVIiVK1dmxGw0Gvnhhx+oXLkyAGFhYcyfP5+wsDAKFCgAwJAhQ9i0aRPz589n3LhxfPXVV9SoUYMffvghY55nn332gfOHhYXh7e1N8+bN8fX1pWjRolStWvWB+549e5Y1a9awe/du6tWrB8Cvv/5K4cKFWbVqFW3atMmIecaMGZQsWRKAfv36MWbMGKv+d7mTnCUKYYUUPbz1mVpavU55mPq4DhXbR4PZACVehpIv2y2uUWHTuGG4STH3QnxcuI/Nxk355gdITcWlZnXcXmpgs3FF7pAYbmLr2FjO79QDEFTShSafB1KgiruTIxPCOkYTdBkHegO8Ugveb5X+waFf4PxW9WHC6zOtSmxbGrWOK4Yb5HUNokveNx65r5KaSuosNYHCy4FVIk5tTCExwox3sJZyLXJHCUshhBAiJzt5CTp/qRZ56P4aTOqTxbz64yvgz7HqdstZUNA2SfP3mnHjVxQUGgU8RzmvUnaZwxqmCxeJfbk5SmQULtWqELB+ORpvOce5kzHVwtrB0Vz4nx6tCzQbF8QzzR6dvCtETiIJEeJpdPEGLNqqbn98b5UIiwWO/KpuV7Zf64w0i4HPLk/h18jVADTL05CpJT7JNe0yACwxMcQ2bYXl+g105Z+RxEshcrnp06czb948wsLCSE1NxWAwUKVKlbv2qVixYkZCBMDp06cz2lfcUqtWrbuOOXz4MDt27MDH5/6k5PPnz1OmzKPK0j9a3bp1M7YDAwMpW7YsJ0+ezHjPzc2NSpUqZbw+evQoZrP5vjnT0tIICgoC1EoRtxIUHqdx48YULVqUEiVK0LRpU5o2bUrr1q3x8rr/euPkyZO4uLhQu3btjPeCgoLui9nLyysjIQIgf/783Lx5M1PxPIicKQqRSYoC702GI+chbx5YNgbcHlWB8+YJOLRA3W487hE7Ppk/YnexLGo9GjRMK/EpXjpPm4xrSUggZfpsALxHDJYyYCKDYlE4vCyZ/02Nw5CsoHWBOr38qNXDDxc3+e9E5Dxjf4YDpyGPL8z9KP3hQ3IkbBqk7tBwFARl/ka/3pLGN9d/AqBf/s546h59kaxf/BtKdAzaokVwb9Esiz+FdRRFYd98tUpEtY6+8m9XCCGEcDKTCd6dAGnpSZo/Ds5iQkTEcViRXl6i7kC79Q4PN0TyW9QGAPrmd0x/8kcxX7tOXKMWGQ8q8mxehTYgwNlhZStpiRZW9ovi6oE0XNw1vD41iBIv2Ob+gRBCCOeZtAjMZmhUA2qWu+fDS39CwjXwCICyr9ll/nBDJL3OfcyBpGNo0DCsUC8+yN8lV91LVvR64lq2w3zyNNqCBcizaRXaPHmcHZYQwk6WLFnCkCFD+Prrr6lbty6+vr5MmjSJf/755679vLOQgJ2UlESLFi2YOHHifZ/lz2/fdoSenp53/W5OSkpCp9Nx4MABdPdUvbmVtOHpmfnrBV9fXw4ePMjOnTvZsmULI0eOZPTo0ezbt4+ALF6bud7TBlGj0aAoSpbGAkmKECLTpq+ARX+ATgdLRkPBkMccsO0zUCxQrjUUqvWYnbMmxhjPsEsTAOiVrz01fSvbbOzUH+egxMejK1cW95bNbTauyNmiLxjZMjqGawcNAOSv7EaTzwMJLiU9ekXOtPc4jE9fNPHDICgQnP7Bhg8hJRryVYbnBls15uLINdww3CS/W1465m35yH0VRSHlO7XNklefnmhcHHNqdulvPVFnjbh6aqjcVsolCyGEEM42dRn8exL8fWDOMPW602qpsbCoFRiSoHhDaDLJ1mFmmBO+FINipKZPJWrZ8Do0Kyw3bxLbqDnmi5fQlSxBnq3r0AYHP/7Ap0hytJnf34/k5kkjbj4a3pgeQqHqUuFPCCFyuutRMH+juj3i3ioRAId/Uf+u0BZcbP97f1/iEXqd+5ibxmj8db58X/JzXgqo+/gDcxDFbCa+U3eMu/ag8fMjYOMKdIULOTssIYQNubm5YTabM17faunQp8/tquznz59/7Dhly5Zl4cKFpKWl4e6u/s7dt2/fXftUq1aN33//nWLFiuHykPvA98aTWXv37qVIkSIAxMbGcubMGcqVuzdb7raqVatiNpu5efMm9evXf+A+lSpVYtu2bXe1E3kUFxcXGjVqRKNGjRg1ahQBAQFs376dN964u5JyuXLlMJlM/PPPPxntM6Kjozl9+jTly5fP1FxZIQ3fhciEXUdg8HR1+6v34cUqjzng6j44sQI0Wmg01m5xfXb5a24aoynlUZShhXrZbFwlNZWUqd8D4P3RIDRa+VUh4PCyJBa8Gc61gwZcPTW8NCKADgvySkKEyLGSU6HLl+qKig6NoO1L6R+c3ayWl9RooeVs0GX+v/FUi57vrqtVgvoX6IKH9tE3HYy7/sZ06Ah4euLZI6tNw613q0pEpbe88fCX3/FCCCGEM528BKPmq9tf981EAv6DWMzwW0eIOQf+RaDdUtDZJ9kyzpTAgpsrAedXibDExhL7SkvMp86gLVyIPNvWoctvXe/d3C7hhoklXW5y86QRz0At7ebnlYQIIYTIJaYuA4MR6lV4wP1qYyocX65uV35QxsST+eXmStqc6stNYzRlPUuw/tm5uS8hQlFIHDiMtN9Xg5sbAauX4FqxgrPDEkLYWLFixfjnn3+4dOkSUVFRlC5dmv3797N582bOnDnDZ599dl9yw4O8/fbbWCwWevXqxcmTJ9m8eTOTJ08GyKjQ0LdvX2JiYujQoQP79u3j/PnzbN68mW7dumUkQtwbj8ViydTPMWbMGLZt28axY8fo2rUrwcHBtGrV6qH7lylTho4dO9K5c2dWrFjBxYsX+ffffxk/fjzr168HYMSIEezbt48+ffpw5MgRTp06xY8//khUVNR9461bt45vv/2WQ4cOcfnyZRYsWIDFYqFs2bL37Vu6dGlatmxJz5492bVrF4cPH6ZTp04ULFiQli0fvcjwSchdcCEe40Y0tBsFJrP6wGxAZtrnbP1Y/bvKO5DXPllN62N2sCrmD7RomVbiMzy1tuthlvrTQiwRN9EWKYzH221tNq7Iuf6Zk8AfY2IxG6F4fQ+6rclHtY6+aHW5pxSeePoM+xHOXYNCIfDdwPQ3Dcmw5n11u05/KFTTqjEXRKwkwhhFIbd8tA9u8dj9b1WJ8OzUDm1goFVzZVXECQNhe9PQ6KB6Z1+HzCmEEEKIBzOboftEtW1Gk1rQ9dUsDrTtMzi7EVw94e1V4J2VzIrMWXBzBcmWFJ7xLMHLAfXsNs/jWBITiXv1DUyHj6INzUuerWvRFS3itHiyo7gwE4vfuUnsJRO++XV0WJCX0HJujz9QCCFEthcdDzPXqNsj3nlA261TayAtEQKKQpHnbDZvmsXAsIsTGH7pK4yKidfyNGRt+dkU9yhsszmyi5RJ00j9fiYA/r/Mxq3BC06OSAhhD0OGDEGn01G+fHlCQkJo0qQJb7zxBu3ataN27dpER0ffVTXiYfz8/Fi7di2HDh2iSpUqfPLJJ4wcORIADw/1+V2BAgXYvXs3ZrOZV155hYoVKzJw4EACAgLQpi9OvjeesLCwTP0cEyZMYMCAAVSvXp3w8HDWrl2Lm9ujz/3nz59P586dGTx4MGXLlqVVq1bs27cvo+JEmTJl2LJlC4cPH6ZWrVrUrVuX1atXP7DKRUBAACtWrOCll16iXLlyzJgxg8WLF/Pss88+dO7q1avTvHlz6tati6IobNiw4b6WGbakUZ6k+UYOlJCQgL+/P/Hx8fj5+Tk7HJHNGYzQ6EPYfRSeLQ5//wA+Xo856MJ2mP+yurJ4wBnIU8zmcUUZY2h4tCMxpjg+yN+F4YXft9nYislEVOnKWC5dxve7yXj1s93YIudRFIVd38bzz2x1VXmd9/14rq9fruoLKBwru3wPb9wLzT9St7dMgZer3/pgMPw9Rb1p0O8YuGe+tUSyOYW6h98i2hTL5OIj6BDy+iP3N1+5SlTxZ8FsJvDIXoetNlg3LJpTG1Io95oXr00McsicQgghsofs8j0sbvt6iZqo6ecNR36CwnmzMMix32BpejL7W79C5bdtGeJdUi166hx6gyhTLN+WGMWbwU3tNtejKKmpxDZ7A+POv9AEBpJn5wZZuXkPY6qFX9++SdRZI4HFXXhrVgh++aWLrhDOJN/DwpZGzYWxC6Bqadg3+wFJEQtbwOl18OInNqtkHG6IpOfZjzmYfAwNGj4q9B798nfOlfcJUxcuIeGdHgD4TJ2I98C+To5ICJET/frrr3Tr1o34+Hg8PT3tMsfOnTtp2LAhsbGxBAQE2GWO3EKuhoR4AEWBU5dh4iI1IcLPG34fm4mECEWBP0ao2zXft0tChKIojLg0iRhTHOU8S/JhwXdtOr5+yXIsly6jCQnG893ONh1b5CyKRWHHxDgO/poEwAuD/Kn1rly0i5wvOh56TFS3+791R0LEtf2wZ5q63eJHqxIiAH6K+J1oUyzF3AvyVlCzx+6fOmMOmM24NqjvsJv48ddMnN6cAkDNblIlQgghhHCmU5fhs7nq9uS+WUyICD8KK7qq288NtmtCBMCyyA1EmWIp5JaP1wMb2XWuh1EMBuLe7KgmRPj6kmfzKkmIuIeiKGwdG0vUWSNeQVrazs2LT16ds8MSQghhIwnJ8P0KdXt4pwckRCRHwtlN6raNWmfsSzxMr3OfcNMYjb/Ol+klP6dhLmuXcUvaH9tJ6KYuFPQa3F8SIoQQmbZgwQJKlChBwYIFOXz4MB999BFt27a1W0KEsI4kRQiRLioOth2EP/apf65G3v7s50+gdKFMDHJyNVz9F9y81SxcO1gVvYUNsTtx0eiYVmIk7lrblb5ULBaSJ3wNgPfAvmi8HpcFInIri1lhy6hYjq1KBqDRp3mo0t66B8RCZEeKAr2/hvAYKFcUxvVK/8BshFU9QbFAxQ5Qxrra1YnmZH64sRCADwt2x1X76FMsJTWVlJnzAPD6wHEVeQ4sSEQxQ9G67uR9RkonCyGEEM5iNkP3CWrbjFdqwbuPz6e8X0oMLGoFxhQo8TI0nmDrMO9iUkzMCP8VgPfzv/3Y8x17UEwm4t/uhmHjFvD0JGD9clxrVHN4HNndsRXJHF+dgkYLzScFSUKEEELkMj+ugrgkeKYIvPGgjg5Hl4LFBAVrQMgzTzSXoij8ErmSkZenYlRMPONZgjmlJ+TKdhkAxv8OE//G22Ay4d7+LXy+sk2VDSHE0yE8PJyRI0cSHh5O/vz5adOmDV9++eUTjfn++++zcOHCB37WqVMn2rdv/0TjP00kKUI8tQxG2HP8dhLEgTPqw7Jb3N2gfiXo0Rxez0zbNYsZtqYnQtQdCD6hNo853BDJp5fVpIWBBbpRwbuMTcdPW7cR8/GTaHx98ezT06Zji5zDbFTYMDya05tT0Wih6ReBPNvS29lhCWETv/4Bv/8JLjo14c3TPf2Dv6dC+CHwDIRm06wed074UuLMCZT0KELroFceu79+yXKU6Bi0RQrj/vprVs+XFanxZo6sUBOdanaTqi9CCCGEM32zHPaeAF8vmDX0ASs8H8diht86QOwFCCgG7ZaCzr63eNbFbCcs7TqBLgG0D25h17keRLFYSHi3N2m/rwY3NwJWLcGtvu16pOcWN08Z2PplLADPf+BPkVoeTo5ICCGELaXoYeoydXtYR0hvQX+3w+kPz56wSkSaxcCnl79mUeQaAJoHvsSU4p/grcudC+nMFy8R1+wNlKQkXBu+gP9PM9E88H9gIYR4sGHDhjFs2DCbjjlmzBiGDBnywM/8/PzImzcvyp0PN8VDSVKEeGooCpy9qiZAbNkHO/+DpNS796lYAhrXVP/Ur3THw7LMOPwrRJ4Azzzw3IN/QT0JRVEYdnECceZEKnk9Q7/8XWw+fsp4NeHCs28vtNJ76KlkSlNYMyiKC3/q0bqoq4rKNM6dFzri6RMWAR9MU7dHdoXqZdM/iDkP20ep202/Bh/ralfHmRKYFb4YgMEFe6DTPHolnqIopHw3AwCvvr3QuDjmdOzwkmRMqQp5n3GlaF1rvuCEEEIIYUunw+CzOep2lttm/PExnNsCrp7w9irwCrJliPdRFIXvr/8CwLuhbfDUOfZBu6IoJPYbhP6XxaDT4b9sAe6vvOzQGHICfYKFNR9GYzZAiRc8qNVd2qUJIURuM289RMZBsXzw9oM6WUWdgav/gFYHFbO+eviG4SY9z37Mf8nH0aBhRKHe9MnfCY3VmZw5gyUqitimrbGER+BS8VkCVi5G4y73ToQQzpc3b17y5s3KRaO4lyRFiFwtNhG2HUivBrEfLoff/XlIQHoSRA1oVAMKBGdxIpPh9gO1+sPBM+AJon6wZVHr2Rb/N24aV6aV+MzmpUqNf/6Fce+/4OGB18A+Nh1b5AyGFAurPogi7J80XNw1tPwmiOLPS68rkTtYLPDueLXvZp3y8NGtdtuKAqvfA5NeLTtd1fqEs9nhS0gwJ/GMZwlaBD7+5rxx9x5M/x0GDw88u3e2er6sMKUpHFyUCECNrr659iaGEEIIkd2ZzdBjIugN6rVo96wUjDq6FHZ9pW63mgf5K9s0xgfZEb+Xk6nn8NJ60jX0TbvPdydFUUga9impP84BjQa/X2bj0bK5Q2PICRRFYdOnMcRdMeFXQMer4wPRaOWcTwghchODESapazIY0gFcH3R7+LDa6oqSr2S5kvG/iYfpde5jIo0x+Ot8+aHkGBoE1Mla0DmAkpJC3OvtMJ85i7ZIYQI2rkTr7+/ssIQQQtiYJEWIXMVogn9PwpZ/1SSIfafUB2G3uLnC8xVvJ0JULvWQEmPW2j8L4i6Bb36o3c8GA97tWloEo8KmATC0UC/KepWw+RzJ4yYD4PnuO+hCbd/6Q2Rv+ngLv/eJ5MZhA65eGt6YHkzhmlJmVeQe3/0OO/4DLw+1bUZGcYZDC+DCNnDxgNdnWF27OsYYz5zwpQAMLtgTrebxXyq3qkR4dmqPNsi+qzpvObE2mZRoC775dZRtItVfhBBCCGf5djn8fewJ2mbcOAwru6nbzw+DSo7pHzv9xgIAOuVtRR4Xxz4kSP5iAimTvwHAd9Z3eHZo69D5c4r9PydybnsqOld4fUownv6Prl4mhBAi5/llC1yNhPxB0O3VB+ygKE/UOkNRFH6+uYJRYVMxKWbKeZZkTukJFPMo9GSBZ2OKyUR8h24Y9/yDJk8e8mxaia5gAWeHJYQQwg4kKULkeOevqe0w/tinPvBKSL778/LFbidBvFAZvG298N2QDH+OVbcbjAQ32z5sUhSFwRe/JNGcTHWfCryXr4NNxwcwHvgPwx/bQafDe+hAm48vsreUGDPLe0Vy85QRDz8tb84MJn9FKQ8nco/jF2HELHV7cl8odetaPukmbBykbjccDUGlrB57RvivJFlSqOBVhlfzvPjY/c1Xr6l9sAHPD963er6sUCwK+35KrxLR2Redq6wYFEIIIZzhzBX4NL1txqQ+UMTaXPSUaFjUCoypUOoVaDzO1iE+0P7Eo+xNPISrxoWe+RyThHFL8pTvSB71JQA+Uyfi1aOrQ+fPKa4eTON/U+MBaPhRHvJVcHNyREIIIWzNZIKv0otADGoHHg+6dXdlD8ReADcfKNfKqvH1ljQ+uTSZJVHrAGgR+DJTin+Cly73VpG91Z4rbc16cHcnYM1SXMo94+ywhBBC2IkkRYgcJz4Jth+83RLjwvW7Pw/0U1thNK4Br9SEQvZutbPnG0iKgMCSUL27zYdfcHMlfyXsw0PrztTinz22V31WJI9Xq0R4dGiDrlhRm48vsq/ECBO/9Ygk5qIJr0AtbWaHEFJWbqCJ3MNghC5fQpoBXq0DvVrc8eHGDyE1BvJVhucGWT12pDGGeRG/ATC4YI9MtaRI/XE2mM24vvg8rpUqWD1nVpzbkUrsJRPufhoqvuntkDmFEEIIcbc722a8XB16WNv9wWyCZe3VCoV5SkCbxWqvcAf44Ya64vTNoKYUcHNcL9uUWfNIGjwCAO+xI/Ee2Ndhc+ckydFm1g2JRjFDude8qNxOzveEECI3+m0nnLum3vu+697GnW5ViSj/htUL90ZdnsaSqHVo0TKicG965+uY61tvJo+bROrMeaDR4L9oHm7P13N2SEIIIexIkiJEtmcywf7TahLEln3wz0n1htItLjp4rqKaBNG4JlQtDTpHVYlMibndy/WlMaBztenwl/XXGHvlewBGFOpNSc8iNh0fwHTqNGkr1gDgPdz6h4Ii54q7auK3HjeJv2rGN5+ONnNCCCxm2/+GhXC2MT/Bf2chyB9mD7ujRPWZjXBkEWi00GpOln5//3BjIakWPVW9y9M44PnH7q/o9aTMmg+AV//eVs+XVfvmq1UiqrT1wc3LFj2jhBBCCGGt71fA7qNq24y7zkky64/hcH4ruHrB26vAK9AeYd7nTOpFNsf9Dw0aeufv6JA5AVIXLiHx/QEAeA0fjPfHQx02d05iMSus/yiapJtmAku40HhUnlz/AEsIIZ5GFgtMSM936P8m+Dwo38FkgKNqe0+qvGPV+AmmJJZHbwRgZqkvaRbYIOvB5hCpPy0k+dMxAPh+OwmPN1o6OSIhhBD2JkkRIlu6dCO9JcZ+2H4A4pLu/rxM4fRKELXgxSrqjSWn2PUV6OMhtBJUtG0ZUYtiYdDFsaRYUqnrW5V3Q9vYdPxbkr+aBoqCe8vmuDxb3i5ziOwn+ryR33pGknTTTEBhF9rMDcG/gHwliNzl72MwcZG6/eNgtecmAGlJsDY9KaHuAChYw+qxww2RLIj4HYAhBXtm6uazfslylKhotIUL4f76a1bPmRXX/kvj+iEDOleo2tHXIXMKIYQQ4m5nr8Ins9Xtr3pD0XxWDnB4Eez+Wt1+4yfIV9GW4T3SrSoRr+Z5kVKexRwyp37lGhK6vgeKgme/9/AZN1oe9D/E3z8mELY3DVdPDS2nBksCrBBC5FJr/4ZjF9V74P3efMhOZzeq1TB980PxhlaNvyZmK3pLGmU8i2eqNWhOl7ZxCwk91ApUXsMH49XPMe1NhRBCOJdcLYlsJSoOnusNJdtD769hxZ9qQkSAD7z5IswYAueXwMmF8O1AaF7PiQkRiTdg77fqduMvQWvbf05zI5axN/EQXlpPvi7+CVqN7f+5msOuoP9lMQDeIwbbfHyRPd08ZWBJ15sk3TQTVMqF9gvySkKEyHWSUtS2GRYLdHpF/Q7JsH0kxF2GgKJqlZ8s+P76AvSKgZo+lXjRv/Zj91cUhZRvfwTAq28vNC6O+Td3q0pE+Rbe+IQ4qoySEEIIIW4xm6H7BEhNU9tm9HxYueuHuf4frEpv01h/OFSwT7L8g1xLC2dl9GYA+uTv5JA50zb9QXy7LmA249G1E77fTJKEiIe48Fcqe2ckAPDK6DwElZSqf0IIkRspyu0qEb1bQZ6HrXe41Tqj0ttWt9haGrkegHbBzXP9965x3wHi27yjnmu80wGfcaOdHZIQQmQL06dPp1ixYnh4eFC7dm3+/fffh+57/Phx3nzzTYoVK4ZGo2HatGmOC/QJyFMwkW1YLND5S9h7Qm1/Uac8vFJTbYlRo6wDW2Jk1s4vwJgKRepBGduu+D2XepkJV9SHZ58V6UdRj4I2Hf+W5K+/BZMJ14Yv4Fq7pl3mENnL9UNp/N4nkrQEhdDyrrw5MwSvPNntH5cQT27ID3DhOhQJhW8H3PHB1X2w5xt1+/UZ4O5j9djX0sL5NXI1AEML9crUDQPj33sx/XcYPDzw7NHF6jmzIuaSkXM7UgGo0UWqRAghhBDOMH2l2jbDxxNmDbWybUZyJCxqBSY9lG4KjcbaK8wHmhm+GJNipp5vdar6PGv3+Qx/7SaudQcwGnFv+wZ+c6ajsfHig9wi4YaJDcNjAKjS3odyr3k7OSIhhBD2su0A/HsSPNxg4MNyI1Pj4PRadbuyda0zzqRe5GDyMXToeDO46RPFmt2Zzl8g9rU3UZKTcXvlZfVcI5cngQghRGYsXbqUQYMGMWPGDGrXrs20adNo0qQJp0+fJm/evPftn5KSQokSJWjTpg0ffvihEyLOGkmKENnGxF9h87/qCd7fP0LlUs6O6BFizsP+9PqnjcdnoSHsw5kVMx9eGIteMfCCXy3eCWlts7HvZImMJHX2TwB4jxhilzlE9hL2j56V/aIwpioUrObGG9NDcPeVm4wi91n3N8xOvxcwbzj438p7MBthdU9QLOrKidJZu9j/5vpPGBQjdX2r8Zxf9Uwdc6tKhEfHdmiDgh6zt23s/zkRFCjZ0ENWDgohhBBOcO4qfDxL3Z7YG4rlt+JgswmWtoP4MAgsCW0WWb3q80lc1F/h15urAOhXwLqHK1mhWCwk9OwHej1uzV/F/5c5aLLdyojswWxUWDMoGn28hdBnXWkwLMDZIQkhhLCj8b+of/doDqGBD9np+HIwpUHeCpCvklXjL41cB0CjgOcIcX3YBDmf5eZN4pq0QomMwqVqZfyXL0Tj5ubssIQQuZiiQIreOXN7eVj32HLKlCn07NmTbt26ATBjxgzWr1/PvHnzGD58+H3716xZk5o11YXWD/o8u5KkCJEt7PwPRs5Tt78bmM0TIgC2jQKLSX2gVuwFmw4948YiDiYfw1fnzeTiH9stWzXl2x8hNRWXGtVwa2RdnzmR85zfmcqaQVGYDVC0rjstv5F+syJ3ioyDXpPU7Q/bQsNqd3y4ewqEHwbPQHh1apbGD0u7ztIo9YbBsEK9MnWM+eo10n5XK0t4feCYPpXJUWaOr04GoGY3P4fMKYQQQojbLBboMVFtm/FSNXjvdSsH2DwULu4AN294ezV45rFLnA+iKArDL32FXjHwvF8NXvCrZfc5DVu2YT59Fo2fH/6L5slDikfYOSmO8KMGPPy0vD4lGBc3WeEqhBC51d/HYOchcNHBkA6P2PFweuZElXesegpmtJhYHrURgPYhzbMeaDanJCcT27wN5vMX0BYrSsCGFWh9paKmEMK+UvTg56QCPAmbwNszc/saDAYOHDjAiBEjMt7TarU0atSIPXv22ClC55AnYsLpwqPh7THqTaMuTeFd23aisL3wo3B0kbrdaJxNhz6Vcp7J19QKFJ8XGUhB91Cbjn+LJSGBlO/VJUveIwZLmbBc7tSmFFYPVBMiSr3kSevpIZIQIXIlRYH3J0NEDDxbHMb2uOPD6HOwY7S6/eoU8Lm/7FdmTLs2D5Ni5kW/2tTyrZypY1JnzAGzGdcXnsO1csUszWut/xYlYTZA/spuFKwqDxWEEEIIR5u+Av46ot6Imj3MyuKCh36BPdPU7TcWQKj9W1fcaVnUBnYl7MdD687EYh855Hox5ZsfAPDs3lkeUjzCqY0p/LcoCYBXxwXiX1DWOgkhRG42Lj3X4Z0mUPhhtzHiLsOl/6knG5UelTlxv+3xfxNliiXENZCG/nWfLNhsSjGZiGvbGdO+A2iCAsmzaSW6fPa55y6EEDlRVFQUZrOZ0NC7fzeGhoYSHh7upKjsQ66ehFOZzdBxjPoAq0Jx+D4ntJ7Z+on65K1CWyhQ1WbDpphT+eDC5xgUI40CnqNtsP2yQ1JnzUeJi0P3TBncW7Ww2zzC+Y6uTGLLqFgUC5R7zYumYwPRuUoSjMidFmyGVX+Bqwv8/DF4uKd/oCiw5n21H3fJRlClc5bGv6C/wvKoTQAMKdQzU8coej0ps+YD4NW/d5bmtZYhxcKhJerN8ppdfSXxTQghhHCwc1dhxK22Ge9b2Tbj2gFYnV6N6sVP4Nk3bB7fo0QZYxgT9i0Agwv2oJhHIbvPaTp9BsOmP0CjwbPfe3afL6eKvmBk86gYAGr38KVkg0wu/RJCCJEj/XcGNu4FrRY+6viIHQ+nL94r1gD8C1s1x9LI9QC8FfQqrtrc96hISUsjvut7GDZsBk9PAtYtx6VsGWeHJYR4Snh5qBUbnDW3uF/u+6YTOcrnP6klwHw8YennOeAfatjfcHqt2sv15S9sNqyiKHx4cSwnUs4S5JLH7qtxUn9aCIDXoA/QaKViQG518NdEto+PA6BSG28afZoHrU4ejorc6dINGPCNuj26G1S98xr3v5/hwjZw9YTXZ1i5VPO2qdfmYsbMy/71qOaTuRWb+qW/o0RGoS1cCPeWjilFeWxFMvoECwFFXCj1ktwsF0IIIRzJYoGeX6ltMxpWtbJthj4BFr+hJnKWeQ1e+txucT7MqMvTiDMn8KxXaXrla++QOVO+mwGAe4tmuJQo7pA5cxpDioU1g6IwpigUrunOc/38nR2SEEIIO1EUtW3GMLWIEm0aQOmH5Sgqyt2tM6xw0xDN1rjdALTLha0zLFFRxLXugHHXHnBxwX/JT7jVsX9LMCGEuEWjyXwLC2cKDg5Gp9MRERFx1/sRERHky5fPSVHZhzwNFU6z6R/4coG6PWMIPFPUufE8lqLAHx+r21W7QbDtskq/vfEz62K246pxYU7p8eRzC7HZ2PcyHj2G+fhJcHPDo01ru80jnGvvrISMhIjqXXxoPFISIkTuZbHAuxMgMQXqVYChd1aLTIqATYPU7YajIbBkluY4m3qJldFbABhaqFemjlEUJeMmv1efnmhc7J+LajEp7P8lEYAaXXzl370QQgjhYD+ugv8dTm+b8ZG6ujPTtnwE8WGQpwS8tVBNxneg7XF7WBXzB1q0TCo2AheNA85d4uLQ//QrAF4DHFNVK6dRFIWtY2KJPmfCO1hL80lBaF3kHE8IIXKbxBT1PKLqu/BCP9h7AtxcYUSnRxx04z+IPAkuHlD+TavmWxG9CTNmqnlXoLRnsScJPdsxnT5DTJ2XMO7ag8bfn4BNK/F4Pbv37BZCCOdwc3OjevXqbNu2LeM9i8XCtm3bqFs3d7VWyvQV7htvZL5k44oVK7IUjHh6XLkJnb9Ut99vCR0aOTeeTDm3BS79CS7u0HCUzYbdEvsXX12dCcCXRYdkukd9VukXLwfAvdkraAMC7DqXcDxFUfhrWjz/zlUfitbt7Ue9Pn5SPl/katN+gz8PqQ8ffvoYdHc+P9gwEFJjIV8VqDcoy3N8fW0OCgqv5nmRit5lM3WMcc8/mA78B+7uePbokuW5rXFmSyoJ18x4Bmp5tqWXQ+YUQgghhOr8NRiuXtox8T0obk3bjIs7YZ+aTEmrOeAZYOPoHi3ZnMLwS18B0D20LZV9yjlk3tT5C1GSk3GpUB7Xhi86ZM6c5sjyZE6sS0Gjg+aTg/AOdmyyjBBCCPs6ch5mrIJf/4CkVPU9Dzdo/zL0fwsqPmptx6H0KhHPtAQPv0zPqSgKSyLXAdA+l1WJMOz4k7g3Oqqto4sXI2D9clzKPePssIQQIlsbNGgQXbp0oUaNGtSqVYtp06aRnJxMt27dAOjcuTMFCxZk/PjxABgMBk6cOJGxfe3aNQ4dOoSPjw+lSpVy2s/xOJlOivD3l9J8wjaMJugwGqLjoVoZ+LqvsyPKBIsFtqZXiajVF/xt01f1dMoF+p0fDUDXvG/SMW9Lm4z7MIqioF/8GwAeHdrYdS7heIpFYfuEOP5blATAi0P8qdk18xdEQuREZjMsSU9indIPSha848MzG+DoEtBo1YcLuqytdjyRco61Meokgwv2yPRxKd/+CIBHx3Zog4OzNLc1FEVh308JAFR72wdXDykIJoQQQjjKrbYZKXpoUAXes+bSzpACq3qq2zV6QYmG9gjxkSZdnc01QziF3PIxtFBPh8ypmM2kplfV8uzfWxK5HyD8uIHt42IBqD/An8I1snvPUSGEEJmhT4Plf8LM1WqrjFvKFFYXEHZuCnl8HzOI2QRHF6vbVR5VTuJ+B5OPc1Z/CQ+tO68H5YTVipmTOv8XEnp9ACYTrvXqELBqMdoQ+1VkFkKI3KJdu3ZERkYycuRIwsPDqVKlCps2bSI0NBSAsLAwtHeUQbx+/TpVq1bNeD158mQmT57Miy++yM6dOx0dfqZl+unA/Pnz7RmHeIp8PAv2HAd/H1j6OXi4OzuiTDjxO1w/CO6+8MIImwwZa4rn3bPDSLakUM+3OqOLDLTJuI9i3PsvlkuX0fj44N78VbvPJxzHYlLYPDqG46tSQAONP8tD5bY+zg5LCLvT6eB/38GvW+HdZnd8kJYEa9JLMNcdCAWrZ3mOr6/NBqBF4MuU88pcpqv52nXSfl8NgNcH72d5bmuE/ZNGxAkjLp4aqrSXf/9CCCGEI81YrVau8vLIQtuM7aMg5hz4FYQmX9krxIc6lHSCuRHLAJhQbBjeOsdUm0pbtxHzxUtoAgPx7NjOIXPmJPp4C2sHR2E2QsmGHtTs+rinY0IIIbK789dg1hr4aSNExavv6XTQ6nl4vxU0rKr2oM+UC9vUlqFewVCqiVVxLE2vEtE8z0v46rytOjY7UiwWkj4dQ8r4yQC4t38L//kz0HhIMqEQQmRWv3796Nev3wM/uzfRoVixYiiK4oCobMv+DSKFuMOqv2DKUnV73nAoUcC58WSK2QTbPlO36w0G7ydf7WtSTPQ+9xmX0q5R2C0/M0uNxVVr/3+O+kXqjS73Vs3ReElZ9dzCbFRYPzyaM5tT0ejg1bGBlG+R8y9ohMgsD3fofm9ryG2fqj25A4rBy2OyPPaR5FNsiv0fWrRWVYlInTFHXZlQvx6uVSpleX5r7Juvts2p2NobzwApqyyEEEI4yoXrt9tmTHjPyuvcq/vg7ynq9uszwMOxVTqNFhNDL03AgoXWQa/QMMBxPWNT06tqefbsKten91AsChs/iSb+qhn/QjpeHRuERiuVNIQQIicymWD9XjWBcsu/t98vGAI9m0P35lAgK7ebb7XOqNgedK6ZPizVrGd19B9A7midoaSmEt+lF2m/rQTAe+RwvEd/IhWohBBC3CfTT2GrVq2a6S+SgwcPZjkgkXtduA7vTlC3P2wLreo7N55MO/QzRJ1Ws26fy3o/+juNCfuOvxL24aX1ZH6Zrwh0DbDJuI+imEykLVsBSOuM3MSot7Dmw2gu/qVH5wrNJwVRupHcUBRPuav/wt5v1e3XZ4Bb1pOEJl9Vq0S0CnqF0p7FMnWMkpZGysx5AHj1753lua0RedrApd16NFqo3llWEQohhBCOYrFAz4mQnAovVoHeraw42GSAVd1BsUClt6Gs4x9MzApfzImUswTo/BhdZIDD5jUePYZh+5+g0+HVt5fD5s0p9v2UyPmdenRu8PqUYDz8pS2aEELkNOHRMHc9zF4LV27efr9xTbVFRvO64JLVNXJpSXBSTQKgsnWtM9bH7iDJkkJR94LU8a36+AOyMXNEBPEt22P8Zx+4uuI3Zzqend92dljZmtmoEHPBiGegDu8grSRdCiGeKpn+2m3VqpUdwxC5nT4N2o2C+CSo+yyMf8/ZEWWSUQ/bR6vbL36sts94Qksj12WUJv22xMhMl2J/UoYd/8NyMxJNUCBujV9yyJzCvgzJFlZ+EMWVf9Nw8dDQ8psgij/n6eywhHAusxFW9QBFgUodobR1JSTvdCDpGNvi/0aHjg8Lvpvp4/RLf0eJjEJbqCDurVpkeX5r7PtJrRJRprEnAYWkEJgQQgjhKDNXw85D6W0zhlnZNuOvCRBxVE3AbzbNThE+3EX9FaZcmwPAqCL9CXYNdNjcqd/NAMD9jdfRFS7ksHlzgiv79Pz1jVpT/aUReQgt7+bkiIQQQmSWosDO/9SqEKv+ApNZfT/IH7q+Cr1aQClbfO2dXAnGFAgqDYVqWXXokvTWGW2DX8vR1RRMx08Q+9pbWC6HoQkMJGDlItxeeN7ZYWV7Gz+J4dSGFAC0LuCTV4dvqA6fUB2+oS745tOpf9Lf8w7WodXl3P9OhBDiTpm+az5q1Ch7xiFyucHT4eAZ9QRw8WhwzSnPa/b9CAlXwb8w1Hzy1b77E48y/JLaI3ZwwR68GtjgicfMrFutMzzatEbjmvmSaiJ70sdb+L13JDeOGHDz1vDGDyEUqu7u7LCEcL5dk9MfLgRBs6lPNNStKhFvBTelhEfhTB2jKAop6aWgvfr0RJPlZR+Zl3DDxKmN6gVtzW5+dp9PCCGEEKqLN+Cj9LYZ43tByYJWHBxxDP4cq26/9h14h9g8vkdRFIXhl75Crxio71eTNsHNHDa3JTqa1F+WAI6rqpVTJEeZWTc0GsUM5Vt4UektaYsohBA5QVwiLNisJkueCrv9ft1n4b2W0KaB2vrTZg4vVP+u3AmsSGy4pL/KnsSDaNA49Lvf1tK2bCO+zTsoCQnoSpciYP1yXEo7ZuFhTnbjaFpGQoRGCxYTJFw3k3Dd/NBjNDrwCUlPkshImHDBN1R9zzdfeuKEiyROCCGyv5zyaFrkYIu3qtmxAAs+gcJ5nRtPpigKHF8OO9L70DccBa4eTzTkdcNNepwbjkEx0ixPQwYW6GaDQDNH0etJW7EGkNYZuUFytJnlvSKJPG3Ew1/LmzOCyV9REiKEIPos7Pxc3W465YkeLvyTeIj/JfyLi0bHQCuqRBj3/ovpwH/g7o5nz65Znt8aBxcmYTFB4Vru5KsgKwmFEEIIR7izbcYLlaFPa2sONqttM8xGKNsCKrazW5wPsyxqA7sS9uOhdWdCsWEOXSmaOvsn0OtxqVYF1+fqOmze7M5iUlg3NJrkKAtBpVxo9FmeHL2CVwghngb7T6n3vZdsg9Q09T1vT+jYWG2RUdkez+kTb8D5rep25Y5WHbosaj0AL/rXoqB7qK0jc4iUmXNJ7DsIzGZcX3iOgBWL0AYFOTusHOFWJaryr3vRdEwgyVFmEiPMJIan/x1hIin89uukSDOKGfV1uBkOP3hcjRa8Q24nSTyo8oR3sA6dq5zXCCGcK0tJEWazmalTp7Js2TLCwsIwGAx3fR4TE2OT4ETOd+oyvDdZ3f74HWha27nxZErsRVjbF85uVF8XqgVVujzRkKkWPd3PfESkMYZynqWYVuJTtBrH9QRN27gFJSEBbaGCuD5fz2HzCttLDDfxW89IYi6a8ArS0mZOCCGl5SGoECgKrH4PTGlQsjFUeeeJhpuUXiWifXALirgXyPRxt6pEeLzdFm1w8BPFkBn6BAuHf0sCoGa3J2/xJIQQQojMmbkGdvwHnu4w5yMr22bs+Qau/gvufvD6j1at8LSFKGMMY8K+BdQKhsU8HNe+QjGZSJk+C1CrRMhD/9t2fx/PlX1puHppaDk1GDcvx90zEEIIkXkpejUJYuZq2H/69vsViquJEB1fAT97Fvo5shgUCxSpB4ElM32YWTGzLGoDAO2Cm9srOrtRzGaShn1KypTvAPDo/DZ+s75D4y4LxTLj8l49YXvT0LrAc3390bpo8M3ngm8+F6j84GMsZoWUaAuJ4aa7kieSIswZ7yXdNGMxQVL6+zeOPCQADXgHa9U5Q28nTvjlc1ErUITq8MkriRNCCPvKUlLE559/zpw5cxg8eDCffvopn3zyCZcuXWLVqlWMHDnS1jGKHCpFD+1GqStnGlSBUV2dHdFjmI3w91TYMRqMqaBzgxdGQP3hoMt6URVFURh6cTxHUk6Rx8WfeWUm4q3zsl3cmZDROqP9W2isulsnspO4MBPLet4k4ZoZ33w62s4NIU9RaYUiBAAH58PFHeDqCa/PeKKHC7sS9rMn8SBuGlf6F+ia6ePM12+QtnwVAF4fvJ/l+a1x+LckjCkKwaVdKf78k1U0EkIIIUTmXLoBH81Qt61umxFzHrZ9qm43nQx+1hxsG6MuTyPOnMCzXqXpla+9Q+dOW7kGy9VraPOG4NH+LYfOnZ2d35nKP3MSAWjyeSCBxeU6TwghsptTl9WkyAWbIE5dm4CbK7z5opoM8VxFB+U53tk6wwq7EvZzw3CTAJ0vr+Spb4fA7EdJTia+Y3fSVq8DwHvsSLw/HirJlZmkKAp/TVOrRFRu64N/wcw969DqNPjkVZMV8j9sbItCSoyFhBsmNVki4nb1iaT06hOJ4WriRHKkheRIA+FHHzKYBryDtPdVmbiVQHEraUKjBY1G/RsN6a9vv5fxvgY02vT9IOMz+e9GiKdXlp70/vrrr8yePZvXXnuN0aNH06FDB0qWLEmlSpXYu3cv/fv3t3WcIgfqNxWOXYTQQPh1JDigrXrWXdkLq3upfegBijeAFjMgpOwTD/3DjYWsjN6Ci0bHrFLjrFpxbAuWhATS1m0C1JXLImeKOm/ktx43SY60EFDEhbZzQ/DLn53/UQnhQEkRsHmIuv3S5xBYIstDKYrCpKvq6sWOIS2tKieZOmMOmEy4Pl8X16oPSbO3IZNB4eBC9eZ5ja6+clEnhBBCOICiQM+v1OT/+pWg7xtWHryqp5qEX7whVO9htzgfZnvcHlbF/IEWLZOKjcBF49hriltVtTzf7y4rO9PFXTWx4eNoAKq+7cMzrzp2EYUQQoiHM5pg1V9qVYgd/91+v3h+6PU6dGsGIQEODCjiONz4D3SuUMG6+7xLItWEgtZBTfDQ5pzvYPP1G8S1aIPp4CFwd8f/pxl4tJf20NY4uzWV8GMGXD011OnlZ9OxNVoN3sFqewwqPnifW4kTGVUm0hMl7qo8EWHCbIDkKAvJURYijhttGuf9gd+RTKFVf47biRTpf0hPqMhIukhPstDc8d69CRp3jsediRi35tTckcRxx7z3vnfX68eMp7kjEeSOeG4dj/aO/W7te8fPl9nx7v357h7/9ni++XWUqO9p3///hMiiLF39hoeHU7Gi+hvOx8eH+Hg1y6x58+Z89tlntotO5FjzN8DPm9QSor9+Bvmya1uv1DjY+jHsm6HeoPIKgqZfQ5XONknt3Rq3m/FX1Zs+Y4oMop5ftSce01ppq9eDXo+ubGlcqlRy+PziyUWcMLD8vUhSYy0El3alzewQ9URTCKFaPwBSYyF/Vaj74RMN9Wf8P+xPOoqHxo0PCmS+dZKSlkbqzHmAWgraEU6uTyY50oJPqI5yzeTmuRBCCOEIs9bC9oNZbJtxYM7tylatZju8bUayOYXhl74CoHtoWyr7lHPo/MaDhzDu2gOurni+7/iEkOzIZFBYOyiKtASF/JXcaDA0wNkhCSGEAK7chNlrYe46CE/vFK7VQrM6alWIJrWsPAewlVtVIko3U+9jZ1KsKZ5NsX8C0D4k57TOMB46Qlzzt7Bcu44mJJiA1Utxq5sT+nNnHxazwq7v1Od31Tv7OuWe8l2JE88+eB9FUUiNvSNxIvx2i45b7yXdNGMxKygW9VGOYgGULAalgGK+8/AHDZTVwZ9uxZ73kKQIkW1lKSmiUKFC3LhxgyJFilCyZEm2bNlCtWrV2LdvH+6S6f/UO3JerRIB8Pm70NDxeQCPpyhw7DfYMACSwtX3qnaFJpPA2zY94M+mXqLf+VEoKHQKaUWXUGuWENlORuuMDm1kFXEOdO2/NH7vHYkhSSH0WVfemhmCZ4AkRAiRwWIG3/zqKomWs5+43dGka2qViM6hbxLqlvnvA/2yFVhuRqItVBD3Vi2yHENmKRaF/T+pVSKqdfSRnotCCCGEA1wOh2E/qNvjekGpQlYcHH8VNqVXtmr0pVU9wG1l0tXZXDOEU8gtH0ML9XT4/CnfqP/jebR9A13+fA6fPzvaMTGWiBNGPPy1tPg6SM7phBDCyXYdga+Xwrq/wWJR3wsNhO6vQc8WUCTzxSRtz2KBI7+q21a2zlgVvQWDYuRZr9JU8H7yysiOkLZ+E/HtuqAkJ6MrV5aAdctxKVHc2WHlOCfWphBzwYSHv5aaXX2dHc5DaTQavAJ1eAXqCLUyb1dR0hMl0v/NqtsKioKa/JD+maIodyVTZLx3T5LFXeMptz5T7hlf3e/u8W8fe3v8Jx+PO+K7a46M15kfj1v7Kg+Y457xsKhpIY+Mz6Lc8TOpf0LLSxs4kX1l6clB69at2bZtG7Vr1+aDDz6gU6dOzJ07l7CwMD788MlWaIqcLSEZ2o0CvUHNmB3e0dkRPUDsRVjbF85uVF8HlVH7z5doaLMp4kwJdDszjERzMrV9q/BF0UE2G9salshIDH9sB9SkCJGzXN6jZ2X/KEypCoWqu9N6ejDuPs5IQxciG9PqoNlUeH4o+D1Ze6I/4nZxKPkknloP+ubP/A0GRVEySkF79e6BxtX+J/8X/tITfd6Em4+Gym187D6fEEII8bS71TYjKRWerwj9rG2bsbY3pCVAodpQx/EtRw8lnWBuhJowP6HYMLx1jq0yZY6IQL9kOeC4qlrZ3Yl1yRxemgwaeG1ioLRHFEIIJ0ozwCezYeqy2+81qALvtYRW9cEtOzzju/w/iL8CHv5Q1rpqD7daZ7QPtv8iDltI+fYHEj8cDhYLbi83wH/5QrQBAc4OK8cxGRR2T1erRNTq7ou7b+68r6zRaNDogLvWEUqiqRDWmj59OpMmTSI8PJzKlSvz3XffUatWrQfuu2LFCsaNG8e5c+cwGo2ULl2awYMH88477zg4autk6YprwoQJGdvt2rWjaNGi/P3335QuXZoWLXLGF6uwPUWB9ybDmStQKAQWfOKkMmIPYzbC31Nhx2i1h6vODV74GF4YDi62q3BiVsz0PT+Si2lXKOiWj1mlvsRN65wzZ/1vK8FsxqV6VVzKlHZKDCJrzu9MZc2HUZiNUOw5D1pOC8LVMzv9gxIim3nChAiLYmHytdkAvBvahmDXwEwfa/xnH6b9B8HdHc+eXZ8ojszaN1+tElG5jU+uvagVQgghspPZa2HbAfBwgznDrbzWPboETq9TK1u1mqsmdTqQ0WJi6KUJWLDQOugVGgbUdej8gNpmzGDAtU4tXGvVcPj82U3UeSNbPo8FoM57fhR/XkoMCyGEsxy/CJ2+UKsfA3R9FYa0h3LFnBrW/W61zni2Dbh6ZPqwY8lnOJZyBjeNK62CXrFTcLahmEwkfvgRqd/PBMCzR1d8f5jqkMUnudHhpUkk3jDjk1dH1bdlQY0Q4uGWLl3KoEGDmDFjBrVr12batGk0adKE06dPkzdv3vv2DwwM5JNPPuGZZ57Bzc2NdevW0a1bN/LmzUuTJk2c8BNkjk3S0OvUqUOdOnVsMZTIwWasgmXbwUUHi0dDcICTA7pT2B5Y8x5EHFVfF28ALWZAiO3LhX15ZTo74//BU+vBvNITrXqwZmv6xb8BUiUipzm1IYUNH0djMUHplz15bVIQLm6S3SqEPW2M/ZPjKWfx0Xrxfj7ryhylpleJ8OjQBm1IiD3Cu8uNo2lc3Z+G1gWqdZKLWiGEEMLeLofD0PS2GV/2hNLWtM1IjoT16ZUhXvwUQh/SSNmOZoUv5kTKWQJ0fowuMsDh8ysGA6k/zgHAa4BUiTCkWFgzUK0IWKSOO/V6+zk7JCGEeCopCvywEob9qFY9DvaHOR9Bi+ecHdkDGFPVVtAAVaxbhbssaj0Ar+SpT6Crv60jsxlLQgLx7bti2LgFNBp8Jn6B15AB0g46iwzJFvbOTgCgbm8/XD1kQY0QDqcoYExxztyuXmDF788pU6bQs2dPunXrBsCMGTNYv3498+bNY/jw4fft36BBg7teDxgwgJ9//pldu3blvqSI8ePHExoayrvvvnvX+/PmzSMyMpKPPvrIJsGJnGP/KRg0Xd2e8B7Uq+DceDKkxsHWj2HfDPUXkFcQNP0aqnS26hdCZv0WtYGZ4YsBmFriUyp4l7H5HJllDruCcdce0GjwaPem0+IQ1jn6exKbR8eCAuWbe9F0bCBaFzn5F8KeLIqFr6+pN+p75Gtn1U0C8/UbalUewOuD9+0S371uVYko95oXvqFSZlkIIYSwJ0WBXpPUthnPVYQPrL20Wj8AUqIgtCLUv/9mkr1d1F9hSvp5zqgi/Z2StK//bSWW8Ai0BfLj/mYrh8+fnSiKwpZRscRcNOGTV8drE4PQ6uR6TwghHC0iBrpPhI171ddNasG84ZAvyLlxPdTpdWobLv8iUOT5TB+WZjHwe9QmANoHW9dyw5HMYVeIa/4WpqPHwdMT/4Vz8HijpbPDytEO/JJIaoyFgCIuVGjl7exwhHg6GVPgCyctaPssCdwy92/fYDBw4MABRowYkfGeVqulUaNG7Nmz57HHK4rC9u3bOX36NBMnTsxyyI6QpfSwmTNn8swzz9z3/rPPPsuMGTOeOCiRs8QmQrtRYDBCy+dhYFtnR4R65+roMvi2HPz7o/q6alfofwqqdrFLQsR/Scf56KL6D35Aga60CHzZ5nNY41a/VtcXnkNXqKBTYxGZc+CXRDaPUhMiKrf15tVxkhAhhCOsjdnG6dQL+Ot86ZWvg1XHps6cCyYTrs/XxbVaFfsEeIe4MBNnt6YCUKOrr93nE0IIIZ52c9bB1v3pbTM+Ap01nS9OrYWji0GjhdbzwMXNbnE+iKIoDL/0FXrFQH2/mrQJbubQ+W/FkPKNWmbDs0/Pp7789aGlSZzamIJGBy0mB+Ed5NhWKkIIIWD9HqjcTU2IcHeDb/rD+q+ycUIEwKFf1L8rd7Sqh9eWuL+IMyeQzzWEF/wf3Bfe2Yz7DxJTuwGmo8fR5gsl8M9NkhDxhFJizRkLap7v54/OVe4vCyEeLioqCrPZTGho6F3vh4aGEh4e/tDj4uPj8fHxwc3Njddee43vvvuOxo0b2zvcJ5Kl5YXh4eHkz5//vvdDQkK4cePGEwclcg5FgW7j4VI4FM+vZtQ6vaJV7EVY2xfOblRfB5WBljPVlhl2Em6IpPvZ4aQpBpoEvMCQgj3tNldmZbTOeDs7ZKmIR1EUhb2zEtj9nVrSrEZXX14c7C/l4YRwAJNiyqgS0StfB/xdMp9ooKSlkTpjLuC4KhH7FySiWKB4fQ9CSjv2wYoQQgjxtAmLuN02Y2wPKFPYioP18bA2vVXEc4OhYA2bx/c4y6I2sCthPx5adyYUG+aU6wvjP/sw7TsA7u549erm8PmzkxtH09gxIQ6AFwcFULCau3MDEkKIp0xqmtoq4we12CMVS8DCz6BCCefG9VjJUbfvc1fuZNWhSyPXAdA25DV0muyXiKdfuYb4jt0hNRWXis8SsG45uiLWnHCJB/l3TiKGZIW8z7hStqmns8MR4unl6qVWbHDW3Hbm6+vLoUOHSEpKYtu2bQwaNIgSJUrc11ojO8lSUkThwoXZvXs3xYsXv+v93bt3U6BAAZsEJnKGqctg7W5wc4Wln0OAMxetmo3w91TYMVrts6Zzgxc+hheGg4v9bjboLWn0ODucCGMUZT1L8G3JkWg1zu3RZTp5CtOhI+DigsebklmbnSmKwv+mxrNvnpq9+1w/P+q85ycJEUI4yMroLZzXhxGg86N7PuuSyPS/rcRyMxJtwQK4t37dThHelhJr5tiqZABqdpMqEUIIIYQ93WqbkZiitofs/5aVA2weBgnXILAUvPS5XWJ8lChjDGPCvgVgcMEeFPMo5PAYgIwqER5vt0UbEuKUGLKD1DgzawZFYzFB6Zc9qd7ZSWV0hRDiKXXoLHT6Ak5eVl8PbANf9gSPnJCfdmwZWExQoBrkLZ/pw64bbrIz/h8A2jqhWtSjKIpCyuRvSProM1AU3F59Bf8lP6H183N2aDleYriJ/xanV4kY4I9GK/eYhXAajSbTLSycKTg4GJ1OR0RExF3vR0REkC9fvocep9VqKVWqFABVqlTh5MmTjB8/PvclRfTs2ZOBAwdiNBp56aWXANi2bRvDhg1j8ODBNg1QZF+7j8Lwmer21A+gelknBhO2B9a8BxFH1dfFG0CLGRBi36AUReGjixP5L/kEATo/5pWeiI/O+b/kblWJcGvSCG1Qdq799nRTLArbxsVxaImaLdhgWAA1OsuDTiEcxWgxMe3aPAD65O+Er5W/v1O+/REAz949HFIK+tDiJEx6hdBnXSlcMyfcuRFCCCFyrnkb4I99WWybcWEH7J+lbreeC66OX6E36vI04swJlPcqTc/Q9g6fH8B87Tppy1cB4NW/t1NiyA4Ui8KGETEk3jATUNiFpmMDJQleCCEcxGKBab/Bx7PAaIJ8gTBvBDTJnp0kHuzwrdYZ71h12PKoDSgo1PGtQnGP7FF9QdHrMR0/ScqPc9DP/RkAz7698J32FRqXLD2qEvf4+8cEzAYoVN2d4s97ODscIUQO4ObmRvXq1dm2bRutWrUCwGKxsG3bNvr165fpcSwWC2lpaXaK0jay9E0zdOhQoqOj6dOnDwaDAQAPDw8++ugjRowYYdMARfYUGQcdPgezGdq/DO/Zf4Hsg6XGwdaPYd8MdSmPVxA0/RqqdHZIH49Z4UtYHr0RHTpmlBrrtNU3d1IUBf3i5YC0zsjOLCaFTSNjOLEmBTTwyqg8VHpLVgsJ4UjLozdwKe0awS556BZq3fJPR5eCNqZa+G+RmkBVs5tUkxFCCCHs6cpNGDJd3f6iB5QtYsXBhhRY1UPdrtUbir1g8/geZ3vcHlbF/IEWLZOLjcBV65yHDKk/zgaTCdcXnsO1SiWnxJAd7PspkYt/6XFx1/D61CDcfZ1bWVIIIZ4W1yLVts/bDqivX38eZg2FkACnhmWd6HNwZS9otFAx80mOiqJktM5oF9zcXtE9kjk8AtPhoxl/jIePYj51Rn2gAKDV4jt1Al79+zglvtwo5pIxo8Jo/QHSmlkIkXmDBg2iS5cu1KhRg1q1ajFt2jSSk5Pp1k297925c2cKFizI+PHjARg/fjw1atSgZMmSpKWlsWHDBn755Rd+/PFHZ/4Yj5WlK2ONRsPEiRP57LPPOHnyJJ6enpQuXRp3d1m1+DSwWOCdseqJZdkiMGOIQ/IP7qYocOw32DAAksLV96p2hSaTwDvYISHsjNvL2CvfAzCqSH/q+9d0yLyPYzrwH+Zz58HTE/fXs1dpNKEyGxXWDYvm7B+paHTQbFwg5V5zfoURIZ4mBouRadfmA9C3wDt46axbwXmrSoRH+7ccUgr62OpkUuMs+BfSUaaR9IMUQggh7OVW24yEZKhTHgZY2zZj22cQewH8C0PjCXaJ8VGSzSkMv/QVAN1D21LZp5zDYwB1JWjKTLUil9eAp/dhh8WssO8ntYR1w+EB5H3GzckRCSHE02HF/+C9SRCTAJ7uMKUf9GzhhHvYT+rwQvXvko3B9+ElzO/1T+IhLqVdw1vrRfPAl+wUnEoxGjGdOo3p8LG7kiAsNyMfuL8mMBDXKhXxGjoQ96aN7Rrb02b3d/EoZijxogcFq8mzOiFE5rVr147IyEhGjhxJeHg4VapUYdOmTYSGhgIQFhaGVns7uTs5OZk+ffpw9epVPD09eeaZZ1i4cCHt2rVz1o+QKU+0XCA8PJyYmBheeOEF3N3dURRFss+eAuMXqmVEPd1h2efg6+XgAGIvwtq+cHaj+jq4LLw+Q22Z4SDnU8Poff4zLFhoH9ycd0PbOGzux9EvWgaA++vN0PpI5YHsaP1wNSFC5wotvg6m1EvygFMIR1scuZarhnBCXYN5J29rq4413whHv2wFAF4fvG+P8O5iMSsc+FmtElG9sy9aFznXEkIIIexl/gbY8i+4u8Hc4Va2zbjyD+yZpm6/PgM8HN8Xe9LV2VwzhFPILR9DC/V0+Py36Bf/hhIVjbZoEdxff81pcTjbjSMGUmMsuPtqqNBKEuGFEMLeklLgw+9h3nr1dbUy8Mun8ExR58aVJYpyOymiinWtM5ZEqVUiWgY1snoRyKNYYmLSqz7ckQBx/CSkVxO/i0aDrnQpXKpUxLVyRVzS/2gLFpBnSHYQccLA6c2poIH6/f2dHY4QIgfq16/fQ9tl7Ny5867XY8eOZezYsQ6IyraylBQRHR1N27Zt2bFjBxqNhrNnz1KiRAm6d+9Onjx5+Prrr20dp8gmth+E0erCWqYPggolHDi52Qi7p8DOz8GYCjo3eOFjeGE4uDgu8zHBlES3s0NJMCdRw6ci44oNzTYncorZjH7p74C0zsiuwv7Vc2ZzKloXaD09hGL1pLebEI6mt6Tx7fWfAPigQGc8tdb9O0ydOVctBf1cXVyrV7VDhHc7uy2VuCsmPPy1cjNdCCGEsKOrN2FwetuMMe9a+QDFlAYr3wXFApU7QRnHV+07lHSCuRFqkvyEYsPw1jl6BYNKURRSvvkBAK++vZ7qHuHnd6YCUPx5T3Su2eO+gRBC5Fb7TkKnL+DcNbUixLC3YXQ3cHN1dmRZdPUfiDkPbt5QrlWmD0s0J7MuZjuQ9dYZitmM+fwFNenh0JGMJAjL1WsP3F/j64tLpQq4VK6AS+X0JIgK5dF4yz0MR/nrm3gAyjXzIqSsVKYSQogHydKV6YcffoirqythYWGUK3e7FGO7du0YNGiQJEXkUjeioeMYtX1Gt2bQpakDJw/bA2veg4ij6uviDaDFDAgp68AgwKyY6Xt+FOf1YeR3y8uc0hNw12afkwzj/3ZhuX4DTUAA7k0aOTsccQ9FUTJOUCu18ZGECCGc5Nebqwk3RlLALZS3Q1padaxiMJA6Yy4AXh+8Z4/w7p5PUdg3Xy25XKWDD25e0oNaCCGEsAdFgfcm326b8aG1OeZ/joPIE+AdAs2m2SPERzJaTAy9NAELFloHvULDgLoOjyEjlv/twnT4KHh54dmji9PiyA5uJUWUbCjXfkIIYS9mM0xcBJ/PB5MZCoXAz59AA/uvYbCvQ7+of5d7Q02MyKS10dtItegp6VGE6j4VMn2c6fQZUqZ+j+nQUYxHj0NKygP30xYrqiY9VLld/UFXrCgardyvcJawf/Vc2q1H6wLP9ZUqEUII8TBZSorYsmULmzdvplChQne9X7p0aS5fvmyTwET2YjKpCRE3Y6FiCfh2gIMmTo2DrR/DvhnqXSqvIGg6RS0Z5oTqDBOvzmR7/N94aNyYV3oiIa6BDo/hUfSLfwPA461WaNylb1h2c36nnhuHDbh4aqj7nuNL6QohINWs57sbPwMwoEBXqxPb9L+txBJxE22B/Li/YV1CRVZcPZBG+FEDLu4aqnaQlkhCCCGEvfy0ETb9o7bNmPORlW0zwo/A/8ap2699r163Otis8MWcSDlLgM6P0UUcdcH+YCnf/giA5zvt0ebJ49RYnCk2zEj0eRNaFyj+nLRMFEIIe7gcDl2+hL+OqK/fagAzhkAeX6eG9eQO/QL7Z6nbVTpZdejS9NYZ7UNaWFXdOHHAMAybt95+w8MDl4rPpre+UCtAuFSqgNZfHrpnJ3cuwqv4pjcBRZ7eCl1CCPE4WfoNmZycjJfX/WUYY2JicJcHsbnS6Pnw5yHw8YRlY8DL3oscFAWOLYMNAyEpXH2valdoMgm8g+08+YOtjNrM9Btqhu7XJT6hkvczTonjYRSDAf3y1QB4dHjLydGIe1nMCru+VU9Qq3f0wTvYmrusQghb+fnm70QaYyjslp+2wdb3t864yd+7BxpX+9fgvFUl4tmWXngHye8NIYQQwh7ubJvxeTcoV8yKg80mWNUdLCa1tHWFNnaI8NEu6q8w5docAEYV6U+wE5P3zZcuk7ZKfRjj1b+30+LIDs7v1ANQqLo7Hv6yelYIIWxt8VboOxXik9R71t8OhM5NnLKOzrZ2TYbNQ9XtSh2hZONMH3ou9RL7k46iQ8ebQZkv86zo9Rj+3AWA74/TcGtQH13pUmisyhIVzpCxCM9DQ933JWFFCCEeJUtJEfXr12fBggV88cUXAGg0GiwWC1999RUNGza0aYDC+TbshfEL1e1Zw6BMYTtPGHsR1vaBs5vU18Fl4fUZassMJzmcdJIhF9WVP/3yv0OroFecFsvDGDZvRYmNRZs/H64v1nd2OOIepzakEHXWiLufhprdpEqEEM6QbE5h+g31C+3Dgu/iprUuqcH4zz5M/+4HNze8enWzR4h3iTpv5MKfetBAjS45fZmLEEIIkT0pCrz/tfpApVa5LLTN2DMNru0HD39oPt3hT2IURWH4pa/QKwbq+9WkTXAzh85/r5QfZoPFglvjl3ApX+7xB+Ri53ekt85oIFUihBDCluKT4INp8Osf6us65WHBp1CyoFPDenIWC2wZBrvTW5PX+xCaTLbq3GJp1HoAXgqoS6hb5hcWGvf8A3o92vz58Hyvu1UVJoTz3LkIr1pHH3xCJIlFCCEeJUtJEZMmTeKll15i//79GAwGhg0bxvHjx4mJiWH37t22jlE4UViEWoIMoE9raPeSnSeMPgc/Voe0BNC5wYufQP2PwMV5FUhuGqJ59+xH6BUDL/vXY1gh+/eQz4qM1hnt3pQs3mzGbFTYPV09Qa31rp+sEhLCSeZF/EaMKY7i7oV5MzjzKyZuSfluBgAeHdqgzZvX1uHdZ396lYjSL3uSp6j9q1IIIYQQT6MFm2HjXrVtxrzh4GLNXZLos7DtM3W76RTwK2CXGB9lWdQGdiXsx0PjxoRiw5z6EENJTiZ19k+AVIlIjTdz9WAaIEkRQghhS7uPQuexcCkctFr4tDN88o6V39/ZkdkIK9+Fw+krE5t8Bc8NsSohwmgx8VvUBgDahzS3anrD1h0AuL30oiRE5CB3LsKr9a4swhNCiMex+nTBaDTSv39/1q5dyx9//IGvry9JSUm88cYb9O3bl/z589sjTuEEBiN0GA0xCVCjLEzuY+cJFQXWvKcmRBSoDm/9CiFl7Tzpo6VZDPQ4N5xwYySlPIryfcnP0WmyX8KBkpyMfrWaCezRwfHlWsWjHfk9ifirZryCtFR928fZ4QjxVEowJTHjxq8ADCrYHReNdadA5vAI9MtWAOD1wfs2j+9eSTfNnFiXDEDNblIlQgghhLCHa5Hw4Xfq9mhr22ZYLLCqJ5j0ULIRVLN/Fal7RRljGBP2LQCDCvagmEchh8dwp9RfFqPExaErWQK3Zk2cGouzXfxLj2KGoFIuBBTO6U/qhBDC+YwmGPszjFuofgUXywe/fAb1Kjg7MhtIS4KlbdSqyVodtJoLVbtYPcyO+D1EGmMIdsnDy/7PWXWsYdufALg1kirgOcVdi/C6ySI8IYTIDKuvzFxdXTly5Ah58uThk08+sUdMIpsYPhP2noAAH1jyubpyxq7++wkubAdXT2i3DAJL2HnCR1MUhY8vTeJA0jH8db7MLzMJP5fs+UBbv2Y9pKSgK1kCl5rVnR2OuIMhxcLeGQkA1H3fDzcvOUEVwhnmRCwlzpxIaY9itAxqZPXxqTPngtGIa706uFavaocI73bw10QsJihYzY0ClZ1XLUkIIYTIre5sm1HzGRhkbduM/bPg0p/g6gUtZzmlgfmoy9OIMydQ3qs0vfJ1cPj8d1IUhZRvfwTA64P30Gif7uue8zvV1hmlpEqEEEI8sfPX4J2x8M8J9fU7TeDbAeDn7dy4bCI5Cha+Blf/Tb8n/huUfS1LQy2NWgfAG8FNcdVm/rGPJT4e474DALi93CBLcwvHO7JcXYTnHaylasfs+cxCCCGymyxdpXbq1Im5c+faOhaRjaz4H3yjdmNg/sdQ3N4FQJIiYNNgdfulz52eEAHwa+RqlkStQ4uWH0t9QQmPws4O6aH0i5cD4NHhLSlxls38tyiJ5CgL/oV0VHpLTlCFcIY4UwKzwhcDapUIayv+KAYDqTPU8x6vD+zfQsmQbOHwsiQAanaT8odCCCGEPfyyGTbsATdXmDfCyrLb8VfUnt8AjcdBnuJ2ifFRtsftYVXMH2jRMrnYCKseftiDYesOzCdPo/H1xaPbO06NxdnMRoWLu/QAlGwoSRFCCJFVigI/bYRq3dWECH8f+HUk/PRxLkmIiLsMc55XEyI8A6Hb9iwnREQZY9gap7Y1bxds3RiGP3eBxYKudCl0hZ1bdUpkjiHFwp70RXh1ZBGeEEJkWpaumk0mE/PmzWPr1q1Ur14db++7z0KmTJlik+CEc5y/Bt0nqNuD28Pr1lXbypoNAyE1FvJXhbofOmDCRzuSfIrPLqv/HQ8v9D4v+td2ckQPZ4mJwbDpD0BaZ2Q3+gQL/85TT1Dr9fFH5yoJK0I4w8zwxSSakynnWYrmgS9Zfbx++Sos4RFoC+TH/c1Wtg/wHkeWJ5OWqBBY3IWSL3rYfT4hhBDiaXM96u62GeWLWXGwosCa9yEtEQrXhdr97BHiIyWbUxh+6SsAuoe2pbJPOYfHcK+Ub34AwKNbJ7R+T3dS59X9aRiSFLwCteSvaO+Sm0IIkTvFJEDvr2H5TvX1C5Xh50+gSKhTw7Kd8KOwoCkkXgf/wtB5M+TN+vf571GbMSlmqnqX5xmvklYda9i2EwC3l1/M8vzCsQ4uTCIlOn0R3puyCE8IITIrSylkx44do1q1avj6+nLmzBn++++/jD+HDh2ycYjCkfRp0G4UJCTDcxXhy54OmPTMBji6BDRaaDkbdM5d4RJriqfX2Y8xKEaaBLxAn/ydnBrP4+h/Xw1GIy6VK+JS3vk3w8Rt++YnkJagEFTKhXKveTk7HCGeSjHGOOaGLwNgSKEeaDXWn/qkppeC9uzdA42rq03ju5fZqHBgQSIANbv6otFKMpUQQghhS4oC70+GuCSoURYGt7NygCOL1GtYnZva81trXQUqW5h0dTbXDOEUcsvH0EKOuGh/NNPZcxjWbwKNBq9+9q+qld2d26G2zijZwFPO5YQQIgt2HIQq76oJES46GNcLtk7NRQkRl/6CufXVhIi8z0LPv58oIUJRFJZErQWgXUhzq483bN0BSOuMnCI13sy++eoivOf6ySI8IYTtTJ8+nWLFiuHh4UHt2rX5999/H7rvTz/9hEajueuPh0f2X9yXpafPO3bssHUcIpv48Hv47ywE+8OikeBq7/yEtCRY01vdrvchFKxu5wkfzaJY6H9+DFcMNyjmXpCpJT7N9u0o9IvVPidSJSJ7SY4yc2ChWv6+fv8AtLrs/d+RELnVDzcWkmxJoaJXWZoEvGD18cZ/92P8Zx+4ueHVq5sdIrzbqY0pJEaoPSHLtcgN9UCFEEKI7GXhFlif3jZj7nAr22Yk3YQNA9TtBiOf6AFGVh1KOsHcCDXhc0KxYXjrnJ98nfL9TADcmjXBpXQpJ0fjXIqicH5nelKEtM4QQgirGIwwci5MXqImMZYuBAs/gxrPODsyGzqxCn5rD6Y0KPIcdFoLnnmeaMhDySc4k3oRD40bLQMbW3Ws+UY45hOnQKPBraH190yE4+2bl0haokJwaVfKNXP+eaAQIndYunQpgwYNYsaMGdSuXZtp06bRpEkTTp8+Td68eR94jJ+fH6dPn854nd2fpUIWkyJE7vTrHzBrDWg08MtnUOjB/53b1rZPIT4MAorBS587YMJH++7GArbH/42Hxo2Zpcbh7+Lr7JAeyXztOsadfwHg0f4tJ0cj7rR3VgKmVIX8ld0o2TD7Z8gJkRvdNEQz/+ZyAIYU6pmlE7OU72YA6u9Y7UNOAG1FURT2zVerRFTr6IuLW/Y/kRRCCCFykhvRMPBbdXtkF6hQwsoB1veHlGjIVxnqD7N5fI9jtJgYemkCFiy0DnqFhgF1HR7DvSwJCejnLwTAq39vJ0fjfFFnjCRcN+PirqFoHXdnhyOEEDnGqcvwzlg4eEZ93aM5fN0XfHLTM9/9s9UWXIoFyraAtkvA7cl/wCWR6wBoFtgQPxfrWikYtv8JgEvVymiDgp44FmFfSTfNHLy1CG+Av1SkEiKbUxSFVIveKXN7aj2suhc+ZcoUevbsSbdu6qLAGTNmsH79eubNm8fw4cMfeIxGoyFfvnw2iddRJClCAHDyktqnDeCTd+CVmg6Y9Oq/sDf9jlTLmeDm3BWxf8XvY/LV2QB8WWwIFbzLODWezNAvWwGKgutzddEVLeLscES6uKsmDi+74wQ1B2TICZEbTb/xC3pLGlW9n+Vl/3pWH28Oj0C/9HcAvD5439bh3efS33qizhpx9dRQua30hBRCCCFs6c62GdXLwtAOVg5wcjUcW6q2y2g9D3T2ban1ILPCF3Mi5SwBOj9GFxng8PkfRP/TQpTERHTlyuLW+CVnh+N059KrRBSp446rZ5Y61gohxFNFUWDmGhgyHVLTINAPZg2F1rmpaIGiwM6xsH2k+rp6d2gxwyYtpFPNelbH/AFksXXGtp2AtM7IKfbMiMeUplCgihslXpRFeEJkd6kWPaUPOOca6Wz17XjpMle5zmAwcODAAUaMGJHxnlarpVGjRuzZs+ehxyUlJVG0aFEsFgvVqlVj3LhxPPvss08cuz1liys0a/qU3GnJkiVoNBpatWpl3wBzueRUaDtK/fulajCyqwMmNRthVQ/1pLByJyj1igMmfbgbhpv0PT8KCxbaBzenfUgLp8aTWbdbZ0iViOzk7x/isZigaF13itSSE1QhnOGG4Sa/3FwJwLBCvbKUnJQ6ax4YjbjWrY1rjWq2DvE+t6pEVHrLGw//bHGKJoQQQuQav/4B6/5WW0TOs7ZtRmocrE2vgvDcEChg//OCe13UX2HKtTkAjCrSn2DXQIfHcC/FYiHlO7V1hlf/3pIMDpzfoa4EKyWtM4QQ4rEi46DVx9B3ipoQ8XJ1ODw/lyVEWMyw/oPbCREvfgItZ9skIQJgY+yfJJqTKeyWn3q+1p2fKIqCYavaJl2SIrK/2DAjR1ckA1B/oCzCE0LYTlRUFGazmdDQ0LveDw0NJTw8/IHHlC1blnnz5rF69WoWLlyIxWKhXr16XL161REhZ5nTK0VkpU8JwKVLlxgyZAj169d3YLS5j6JAnylw4hLkC1T7tOl0Dph41ySIOApeQfDqFAdM+HBGi4n3z31KtCmWZ71KM7bYYKfGk1mms+cw7TsAOh0ebVo7OxyRLuqckRNrUwCoPyDAucEI8RT77vrPpCkGavlUpr6f9eWPFIOB1B/VBw9e/e1fJSLihIGwvWlodFDtnezdukkIIYTIae5qm9E1C20zNg+BxBsQVAYajrJ1eI+lKArDL32FXjHwvF8N2gQ3c3gMD2LYuAXzufNoAgLwfMfa0hu5T1KkmfBjBgBKvChJEUII8Sib/oF3J0BEDLi5wvhe0P8t0Oam9QGmNFjeCY4vV/tVN/sG6nxg0ymWRK0FoF3Ia2g11v2PZz53HsuVq+Dqitvzzm/JJR5t9/cJWExQ7HkPCteQRXhC5ASeWg/OVt/utLntqW7dutSte/u7o169epQrV46ZM2fyxRdf2HXuJ+H0pIis9Ckxm8107NiRzz//nL/++ou4uDgHRpy7zNsAC7eoJ5yLRkGoIxabRJ2BnWPU7VengneIAyZ9uLFXvmd/0lH8dD7MKjXO7r8sbEW/ZDkAbo0a2r3Pvci8Xd/GgwKlG3uSr4Kbs8MR4ql0Ne0GiyLXADA0i1Ui9MtXYQmPQJs/H+5vtrJxhPfb95NaJeKZpl74F3D66ZkQQgiRayiK2ioyNhGqlclC24zz2+DAXHW71RxwdfzD7mVRG9iVsB8PjRsTig3LNisDU775AQDPHl3QeDu3HWZ2cOFPtXVGvopu+IQ4YrWJEELkPPo0GDELvlVva1K+mLpIr3Ipp4Zle/p4WNQaLu5QW269uRAqtrXpFGFp19mdcAANmiwlTN5qneFar7Z8j2dzN08ZOLXh1iI8fydHI4TILI1Gk+kWFs4UHByMTqcjIiLirvcjIiLIly9fpsZwdXWlatWqnDt3zh4h2oxTcy9v9Slp1KhRxnuZ6VMyZswY8ubNS/fu3R87R1paGgkJCXf9EarD56D/NHX7i+7wYhUHTKoosOY9NVO2ZGO1dYYTrYneypyIpQB8U2IkxTwKOTWezFIUBf2iZQB4dGjj5GjELTeOpHFueyoaLTzfT05QhQDnfA9/e/1njIqJ5/yqU88va+WtU7+bAYBn7x5oXO3bMzz+monTm9WL25rdpEqEEEII25HrYVi8Fdbuvt02w9Wa3ENDMqzuqW7X7gvFHF+pMsoYw5gwtczFoII9KO5R2OExPIjpxEkMf2wHrRavvr2cHU62cG6HmhRRqkH2v/EphHAM+R6+29HzUPu92wkRfVvDv7NyYUJEYjjMbaAmRLj5wDsbbZ4QAbAscj0A9f1qUsg9v9XH30qKkNYZ2d+ub+MBKNvUk9BysghPCGFbbm5uVK9enW3btmW8Z7FY2LZt213VIB7FbDZz9OhR8ue3/vvIkZyaFJGVPiW7du1i7ty5zJ49O1NzjB8/Hn9//4w/hQtnjxsIzpaQDO1Ggd4Ar9aBYW87aOKD8+DiTnD1gpYz1dJhTnIu9RJDLo4HoG/+d3glT85pxWI6fBTzqTPg7o576xbODkek++sb9QS1/OteBJW070NUIXIKR38PX9ZfY2nUOgCGFuyZpTGM+w5g3PsvuLnh2aubLcN7oAMLElHMULSuO3mfkYtbIYQQtvO0Xw+HR8OA9LYZn3WBiiWtHGDrpxB7EfyLQOPxNo8vM0ZdnkacOYHyXqXplS/7tKhISU8gdW/5GrpiRZ0cjfMZUiyE7U0DoGTDnFF9Ughhf0/79/AtFouaCFH7fTh2EfLmgbUT4duB4Onu7OhsLPoczK4H4YfAOy90/xNKvmzzaSyKhWVRGwC1dYa1FIsFw47/AZIUkd1dPZjGhf/p0ejg+Q9kEZ4Qwj4GDRrE7Nmz+fnnnzl58iS9e/cmOTk5o8tD586dGTFiRMb+Y8aMYcuWLVy4cIGDBw/SqVMnLl++TI8ePZz1I2RKjurSlZiYyDvvvMPs2bMJDg7O1DEjRowgPj4+48+VK1fsHGX2pyjQ8ys4exUK54WfP3ZQv7bEcNg0RN1+eQzkKe6ASR8sxZxKr3OfkGxJoa5vNYYVylkrW/SLfwPAvXlTtH5+To5GAFzeoyfsnzR0rlCvj5ygCnGLo7+Hp16fh0kx08C/NjV9K2dpjFs3+T3avYnunsRNW0uNN3NkRTIANbvJ73MhhBC29TRfDysK9JkCMQlQtXQWFgKE7YG936jbLWeCu+OrOW2P28OqmD/QomVysRG4arNHiy1LbCypCxYD4DWgj5OjyR7C9qZhSlPwK6gjuLQkyAshVE/z9/AtN6LhtY/gw+8gzQDN6sLh+dCsjrMjs4NrB9SEiNiLkKcE9PobCmSteuXj7ErYzzVDOP46X5rkecHq402Hj6JEx6Dx8cG1ZnU7RChsQVEU/poWB0DFN7zJU1TOMYQQ9tGuXTsmT57MyJEjqVKlCocOHWLTpk0ZRQ3CwsK4ceNGxv6xsbH07NmTcuXK0axZMxISEvj7778pX768s36ETHHqFbW1fUrOnz/PpUuXaNHi9sp4i8UCgIuLC6dPn6ZkybuXfri7u+PunttSTp/MDyth+U61bOiS0RDkqOe3GwaAPg4KVIc6Axw06f0UReGjSxM5nXqBUNdgfig5BhdN9ri5lBmKxYJ+iVpnTlpnZA+KomRUiajc1gf/Ajnnvych7M2R38PnUi/ze9QmAIZksUqEOTwi43es1wfv2yy2hzm8JBlTqkLeZ1wpWlfOV4QQQtjW03w9vGQbrN4FLjqYN8LKthmmNFjVXc2sqNIZSje1W5wPk2xOYfilrwDoHtqWyj7lHB7Dw6TOXQApKbhUqoDrC887O5xs4c7WGRonVsQUQmQvT/P3MMCa3dBzIkTFg4cbTO4D77dyauFg+zm/FRa1BkMS5K8KnTeCj/0WWSyNVCtktgpqjKfW+gpFhq07AHB98Xm7twwVWXfxLz3XDhpwcddQ931ZSCOEsK9+/frRr1+/B362c+fOu15PnTqVqVOnOiAq23JqpQhr+5Q888wzHD16lEOHDmX8ef3112nYsCGHDh16akuQWWPfSRg8Xd3+qjfUedZBE59eB8eWgVYHLWeDznkPjRfcXMmK6M3o0PFjqS/I6xbktFiywvj3XixhV9D4+eHerImzwxHA2a2phB8z4OqpoXYvOUEVwlmmXZ+HBQuNA56nqk/WvuBSZ80DoxHXOrXsvlrClKZwcFEiADW6+soNdCGEEMJGImKgf3qRh087QyVr22bsHAuRJ9Wy168650bPpKuzuWYIp5BbPoYWylqypz0oJhMp388E1CoRcv4CikXhwp9qUkTJBp5OjkYIIZwvORV6fw2tP1YTIiqXgn2zoXfrXJoQcWQJ/NJMTYgo8RK8u9OuCRFxpgQ2xv4JQPuQrLVVNmzbCYBbo4a2CkvYmGK5vQivSgcffENlEZ4QQjwpp/8mHTRoEF26dKFGjRrUqlWLadOm3denpGDBgowfPx4PDw8qVKhw1/EBAQEA970v7heTAO1Gg9EErV+AD9500MRpibCmt7pdbxAUqOqgie/3X9JxRodNA+Djwr2p7VvFabFkVUbrjNYt0HjKDRdns5gVdn2nnqBW7+yLd5DOyREJ8XQ6nXKBVdF/AFmvEqEYDKTOmAuAZ3/7V4k4sTaZlGgLvvl1lG3iZff5hBBCiKfBnW0zqpSC4Z2sHODGYfhrgrrdfDp4Bdo8xsc5lHSCuRHLAJhQbBjeuuxznpC2Zj2Wy2FogoPweLuts8PJFm4cNZASY8HNR0OhGk/vinAhhAA4eAY6fQGnw9TXg9vDF93B3c25cdnNnm/V6sgAFdr+n737Do+i6gI4/Nu+6SGF0Hu1AdJEqYIVCzawI0hTARWkivRmQRFUUJpYwQoqikoTlA42UCEQekkhPdk+8/0xAfFTkWy2hvM+Dw+zSfbeE6KZmTvnngN3vAVG/54Llp36FofqpHFEPS6NbFjq96tOJ84NGwEwd+7g6/CEj/yxspjMPS7M0Tpa9wl8GzchhCiPgp4U0aNHDzIzMxk7diwnT56kadOmf+tTotcHtaBFuaAo8NBUOHQS6lSBBSMCmJm76mnIP6r1Uus0PkCT/l22K4/++8bgVF3cWKEj/SuVtqls8KkuF/YPPgGkdUao+O2LYrLT3Fjj9LR8SC5QhQiWGcfmo6JyY4VOXBLVwKsx7B8vQzlxEn2lFKx3dPNtgP9HVVS2vVlSJeLBGAym8rhdRgghhAi8pWtg2QYv22Z43FrbDMUNF90Ol9zptzj/jUtxM+zgdBQUbku8lk7xf6+iGUzFs+YAENmvFzpr6ct1l0f7S1pn1G5rlWs6IcQFy+OBF5fCMwu0DXlVkmDRKOjSItiR+Ymqamve66dpr1sPhBtfhgA8xzjdOqNHclevKja5Nm+F4mL0FZMxXhKoMtKiNDwulR9m5wPQslcMEfGyCU8IIXwh6EkRULo+Jf/vzTff9H1A5dCLS2HFJi0r94MJEBcdoImPbIYtr2jHt8wFc3B2uCiqwuC08RxznqSWpRozaj8dlmU+navXoWadQpechLlzx2CHc95Opbmw5SpUu7x87ZpxO1U2vqpViWj1cAyWGEngEiIYdhXtZUXOWnToGFr1Ya/Hsc3WSkFHPNIHndm/21j2rbWRc9CNJVbHpXdE+XUuIYQQ4kJxdtuMpx/UynWXysYX4fgOsMbDTa/4Orzz8sbJ9/mtOJV4QyzjazwelBj+jeunX3B99z0YDEQ82i/Y4YSMfeu0pIh6naSSoxDiwnQkAx6aAut+0l7f1h5efwoS44Ialv943PBZf9i5UHvdeTJ0GB2QHYi/Fe/jl+I/MOmM3J7oXVvl060zTFd3CMv18QvBrk+LyD3iJjJBT/MHZBOeEEL4SkgkRQj/2vAzjJ6nHc8cBM2820Bbem4nLOurZc42fRDqXROgif/u5eOLWJu3Gavewrz604g1BiorxLdOt86wdr8dnTE8/vdVVZWP+mZSkO7htleSylWP1V8+LCT/uIfoigaa3Rue/00JUR68eExreXFLQhcaRZa2abjGtW0Hrk1bwGQiol9vX4b3j7Yt0qpENO0ejTlSEqqEEEKIslJVeOwlOFXSu3zkfaUcIGsvrBmnHd/wEsRU9nmM/2Wf7SAvHpsPwLgag0kyBb51x7kUz54LgOXObhiqVglyNKEh97CbU/vc6AxQu235udcVQojz9eFaGPAC5BZCVIS29tzrxgBWKA40ZzF80AP2fAE6PdzyOrToE7DpT1eJuCa+HYmmCl6N4Vy1DiCsNtxdSFw2hY1ztE14V/SLlTUjIYTwIfmNWs5l5MC9E7USZvdeA31vDuDk3z8PGbsgMgmunxHAif/qu7wtzCh5YDat5jAuiiztdqHQoNpsOD75DCCsercWpnsoSPcAsPKZbIqyPEGOyDecxQqbX9fKmLUZEIvJKr9OhQgGVVW5NKoB8YZYhpShSsTpRX5rjzswVErxVXj/6NiPDo7/5MRggmb3Sca/EEII4QsfroVP15e0zRgJZlMp3qwosKwPuO1Q71po1tNvcf4bl+Jm0P4J2FUnHWJbc1fSjQGP4VyUzEzs7y4FIPLxR4McTejY/51WJaJacwvWOLknFEJcOAqKofc0uHu8lhDRshHsmA+9u5bjhIjibFh8jZYQYbTCPZ8GNCHCqbj4+NRKAO5OvsmrMZSCAlxbtwNg6dLJZ7EJ3/nx/UKKMhViqxi4rLtswhNCCF+SO7ZyzOOB+yfB8SxoXBPmDAngRWnWXvhuknZ840yISgrQxH91zJHOY/vHoaJyX/KtdE/uGpQ4fMGxYiVqYSH6mjUwtWkd7HDOW2aq68yxLUfhqzHZqKoaxIh8Y+fbhRRnK8TXMHLJbVL6Xohg0el0PFn1YbY3W069iJpejeFJT8e+9GMAIgc/4svw/tHpKhEX3RxFdLL0hRRCCCHKKiMHBs3Ujkc/AE3rl3KAbXPh0AYwR2k7PoPwNGfm8YX8UvwH8YYYZtQZHXLlrIvfWAQOB8aWzTFd0SrY4YSMfWuldYYQ4sKzeTdc/jAsXqmdMkc/ABtehfrVgh2ZH+Udgfnt4PBGrc3WQ99C41sCGsK3ud+T486jkimJDnHenYtd638AtxtDndoYanm3hiL8x56vsHW+tmZ05WNxGM2hdT0ohBDhTpIiyrGpb8PqHRBphQ8mQnRkgCZWFFjeD9wOqHcdXHZvgCb+K6fiov++p8lx53FpZEMm1nwyKHH4ypnWGXffGXILZOeSVZIUkXKxCaNFx8Hv7fz4XmGQoyobW56HbW9qVSKuGhiLwRQ+Pw8hyqsIvdXr99reWAROJ6bWLTG1bO7DqP4u+6DrzOJ5i55SJUIIIYTwhYEvQVYeXFYXRt1fyjfnHoZvRmjH10yHCrV8Hd5/2lm4m9nH3wJgaq3hVDZXDHgM56K6XNhe03pyRg5+JKzuR/3JnqdwdIcDgLodJClCCFH+ud0w6U1oPwjSjkONFFjzMkzqA6bw6PLrnYzf4Y0rIfM3iK0KfTZAzbYBD2NJSeuMO5NuwKjz7h/cuXodAObOHXwVlvChbYvysecrJNY1ctFNgXqYI4QQFw5JiiinVm2HCW9qx68NgYtqBXDynQvg4HdgioRb5gatZtrEw7P4sWg3cYYY3qg/FaveEpQ4fEHJy8Ox4msgvFpnAGTu0ZIi6l8dSfuhcQB8NyOXrH2uc70tpG1dUICjQCW5gYlG18sFqhDhTHW5sM3RendHBKBKxPbFBaBC3U5WEuuWpq63EEIIIf7Jh2vh4++8bJuhqvBZf3AWQo2roFXg20IUe2wM3j8BDx66JVzDrYldAh7Df3F8vAzl+An0lVKwdr892OGEjAM/2FA9kFjXSHyN8vw0UAgh4MAJ6PQ4jF+kVSe+uzP8uADaNwl2ZH52eBPMbwv5RyGpIfTdCCmXBDyME84M1uVtBqB7knetM+DspIiOPohK+FJRlocd72gbCdsOjkNvkCRUIYTwNUmKKIeOZ2ltM1QVHu4KD1wXwMkLTsDXw7TjzpOCsssGYPmpb1mU8REAs+qOo4alSlDi8BXHp5+Dw4HhokYYL7042OGUyulKEckNTTS7J5ra7ax4nLBi+CncjvBro1GY4eHHd/+8QNXp5QJViHDm+HgZyomT2iL/nd38OldRlofdy4sAaNkr1q9zCSGEEBeCzFytSgRoFSKaNSjlAD+/A6krwWiBbgtAH/glkslHXuGA4wiVTMlMqfVUwOc/H8Wz5gIQMeBhdGZzkKMJHfvX2gGo21GqRAghyi9VhXe+gWa9YeMuiImEt8bAu2MhvrwXP9yzAt7sDLZsqNYa+nwP8TWCEspHWV+hoNAqugl1I7yLQcnIwP3LLgDMV0uliFCz+Y183DaVypeZqXe1XFsIIYQ/SFJEOeN2w70TtMWhJvXg5ccDHMCKwWDPgyrN4YrBAZ5cs9d2gKcOTANgUOWedIm/Kihx+JL9vQ8AsN5zV1iVKvW4VE6laUkRSfVN6HQ6rp+UQESCnsy9Lja8nBvcAL2waW4ebodKlaZm6nTwvly/ECI0FM9+HQjMIv+P7xXicULlJmaqNpMHCkIIIURZDZqptc24tI7Wz7xUCtPhyye0447jILmhj6P7b+tyN7M44xMAXqozhnhj6CVNurbtwLVpC5jNRAx4ONjhhAyPS+XA91pLtHqd5MGFEKJ8yi3QNt71nAIFxXDVpfDjQrjvmmBHFgA734T3bgWXDRrcCL1WQ1RSUEJRVZWlmSsAuDu5DFUi1nwHgLHJpeiTk30Sm/CN3KNufv5A24TX7vG4sFr/F0KUH6+++iq1atXCarXSunVrtm7d+q9f27FjR3Q63d/+dO3aNYARl54kRZQzzyyADb9oWbtLJ0BEIDtG/P4Z7P4I9AboNh8MgS8fWeQppl/qaIoVG1fFNmdYtb4Bj8HXPOnpZ0qbWe+5K7jBlFL2QReKG8xROmKrGACISjJw/cQEAHa8VcjBjfZghlgquYfd/PqJtsu73RNygSpEuHNt34lr42YwmYjo799Ffmexwk9LtBvclg/FyO8PIYQQoow+Wqe1zjAYYOGoUrbNAPhikLbzs3IzaBv4Cg3ZrjyGHJgCQK+Kd9I+rlXAYzgfxS+/BoD17jsxpKQEOZrQcXSHA0eBSmSCnkqXSrKrEKL8Wf8zNHsYlqzWzrUTesOamVC7crAj8zNVhfXPwqe9QPFA0wfh3mVgjgpaSNsKf+GA4wiR+ghuSrja63Gcq7WkCGmdEXo2vpqH4oaabSzUaC2b8IQQgbd06VKGDBnCuHHj2LlzJ02aNOG6664jIyPjH7/+k08+4cSJE2f+7Nq1C4PBwF13hfYzTGl6WI58sRGee087njcc6lcL4OT2fPiipP/qVU9B5aYBnFyjqirDDkwn1X6QSqYkXqs7EYPOEPA4fM3x4aegKBhbtcBYt06wwymV060zTleJOK1uxwia9Iji56VFfPX0KXp+UonICqH/s/qh5AK1Vlsr1VvIBaoQ4a54tlYK2tr9dgyV/LvIv+uTIuz5CvE1jFIGUQghhCijs9tmjLwPLi9t24zfPoXdH5Yk9C8AQ2kzKspGVVVGH3qedFcWda01eLr6YwGd/3x5TpzE/oFWySJy8CNBjia07F+rVYmo0yFCen4LIcoVlxsmLILp72r5AXWrwltPwxXh1c3XO7Yc+HYUbNMqStJ2OFw7HYK8qWFJ5ucA3JLQmShDpNfjnN50J0kRoSUz1clvXxQD0O7x+OAGI4TwKVVVobg4OJNHRpZqU96LL75I37596dWrFwBz585lxYoVLFy4kJEjR/7t6xMSEv7yesmSJURGRkpShAiMQyfhoana8cDb4a5OAQ5g1WjIPwYJdaHTuABPrnkz4yOWZ3+LUWdgbr3JJJkS/vtNYcD+3ocARNwb2r9M/knWXi0pIrn+3xcZOz4Vz5GtDrIPuPl2fA63zEwM6Z3TmXuc/P7l6QvUuCBHI4QoKyUjA/uSjwD/L/IrbpXtbxcA0KJnjCycCyGEEGU0+GUtMeLSOjDmwVK+2ZYDn5ck9LcdAVWa+Tq8/7Ts1Dd8nr0aAwZm1RlHhCE0E65tc+eDy4XpqjaYmgf+3ylUqarKvnXSOkMIUf6kHoUHJsG2P7TXD90AMwdrFYnLNbcDtrwK303WrhMAbngRrnwyuHEBhZ4iPs9eA0CPMrTOcKcdwHPgIBiNmNqHf6vp8uSH2fmgQv1rIqh0iVSfEqJcKS4mIzo41fYqFqZD1PlVOXI6nezYsYNRo0ad+Zher6dLly5s2rTpvMZYsGABd999N1HnOWewSPuMcsDpgrvHQ04BtGoMzz8a4AAOb4KtWklNbnkdTIFfFNhRuIsJh2cBMKb6QFrGNAl4DP7gOXhI69+q12Ppfkewwym1zJKkiKQGf0+KMEXo6fpcInojpK628evHRYEOr1S+n50HKjS8LoKUxnKBKkS4K35jETidGFu1wNSqhV/n2vuNjfxjHiIS9Fx8a3lfTRJCCCH86+Pv4IM1WinvBSO9aJuxcigUnoSkRtDxGb/EeC7HnRk8fWgGAE9U7UXT6IsCHsP5UIuLsc1dAEDk41Il4mxZqS7yj3kwWnTUuCKQPUuFEMI/VBUWrIDLH9YSIirEwJLx2nm2XCdEKAr88j683Ei7PrDlQMVLoOfXIZEQAfBF9hqKFRu1LdVpGX2Z1+OcrhJhat0SfXS0j6ITZXX8Jwf71tjQ6aHtINmEJ4QIjqysLDweDyn/1y4xJSWFkydP/uf7t27dyq5du+jTp4+/QvQZqRRRDgyfA1t/1y5Y3x/nxaJQWbidsLyvdvXc7CGo2zmAk2tOuXLov+9pXKqbmxKupk9Kj4DH4C+ndzGbO7bDULlSkKMpvcyS9hnJDf45iSClsZm2g+NY/2Iea57NpVoLCwm1Alu69nwc+9HB/nV2dAa4Si5QhQh7qsuFbc58wP9VIlRVZdub+QBcfm80JqvkowohhBDeysr9s23GiHuhecNSDrDvG9i5SCuD3W0+mAJboUFRFYakTSbPU0DTqMYMqtwzoPOXhm3eIpSMTPS1amLpdnOwwwkp+9fZAajR2oI5Uq7thBDh7VQe9Hselm3QXndqBm+OhmoVgxuX36Wtha+HwfEd2uuYKtB5EjTrqbXXChFLMr8A4O7km8pUYfdM64wuHX0QlfAFVVXZ8HIeABffGkVindBbExdClFFkpFaxIUhzB8qCBQu49NJLadWqVcDm9JYkRYS5j9bB7I+14zdHQ63KAQ5gw7OQsRuikuH6FwI8OXhUDwP3j+eEM4M61hq8UHt0SLdgKC37ex8AYL23e5AjKT1HgULBCQ8ASfX+/aKu5UMxHPjezpGtDr4cmc09b1fEYAqdn+HZF6iXdIsKyaQNIUTpOD5ZjnL8BPpKKVjvus2vcx3e4iD9NxfGCB1N75bdGEIIIURZDH4ZMnLg4tpetM1wFMLyftpx64FQM/Clo99M/5gN+duw6i28XGccJn1oLsmodjtFz2rZJ1Gjn0Jnknugs+0vaZ1RV1pnCCHC3Krt0GsaHM8CkxEm94EhPUBfnvO90nfDNyNg7wrttSUG2o2ENk+AObTKYuy3HWZb4S/o0XNn0g1ej6MqCs413wFg7tzRR9GJsjq00cGRbQ4MJrjy0dhghyOE8AOdTnfeLSyCKSkpCYPBQHr6XxM40tPTqVTp3Ju1i4qKWLJkCRMnTvRniD5Tni9xyr19R6HPs9rxsHvgpisDHEDmH1qvNYAbX4bIxAAHAC8dW8j6/K1E6K3MqzeVGEPo/4I5X+7dv+H+dTeYTFhuvyXY4ZRaVkmViJgUA9a4f/9Vo9PruGFKAtZYPSd3Odk0Jz9QIZ6XgxvtHN3uwGCGKx+RC1QhyoPiWXMBiOjfG53Zv+1wti0qAODS26KIiA+d3SZCCCFEuPlkPSwtaZuxcCRYSnsKXzUacg9BfE3oMtUvMZ7LPttBphx5BYAx1R+jXkTNgMdwvmwL30I5cRJ99WpE9Lwv2OGElKIsDyd+cQJQt4MkRQghwpPDCcNeg+uGagkRDWvAxjnw1D3lOCEi/zgs6wOvXqYlROiNWpLkE/ugw+iQS4gA+CBLqxLRKe4KKpmTvR7Hves31MwsiIzE1Lqlr8ITZaAqKhtezgWg6d3RxFYOzURZIcSFwWw207x5c1avXn3mY4qisHr1atq0aXPO93744Yc4HA7uv/9+f4fpE/LbNkzZHNB9HBQUQ7vLtEzegFIUbZeNxwn1b4BL7w5wALA2dxMzjy8C4NlaI2gUWTfgMfiT/f0PAbDccC36ChWCHE3pZe7VkiKSGvz3rqLYykauGVeBz4eeYvO8fGpdZaVa8+D3ZlUVle9LqkQ0vSeamEryK1OIcOfa8SOujZvBZCKi/8N+nStzj5ODP9jR6aH5gzF+nUsIIYQoz07lwWMvasfD74EWjUo5wKEfYIuWkMCtb4AlsNWbXIqbQfsnYFedtI9tRc+KdwR0/tJQnU6Kpmv/2FEjh/g9gTTcnK4SUekSM9EVJeFVCBF+fjsI90+Cn/dpr/vfAi88BpGB7SgVOI4C2PAcbJwBLu13OBfdAddOg8T6wY3tHHLd+byX+TkAPZJvKtNYZ1pntL9KzushYu+3NtJ/c2GK1NG6r2zCE0IE35AhQ+jZsyctWrSgVatWzJw5k6KiInr16gXAgw8+SNWqVZk2bdpf3rdgwQK6detGYmLgN817Q57whaknZmkXr8nx8O5YMAb6J7ljPhzaAOYouGWO1pM1gI46TjBw/3hUVB6oeBt3JF0f0Pn9TVVV7O9/BID13ruCHI13MlO13TPJ55EUAdDwukjSNtjYvayYFSNP0fPjSlhjg5uefvoC1Rylo3UfuUAVojwonq1VibDedRuGyucu/1VW297UqkQ0uCaC+GpyySWEEEJ463TbjItqwTM9S/lmlx2WPQyqCpf3gnrX+iPEc3r5+CJ+Kf6DeEMML9Z5Gr0udLfh2ha/i3LkKPrKlYjoXdoeJeXfn60zyuvTQyFEeaWqMGeZViHC7oSkOJg/Am4OfDepwPC4YPs8WDseijK1j9W4Eq57AWqce9drKJh2ZA7Z7lwaRNTm2vh2ZRrLuWotIK0zQoXiVvl+trYJr0XPGCITJMlSCBF8PXr0IDMzk7Fjx3Ly5EmaNm3KypUrSUlJAeDw4cPo/6+c1J49e/j+++/55ptvghGyV2SFPgy9/TXM/0LLQ3jnGajqffUs7xScgG+Ga8edJ2vlRwPIoTjpt+9pcj35NIlqzIQaTwR0/kBwb92OJ+0AuqgoLDffGOxwvHK6fUZS/fPvP9t5VAWObneQd9TD6ik5dH02eNllilvlh1fOukCtIBeoQoQ7JSPjTBWeyMGP+HWu/BNu/viqGICWvSSpSgghhPDWp+thyWqtnLdXbTPWTYKsPRBdCa6f4ZcYz+XHwt3MOr4YgKm1hlHZXDHgMZwv1eWieJr2bxQ5/El0VnnwfzaXTeHQJgcA9TpK6wwhRPhIz4aHn4WvNmuvr20Fi0ZCpfDY1Fk6qgq/L4NvRsKpvdrHEhvAtdOhcbeAb+zzxs7C3bybuRyAqTWfwqT3/hGO6nLhWv8DAOYunXwSnyibXcuKyDnoJiJeT4ueUlVUCBE6Bg4cyMCBA//xc+vWrfvbxxo2bIiqqn6OyrdCd3uC+Ee/HYRHS8qGjn0IurQIQhBfDAJ7HlRtCVcMCvj04w+/zM9FvxNviOWNelOw6Mtf2S/bex8AYOl2E7rI0Otp919UVT2TFJFciqQIc5SertMT0Rng9xXF/PZFkb9C/E+7lxeRfUC7QJWy90KUD8Xz3gSnE2OrFn7vo7nznUIUN1RvZaHSJeXvPCWEEEIEwqk8eOwl7XjYPdCycSkHOP4jfP+sdnzzaxAR2LaENo+dwWkT8eDh1oRruDXxmoDOX1r2d5fiOXAQfcVkIvv1CnY4IefQZgduh0psFcN5tYkUQohQ8OVmaNpbS4iwmGHmIFjxbDlNiDi8Eea3hfdv1xIioipq5/9Bu+Ci28IiIcKtuhl18DlUVO5MvIE2sZeXaTzX1u2ohYXokhIxXnaJj6IU3nI7VDbNyQegdb9YLNHyeE4IIQJJKkWEkcJi6D4Wiu3QuTk8/UAQgvhtGfz2MegNcOs87e8A+iTra97K+AQdOmbXHU81S+WAzh8IqseD44NPALDeE56tMwpOenAUqOiNkFCndItFVZpaaNM/lo2v5bNqcg5Vm1mIqxrYX1Vuh8rG10ouUPvKBaoQ5YHqcmF7bR4AkYMG+HUue77Czx8WAtCylyRVCSGEEN56Yra2u/WiWjDuoVK+2eOCT3uD4oGL79QehgTY5COvkGY/TCVTElNqDQ34/KWhejwUTX0BgMinHg/L5Hx/27+2pHVGxwh0YfBgTQhxYbM5YPgceO1T7fUltbWKw5fWDW5cfnEqFb4Zpa1ZA5gi4Mqh0G44WMLrnnxx+ifsKt5LvCGGZ2r8827d0nCuXgeAuVN7dHpZ3wy2n5YUUpDuIaaSgaY9ooMdjhBCXHAkKSJMqCo88iL8fggqJ2oXsYZAV/O358EXj2nHVw2Dyk0COv2e4jSGH5wOwONVHuLq+NDv/+YN57r1KCfT0SUkYL7m6mCH45XMvVqViITaJgym0i8WXdEvloM/2Dn+s5MvR52ix6KK6A2BW3T6aWnJBWqKgaZ3ywWqEOWB49PPUI6fQJ9SEetd/n0o8vOHhbiKVZLqm6jdVspOCyGEEN5Y/j28963WNmOBN20zvn8BTv6kVYe46RV/hHhO3+Vt4c0M7eHMi3XGUMEYF/AYSsO+9GM8qfvQJSYQ8UifYIcTclRFZf93fyZFCCFEKPt5H9w/Sas4DDD4TpjWD6yWoIble0WZsHYibJsLiht0eri8N1w9AWKrBDu6UjvpzOS5o68DMLL6IySZEso85pmkiM4dyzyWKBtHocKWedomvCsficVokQRLIYQINEmKCBPzv9AWhAwGeH8cVAxs1U/Nt6Og4Dgk1INOYwM6daGniL77RmFT7LSPbcWQqg/7fU4lP5/CUePw7ElFX60qhmpVSv6ueua1LjHR5ztE7O9p/e6td3VDZw7PkutZJUkRSaVonXE2vVHHjdMTeevOkxzb6WTr/AKu6B/ryxD/lbPozwvUNnKBKkS5UTxrLgAR/Xujs/hvJcjtVNn5TgEALR6KkV2EQgghhBey8+HRGdrxU3dDq9K2zcj8A9ZN0I5vmAnRKb4M7z/luPMYkjYZgIcq3kGHuNYBnb+0VEWhaLLWZiRqyCD00ZIY/v9O7nJSfErBHKWjesvy9lRRCFFeKAq8/CGMngdOF1RKgIWj4LpWwY7Mx5zFsGkmbJgODu3+mwZd4drpkBK+LSImHJ5FoVJMs6iLuC/51jKPpxYV4dq0FZCkiFCw/c0CbLkKCbWNXHxrVLDDEUKIC5IkRYSBn1Lh8Vna8ZQ+0C6wBRo0h36ArXO041vf0MqQBYiqqgw9MJX99sNUNlfklbrjMej8WybDc/QYuV3vwP3LrnN/ocWCoWoV9NWq/JksUbXyX5In9CkV0Z1nWQ/V4cDx8XIgfFtnAGSmakkRyWXosxpf3Ujn0RX46ulsfngtj5pXWqh8qf8Xn7YvLsCWo1ChlpFLuskFqhDlgWvnT7h+2ARGIxED/Lvz8fcVRRRlKkSnGGh8o5SdFkIIIbzxxCw4mQ2Na3rRNkNRYFkfcDug/vXQNPB9J0cffIGTrizqWGswpnrZS1/7m+PjZXh+34MuPp6Igf2DHU5I2lfSOqN2W6tX1RCFEMLfjmfBQ1Nh9Q7t9c1XwbzhkBwf1LB8S/HAj4th9TPaxj2AKs3huuehTqfgxlZG6/O28ln2KvTomV5rOHpd2VtdODdsBJcLfc0aGOrW8UGUwlvF2R62v6Ul8Fw1KA69Ua4lhBAiGCQpIsTlFUL3ceBwQtc2MPTuIAThdsDyvtrx5b0DfpE5P30pX2SvwagzMLfuZBJN/i2T4frpF3K73nGmzHrUuFGouXl4jh5DOXpc+/vYcZT0DHA48KQdwJN2ANe/DWgwoK9S+e/JE6crT1Stgr5KZXRmM46V36Lm5aGvWgVTu6v8+n36U1Zq2SpFnHbRLZGkbbCxZ6WNFSOyefCjFMyR/ut/V5zjYfvikgvUgXKBKkR5UTxbqxJh7X47hsqV/DaPqqhsf1P7HXL5fdGyYC6EEEJ44bMf4N2z2maUutT31tfg8A9gjoZbXocAV21aduobPstehQEDs+uMI8IQ2q20VEWhaJJWJSLyiUfRxwamQl+42b/ODkDdTtI6QwgRej5dD/2e1yotRVhgxkDod3PAT4H+o6qQuhK+Hg4ZJRvY4mvBNVPhkh7aRUMYsysORh18HoBeKXdySVRDn4x7dusMqWIZXFvm5eMqVkm5yESDa+RaQgghgkWSIkKYqkKf52D/MahZCd4cHaRrvPXTIfN3iKqoZd4G0LaCn5l8ROv/Oq7647SIudSv8zm++oa87g+iFhZiaNyQCl9+gqFWzX/8WtXhQDlxsiRZ4hieo8dRjh3/a/LEiZPg8aAcOYpy5Og559anVET1eACw3n0nujC9oPe4VLIPlL1SBIBOp+OaZxI4/tNJcg+7WTs9l+smlr2f3r/ZOr8AZ5FKxcYmGl4rF6hClAdKZib297W2RBGDBvh1rrQNdk7td2OO0tHkLik7LYQQQpRWdj488oJ2PLQHtL6olAPkHIRvR2rH1z4L8TV8Gd5/Ou7MYPRB7Rt4vMpDNI0u7TcQeI7PVuD+dTe6mBgiBz8S7HBCUu4RN1mpLnQGqN0utJNchBAXnsEz4dVPtePLG8DbY6DRPy9lhqfjO+HrYZC2RnsdUQE6jIHWj4GxfLQzmnPiHQ46jpJiSmJYtX4+G/fspAgRPHnH3fy0pBCAdk/ES4KKEEIEkSRFhLBXPoZPvgOTEZaMh4RgbNjI+B3WT9WOu86CSP89kP5/Wa5sBuwbg1v1cGvCNfRKudOv8xW/voCCx4aAx4P56g7Effwu+vj4f/16ncWCoVbNf02aAFA9HpT0jJKkibOSJ44ew3Ps+JnkCZxOrfIEgE6H9YF7fPzdBU52mgvFDZYYHTGVyt7mxBqn54apCXzwcCa/flJE7XZWGlzj+5L0BSfd/Pi+tsO73eNx6PRygSpEeWCb9yY4HBhbNsfUuqVf59q2SPsd0qR7NJaY8ExsE0IIIYLpydla24xGNWB8r1K+WVXhs/7gLIKa7aClf5Mh/5+iKgxNm0Kep4AmUY0ZXOWhgM7vDVVV/6wSMag/+gr+rcoYrvav01pnVLvcQkScf1t5CiFEadWvplWEGHYPTOgN5rLtTwodOQdh1Rj45V3ttdECVwyG9qO0xIhy4oD9CLOPvwXAuBqPE2PwTStfJSsL90+/AGC+uoNPxhTe2fRaPh4XVG9loWab8pHII4QQ4UqSIkLUlt9g2Bzt+IVHoVXjIAShKFrbDI8TGnSFS7oHbGqP6uGx/eM46cqinrUmz9ce6bcsSlVRKBw1juLnXgLA2vM+Yt+Yjc5sLvPYOoMBQ5XKGKpUxtSqxT/Pr6qoWVlnKk3oEhMwNfFvRQx/yjyrdYavfmY1Wllp1TuGrQsK+GZ8DpUvMxOT4ttfX5vm5uNxQrUWFmpdJbt/hCgPVJeL4tfmARA5aIBfs/FP/Org6HYHeiNcfr9UiRBCCCFK6/Mf4J1vytA248fFsO8b7aFJt/kBL7O4OONj1udvxaozM6vOWEz60F9ucX75Ne6dP6GLiiLyyYHBDidknU6KkNYZQohQNPAOuOoyrUpEuWDLge+mwuZZ2po0wGX3wTVTIL48lcDQ1oTHHJqBQ3XSPrYVtyR09tnYzrXrQVUxXNwYQ6UUn40rzo+qqpza72b/Ohu7PysCSjbhSZUIIYQIqtC/S78AncqDu8eDyw13dIDHbg9SINvf+LMX682vBbQR3QvH5vN9/nYi9RHMqz+NKIPvKwMAqDYbeT374fhQqzMXNeFpop7xXwLGP9HpdOiSk9EnJ0OzJgGb11+yzkqK8KWrBsZxaJOd9N9crHw6mzvfSPZZNYfsgy5+/VQuUIUobxzLPkc5dhx9xWSs3f17Mj1dJaJx10ifJ20JIYQQ5V1OATwyQzse0h2uuLiUAxSchK+e1I47TYCkwD4Z2mc7yOQjrwLwdPWB1IuoFdD5vXF2lYiIR/uiT0oKckShyZ6vcHSHA4B6HSUpQggRenS6cpIQ4XbAllfhu8laYgRAnau1Vs5VLg9ubH6yImct6/K2YNaZmFxzqE/XI0+3zrB06eSzMcW5OYsVjmx1kLbeRtoGOwUnPGc+V/+aCKo0kSoRQggRbFLbOcQoCvScCofToV5VmDc8oLkIf8o/Bt+M0I67TAloL9ZVuT8w6/ibADxfeyQNImr7ZR4lM5OczjdpCREmE7FvzSN67Ch5IF5GmXu1pIjk+mWvtHE2g0nHjdMTMVp1HNrsYMfbhT4b+4dX8lA9UKeDlarN5AJViPKieJZWcimif290Fv/9v5172E3qKm0HYYuHYvw2jxBCCFFeDXkFTpyChjVgfG8vBvjiMbDnag9Nrhrq6/DOyaW4GZw2EbvioH1sKx5KuSOg83vLuWotri3bICKCyKGDgh1OyDr4vR3FDQl1jMTXkMRXIYTwOUWBX96HlxvByqFaQkTFS+CBL+GhVeU2IaLQU8S4QzMBeKzyA9SN8O3au3P1dwCYO3f06bjir3IPu9n5TgEf9c/k1bbH+HRgFj9/UETBCQ8GM9Rqa+Xq0fHcOC1wLcmFEMJbr776KrVq1cJqtdK6dWu2bt36r1/rcrmYOHEidevWxWq10qRJE1auXBnAaL0jd3Qh5oUl8NVmsJjhg4kQF6wK3F8MAkc+VGsNrR8L2LSH7Md4fP8EAB6qeAfdEq/1yzzuvank3ngHnv1p6OLjif/0Pcwd2/tlrgtN1umkiAa+b2KYWMdEp+HxfDsxhw0zc6nR2kLFRmVLvkj/3cmelTbQQbvBcT6KVAgRbK4ff8b1/SYwGokY0Mevc21/qwBVgdrtrD5PCBNCCCHKuxWb4K2V2maABSMgorR5jLs/ht8+Ab0Rui0EQ2CXOWYdf5Ofi34nzhDDi3WeRq8L/b0nqqpSNHEaAJH9e2NIkbLa/2ZfSeuMetI6QwghfC9tLXw9DI7v0F7HVIEuk6Hpg6A3BDc2P3vh6HxOujKpZanKwCoP+nRsz+EjePbtB4MBU4e2Ph37Qud2qhzd7uDABq0aRM5B918+H1vFQJ32EdRuZ6VGKwumiNC/LhRCCIClS5cyZMgQ5s6dS+vWrZk5cybXXXcde/bsoWLFin/7+jFjxvDOO+8wb948GjVqxNdff81tt93Gxo0badasWRC+g/MjSREhZP3PMGa+djzrcWhSL0iB/PYp/P6ptqh067yAXYQWe2w8nDqSXE8BzaIuZmyNwX6Zx7nhB3K73YOanY2+Vk0qfPkxxsaN/DLXhcaep1CQrpUG83X7jNMuuyuKtA029q+1s2LEKe5fmoLJ6v0F5vez8gBofGMkyQ3lYaYQ5UXx7LkAWO+6DUOVyv6bJ8fDrmVa+52WvaRKhBBCCFEaOQUw4AXt+Mnu0OaSUg5QnK1ViQBoNxIqB7Yd4Y+Fu3m5pMrh1FpPUdn898WiUOT6boOWPGqxEDnsiWCHE7I8LpUDG7SkiLrSOkMIIXwnfbdWoXjvCu21JUY7j7d5Asz+aaEcSnYXp7Iw/UMAJtccilXv28qWp1tnmFo2Rx8b69OxL0T5J9wc+N7OgQ12Dm2y47KpZz6nN0LVyy3UaWeldvsIEusYpQq1EOIMVVX/8jsjkEwRulL9PnrxxRfp27cvvXr1AmDu3LmsWLGChQsXMnLkyL99/dtvv83TTz/NjTfeCMAjjzzCqlWrmDFjBu+8845vvgk/kKSIEJGeDfdOAI8H7r8WHu4apEDseX8uKrUdDpUuDci0qqoy9MBUfrftI9mUwLz6U7Hoff+A2vb+B+Q/NACcToytWhD/2VLZFeNDmalOAGIqG7DE+CcTVqfTcd2EBN785SSn9rtZ/2IenUdX8GqsozscHNhgR2+EKx+TmwQhygslMxP7ex8AEDFogF/n+un9Qtx2lZSLTVRvKe13hBBCiNIY+gocz4IG1WHiw14MsHIIFKZDcmPoOMbn8Z2LzWNncNpEPHi4JaGL36oc+kPhxOkARPTp6dfk0XB3bKcDR4FKRIKeypdJAr0QQpRZ/nFYMxZ2LgJV0Z4otxwAncZCVHKwowsIRVUYdfA5PHjoWqETneLb+HwO56q1AJg7d/D52BcCxa1y/GcnaettpK23k5Xq+svno5L01G4XQZ32Vmq2sWKJlmoQQoh/5rKpzGp1LChzD95aFXPk+SVFOJ1OduzYwahRo858TK/X06VLFzZt2vSP73E4HFit1r98LCIigu+//977oANAkiJCgMcDD0zWeqheVAteG6KVDg2Kb0ZCwQlIrA8dnwnYtK+ffI/Psldh1Bl4vd4Un++wUVWV4mkvUPi01prDctvNxL2zAF1k+c8+DqTTF4n+aJ1xtsgEAzdMSeDjAVn8+F4htdtaqdO+dDt3VFVlw8xcAC69LYoKNfwbsxAicGzzF4PDgbHF5ZiuaOW3eVw2hR/fKwSgZa9Y2Q0ghBBClMKXm2Hx6bYZI71om5G6En5crA3QbQEYA5ucOOXIq6TZD1PJlMTUWk8FdO6ycP6wCdfa9WAyETViSLDDCWn71pZUiWgfgd4g13lCCOE1RwFseA42zgCX9ruVi++Ea6Zqa9AXkCWZX7CjcBdR+kgm1HzC5+OrqopzzXcAmLt08vn45VXRKQ8Hv7eTtsHGwY12HPln7ezWQZXLzNRur60/V2xoQqeX6wIhRPmRlZWFx+Mh5f82kKekpPDHH3/843uuu+46XnzxRdq3b0/dunVZvXo1n3zyCR6PJxAhe02SIkLApMWwegdEWuGDCRAVrKqMBzfANq3cOLe+ASbrub/eR9bnbWXKkdcAmFDjCVrHNPXp+KrLRf4jT2BfsBiAyCcHEv38FHSG8t2bLhiy9pYkRfipdcbZareN4PL7otn5biErx2TT89NKRCWe/880bb2dYz86MVp0XDFAqkQIUV6objfFr80DIHLQAL8mKuxaXoQtVyGumoEGXaSkshBCCHG+cs9qm/HEXXBladtmOApgeX/t+IrBUMP3uyzP5bu8LSzK+AiAGbWfpoIxLqDzl0XRpGcBiHjoPgzVqwU5mtClqir715UkRXQKzNqIEEKUOx4XbJ8Ha8dDUab2sRpXwnUvBPzcHQqyXblMOfIqAE9V6+OXtlue335HOZkOERGY2rT2+fjlhaqonNztJG291hbj5G4nnJUHYY3Tl2zCs1LzSiuRFeQ5ghCi9EwROgZvrRq0uf3p5Zdfpm/fvjRq1AidTkfdunXp1asXCxcu9Ou8ZSVJEUH2zTaY/JZ2PGcoNK4VpEDcDljeTztu/jDU7hiQaQ87jvPIvmdQUOie1JWeFe/w6fhKXh55dz2A89s1oNcTM+t5Ih/r79M5xJ8yS5IikvxcKeK09kPiObzVQVaqi6/HZnPbK0nn9QBUVVS+n5UHQLN7o4lJkV+FQpQXjmWfoxw9hr5iMtYevj2nnE3xqOxYrFWJaP5gDHqj7BIQQgghztfQV+FYJtSv5mXbjG9HQd5hiK8FXab4OrxzynHnMSRtMgA9K95Ox/grAjp/Wbi2bsf59SowGIgaFT7VLYLh1H43eUc9GMxQs40kRQghRKmoKvy+TKtIfGqv9rHEBnDtdGjcLYglkoNr8pFXyPXkc1FkfXqn3OWXOZyr1wFgbtsGnUVafJ7NnqdwcKNWDeLA93Zs2cpfPp9ykUlri9HOSqVLzVIlSghRZjqd7rxbWARTUlISBoOB9PT0v3w8PT2dSpUq/eN7kpOTWbZsGXa7nVOnTlGlShVGjhxJnTp1AhGy1+RJYBAdy4QHJmnXiX1vhvuD2YL0u6mQ9QdEp8B1zwdkSpvHTp/UkeR68mkS1ZhptYb5dEev58hRcrvegfvX3RAZSfzSxVhuusFn44u/UlWVrH2n22cEpt+q0aKj6/QE3rk7nbTv7Py8tIimd0f/5/v+WFlM5h4X5mgdrR6OCUCkQohAKZ41B4CI/r39ugCQutpG7hE31jg9l3SL8ts8QgghRHnz1WZ486s/22ZElvZ588ENsEXbZUm3eWAO7Hn46YMzOOnKoo61BmOqDwzo3GVVWFIlwvrAPRhq1wpuMCFuf0nrjBqtrZgjpVe4EEKct8Mb4eth2t8AURXh6vHQvA8YLtzWtVsLfmZp1goAptUchlHnn8cyztUlrTM6d/TL+OHo4EY7m1/P59hPDtSzqrqbo3TUvNJKnXZWareNILqiVIMQQlyYzGYzzZs3Z/Xq1XTr1g0ARVFYvXo1Awee+57XarVStWpVXC4XH3/8Md27dw9AxN6TpIggcbnh3gmQlQdN68HMQUEMJn03bJimHXedDREV/D6lqqoMPzid3cWpJBorMK/eNKx63z28cu38idyb7kQ5cRJ9pRTiv/gIU/NmPhtf/F3+cQ/OIhW9ESrUDNyvluSGZtoPiWfts7mseyGX6i0tJNb995ssj0vlh9n5ALTsFUNEvFzwClFeuH76BdeGjWA0EjGgj9/mUVWVbYsKAGh6T7QslAshhBDnKa8Q+pe0zXj8Trjq0lIO4LLBspJzfPOHoW4Xn8b3X5af+pbl2d9iwMCsOmOJNIRP+yzXzp9wfvEV6PVEjZYqEf9lX0nrjHqdwudnLIQQQXUqFb4ZBb99rL02RcJVQ6HtMLBc2BuSXIqbUQefA+De5FtoEVPaC6Dzo7rdONdtACQp4rT962wsfyILxa29Tqxr1KpBtLdStZkFgyn0d3ALIUQgDBkyhJ49e9KiRQtatWrFzJkzKSoqolevXgA8+OCDVK1alWnTtGfJW7Zs4dixYzRt2pRjx44xfvx4FEVh+PDhwfw2/pMkRQTJmHnw/a8QGwVLJ4A1WNWsFAU+66f1eGt4M1x8Z0CmnZ++lE9OfY0BA6/Xm0xVS4rPxnasWElej56oRUUYLm5MhS8/wVCjus/GF/8sK1WrEpFYxxTwC8rL74smbb2NQ5scrBhxinvfS8Fo/ucYdi0rIveIm8gEPc0fuLBvyoQob4pnzwXAcmc3DFUq+22eozscnPzVidGio9k9/12dRgghhBCap17TKibWqwqTvMlfXDtRK8MdU1nrRx5AJ5wZjDqoVVUcXKUnzaIvDuj8ZVU0uaRKxD13YaxfL8jRhLaiLA8nfnECUKeDtM4QQohzKsyAdRNh2+uguEGnh8t7w9UTILZKsKMLCQvSl/KHLY0EYzyjqj3qt3lc23ei5uejq1ABY7MmfpsnXOz/7s+EiAbXRdBhSDxxVeVxmBBC/JMePXqQmZnJ2LFjOXnyJE2bNmXlypWkpGjPbg8fPoxe/+fGQLvdzpgxY0hLSyM6Opobb7yRt99+m/j4+CB9B+dHzgJB8NkP8MIS7XjBSKhXLYjBbJurlTMzR8PNrwakp9sP+TuYdPgVAMbVGEyb2Mt9Nnbxa29QMOgpUBTMXToR99E76OPifDa++HeZe7SkiKT6gS+Fp9PruGFKIotvP0nGHy5+mJ1Hh6Hxf/s6l11h0xytSsQV/WJld7cQ5YiSlYX93aUARA4a4Ne5TleJuPjWSKISpdqMEEIIcT5WboGFK7RbzvkjvGibcXwn/FDS6vHmORAR7+sQ/5WqqgxNm0qep4AmUY15vEqvgM3tC65fd+H49HPQ6Yh6eliwwwl5ad/ZQIWUi03EpMiymRBC/CNnMWx8Cb5/FhzaPTINb4JrpkNKeCUO+tMxRzozji0AYEz1x0gw+W+d2rl6HQDmTu3QGS7stYoD39v47KyEiJueTURvlKoQQghxLgMHDvzXdhnr1q37y+sOHTrw22+/BSAq35InggF28AT0mqodP34X3N4+iMHkHYVvR2rH10yDOP9XUzjqOMGAfWPw4OGOxOvpnXKXT8ZVFYWCp0ZT8NgQUBSsvR8k/stPJCEigDJTtZ00yQ2D0x8wuqKBaydorV+2vVnA4S32v33NT+8XUpjhIbaKgcu6y+5uIcoT2/zF4HBgbN4MU5vWfpsna7+LtO/soIMWPaXajBBCCHE+8gqhf0k+w6A7oF1pNy96XPBpb1A8cEkPaHyrz2M8l8UZH/Nd/hasOjOz6ozFpA+vB+VFk7WS3Za7bsPYuFGQowl90jpDCCHOQfHAjoUwsz6sHqMlRFRpDr3WwP2fS0LE/xl3+CWKFRutoptwV9KNfp3rTFLEBd464+APdpYNzsLjgvrXRNB1uiRECCGE0EhSRAA5nNBjHOQWQuuLYHr/IAajqvDFQO3CtfoV0OoRv09pU+z0SR1FtjuXSyIb8GztEeh8UJlCLS4m7677KZ4xC4CoyWOJnf8qOlNwHs5fqE63zwhGpYjT6neO5LI7o0CFL0dnY8vznPmco0Bhy3wtc/3KR+P+tb2GECL8qG43xa/NAyBy8CM+Obf8m+0lVSLqd46gQk05zwghhBDnY9hrcDQT6laFKX29GGDDc3DyZ4hMhK6zfB7fueyzHWLSEa3S4ejqj1EvolZA5y8r9+9/4PjwUwCixoR2f9dQ4LIrHNrkAKBuR0mKEEKIM1QV9n4FrzaFZQ9DwXGIrwV3vQf9t0KdTsGOMOSsyv2Br3K+w4CBabWGodf571GMWlyM64fNwIWdFHFoU0lChBPqXR3BTc8lBrzNsxBCiNAVXtsbwtyw12D7HkiIhSXjwRzMZym/fQJ/LAeDCW6dB3r/ltRSVZWRB57j1+I9VDDGsaD+dCL0Ze/NqWRkkHtLD1xbtoHZTOyiuUTc290HEYvScDtVsg+6AUgOYlIEQMfh8RzZ7iDnoJtvJ+Rw84xEdDod2xYXYM9TSKhj5KKbI4MaoxDCtxzLv0A5chRdchLWHnf4bZ7CDA+/fVEEQMteUiVCCCGEOB/fbIMFJW0zFnjTNiPjd61XOcCNL0N0RZ/H+G9cipvH0yZgVxy0i21Jr5Q7Aza3rxRNeR5UFUu3mzBdekmwwwl5hzc7cNtVYiobglYFUQghQs7xnfD1MEhbo72OqAAdxkDrx8BoCW5sIcrmsTPm4AwA+lbqQaPIun6dz/nDZnA60VetgqFBfb/OFaoOb7Xz6aAs3A6Vuh2t3DxDEiKEEEL8lVSKCJAP1sCr2uYM3hwNNVKCGIwtV6sSAdB2BKT4f2FkUfpHfHTqKwwYmFtvMtUslcs8pvuPPWRfcTWuLdvQVahAhW8/k4SIIMlOc6F6wBqrJzoluD3rzJH6krJosPcbG7uXF1N0ysOOxdru7raD4tAb5IJYiPKkeNYcACL790Zn8d+CzM53C1DcUPVyM1WayMKPEEII8V/yCqGf1rmBgbd70TZD8Wi7UT1OaHAjXHavz2M8l9knFvNT0e/EGWJ4sc4Yv+7w9Ad36j7s738IQNQzI4McTXjYf1brDH9WHxNCiLCQcxA+vB/mNNcSIowWaDsMntwPVw2RhIhzmHViMUecJ6hiTmFI1Yf9Pt+Z1hldOnl9/vK4VHKPun0YVeAc2Wbnk8eycNtV6rS3cvOLSZIQIYQQ4m+kUkQA7D0C/Ur6p468D7q2CW48fDMCCk9CUkPo8LTfp9uUv5Pxh18GYEyNx2gb26LMYzrXf09ut3tQc3Iw1KlN/JcfY2zYoMzjCu9k7i1pndHAFBILR5UuMXPVY3FseDmP1VNzqN3WisumknKxifpdpASqEOWJqqpEPtaPYiBiQB+/zeMsUvj5g0IAWvaK9ds8QgghRHkyfA4cyShD24wtr8KRTWCJgVvmauUmAuSnwt+YeWwRAFNqDqWKOXAVKnylaNoMUBTMXa/HdHnTYIcT8lRFPZMUUbeD3DcKIS5gthz4bipsnqUlJgI0uR+6TIb4msGNLQzssx1kzol3AJhY4wmiDP6vWHsmKaIMrTPWTMvh5w+KuOzOKK4eXSFsWg8f3engk0ezcNtUarW1cstLSWETuxBCiMCSpAg/szmgxzgoKIb2TWBC7yAHdHA9bH9DO771DTCVvYXFuRxzpNN/3xg8eLgt8Vr6ptxd5jFt7y4lv/cj4HRiuqIV8Z8tRZ+c7INohbfOJEUEuXXG2Vr2juHAD3aObnew9xttYavd4/EhkbQhhPAdnU6HtfsdWLv7r20GwC8fFeEoUEmobaRuB/+eO4UQQojy4JttMP8L7Xj+CIgq7TPmnAPw7Sjt+NrnIK66T+M7F5vHzuC0CXjwcHNCZ7olXhuwuX3Fc+Ag9rfeAyD6mRFBjiY8nNztpChLwRylo1pL2f0shLgAuR2w5RX4boqWGAFQpzNc9xxUuTy4sYUJVVUZdfAFXKqbznFXcn2FDn6fU8nJwb3jR8D7pAiPS+X3L4sBbf0j4w8Xt7yUSGzl0H58dOxHBx8PyMRlU6nZxkK3l5MwWmTtVwghxD8Lr9qPYWjwy/DLfqhYAd4bB8ZgXke47LC8n3bcoi/Uau/X6eyKg377RnHKncNFkfV5vtaoMj2QVlWVwsnPkn//w+B0YrnjViqsWSEJESEgK1VLikhuEDpJEXqDjhumJmCJ0f6bq97KQs02srAlhCg9j0tlx1taC56WD8Wg08sNthBCCHEu+UXQv6Ra4sDbtQ0CpaKq2r2rqxhqdYAW/Xwe47lMPfoa++2HSTElMa3WsLBMrC6aPgM8HszXdsbUumWwwwkL+9faAajV1io7TIUQFxZFgZ/fg5cbwcqntISIlEvhwa/goW8lIaIUlp36ho0FO7DqzEyqOSQg1xDOdRtAVTE0aoChinctqw9vseMsVLHG6rHG6Tm5y8nb3dM5tNnu42h95/jPJQkRxSo1WlvoNlsSIoQQQpybJEX40eKVsHCFVuHz3bFQOTHIAa2fCll7ILqSttPGj1RVZfTB5/mp6HfiDbEsqD+dCIP3O2tVl4v8hx+l6JlJAEQOe4K4D95GFyElLUPBmaSIEKoUARBXxchNzydSo7WFLk9XCMvFTCFE8P3xVTEF6R6ikvQ0vjkq2OEIIYQQIW/4HDicDnWqwFRv8hl2LoL9q8BohW7zQB+4pYv1eVtZmP4hADNqj6aCMS5gc/uK58hRbIu0st1RUiXivO1bq1UYrNdR1hmEEBeQtLXweiv46D7IPQgxVeC2hfDoj1D/+oC2rgp3ee4CJhyZBcDgqr2oaa0akHmdq9YCZWudkbpaOwc2vC6CBz5IoWJjE7YchY/6ZbJlQT6qqvoiVJ858auDj/pn4ixSqd7Swm2vJGGyyqMuIYQQ5xba9Y/C2K40eOxF7Xh8L7g62Am16btg/TTtuOtsiIj363SLMz5hadYK9OiZU28SNSxVvB5Lyc0l7877td5oej0xr8wg8hFvGtIKf7DleijM8ACh1T7jtNptI6jdVha1hBDeUVWVbYu0KhGX3xcjuwaFEEKI/7BqO8z7XDueN9yLthn5x2HlEO248yRIrO/T+M4l153Pk2mTAehZ8XY6xbcJ2Ny+VPTsi+ByYerUHnPbK4MdTljIO+YmK9WFzgC120urNCHEBSB9N3wzAvau0F5bYqDdSGjzBJgjgxpauHru6OtkurKpa63BgEr3Bmxe5+p1AJi7dPLq/YpHZd+aksTALhHEVTVyz9sVWT05l13LitjwUh4nf3Fy/ZQELNHBTzw4udupJUQUqlRrYeG2V5MwRQQ/LiGEEKFPkiL8oLAYeowDmwOuaQmjHwhyQIoHlvcFxQ2NboGL/dt3fWvBz4w7/BIAo6s/Qvu4Vl6P5Tl0mJyud+DZ/Tu6qCjiPngLy43X+SpU4QOZe7UqEbFVDZij5AJUCFG+HNxoJyvVhSlCR5Pu0cEORwghhAhpBcXQt6Qo4WO3QcdmpRxAVeGLx8CeB1VbaA9mAujpgy9w0pVJbUt1xlQfGNC5fcVz/AS2+YsBiJYqEedt/zrtYVDVZhYi4gxBjkYIIfwo/zisGatVZVIV0Buh5QDoNBaipEWxt34u/J3FGZ8AMLXWMCx6c0Dm9Rw7jmdPKuj1mDu282qMEz87KT6lYInRUaOVlhhosuq5blIFKl9mZvXUHFJX2ziVls4tM5NIqhu8TXHpvzv5qG8mjnyVqs3M3P5aEuZIWY8WQghxfiQpwsdUFQbMgD8OQ9VkeHtMQCt9/rOtc+DIZi3j96ZX/Vr27IQzg377RuNWPdyS0IUBle7zeizX9p3k3nwXysl09FUqE//FR5ialbYZrfC3M60zGoRelQghhCir01UiLrszCmtcsE/oQgghRGgbUdI2o3ZlL9tm7PoQfl+mPaDpthAMgVuyWH5qFcuyv8WAgVl1xxFpCM9qc8XPzwSHA9NVbTB1bB/scMLG/tOtMzqF589dCCH+kz0fvn8eNs4Al/Y7j4vvhGumBrQqU3nkUT2MPPgcKiq3J15H29gWAZv7dJUIY/Nm6OPjvRrjdOuMOu0jMJj+fG6g02mbQyo2MvHZk6fIPuDm3bvTuX5yAg2vC3w1kYw/nHzYJxN7vkKVJmbumJssCRFCCCFKRc4aPvbG5/D+KjAY4P1xkBwf5IDyjsC3o7Tja6ZDXDW/TeVQnPRNHU2mK5vGEXWZUXs0Oi8TMByff0l2h+tRTqZjvPRiEjavlYSIEHUmKaJ+YDKghRAiUNJ/c3J4swOdAS5/ICbY4QghhBAhbfUOeP0z7XjecIgu7Vp58SlYUVKdof1oqHSpT+M7lxPODEYf1EpcDKryIJdHXxywuX1Jycig+PWFAESNHen1/fiFxlGgcGS7A4C6HaV1hhCinPG4YMtrMLMefDdZS4iocRX03Qh3fygJET7wdsYyfin+g1hDNM9UHxTQuc+0zujc0av3q6pK6upiAOp1/ufEwMqXWbj/gxSqt7Lgsql8PvQU617IRXGrXs3pjcy9JQkReQqVLzNzx+vJUrFYCCFEqcmZw4d27oUnZmnH0/rBVYFbw/lnqgqfPwbOQqhxpVYKzY+eOfQiPxbtJt4Qw/z6073eWVP8ylxyu90NxcWYr+1Mhe+/xVDdf8kcomxOt89Iqi+VIoQQ5cu2N7UqEY2ujySuihTXEkIIIf7N2W0zHukGnS73YpAvn4CiTKh4MXQY7cPozk1VVZ46MJVcTwGXRTbiiSq9Aza3rxXNmA02G8ZWLTBfc3WwwwkbB763o7ghobaRCjXlvlYIUU6oKuz+BGZfrLWmKsqExAZwz6fQZwPUaBPsCMuFDOcpnj06F4AR1fpT0ZwYsLlVVcW5ai3gfVJE1l4XeUc9GMxQu+2/JwZGJRq4641kWvbWNoxsf7OAD/tmUpTl8WreUsW4z8UHfTKx5SpUusTMna8nY4mWx1pCCCFKT84ePpJbAD3GgdMFN10JQ3oEOyJg90ew53MwmODWeX7t4/FOxjLezVyODh2v1p1ILat3SQy2d5ZQMOgpUBQi+jxE/BcfoY+N9XG0wldURZX2GUKIcinvmJs9X2u7JVr2kioRQgghxLmMnAuHTkKtSjC9vxcD7P0Sfn4HdHrotgCMFp/H+G8WZ3zCurwtWHVmZtUdh0kfnomQSlYWtlffACD6mRFSJaIU9q/TyobXldYZQojy4vBGmN8WltwBp1IhqiLc/BoM2gUXdfNra+ULzaQjs8n3FNIkqjEPVLwtoHN79uxFOX4CLBbMV13h1Rh7V2nnwFpXWv+zFYXeqKPDkHhueSkRU6SOI9scvN0jneM/O7ya+3yc2u/ig94Z2LIVUi4yaQkRMfJISwghhHfkDOIDqgoPPwtpx7VFoDdHh8C1pS0HVpSU62o3Cipe5Lepthf8yphDMwAYWW0AHeO9uwhz7fiR/L5audTIYU8Q88ZsdCZ50B7K8o55cNlUDGaoUDM8Fw+FEOKf7HirANUDNdtYqNhI2gMJIYQQ/2bNTpi7XDueN8KLthn2fFhekknR5gmo3tqX4Z3TPtshJh2ZDcCo6o9SP6JWwOb2teKZr6IWFWFs1gRz1+uDHU7Y8LhU0jZoD4TqdZSkCCFEmDuVCu/fCfOu0hIjTJHQ8Rl4ch+0ekTbOCd85vv87Xxy6mt06JhWcxgGnSGg859pnXHVFegivDuH7Vtdcg78l9YZ/6TBNZHc/34KCbWNFKZ7WNIzg5+WFKKqvm2nkX3AxQcPZ1CcrVCxkYk75yVjjZPHWUIIIbwnZxEfmPURLNsAZhMsnQAVQmFD6dfDoTAdkhr5tfToSWcm/faNxqW66VqhE49VfsCrcZSMDHJvuwfsdsw33UD09ImysyUMZO51ApBYx4TeKD8vIUT5YMvz8MsnRQC07CXVioQQQoh/o6palQiAAbfC1d60zfh2JOQfhQp1oPMkn8Z3Lm7VzRNpE7ErDtrGtqB3yl0Bm9vXlJwcimdpP4goqRJRKsd+dODIV4mooKdyE0mEFUKEqcIM+GIgzLoIfvtYq7zUvA88kQqdJ4IlFBaryxeH4mT0wecB6FnxdppENw54DGeSIrxsnZF7xE3mXhc6A9QtZWJgYl0T9y9Jof41EShuWDU5h5VjsnHZFa9i+X85h1ws7Z1BUZZCcgMTd81PJiIusEknQgghyh9JiigjuwNe/kg7nvEYtGgU3HgAOPAd7JivHXeb57fSo07FRb99o0l3ZdEwog4v1Rnj1eKL6nKRe9cDKEeOYmhYn7h35qPzY6sP4TunW2ckSesMIUQ58vOSItw2lYqNTNRsE7jy3UIIIUS40elg+TTodwtMH+DFAAe+g61ztONu88Fc2jIT3pt9fDE/Fv1GrCGaF2uPQa8L33vQ4llzUAsKMF56MZZbbwp2OGFl/1pth2ydDlb0BkkmEUKEoR9mwMx6sOVVUNzQ8CZ47BdtTTi2SrCjK7deP/ke++2HSTYlMLyaN73Dykb1eHCu3QB4nxSRulprGVqtuYXICqVPODBH6bnlxUTaD4lDp4fdy4t5//4Mco+6vYrntJzDLpb2zqQoUyGpfklCRLwkRAghhCi78L3rDxFWC2yeC9P6wyPdgh0N4LLD8n7accv+ULOt36Yae/gldhTuItYQzfz604kyeLeAVTBkJK71P6CLiSF+2RL0cXE+jlT4S2ZJUkRyfUmKEEKUD26Hys73CgBo8VCM7LQUQggh/kPlRJgzFGJKezvossGyPtpxi75Qp5PPY/s3Pxf+zkvHFgEwpeZTVLWkBGxuX1Py8yme+RoAUWOGywaDUlBVlf3r7IC0zhBChLGiTHAUQJXm0GsN3P85pFwc7KjKtcOO47xcch0xtvpg4oyBr8Th3vkTam4uuthYjM2beTXG6dYZ9UvROuP/6XQ6WvWO5a55yUQk6Mn4w8U73dPPtKYqrdwjbj7olUlhuofEukbump9MZIIkRAghhPANuVv2gYoVYPi92i6ZoPtuMpzaCzGV4dpn/TbNexmf8XbGp+jQ8UrdCdSxVvdqHNvCt7C98joAce8uwNiooS/DFH6WtVcqRQghypffPi+i+JRCTCUDDa8L3G5VIYQQ4oKzZhxk74OYKnDd8wGb1qbYGZw2AQ8ebkq4mtsSrw3Y3P5ge+V11NxcDI0aYLmjW7DDCSun0tzkHnFjMEPNK63BDkcIIbzTbiTc9T703xrQBMMLlaqqjDk4A7vq5KrY5kG7jjjTOqNTe3RGY6nfX5Tl4dhPWlvkeleXPTGwRmsrDyxNodKlZuz5Cp88msXGOXmoinreY+Qdc7O0dwYF6R4SahvpvqAiUYmSECGEEMJ3JCmiPDn5K2woSYTo+gpY/VNxYWfhbp4+9AIAw6r1o3P8lV6N49qyjfxHngAgasLTWG6+0VchigBw2RVyDmnl0JLrS+9VIUT4UxWVbW+WVInoGYPBFArZjkIIIUQ5dGy7Vu4b4Ja5frt3/SfTjsxhn/0QKaYkptUcHtZVoZTCQopenA1A1JgR6Azy4KA0TrfOqNHaijlSlseEEGEqIh4uuxukUlBArMz5jtV5GzHpjEyt+VTQriPOJEV07uDV+/ettYEKKRebiK1c+qSKfxJb2cjdiyvS5K4oUGHjq/l8OigLe77yn+/NO16SEHHCQ4VaRrovrEhUklzXCCGE8C25WiovFA8s76v1jmvcDS6+3S/TZDhP0Td1FE7VxQ0VOjCo8oNejeM5mU7u7feC04ml201EjRnh40iFv2WnuVEViIjXE5Usv0qEEOFv31obOQfdWGJ1XHpHVLDDEUIIIcontxM+7Q2qApfeA41uDtjU6/O2siD9AwBeqD2aBFN4t260zV2AeiobQ726WHvcEexwws7ppIi60jpDCCHEeSjyFDP28EwAHql8P/UiagUlDtVux/n9JgDMnTt6NUbqqtOtM3xbIdNo1nHNuASum1QBgxnSvrPzTo90Mvc4//U9+SfcfNA7g/xjHirUNNJjYUWikyUhQgghhO/Jk8zyYutrcHQLWGLhplf8MoVTcdF/39OcdGVS31qLmXWeQa8r/X9CqtNJ3h33oRw/geGiRsS+NU/6noahzNSS1hn1TWG9u0oIIU7btkirEtG0e7TsFhRCCCH8ZcOzkP4rRCZB15cDNm2uO58n0yYD8GDF27k6vk3A5vYHtbiY4udnAhA1+imvSmeHmoJ0N7uXF3Fwo53co24U9/mX3C6toiwPx3/RHtDU7SCtM4QQQvy3l44t5Lgznermygyu3DNocbg2bQG7HX3lShgaNyr1+x0FCoe32AGo39k/iYGX3hbNve+kEFvFQO4RN+/el8FvXxT97esK0t180DuTvKMe4qsb6b4wmeiKkhAhhBDCP8L/rllA7mH4dpR2fO10iK3ql2kmHp7F1sKfiTFEMb/+dKIN3u2iLRj8FK6Nm9HFxRG/bAn6mBgfRyoCIXOvtoCUVN8U5EiEEKLsjv3o4PhPTgwmaHafnJeEEEIIv0jfDd9N0o67zoKo5IBNPebQDE66Mqltqc4z1QcGbF5/sc1bhJKRib5WTaz33x3scMrs+M8OPnk0C3venyW29UaIq2okrrqRCjWMxFf/809cNSNGi/fJ+WnrS8qGX2QippIsjQkhhDi3P4r3My99CQCTaw0lwhC8hDrnqrUAmK/u4NVGtbT1NhQ3JNQ2kljXf+u6KReZeeCDFFaMyObgD3a+HJnNiV+cdBwWj8GkozDDwwe9M8k94iaumoHuC5OJSZFzshBCCP+Rs0y4U1X4/FFwFkGNq6BFf79MszRzBYsyPgJgVp1x1Iuo6dU4xa8vwPb6QtDpiHt/Ecb69XwZpgigrL1apYjkBpIUIYQIf6erRFx0c5SUaRRCCCH8QfHAsofB44KGN8GlgXuQ/9mpVXx66hv06Hm57lgiDeHdLkG12yl69iUAokYNRWcK73uy/d/Z+HzoKdx2lfjqRvQmyDvqxuOEnENucg65Ofj/b9JBTIpBS5I4nTBxVuKEJfrcVb/2r9N2yNbtFN7/LQghhPA/RVUYdfB53KqHGyp0oEv8VUGNx7n6OwDMXTp59f7U1adbZ/j/HBgRb+D215LY+Fo+m1/P58f3Ckn/zUnn0RVYMeIUOYfcxFY10H1hRWIry6MqIYQQ/iVnmnC36wPYuwIMZrj1DfBDG4qfCn9j1MHnABhatQ/XVmjn1TjOHzZRMOgpAKKnjsdyw7U+i1EEXlaqJEUIIcqH7IMu9pX0lG7RU6pECCGEEH6xedafLR9vngMBasF30pl55n52UJUHaR59SUDm9SfbwrdQTpxEX70aET3vC3Y4ZbJrWRFfj8tG9UDtdlZunpGIOVKPqqgUpHvIPeIm97Bb+/v0n8NunEUqBSc9FJz0cGSb42/jRiToqVDd+I9JE6ZIHQc3aUkR9SQpQgghxH/4MOtLthb+TKQ+ggk1ngxqLEpeHq5tOwAwd+5Y6ve77AoHNpScAwOQFAGgN+hoOyiOSpeY+XLUKY7/5OTt7ukAxFQ20GNhReKqyGMqIYQQ/idnm3BWnA0rBmvH7UdDxYt8PkWWK5s++0bhUJ1cE9+WJ6r08mocz7Hj5N1xH7hcWO66jcgRQ3wcqQik4mwPRVlaWdPEepIUIYQIb9sXF4AKdTtZ/Vo6UgghhLhgZafBqqe14+ueh7hqAZlWVVWGHphCrqeASyMb8mSVhwMyrz+pTidF018EIGrEk+gsliBH5B1VVdm6oIANM/MAuOiWSK6bkIDBpCXL6PQ6Yisbia1spEarv7/XlqP8NVmi5DjniBtbtlLyx8nxn51/m9to1eG2q8RUMpDcUK79hBBC/LtsVx6TjrwCwJCqvalqSQlqPM7vvgdFwVC/Hobqpb+eOrzZgcumEpNioNIlZj9E+O/qdYrggaUpLH/iFFmpLmJSShIiqsojKiGEEIEhZ5xw9vUwKMqA5MbQfqTPh3cpbgbsG8MJZwZ1rTWYVWccel3pK1Godju5t9+Lkp6B8dKLiVs016t+ZyJ0nK4SEV/diDnS99VJhBAiUIqyPOxeXgRAy16xQY5GCCGEKIdUFZb3BZcNaneCFn0DNvVbGZ+yLm8LFp2ZWXXHYdKH/xKIbfG7KEeOoq9ciYiHewY7HK+oisraZ3PZ+W4hAC17x9D+ybjzXifQ6XREJhiITDBQpenfk0IchcrfkiVO/12Q7sFtVwFodEOkrE0IIYQ4p+lH55DjzqNRRB36pASu9de/ca5eB4C5cwev3p+6SquSWa9zRFDOgRVqmrj33Yrs/dZGrTZWoitK+1IhhBCBE/4rAheqtLWwc6F2fOs8MPp+d8ikI7PZVPAj0fpIFtZ/llhjdKnHUFWV/EeewL11O7qEBOKWLUEXFeXzWEVgZe7VkiKS6suuGiFEePvxvUI8TqjcxEzVZoHdJSGEEEJcEHYsgLQ1YIqAbvMC1jZjv+0wE4/MAmB09UdpEFE7IPP6k+pyUTxtBgCRw59EZ7UGOaLScztVvhp9ij0rtYcynUbE0/wB37Yvs0TrSWlsJqXx36/t3A6VvKNuinM8VL4sPKtsCCGECIztBb/ybuZyAKbVGh4SyZV/JkV0LPV7FbfK/nXa+bd+gFpn/BNzpJ5LbpXnA0IIIQIv+GdyUXouGyzvpx23egRqXuXzKT7K+ooF6R8A8HLdsdSLqOXVOLZXX8f+5jug1xO3dDHGOuG/ECXOSopoIEkRQojw5SxW+GlJyQ7Fh2Jkp6AQQgjha/nHYOVQ7bjzZEioG5Bp3aqbx9MmYFcctI1tQe+UuwIyr7/Z312K58BB9BWTieznXWvLYHIUKix/IovDmx3ojXDD1AQa3xjYhyJGi47EuiYSkXtZIYQQ/86tuhl16HkAeiR1pVVMkyBHBJ4TJ/Hs/h10Osyd2pf6/Ud3OrDlKljj9FRrLomBQgghLjySFBGO1k2C7H0QUwWumebz4X8t2sOIA9MBeKJKL66v4F05Lue69RQ8MQKA6OenYOnSyWcxiuA63T4jWSpFCCHC2K5PirDnK8TXMFLv6uDtkhBCCCHKJVWFzx4BRz5UawVtHg/Y1LOPv8WPRb8Ra4jmxdpjvGoDGWpUj4eiqS8AEDl0MLrIyCBHVDpFWR4+fiSTjN9dmCJ13DoziVpXhl+lCyGEEBeGRekf8VtxKvGGWMZUHxjscABwrvkOAGOzJugTE0v9/tOtM+p2sqI3yqYQIYQQFx5Jigg3J3+B77UsVW56FaxxPh3+lCuHh1NHYledXB13JUOr9vFqHM/hI+Te9QB4PFjv60Hkk6Fx8SjKTlVUsvaXJEVIpQghRJhS3Crb3y4AoEXPGPQGWRAQQgghfOrXpbDnczCYoNsC0AemZ/QvRX8w87jWanJyzaFUtaQEZF5/sy/9GE/qPnSJCUQ82jfY4ZRKzmEXH/XLJO+oh4gEPXfMSabSxdK2TAghRGg64czg+aPzAK0FV4IpPrgBlShL6wxVVdm35nTrjPBKrBRCCCF8RZIiwonigWV9QHHDRbfDRd18OrxbdTNg3zMcc56klqUar9Qd79WOGrW4mNxud6NmncJ4eVNi570iJcnLkdyjbtw2FaNFR3wN+RUihAhPe7+xkX9MW5i/+FZZEBBCCCF8qigLVgzSjts/DSmXBGRam2Jn0P7xuFUPXSt04vbE6wIyr7+pikLR5GcBiHxyIPro6CBHdP5O7nby8SOZ2LIV4qoZuPONZCrUkOR6IYQQoWv84ZcpUoppHn0J9yTfHOxwAC2poSxJEem7XRSc9GCK0FGzjbTOEEIIcWGSJ5rhZMsrcGybVh2i62yfDz/lyGtsLNhBpD6ChfWfJc4YU+oxVFUlv98g3D/+jC45ifhP30cXISXJy5PMPVqViMS6RtlZLYQIS6qqsnVRPgCX3xuNyRr+JbWFEEKIkPLl41CcBSmXQvtRAZt22pE57LMfoqIpkem1RpSb5HzHx8vw/L4HXXw8kQP7Bzuc83Zwo53lT2ThKlap2NjEHXOSiUoKTMUQIYQQwhvrcjfzRfYaDBiYVmt4yLTg8uxPQzl8BEwmzG3blPr9qauLAajV1iprIEIIIS5YkhQRLnIPwaqnteNrn4XYKj4d/tOsr3nj5PsAzKzzDA0j63g1TvFLr2B/dykYDMR/+DaGGtV9GaYIAVmpWlJEkrTOEEKEqcNbHGT87sIYoaPp3eGz01IIIYQIC3u+gF/eA51ea5thDEybhPV5W1mQ/gEAM2o/TYLJt60mg0VVFIomlVSJePwR9HHh8X39/mURX43ORnFDjSss3DozCUu0PIQRQggRujbl72TIgSkA9E65i4sj6wc5oj85V60FwHRla3RRUaV+f+rq060zZPOiEEKIC1dI3JG++uqr1KpVC6vVSuvWrdm6deu/fu28efNo164dFSpUoEKFCnTp0uWcX18uqCp8/ig4i6BmO2ju2/6hu4r28tTBaQAMqtyTrgmdvBrHsWothcO0xI2Ymc9i7tDOZzGK0JFZkhSRXF96wAohwtO2RQUAXHpbFBHxsltRCCGE8Bl7Hnw2QDu+cghUaxmQafPcBWceYjxQ8Tauji/9DspQ5fhsBe5fd6OLiSHy8UeDHc552f5WASuGawkRDa+P4PbXkiUhQgghRMhyKE6mHHmVu/4YSLori7rWGjxVrU+ww/qLsrTOOJXmIjvNjd4IddpLUoQQQogLV9DvSpcuXcqQIUMYN24cO3fupEmTJlx33XVkZGT849evW7eOe+65h7Vr17Jp0yaqV6/Otddey7FjxwIceQD9uhT2fgkGM9z6Buh992PLduXRJ3UkdsVBp7grGFbNu4QLd9oB8nr0BEXB2usBIh4Ln5KeonSy9pZUiqgvlSKEEOEnc4+Tgz/Y0emh+YOlbxMlhBBCiHP4ZgTkH4OEenD1hIBNO+bQDE44M6hlqcbY6oMCNq+/qar6Z5WIQf3RV6gQ5IjOTVVVvnsxl3XP5QJw+X3R3PRcIkZz+WhjIoQQovzZU5zGzb/14bUT76Cick/yzXx58UKiDaWvxuAvqqLgXLse8C4pYl9JlYgaraxYY4P+OEgIIYQImqCfBV988UX69u1Lr169uOiii5g7dy6RkZEsXLjwH7/+3Xff5dFHH6Vp06Y0atSI+fPnoygKq1evDnDkAVJ8Cr4crB13eBqSG/lsaLfq5tH9z3DEeYKalqq8UncCBl3pd8yqRUXkdbsbNTsbY6sWxL72Urnp3Sr+ymVTyDnsBiBZ2mcIIcLQtje1KhENrokgvpp0ERNCCCF85sA62Pa6dtxtPpgjAzLt59mr+eTU1+jRM6vuOCIN5WcHpPPLr3Hv/AldVBSRTw4Mdjjn5HGpfPV0NtsWatda7Z6Io9PIeHR6WRsQQggRehRVYcHJD7hhdy92F6dSwRjHgvrTeaH26JBKiABw//wr6qlsdNHRmFo2L/X7z7TO6FJ+rpGEEEIIbwT1aYDT6WTHjh2MGjXqzMf0ej1dunRh06ZN5zVGcXExLpeLhISEf/y8w+HA4XCceZ2fn1+2oANt5VNQlAnJF0G7kT4d+tmjr7MhfxsReisL6k8n3hhb6jFUVSWv1wDcv+5Gn1KR+E/eQ2e1+jROETpO7XeDChEJeqKSpOS8EOK/hdJ5OP+Emz++KgagZa/Sn/OEEEKIcBOw87CzGJaVlJluOQBqd/DPPP8n3ZnFyAPPATCwyoM0j74kIPMGwtlVIiIe6YM+KSnIEf07Z7HC50NPcWCDHZ0BrpuQwCXdQuuBkhBCBEMo3Q+LP51wZjAkbQrr87WW3J3irmBG7adJMYfmufZ06wxTx3boTKXbpFZw0s3JXU7QQb2rJSlCCCHEhS2olSKysrLweDykpKT85eMpKSmcPHnyvMYYMWIEVapUoUuXLv/4+WnTphEXF3fmT/Xq1cscd8DsXw0/vgk6nbbTxmj22dDLT63itRPvAPBi7adpHFnPq3GKn30Rx4efgslE3MfvYqhaxWcxitCTudcJQLK0zhBCnKdQOg/vfKcQxQ3VW1modInvzqlCCCFEqArYeXjNWMjeD7HV4Npn/TPH/1FVlaEHppDryeeSyAY8WaV3QOYNFOeqtbi2bAOrlcinBgc7nH9VnOPhg4czObDBjtGqo9usJEmIEEKIEqF0Pyw0X2Svocuv97M+fytWnZkpNZ/i7QYvhmxCBGjXBOBd64zUNVqViCpNzLLBTQghxAUv6O0zymL69OksWbKETz/9FOu/VCcYNWoUeXl5Z/4cOXIkwFF6yWWDz/prx60ehRptfDb0b8X7GHpgCgCPVr6fWxL/OaHkvzi++obC0eMBiHllBuarfBejCE1ZqS5AWmcIIc5fqJyH7fkKP39YCEDLXjFBiUEIIYQItICch49uhY0vace3zAVrYKoxvZXxKWvzNmPRmZlddzxmffm5R1FVlaKJ0wCI7N8bw/9tJAkVecfcvP9ABid/dWKN09N9QTJ1O8guVCGEOC1U7ocFFHiKeHz/RPrve5pcTwGXRjbk60sW81DKHSHdBlp1OnFu2AiAuXPpK3HtO906o7Ocn4UQQoigts9ISkrCYDCQnp7+l4+np6dTqVKlc773hRdeYPr06axatYrLLrvsX7/OYrFgsVh8Em9ArZ1QstOmKnSZ6rNhc9x59EkdiU2x0z62FSOrDfBqHHfqPvLu6QWqSkT/3kT2K1+7csQ/yyxJikiSShFCiPMUKufhnz8sxFWsklTfRO220uZJCCHEhcHv52FVhS8eA1WBy+6Dhl39N9dZ0uxHmHRkNgCjqj9Cg4jaAZk3UFzfbcD1/SawWIgc/mSww/lHmXucfDQgk6JMhZjKBu6cm0xiXblPFEKIs4XK/fCFbkvBTzy+fyJHnCfQo+exyg8wpOrDYZFQ6dq8FYqL0VdMxnjJxaV6ry3Xw5HtWvuW+p0j/RGeEEIIEVaCWinCbDbTvHlzVq9efeZjiqKwevVq2rT596oDzz33HJMmTWLlypW0aNEiEKEG1omf4IcXtOObXvPZThuP6mHg/nEcchyjhqUKr9adiEFX+rJZSkEBubf2QM3Lw3RVG2JmveCT+EToy9orSRFCiPDjdqrsfKcAgBYPxYT0LhAhhBAirOh0cMfb0OgWuHFmQKZ0q24G75+ATbFzVWxzHk7pHpB5A6lw4nQAIh5+EEOVykGO5u+ObLPzfs8MijIVkuqbuPedipIQIYQQIuQ4FRfTjszhjt8f5YjzBNXNlfm48WuMrD4gLBIiAJyr1wFgurpDqdcy9n9nR/Vo67jxNYK6N1YIIYQICUE/Gw4ZMoSePXvSokULWrVqxcyZMykqKqJXr14APPjgg1StWpVp07TSkc8++yxjx47lvffeo1atWpw8eRKA6OhooqOjg/Z9+IzigeV9tb8vvhMa3+KzoZ87+gbr8rZg1VuYX386Caa4Uo+hKgr5D/bF8/se9FUqE/fRO+jM0pf9QlCU5aE4WwEdJNULjxsHIYQA+H1FEUWZCtEpBhrfKLsjhBBCCJ9KbgT3LQ/YdK8cf5sfi3YTY4jipdpj0OvCuivo3zh/2IRr7XowmYgaMSTY4fzN3m+LWTHiFB4nVGtuodusJKxx5etnIIQQIvyl2g4yaP94fi3eA0D3pK5MrPkkMYaoIEdWOs7V3wFg6dKp1O9NXVUMSOsMIYQQ4rSgJ0X06NGDzMxMxo4dy8mTJ2natCkrV64kpaRn5uHDh9Hr/7zBnjNnDk6nkzvvvPMv44wbN47x48cHMnT/2DwLjm0Haxx0neWzYb/IXsMrJ94CYEbt0VwcWd+rcYomP4tj2RdgNhP/6fsYKoVmb1Phe1klrTMq1DBiipBFLyFEeFAVle1valUiLr8vGoNJqkQIIYQQ4eqXoj946fgCACbXHEpVy7nbboYb1e2maOxkACIeug9DjepBjuivflpSyKopOaBCvasj6PpcAiar3BsKIYQIHaqqsjjjYyYdno1ddRJviOW52iPpmlD6pIJgUwoKcG3ZBoC5c8dSvddZrHBoY0nrjC6SFCGEEEJACCRFAAwcOJCBAwf+4+fWrVv3l9cHDx70f0DBknMQVo3Rjq97HmJ8UyZzT3EaT6ZpCyv9K91Dt8RrvRrH/tkKisZNASB27suYWpXD1iXiX2WmSusMIUT4Sdtg59R+N+YoHU3uKgcVpYQQQogLlE2xM3j/BNyqhxsrdOKOxOuDHZJPeY4cJe+eXrh+2ARGI5EjhwY7pDNUVeWHV/PZPDcfgCZ3RdF5TAX0Bkk2FUIIETrSnVkMPTCFtXmbAegQ25oX6zxNJXNykCPzjmv9D+B2Y6hTG0OtmqV678Ef7LgdKnHVDCQ3lLVcIYQQAkIkKUIAqgqfPwKuYqjVHi5/2CfD5rrz6Z06gmLFxlWxzRld/VGvxnH//gf59/cBIGLQACJ6PeCT+ET4yNzrBCQpQggRXrYt0qpENOkejSVGdjIKIYQQ4WrakTmk2g+SbErg2VrDS91XO5Q5Vqwk78F+qNnZ6GJjiV00B2Od2sEOCwDFrbJqcg6/fFQEwJWPxtLmkdhy9e8vhBAi/H2VvY5hB6eT487DqjPzdPWBPJRyR8i32VIVBTyeM3/Us44dX34NgLlzh1KPm7rKBkC9zhFyzhZCCCFKSFJEqPjlfUhdCUYL3PIG6Mt+weZRPQzaP56DjqNUM1dibt3JGHWl/5Erubnk3no3akEBpg5tiZkxrcyxifCTtVerFJHcQJIihBDh4cSvDo5ud6A3wuX3S5UIIYQQIlxtyNvGgvQPAJhR+2kSTPHBDchHVJeLwtHjKX7hZQCMzZsRt3Qxxrp1ghyZxmVXWDE8m31rbOj00GVMBZp0l2sqIYQQoaPQU8S4QzNZkvUFABdH1ueVuhNoEFH65ELV5aL4pVdw/bD5L8kJf01WUM75uf9PbFDP+vj/fw6P57ziKm3rDI9LJW29lhRRv3Nkaf8ZhBBCiHJLkiJCQfEp+OoJ7bjDGEhu6JNhZxybz5q8TVh1ZubXn+7VwpHq8ZB338N4Uvehr1Gd+A/fRmeSh+IXGsWjcmq/G5CkCCFE+DhdJaJx10hiUuSSRwghhAhHee4CnjygtYO8P7kbneOvDHJEvuE5dJi8ux/CtXkroFVkjHl+CjqLJciRaVRVZdmgLA5tcmAww03PJVK/izxYEUIIETq2FfzC42kTOeQ4hg4dj1a+n6eq9sWsL/3apefAQfLu7X3mvBwqDI0aYL7+mlK958hWB44ClcgEPVWamP0UmRBCCBF+5AlBKFg5FIoyoeIl0Ha4T4b8KnsdLx9/E4Bna4/k0ijvEi2Kxk3G+eXXYLUS/+n76JPDswebKJvcw27cDhWjVUdcNfm1IYQIfbmH3WfKRbZ4KCbI0QghhBDCW2MOvcgJZwa1LFUZW2NQsMPxCfvyL8jv9QhqTg66uDhiF76G9fZbgx3WX6R9Z+fQJgdGq4475iZRvYU12CEJIYQQALgUNy8dX8Ds42+hoFDNXImX64zlithmXo1nX/oR+f0Go+bno4uLI2rMcPQJFcBgKPmjR3fm2PCXY+21/v9en9/n/nNcLytJp64uBqDe1RHoDdI6QwghhDhNnm4G2/5V8ONi0Omg2zwwlj17M9V2kMfTJgHwcEp37ky6watx7B99StGU5wGInfcKpsubljk2EZ4yU7XWGUn1THIxLYQIC9vfKkBVoHY7K8n1ZWeEEEIIEY6+yF7DJ6dWokfPy3XGEWUI70oFqtNJ4cixFL/0CgDGls2JX7oYQ+1awQ3s/6iqyg+v5gHQ7N5oSYgQQggRMvbZDjE4bQI/F/0OwB2J1zO55lBijaVv76QWFZE/eBj2hW8BYLqqDXHvLsBQs4ZPYw4kVVHZt0bbIFKvc0SQoxFCCCFCiyRFBJOzGJb3145bPQbVryjzkPnuQnqnjqBIKaZNzOU8U927nTSuX3eR/9AAACKHDCLi/rvLHJsIX1l7S5Ii6kvrDCFE6CvO8bBrWREALXtJlQghhBAiHKU7sxhx4FkAHqv8AC1iLg1yRGXjOXCQ3Lsfwr11OwCRTzxG9LOT0JlDL3lz3xobGb+7MEXq5FpKCCFESFBVlbcyPmXikVnYFQfxhhim1RrOLYldvBrP9dMv5N3dE8+eVNDpiBoznKixo9AZw/txyfGfnRRlKZijddRoLUmNQgghxNnC+ywf7taOh5w0iK0G10wt83CKqjA4bQJp9sNUMacwt94kTPrS/4iV7Gzyut2DWlSEuXNHop+dVObYRHjLLEmKSG4gSRFCiND30/uFuO0qKReZqN4yNPpyCyGEEOL8qarKUwemkuvJ55LIBgyp+nCwQyoT+6efae0y8vLQxccT++ZcrLfeFOyw/pGqqGx8LR+Ay++NJrKCIcgRCSGEuNBlurIZmjaF1XkbAWgX25KX6oyhsrliqcdSVRXb7DkUDBsDTif6qlWIe2c+5o7tfR12UKSu1qpE1GkfgdEs1X6FEEKIs0lSRLAc/xE2vqgd3zIHLGXffTHz+CK+zf0ei87M/HrTSDIllHoM1e0m7+6H8KQdQF+rJnFLF4d9hqwou6xUqRQhhAgPLpvCj+8VAtCydyw6nSwCCCGEEOHm7cxPWZO3CYvOzKw64zDrw/M+RHU4KBj2NLbZcwEwXdGKuCVvhnRZ7tTVNjL3uDBH6WjxkFSJEEIIEVzf5GzgqQPTOOXOwaIzM6r6Izyc0h29Tl/qsZTMTPJ6PYJzxUoALLfeROyCV9EnJvo67KBQVZV9JUkR9aV1hhBCCPE38rQ7GDxuWN4HFA9c0h0aln2HyDc5G5hxbD4A02oNp0l0Y6/GKRw9Hue3ayAykvhlS8rNRaHwnrNYIfeoG5BKEUKI0LdreRG2XIW4agYadJFFACGEECLcpNmPMPHwbABGVh9Aw8g6QY7IO+79aeT16Il7x48ARD71ONFTx6Mzhe491V+qRDwQQ0S8VIkQQggRHEWeYiYcnsW7mcsBaBxRj1fqjqdRZF2vxnOuWUfe/X1QTpwEi4WYGVOJeLRfudpIkZXqIveIG4MZareT1hlCCCHE/5OkiGDY/DIc3wnWeLjx5TIPt892kEH7xwPQq+Kd9Eju6tU4tvc/oPj5mQDELZqDqUl492wVvnFqvwtUiEzUE5kgi2JCiNCleFR2LNaqRDR/MAa9sfwsbgghhBAXArfq5vH9E7Epdq6MaU6flB7BDskr9g8/Ib/PQNT8fHQJCcS99QaWrtcHO6z/tOcbG1mpLiwxOlo8IFUihBBCBMeOwl0M3j+Bg46j6NDRv9I9DK/WH4veXOqxVJeLwnFTKJ4+A1QVQ+OGxC1ZjOmyS/wQeXCdbp1Rs40Vc2TpK2kIIYQQ5Z0kRQRazgFYPVY7vv4FiKlUpuEKPEU8nDqSQqWY1jFNGVfjca/Gcf30C/kPPwZA5MihWLvfUaa4RPmRuUdrnZEsrTOEECEudbWN3CNurHF6LukWFexwhBBCCFFKr554h51Fu4gxRDGzzhivSmMHk2q3UzB0FLbX5gFguqoNce8vwlC9WpAj+2+KR2XTnDwAmj8QgzUuvP7thRBChD+36ublY2/y8vE38eChijmFmXWe4arY5l6N5zlwkLx7e+PavBWAiH69iHnpWXSRkb4MO2RI6wwhhBDi3CQpIpBUFT4bAK5iqN0RLu9dpuEUVeGJtInssx+ikimZ1+tNwaQv/Y9Uycoit9vdYLNhvv4aoiePLVNconzJStWSIpIaSlKEECJ0qarKtkUFADS9J1p2RQghhBBh5teiPbxY0hJyUs0hVLWUbQNBoLlT95HX/UHcP/0CaJsNoieOCel2GWfb83Uxp/a7scTqaC5VIoQQQgRYmv0Ig/eP58ei3wC4LfFaptR8ijijd+ck+9KPyO83WKvaFB9P7LzZWO+8zZchh5Tco24y/nCh00PdjpIUIYQQQvwTSYoIpJ/fhX3fgNECt74BZexZNuv4YlbmrMesMzG//jSSTQmlHkN1u8nt/iDKocMY6tUl7r2F6AzSIkH8KTP1dKWI0peoE0KIQDm6w8HJX50YLTqa3RMd7HCEEEIIUQo2xc7gtAm4VQ83VujInYk3BDukUrEv+ZD8voNQCwvRJSUS9/Z8LNdfE+ywzptWJSIfgBY9Y7DESHKpEEKIwFBVlXczlzP+8MvYFDuxhmim1RpGt8RrvRuvqIj8wcOwL3wLKKna9O4CDDVr+DLskHO6SkS15hZpfyyEEEL8C0mKCJSiLPjqSe2441hIrF+m4Vbl/sALx7SSnNNqDaNZ9MVejVM47Glca9eji44mftn76CtUKFNconxRVZWsvSWVIqR9hhAihG1bqFWJuPjWSKISZQFACCGECCfTj8xlr+0AyaYEnq01Al0ZNxAEimqzUfDEcGxvLALA1P4q4t5bhKFqlSBHVjp/fFlM9gGtBdnl90mVCCGEEIGR5crmqQPT+Db3ewCujGnOzDrPUNWS4tV4rp9+Ie/unnj2pIJOR9SY4USNHYXOWP4fgaSuLgakdYYQQghxLuX/iiBUfDUEirMg5VJoO6xMQ6XZjzBo/3hUVB6seDt3J9/s1Ti2t96jeOarAMS+9QbGiy8qU1yi/CnKUrDlKuj0kFhXfl0IIUJT1n4XaevtoNN2NwohhBAifHyfv5356UsBeKH2aBJM8cEN6Dy59+zV2mX8skt78PL0MKLGjQ67By+KW2XTXK1KRMuHYrBES5UIIYQQ/vdtzvc8dWAqWe4czDoTI6oNoF+lu9HrSn8eUlUV2+w5FAwbA04n+qpViHtnPuaO7f0QeegpyvJw7EcnAPUkKUIIIYT4V+F1tx6u9n0DP7+ttcu4dR4YvN9xX+gp4uHUEeR7CmkRfSkTajzh1Tiu7TvJ7zcIgKixI7HedovXMYny63SViAo1jZissjgmhAhN2xdpVSLqd46gQk2paiOEEEKEizx3AU+mTQbgvuRb6RJ/VZAjOj+2d5ZQMOBx1KIi9BWTiX1nAZZrrg52WF75bUUxOYfcRMTraXavtCATQgjhX8UeGxMOz+KdzGUANIqow+y6E7gosp5X4ymZmeT1egTnipUAWG69idgFr6JPTPRVyCFv/zobqJBykYnYyvK4RwghhPg3cpb0N2cRfDZAO249CKq39nooVVV5Mm0Ke20HSDEl8Ua9qZj1pX/440lPJ/e2e8DhwHzzjUSNG+11TKJ8y9yrZRlL6wwhRKhSVRVFUdHpoWUvqRIhhBBChJNnDr3IcWc6tSxVGVdjcLDD+U9qcTH5g576s095p/bEvbsQQ+VKQY7MOx6XyubTVSJ6x2COkkR4IYQQ/vNT4W8M3D+eA44jAPSrdA8jqvXHqrd4NZ5zzTry7u+DcuIkWCzEzJhKxKP9wqYNl6+krrYBUL9zZJAjEUIIIUKbJEX425rxkHMA4qpDl8llGuqVE2/xZc5aTDojb9SbSoo5qdRjqE4neXfej3L0GIZGDYh7Zz46vSx8iH+WmapVipCkCCFEqNLpdNw4NZF2j8cRkyKXNUIIIUS4WJG9lo9PrUSPnpl1xhJlCO2FfPdvv5Pb/UE8u3/X2mWMHUnUMyPRGQzBDs1rv31eRO4RNxEJepreLVUihBBC+IdbdTP7+Fu8dGwhHjxUMiUzs84ztItr6dV4qstF4bgpFE+fAaqKoXFD4pYsxnTZJT6OPPQ5ChUOb7YDUK+LtM4QQgghzkWeHvjT8Z2w8UXt+OY5YPF+B+va3E08e/R1ACbXHEqLmEu9GqfgyRG4vt+ELjaW+GVL0MfGeh2TKP+ySpIikhtIUoQQIrRJQoQQQggRPtKdWYw4+CwAj1a+n5YxlwU5onOzLX6X/EefhOJi9JVSiHt3AearOwY7rDLxuFQ2va5ViWjVOwZzpGyWEEII4XsH7UcZnDaBHYW7ALgloQtTaz1FBWOcV+N5Dhwk797euDZvBSCiXy9iXnoWXWRoJ1f6y4H1djwuqFDLSGIdWRcRQgghzkXOlP7iccOyPqAqcEkPaNjV66EO2o/y2P5xqKjcl3wr91fs5tU4xfPfxPbaPNDpiHtvIcaGDbyOSZR/ilvl1P6SpIj65iBHI4QQQgghhCgPVFXlqQNTyXHncXFkfYZW7RPskP6VWlRE/mNDsC9+FwBzl07EvjMfQ0pKkCMru93Li8g/5iEyUU/THlIlQgghhG+pqsrSrC8Ye2gmRUoxMYYoptYcxm2J13rd3sK+9CPy+w1Gzc9HFx9P7LzZWO+8zceRh5e9q4sBqN854oJrGyKEEEKUliRF+Muml+DEjxBRAbq+7PUwRZ5iHk4dQZ6ngMujLmFSzSFejePctIWCx7T3Rk16BkvX672OSVwYcg658TjBFKEjrlr4loQVQgghhBBChI53MpexJm8TFp2ZWXXGYdaHZlU6967dWruM3/eAXk/UhKeJGvVUWLfLOO3sKhGt+8RiipAqEUIIIXwn25XLsIPTWJmzHoA2Mc2YWecZqlkqezWeWlRE/uBh2Be+BYDpqjbEvbsAQ80aPos5HLkdKgc2aK0z6kvrDCGEEOI/SVKEP2SnwZpx2vH1MyDau10kqqoy9MBU/rClUdGUyLz6U7HoS79j33P8BHl33AdOJ5Y7biVq9DCv4gmE4hwPOxYXUHRKISJejzVeT0Sc/s/jeIN2HKfHYJLsV3/KLGmdkVTfhE4v/9ZCCCGEEEKIsjlgP8KEw7MAGFFtAI0i6wY5or9TVRX7wrfIH/QU2GzoK1ci7v1FmDu0C3ZoPvPrJ0UUnPAQlaznsruigh2OEEKIcmRN7iaGHphChusUJp2R4dX607/SPRh03iUVun76hby7e+LZkwo6HVFjhhM1dhQ6ozzWOLTJjqtYJTrFQKWLpcqvEEII8V/k6sHXVBU+6w8uG9S5Gpo95PVQc0++y+fZqzHqDLxRbwqVzMmlD8fhIO+O+1BOnMR4yUXEvvl6SJbSUjwqv35cxIaZedjzlfN6jzlKd1bShKEkaUJLmIiIPyuRIu7Pz5mjdCH5/YeirLOSIoQQQgghhBCiLNyqm8fTJmJT7LSJuZy+lXoEO6S/UQoLKRjwOPZ3lwJgvrYzcW/PQ1+xYpAj8x23U2XLG2dVibBKlQghhBBlZ/PYmXRkNoszPgGgQURtZtcZzyVR3rVvVlUV2+w5FAwbA04n+qpViHtnPuaO7X0YdXhLXW0DoN7VEbKhTQghhDgPkhThaz+9DftXgdEKt7wOXj6AX5+3lalH5gAwscYQWsY0KfUYqqqS/9gQXJu3oouPJ27ZEvTRodcr9MSvDlZNyiH9N+0hfHIDEw2ujcCer2DLVbDnKtjySv7OVbSkCRWcRSrOIg/5xzyA67zm0hs5K2nCcOb4dNJERNyfFSlOJ1xEJugvyAvLzL1OAJIlKUIIIYQQQghRRq+deIcdhbuIMUQxs84Y9LrQehjv+mUXeXc9gGdvKhgMRE96hsgRQ9DpQyvOsvr140IK0j1Epxi47M7QWx8QQggRfn4p+oOB+8ex334YgIdTujOq+iNE6K1ejadkZpLX6xGcK1YCYLn1JmIXvIo+MdFnMYc7xa2yf52WFFG/s7TOEEIIIc6HJEX4UlEmrByiHXcaB4n1vBrmkP0Yj+wbg4LC3Uk38WDF27waxzZ3PvYFi0GvJ27Jmxjr1vFqHH8pzvGwYWYev35SBCpYYnRcNTCOpj2i0Rv/PQlB8ag4Cs5KmPhL0oTnTBLF/ydUuB0qihuKTykUn1IA93nFmdzQxG2vJBFb+cL63+VMpYgGkhQhhBBCCCGE8N6uoj3MODYfgIk1nvS6p7g/qKqKbd4iCgYPA4dD24m65E3Mba8Mdmg+53aobJlXAEDrvjEYLRde8r8QQgjf8ageXj3xNjOOzceteqhkSuKlOs/QPq6V12M616wj7/4+KCdOgsVCzIypRDzaTyr//p9jPzqw5ShYY/VUa24JdjhCCCFEWLiwnvL625dPQvEpqNQErhrq1RDFHhsPp44k11NA06jGTKn1lFcXfc4NP2iLOkD09IlYruviVTz+oHhUfvmoiO9f/rNVxsW3RtL+yXiikv67v5zeoCMi3kBEfOl60blsJYkSJQkTfyZNeP5Mrjjr8/ZcBXuBQuYeF+/fn8GdbySTWPfCSBBwFinkHfUAWuUOIYQQQgghhPCGXXEwKG0C7v+xd9/xTdX7H8ffmW06km42LVs2ygYFruLFed2CCxw4EPfeXPcWFLlucSuOKz+9bnEDIshSQPZSoLtNd9b390dLpbYIlLZpy+v5eOQBOTnnez5JevJNTt75fk1QR8eP1GlJx4S7pEohr1fei69Q2VvvSpKcx4yR5+VnZE1KCnNl9WP5O4UqzAgqtqVNvU9mlAgAQO1tKdumK9bfqYWFyyVJx8b/Qw+k3agEh6dW7Rm/X4VT7lXxA49KxsjWvZs8b70sR59edVl2s7Fz6oyOoyJlcxAYAQBgbxCKqCtrP5OWvy5ZrNIJz0m2ff8i2Rij6zfer1Ul65Rkj9ezne9XpHXfk57Brb8r/9SzpUBAEeNOVdR1V+5zG/Vl+/IyfXnPLlNldHNo9K3xanNI/SdaHS6rHC6r3PvwoyTv9oDevShTORsDemtChk5+Kkmtejf/9O3OUSKik637HD4BAAAAgJ0e2Pq01pRsVLIjQQ+m3dhofunpX7JM+aePV3Dd+vLpMu6/U1HXXtHspsvYyV8a0oLnvZKkIRe5ZXc2jucBANC0GGP0TtbHun3zYyoMFSvGGqV70q7VqYlH17qPD27cpPwzz5f/x58kSa6LzlPs1AdliYqqy9KbDWNMZSii62geIwAA9hahiLrgK5I+uKT8/0OukNoOrFUzz+54S7NzvpDdYtMzne9Vm4gW+9yGKSlR3klnKJSRKXu/PvK88J9GcdKpcqqM94ok7f1UGeHmbmXXuFdS9N9JWdrxq09vX5CpE59IUuqQ2s2J11RkVoQikrs6w1wJAAAAgKZqrvdnPZf+liTp4bSbleiID3NFFdNlPPWcCq6+SfL5ZG3XVp5ZL8s5dHC4S6tXy94uUlFWSO7WNvU6KTrc5QAAmqAcf75u3PSgPs79WpI0KKavnug0Re32Y1qs0lnvynvRFTJeryxxcXI/N12Rp9ZuKukDRfpKvwq2B2V3WZQ6rPn/eA8AgLpCKKIuzLlDytskxaVKR9xdqyZ+8C7SPVuflCT9u/2VGuI+eJ/bMMbIe8mVCvy8RJbEBMW9/2bYE7X7O1VGYxAVb9PpLyRr9pVZ2vJjmf47KVPHPpSorkc23yTuzpEikrowdQYAAACAfecNFOqqDeWfj89KPkFHxh8a5oqkUH6+vBMnq+zd2ZIk5/HHyPPS07ImJIS3sHrmKw7pp11GiWCYbQDAvvo2f4Gu3nCP0v1Zsltsur7NRZrU6izZLLU7v2uKiuS94nqVvviKJMkxfKg8r78gW2r7uiy7WVpXMUpEh+GRckQ2zxGuAACoD4Qi9legTFr3efn/j39Kitj3eTl/L9uuS9bdppBCOi3pGJ2bcmqtSil54j8qfeUNyWZT3NuvyJaWWqt26ko4p8qoa85oq07+T7I+ujFba78o0YfXZuvIO0Lqc2rznIc1c03Fc0YoAgAAAEAt3L75MW3zpSs1oo2mtL8i3OXIv2ix8sdOUHDDRsluV8xD9yjqqsmNYmTF+rZsVqGKc0LytLWp5wmMEgEA2HsloVLdv/UpvZD+tiSpc2Sqnux0p3pHd6t1m/6ly5U/boKCq9dKFouib7tB0XfcLIudryr2xto5xZKkLke4wlwJAABNC+809pc9Qpq0SPrtQ6nr0fu8eUmoVBesvUm5gXz1iTpI96ddX6uTMr6vvlHBtbdIkmIfvU/Ow0ftcxt1pcapMi73qN/pjXuqjD2xOy06/pFEfXl3rpa/W6TP/52rkvyQBp0f26xOpBljlFURikjqSigCAAAAwL75OOcbvZv9iayy6vGOtyvaFr5R9owxKpn+lAquu1Xy+2VNba+4WS/LMbh20142Nb7ikH6aWSBJGnIxo0QAAPber0WrdfmGO7WmZKMk6byUU3Vru8ly2Wo3rXBln3z9beVTWLVpLc9rz8s5akRdlt2s5WzyK3t9QFa71HEEoQgAAPYFoYi6YI+Qeu376A7GGN2w8UH9WrxGCfY4Pd/lfrms+/6mMrhps/JOHy8Fg4ocf6ZcV1y6z23UheYwVcaeWG0WHTklXq44qxY8X6Dvp+arJDekkdd6mk0wojAjqFJvSBablNiRUAQAAACAvZfhy9YNmx6QJF3a6iwNjO0btlpCeXnynj9JZe9/KEmKOPE4uV98Stb4+LDV1NCWvFmokpyQ4trZ1fN4RokAAOxZ0AT19PY39PAfz8pvAkpxJOqxDrfqH3FDa91mKDNT+edNku+jTyVJESccJ/cLM2RNTKyrsg8Iayumzmg3MEKRHqbOAABgXxCKCKMX0t/Wf7M/lU02Pd35HrWJaLnPbZjiYuWdOE4mO0f2AYfI/fTjYflyvjlNlbEnFotFh10Vp8g4q759JF+LXipQaV5I//x3fJMeCWOnrLXlz2F8ql32iKZ/fwAAAAA0DGOMrt14n3ID+eoR1UXXtrkwbLX4f1qkvLETFNq0WXI4FPvIvXJdPqnZhNn3hq8opEUVo0QMvcTdLD6vAgDq19ay7bpyw11aULBUknR0/Eg9lHaTEhxxtW7T99U3yj97okLbd0gREYp99D65Lr2oUfbJGb/55CsyanOwUxZr46tvXUUoossR4RuFCwCApopQRJjM8y7WXVumS5Jub3+Zhrv773MbxhjlX3CpAst+kTUlWXH/fUMWV8MOm9Vcp8rYGwPPdcsVZ9NnU3L06+wilXpDOu7hxCYfJMismDojuQujRAAAAADYe69n/p++yp8np8Wh6R2nyGlt+M8UxhgVT5uhwhtvl/x+2Tp2kGfWy3IMOKTBawm3xa8XqiQvpPhUu7ofy5cnAIDdM8bovexPddvmR1UQLFK0NUp3p16t05OOrXV4wfj9Kpxyr4ofeFQyRrbu3eR562U5+vSq4+r33/ZfyjR3hlebfiiVVP5jsYPPjFGvE6PljG4cIzIUpAe0fblPskidj2DqDAAA9hWhiDD4o2yHLll3m4IK6uTEMZrYYmyt2il+5HGVvfWuZLfL886rsrVrW8eV7l6NU2WcGKURVzWfqTL2Rq8ToxXpturD67K07qsSvXdJpk6cnqSImMbxZrk2snaGIro6w1wJAAAAgKZiU+nvunPLE5KkG9teooOiOjV4DaGcHHnPm6SyDz6SJEWceqLcz8+Q1eNp8FrCrawwpEUvVYwSMYlRIgAAu5cbyNfNmx7WhzlzJEkDYnrriY5TlBrZptZtBjduUv6Z58v/40+SJNdF5yl26oOyRDWukF76Sp/mzsjXhm/LwxAWm+RwWZS7OaCv7s/TD0/kq9dJ0TrkzFjFtQ/vVynrviofJaJ1H6dikg+c8+8AANQVQhENrCRUqolrb1Z2IFc9o7roobSbapW2LfvsSxXedIckKfbxh+QccWhdl7pbB9JUGXuj8+EunfpMst6/LEtbF5bp7fMzdPJTyYpObJpvTjMrps9I6spIEQAAAAD2LGiCunLDXSoOlWho7MG6qOW4Bq/BN3+B8sedq9CWrZLTqdipD8g16cJGOTR3Q1j8WoFKvSEldLDroKMb1xdQAIDG47v8n3T1hnu0w58pu8Wma9pM1ORWZ8tuqf3XBqWz3pX3oitkvF5Z4uLkfm66Ik89qQ6r3n8Zv/k07z/eyqCBxSr1+FeUhl7sUVSiVSs+KNKS1wuVszGgxa8VavHrheo4IlL9z45V+yERYXl/sbZi6gxGiQAAoHYIRTQgY4xu3vSwlhf/pni7Ry90eVAuW+Q+txNYt175486VQiFFXjBBrkkNM09rcU7FVBn/PfCmytiTdgMjNXZmit69JFPpK/16a0KGTn02WZ7WTesQC/qNstdXhCKYPgMAAADAXvjP9te0qPAXxVijNK3j7bJaGm7kPBMKqfjRJ1R4y7+lQEC2zp3kefsVOQ7u22A1NDal3pAWvVI+SsSwSR5ZbQf253UAQHWloTI9sPVpPZf+liSpY2R7Pdnx3+ob073WbZqiInmvuF6lL74iSXIMHyrP6y/Iltq+LkquE1nr/Jr3n3yt+bw8YCCL1OPYKA2d5FZ86p/nQg8eF6t+p8do0/xSLX6tUBu/L9WGb8sviZ3sOuSsWHU/LkrOqIZ5z1OSH9TWhWWSpC6jCUUAAFAbTesb2ybu5Yz39E7Wx7LKqqc63a12Ea32uY1QYaHyThwnk5cnx5BBcs94rN6TqaGg0fJ3ivTDEwf2VBl70qKHU2e8kqJ3LsxU7qaA3jynPBiR1KnphAtyNwcUCkjOaIs8rXluAQAAAPy9X4tW69E/npck3ZV6jdrW4nNubYWyspR/7iXyffSpJCli3KlyP/OErG53g9XQGP38aoHKvEaJne3qOoYvTgAAVa0oXqsr1v9bv5VskCSNTzlZt7e7TFG22vcZ/qXLlT9ugoKr10oWi6Jvu0HRd9wsi71xfP2QvcGv+U959dunxZKRZJEOOipKQy9xK3E3524tVos6DHepw3CXcjb5teSNQv06u0jZ6wP64q5cfT8tX71PiVa/M2Lq/YdxG74plQmW/4gtvn3TOdcMAEBj0jjelRwAfvQu0ZQt0yRJt7abrMM8A/e5DWOMvBMuUnDFKllbtpDnvddliajfKSv+OlVGykEOHXFrvNocfGBOlbEnCWkOnflqit69OFPZ6wN6a3yGTnkqSa36NI3HK2tNxSgRnR2yWPk1EQAAAIDdM8bo+o0PyG8COip+hE5POqbB9u37YZ7yzzhPod//kCIiFPvEw3JdeN4BO13GTqX5If38KqNEAACqC5mQnt3xph78/Rn5jF9J9ng92vFWjY4bXus2jTEqmf6UCq6/TfL5ZG3TWp7Xnpdz1Ig6rLz2creUhyFWfVQsU/5bP3X9p0tDJ7mV3MW51+0kpDl0xC3xOvRyj36dXaTFrxco//egFs4s0KKXC9T5cJcOOTtGbfvXz9QaTJ0BAMD+IxTRALb5MnTxulsVMEGdkHCkLm55Rq3aKbrvYZX99wPJ4ZDnv2/I1rr+foHDVBm1F9vSrnEvp+i/l2Zp+3Kf3r4gUyc8nqS0Yfs+VUpDy1zjkyQldSVxDAAAAODvWSwWTet4u+7eOl0Ppd3UIIEEEwqp+KGpKrztLikYlK1rl/LpMvr2rvd9NwWLXimQr9AoqYtDXY/kixMAQLk/ytJ11Ya7Na/gZ0nSmLgRerjDTUp0xNe6zVBmpvLPm/TniE0nHCf3CzNkTUysk5r3R97WgH58xqsVHxbJBMuXdT7cpWGXupVy0N6HIf4qItaq/ufE6uAzY7Tx+1Itfq1Am38s09ovS7T2yxIld3PokLNj1P2YaNkj6uZ9ka84pE3zSiVJXQhFAABQa4Qi6llpqEwXrb1ZWYFcdXd11iMdbq7ViaKy/32iotvvliTF/meqnEMH13Wpkpgqo6644mw67flk/d+VWdo8v0z/vTRTxz6YqG5josJd2t/KXFsxUkQXQhEAAAAA9qxbVEe91m1qg+wrlJmp/PEXyffpF5KkyLPGKvapabLGxjbI/hu7krygFr9WMUrEpW5G/wMASJJmZ3+umzc9LG+wUFFWl+5sf5XOSD5+v8KMvq++Uf7ZExXavqN8xKZH75Pr0ovCPmJT/raAFjzr1a+zixQKlC/rOCJSwyZ71LJn7cMQf2W1WdRplEudRrmUtc6vJa8XaMWHxcpc7ddnt+fqu8fy1fe0GPUdG63YFvv3FcymuaUKlBq529iUchDnbAEAqC1CEfXIGKNbNz2iJUUrFWeL1QtdHqjV3GyB1WuUf9YFkjFyTZqoqInn1n2xkrYtK9Oce5kqo644o6w6aUayPrk5W6s/K9GH12WrND+kvqfHhLu03cqqCEUkM1IEAAAAgEbE990P5dNlbNsuRUbK/eSjijx/fNi/fGlMFr1UIF+RUcpBDn5JCgBQXsCrWzc9otk55WHCg6N7anqnKeoQ2a7WbRq/X4VT7lXxA49KxsjWvZs8b70sR59edVV2rRTsCOjH57z65b0/wxBpwyM1fLK73qc1Turs0JFTEnToVR798l6RlrxZqILtQf34rFc/vehV1yOjdMjZMWrVx1mr9y3rKqbO6HKEi/c9AADsB0IR9ejVzPf1Vtb/ZJVV/+l8t1Ij2+xzG6H8fOWdMFbG65Xj0KGKnfZQndfJVBn1x+606NiHEhXpztWyd4r0xV25KskLafCFsY3uTWxZQUjebeXjye3LnHoAAAAAUF9MMKii+x9R0ZR7pVBItoO6Ku6dV2Xv1TPcpTUqxblBLX69UJI07FIPo0QAwAFurvdnXbnhLm33Zcgmm65uc54ubz1Bdkvtvw4Ibtyk/DPPl//HnyRJrovOU+zUB2WJCt/IuIWZQf30vFfL3ilUsHxWYLUfEqHhl3rU5pCG/aGfy2PToPPdGjA+Vuu+LtHi1wv1+6Iy/fZJsX77pFgtezl1yNkx6jYmSjbH3vXTQb/R+u92hiIa9wjEAAA0doQi6snCgmW6Y3P5EKI3t5ukkZ59n+7ChELKP+dCBVevlbVNa3nefU0WZ919Wb3bqTKujlN0IlNl1BWrzaLRd8TLlWDTj8949cMT+SrJC2rUdXGN6kTVzlEiYlrYFOmxhrkaAAAAAAe6YHq6vGdPlO/LryVJkRPOknvGY7JER4e5ssZn4cwC+UuMWvRwqNM/IsNdDgAgTMpCPj34+9N6dsdbMjJKi2ir6Z3+rUNi9i9MWDrrXXkvukLG65UlLk7u56Yr8tST6qjqfVeUFdRPM71a9laRAmVGktR2QISGT3ar3cDw9oNWu0Vdj4xS1yOjlL7KpyWvF2rVx0Xa8atPH9+Uo28fyVPfsTHqe1rMHqer3rqwTGVeI1eCVa378SM2AAD2B6GIerDDl6mL1t0qvwnouITDNanlWbVqp+jO++T78GMpIkJx778pW4sWdVYjU2U0LIvFokMv98gVZ9XXD+bp51cKVZIX0pg7E/Y6GVzfMpk6AwAAAEAj4fv6W+Wfeb5CO9KlqCi5Zzwm17lnh7usRqkoO6glb+4ySkQjG5UQANAwVhWv0+Xr79SqknWSpLOST9CU9lco2lb7HssSMQABAABJREFUEQZMUZG8V1yv0hdfkSQ5hg+V5/UXZEttXyc176vi3KAWzizQkjcLFSgpD0O07ufU8Ms8aj84otH1gS26O3XUPQkacY1Hy98p0tJZhSrMCGreDK8WPOtVt6OjdMhZsWrZs+bAw9o5xZKkzv9wyWprXPcNAICmhlBEHSsL+XTRuluU4c/WQa6OeqzDrbV6M1Y6+0MV3fWAJMn97HQ5Bvavk/qKc4L6bmq+fn2fqTLCof85sYp0W/XpHTla+UGxyrwhHfdIohyR4R+ZYedIEUldCEUAAAAACA8TDKrongfLPw+HQrL17K64t1+RvUf3cJfWaC18sUCBEqOWvZzqOJJRIgDgQBMyIT2fPksPbH1aZcanRHu8Hulws/4Zf9h+tetfulz54yYouHqtZLEo+rYbFH3HzbLYG/4rhZL8oBa9VKDFrxfKX1wehmjZ26nhl7mVNiyy0YUh/ioqwaYhF7s18PxYrfmiWItfL9T2ZT6t/KBYKz8oVpuDnTr4rFh1OcJV+QM6EzJa99XOqTNc4SwfAIBmgVBEHbt982P6ufBXeWyxer7LA7VK4gZWrpL3nAslSVFXXirX+DP3u65Q0GjZO4X64Yl8lXnL3zgyVUZ49DwhWpEeqz68NlvrvynVe5dk6aTpSYqIDW8wInNN+cR7yYQiAAAAAIRBcEe6vGedL99X30qSIs8fL/f0R8I6V3ljV5QV1NJZFaNETHY3+i+FAAB1a5svQ1dvuFs/eBdJkkbHDdcjHW5RsiOh1m0aY1Qy/SkVXH+b5POVT+v82vNyjhpRV2XvtVJvSD+/UqCfXyuQr7D8nHaLHg4Nm+xRxxGNPwzxVzaHRd2PiVb3Y6K1/ZcyLX6tUKs/K9YfS3z6Y0m2YlvY1G9cjHqfGq28LQEVZYbkjLao/RBCjwAA7C9CEXXotYzZej3z/2SRRU92ulMdItvtcxuhvDzlnTBOprBQjn+MUMzD9+53XUyV0fh0GuXSKc8k6f3LsvT7ojLNOi9DpzydvMd55OqLMaZypAimzwAAAADQ0Mq+/Fres85XKCNTluhoxT79uFxnjwt3WY3eTy94FSg1atXXqQ6H8oUJABxortpwl+Z6f5bLGqkp7a/Q2ckn7ldQIJSZqfzzJsn30aeSpIgTjpP7hRmyJibWVcl7pawwpMWvF2jRywWVP/BL7urQ8Ms86vSPpheGqEmr3hE69sEIjbwuTstmFWrZ24UqSA/q+8fzNf9pr9xtys8Tdxzhkt3Z9O8vAADhRiiijiwq+EW3bX5UknRD24t0eNzQfW7DBIPKP/N8BdetlzW1veJmvSyLo/ZfUNc0VcahV3jU9/QY5iBrBNoNiNS4l1L07kWZyvjNrzfHZ+i055LladPwh2XBjqDKCoysdimhI6EIAAAAAA3DBAIquvM+Fd37sGSM7L17yvP2K7If1C3cpTV6hRlBLXu7/PP+8Es9zeILIgDAvrkn9VrdvOkhPZR2szq52u9XW76vvlH+2RMV2r5DiohQ7KP3yXXpRQ3av/iKQ1ryRqEWzixQaX5IkpTYya5hkz3qOtoli7X59XUxyTYNv8yjwRe5tfqTYi1+vUDpK/3K2RCQJHVm6gwAAOoEoYg6kO7L0kXrbpHfBHRM/Chd3mpCrdopvP1u+T75XHK5FPf+m7ImJ9eqHabKaDpSDnLqjNdS9M6FmcrbEtCb52TolGeSlNzF2aB1ZK4pHyUiPs1eOW8dAAAAANSn4Lbtyj/jXPm/mytJcl10nmKnPSSLi5P/e2PB814FyozaHOxU6jBGggSAA1FXVwe91/2p/WrD+P0qnHKvih94VDJGtu7d5HnrZTn69KqjKvfMXxLS0rcK9dOLBSrJLQ9DJHSwa9gkj7qOcR0QP/CzOy3qeUK0evwrStuW+LTkrUKZkFHnf/C+CACAukAoYj/5Qn5dvO5Wpfuz1NXVQVM73lar9Gzp2++p+P5HJEnuF2bIcXDfWtXDVBlNT3x7h858tYXevThTWWv9mjUhUydOT1Lb/g33nFVOndHAYQwAAAAAB6ayz75U/tkXyGRlyxITI/dz0xU57rRwl9VkFOwIaPm7hZKkYZMZJQIAUDvBjZuUf+b58v/4k6SKgOLUB2WJimqQ/ftLQ1r+TpEWPO9VcXZ5GCKuvV3DJrl10DFRB0QY4q8sFovaHBKhNodwPh8AgLpEKGI/2SxWDYrtq9UlG/RClwcVY4ve5zb8y39V/nmTJElR118l1xmn73MbTJXRtMWk2DT2pWS9f2mWti3z6Z2JGTr6vkQddHTDfACpDEV0ZeoMAAAAAPXHBAIqvP3u8l+jSrL361M+XUaXzmGurGlZ8HyBgj6p7YAItR/MlyYAgH1XOutdeS+6QsbrlSUurjygeOpJDbLvgM/ol/cKteC5AhVmBCVJnrY2Db3Eox7HRclq53w2AACoW4Qi9pPNYtMt7S7VhS3HKdmRsM/bh7KzlX/iOKm4WM5/HqGY++/ct+1rmCqj14nROuxqD1NlNDEuj02nPZ+sj2/K0do5Jfrf9dnybg9o4Hmx9f6rn53TZyR1IRQBAAAAoH4Ef/+jfLqMH+ZLklyXXqjYR++XJTIyzJU1Ld7tAf3yXsUoEZe6GSUCALBPTFGRvFdcr9IXX5EkOYYPlef1F2RLbV/v+w76jX59v0g/PuNVQXp5GCK2lU1DL3ar5wnRTOsLAADqDaGIOlKbQIQJBJQ/7lwFN26SrWMHed6cKYtt74MM25aW6ct7c5WxiqkymguHy6rjH0vUNw/nafFrhfrusXzl/xHQETfH11tCOug3ytlYEYpgpAgAAAAA9aDs48+UP/5CmewcWdxuuZ9/UpGnnRzuspqkBc96FfRL7QZFqP0gAiUAgL3nX7pc+eMmKLh6rWSxKPq2GxR9x82y2Ov3a4Kg32jlB0Wa/4xX3m3lYYiYFjYNudCtXidHy+4kDAEAAOoXoYgwKrzpDvm+/FqW6Gh5Zr8pa8LeBSuYKqN5s9osOvymeHna2PX1Q3laNqtIBTuCOu7hRDmjrHW+v5yNfoUCkjPGIncrRhcBAAAAUHeM36/CW+9U8cPTJEn2/gfLM+tl2Tt1DG9hTVT+HwH9UnEuYPhkT5irAQA0FcYYlUx/SgXX3yb5fLK2aS3Pa8/LOWpEve43FDBa9VGx5j/tVd7WgCQpOsmqwRe61efUGNkjOJcNAAAaBqGIMCl5fZaKH31CkuR++Rk5evfa4zZMlXFg6X9OrGJb2vTxTTna8G2pZp2XoZNnJCs6qW6f66y15aNEJHdxMOwqAAAAgDoT3LJV+ePOlX/+AkmS6/JLFPvwvbJEMLphbf34rFehgJQ6JEJt+/M4AgD2LJSZqfzzJsn30aeSpIgTjpP7hRmyJibW3z6DRqs/Lda8p7zK3VQehohKsGrQRLf6nh4tR2Td//ALAADg7xCKCAP/4qXyTpwsSYq+9XpFnnLiHrepaaqM0bfFq3U/ToI0Z12PjFJMsk3vX56l9BV+vX5Wuk75T7ISO9XdNBeZayqmzujC1BkAAAAA6kbpBx/Je+4lMrm5sng8cr/4H0WefEK4y2rS8rYGtOL/ykeJGMYoEQCAveD76hvlnz1Roe07pIgIxT56n1yXXlRvP4wyIaPVn5do3n/ylbOhPAzhirNq4Pmx6jcupl5GwQUAANgbhCIaWCgjQ3knjpNKS+U89ihF33nb365flB3U91Pz9evsiqky3BYdejlTZRxIWveL0Jmvp+i9S7KUtyWgN85J14lPJKndgLqZO3ZnKCK5q7NO2gMAAABw4DI+nwpvnqLix6ZLkuwD+ytu1suydUgLb2HNwI/PlI8SkTY8Um0O5gcSAIDdM36/Cqfcq+IHHpWMka17N3neelmOPnserbhW+wsZrZ1Tonn/8VaOShvptmrAubE65KwYOaMJQwAAgPAiFNGAjN+vvNPHK7T1d9m6dpHntedlsdU8FQJTZWBX8e0dOvP1FM2+LEvblvn07oWZOureBHU/Jnq/2975QSWpKyNFAAAAAKi94KbNyhs7QYGfFkmSoq6arJgH75bFSQB7f+Vu8WvFh+U/lhg+2R3magAAjVlw4ybln3m+/D/+JElyXXSeYqc+KEtUVJ3vyxij9d+Uat6MfGX8Vn6OMSLWov7jY9X/7FhFxBKGAAAAjQOhiAZUcO3N8n/7gyyxsYqb/aascXE1rsdUGahJVLxNp72QrI9vytHaL0v00Q058m4PatD5sbUe8q40P6SCHUFJUlJnQhEAAAAAaqd09ofynjdJJi9Plrg4uV96WpEnHBfuspqN+U97ZYJSh8Mi1aoP5wYAADUrnfWuvBddIeP1lvfHz01X5Kkn1fl+jDHa+EOp5j6Zr/QV5eewndEWHXJOrAacE6tID2EIAADQuBCKaCAlM19VyfSnJUnu156XvftB1dapcaqMKzzqexpTZaCcI9Kq4x9N1LeP5unnVwr1/dR8eX8P6Ihb42W17/vfSNa68g8tsS1tinTzYQUAAADAvjFlZSq44TaVPPGUJMkxZJA8b70kW2r7MFfWfORs8mvV/4olScMuZZQIAEB1pqhI3iuuV+mLr0iSHMOHyvP6C3XeHxtjtHl+mebOyNf2Zb7yfbksOvjMGA08L1auOEY4BgAAjROhiAbgX7BQ3kuulCRF33mrIv91bJXbQ0GjZW8X6ofpTJWBPbPaLPrHDfHytLbrqwfztOydInl3BHX8o4lyRu1bsCFzbfmHl2SmzgAAAACwj4wxyh1zgvzf/iBJirruSsXc929ZHHy+qEvzn/LKhKROoyLVqjejRAAAqvIvXa78cRMUXL1WslgUfdsNir7jZlnsdXvqf8tP5SND/LG4/HyiPdKifuPKwxCcwwYAAI0doYh6FtyRrryTz5R8PkWceJyib7uxyu1MlYHaOuTsWMW2tOmjG3O08ftSzTo3Qyf/J1nRSXv/ISRrdfnfXVIXTloCAAAA2DcWi0Wu88cr8MtKeV55VhHHHhXukpqd7PV+/fbJzlEiPGGuBgDQ2BRPf0oF190q+Xyytmktz2vPyzlqRJ3u4/efyzT3yXxtXVgmSbI5pX5jYzToAvc+nYcEAAAIJ0IR9cj4fMo/5SyFtm2XrXs3uV9+VhZr+S/5mSoDdaHL6Cid/qJN71+WpfSVfr1+ZrpOfipZSZ32LuSQubY8FMFIEQAAAABqwzX+TEUcd5SsCQnhLqVZmv90+SgRnQ93qUUPZ7jLAQA0MsGNm8t/jHfCcXK/MEPWxMQ6a3vb0vJpMjbPrwhDOKQ+p8Vo8ES3YlIIQwAAgKaFUEQ9KrjiOvnn/SiLx6O42W/J6nbXPFXGSdE67CqmykDttO4bobNeb6H3JmUqd3NAb56TrhMfT1K7gZF/u50xRlnrKkaKIBQBAAAAoJYIRNSPrHV+/fbpzlEi3GGuBgDQGMXcf6fs/Q9W5Jmny2Kpmx/abf+lTPP+49XG70slSVa71PvkaA2+0C13K75OAAAATRPvYupJ8TMvqOSZFyWLRZ43XpS9a5fqU2V0d2j0rUyVgf0X196uM15L0ezLs7RtqU/vXJipo+9NUPdjo3e7jXd7UL5CI6tdSkgjFAEAAAAAjcm8p/IlI3U50qWUgxglAgBQnSUiQq6zxtZJW+mrfJo3I1/rvykPQ1hsUq8TozXkIrc8bfgaAQAANG28m6kHvrnzVXD5dZKkmHunKDB4tL6+LYepMlCvouJtOu35ZH1yS47WfF6ij27MkXdbUIMmxtaYFM9aUx7OSejgkM3B3yEAAAAANBaZa3xa81mJZGGUCABA/cpc7dO8/3i1dk6JJMlilXocH6WhF3sU156vDwAAQPPAu5o6Fvxjm/JPOUvy++U45SStTr1Yc4/fzlQZaBCOSKuOfyRR3z6ar0UvF+j7x/OV/0dAo2+Ll9VeNfiQWRGKSGbqDAAAAAC1VOoNyRgjR6RVNqfqbOjuA928/3glSd3+6VJyF0aJAADUvax1fs17Kr88hCdJFqn7MVEaOsnNqLIAAKDZIRRRh0xpqfJOPlOh9Axl9zpZC0MPKPO+PElMlYGGY7FaNOr6OLlb2/TVA3la/m6RCtKDOv6RRDmjrZXrZa0tD0UkEYoAAAAAUEvfPpKnX/5bPiqixSrZIy1yuHZerHK4LFWXRVrliKphmcsie+X1XbbdZZk90nJAhC4yfvNp7Zflo0QMvdQT7nIAAM1Mzka/5j3l1W+fFEvlv+NTt6NcGjrJo6ROnCcEAADNE6GIOmKMkXfSVSr4eYOWdHhY681x0pogU2UgbA45K1buVnb974Zsbfy+VG+dm6GTZyQrJqV8lJLMNT5JUnIXPuwAAAAAqJ1Aman8vwlJ/mIjf/HOZcG63ZlF5eGImsITkRY5ov5cVjWcsZfLIi2yWMP/uX3nKBEHHR3Fl1MAgDqTu8Wv+U97tep/xTKh8mVdRrs07FK3krsyKhEAAGjeCEXUkaLpz2jZByEt7fKxfLbyX3L0OilaI672KCqBqTIQHp0Pd2nszGT9d3KWMlb59fpZ6TrlqWTFtbcrZ1NAEtNnAAAAAKi9Yx9M1FH3JChQauQvNfKXhOQvNuXXS/5cFiipuL6nZTu3K/5zWdBXsTOjyvVL6un+2CMtfwYvdgYmonYJT0TuEqhwVV+2M2Dx5/rlI2PsXLanH0vsWOHTuq9KZLFKQy9x19O9BAAcSPJ+D+jHZ7xa8UGRTEVesdM/IjXsUo9adCcMAQAADgyEIurA5hcX6MsnOiq31bGSmCoDjUur3hE66/UWem9SpnI3BfTmOekadqlHJihFuC2KaUFoBwAAAEDt2RwW2RwWRcRKUt1/vggFdwlZlPwlPLHLMn/FskBNy0p3WVZSdVmg9M/RLgKlFdfz6vxuSJJsTlVOF1JlGpGKZdkby6c57H5MlBI7EmAHANSed3tAPz7r1a/vFylU/tsodTgsUsMne9SyF2EIAABwYGkUoYgZM2bo4Ycf1o4dO9S3b19Nnz5dgwYN2u3677zzjm6//XZt2rRJXbp00YMPPqhjjjmmASv+U8BbrI8ecag4sructhIddlMr9T2dqTLQuMS1s+vM11I0+4os/bHYp68fzJMkJXdxHhBz8gIAAABouqw2i5zRFjmj66d9EzJ7FZ7wl/5lFIydy6oEMWpYVmoq52wP+qSgL6RS7+7rsdikIYwSAQCopYL0gBY8X6Bf3i1UsDxrp7RhkRo22a3WffkRHwAAODCFPRQxa9YsXXPNNXr66ac1ePBgTZs2TWPGjNHq1auVkpJSbf158+bpjDPO0P3336/jjjtOb7zxhk488UQtXrxYvXr1avD67e4ojTjfaMPb83TE+8cquk1Mg9cA7A1XnE2nPZeiT27J1urPygebTerCL48AAAAAHNgsVoucURY5o+qnfWOMAmW7BCx2mRqkpmUtujuVkMZnNQDAvinKCmrB814te7uwcuqp9oMjNGyyR20PIQwBAAAObBZjjNnzavVn8ODBGjhwoJ588klJUigUUrt27XT55Zfrpptuqrb+2LFjVVRUpP/973+Vy4YMGaJ+/frp6aef3uP+vF6vPB6P8vPz5XbzywsceEzI6PvH87X83SL9a2qi2g+KDHdJAA4g9MMAAIQP/TAAAOFTX/1wUXZQC18s0NJZhZVTQrXtH6Fhk92c9wMAAKgQ1pEifD6ffv75Z918882Vy6xWq0aPHq358+fXuM38+fN1zTXXVFk2ZswYzZ49u8b1y8rKVFZWVnnd6/2bMSqBA4DFatGIq+N02FUeps4AUO/ohwEACB/6YQAAwqch+uH5z+RrwfMFCpSUhyFa9XXq0Ms8aj8kgvN+AAAAu7CGc+dZWVkKBoNq0aJFleUtWrTQjh07atxmx44d+7T+/fffL4/HU3lp165d3RQPNHF8MALQEOiHAQAIH/phAADCpyH64aBPCpQYtezl1ClPJ+nM11KUOjSS834AAAB/EdZQREO4+eablZ+fX3nZunVruEsCAOCAQT8MAED40A8DABA+DdEPDxgfq5OeTNJZb6aow6EuwhAAAAC7EdbpM5KSkmSz2ZSenl5leXp6ulq2bFnjNi1bttyn9SMiIhQREVE3BQMAgH1CPwwAQPjQDwMAED4N0Q9HeqzqNMpVr/sAAABoDsI6UoTT6VT//v01Z86cymWhUEhz5szR0KFDa9xm6NChVdaXpC+++GK36wMAAAAAAAAAAAAAgANTWEeKkKRrrrlGEyZM0IABAzRo0CBNmzZNRUVFOu+88yRJ48ePV5s2bXT//fdLkq688kqNHDlSjz76qI499li99dZbWrRokZ599tlw3g0AAAAAAAAAAAAAANDIhD0UMXbsWGVmZuqOO+7Qjh071K9fP3366adq0aKFJGnLli2yWv8c0GLYsGF64403dNttt+mWW25Rly5dNHv2bPXq1StcdwEAAAAAAAAAAAAAADRCFmOMCXcRDcnr9crj8Sg/P19utzvc5QAAcEChHwYAIHzohwEACB/6YQAAgPCx7nkVAAAAAAAAAAAAAACApodQBAAAAAAAAAAAAAAAaJYIRQAAAAAAAAAAAAAAgGaJUAQAAAAAAAAAAAAAAGiWCEUAAAAAAAAAAAAAAIBmiVAEAAAAAAAAAAAAAABolghFAAAAAAAAAAAAAACAZolQBAAAAAAAAAAAAAAAaJYIRQAAAAAAAAAAAAAAgGaJUAQAAAAAAAAAAAAAAGiWCEUAAAAAAAAAAAAAAIBmiVAEAAAAAAAAAAAAAABoluzhLqChGWMkSV6vN8yVAADQdMTGxspisex3O/TDAADUTl30xfTDAADUDv0wAADhU1fnpnFgO+BCEQUFBZKkdu3ahbkSAACajvz8fLnd7v1uh34YAIDaqYu+mH4YAIDaoR8GACB86urcNA5sFrMzonqACIVC2rZt2z6nigYOHKiFCxfWap+12XZft9mb9b1er9q1a6etW7fy4qH9e04bQkPXVx/7q6s2G/Pxt7frcvxV1ZiPv+Zw7NVluzvbqas0Lv0wrwM7NebXAal5vBbQD/+J468qjr/631d9HH910RfTD/M6sBOvA/W/vwOhH97b9Tn+quL4q//90Q/v37a8DtQ/Xgfqf3/0w3/i+KuK46/+99dY+2HggBspwmq1qm3btvu8nc1mq3WHUZtt93WbfVnf7XbT+Wn/ntOG0ND11cf+6qrNxnz87Wv7HH/lGvPx1xyOvbpst67rox/mdWCnxvw6IDWP14LG8DpAP9w4cfzV/74aw/FXE/phXgd24nWg/vfXGF4HOP4aJ46/+t9fYzj+akI/zOvATrwO1P/+GsPrAMdf48TxV//7awzHH1ATa7gLaComT57coNvu6zb7U9+BqrE/Zg1dX33sr67abMzHX2P/O2qsGvPj1hyOvbpst7E8V435daC2+zjQNfbHrDm8FjSG1wH64capsT9uDVkf/fDeacyvA7Xdx4GusT9m9MN10w7HX+PU2B8zjr+6b2d/8TrQ/DT2x4zXgbpph+OvcWrsjxnHX923A+x0wE2fcSDzer3yeDzMvQOEAccfAF4HgPDh+APA6wAQPhx/AHgdAMKH4w8AyjFSxAEkIiJCU6ZMUURERLhLAQ44HH8AeB0AwofjDwCvA0D4cPwB4HUACB+OPwAox0gRAAAAAAAAAAAAAACgWWKkCAAAAAAAAAAAAAAA0CwRigAAAAAAAAAAAAAAAM0SoQgAAAAAAAAAAAAAANAsEYoAAAAAAAAAAAAAAADNEqEIAAAAAAAAAAAAAADQLBGKgCTppJNOUnx8vE499dRwlwIcULZu3apRo0apR48e6tOnj955551wlwQgDOiHgfCgHwYg0Q8D4UI/DECiHwbChX4YwIHGYowx4S4C4ffNN9+ooKBAL7/8st59991wlwMcMLZv36709HT169dPO3bsUP/+/bVmzRpFR0eHuzQADYh+GAgP+mEAEv0wEC70wwAk+mEgXOiHARxoGCkCkqRRo0YpNjY23GUAB5xWrVqpX79+kqSWLVsqKSlJOTk54S0KQIOjHwbCg34YgEQ/DIQL/TAAiX4YCBf6YQAHGkIRzcB3332n448/Xq1bt5bFYtHs2bOrrTNjxgylpaUpMjJSgwcP1k8//dTwhQLNUF0efz///LOCwaDatWtXz1UDqEv0w0D40A8DoB8Gwod+GAD9MBA+9MMAsG8IRTQDRUVF6tu3r2bMmFHj7bNmzdI111yjKVOmaPHixerbt6/GjBmjjIyMBq4UaH7q6vjLycnR+PHj9eyzzzZE2QDqEP0wED70wwDoh4HwoR8GQD8MhA/9MADsI4NmRZJ5//33qywbNGiQmTx5cuX1YDBoWrdube6///4q63399dfmlFNOaYgygWaptsdfaWmpOeyww8wrr7zSUKUCqCf0w0D40A8DoB8Gwod+GAD9MBA+9MMAsGeMFNHM+Xw+/fzzzxo9enTlMqvVqtGjR2v+/PlhrAxo/vbm+DPG6Nxzz9Xhhx+uc845J1ylAqgn9MNA+NAPA6AfBsKHfhgA/TAQPvTDAFAdoYhmLisrS8FgUC1atKiyvEWLFtqxY0fl9dGjR+u0007Txx9/rLZt2/LGFKgDe3P8zZ07V7NmzdLs2bPVr18/9evXT7/88ks4ygVQD+iHgfChHwZAPwyED/0wAPphIHzohwGgOnu4C0Dj8OWXX4a7BOCAdOihhyoUCoW7DABhRj8MhAf9MACJfhgIF/phABL9MBAu9MMADjSMFNHMJSUlyWazKT09vcry9PR0tWzZMkxVAQcGjj8AvA4A4cPxB4DXASB8OP4A8DoAhA/HHwBURyiimXM6nerfv7/mzJlTuSwUCmnOnDkaOnRoGCsDmj+OPwC8DgDhw/EHgNcBIHw4/gDwOgCED8cfAFTH9BnNQGFhodatW1d5fePGjVq6dKkSEhLUvn17XXPNNZowYYIGDBigQYMGadq0aSoqKtJ5550XxqqB5oHjDwCvA0D4cPwB4HUACB+OPwC8DgDhw/EHAPvIoMn7+uuvjaRqlwkTJlSuM336dNO+fXvjdDrNoEGDzI8//hi+goFmhOMPAK8DQPhw/AHgdQAIH44/ALwOAOHD8QcA+8ZijDH1F7kAAAAAAAAAAAAAAAAID2u4CwAAAAAAAAAAAAAAAKgPhCIAAAAAAAAAAAAAAECzRCgCAAAAAAAAAAAAAAA0S4QiAAAAAAAAAAAAAABAs0QoAgAAAAAAAAAAAAAANEuEIgAAAAAAAAAAAAAAQLNEKAIAAAAAAAAAAAAAADRLhCIAAAAAAAAAAAAAAECzRCgCAAAAAAAAAAAAAAA0S4QiAAAAAAAAAAAAAABAs0QoAgAAAAAAAAAAAAAANEuEIgAAAAAAAAAAAAAAQLNEKAIAAAAAAAAAAAAAADRLhCIAAAAAAAAAAAAAAECzRCgCAAAAAAAAAAAAAAA0S4QiAAAAAAAAAAAAAABAs0QoAgAAAAAAAAAAAAAANEuEIgAAAAAAAAAAAAAAQLNEKAIAAAAAAAAAAAAAADRLhCIAHHBmz56tzp07y2az6aqrrqrXfb300kuKi4ur130AANCUpaWladq0aeEuo9bOPfdcnXjiieEuAwCAsLJYLJo9e7YkadOmTbJYLFq6dGlYawIAoCmpq/PIo0aNqvdz3gDQFBGKABqBf//73+rXr1+4y2gwu54sCYeLL75Yp556qrZu3aq77767Xvc1duxYrVmzpvL6gfZcA0BjdKC9Foe7321oDR2yePzxx/XSSy812P4AoKmjH27+2rVrp+3bt6tXr17hLgUAsJ/otxvOX88jAwDqFqEIANX4/f5wlyCfz1cv7RYWFiojI0NjxoxR69atFRsbW6t29rY+l8ullJSUWu3j7xhjFAgE6rxdAEDDa879bmMVDAYVCoXqpC2Px8OoUADQhNEP1z2bzaaWLVvKbreHuxQAQDPTnPvt+jqPXB+a23sXAAcGQhFAHQiFQnrooYfUuXNnRUREqH379rr33nsrb7/xxhvVtWtXRUVFqWPHjrr99tsr38C99NJLuvPOO7Vs2TJZLBZZLJbKXxvm5eVp4sSJSk5Oltvt1uGHH65ly5ZV2fc999yjlJQUxcbGauLEibrpppuqpHdDoZDuuusutW3bVhEREerXr58+/fTTytt3Dms5a9YsjRw5UpGRkXr22Wfldrv17rvvVtnX7NmzFR0drYKCgr99PHw+ny677DK1atVKkZGRSk1N1f333y+p/NebknTSSSfJYrFUXt+ZOn7++efVoUMHRUZG7vXjv7e++eabyhDE4YcfLovFom+++abGxPO0adMqa5P+HBr73nvvVevWrdWtW7fKx+6///2v/vGPfygqKkp9+/bV/PnzK7fbddiz3T3XNQ0tmpeXV1nfztotFos++eQT9e/fXxEREfrhhx8UCoV0//33q0OHDnK5XOrbt2+15w0Amhv63aoaa7+70w8//KDDDjtMLpdL7dq10xVXXKGioqLdrr83z8OHH36ogQMHKjIyUklJSTrppJMklQ8TunnzZl199dWVz6/0Z3/8wQcfqEePHoqIiNCWLVuUm5ur8ePHKz4+XlFRUTr66KO1du3ayv3s3O6zzz5T9+7dFRMTo6OOOkrbt2+vXOev02fs6e8TAJo6+uGqGnM/nJ2drTPOOENt2rRRVFSUevfurTfffLPKOqNGjdJll12myy67TB6PR0lJSbr99ttljKlcJy0tTXfffbfOOOMMRUdHq02bNpoxY8Zu9/vXz7jBYFAXXHBB5efWbt266fHHH6+yzc7+9JFHHlGrVq2UmJioyZMnV/nyq6ysTDfeeKPatWuniIgIde7cWS+88ELl7b/++quOPvpoxcTEqEWLFjrnnHOUlZW1Pw8hADR59NtVNeZ++6/TZ+zc76uvvqq0tDR5PB6NGzeuyn0sKirS+PHjFRMTo1atWunRRx+t1u6ePvdK0nvvvaeePXsqIiJCaWlp1drZ+V5g/Pjxcrvduuiii+r2zgNAQzAA9tsNN9xg4uPjzUsvvWTWrVtnvv/+e/Pcc89V3n733XebuXPnmo0bN5oPPvjAtGjRwjz44IPGGGOKi4vNtddea3r27Gm2b99utm/fboqLi40xxowePdocf/zxZuHChWbNmjXm2muvNYmJiSY7O9sYY8xrr71mIiMjzYsvvmhWr15t7rzzTuN2u03fvn0r9/3YY48Zt9tt3nzzTfPbb7+ZG264wTgcDrNmzRpjjDEbN240kkxaWpp57733zIYNG8y2bdvMhRdeaI455pgq9/Nf//qXGT9+/B4fj4cffti0a9fOfPfdd2bTpk3m+++/N2+88YYxxpiMjAwjycycOdNs377dZGRkGGOMmTJliomOjjZHHXWUWbx4sVm2bFmNbW/evNlER0f/7eXee++tcduysjKzevVqI8m89957Zvv27aasrMxMmTKlymNmjDFTp041qampldcnTJhgYmJizDnnnGN+/fVX8+uvv1Y+dgcddJD53//+Z1avXm1OPfVUk5qaavx+vzHGmJkzZxqPx2OM2f1zvbOdJUuWVO4vNzfXSDJff/21McaYr7/+2kgyffr0MZ9//rlZt26dyc7ONvfcc4856KCDzKeffmrWr19vZs6caSIiIsw333yzx+cJAJoq+t2qGmu/a4wx69atM9HR0Wbq1KlmzZo1Zu7cuebggw825557buU6qampZurUqZXX9/Q8/O9//zM2m83ccccdZuXKlWbp0qXmvvvuM8YYk52dbdq2bWvuuuuuyufXmPL+2OFwmGHDhpm5c+ea3377zRQVFZl//etfpnv37ua7774zS5cuNWPGjDGdO3c2Pp+vynajR482CxcuND///LPp3r27OfPMMyvrnTBhgjnhhBMqr+/p7xMAmjr64aoacz/8+++/m4cfftgsWbLErF+/3jzxxBPGZrOZBQsWVK4zcuRIExMTY6688krz22+/mddee81ERUWZZ599tnKd1NRUExsba+6//36zevXqynY+//zzynUkmffff7/K47zzM67P5zN33HGHWbhwodmwYUPlPmbNmlW5/YQJE4zb7TaXXHKJWbVqlfnwww+r1XH66aebdu3amf/+979m/fr15ssvvzRvvfWWMab8M3RycrK5+eabzapVq8zixYvNkUceaf7xj3/s8TkEgOaMfruqxtxv73oeeed+Y2JizMknn2x++eUX891335mWLVuaW265pXKdSZMmmfbt25svv/zSLF++3Bx33HEmNjbWXHnllVUem7/73Lto0SJjtVrNXXfdZVavXm1mzpxpXC6XmTlzZmUbqampxu12m0ceecSsW7fOrFu3bo+PNQA0NoQigP3k9XpNRETEPp3sfvjhh03//v0rr9f0pfz3339v3G63KS0trbK8U6dO5plnnjHGGDN48GAzefLkKrcPHz68SlutW7eu9mZr4MCB5tJLLzXG/Pnmctq0aVXWWbBggbHZbGbbtm3GGGPS09ON3W7fqy/bL7/8cnP44YebUChU4+27nizZacqUKcbhcFS+2dwdv99v1q5d+7eXnW++a/LXsMHOfe9NKKJFixamrKysctnOx+7555+vXLZixQojyaxatcoYU/Ob2b/ua19CEbNnz65cp7S01ERFRZl58+ZVae+CCy4wZ5xxxm4fAwBoyuh3q2vM/e4FF1xgLrrooirLvv/+e2O1Wk1JSYkxpmooYm+eh6FDh5qzzjprt/v8a8jCmPL+WJJZunRp5bI1a9YYSWbu3LmVy7KysozL5TJvv/12le12PeEzY8YM06JFi8rru4YiavP3CQBNCf1wdY25H67Jsccea6699trK6yNHjjTdu3evUv+NN95ounfvXnk9NTXVHHXUUVXaGTt2rDn66KNrvJ81fcb9q8mTJ5tTTjml8vqECRNMamqqCQQClctOO+00M3bsWGOMqfyBwxdffFFje3fffbf55z//WWXZ1q1bjSSzevXq3dYBAM0Z/XZ1jbnfruk8clRUlPF6vZXLrr/+ejN48GBjjDEFBQXG6XRWfn41pvyHAi6XqzIUsTefe88880xz5JFHVqnl+uuvNz169Ki8npqaak488cS/vf8A0NgxuR+wn1atWqWysjIdccQRu11n1qxZeuKJJ7R+/XoVFhYqEAjI7Xb/bbvLli1TYWGhEhMTqywvKSnR+vXrJUmrV6/WpZdeWuX2QYMG6auvvpIkeb1ebdu2TcOHD6+yzvDhw6sNZzZgwIBq7fTs2VMvv/yybrrpJr322mtKTU3ViBEj/rZuqXzYyyOPPFLdunXTUUcdpeOOO07//Oc/97hdamqqkpOT/3Ydu92uzp0777Gt+tC7d285nc5qy/v06VP5/1atWkmSMjIydNBBB9V5Dbs+T+vWrVNxcbGOPPLIKuv4fD4dfPDBdb5vAGgM6Hera8z97rJly7R8+XK9/vrrlcuMMQqFQtq4caO6d+9ebf09PQ9Lly7VhRdeuM+1OJ3OKn32qlWrZLfbNXjw4MpliYmJ6tatm1atWlW5LCoqSp06daq83qpVK2VkZNS4j735+wSApox+uLrG3A8Hg0Hdd999evvtt/XHH3/I5/OprKxMUVFRVdYbMmRI5ZRTkjR06FA9+uijCgaDstlslct2NXToUE2bNm2va5kxY4ZefPFFbdmyRSUlJfL5fNWmsezZs2fl/qTyPveXX36RVN7/22w2jRw5ssb2ly1bpq+//loxMTHVblu/fr26du2617UCQHNBv11dY+63a5KWllY5HbRU9fPo+vXr5fP5qnymTUhIULdu3Sqv783n3lWrVumEE06ost/hw4dr2rRpVd4L/PV5AICmhlAEsJ9cLtff3j5//nydddZZuvPOOzVmzBh5PB699dZbNc7vtavCwkK1atVK33zzTbXbdp1brK5ER0dXWzZx4kTNmDFDN910k2bOnKnzzjuvyomS3TnkkEO0ceNGffLJJ/ryyy91+umna/To0dXmetubGv5qy5Yt6tGjx9+uc8stt+iWW27ZY1s7Wa3WKvOlSqoyb+me6nM4HJX/3/n4hEKhfdq/pCo11LT/v9ZQWFgoSfroo4/Upk2bKutFRETs9f4BoCmh362uMfe7hYWFuvjii3XFFVdUu619+/Y1rr+n52FPfwO743K59urx/Ktd+3mpvK//6/uGXfcBAM0Z/XB1jbkffvjhh/X4449r2rRp6t27t6Kjo3XVVVfJ5/Ptcd916a233tJ1112nRx99VEOHDlVsbKwefvhhLViwoMp6NfW5Oz9b7+lvr7CwUMcff7wefPDBarft/PECABxo6Lera8z9dk3+rm9saHvzGABAY0YoAthPXbp0kcvl0pw5czRx4sRqt8+bN0+pqam69dZbK5dt3ry5yjpOp1PBYLDKskMOOUQ7duyQ3W5XWlpajfvu1q2bFi5cqPHjx1cuW7hwYeX/3W63Wrdurblz51b5NcXcuXM1aNCgPd63s88+WzfccIOeeOIJrVy5UhMmTNjjNrvue+zYsRo7dqxOPfVUHXXUUcrJyVFCQoIcDke1+7u3WrduraVLl/7tOgkJCfvUZnJysnbs2CFjTOWb5z3to7Zqeq53poy3b99eOcLD3uy/R48eioiI0JYtW3b7axkAaG7od2vWWPvdQw45RCtXrtzrX8vszfPQp08fzZkzR+edd16Nt9f0/Nake/fuCgQCWrBggYYNGyZJys7O1urVq/d4Imt39vT3CQBNHf1wzRprPzx37lydcMIJOvvssyWVh/fXrFlTrZ/7azjhxx9/VJcuXaqM2vDjjz9WW+evIz79XR3Dhg2r8ovhnb8k3lu9e/dWKBTSt99+q9GjR1e7/ZBDDtF7772ntLQ02e2c7gQAiX57dxprv72vOnXqJIfDoQULFlT+6CA3N1dr1qypfEz35nNv9+7dNXfu3Cptz507V127dq3yXgAAmjo+JQD7KTIyUjfeeKNuuOEGOZ1ODR8+XJmZmVqxYoUuuOACdenSRVu2bNFbb72lgQMH6qOPPtL7779fpY20tDRt3LhRS5cuVdu2bRUbG6vRo0dr6NChOvHEE/XQQw+pa9eu2rZtmz766COddNJJGjBggC6//HJdeOGFGjBggIYNG6ZZs2Zp+fLl6tixY2Xb119/vaZMmaJOnTqpX79+mjlzppYuXVplGOvdiY+P18knn6zrr79e//znP9W2bdu9ekwee+wxtWrVSgcffLCsVqveeecdtWzZsjIpnJaWpjlz5mj48OGKiIhQfHz8Xj/e9TEM2ahRo5SZmamHHnpIp556qj799FN98sknexwqrjZqeq5dLpeGDBmiBx54QB06dFBGRoZuu+22PbYVGxur6667TldffbVCoZAOPfRQ5efna+7cuXK73fv0YQAAmgr63eoac7974403asiQIbrssss0ceJERUdHa+XKlfriiy/05JNPVlt/b56HKVOm6IgjjlCnTp00btw4BQIBffzxx7rxxhsr7+93332ncePGKSIiQklJSTXW1qVLF51wwgm68MIL9cwzzyg2NlY33XST2rRpU23o0L21p79PAGjq6Iera8z9cJcuXfTuu+9q3rx5io+P12OPPab09PRqoYgtW7bommuu0cUXX6zFixdr+vTp1X4lPHfuXD300EM68cQT9cUXX+idd97RRx99tNd1vPLKK/rss8/UoUMHvfrqq1q4cKE6dOiw1/clLS1NEyZM0Pnnn68nnnhCffv21ebNm5WRkaHTTz9dkydP1nPPPaczzjhDN9xwgxISErRu3Tq99dZbev755/lSB8ABiX67usbcb++rmJgYXXDBBbr++uuVmJiolJQU3XrrrZWjEkt797n32muv1cCBA3X33Xdr7Nixmj9/vp588kn95z//abD7AgANwgDYb8Fg0Nxzzz0mNTXVOBwO0759e3PfffdV3n799debxMREExMTY8aOHWumTp1qPB5P5e2lpaXmlFNOMXFxcUaSmTlzpjHGGK/Xay6//HLTunVr43A4TLt27cxZZ51ltmzZUrntXXfdZZKSkkxMTIw5//zzzRVXXGGGDBlSpbZ///vfpk2bNsbhcJi+ffuaTz75pPL2jRs3GklmyZIlNd63OXPmGEnm7bff3uvH49lnnzX9+vUz0dHRxu12myOOOMIsXry48vYPPvjAdO7c2djtdpOammqMMWbKlCmmb9++e72P2srNzTWSzNdff11l+VNPPWXatWtnoqOjzfjx4829995bWZsxxkyYMMGccMIJVbap6bH7a/szZ87cq+d65cqVZujQocblcpl+/fqZzz//vEo7X3/9tZFkcnNzq9QQCoXMtGnTTLdu3YzD4TDJyclmzJgx5ttvv639gwQAjRz9blWNud81xpiffvrJHHnkkSYmJsZER0ebPn36mHvvvbfy9tTUVDN16tTK63vzPLz33numX79+xul0mqSkJHPyySdX3jZ//nzTp08fExERYXZ+3Plrf7xTTk6OOeecc4zH4zEul8uMGTPGrFmzpvL2mrZ7//33za4fo/76HmFPf58A0NTRD1fVmPvh7Oxsc8IJJ5iYmBiTkpJibrvtNjN+/Pgq/dbIkSPNpZdeai655BLjdrtNfHy8ueWWW0woFKpcJzU11dx5553mtNNOM1FRUaZly5bm8ccfr7IvSeb99983xlR/nEtLS825555rPB6PiYuLM5MmTTI33XRTlcegps/cV155pRk5cmTl9ZKSEnP11VebVq1aGafTaTp37mxefPHFytvXrFljTjrpJBMXF2dcLpc56KCDzFVXXVXlvgDAgYZ+u6rG3G//9fNnTfudOnVqlXPWBQUF5uyzzzZRUVGmRYsW5qGHHjIjR440V155ZeU6e/rca4wx7777runRo0fl38jDDz9c5fa/fm4HgKbIYsxuJsQF0CQdeeSRatmypV599dU6ae/VV1/V1VdfrW3btsnpdNZJmwAANBf0uwAAhA/98P4bNWqU+vXrp2nTpu12nbS0NF111VW66qqrGqwuAEDzQ78NAAgnps8AmrDi4mI9/fTTGjNmjGw2m9588019+eWX+uKLL+qk7e3bt+uBBx7QxRdfzBtLAMABj34XAIDwoR8GAKDpoN8GADQ21j2vAqCxslgs+vjjjzVixAj1799fH374od577z2NHj16v9t+6KGHdNBBB6lly5a6+eabq9x23333KSYmpsbL0Ucfvd/7BgCgMaLfBQAgfOiHAQBoOui3AQCNDdNnANhnOTk5ysnJqfE2l8ulNm3aNHBFAAA0X/S7AACED/0wAABNB/02AGB3CEUAAAAAAAAAAAAAAIBmiekzAAAAAAAAAAAAAABAs0QoAgAAAAAAAAAAAAAANEsHXCjCGCOv1ytmDQEAoOHRDwMAED70wwAAhA/9MAAAQPgccKGIgoICeTweFRQUhLsUAAAOOPTDAACED/0wAADhQz8MAAAQPgdcKAIAAAAAAAAAAAAAABwYCEUAAAAAAAAAAAAAAIBmiVAEAAAAAAAAAAAAAABolghFAAAAAAAAAAAAAACAZolQBAAAAAAAAAAAAAAAaJYIRQAAAAAAAAAAAAAAgGaJUAQAAAAAAAAAAAAAAGiWCEUAAAAAAAAAAAAAAIBmiVAEAAAAAAAAAAAAAABolghFAAAAAAAAAAAAAACAZolQBAAAAAAAAAAAAAAAaJYIRQAAAAAAAAAAAAAAgGaJUAQAAAAAAAAAAAAAAGiWCEUAAAAAAAAAAAAAAIBmiVAEAAAAAAAAAAAAAABolghFAAAAAAAAAAAAAACAZolQBAAAAAAAAAAAAAAAaJYIRQAAAAAAAAAAAAAAgGaJUAQAAAAAAAAAAAAAAGiWCEUAAAAAAAAAAAAAAIBmiVAEAAAAAAAAAAAAAABoluzhLgAAAAAA6ltxaYme/fJxzTEfabOnVLaQ5AhZZK/41xayyB6yyhGyyhayym6ssofsshmb7MYmu3GU/ytHxcUph8Uph8UhuyVCTmuEnFannLZIOW2RirBFKsLuUqTDpUhHpCKdUYqKiJbL4VJUZLRiXNGKjohWdGSU7A4+lgEAAAAAAAD1hbNvAAAAAJqtBasW6OVfp2pui/XKStn58Wd3H4OMpGDFRZLK6q4Qf8WlBo5QSI6QkSMkOYLl/9pDlsrQhj1kLb8ErYoNRCk26JbHkqgER4pSotqoTXyaOrTopI4t0whYAAAAAAAAAH/BGTMAAAAAzcrOUSG+MB9pWYpfJtUiya6E0oCGp3fUka1Old1qV2mgWKX+EpUFy1QWLJU/UCZfqFS+UJn8xie/KVPA+OSXXwHjl19+BS0BBeRXwBpQwBJUwBJU0BJUwBqqvAStIfmtRgGrFLAa+W2Sz2pRwLrz36qzGPqtVvn3OLFhqOLirbj8XvWm7ZLtD6N4X1CeUqvcZU7F+ssDFHGWBMU7UpTsaq22FQGKDi3T5HQ66/BRBwAAAAAAABonQhEAAAAAmoUFqxbopRVTNTdlg7JTbBVLLeqXYdNoHasLD79CMVHRYa1RkgL+gIpKi1VQUqii0kKVlJWoqKxIJb5ilflLyv8NlKksUKKyYIl8wTL5gqUqCRYrL5ipfOWqwFagAmeJvBF+5UVIeRE2Ba0WZUXalRUpSQHVGKAwknZI1u1G8WXlAQpPmaMyQOGpCFCkuFqrTVyaOqR0UsfWHQhQAAAAAAAAoMkiFAEAAACgySouLdEzc6ZpTugjLWkRlNpLkq1yVIgJPa/W0EFDwl1mFXaHXR6HW55Yd521WVxaorW/r9XmzA3alr9FWaXblRvIUL5y5LUVqMBRooIIv/IipdwIm0IWi7Ij7cqOlMqnCymouPxRteEMyZpuFFcWVFyZVe4yh2J9UXKHYuVWguLtKUqOaq22cWlKS+6ojq07KDIiss7uFwAAAAAAALC/CEUAAAAAaHLmr/xRr6yYqrktNig7+c+PNQen23SEpfGMCtFQoiJd6tu5j/p27rPHdYtLS7T+j/XalLlB2/O3KLNkm3IDGcpTTvkIFI7i8hEoIqU8p1Uhi0U5kXblVAtQbKvacKZkyTCK84UUVyp5ypyK8bvkDsSWj0BhT1FyVBu18bRXakpHdW7diQAFAAAAAAAA6h2hCAAAAABNQnFpiZ75cprmmIpRIVIlya7EilEhxjfCUSEao6hIl3p36qXenXrtcd3SslKt27ZemzM26I/8LcosLg9QeJWjfJtXhY6dU3iElBthk7FYlBthU26EVB6gKKy4bJe04s+G/xKgcFdO4RErj+IVb09RiquNWnnaKy25ozq16aSoSFe9PB4AAAAAAABo3ghFAAAAAGjUqowKkVJ9VIiLR1/VrL8wD2Vlyb/sFwU3bpY1Pk7WlGRZW6TI2iJFFrdbFoul3vYdGRGpXh16qleHnntct7SsVBu2bdSmzA3alrdZGSXblOvPUL7JkdfmVYGzWF6nX/mRocopPP4MUIRUNUCx8s+Gs8sv5VN4SO5Sh2L9LrmDsXIrXvG2FCW7Wqu1p71SkzuqS9suzfrvAQAAAAAAAPuGUAQAAACARmfnqBBf6iMtTflzVIik0oCGp3fSOT2vanajQhhjFNy4SYGlyxVYskz+pb8osHS5Qr//sfuNIiIqAxLWFimVgQlbi+Rqyy0JCbJYrfVWf2REpHp06K4eHbrvcV2fz6cN2zZqY8Z6/ZG3uXwKD3+G8kyOCmz5lVN45EeGlFMRoMiLsCkvQpI7JKmo4rJD0qo/G84pv3h8wYopPByK9bkUG4yV28Qr3p5cHqBwlwcoOrfpfEBNswIAAAAAAHAgIhQBAAAAoNGY++s8vbrqcc3bZVQIizHql+HQaMuxumj0lc1iFABTVqbAyt8UWLpc/iXLyoMQy36V8XprXN/WuZNsXTrJeAsUSs9QKD1DpqBAKitTaMtWhbZs3fNO7XZZk5NqDFFUuyQlymKvv4+LTqdTB6V100Fp3fa4rs/n08Ydm7Qxfb225W1RRvEfyvFnKN9kl49A4ShWQYSvcgqPoNWifKdN+U6pfASK3QQocssv7ioBisjyKTxMvOLsyUpxtVZLd3ulJnVQ59ad5Y6JrY+HAwAAAAAAAPWIUAQAAACAsCouLdHTX0zVHMvHNY4KMaHX1Ro8eHC4y6y1UG6uAst+KR/5YWcAYuVvUiBQfWWnU/ZePWQ/uK8c/XrL3q+P7H16yep2V1vVlJRUBiRCGZkK7vz/Xy8ZWTI5OVIgoND2HQpt37Hnoi0WWRITKkadSPn7IEVKsiwREXXwSNXM6XSqW/uu6ta+6x7XDfgD2rRjs9anryufwqP4D+X408un8LDuHIHCp/yIkHIjrApYrfI6bfJWBiiKKy7pkn77s+G88ovbVz6Fh6fUrli/S7GBmMoRKJIiW6u1u526t+m9V2EPAAAAAAAANAxCEQAAAADCosqoEC2qjgpxpPU4XXjEFU1qVAhjjEJbtsq/dHnFFBjL5V+6XKHNW2pc3xIfL3u/3nIc3Lc8/NCvt+wHdZPF4dir/VlcLtnSUmVLS91zbT6fQplZNQQmMqsvy8qWQiGZrGwFs7IVXLFqj+1b4uIqwhK7GXmiclqPFFmi62+6CrvDrs7tOqlzu057XDfgD2hLxlat37FWf+RtVkbRH8rxpSvP5Mhry1eBvUgFEb6KKTz+EqCINfozQJEhaXVluyMXu/VG2mf1dA8BAAAAAACwrwhFAAAAAM1Yzo5sbfnlV7ncHkXHxys2MU6xnlhZ7daw1FNYXKRn5zy+m1EhOmtCr6uaxKgQxu9XYNXq8vBD5RQYv8jk5dW4vjUttXzkh4oAhKNfH1nbtZXFYmmQei1Op2xtWsvWpvUe1zXBoEx2dsXIE5l/H6LIyJT8fpm8PAXz8hRcs3bPtURH/yUssfsghcXjqbfHyO6wq2ObDurYpsMe1w0FQ9qSvlXrdqzVH7mblFH0h7L96coPZctr9arAUaSCiDLlRYQUH0ysl3oBAAAAAABQO4QiAAAAgGYqPztfhdMGqZ9jQ5XlQWNVbtCjAhOvIsWrxBqnMlu8Ao44BZ3xUmScrNHxskfHyxkbp0hPvKLi4hSbGC9PYpyckc59rmXur/P06m/TNDdlo3J2GRXi4AyHRjfyUSFCXq8Cy34pDz/snAJjxSrJ56u+st0ue8/uFSM/9JHj4D6y9+0ta1xcg9ddWxabTZaUFFlTUqTef7+uMUYmN3c3o06UT+lhdpnaQyUlMkVFCm7YqOCGjXsuJiKixuk6yv+fXGVqD0tCgizW+gn7WG1WpbVOVVrrPY/KAQAAAAAAgMaFUAQAAADQDJmQ0cppEzXUsUHeYKxKQtFy2/LkspbKZgkp3p6reOVW3chfcSmSlL37touCUfKG4lWkOBUrXqW2OPnt8Qo442Qi42Vxxcsa7VGhx6FftU7f2L8sHxWivbTrqBDn9rpGgwYPrLfHYF8ZYxT6Y1tF+OHPKTB29+W9xe0un/KiYuQH+8F9Ze/eTZaIiAauPHwsFossCQmyJiRI3Q/623WNMTKFhXuYviOzcrnxeqWyMoW2/q7Q1t/3XIzNJmty0t9O31F5SU6Sxc7HYQAAAAAAgAMBZ4EAAACAZuj7F57RCL0rf8iurUd/qZ6HDZIklRaVypudp4KcXBXn5arUmyefN1fB4jyFinNlKc2TtSxXDn+uIoJ5cplcRStPbkuuPPZ8SVK0rVjRtmJJf8hnsWhTdKTWxURqXYxL62JcWh/j0rqYSBU6/vy4sXNUiCNtx2vi4ZeHfVQIEwgouHpN+cgPO6fAWLpcJqvmNIi1XduK8ENFCOLgvrKmpTbY9BfNgcVikSU2VtbYWKlzpz2ub0pKqoQmgn8TpDA5OVIwqNCOdIV2pO9NMbIkJlQJS9j+JkRxIAVdAAAAAAAAmhtCEQAAAEAzs2bhcg3adJVklea1fkAjKwIRkhQZHanI6JZKad9yn9rMC3j1U+FGrcj5Tb9512l92WZtCW3Xdmu2QhZT4zbWkFGbIqP+OZ00odfVYR0VIrgjXf7v58r33Vz5FyxS4JcVUmlp9RVtNtm7d6uc/sLer7cc/frImpjY8EUf4Cwul2yp7WVLbb/HdY3fr1Bm1l/CErsJUWRmSaGQTFa2glnZCq78bc+1eDyVU3ZUG3Xir0GKmJi6uPsAAAAAAACoI4QiAAAAgGakMK9Q9vdOV6SjTAtDx+qwi6/e621DJqQ/fOlaV7JJa0s3aV3JZq0v3ax1JZuVFfjLVBsWSbby/8ZYo9TZlapOkanq7EpV58g0dXalKi2irZxWR93duX0Q3LK1PADx3Q/yfTdXwdVrq61jiYmRvW/vqlNg9Owuiyu8o1hg31kcDtlat5Ktdas9rmuCQZns7PKRJzIy/5yyYzdBCvn9Mvn5CubnK7im+t/RX0Wed448Lz5VF3cLAAAAAAAAdYBQBAAAANCMLJ12mQ51rNZ2fxt1vOIlWe3WauuUBEu1vnRLZeBhXWn5ZUPJZpUa327bbuVMUefI1PKLK60iAJGqFo6ksE4jYYxRcN16+b8rHwnC991chTZtrrqSxSJ7755yjDxUzuFDZD+kn2ydOspirf74oHmz2GyypKTImpKyx3WNMTJ5eX8z8kRmlak9VFIia0J8A9wLAAAAAAAA7C1CEQAAAEAz8cMrr+jQ4MsKGqsyRr+hvq2TlOnP0ae531YZ9eF33w4Z1TzlhdPiUMfIdtVGfegY2U4xtugGvkc1M6GQgqt+k+/bHypGg5ir0PYdVVey2WQ/pJ+cI4bLOfJQOYYPkTUhITwFo8myWCyyxMfLGh8vHdRtj+uHCgulYLABKgMAAAAAAMDeIhQBAAAANAMblv2mfr9dKtmk75Pu1KjRI7Tdl6FjVpyvDH92tfXjbG512WW0h50hiPYRrWWz2MJwD3bPBIMKLPtFvm9/KJ8O4/t5Mtk5VVdyOuUY1F/OEcPlGHmYHEMHyRobG56CccCyxsSEuwQAAAAAAAD8BaEIAAAAoIkrKSxR4M2xinEUaUngcB02+WaVhso0ce1NyvBnKzWijcbEj1DnyNTyIERkqhIcceEue7eMzyf/z0vk3zkSxNwfZbzeqiu5XHIOGyzHzpEgBg2QxeUKT8EAAAAAAAAAGi1CEQAAAEATt3DatRrhWK5Mf4paX/qarHarbtr4kJYWrVKcza03uz2u1Mg24S5zt0xJifwLFpYHIL79Qb75P0klJVXWsbjdchw6tHwkiBHD5eh/sCxOZ5gqBgAAAAAAANBUEIoAAAAAmrD5s97RiLKnJElbDntV/du30vM7ZumdrI9llVVPdb670QUiQgUF8s9bUD4Vxrdz5f9pkeT3V1nHkphQEYA4VM4Rw2Xv21sWW+Oa1gMAAAAAAABA40coAgAAAGiitvy2QT2XTZRs0jexN2vUsf/U9/kLddeW6ZKk29tfphGeQWGuUgrl5Mj3w3z5v5sr33dzFVi8VAoGq6xjbdVSjpHlAQjniOGydT9IFqs1PAUDAAAAAAAAaDYIRQAAAABNkK/Up4KXxqm9w6tf/MN06FV3aXPpH7pk3W0KKqhTEo/ShS3GNWhNpqREgbXrFfxttQKr1yr42xoFflmhwK8rJWOqrGtNS5WzIgThGDFctk4dZbFYGrReAACas+Vf/aCYzydqS8oZOuzy22RzMOISAAAAgAMToQgAAACgCZo/9WaNdCxUbiBeCRPfVJnNpwtW36i8oFf9orvrwQ431kvIwBij0I70qsGH1WsV+G2NQpu3VAs/7GTr1kXOkYeWT4dx2DDZ2rer89oAAMCfrJ9fr46O1eqY+28tnvKD2k1+XcltUsJdFgAAAAA0OEIRAAAAQBPz0+z/aWTxY5KkNYNe0qBO7XTxulu1qmS9kh0Jeq7LA3JZI/drH6a0VMF16ysDDzvDD8Hf1sgUFOx2O0tcnOwHdZXtoK6yd+si20Fd5Rg6SLYWLfarHgAAsPd+/fZH9XL8KF/IIb9x6BDbl9oxvZ+WjZ6lvqMPC3d5QJ0K+AP6vwXv68vt76pHzCBdfvS14S4JAAAAjQyhCAAAAKAJ2b7hd3VeMEGyS9+6rtTIk/6lx7e9pI9yv5bDYtdzne9Xa+fe/QrUGKNQRkaVwMPOf4ObNkuhUM0bWq2ydewgW7cu5QGIin/t3brIkpzMNBh1rKwwpPSVPuVuCsgYyWKVLJbyi6ySxWqRRRXLrSp//C1/XlflbZbybXa5zSLLn+tVtFnTeuVtWPa47/I2LH9pr4Y2d1nvr/uusp3lzzYBAHvPO+dxSdJPjrPU8oTrZXnrVHVyrlLSN//Qt6vu02GTrpPVbg1zlUDteQsL9Nbcl/VD4adalpSuLJddSpV2bE/X5SIUAQAAgKoIRQAAAABNRMAXUMZzZ6qvPUer/IdoyM0P6vPc7/XQ789Iku5NvU4DY/tU2874fJWjPvw1AGHy8na7P4vHUyXwUDn6Q+dOskRE1NfdPKD5ikJKX+VT+gq/0lf6tGNFeRjigFclTFFDeOLvAhkWyy4hjqqBjL8GN6RdwyU792vZZb/V9/3XQEenkZE6+IzYsD1UALBt/VYNCr0jWaTkY65S54N7qLDDT5o79RIND72ukRk36qcpP6jrVS8rLjk+3OUCe23rjt/1xk/PaVHoBy1LLlBRvE2KlyS7ov1B9c2M1VDbEeEuEwAAAI0QoQgAAACgifjhiTs1yv69vMFYRZ0zS1ss23X5+n9LksannKyzUk6oto138tUqeeZFKRisuVGLRbYOadVGfbB16yprixR+oV+PfMUhZayqCD/86lP6Sp9yNgUkU31dd2ubkro4ZHNYZELlo3zIqOL/5f+WXzfl1/dyWdU2dr+scruKZbuu8+f/zZ/bGUl/XVbRRq0YyQR33Xx3DdV2B3XH08YW7hIAHODWvDdDrS1BLQn8QwcP6itJiomL0bApr+q7F0do0MYrNMj6obY+eoi2Hfe2ehw6MMwVA7u3eM0SvffLi1oasUS/JvkVaLlzhBObkksC6pvZQsNjj9K44RPkjiGUCAAAgJoRigAAAACagMWfztGIvHsli/Rrr2fVs1sLHbviAhWGijUktp/ubH9VtW38Py1SyX+ekyRZYmNrCD50kb1LZ1kiIxv43hx4fMUhZf7m144VvsoRIHI21hyAiG1pU4seTrXs6VSLXg616O5UVELz+aJ9Z1BCuwQ1qiyrDFbUsGxnIGPXUMbO7WtabzfBjd3u52/WqxIw+Zt9J6TyMRtA+BTlF6lv7rOSXfINuqrKbRarRSMmXqRV8wco+v9OU3vHBpV9cqi+W/mYDpt4aeWIOUA4hYIhffbzp/pk85ta7l6jtfFWqd3OW61K8wbVN7ejjmh1ik4YdpLsDvpdAAAA7BnvGgEAAIBGLnNrutp+c5asDqPvHRdq2Bmn6dw112tj2Va1drbQM53vldPqqLZd4e13S5Iix58p90vPMOpDA/GXhJS5ujwAsTMEkbMhUP4l+1/EtLCVhx96ONSip1MtejgVndh8AhA1sVgsslS7i/xtAkBd+PntVzTCnqvN/k6KPaK7zll9jc5JOUn/jD+scp3uQw9Rfuef9ePj52uI9X2N2HqZ5v37B/W++lnFxvNLezS80rJSvT33DX2b86GWJf6u7dF2KVWSrLIYox7ZFvUr7qMTuo3X8EHDw10uAAAAmiBCEQAAAEAjFgqEtOWpc9Tfka51/p7qf8M0PfT7M/oqf74irRF6scuDSnIkVNvO9/1c+T6fI9ntivn3LQQi6om/tDwAsXP0h/QVfmWv99cYgIhOtpYHICrCDy17OhWd1LwDEACAhhMKhNR2/eOSQ9qcdqXeyHhZX+XP19f5P+q2dpfp4pZnVL4f8CTHafBd7+nbp6Zq2LYbNcz6ljY8uETbT31HXQf0DvM9wYEgMzdLr899Xj/6vtLylDzlx9ikGEmyKyIYUp+MSPUPDdXYARPVdXDncJcLAACAJo5QBAAAANCIfTfjQY2yfaHioEsa+7a+8M3Vk9tflSQ92uEW9Y7uVm0bY4wKb7tLkuSaOEG2DmkNWXKzFSgzylzzZ/ghfYVPWev9MsHq60Yl/hmAaFkRgohJIQABAKg/P3/8mQY6VssbdKvjqafos43jJElGRndvna6NpVt1b9q1slvKTwdarBaNnHyNfvlmiBI/HauOjtUq/u9g/bDyKR06fkI47wqaqd82rdasJc9rsW2BlieXyZdirbjFpriyoPpmJmhI5OE6Y+j5Sh6aFNZaAQAA0LwQigAAAAAaqeVfz9WhmbdLFunnLk8qvqtN16y6V5I0qeVZOjHxnzVu55vzjfzfzZUiIhR96w0NWXKzEfAZZa72KX1lefghfaVPWev8CgWqrxuVYC0f/aEyAOFQTIqN0TkAAA3K+uM0ySYtiZ2ozaEf5TN+dXd10tjk43Tnlif0WuZs/e7brqc736tYW3Tldr1HDVN21yVa9OTZGmD7TIeuPVff3/W9BlwzXa4YV/juEJqFb5d9pw/XvqJl0Su0KsHItNn5/siqNoVB9c1uq5FJ/9Kpw8YpMiIyrLUCAACg+SIUAQAAADRCuek5SvzsDNkdQc21nqXuZ56oY1ZdoNJQmf7hGaKb202qcTtjjIoqRomIuuQC2dq2aciym6Sg3yhzzZ/hhx0rfMpaW3MAwhVvrRJ+aNnTqZgWBCAAAOG1bvEK9bd9rqCxqtPJl+vhzHskSacmHaMLW45TakQbXbr+Dn2Tv0AnrrxIL3d9RG0jWlVun9g6SfF3faxvnrxPh2VN0WH+F7TmnoVynvOu0np2CdfdQhMU8Af0/vx3NSfjv1oWt0lb3Dap/c5bLeqaa9TXe5CO7nCGjhx5pKw26981BwAAANQJQhEAAABAI2NCRmumn6fBjq3a5Oui7jdO10UbbtUfvh1Ki2irJzvdKZul5qkYfB9/Jv+ChVJUlKJuuraBK2/8QsFdAhArygMQmWt2E4CIs6pFD6da9HSoRQ+nWvZyKrYlAQgAQOOz/X+Pq7OkhZaTlNTeoiW/rJBNNp2cOEaS9M/4w/Tf7k/p3DXX67eSDTpu5US91OVh9YvpUdmG1W7VqKtu05LPhqnt12eoq2O5vK/31/y+L2ro2FPDdM/QFOQXePXG3JmaX/S5liVnKCvSXhGEsMkRCqlXpkP9fP11ap/z1W9Q33CXCwAAgAMQoQgAAACgkfnumSc00vKBykJOlZ38th7zvqj5BUsUbY3SzK4PKc7urnE7Ewqp8Pa7JUlRl18iW8sWDVl2o5e13q+PbshW5mp/tdsi3dYq4YcWPZxytyYAAQBo/LK3ZWlA2auSVYr6x1V6J+tjSdIoz2ClOBMr1+sTfZA+7PG8Jqy5TqtK1umU3y7V9I7/1jEJo6q0d/CYw7Wj2xIte2ac+tq/19BfT9O366/Q0GseljPS2YD3DI3Z5h1b9MaC57TIzNXy5EIVJ9ikBEmyK8YfVN8MtwbaDtMZQy5U2yGtG6SmwIqVssTHy9a61Z5XBgAAwAGFUAQAAADQiKycu0hDf79eskoLUh/THx23aObGdyVJ0ztNUVdXh91uW/b+BwosWSZLbKyir7+yoUpu9IwxWv5Okb5+KE+BUiNHlEWt+pQHH8qnwXDK05YABACgafrl7Wc0ylqqVf7+6jFyiM5b/pAk6fTkY6ut2yaihWb3eFqT1t2hr/Ln6aJ1t+i2dpN1ccszq/SDLdNaK+nOr/TNtNs0quBBjSx5Qiv+/aM857+ttl1TG+y+oXFZ+Nsi/ffXmVoauVQrkoIKttr5N2NTSklAfTNb6lD30Rp36ATFREU3SE3GGPk++1LFU5+U7/M5irpqsmKnPtgg+wYAAEDTQSgCAAAAaCTys/MV8+FYOR1+/WhOUtS4w3Tz6smSpOvaTNSY+BG73dYEgyq8o3z+8KirJ8uamLjbdQ8kJflBfT4lV2u/LJEkpQ6N0NH3JSomuebpRwAAaEp8pT4dtGOG5JByel2teYWLtcOfqThbrI6MO7TGbWJs0ZrZ9UH9e/Pjmpnxru7e+qQ2lG7VvanXyWH981Sh3WnXqBse0E+zD1WXBePV0/GTcmYeooVDXtHAE6oHLtD8hIIhfbLoI326ZZaWe9ZqXZy1YloMSbKoQ35QffM6a3SbU3XCoSfKarM2WG2mpEQlr76p4mkzFFy1unyh1apQXn6D1QAAAICmg1AEAAAA0AiYkNGKxy/WMMcG/e5PVfyVD2rc+qvlNwEdEz9KV7Y+72+3L531noIrf5MlPl5RV1/WMEU3clsXlurjm3JUkB6U1S4ddqVHAybEymJlRAgAQPOw8N13NNyxXTv8rTTw1NN0zR/3SpL+lXikIqy7n+rCbrHrnrRr1SGynaZsmabXM/9PW8u265nO98ptj6my7qATj9Pv3Rdr28zT1dOxUAmLjtM3q2/WoVfdJbuTU4vNTXFpid6e+5q+y/1IyxP/0PZou5QqSVZZjVGPbKv6lfTRid3P1dBBQxq8vuD2HSqZ8YyKn35BJjtHkmSJjZXrgvGKumKSbB3SGrwmAAAANH58cgEAoBkoKy7T+sXLlbVqkZJ7DVb3oYeEuyQA++j7mc9rhJklf8iujKNf1R05DyjDn62DXB01rePtslp2/8s7EwioaEr5lyDR118pa1xcA1XdOIUCRvOe9mrBs16ZkBTX3q7jHkpUy17Mgw4AaD5MyCjh16mSQ/qt5WQdYvfpk9xvJUmnJx2zV21c0PJ0tYtopcnrp+g77086cdXFernrI2oX0arKem27pSn5ju/17dTrNLL0SY0quF9Lp8xTq0lvqkX7VrtpHU3F9ux0vTnvBf3k/0bLUvLkjbVJsZJkV2QgpD6ZLvU3QzWu/0R1HtwpLDX6lyxT8dQnVfrWu5LfL0mypqUq6opJcl0wXla3Oyx1AQAAoGkgFAEAQBPjK/Vp/eJflLnyZ1m2LVJy8SJ1tP2qHtbyE0Pf5N9GKAJoYtYs+kUDN1whWaW5Le/V7HbfaEnWSsXZYvVClwcVbYv62+1LX3lDwXXrZUlOkuvySxqo6sYp/4+AProxW9uW+iRJPU+I0hG3xMsZ3XDDOQMA0BB++Wau+jh+VkkoUr1Pv1j/y/lKpaEydY5MVb/oHnvdzj/jD9P73Z/ShDXXaXXJBh234gLN7PqwDonpWWW9iKgIjbx1uua9eah6/zJR/ezfKuM/B2vJP97UwWP+Udd3D/Vs5cZVmrXkeS2xL9QvyWXytdj5Xsmm+LKg+mYkakjUaJ057DwlehLCUqMJBlX2v09UPPVJ+b/9oXK5Y/hQRV09WREnHi+LjSnRAAAAsGeEIgAAaMT8ZX5tWLpCGSsWyfzxs5KKFqmTbbm6W33qvnMlR/k/2YFEbbQMkD2lS7jKBVALRflFsr0zVi5nqRYGj9baU9rrnd8fl1VWPdX5HqVFtv3b7Y3Pp8K7HpAkRd90rawxMX+7fnP22yfF+uKuHJUVGDljLDryjnh1PyY63GUBAFAvir+eJklaFHGODmudpHdWfixJOj3pWFks+zZVVK/obvqw5ws6d811WlG8VqetulSPd5qi4xIOr7busDPGakPPftr++mnq6vxFid+P1jer7tKIy26W1U4IsTH7esnX+nD9q1oevUqrEiVVvs20qm1hUH2z22tU8gk6ddhYOZ3hG2ErVFio0pmvqvjxpxRcv6F8od2uyNNOUtTVl8kxsH/YagMAAEDTZDHGmHAX0ZC8Xq88Ho/y8/PlZlg1AEAjEvAFtGHZSqWv+Fnm90VKLFykTrZlirSWVVs3NxCvjZb+8sYNUETaALXr219tuqTKYt23k58NjX4YqO6HO8/XoYGZ2uFvrZ8velmTsv6toIK6o90VurjVGXvcvvip51Rw6dWytmqppPW/yOJyNUDVjYuvOKSv7svTr7OLJEmt+jp17IOJimtLBhzYFf0w0HxsXb1RrV/tLJslpHUn/SpbD7cOXX66rLLqp37vq5UzpVbtFgWLNWnd7ZqTP0+SdEvbS3Vpq7NrDFkUFxRr8WOX6dDATEnSwuDR6nTFq0pomVj7O4Y65fP59P6P72hO+mwtT9isrbFVR1XolmPUt6CHju10pg7ve7istvCGWoJbtqp4+tMqee4lmfx8SZIlPl6ui85T1GUXy9a2TVjr21/0wwCw98qKy5STniVvRqYKszLlK8yT3RWtSHecXJ44xcTHyZ0YJ1e0q9GfDwXQOHCWEACAMAj6g9r4y2/a8esiBbcuUkLBz+pkXaquthJ13blSxQgQ+QGPNqi/8uMGyJnaX237DVC7rh10CG/4gSZv7muv6dDATAWNVUtHT9cNuQ8rqKBOSTxKF7Uct8ftTUmJiu55SJIUfev1B2QgIn2lT/+7IVu5mwKSRRpyoVtDJ7llc/AaCQBovjb890m1s4T0c/Cf6n9ITz38+7OSpBGegbUOREhStC1KM7s+pDu3PKEX0t/Wfb//RxvLtur+1BvksFY9jRgVG6VDp7yo7186TAPWXqqBtk/0x7SD9evRb6vXyCH7df9Qe7nePL0xd6Z+LP5CS5MzlRNpl1IlySZnMKReWU4d7B+o0/qer96DeoW7XEmS78efVDz1SZW9939SMChJsnXprKirLpVrwlmyRDPyFwA0ZSZkVJhfqLyM8pBDcU6myvIyFfRmyhRlyl6WJacvU1HBTLmVqThrpty2ArWS1GoPbftCDnlDcSoMxanIEqdSa5x8tjgFHHEKOuOkyDhZo+Jki46TMzaOUAVwACMUAQBAPQv6g9q0Yo22/7JIwa0/K75gkTpZlqizrVidd65UEYDwBmO1wfRXvqe/HO0HqE3fAWrXraMOZhhaoNnZ+Msa9V15iWSTvki6RY+0eF95JV71je6uBzvcuFfDXhc//YJC27bL2r6dXBPPrf+iGxETMvr51UJ9NzVPoYAU08KmY+5PUPtBkeEuDQCAelWQW6CDC56XbFJoyFUKmZDezfpEknRa0jH73b7NYtNdqVcrLaKtpmyZpjczP9TWsu16tvN98thjq61/2Lnnac3C/nK+e6rSnGuV8vlh+nblIxpx8RV8ydBANvyxUW8ufF4/W+ZpeXKxShKtUqIk2RXrC6pvpkcD7SN05tCJaj10T18vNQwTCKjs/Q9U/NiT8v/4U+Vy5+EjFXX1ZXIeM0YWK5+DAaAxCgVCysvKVV56pgqzs1SckylfXqZChZmyFGfKXpapSH+WokPlIYcEW6ZirWWq/i5iF9aKyy4CxqacQJLyTbKKrfFymmJFKU8xljx5bHmyW4JyWv1KsmYqSZlVN/ZXXIokZe9+t4QqgANH2EMRM2bM0MMPP6wdO3aob9++mj59ugYNGrTb9adNm6annnpKW7ZsUVJSkk499VTdf//9iozk5CcAIPxCgZA2r1qnbcsXKbBlkeK8P6ujZbE62QrVaedKFb1vYTBa680hynMPkL39ALXq3V9pPbqoHwEIoNkrLSpV2etjFeMo0pLASL13TECr8tYp2ZGg57s8IJd1z+9tQ4WFKrr/EUlSzB03yRIRUd9lNxpFWUF9cluONv1QKknqfLhLY+6KlyvOtoctAQBo+ha/NVMjbV5t8HdT/2PGaH7BEv3u26FYW7TGxI+os/2c3/I0tY9srUnrbtcP3kU6YeVFeqXbo2of0braul0H9pG30yLNnzpRQ63vaOS2q/TjlO/V/aoX5En01FlN+NOCVQv0/oqXtNS1XCsTgwq23vmFjFUpxQH1y2qtwzzHaNxh4xUV2XhGEwvl56vk+ZdVPP1phTZvKV/odCryzNMVddVkOfr2Dm+BAHAA8pf5lZOepfz0TBVmZ6o0J1OBgiyFCjNlLcmUoyxTrkCmYkyWPMpUvD1bCZagEv6uUVvFZRcloUjlBJPlVbKKrMkqcyQrEJksRSXJEpOsiLhkRSQkqizRocJ4v7KdXv0e2KEtZdu0w5cpu8UmlzVSkdYIRVoiZA/YZC0zspYaWUuDspb4ZS/1y17ik6O0VBGlJYosK1ZUWaFifIXyBLyKC+YrMZinFEuuHHUQqvCH7MqvCFUUV4QqyipCFSFnnMzOUEVUeagiwh2nKE+couPj5E6IU1RsFKEKoIGENRQxa9YsXXPNNXr66ac1ePBgTZs2TWPGjNHq1auVklJ9qL833nhDN910k1588UUNGzZMa9as0bnnniuLxaLHHnssDPcAAHAgMyGjLavW649li+Tf8rM8+YvU0bJYHWxeddi5UkVPWxSM0npzsHJjB8jWrr9a9R6gtJ5d1dfBF3jAgeinqddphGOpsgJJ+vjsk/Vx3ptyWOx6rvN9ar2XQ16XPPmMTGaWbJ07KXL8mfVcceOxcW6JPrk5R8U5IdkjLBp1fZz6jo3eq5E1AABo6oL+oNI2PyE5pN87XaWOdqveyfpYkvSvhNF7FazcF6Pjhuv97k9rwprrtLZ0k45bMVEzuz6k/jHVp11wJ7g15M5Z+u65ERqy5RoNsb6nTQ8t046T31G3wf3qtK4DUSgY0v9++kCf//GOlrnXaUOcVWq/81aLOuaF1De/s/7Z9jQdd9i/ZLU1rrB9YP0GFT/xlEpffFWmsFCSZElOUtSkiXJNulC2li3CXCEANH+rFixX5uf/UUTZdkUFMhVrMhVnzVKcPU8tJP3tK3EN3ybmBzzKM0kqULKKbckqcyYr6EqWJTpZttgkRcYlKyohWe7kZMW3TFa0J1qtjZEr4NXWsm3a7tumrWXbtaVsm7aWrdCWsu36vWy7fKV+afs+3rmIisvfckhKqrhIkZYIRcipCOOQI2STM2iVM2CRIyA5/SE5/SFF+ANy+f1yBXyKDpQqJlgiT7BY8aZI0aGAXMGQIoN+uYLpcgW3KzoYUlIwVL68LCRXcVB2QhVAo2Axxphw7Xzw4MEaOHCgnnzySUlSKBRSu3btdPnll+umm26qtv5ll12mVatWac6cOZXLrr32Wi1YsEA//PDDXu3T6/XK4/EoPz9fbre7bu4IAKDZMyGjrWs26o9lP6ts0yJ58hapgxYrzp5Xbd2SUKTWB/spO3aAbO0GqGWvAerQ+yDZCEDQD+OAkp+dr/QNm5X3+2aVZmyWyd0sZ9Fmuf2b1NOxUJL01KGP6974t2Rk9GDajTo75cS9ajuUn6+sDr1kcnPlfvV5uc4eV4/3pHEI+Iy+fzxPP79cfhI9qYtDxz6UoOQuzjBXBjQd9MNA07fg/Q80ePEJyg3Ey3nTVinGon5LjlNxqESzuz+tgbF962W/230ZOnfN9fq1eI0iLU5N63SHjk84Yrfrr/j+J8V9dJraOLaoNBShhZ2e1KHnXsBJ+31UXFqit75/Rd/lf6TlSduVHvXnN1K2kFGPbJv6lfbVST0maHD3wWGstGbGGPm/n6viqU+q7P8+kipOQ9t6dlf01Zcp8qyxshxAo//SDwMIp2XzVyn1g2E1nsuUpP9n776joyi7AA7/Zmt2k5BOEiAh9N57kaI0AZEO0qwoIAhYUHoRBOFTUFBUwIJioYhIB+lNpffeS3pPtu/M98eGQARCEhIS4H3O2ZPNlHfuLJqZnblzr1NREe/0I0EOIFXlj1kTgD0tyUHlEYCmUABuPv54+LuSHHyD/NG53f37uMlp5or1RlqyQ/h/ft4gRTZlGqsaNUX1gYTogwnVFyFEX4QiusIoioJZtmKWLVjSft56b8Vyj+m3L29XHA/6UWabRgadE9ycCm4OGYPswMNpx+iUcZNlDE4nbjcTKf7z89Z7p+u9nHG61i5ht3visBfCoXhjFUkVgnBP+VYpwmazsX//fkaOHJk+TaVS0aJFC/bs2XPXdRo2bMhPP/3Ev//+S926dblw4QJr1qyhb9++99yO1WrFarWm/56UlJR7OyEIgiA8lhRZ4fq5K1w9tA/rpX14JuynpLKPUE38rQdx0o6gFlnPeWc1Yj1qIxWtRWDl2pSsVpHKuod/iLXJds6YL+Kr9c7yk+Z5TRyHhceVIivERkQTdeEyidcvY4u5DAmXcTNfxsdxiUDpMl6aRO5aLFrr+vFz0HBm+a1AkRX6Fe6c5YQIANPMOSjx8agrlMPthW65sUsFWtxFO6tGxBJ10g5A9Rc8aPqOF1q3gvUEpCAUNOI4LAiPH/2/M0EDh31ep5mXO4ujV2OSzYTpi1Hbo2qebTdYV5jfK8zlzfPj2ZiwkwHnxnCp2DUGB/e7a7WmSk/VJb7sQfZ+3o86qtU8dbE/uyZup/rbc3H3cs+zOB8HN2LC+XnPfPY6tnM4IJFkLzWuk0oNBodM1WgjtWlEz9qvUrJ+ifsNly8Umw3L4t8xzZyD48Ch9Om6Z1thHD4YXYvmT0SVL3EcFgShoDh2JBLv5W3x1idw0lGH6FKvovMKwODjj6d/AN6BAXgH+OCvUafVUMicTbZz3RbB1cRbiQ5XrOHpP2Md8fcdo7DWL0PSQ/G0n6H6IgTrAtBIeXNt1aE47kyWcFr+k2hhvUtyxb0TLe41PX2bKtfLpJW41Vck91ugSoqCmzMRNzn+PwkVtyVeJMgYYm9N1zkApw6V3Q1JNqCSjagUDzSSBxpVIXRqL9x03hj0vni4++Lp4Y93oQC8fP1EUoXwyMm3pIiYmBicTieBgRkL8gQGBnLq1Km7rtOrVy9iYmJo3LgxiqLgcDgYMGAAo0aNuud2pk6dysSJE3M1dkEQBOHxocgK4RevcfXQfswX9uERv48wZT/FNDEUu7lQWoEHm6zlnLMaMe61kIrWpnCl2pSsXolKeu1DjzvOnsBx01lOmM5x3HSGE6ZznLVcxKE4GVlsIIOL9HvoMd2NOA4Ljyqn3UnUlRtEX75M8o3L2GMuo0q+jNF8GV/5EkGqK/irzXdeLJBIT3oAiHP4EqUUJ0EThtW9OHgVR1+4OPqSIczVzCDFYqKeZ3Umhg7LcmxybCymT12V1jwmjUFSP75VaBRF4djyVDZNTcBhVjB4q2j9oS+lmxecvtiCUJCJ47AgPF5O/3OI6pqtOBQ15boOBmBxWuuMbv5t8/wms7vayIIy05h45XMWRC5m2rWvuGS5xtSwEehUd34n8gn0pdbEP9n65XSeihpNI/lHzk09gOqFpZSsVj5PY33UHD1/jMWHF3BIu49j/jZsgTcTP9X4WhxUjw6gvrElvRq9jE8h7/wMNVNybCzmr7/FNOdr5PAI10SDAUO/FzAOHYSmwpP17y6Ow4IgFAQnz6Zi/+E5ihsvcc1ZipB3VlPBPyDTdWRFJtIek6G6w+1JD+G2KGTkTMfwUnvelvRwK/khVF+EYvqgXG/5lVUaSYOHWoOHOm+TNBVFwaJYbyVLOC1YlKwnYGSl+sXNsRw4XduUJMwaNWbU3D8t5V6saa9Men44QRspY7gho3fK6B0SOqeE1qmmZEow87suz/HWBSEv5Vv7jBs3blC0aFF2795NgwYN0qePGDGCbdu28c8//9yxztatW+nZsyeTJ0+mXr16nDt3jqFDh9K/f3/Gjh171+3cLSM3JCRElCkTBEF4QkVcusHlg/swn9+He/x+wpz7CNBG3bGcXdZw3lmFaGNtlCK1CahYi5LVK6M35n4Wb2ZkReai5RonzGc5nnqWE6azHDedJcIefdflvdSe9A/qwfCirz7UOO9FHIeFgs7phFNX4PShsxhO/khw8g78lEsEqa+hVd2/pGKEPZhowkjWFcfmURyVT3EMgcXxKVacoJLF8fD2uHObipOXzoxgc+JuiugCWVvpW/y1vlmOOXnkeEzTPkFTvSq++3ciqR7PagmWJJmNE+M4vd4MQEhdPW2n+uIZmG953YLwyBHHYUF4vOyc8DKNnd+zW+pJw0m/cNUaTv3DnZGQ+Kfa7xTVBz20WL6PXMrYyzORkWlUqBbflP4Ib829/64c2riNoE0vEKQNxy5ruOIoTYy2HOZC5VEXLod3WHmKVSiHT2DWz4keZbJTZvPhzay+sIjDHic57ZsxoSUk2Um1uOI8HdiRTvW7odMV7HZhjlOnMc36AvPCX8DsOndTBQdhHPwGhjdeQeXnl88R5g9xHBYEIb+du+Lk3CddaFNoBQmyH+o39uAZWgZFUYh3JLmSHGw37kh+uG6NwKrYMh3bTdIRkp7oEJye8HDzvZfG8yHtpZCT6hdmp5UkSzLJ5iRSrCmk2lIwO01YnGasigUrNmySHZvKgU3txKaSsWbhckytCC1/dtie9zstCDmQb1cU/f39UavVREZGZpgeGRlJUNDdv8SNHTuWvn378tprrwFQpUoVUlNTef311xk9ejSqu1wQ1uv16PUP9waWIAiCUDBEXYng0oF9mC7sxxi7j+LOfQRpI0g/yqhcL4ei5ryjMlGGWihFauNfoTYla1ShvLsbD/M5FpPTzEnz+fTKD8dTz3LKfB6TbL7r8mH6olQ0lqWisTSVjGWoZCxDEV1ggSpDKo7DQkGiKHD+Ouw9BftPw+nTcZSKX0x3n4V09kpr33bb2bFd1hDuCCFWVZxUfXEcHsVR+xXHPbg4fiHFCSoRQpBRT1ZuPyQ5Utie9C+bE3azJfFvouyxuEk6FpSZlq2ECGdkJKbP5wJpVSIe04SI6wetrH4/lqQbTiQ1NB7sRZ1XPFGpC87fN0F4FIjjsCA8PqKuRFDH/jOooFCLYQAsjVkLQMNCNR9qQgTAS4FdCdUXZcC5MexK2s/zJ15nYdlPKO5W9K7LV2/ZlOjyB9k/ty+11BsppTtFKU5B8gpIBs4DmyDG4c8NpTyJxnLIvuUxFC1HQOlyhJQriSYfWhTmJpvNxtLdv7E1egWH/a5wzUONqz+j6/ymQixUS61I+1J9aP5M83yNNSsURcH21xZMM+dgW7shfbqmZnWMwwfj1r0zUgFP5shr4jgsCEJ+uhwBO6a/zcs+K7AqelS9V7C3UAwfH5vMJcs1UmRTpuurUVNEVzhD0sPtLS4CtL4F6hrkkyw/ql+YHBbikuKJS4ghPimWxNQ4UkwJ+HkVjJbOgnA3+fZtQqfTUatWLTZt2kTHjh0BkGWZTZs2MXjw4LuuYzKZ7kh8UKeVC86ngheCIAhCARF9PYpL+/eTen4fhth9hDr2E6y9TvppWFoChFNRccFekUhDbeQitfEtV4tStapRzsNAuYcUq6IoRNij09pfnE1vg3HRchWFO49nbio9FQylqGgsQ0VjGSoZS1PBWDrPT3QF4VGmKHA16lYCxL60n6mpNtr4rKNv4EKm+K1E7+V68sGpqDirb0VcaDc8QsriX7w4gaFFCNWqXdeqs719hdPmC2xO3MPmhN3sTTmCQ3Gmz/dQGfm05Biqumcv9co07VMwmdDUrY2u/bM5iKxgk50K/8xLYvfcJBQneBVT0366H8FVxcVkQRAE4cl2YslXNFPZOGpvQJUm9VAUhaVprTO6+7fLl5ie9m7A8opf8eKZdzlnucxzJ/rzbZmPqe1Z5a7LB4QE4j95PTcuXiPi9GlSrp5CiTmNZ+opAuXTFNVexV8Tgz87wb4TInG9DrhaGZ53lPpPdYlyFKtQvkBXl4hPSuCnXQv42/QXhwvHEm9UQ3EANTqnTJVoPTUcdelR41Uq1q2Q3+FmiWKxYFn0G6ZZX+A4dsI1UZLQP98O4/DBaJ9qJG6SCYIg5LMbMfDTxFmM9v8cAMtzP2IuXZaBR3pmSIYorPX7T2uLWxUfiugKo5Ee7YREIXdJkoRBcsOgcsNH40VRt0AQORDCIyRf/6K9/fbbvPjii9SuXZu6desya9YsUlNTefnllwHo168fRYsWZerUqQA899xzfPrpp9SoUSO9fcbYsWN57rnn0pMjBEEQhMdf7I0YLh7YT8q5/bjF7CPEsY+i2qukd8OTAC3IisQFewUiDLVxBtbCt0JtStaoRhkvd8o8pFhtsp1zlsu3qj+k/Yx3JN51+UCtf3rlh4pp1R9KuIWglsRxThAyExEL+9KSH/addiVARKU3UFSo5bGfCYEL6Vn4FwK0MenrmX2roa/dD3X1FyjvGfxAMZicZnYm7UtLhNjDdVtEhvml3YrztHdDnvZqQF3PauhV2XtyznntOqa58wHwmDzusbvYnBTuYM3IOK7tc5UYrtDOSIuxPug9Hs9qGIIgCIKQVZZUC5Wi54IWkqsPA2BvyhEuWa/jrjLS1qdZvsVWyViGVRXn89KZ9zhqOk33U4OZWXIsz/u1uOvykkqiSKkQipQKATIuk5qYytWTZ4i7cBpb+Cl0iafxtZ0mRHUad7Upa9UlfMphKFY+X6tLnLt6nl/3z2e/tIcjAWYsfirwA1BTyOakWpQ3dbXNeKHhqwQ3CHzo8eWUMzIS85fzMM2djxLtOp+WPDxwe6UvxrcGoilVMp8jFARBEMB1LWTa6OXMCngbgMRG0/Gq1433z40hRTZR3b0Cs0qOo5g+CIPKLZ+jFQRBeHjyNSmiR48eREdHM27cOCIiIqhevTrr1q0jMND1heDKlSsZKkOMGTMGSZIYM2YM169fJyAggOeee44pU6bk1y4IgiAIeSwhOp4Le/eTdG4fbtH7KGrfT4j2EukdSW9LgLhoL0eEWy0cgbXxKV+bkjWrU9rbg9IPKdZ4RyInTOduq/5wljPmi9gVxx3LqlFT2lA8LfmhNJXS2mBkp4y+IDypYhNh/xnYf+pWJYhr0XcuF2a4yrByi+jivZAi8slbMzyCoFpvqNYXQ3C1B4rlguUqmxN2szlhD3uSD2BT7Onz3CQdDQvV5hnvBjT3anDPctJZlfrRDLBa0TZphK5F1ksq20wyKVFOvEM0Bbb9xJmNJjaMj8eSJKM1SrQY40OlDqIajiAIgiAA7F3yC09po7huD6Fu584ALI5ZDUA73+YY1Yb8DI8gXQC/V5jL4PMTWJ+wnUHnx3LJeo23gl/MVhKnu5c75evXgPo1MkyXHTI3Ll/PWnWJKFyvA65WaOcdpR9KdYndJ/bwx8kfOGw4wgk/GbnIzf1WEWRyUC2mKE182tG9UR+Mbvn775Vd9iPHMM2cg+XnxWBzVVlThYZgfGsghlf7ofL2zt8ABUEQhHRxSfDuyH/42q8XKkkhqdJAvFq/y5aEPayM24QKFR+HvU8ZQ1h+hyoIgvDQScoT1nciKSkJLy8vEhMTKVSoUH6HIwiCINwmMTqBCwcOkHRmH7ro/RS17SNUe+Guy16yleGGvjb2wNp4la1FyVo1KOT7cP6uy4rMZev1DJUfjpvOcsMWedflC6k9MiQ+VDSWoayhBG6qJ68cvDgOC9mVbHIlPew/fSsB4sKNO5eTJKgYBg3LptA1YBl1rAspFLkF6WZLGo0bVOgENfpByRagzllusEW28nfSQTYn7mFTwm4uWa9lmB+iC+YZ74Y87d2Qhp41Mahz56kL58VLxJSrAXY7PtvWoWvSOMvr/vpiFNf2W9EaJAIr6QiuqiO4iuvlGZS/pTDtZpkt0xM4siQVgKDKOtpN98UnVJuvcQnC40ochwXh0aPICmdHVaes9gjbCk+n6ZD3MDstVD/YjhTZxNLyX9CgUM38DhMAp+Jk8tUv+CbiFwC6+bdletgH6FR5d1y/X3WJe4lx+HODciQaymeoLlGsbAm0+vvHKztlVvzzBxtvLOGI13kuemWs7Fc6QaZqYlnahHbn2drtUKkfrcpXiixjW7Me08w52DZvS5+ubVAP4/A30XfqgKQRJdWzSxyHBUHIS0mp8PJ755nr2YDCumhSQ9vh/sofmCUHzxztw2XrdV4L7MHE4sPyO1RBEIR8Ic5eBUEQhHyRFJfEhf0HSTyzD23kPopY9xOmO0uGZ4LSrkVdtpfiuq429oBaFCpbm5K1axLm50XYQ4jT7LRwynw+vfLDcdNZTprOkyrf/QJbqL5IhtYXFY1lKKYLeuzK3AtCXjNb4YWJsGo33C2Ft3RRqF0eapeD2uWc1NZuxnByIZz4Ha7c9v9nWFOo3g8qdQW3nF14vGYNT2+JsTNpH2bZkj5PK2mo51mdp70a8ox3A0q5Fc+T/99TPvwY7HZ0LZ/OVkJE7AU71/a72lHYzQrX9lnT21MAeBRWE1T5VqJEYCXdQ2tXEXXKxqoRscRdcFXTqfOKJ42HeKHWir+XgiAIgnDToY1bqaE9QqrTSLWerwGwNn4bKbKJEF0w9Tyr52+At1FLasaHvkWYvhhjL3/Kkpg1XLNGMK/MR/hovPJkmw9WXSIG7LuyXF1C66nn150/sDNpLYcDIogyaCAUQI1aVqgUo6a6pTqdK79Mnbq182R/85qSmor5h0WYPpuL88xZ10S1Gn3XjrgPH4y2Xp38DVAQBEG4q1Qz9Pogjk8MbSmsi8bsVxP3fr+CWsPsawu4bL1OkDaA94r1z+9QBUEQ8o1IihAEQRDyXEpCCuf3HSThzD40kfsJtu6jpPY01W9fSOf6cdUexjVtbawBtV0JELVqUjzAh+J5HKOiKETaYzJUfzhhOssFy1Vk5DuW10s6yhtLpVWAcCU/VDCUppDGI48jFYTHn6LA6zNg5S7X76GBtxIgaqW9fDyByONwaCFs+AmSbysf4VfGlQhRrQ/4hGV7+3bZwd6UI662GIl7OG3OWLEmSBuQVg2iAY0L1cZDnbdtHhxnzmL5YREAHh+Ozda6p9e7EkTCGrvR9G0vIo7aCE97xZy1kxLl5NxmM+c2m10rSOBXUkNwFT1BVVzJEv6ltbmaqKAoCgd/TmHbJwk4beDur+LZj/wIayh6mQqCIAjCf9m3zwQV7De+RJMAHwCWxKwBXJUYVFLBq0DwYmBnQvXBDDg3hj3JB+hw4nV+LPsJYW7FHloMKo2KIqVCKFIqBGiRYd7N6hIxF06RGH0Mi+U0SBfR66+T6iYTr0skXneAON0R4nRa4s0a4o5puGHQk+qtBm8ADUaHk6pRHtSWGvFCndcIq5/X31rzjvPadUxzvsb8zXco8fEASF5eGPq/hHHIANShIfkcoSAIgnAvFit0H23hfakj5YxnsBlDMLy6CvQenDVf4svwnwD4sPjbeX79QhAEoSATSRGCIAhCrkpNTOX8gUPEn9qPJmIfQZZ9lNCeopp026PeaRUgrttDuaqtjcWvFp5lalOiVi1CgvzI68stdtnBecvlDNUfTpjOEeuIv+vy/hofKhnLUsm9DBUNpankXpaSbiFoJHEYFYS88L9f4OeNoFHDmhnwTK3bZqZEwdFfXMkQNw7cmm7wgSo9XckQxeq5+mlkg6IobE7cw6/Rq9iR9C/JztT0eWrU1PaswtNeDXjauyEVDKUeavWX1IlTQZbRPdc220/n3UyKKP+skYCyOgLK6qjSxTXPZpKJOmkn/IiV8GM2wo/YSA53EnveQex5B8f+cH0GGjeJwApagqrqCK6sJ7iqjkJF1Dn6DExxTtaNjePCNle1jZJN3Ggz2Rejr/o+awqCIAjCk+fS8bPUllYBUKzDWwDcsEWxI2kvAF39n8232O6nuXcD/qj4Nf3OvMsFyxXan3iN78p8TB3PanmyPVmRSXKmEOdIJM6eQLwjkThHIvGOhLSficQ5Eoizp73XJRJfOhG59M0EeB1Q4r7b8bM4qB5dmAburejV6GW8PB/tFgj2vfsxzZyDZclycLiqd6lLlcQ4dCBuL/dF5SGS/gVBEAoymx26j5fpm/oyTQrvwKEthO6VNeAZjKIojLw0Hbvi4Bmvhjzr0zS/wxUEQchX4m6OIAiCkGPmFDPn9x8m7tQ+VOH7CDTvp6T2BFWl2yorpFWAuGEvxlVNLcz+tfEoVZuwWrUoWiSAonkcY6IjmRNpSQ83K0CcNl/AptjvWFaFilJuoXe0vyis88vjKAVBuGn1Hhj5jev9rLfSEiLsFji90pUIcXYtyE7XAioNlG3nSoQo1w40+hxt87jpLJOufM7OpH3p0/w0PjT3qs/T3g1p6lUXb03+XPB2HDuO5ZclAHhMGpOtdWPO2Yk950CthdLNDXfM1xlVFKulp1itW59baoyT8KM2V0WJtGQJW4rC9YM2rh+0ASkAGH1VrkoSVXSuqhKVdbh5Zf6k6uW/LawZGUtqtIxaC03f8aZGbw/RXkgQBEEQ7uHyH7MJkxT2yu2oU7UcAMti1qKgUN+zOsXd8vrb1IOpYCzNqorzefnsCA6nnqT7qSHMLDmGjn6tMl3vvwkOcY4E4h1J905wSJt2twp/WeGuMuKr8cJX642PphC+Gm98NF74aLzw1Xjjq/XCYNGjjnXyVI1GaLSP9uVUxenE+sdKTDO/wL5rT/p0bdPGGIcPRt/+WSS1SFgVBEEo6BwO6P0hNAgfQ8/QX5ElDZrev0NgZQCWxq5lT/JB3FR6poS9K757C4LwxHu0z+IFQRCEh8Zpd3L6nwPEnNyHdGMfgeZ9lNQcp7LkvLVQWgJEhD2YK+ramPxq416qFsVr1KJIaBBF8jA+RVG4Yr2RofLDcdMZrtki7rq8h8qYIfGhkrEMZY0lMKhE+XZByC8nL0HvSa72GW90gIH1j8CKL+DYb2BJvLVg0TpQ40Wo3APc/XO8vShbLDOuf8Mv0StRUNBJWl4s3IWOfi2p6l6+QJSjThk/BRQFfdeOaKtXzda66a0zGrnhVihr++Lur6Z0c0N6EoUiK8RdcmRIlIg+Y8cUJ3NhmyW94gOAT5iG4Mo6V0WJKjoCyunQ6CScdoVdcxL599tkUMC3hIb2M/woXF6Xrf0RBEEQhCdJYnQCtVK/BTWoGw0DXN95bm+d8SgI1PmztPwXvHVhImvjt/Hm+fEcSjlJkM4/3xIc0t+nTdersnhOkpdfaB8COSkJ84KFmD6fi3zpsmuiVotbz64Yhw9GWyNvqngIgiAIuc/phJengd/pbxhZdioAqk7zodQzAMQ7Epl0ZTYAbxd5lRB9cL7FKjyaFFkGmw3FagWrFcVmv/XemnG6a5prujqoMLqnm+V3+IJwVyIpQhAEQcjUtTOXOffnAsrFfEtF7fVbM9JaYETbC3NJXZtU39oYS9YmtEYtgsKKEJSHMZllC2dMFzO0vzhpPpeh3P3tiumCqGQsS0Vj6fQkiBB9cIG44SkIgktcEnQcBckmaFodPuu0B75uDg6rawGvEKjWF6r3hYDyD7Qts2xhXsSvzLnxI6myK3HgOd9nGBUyiFB9wbnabT9wCOvvf4Ik4TFxdLbWVRQlPSmiXGtjjmOQVBJ+JbX4ldRS+XlX71GHVSHqpI3wo7b0ZImEqw7iL7leJ1a5tqvWQuEKOhwWhegzruo8Vbu503yEN1qD+PsrCIJwN+EXr2MzWyhesVR+hyLks0OLF9BUncpZW2VqtHHd4DiQepzzlisYVG609306nyPMOqPawDelP2LK1S/4KuJn5kX+mqX18jTB4QnivHgJ0+dzMS9YiJKcDIDk54txwKsY3nwDdXBefnsXBEEQcpuiwMBPIHbfOr6rPMg1sfl418MjaT66+iVxjgTKGUryetAL+RSpkBWKooDD4UoysNlQrLYMSQauxAPbnckIVluG6enr3JakQNryd45tu22aNcP09O3Z76yynBW6Z1uJpAihwBJJEYIgCMIdbBYb+/9cifbQPGqqNlBMUkALCQ5vzkn1SfGtjaFELUJr1CYorCgBqrwrvxZli72t+oPr53nLlbs+OaSTtJQzlExLfnAlQVQwls63sveCIGSNwwE9J8C56xAWBEvevoT2l46uhIgSzaDZOAhrCqoHu5GuKAp/xG7go2tzuWGLBKCGe0XGhw6ljmf2qjA8DCnjJgPg1rsHmooVsrVuzDk7cRccqHVQ6i6tMx6ERi9RpLqeItVvtd0wxTuJOGYj/Igt/aclUSb8iA0AfSGJ1hN9Kdsy5wkagiAIj7vYGzG4fVOFYE08Bx3NsdYaQu0Oz6HRiUs3TxqHzUGpq7NBCxHlh1Em7fvWzSoRz/o0w0Ptno8RZp9KUjE2dAgVjWVYGbcJT7W7SHDIQ4qiYN+1B9PMOVj/WAWy6/uzukI5jMPexND3BSRD7p4jCoIgCHlPUWD4bNi39RDbqnVDIzldLUWbj09fZm/yYX6O/hOAqWHvoVWJc8mbFFm+d5LBfyoh3D3J4M5khAzr3JFkYIW0ce9MUri1PRQlvz+a+9NqkfR60OuQ9HrXe93NaXqktOmabFY5FYSHSfw1FARBENJdOn6WS6vmUyn+expooyCtjehBx9OYq/SnVsdO1DbqMx8khxyKgwuWqxxPPcMJ8zmOp57lhPks0fa4uy7vp/HJUPmhkrEMpdyKixN9QXgEvTcXNu0HdwOsmJCE35/PQWoUBFWH3itB7/HA29ibfISJVz7nYOpxAIroAhlVbCDP+7UskFVjbHv+wbZ6HajVuI8fme31T683A1CisQG9R97vn9FHTcmnDJR8Kq3thqKQcNVBxFEbKVFOyrUxUihY/H0WBEHIzNFFs2imiQeghmYLHN7C9X2hnC0yiKrdX8M3yC+fIxQelr3L/6CB9jIxDn9qd+sFgEW28mfsXwB08382P8N7IF3829DFv01+h/HYUux2LEuWY5o5B8e+A+nTda2ewTh8MLrWLURPeUEQhEeUosDoebB81VV2V2+HpyYFSj4Nz8+DtL/tdtnBB5emA9DTvz31PKvnY8S5Q7FasW3Zjm3rDlfFo7skGdysgnBHe4f/VF7A4cjv3bk/lSotycCVaIBOd2cygl6HpNNlSEZAr0f6T5JC+jg6bfr79HHutv5t27t9fbRapAd8UEkQCgJxZVIQBOEJZ0m1sH/5MtyPz6O6ZhthAFqItAdx0vdlSrR/lRq5XL43yZHCSfO52ypAnOO06TwWxXbHshISJd1Cbmt/4foZqPUXF3ME4TGwYDV8vtT1fuEHDirv7QlRx8AzGPo8eELEVWs4U65+wcq4TQAYVQYGF+nH60E9MajcHjT8PJM69kMA3F7qg6Z09v4GK4rCmfTWGfnzBKAkSfiEavEJ1ebL9gVBEB41idEJ1IyfDWrYHjIHOeEaVeLnUVR7haLRH2CePYEdul4UbjOEcvWq53e4Qh5zPzQLNHDMbwDNPFzH8g3xO0h0JlNEF0ijQrXyN0ChwJHj4jB/8x2mOV8jX7/hmqjXY+j7AsZhg9BUqpi/AQqCIAgP7KMf4ctfk9herR1F9TegcCXouQw0tyorzY/8lVPmC/hovBgdMjgfo30wclwc1jUbsK5YhW3dXygpKXmzoZsJB2nJBLcnDdwzyUCny5hwcNv0uyUp3LHcHdtLW+fm+hpx21YQ8or4v0sQBOEJdXb/MW6sn0fV5B9ppIkHDTgVFQeUNsg1+1OzfTua6R/sZpaiKFyzRdzR/uKK9cZdl3dXGalgLJWh+kN5QykM6oJ741IQhJzbeQTe/NT1fuIr0NH0LpxdC1oD9P4TvIrleOxkZyqzb/zA/IjfsCo2JCR6BrRnRNE3KKwr2E/a2rZux7ZpK2i1eIx9P9vrR5+2E3cxrXVGM1EWWRAE4VFwcNEXNFMncc5eicavDESlUWFOGceOpb8ScGo25bUHecrxLaz6liPLG5NSfQh1OnVC+4Dn60+ixNhEDi//jbIt2hMUViS/w7nDiZ17qarZhU3WUqH7oPTpS2LWAtDFrw1qSZ2lsWzbdpDUfwjaJo1wf28omnJl8yRmIf84zpzFNOsLzD/8DCZXUqwqsDCGN1/HOOBVVAEB+RyhIAiCkBs+/Q0mfWtnVeWuVPU4Ch5B0Hc1GLzTl7lmDeeT6wsAGBsyBF+tVz5FmzPOi5ewrFiNdcUq7Dt2g9OZPk8VHIS+XRtUwYHZTzL4bwJDeiKETjxwJwhPGJEUIQiC8ARJTUzlwO+/4XN6HpW1f1MGQAPX7SGcLfwqZZ9/hTqlQnI0tkW2ctZ8ieOmM5wwnUv/meS8eyZvEV1gWvLDreoPxfVFC2QZe0EQct+VSOg6FuwO6NoMRpefC6s+c83svBCK1s7RuA7FwS/RK5lxbR6xDlcJ8kaFajE+dCiVjGVyKfq8oygKKWlVIgyvv4y6eGi2xzidViWi5FMGdO7ib6ogCEJBl5KQQpXImaCByCqjKK1x/e02eBh46qWXUeSXOLJtNylbZlPHuYyq2p1wfCcRh4pwKnAAlbq+TkBIYD7vxaMhMTaR6zNa0ES7j2tfFefay1spVi4sv8PKIH7jLAD2anrSKDQYgEhbDFsT/wagm3/bLI2jOBwkDRiK8+w5nGfPYfl2IfoO7TCOGIauYf08iV14OBRFwbZ5K6aZX7jaraXRVKuCcfhg3Hp2dd3sEQRBEB4Lc5fDe18qzCs7gJY+G0FrhD6rwLt4+jKKojDm8qeYZQv1PavTPYvnC/lJkWUc+w9iXbEK64rVOI6dyDBfU7ki+ufboX++PZpaNUT7BkEQHphIihAEQXgCnNy9n+hN86hu/pmn1MmgBbusYb/0HOq6/an5bCuKarP2tBFAjD0uQ+LDCdNZzpov48R5x7JaSUNZQ4n0yg8V0xIhfDSPVrayIAi5J9UMnUZBdAJULw0/dN+AtHiIa2aLKVC5a47G3ZrwN5Ouzua0+QIAJd1CGRsymJbejR+Z7H/bhk3Yd+4BNzfcR72X7fUVReH0ejMA5Vobczs8QRAEIQ/sX/QNTTWxXLaXol637nfMl1QSVZs3guaNiLh0g1NLv6JSzNcEaW8QFDcO61eT2aXpjneLIVR6qm4+7MGjITk+mSsznqWKdh8AxbSXufpdc669spViZYvfZ+2HI/zideo6FoMKfNsMS5++PHY9MjK1PCpTypC1hEnzdz/iPHUGyc8XXeOGaTccXC9towYYRwxD3/5ZcYPhEaJYrVh+Xoxp1hc4jhxzTZQkdO2fxX34m2ibNXlkznkFQRCErPl+LQyeBSNDPuKVoG9BUkGP36BoxlZa6xO2szFhJxpJzdSwEQX2eKBYrdg2b3Odk6xci3wj/NZMtRrtUw3Rd2iH/vl2aEqWyL9ABUF4LImkCEEQhMdUYmwih3//mcLn51FBe5AKAGq4bC/FxSKvUbHjS9QPDcrSWFbZxh+xG1gVt5njprNE2mPuupyPxitD5YdKxrKUdiuOTiXK+gqC4KIo8PJUOHQOArxh5bsncFvWDWQnVO8HTUZme8wz5ot8eGU2mxP3AOCt9uTtoq/Rr3BntKpH53RXURRSxkwCwDioP+oiwdkeI+qUnYQrDjRuEiWbidZDgiAIBZ0l1UL5qzNAC1fKjaS4LvPjVlBYEYLenYTVNJpdvy/B+9hsKmn/pZH8E2z4ieOr65JQeQi1O3dDbxRPit9kSjZxfvpzVNfuIcHhzdkGiwjYNZQw3TmufNuc669tpWjp7Fdnym2nl35JsMrBYUcTqjWoCbjODxbHrAGgu3+7LI2jmEykjp8CgPuY93Ef9iaOU6dJ/d/nWH78BfuuPSQ+vwd1+bK4vzcMt949RGWBAkyOisI0dz7mL+chR0W7JhqNGF7ug3HoIDRlSudvgIIgCEKe+HUT9J8OvQovYnKJMa6J7WZDufYZlkt1mhhz2dWbdEBQb8oaClYygRwXh3X1eqx/rsa27i+UlFtVhSUPD3RtWrgSIdq2QuVXsNudCoLwaJMURVHyO4iHKSkpCS8vLxITEylUqFB+hyMIgpCrFFnh2PY9JG6dRw3bYtzVrhLqVlnHfnUXDI36U+2Zpqg0WXsaKNmZyk9Ry5kf8RsRtyVCSEiE6YtRyb1MhgoQwdqAApuJLBQM4jgsTP4Bxn8LWg1snRZN/R31IP4iFG8ML/0FmqxfkI+1x/PJ9fn8FLUCJ040kpqXC3djaNGXHslqNJYVq0js2BPJ3R3/C0dRFS6c7TG2z0zg3wXJlG1loMOn/nkQpSAIjzJxHC54ts+bS5Mrg7huDyFgwjl0brpsj3F8x78k/DWH2o7f0KtsAETbC3Pc/w3Kdx1AUFiR3A77kWJJtXB8SgdqqTeS5PTkWttNVGxch/AL17B904zi2vNcsZdE038rRXLYSjA3mJJNWD4KwVcTx9/Vfqd+104AHEk9xbPHX0Yv6ThYYxVeGs/7jpU69X+kjJqAKqw4/qcOZEh4cIZHYPp8Lua581ESEwFXn27jsDcxvPEKKq9H7xzqceU4dpzUmV9gWfQbWK0AqIoVxThkAIb+L6Hy8cnnCIXsEsdhQRCy6o8d0H08NPLYxsZqLdFgh0bvQpsZdyw76crnfB3xC6H6ImyuvAiDOv8fkHBevIRlxWqsK1Zh37EbnLeqC6uCg9B3aIv++fbomjdBcsv/eAVBeDI8Oo/OCYIgCPcUFxHL0d8XUvTyfKro0vqvqeGcrSLXi/enSue+NAzKeqZtpC2GBZGLWRj1O8nOVACCtP68FNiVBp41qWAshbtalGUXBCF7lm93JUQAzB1mpf7hzq6ECJ+S8MLyLCdEWGUb30Uu4bMb35PkdD1h0ManCaNDBlPSLf9uZjwIRZZJHTcZAOPQgTlKiHC1znAlw4nWGYIgCAWf3Wqn5PmPQQvnS4ygaA4SIgBXy4ynFhJ9dQbHl82jfMRcgrQ3aJb4IfZ5U9mt7oJH8yFUadoQSfVkJTDbLDaOfNSNuuqNpDjdudRyLVUb1wEguGQxbvTfwpV5zQjVXuDyvOaEv7GN4BJF8yXWfb/9RBNNHFfsJajzfIf06YujVwPQ2qdJlhIi5NhYUqe5nhb1mDzujgoQ6uAgPKdOxH3kO5jnfY9p5hzk6zdIeX8sqZOnY3jjFYzD3kRd9MlOpskviixjW7cR08w52P7akj5dU7c27sPfRN+lI5JWVGIUBEF4nK37B16YCGV0J1lVraMrIaJSN2j18R3LHjedZX7EYgAmF38n3xIiFFnGsf9gWquu1TiOncgwX1O5Ivrn26F/vj2aWjVE+y5BEPKFqBQhCILwiJIdMoc3bcW8ax61nL+nPxVmcho4oOuBV7P+VG7SIFsXPs+ZL/FVxM8si1mHTbEDUMYtjIHBfejk10q0wRAemDgOP7mOnIfGb0KqGYZ0VphV9EU4/CO4eUH/PVC4wn3HUBSF1fFbmHL1C65YbwBQ2ViW8aFDaVioZl7vQp6yLF5GYo8XkQoVwv/iMVS+vtkeI+K4jZ96RKIxSAzaVgSdUVxkEAQhI3EcLlh2/vA9jc+9TJQ9EM8xFzF4GHJlXLvVzt7ly/E4NJuq2p3p00/ZaxBdfgi1u/bMtW0VZA6bg30f9qA+v2OW3TjVZA01Wje/Y7nr567gnN+MUO1FLtnKoB+w5aEnRiiywoWRlSilO8m24Jk0HTQMAJtsp+ah54h3JPJT2U9p7t3gvmMlvzMS06ez0VSrgu+BXfe96aDYbFh+WULq9Jk4T5xyTdRqcevdA/f3hqKpeP9zNOHBKSYT5h9/wTTrC5ynzrgmqlToO3fAOHww2gb1RFXGx4A4DguCcD9bD0K7EVBIieRwg/oU5hKENnRV1tRmPH+TFZkOJ17nYOpx2vk055syHz3UWBWrFdvmba5EiJVrkW+E35qpVqN9qiH659uj79AWTcmC1dJDEIQnk6gUIQiC8IiJuhLBiT++p8SN+dTQnndNVLkuckaV6k+1zr1o7Je9kqf7ko/yZfhPrE/Ynj6trkc1Bgb3poV3I1SSuLEmCELORSdAx1GuhIhnasEnVafC5h9BpYYeS7KUEHEo5QQTr3zOvymHAQjU+vN+sQF09W+DWlLn8R7kLcXhIOVmlYh3huQoIQLg9DpXlYhSTdxEQoQgCEIB57Q7KXbiI9DByaLv0DQXkxS0ei0Ne3aHnt059fdBotfPobbtZ8prD1L+/CvETnmPf3z6U6bzQIqWDs217RYkTruTfyf3oyG/Y5V1HG/wB7XvkhABULR0KNde2cLVb5sRpjvLxa+eJmLglofadmT/mg3U1p0kyelJjZ6vpE/flLCLeEcigVp/mnjVve84zstXMM35GgCPjz/M0lOYkk6H4cXeuPV9AdvaDaROn4l9+y4s3/+E5fuf0LV/FvcRw9A2bihuyucB541wzF98jemrb1Hi4gCQChXC8NqLGIcMQB1WPJ8jFARBEB6WPcegw0hQOVLZ3qi9KyHCtzT0WnFHQgTAougVHEw9jofKyMTiwx5KjHJcHNbV67GuWIVt/SaUlJT0eZKHB7o2LVyJEG1b5fjahiAIQl4RSRGCIAiPAKfdyYG1G3D+O49aykqaqRyghSSnJ4cMvQh4pj8VGtaifDbGlBWZvxJ2MTd8UfpNRnCVoB8Q1Js6nlVzf0cEQXji2OzQfRxcjoBSRWHZC0tR/znaNbPdHCjdMtP1b9iimHp1Lr/HrgPATaVnYFBvBgb3fmza+Fh+Xozz9FkkX1+Mw97M0RgZWme0eTw+F0EQhMfZP0uX0lB3lniHDzX7DMiz7ZSvX4Py9RcQFzGdfxbPp8yNLymqvUKz5Gk4v5/O31JH3J4aQrUWTR+b1hqyQ2bPlNdorPyCXdZwuPZS6rZvnek6xcoW59rLW7j2XTNK6M5w4auniRy0hcDQ4IcT9O5ZoIaDHq/Q1PfW0+OLY9YA0CWLSaAp4yaDzYbu6aboWj2TrRAklQp9uzbo27XB9ve/mGbMwrp8JbZVa7GtWou2fl2MI4ah79AOSf1oJ6QWBPYDhzDNnIPlt2Vgd1VpVJcIwzh0IG4v90UlqggIgiA8UfafhrYjwGx2sr1hL8pI+8DoB/3Wgrv/HctH2+OYenUuACOKvUGwLvstOLPKceEi1hWrsf65GvuO3eB0ps9TFQlG36Et+g7t0D3d9I62XYIgCAWJSIoQBEEowG6cv8qZFd9SJupb6mivgARIcNTegIRyr1GjU3eaeHtka0ybbGd57Hrmhi/irOUSADpJSxf/NgwI6kVpQ1iu74cgCE+uYZ/D9sPgaYR1w/fiubafa0aDoVA385tAc8N/4n/X52ORrQB08WvD+8UGUFQfmNdhPzSK3U7qxKkAuL8/PMcXwCOO2Ui64URrkCjROH96iAqCIAhZIztk/A9NAR0cDhhGMx/PPN+mb5Afzd56H4ftHf7+cyX6/bOpodlCfX6HHb9zdlNlwssMpla3Prh7ued5PHlFkRV2Th1EE+f3OBQ1+6r9SoNOz2Vp3WLlwrj68hauf9eMktrTnP/iaaQ3t1A4NChPYz5/6CS11euQFYkSnd9Knx5jj2Nz4m4Auvm3ve849iPHsPz4CwAe0yY9UFUHXf266Jb9jOPMWUyffI75h5+x//0viZ17oS5bBuO7b2Ho+wKSmzjnyA7F6cS6cg2mmXOwb9+VPl37VEOMwweLhBNBEIQn1LEL0OZdSEpVWFJvOA00f4JGD73/BL/Sd11n0pXPSXQmU8VYjhcDO+dqPIos49h3AOufq7GuWI3j2IkM8zVVKrkSIZ5vj6ZWjSxVphIEQSgIRFKEIAhCAWO32jmwajWqA/OoKa2jiCSDFuIdPhzx7EeR1q9RpVblbI+b7ExlUdQfzIv4lQh7DACeanf6Fe7MK4HdCNIF5PauCILwhJv7B3z9J0gSLHvvKiU3dwC7Gcq2hTafZLruH7EbmHz1C8DVzmdC6FCqeTx+Pa3N3/+E88JFVIUDML75eo7HOb3ODECpZga0BnFBQhAEoSDbu3IV9XRHSXJ6Ur3vkIe6bY1OQ/2unaBrJ84dOM6N1XOoZV5IGd0xylweQMK0D9hW6BVKdHqT0PIlH2psD0qRFbZPG05T29fIisQ/FRbSqHuXbI0RUq4EV17awo3vm1JKd8qVGDF4CwEheZeQeX3lZ5QC9vI89W77zJfHbsChOKnuXoGyhvv34U4ZOR4UBX33zmjr1MqV2DRly1Do69m4TxyDefZcTF/Ox3nmLMmvDyF17IcY3xqIYeBrqHx8cmV7jys5ORnLdz9i+mwuzgsXXRM1Gtx6dME4fDDaWjXyN8DHhKIoHF2WSvm2RtFKThCER8bpK9DqHYhLgk9qfkZn/WzXjC4/QmjDu66zI3Evv8euR0JiWtgINNKD3+ZTLBZsW7ZjXbEK659rkMMjbs1Uq9E2aYS+Qzv0HdqiKXn/8xJBEISCSFIURcnvIB6mpKQkvLy8SExMpJAoRScIQgFy+cR5Lq5aQIW47wjU3jrxPORoRmrl/tTq2Bk39+w/iRNpi2FB5GIWRv1OsjMVgCCtP68F9aBP4U54qh/dJ8GER484Dj85thxwPengcMIn/VMYltgYIg5D4crQfxe43fvf/5LlGq2PvUiKbGJwcF8+KDbwsexhrVitxJSphnz1Gp6zPsY4NOetM75pGU5yhJPnZ/lRpoVonyEIwt2J43D+U2SFE6PqUUm7l62eH9BsxNT8DonE6AQOLfmOElfmEKq9AIBTkVhpa4KhRGtaDxyZzxHenyIrbJvxAc1SpgOwo9S3PPXSyzke7/KJ8+gWNiVYe51z9kp4DdlMQNHcL0sdFxGL2+chGNVmDjXZSvWWTdPntTrWj+Oms0wp/g4vBXbNdBzb1u3EN28LGg1+J/ahKXP3p0oflJycjHnBQkyfzka+eg0Ayd0dw+svYxw+GHVIsTzZ7qPKefkKptlfYZ73PUpSEgCSry+GN17B+ObrqIsWyecIHx+yU2HT5HgOL0klrLEbXb70L5AtgcRxWBCE210Mh6ZD4Ho0DK/8OzN8uyKhQOsZ0Pjdu65jka20ONqXi9arvFS4C1PC7r5cVshxcVhXr8e6YhW29ZtQUlLS50keHujatED/fHv0bVuh8vXN8XYEQRAKClEpQhAEIR9ZTVb2r/gDt6PzqKneRHEALUTbC3Pc5yXC2r9G9UplcjT2OfMlvor4mWUx67Aprh6lZdzCGBjcm45+rdCrdLm3I4IgCLe5cAO6j3clRPRu4WSo1NuVEOFeGPquyjQhwibbefP8OFJkE3U9qvFesdcfy4QIAPO875CvXkNVtAiGN17N8TjhR2wkRzjRGiVKPGXIxQgFQRCE3HZg7V/U0u7F5DRQqffw/A4HAK8Ab5oOGo7sGMqqdb+wPfobvA9cpt9X+4H9LL+6jqrdv6JU9YJbsWnbzInpCRHbQ+fS5AESIgCKVyzF5b5bifixKaW1xzn7+TNIQzfjXyR3q+sdWTyPZmozp+w1qPZMk/Tpx01nOW46i07S0sG3ZaZjKIpC8vvjADC8/nKeJUQAqDw9cR/2JsY3X8fy2zJM02fiOHoc08w5mGZ/hdsL3TC+NxRtlexXNnyc2Pb8g2nmHKzLVoAsA6AuVwbjsDcx9OuFZBQJrLnJbpFZPSKOc5vNIEHpZoYCmRAhCIJwu2tR0HK4KyGiZ9m/mVG4N5JDgbqDoNE791xvbvhPXLRepbDWj/eLZd6S9G7klBTM877HumIV9p17wOlMn6cqEpzeFkPXvAmSXp+jfRMEQSioRFKEIAhCPjh/6CTX1s6jctJCGmpiQQ2yInFAboW9en9qdXiOZm45S1rYl3yUuRE/sT5+BwquYkB1PaoxMLg3LbwboZJEGUlBEPJOsgk6jnKVfqxTHhbU/ADp75v9MFeAd/FM1//42lccSj2Jt9qTOaUm5koZyIJIMZlInTIDAPcxIx6oJ/fp9SYASjc3oNGLC8CCIAgFmWbnZNDAXo/XaZoHlQdyIsmRwqq4zSyLXctR437GLrpOq02J6fMvJl+k/dIqbFs9kCqvTsA3yC8fo73T1s+n0SxhIgDbgmfStH/mNwiO7FqG+dUhWEcPoknfMfdcrnil0lxKS4woozvGmc9ciRF+RfxzJW671U65G3NACzEVh1H+tpu4S6LXANDCuzG+Wq9Mx7H+vgLHv/uQ3N1xH/tBrsR2P5JWi6FPT9x698C2/i9Sp8/EvmU7lh9/wfLjL+iebYX7iGFomz712Ca3/pdit2Nd9gemWV9i/2dv+nTdM80wDh+M7tlWoud6HrAkyvzxVgzX9ltR66Ddx36UbSmSTgRBKNgi46Dl265KEc2Ln2dhiQ5IZguUbQdtP3P1IL2LC5arzL6xEIAJocMopPHI1nYVRSGxY09sm7amT9NUqYT++XboO7RDU6uGOFYJgvBYezyvMguCIBRQMREJnJvzMvWlPygFoIFwe1FO+79C6edeoXa5sByNKysyfyXsYm74Iv5NOZw+vbV3EwYG96aOZ9VciV8QBCEzsgx9J8PxixDsB2t7zke7+X+umZ2+h5D6ma6/JWEPX0X8DMAnJUdTVJ93/bvzm+nLecgRkajCimN4pV+Ox1FkhdPrzQCUayMuAAuCIBRkh//aQTXNdmyylrI9c17qODfYZQdbE/9mWew6NsTvwKrYKHPGzE+jrlD8qg1Zo0auWw3N7gOEHrSzso83na/PIeGzn9gWMo4Gr7yJLodJ3Llp25ezaBbtau+xNWAqzQYNy3R5h+Lg1IwxND2dROLgGRxu3IxqJRrfc/mwSmW40GsLkT83o6zuKGc+fwZp2OZcSQzZu2wpDbXXibIHUqdrj/TpdtnB8tj1AHTzfzbTMRS7nZSREwAwvjMEddDDPXeSJAl9m5bo27TEvnc/qTNmYV22AtvaDdjWbkBTpxbuI4ah79QBSa1+qLE9LHJ8POZ532Oa83V6SxF0Otx698A47E20VZ/sqhl5KTnCwbKBMcSctaP3lOj4uT8hdXKeaCwIgvAwxCZCq7fhzFWoGhzL2mptUSdEQ5Ga0P1XUN/9lp2iKIy6NAOrYqNpoXp08H0m29u2rljlSohwc8Nj6kT0HdqiKVniAfdIEATh0SGSIgRBEB6SfTtO4rvyeerrz+JQ1OynHVLt/tRs24ZgXc7+HNtkO8tj1zM3fBFnLZcA0Elauvi3YUBQL0obwnJvBwRBEO5j/LewchfodbBx8GZ8tg50zWg+Aar2zHTdSFsMQy98CMBLhbvQxqdppss/qhSrFTk8gtRpnwDgMX4kki7nN5VuHLKREulE5yER1lBcBBYEQSjI7JungBr+dnuZJiWLPfTtK4rCkdRTLItdxx+xG4l1xN+cwRvrNLw27TJqix1VSDF8Fi9EMhqJq1af2vtS6DK5LiWuxVJDc5im4W9zafxcIuvNoG7HDvlWpn77vLk0DXe1INnqPZ5mb92/SsKvUSuptjscAK8kJ3uHvkzRZf/gr713n+ySVctxQdlC1C/NKKs9wqlZLWDYXw+UGKHICl5HZoIWTgS+STPjrfLUWxL3EOOIx1/jQ3OvBpmOY17wA86z55AC/DG+OzTH8eQGbZ1aeC/+Ece585g+nY35u59w7N1PYre+qEuVxPjOEAwv9UEyPB6tvhznzmP67Ess3/2EkpoK4Pp3GNQfw8DXUAc+vsm9BUHseTtL34gmOcKJR2E1Xb7yJ6Bs/idqCYIgZCYhGdq8C8cuQpi/hd1PdUQbcQa8QqHPKtDfu/LDiriN7Ejai17SMSXsnWxXYlJsNlLec1XIcn9nCO7D3nygfREEQXgUiaQIQRCEPCbL8Ps3K2l1uTeF9MmEO0JI6fQH9erWzPGYyc5UFkX9wbyIX4mwxwDgqXanX+HOvBLYjSBd7va6FQRBuJ/fNsNHP7re//zmGSrs6QKyA6q8AM3HZbqurMgMvTCJWEc8FQylGRs65CFE/OAUWUZJTESOjkGOiUWOiUW5+f4/P5W090pycvr66rJlcOuTebLI/YjWGYIgCI+GE7v2UVu9HoeiJqzb+w9129etEfweu55lMevSE6kB/DU+dDU0o9+UA7gtWgWA7tlWeP04D5WfH4qiIBUrguHaDUodjGD1awNJ2exGuTNjCNOdJexgRw7ufRpjp08pV7faQ92nHd99S5MrgwDY6vk+TYePv+86yc5UlmydRctoB06tGsnhpMXKcD755XU+7Ptrpi27SlYrz3llC9KvzSivPcSpWS2Rhv+FT+C9kykyc2z731TR7sUi66nU/Y0M85bErAWgk19rtKp7xySnpJA64SMAPMZ9gMrTM0ex5DZN6VIU+nIWHhNGYfriG0xzvsF5/gLJg4aTMn4KxiEDML7xCpKPD6hUoFI9Mi02FEXBvm0HpplfYF25BhRXu0pNlUoYh72JW6/uD9QSTcia6wetLH8zBkuSjG8JDV2+DsCriLjELQhCwZZigvbvw4EzUNhb5kD7lzFc2AluXtB3DXgG33PdREcyE658BsCQIi9Swi0k29s3zfka57nzqIICMb7/do73QxAE4VEmzhgFQRDyUHS8zNqPP6KPZhwqjcIpqQkhby8hOCBn/YMjbTEsiFzMwqjfSXa6nkYJ0vrzWlAPegd0zHYvOUEQhNyw/zS8Os31flz3WDpebAeWBAhpAJ2+vWc/zJu+DP+JHUl7MajcmFv6Q9xU+kyXz0vO6zdciQzRMcgxMZknOcTEgtOZ/Y2o1aiCg/D8fAaSJuen44qscHqDKymiXGvROkMQBKEgS147BST4R92LRuVL5v32nKmsidvC0ph17Ek+gILr5q2bpKO1T1O6+Lehcbg3yd1exHn8JKhUeEweh/H9t9N7SUuShFu7Npi//pandiXzSePfeOGFRRgsPdg6byr1Ez+lhmYz8p812LHuVcq/PJmAkLx/On7Xop9pdP41kGCbYShN352apWoVc278QIVd1wFwe+ZpUop6o1+whA7jtzC94RxGlR6W6fqlqlfgnLIFaXEzymsPcnJmK6R3NuId4JPtfUjZNBOAvbrePFX01nfDOHsiGxN2ANA9oF2mY5hmfYEcGYW6ZAkMr7+S7RjymqpwYTwmjsF9xHDM3y4k9ZPZyJevkDpuMqnjJt+5giSlJ0mkvyTJ9d/jbb+jci0nZZh2axkpwzQpY+LFfccn4zj/GV++eg3HsRPpIevatsY4fDC6Z5o9Mokdj7rzW82sfDcWh0UhuJqOzl/4Y/B+PFuzCILw+DBb4fmRsOc4+HjCoV6j8Tr2K6g08MLvEFgp0/U/vvYV0fY4SrmFMii4T7a3L8fEkDrJddHGY/K4ApNIKQiC8LCJpAhBEIQ8smt/CokLX6Rfod8BOBk4iPIDZiFptNke65z5Ml9FLGJZzDpsih2A0m7FGRTch45+rdCrRJlIQRDyR0QsdB7t+pLfvp6NcfouEHEOvItDr+Wgzfxpuf0px5h+7RsAJhd/mzL51PZHURQSe72M9del2V5X8vREFeCP5O+HKsAflb+f65X2XvrPNMnLK/2G04O4ftBGarSM3lOiuGidIQiCUGCd3X+MetIfyIpEUKeRebYdh+Jge+JelsWsZV3CdiyyNX1eA8+adPVvQ1uf5hTSeGD5dQmJ/TujpKSgCgrE65fv0DVrcseY+rSkiBZ7bEyT7Uy48hk/lvuEZiM+4trp17my6AMa8htP2eeTNPc3tgaNov6rw3Bzz5vj0p7fllLvZD9UksJ23QCafDAzSwkRV63hzIv4jZn/pADg1qYF3v16cWPFBkpeSmTVzNms/LAKz92nP3fpGhU5K2+GpU9TQbufE5+4EiO8AryzvA/XzlymrrIMJAhsNyzDvD/jNmJXHFQylqGisfQ9x5CjozFNnwWAx5RxD9SKK69J7u4YhwzEMLA/liW/Y5o+C8ehI3cuqCiuZNP/JJwq9xj3XtPznMGA4cVeGIcOQlO+XH5F8UQ6uiyFDZPiUZxQsokb7f/nh8744OfUgiAIeclqgy5jYOsh8DTCvje+IfDftKdKOs6Hkk9nuv7BlOMsjFoOwNSwETm6BpwycSpKYiKaalVweyn7SRWCIAiPC5EUIQiCkMtkGb7+/gJPHXueRoWOYVe0RDb6kgrPvpbtsfYlH2VuxE+sj9+R/nRXHY+qDAruQwvvRqgkcQFAEIT8Y7VB17FwLRrKhSosqT0Q6eg20Hu6+mF6ZP60aKIjmTfPjcOJk+d9W9LDv/1DivxO5q8XuBIiJAlVYOE7kxxuS2xwJTn4u6b5+SLp86eyRXrrjKcNaHTi6URBEISCKnrFR5QB/pG60KB6hVwdW1EUjpvOsDRmHX/EbSDaHpc+r7Rbcbr4t6GzX2uK6V0lmRWrlaS3hmGeOx8AbfMmeP38Heqgux+zdc80Azc3fG+kUO6ig80ld7MxfictfRpTrFwYxSb9ytGtb6FaN5xK2n9pFj2Sqx9+zdXqH9Oge7csJSxk1b/LV1L7yAtoVE52ql+i8cgvsjz+lKtfIJks1D7oOnbqWrdA5eOD36f/I6lff/oviKJv63GUbVGCcsbMK3mUqVWZM8omWPY0FbX7OP5JK3hvI15+XlmK5dzvX1BMkjngfIaatatkmLc4Zg0A3f0zrxKROmUGSnIymprV0XfvkqXt5jdJo8HwQncML3RHTkpyJT/IsisZQpZRZNfP26e5pt85LX35/0xDllHuMg1FSRtHycb4sivz4vZxtFr0bVqg8vPL74/ziaIoCv98k8zO2YkAVO7oTsvxPqi14vxXEISCze6AFybC+n/B6Aa7hq0lbLer/RfNJ0CNFzNd36E4eP/SxygodPFrQ6NCtbIdg+PkqfTzPs9PpyKpRXUdQRCeXCIpQhAEIRdFJ8CnU//iPak7vu7xJBCIrt/vFCvbMMtjyIrMXwm7mBu+iH9TDqdPb+3dhIHBvajj+XD79QqCINyNosDAT1zlH709YFuP/6H751uQVND9NwisfJ/1FUZcmsZVWzih+iJMCxuRb2WHHRcukvLuaAA8Pp2G+7A38yWO7JCdCmduts5oI1pnCIIgFFSXjp+lnvwbSODTblSujRtui2J57AaWxazllPlC+nRfjTcd/VrSxa8N1dwrZDi2Oi5cJLF7Pxz7DwLgPmYE7hNGZ3pxXDIa0TVvgm3tBoYfLsGAkteYcGUWTbzqpj+pWKVZQ+TGe9j168+UODaSEO0lQo734Mjoz9G0m0nFxnUeeH/3r95AtX1d0aoc7JZeoMHo+ag0WUsQ35t8hJVxm2h8IBWNXUYVGoK6XFkA3Pr0xPTtDxi27uStGRd4NfR91lT+7r5tCcvWrsIZZRPS709TSbuXYzNaw3vr75sYkZKQQo3Eb0ADjrrDMsw7Y77I4dSTaCQ1nfxa3XMM58VLmL6cB4DHxx/mSvWph01VqFB+hyA8ImSnwuapCRz61VXlpV5/Txq/5SXalQiCUOCZLNBjAqzZA3od/DXiEJV2dwfZ6UqGaD7uvmN8F7mU46azeKs9GRc6JEdxJL87GpxO9B3aoXu6WY7GEARBeFyIpAhBEIRcsv2QwpYvZjE58F3Ukky0ex38By5H8iqapfVtsp3lsRv4KmIRZ8wXAdBKGrr6P8sbQb3yraS8IAjC3Xy+FH5Y52qx/NcbfxDw7/uuGW1nQdln77v+z9F/sipuMxpJzZelJt335kNeUWSZpFcGoqSmom3SCONbA/Mljuy6tt9KaoyMWyEVxeuL1hmCIAgF1dWl0wiTZPbK7ahTv8YDjZXqNLE2fhtLY9ayM2lfeiU5vaSjpU9juvi1oblXA7SqOy/1WFasIunFN1ASE5H8fPH6aQH6Ni2ztF19u9bY1m6g/s54Arv7c8l6nW8ifmFIkVtPN6o0Khr16YMpuTNb5/2POjEfU1WzC9bXZdfGvpR88SOCSxbL0X4f2rCVirufR6+y8TddqDtmIWpt1p5ylBWZiVc+A+DFIwHAJfStn0m/oSpJEl5fziK2WgOa7Ezmj43HGWqcxIIy0+5bla9snaqclv9C+uMZKmv/4diMNkgj1lPI9943/A8s/oEmmkQu2cpQu33bDPOWpFWJeMarEX5an3uOkTL2Q7Db0bV8Gn2L5ln5GAThkeSwKqz+IJazG80gwdMfeFOzt2d+hyUIgnBfcUnQ4QPXQyQGPawceZV6e9uBLcXVLqPDN3Cf5K4btihmXHMlQY4KeRN/rW+247Bu2IRtzXrQaPCYMTlH+yIIgvA4efTSyQVBEAoYWYYZP5i5MvdFxge9jVqSiS/9IgHvbM9SQkSyM5WvwhfR4HBn3r44mTPmi3iq3RkU3Ie/q/3O/0qMEgkRgiAUKBv2wrtfut7/8PJBahzq7SodUXcQ1Bt83/VPmy4w7spMAD4oNoAaHpXyMtxMmWfPxb5tJ5K7O4W+++qRedoyvXXGMwZROlgQBKGAun7uCvVtCwFwazk6R2M4FSfbE/9lyPmJVDvYjqEXJrEjaS8KCvU8qzM97AMO1ljF16Wn0MrnqTsSIhS7neR3R5HYsSdKYiLaBvXwO7g7ywkRAPp2bQCQ9+xlvEc/AD678T03bFF3LGv0NNLs7XEk9T/DTrUraaKR/CNe88uy9ZMJpCamZmv/j2zZRemt7TGoLPwrt6fm6J/R6LL+fM+K2I0cTD2Bu8pIrd2u1iK6/+y7pkJ53N8bCsD7/wtnx42tzA5fmKXxy9WrTtTzfxHv8KGy9m8uT3+W5Pjkuy4rO2RCz7sSNK6UGpqh0oVDcbAsZh0A3fzvnVxqP3gYy6LfAPCYNilLMQrCo8iSJLP0jWjObjSj1kL7GX4iIUIQhEfCtShoOsSVEOHjCZumJdL8eDtIvgGFK0HPZaDR3Xec8ZdnkiqbqOVRmRcCnst2HIrDQco7IwEwDn4DTdky2R5DEAThcSMqRQiCIDyAqHh4e8o1hjo6UafwPpyocbT4BJ8mb9034zfSFsOCyMUsjPqdZKfr4mCg1p/+QT3oHdAx356azoySmup6LFyrBbValKwUhCfQmavwwgRXQtiw1td5IfI5sJugdCto+9l9//aZZQsDz4/FIltp5lWPN4J6PZzA78Jx5izJIycA4DFjMpqSJfItluyQHYrriTmgXBtDPkcjCIIg3Mv5X6dTVOXgoONpajRrkK11T5rOsTRmLX/EbiDCHpM+vYQ+hC7+beji34ZQfZFMx3Beu05ijxex7/4bAOPwwXhMm4Sku/+F+Nupw4qjrlQB5/GTtNqrULt6FfalHGXKlTl8UfruN+aDSxQleML3nNg1GMfK4VTV7qRZwkTCp87nYKWpNHyh933bXxzf8S9hG5/FQ53KfmdLqo5egs4t67GbnRY+ujYXgBFyOzgzDtRqdM80u2NZ99EjMP+8hMBLl3ljfhQz3vqGqsZyNPe+/79b+fo1OKn8hfTnM1TR7ubI9GcpMWItnj4Zb+DuW7WGurqzJDq8qNk9Yw/xHYl7ibTH4KPx4hnvRvfcVsrI8QC4vdANbc3q941NEB5FKVFOlr4RTcxZOzp3iY6z/QmtKyqjCYJQ8J28BM++B1ejoGgArP3YTqUd3SDyKHgEQd81YPC+7zgb43eyJn4ratRMC3v/vtWr7sa84Accx04g+fjgPvb97O+MIAjCY0gkRQiCIOTQtkMwc8YuvirWhSBDJBaNL/rei9GXfibT9S5brjMnfCFLY9ZiU+wAlHYrzqDgPnT0a5Xem7cgsR86Qsq7o7Bt2nproiSBVuu6qKrVIum0t37XaZG0WtDp0n7e5fe7rXfHODokrea29e7ye2br3/z9tuVFMocg5FxCMnQcBQkp0LxSKjO8OiBFXIeACtD9N1Df/9Ry4pXPOW2+QIDWl1klx+Xoy31uUJxOkl4aAGYzuhbNMQx4LV/iyIlr+62Y4mTcvFTiArEgCEIBFXUlgrrm+a76nM2yXiViVdxmPrvxPSdMZ9OneasL8bxfC7r4P0tN90pZOpe1bthEYu9XUGJikQoVotD3X+HWqUNOdgVwVYswHT+Jbc16Jj8/gmePv8wfcRvpl9yZep7V77lexUa1URpsZ8+SZRQ9OIJQ7UWCz/TjxJjPcbSaSdWnG991vdP/HKLomtYU0iRzyNGUCqP+wM09e8e8ryN+4YYtkqK6ILr97Y4F0Navi8rL645lJaORQl98SkK7LvT5NZZVbX0YrB7PmkrfUdzt/tX/KjSoyUnlL1jZgqqaXRye3o5S76/Bw/tWorvm31mghkNe/WnqnTEBfnFa64xOfq3QqbR33YZ10xZs6/8CrRb3yffvQy4Ij6LYC3aWvhFNcrgTd38VXb4KoHD5gneNRBAE4b/+Pg7PfeBqnVE+FNb+D0KPTIDzG0HnDn1Xg3fofccxOy2MufwJAP2DelDRWDrbschJSa52W4DHhJGofLPfekMQBOFxJJIiBEEQskmWYdoiuLr6GxaXGoxOZcfiUxW3l/8An8yfMt6SsIcB58aQIrvKntfxqMqg4D608G6UbzcGM+O8dp2UMZOwLPzZVRr/dooCNhuKzeb6NR/iy7F7JlVobkumuO33zJI7cpiccc9kj3usj0YjkjmEfOV0Qq9JcPoKhATIrKrXD9W5A2D0hz6rsvS0w+q4LfwYtRyAz0uOJyAHPTFzi+mTz7Hv+cd1o2jBl4/U/1+n17mOIWVaiNYZgiAIBdXJnz+hqcrKUXsDqrdsnqV1LlmuMeDcGBQUtJKGlt6N6eLfhqe9Gt7zRvl/KU4nqZOmkvrhx6AoaGpUw2vJj2hKlXyQ3UHfrjWm6TOxrttIZbdv6BXQgUXRKxhz+VPWVfoOtaS+57qSSqJBj65Y2rdn27efUyN8MhW1+2DLU+zZ0o1ifT4mpNyt71Fn9x/D/48WeGsSOGpvSOkPVmH0NGYr3khbDF+E/wjAqJCBKB9+D4Cu9TPIToWoU3YKl9Oi0tw6jurbtkbfuQPW3/9kyox4es7V89q5kfxZ4RsM6vsnZFRoWIsT8gak1S2pptnB4Y/bUfqDNbh7uXNm31FqqjfhUNSU7jokw3qJjmTWx28HoJt/27uOrcgyKe+7EiEMA159ZKpbCUJ23DhsZfmbMZgTZHyKa+jydQDexcSla0EQCr41f0P3cWC2Qr2K8OdU8E/dBzs/di3Q6XsoUjNLY8268S3XbBEU0QXydtFXcxRP6kf/Q4mOQV2uDIaB/XM0hiAIwuNInFkKgiBkQ1Q8vDzZxnMJQxlV5isAHOW74dbtO1fWbya+i1zCuMuzkJGp41GV0SGDqONZ7WGEnW1ycjKm6TNJ/WQ2mF0l2vU9u+Lx4VhUgYXBbkex2dN+2m79brOh2G/+dGT++93Wz/J49tvGsYHdcdt6GX/H4bhzB2+ul5r6aCVz3LOCRsZkDbcXe2EUX3qEXDbyG1j/Lxj08He3Mbgd+x3UOui1HHzvf6PlmjWc9y5OBeDN4L408aqb1yHfk+P4ifSnJjxnfYw6NCTfYsku2aFw5q+01hmts3eDSBAEQXg44iJiqZU0F9RgaTAaSZW1BLZF0StQUGjgWYN5Zabio7mzokFmnJGRJPV+Nb26m+GNV/CcNR3J7cGrCmkb1kfy9kaJjcP+z14+qDOAVXGbOWE6y09RK3gxsPN9x3Bzd6PpkBFEX32R7d+Po5F1Pg2kJVgW/slWr+HUfG0kMdfC8VrSAj9tLCfstQl9L2O1hayafu1rTLKZmu6V6eDZjJi/XgJA37oFJ1aaWDcmjrDGbnSe458hMcJz1nRs6zdR5lAMvdb4sKj9Wd6/9DGflRyXpQTKio3rcFzZgLS2JdU02zk0rT1lPlhF5OpZlAX2Sp1pUDrjU6J/xv2FVbFR3lCSKsZydx3XunQ5jv0HkTw98RAlsIXH0PltZla+E4vDohBUWUfnL/0x+t472UoQBKGgWLgOXpvuepCkTT1YPBHctVb48WWQnVClJ1TumqWxTpsu8FXEzwBMKf4O7ursf+d3XryEaeYcADz/95HreqEgCIIAiKQIQRCELNt2CIZOiWR2cFeeKrITBQmpxWQ0TUa6Wkncg0NxMOHyZ3wXtRSAHv7tmBb2fpaf9nqYFIcD87cLSR03GTkyCgBtowZ4fvIR2np18jm6nFFk2ZUsYbffPani5u+ZJWfkJPkjK+PdLY603++azHFzP+6TzKFr0SyvPk7hCbVwHXzyq+v95he/J+iYK7mBjvOh+N3LXt/OoTh48/x4Ep3J1HCvxHtFX8/DaDOn2O0kvvgG2Gzo2j+L20t98i2WnLi614o5XsbgoyK0rj6/wxEEQRDu4shPn9FMncope3VqP3f3J///yybb+S16NQCvBfXIdkKEbftOEnu+hBwegeTujufXn2Po3SPbsd8u8boDW4pMQDkdkkaDrvUzWH9bhnXVOnwb1ue9Yv0Zc/lTpl/7mud8n8FXm7WYA0ICCRj7NWf2DSbl97epqf6LZsnTiJ7+LUbUFNZGctpejeDh6/Hyy97nAHAs9Qy/xbg+y/Ghb+H4dx9KUhKSry+aWjUIX5cIwKWdFjZNjafFGJ/0hAd1SDHcJ40h5Z2RDJsTydrGoSxjHTU8KvJyYLcsbb/SU3U5Jq8ndH0rqmu2cnjas9RR/Qsq8Hhm2B3LL0lrndHNv+1dEy8Um42UURMBML43FFVAQLY/E0EoyI4uT2HDhHgUJ4Q1dqPDp37ojAWvkqYgCMJ/ffIrjJjret+7JSz4ALQaYNMUiDoG7gHQbnaWxpIVmQ8uTcehOGnt3YRWPk/lKKbk98e6rnc80wxduzY5GkMQBOFxJZIiBEEQ7sPpdLXLWLlkHysrdCJEfw2nthDqHj9DuXaZrpvsTGXQubFsTtwDwKhigxgU3KfAlWlXFAXbuo0kvzca5/GTAKhLl8Lj40noO3UocPFmh6RSgV6PpH+0bh4qivKfZIpMKmL8J6lCU/rByiMLwu3+Pg5v/M/1/pvu26l7Ni2hoeloqN43S2N8cn0B+1KO4ql258vSk9Cq8u8UNHXaJ64nLX18KPTN7Efu79uptNYZZVsYMjzZKgiCIBQMibGJVI+dDRqIr5H1KhHr4rcR64gnSOtPC+9GWd6eIsuYZswiZfREcDpRVyyP99Kf0FQon9NdACAp3MHCrhE4bfD6xmCMvmr07Z/F+tsybKvXwUcT6Fu4E4uiVnDSfJ4Z179hath72dpG2dpVUGpu4N8/VxOw5x1K6M4AcM5WEb+hG/EJzH6bLUVRmHjlcxQUnvdtSW3PKqSsnwSArtXTSGo1CVdvJR8f/i0V3zAttfp6pk8zvjUQyw+L4MgxFnznRafhSUy48hmVjGWpm8VKf5Wb1ueosp6wDa2optkBwHF7XSo3aZBhuXPmy+xPOYYaNZ38Wt91LPO873Cev4AqsDDG4YOz9XkIQkGmKAr/zk9mx2euRKWKHYy0nugr2sMJglDgyTJ88PWth0fe7gEfDwCVCrhxELZ/5JrR/ktw98/SmItjVvNvymEMKjc+LD48R3HZdu3BumQ5qFR4fDrtkbveIQiCkNdEUoQgCEImouKh72QofGURW6q8hkFtQfYth7rPHxCQ+YXGq9ZwXjzzLqfNF3BT6ZldcgJtfZs9jLCzxX74KCnvjsL21xYAJF9fPMa9j2Fgf1erBiFfSJLkaoch/g2EfHQ9GrqMAZsdXm98jlcSO4HTDpW6wtOTsjTGzqR9zL7xAwDTwz4gVF8kL0POlP3QEVInTQPAc84nqIOD8i2WnHDaFc7ebJ3RRrTOEARBKIgO/vQlzTQJnLdVoF6X+7eUuOmn6D8A6BnwHBopa5dq5Lg4El98A9uqtQC49X2BQnNnIbln3tbvfhRFYcP4eKzJrtpkMefshNZVo2/TAiQJx5FjOK9eQxNSjA+Lv03XU2/yU9Qf9A54nsruZbO1LUklUbdje+zPtmb7918jRRykbP/J+BfJWTWEjQk72Z28H72kY1TIQACs6zcBrtYZAInXnACUaWHg7F9mtkxPwDtEQ6lmBldMGg2eX31GfMNnKP7rLgZ36MacUqd449xo1lX6nkBd1m5uVGnWgCPKOkpsbIOnOoXEqsPvSJJZGuP6t2vqVe+u48rJyennLu7jR6LyyH4rEUEoiBRZYfO0BA7+nAJAnVc8aTLcS9zAEwShwLM7oP90+HG96/ePB8C7L6TNdNhgeVrbjEpds9w2I86ewIdXXC0v3i36GkX12b9WocgyycM/AMDwaj+0VStnewxBEITHnahFJgiCcA9bD0KdVx20in2XH8v3waC2QNl2qAb+c9+EiP0px2h//FVOmy8QqPXn9/JzC1xChPNGOImvDiKuRkNXQoROh/Gdt/A/dxjj0DfFzXhBeMKZrdB5NETEQYOS8czxb49kjoOidaDzD2mPQGQu1h7PW+cnoqDQK6ADHfxaPITI706xWknq1x8cDvSdO+D2QtZKYBckV/61YEmUMfqqKFbr0ap+IwiC8CQwJZuoHDETgPDKI1FpsnbJ5YLlKruS9qNCRa+ADllax/7vPmJrNHIlROj1eH4zm0I/fPPACREAR5elcmm3Jf33+Euuygoqf3+09esCYF3juhPQoFBNOvi2QEZm3JWZrmpnOaDVa2nyxmCeGr+AwNDgHI1hk+1MuuIqUd0/qCfF9MHIMTE49h0AQNfqGWSHQlK4a3+av+9NtW7uoMCq92KJPGlLH0vXoB6G/i8B8NqUo1TShBFlj+WNc6OxyfYsx1S1eSMiu/7NzrILadAzYzsTp+JkaawrKaKb/7N3Xd/06WzkqGjUpUtheO2lLG9XEAoyh01h1Xux6QkRzd/3punb3iIhQhCEAi/VDJ1GuxIi1Gr4duRtCREA26dCxGEw+kH7L7I87uSrc0hwJlHBUJpXA3PW/szy82Ice/cjeXjgPmlsjsYQBEF43ImkCEEQhP9wOmHyD9B9RBzzi7TlnZBPXDOajILeK8At8762K2I30u3km8Q44qlkLMOqSguo5lHhIUSeNXJKCikTphBTphqWbxeCoqDv3hm/k/vx/N9HqHx88jtEQRDymaK4nnzYdxoCvexsrN8dddxpKFTM9XdQd/8qBbIiM+zCZCLtMZRxC2NSaM7KP+aW1ElTcRw9juTv53qK9hG86Hp6natKRJmWonWGIAhCQbT3p3n4a6K5Yi9B/R4v3H+FNIui/gCguVf9+z4ZqCgKptlziWvcEvnKVdSlSuL79xaM/V/OlWNb4g0HW6YnAOAe4LpkFH/5VrsJXTtXiwfr6vXp08aEDMZNpeef5EOsiNv4wDHk1A9Ry7hovYq/xochRfoBYN24GRQFTZVKqIsEkxTuRHaAWgeegWqeHuVDWEM37GaF5W/GkBx5a189pk1C8vdDPn6KBWvLUkjtwd6UI0y68nm24ipdsxKN+/a9o0rErqT9hNui8FJ73rVvuDMyEtP/XNvy+Gg8klab3Y9EEAoca7LMsgHRnF5vRqWB9tP9MrSvEQRBKKhiE6HV27D2bzDoYfkUeLHNbQuEH4Ztk13v280Bj8JZGvfvpIP8FrMagGlhI3LUblQxmUgZOR4A91Hvog4KzPYYgiAITwKRFCEIgnCbyDh49j1Y/Osx9lSrQ0ufjShaI/RYDC2ngEp9z3UVRWHm9QUMOj8Oq2KjlfdTLK/wFUV0WTsJzmuK04l5wQ/Elq1O6sSpYDKhbVAPn92b8P5tIZqSJfI7REEQCogZv8Avf4FGrbCv4xAM1/4CnTv0WQmeWXt6c37kb2xO3I2bpGNu6Q8xqN3yOOp7s/+7j9RpnwJQ6KvPUBUuGH+Xs8NpVzi3Ka11RmvROkMQBKGgsZqslLs8HYBLpT9Ao8vaBW2rbGNxzBoA+hTumOmyclISiT36kfzWe2C3o+/yPL77d6CtXvWBYr9JURTWj4vDblIoWkNHvf6FAIi/fKsygr69q6KB7a8tKGbXcamoPpAhwS8C8OGV2aQ6TbkST3bEOxKZdf1bAEYUewMPtatihi2tdYYurXVGwlVX0oNXUQ2SSkKtlXjuEz/8SmtIiXKyfHAMNpMMgMrXF8//uXqC6z6ay1ztAAC+i1rKkrR/swexJK11Rge/Frip7qwAlTp5OkpKCpo6tdB37fTA2xOE/JYS7eTXl6K4+q8VrVGiy9wAyrcV57WCIBR8V6Og6RD4+wT4eMLGT6Fdg9sWcNrT2mY4oEInqJK1ag822c4Hl1znj70Dnqe2Z5UcxZf6yefI166jKh6KcfjgHI0hCILwJBBJEYIgCGm2HICar4LnpeXsrlGfUoYL4B2G1H83VM68zLpFtvLWhYn87/p8AN4IeoH5Zabiri4YX/CtGzYRV6MhSa+9iRwegbpEGF6LF+Kz6y90Derld3iCIBQgq3bDqG9c7zf3+IwiF78GSYKuP0Nw9SyNcST1FB9d/RKAcaFDqWAsnUfR3p9iNpP44usgy7i90A23Lh3zLZYHcflvC5YkGaOfaJ0hCIJQEP3z8w8EaW8Qbi9KvV4vZnm9tfFbiXMkEKwrzNPeDe65nP3wUeJqN8G6ZDloNHjO+hivJT+h8sq8il12HF6cypW/rWjcJNpM9sWvpKsywe2VIjRVK6MqVhTMZmxbd6RPHxDci1B9ESLsMXx+44dciymrZl7/lgRnMhUMpegZ0B5wJXnYNqQlRbRxJUUkXnPti3fIraQVvaeKzl8EYPRVEXXSzuoRschOVxsQt3690DZpBCYT1ccuZniRVwD44OLHHEs9neN4k52prInfAkB3/3Z3zHecv4D5qwUAeH486ZGscCUIt4u7ZOfnPpFEn7Zj9FXR8/vCFG+Qf0nTgiAIWXXiEjQeBCcvQ7EA2D4HGlT+z0I7pkP4QTD4wnNfuq6hZMHXET9z1nIJP40PI0MG5ig+543w9IdAPD+ehOQm/rYKgiDci0iKEAThied0woffQ+t3ZN7wHM+ySp3xUKdCyadhwF4Irpbp+rH2eHqcGsLvsevRSGqmh33AuNC3UEv3rirxsDiOHSe+TUcSWj/vKhvv7Y3HJ1PxO7kft26dxcU1QRAyOHAG+nzoap8x+9lVNLr+tmtG6xlQIWs9zlOcqQw8Nxa74qCtTzP6Fc7fJxtTxn6I89QZVEGBeM75JF9jeRCn17ueui3byohKLf52C4IgFCQOm4Owc9MAOFP8PfTGrCev/ZTWOqNXQAc00p3VJRRFwbzgB+LqN8d59hyqkGL47NiAceibuXoun3DNwbb/JQDQZJgXPsW1+BR3xZNw1YHscCUJSJKEvm0rAKyr16Wv76bSMyF0KADfRPzCRcvVXIvtfs6ZL/ND1DKADN/DHEePI4dHgNGIrnHD9H0B8CqW8bP2Kqqh0xx/NHqJ81st6Z+FJEkU+nImaDRY/1zNm/uCeNqrIRbFxmtnRxLvSMxRzKvjNmORrZRyC6WGe8U75qeMmQQOB7o2LdE1b5qjbQhCQRF+1MovfaNIuu7EO1RDr58CCayoy++wBEEQ7mvPMWgyGK5FQ4XisPNLqBj2n4Uij8HWia737T4Hz8xbod102XI9vcrV+NC38NHkLNE1ZfTE9GrA+u5dcjSGIAjCk0IkRQiC8ES72S7jk4VJLC3fiXHFJ7lmNBgK/daDu3+m658xX6T9idfYl3IUL7UnP5WdSe/Czz+EyDPnDI8gqf9gYqs1wLb+L9BqMQ57E//zR3B/ewiSXjxlLAhCRueuQbsRkGyCV2odYaD9BVd2RO3+0PDtLI2hKAojL83gkvUaRXVBzCgxMl+Tr2w7d2P6dDYAhebNQeXrm2+xPAiH7fbWGYZ8jkYQBEH4r79/+4VQ7UViHAHU6dM/y+udM19iT/JBVKjoGfDcHfOV1FSSXh5A0mtvgsWC7tlW+B3cha5+3dwMH0VWWD82DrtZoVhtPTV6eQDgGahGo5eQHZB0w5m+vK6dq4G2dfV6FEVJn97K+ymaedXDptiZcOWzXI0xM5OvzsGhOGnh3YgmXrc+G9v6v1zxNnsq/fvPzaSI2ytF3BRcVc+zH7nOFfb/mMLBX5MB0FSqiPFdV8JHytARfB70HsX1RblqC2fw+fE4FecdY93PzZYp3f3b3XGuZN9/EOuvS0GS8Jg2KdtjC0JBcnGnmd9eicYcLxNYUcsLPxbGOzRr7YUEQRDy0+o90PJtiE+G+hVh22wI+W8nTqfD1TbDaYdyz0HVXlkaW1EUxlz+BItio6FnLTr7tc5RjPYDh7D8sAgAz5nTxMNvgiAI9yGSIgRBeGLdbJdx+fhZ/q5Znw7+f4JGD52+g7azQJ35F/Vtif/Q4UR/rlhvEKYvyp8Vv+EprzoPJ/h7UFJTSZk0ldgy1TDP/x5kGX2X5/E7sQ/PmR8/sjcEBUHIW+Gx0OZdiIqHZ8pG8HVweyRbiqtiTvsvslz6cUnMGn6PXY8aNV+UmoC3plAeR35vSmoqSS8NAEXB7aU+6T3QH0WXd1uwJiu4B6goVlMktQmCIBQkskMm+NhHABwLfhujZ9bb5/0UtQKAFt6NKKLLeJXdceo0sfWauS50q1R4fDQB71VLUfn55V7waQ7+msLVvVa0Bok2H/oiqVzHfUklpd+8jL9iT19e/0wz0OuRL13GeeJk+nRJkpgYOgyNpOavhF1sStid67H+147EvWxM2IlGUjM2ZEiGeTeTIvStn0mfdrf2Gbcr19rIU0NdT2pu/iiBiztdSYkeY99HVTwU+cpVNB99wfwy03BT6dma+E96C8Wsumy5zj/Jh5CQ6Ozf5o75KR+MA8Ctdw+01XLWW1wQCoLjf6ayfHAMDrNCWEM3enxfGHe//K+oKQiCcD8/rINOo8FshTb1YMOn4He3Qg67/gfX94GbN3T4KsvXTlbHb2Fz4h50kpapYe/lKJlBURSS3/7Adc2jV3e09fL3mrQgCMKjQCRFCILwxLnZLqPVO1BNWcfe2nUpbzgJnkXg1e1Q86X7jvFD5O/0Pf0Oyc5U6nlWZ2XF+ZQ2hOV16PekOJ2Yv/uRmLLVSR0/BSU1FW29Ovjs3Ij30kVoSpfKt9gEQSjYEpKh7XtwMRwqF0tldfXnUSVdBb+y0HMpqLVZGue8+QqjL7vaU7xT7DXqeGbeeiivJX8wDuf5C6hCiuE56+N8jeVB3WydUa6VMf1GlSAIglAw/LPsd0rpTpHg8KZmn0FZXs8iW1mSVi3gv5XmzL8sJq52E5zHT6IKCsRn0yrcR76LpMr9SzjxV+xsn+lqAdHkHa87kgVuttCIv+RInya5u6Nr3gRwVYu4XWlDGK8F9gBg/OVZWGVbrsd8k1NxMvHK5wD0K9yZ0obi6fOU1FRsO1xJGbrWLVzTFCXTShE31X3Nk8qd3FFkWPlOLNFnbEhGI4Vm/w8A06ezKXvByv/CRgLw+Y3vWR+/PctxL41ZC0CTQnXvSIaxbtyM7a8toNPh8eHYLI8pCAWJoij8+20Sa0fFITugQjsjnb7wR2cUl6EFQSj4/vcLvDLVdf24Tyv44yNwv1vBxqgTsHm8633bWVCoSJbGT3amMv7yTAAGBffJcP6SHdY/VmLfthPc3PCYOjFHYwiCIDxpxNmoIAh5Lj4Z9p+Gq1FgzbtrYllys13GhO8U3i4ynVVV2lFIlQAhDWDgPiiWeSlap+Jk3OWZjLo8AydOuvm35Zdyn+Gr9X4o8d+N9a8txNVqTNIrA5FvhKMKK47Xr9/js2czukYN8i0uQRAKPrMVOo6CI+ehuJ+FPU89jzbiXzD4QN9Vrp9ZYJVtDDw/BpNspqFnLQYH983jyDNn27wV85yvASi04EtUXjnrzVkQOKwK57bcbJ2R9aePBUEQhLynyAq+BycDcMj/LQr5Zr1C0uq4LSQ4kyiqC6K5V/306cnvjCSp1yuuJOfmTfA9uBtdsya5Hju44l83Jg6HWSG0np7q3T3uWOZmUkTcZUeG6fp2rjLP1tXr7lhnWNFXKKz146L1KvMjfsuDyF1+i17NSfM5vNSeDC/yaoZ5tq07wGZDVTwUddkyAJjjZWyprnYfhYre+2l1SZJoOc6HkLp6bKkKvw+KITXGif65tug7tgeHg6SBw+jo25JXA7sD8Nb5iZwzX75vzLIipyfDdPPPWMVKkWVS3nclQhjffB11WM5ukghCflJkha0zEtj+qSvZqvaLnrSd6otaKxJ7BUEo2GQZ3vsS3v/K9fs7PeG7kaC9Wx5letsMG5RtC9X7ZXk7M659Q4Q9hjB9UQYXyfp6t1OsVlLeGwOA+ztDUIeG5GgcQRCEJ41o4iYIQp6KjIN6b7gSIm7y9oBAXwj0gcI+rp+Bvmnv06bfnGd0y71YNh+Avh9CYoKJXyq9Rne/X1wzar3qKg+vybwkeYozlYHnxrE50fXE0QfFBjA4uF++9WtzHD9B8oix2Na4ns6SvLxwHzMC4+A3kNxy8YMTBOGx5HDACxNhxxHwdbdzsHV3jNc2gc4d+q4BvzJZHmvK1S84bjqLr8ab2aXGo5byryyunJRE4iuuJ3UNA15F3/LpfIslN1zabcGWouARqKZIdV1+hyMIgiDcZt/KNdTRHibF6U7V3m9la91F0a7WGS8EPJd+3LTv3Y/p09kAuI8ZgfuE0UjqvDumHliUwvUDNrRGidaTfO9ajehmUkTCHUkRbUge8i72XX8jx8ej8rmVSOmpdmdUyCCGXfiQWTe+o4t/G4J0Abkae4ozlenXXQmQw4q+jK82YwKk9WbrjDYt0r+v3Wyd4RGoRuuW+TNCaq3E8zP9+blPJHEXHSwfHEOP7wLw/GwG1g2bse/cg+WHRYx9cQjHTGf4J/kQ/c+NZGXFeXio3e857j/Jh7hqC8dDZaSNT9MM8yy/LsVx8DBSoUK4j3o3ex+IIBQATrvC2tFxnFrjqnLW9F0v6ryUf+30BEEQssrugFenwaKNrt+nD3QlRdzTnplw7V/QF4IOX2e5bcbR1NN8F7kUgI/C3sOgytn1W9MX37gqYwYFYvzgnRyNIQiC8CQSSRGCIOQZuwN6TnAlRLjpwOF0vRJSXK/TV+4/hochawkUgb6uZe92Dup0wpQfYdL3EKK7zN66naigOwgqDbT9DOoOvO/J63VrBC+eeZeT5vO4STo+KzWe9r75c6PNGRlJ6vgpmOd970pj1mgwDOrv6nPr758vMQmC8GhRFBjwCazcBQadk+MdX8Tr6krQuEHvlRBS//6DpNkQv4MFkYsBmFlyTK7f9MiulHdHIV++grpEGB4zpuRrLLnh9LqbrTMMonWGIAhCAaLICoY9k0EL+woNolmQX5bXPWO+yD/Jh1Cj5oWA59Knm2a7Hk10690Djw/H5XrMt4u7ZGfHLNeT3M3e9car6N0vD/mEudpoxV22Z5iuLhGGukI5nCdPY1v/F249u2WY38WvDQsjl3Mg9RhTrn7J7FLjczX+OTd+JNoeR5i+GC8V7nrHfNv6TcCt1hlAllpn3M7NS0XnLwJY1CuSiGM21oyMo8OnxfCYOJqU90aT/N5o/Du05atSk3n2+EucMV/k7QtT+Lr0lHsmzi9OqxLRwa8FBvWtGyGK1UrKaFfpa/f3h4vvdcIjx5oi8+ewGC7/bUWlgTaTfanY/t4JQoIgCAVFqhm6jYP1/4JaDfNHQL82mawQfQo2pbW4enYmeBXL0nacipP3L32MjMzzvi1p6lUvR/HKMTGkTpoGgMeU8ag87qz0JQiCINydSIoQBCHPjJgL2w9Dfd/DLH3jXwKL+pCMLzE2XyLNPtxI9eVGkgeR8RKR8RAZD9FpPyPjXa02UsyQch3OX7//9gz6/yRNpL3ffRS2HIQmXtv4s3pXPJUYcA+AHkugRNP7jnsg5TivnB1BtD2Owlo/viszneoeFXPhE8oexWQideYcTNM+RUlJAUDf6Tk8Pv4QTZnSDz0eQRAeXaPnwXdrQKVSONZlAIWv/uJKFOu5FEo2z/I4N2xRvH3RlXjQP7AnLbwb5VXIWWJdt9GVMAYU+m7uI39xwG6RResMQRCEAurQxi3U0P6NRdZTsdfb2Vr3p6g/AGjp0yg9mdAZEYnlV9eTg8ahg3I11v+SnQrrRsfhsCoUr6+nard737j0CXVdNkq64cRhVdDob93s17d/FtPJ01hXr78jKUIlqZhc/G3anXiV32PX0a9wR+p4VsuV+K9Zw/kmwlX1b2zoYHQqbYb5zouXcJ45C2o1uqdvfd+7mRThVSzr1Te8QzU8/7k/S16N4uxfZrbPSqTJ0EFYfliE49gJkt8fR+H5X/B16Y/oemoQq+O38FXEIgYG97ljrFSniVVxmwHo5t82wzzz1wuQL11GFRyU5//+gpDbUmOcLBsYTdRJO1qDxPOz/AlrJKpXCoJQ8MUmwnMfwD8nXNeVF0+Ctpk9IyI7Yfkr4LBC6dZQ8+Usb+vHqOUcTj2Jp9qd8aHZqzB2u5QJH6EkJqKpXhW3F3vneBxBEIQnkUiKEAQhT/y0AT5fChWNx9lWtSGaXa4nXb3SXqVuLqjSgMHX9SrlC24+YPBFMfhi1fiSJPsS5/AlxupDhMWX6ym+XEny5VKiNxFx6vQECpMFzFa4FOF6ZaQwrPiXzAgbhkpxQHAN6PUHeIfedz/+jP2L4Rc+xKLYqGAozQ9lZ1BUH5Rrn1NWKLKM5adfSRk9EfmaKztEU6cWnp98hO6p/L0BKQjCo2fmb/DxIgCFg13fIez6fJBU0O1nKNcuy+M4FSdvnZ9AvCORKsZyjAwZmGcxZ4UcH0/Sa28CrptJuqZP5Ws8ueHSTgt2k4JnkJrgqqJ1hiAIQoGydTJo4B9jf5qGZv37gVm2sDRmLQB9Ajremv71ArDb0davi7ZOrdyONoP9PyZz47ANnbtE6w99M20HaPRTofOQsKUoJFxz4F/qVgKCvl1rTDNmYV27AcXpvKPVRzWPCrwQ8Bw/R//JmMufsqbSt7nSYmvq1blYFRsNPGvS2rvJHfNvts7QNqiLyutWW43sVoq4qVhNPW0m+7L6/Tj2fpuMT6iG8l99RnzjllgW/IDh5T7UbtSAiaHDGXV5Bh9dnUtlYzme8qqTYZw18VsxyWbC9EWp41E1fbqclETKhx8D4D5hFJK7eLpeeHTEX7Gz9PVoEq85Mfiq6PJlAEGVxXmrIAgF35VIePZdOHUFfAvBymlQv9J9Vvr7c7i6B/Se8Pw3WW6bEWmLYdo1V0WwD4oNIFCXs4pQjpOnMH+1AADPT6fmaZs1QRCEx5FIihAEIdcdOgsD/gee6iQ21++MxmECv7LgURhMcWCJB1MsOG0gOyA1yvW6jQS4pb0K320jKqCYN5RxJVE49b6Y1b6kKL4kyr7EOXyItvgSbvalsm0ljWwLQAGqvAAd54Mu8yduFUXhsxvfM+P6NwC08G7EF6UmZtofNi/Ytmwj+Z1ROA4eBkBVPBSPqRNw69EVSZV5H1xBEIT/+nE9vPul6/22ThOpHDHT9UvH+VC5271XvIvPb3zPnuSDuKuMfFn6Q/Sq/L34mTx0BPL1G6jLlMbjown5GktuOb3eVSWibGvROkMQBKEgObp1NzU0W7DLGkr3eC9b666K20yiM5kQXXB62WTFZsM8dz4AhrcG5Hq8t4u9YGfn5662Gc1HeFMoOPPLQpIk4VNcQ+RxO/GX7BmSIrQN6yN5eaHExmH/dx+6BneWgX6/2BusitvMMdMZfo7+k76FOz1Q/PtTjvFH3EYkJCaEvnXXhA5bWlLE7a0zABKvOYHsJ0UAVGjnTvxlB7u/TOKvyfF4za2B96svYlnwA8kDhuJ7YBf9CnfiUOoJFsesZtD5cayr9F2GhPolaa0zuvq3zRC36X+focTEoi5bBsMr/bIdmyDkl4hjNpYNisYcJ+NVTE3XbwLwCdXef0VBEIR8dvwiPPseXI+GkMKwdgZUCLvPSrFnYeMo1/vW/8vSw3Y3TbzyOcnOVKq7V3igc6Hkd0eD04n++fbomt+/+rEgCIKQkUiKEAQhV8UmQpcxYLYqbGv0MgGOM1CoGPTf6WpZcZOigN0M5rjbXvG33pvuMu3my5rsGsOS4HrFX0QNeKS97vqcliRBq4+h0bv3zeK1yjbeuziVZbHrAFdJ+LGhg3Plqaascpw8RfKIsdhWuZ4ikwoVwn30exjfGojkJspQCoKQfav3wKuuhxBZ3vYTGse6+lbT7vNslXwE+Cf5EJ9e/xaAqWHvUdItJDdDzTbLilVYfvwFVCoK/fA1kvHRbzVhN8uc3+pKiijf5tHfH0EQhMeJZeMUUMHf+hd5qnTWL4jDrdYZvQp3QCW5kpwtS5YjR0ahKhKMW9cHSxrIjOxQWDs6DqcNwhq7Ublz1hK+fYprXUkRlx0ZpktaLbrWz2Bd/Du21evumhThr/Xl3aL9GXdlJh9f+5r2vk/jo/G6Y7msUBSFCZc/A6C7f1squ5e7cxm7HdumbQDo27TMMC+nlSJuajCwEAlXHJxYZeLPt2PoOWcC0h8rcRw7gemzL3F/dygfhb3LSdM5jppO0//cKH6vMBc3lZ5r1nB2Jx0AoJv/s+ljOiMiSf1kNgAeUycgacRlOuHRcGmXhRXDYrCbFQpX0NJlbgDu/uKJZUEQCr5dR6HDB/yfvbuOk6r8Hjj+uZPbHcDSId0N0iAgSHeKYgAiggEISAkqImIhoKLSLSCNgJTSIUh3b9fs9Mz9/XEB/X0ldmZjdpfn/Xr5cmBnzj27rnPvPPc855BkgLJFYNN0pTDisZzOe2MzzFCiOdR4Jd3H25V8gLUJ21Ch4uOiI91eX7Zs3Y514xbQaPD79EO3YgiCIDztxKctQRAyjcMBvScr4yumlPuMZ9WrQa1VZtT/uyAClMIEnY/yT2BBFw9kU4ohjAlPLqowJypt4RuPg1Ktnhg6wZbEyxdGcdBwAjVqPiw6gn4RnVzLLwOcMTEYJkzFNPdH5QeqVuP9+sv4jR+NKjz8yQEEQRAe4o9T0H288rbyfdM5tDO8o3yh+RSoM9SlWIn2ZIZcGo8TJ11CW9M57MnvrVnJGRdH6qvK9+DzzrCH3pDJja7sNWMzyQQUUIsWxIIgCDnI2f3HqKnaiENWUbjzKNdea7zEYcNJNJKaHmEvAMqNfuMXShsn70EDkbRZt8v60M+p3D1pRe8v0XJC8GPHZvxbcBFl6eh/iyIA9G1bY1m+Gsv6zfh9OP6hr+8X0YlFsWs5Z7rM9JvfMaXoO27lvy7hN46mncJH5c17BV976HNs+w8ip6YihYWiqVbln783OzHEKJ0iAgu6txQmSRLPTQoh+badW0etrBljo9OET7APfQXD+Cl4deuEd+FCfF/qI1r9PYATaWcYc3U604u9z8q4zcjI1POvTkF9/gcx0yZ9BEYj2to10Xds51ZegpDdTq9PY/PYBJx2KFxHT/uZYej9RCdLQRByvl/3QY8JYLZC3fKw7mNldMYTHfgaru0FnR+0/y7dYzNMTjPvX/0UgAGRXaj4kILO9JDtdlJHKNedPm+8hqZUSbfiCIIgPO1EUYQgCJnmgx9g2yFoEbaLkeGjlHEVz38BhTL5BpVaqxRZ/G+hRQZdMF2l//l3uGa5RYDajzklp9AwsFamHuNRZJMJ4xezSJs6HTlV6YShb9cGv2mT0ZR+JltyEAQhb/r7irILwmSBT+ou5EX7IOULDUZBo/ddiiXLMm9fnsodawzF9IWY6uZNjcyUMmQEzphY1OXK4DdxjKfTyTTnNhsBKN3SJ903rQRBEISsl7RhCgD71T2oX961Ben7XSKeC2pIhC4UANuBQ9gPHQGdDp9XXevc5Iq4izb++Pre2IxRwfjnS/9y0GOLIlo1B0nCfuIkjpu3UBeM+s9ztCoNk4oMp/vZocyP+YXeER0o5+Paz87kNDPlhlI8Mjh/H/LpHv5Z8P7oDH2Lpv9v3GDyLaUgQucn4R3k/s1bjU6i/RdhLO4VQ9INO5v/bEqL+g2Q9+0hddi7BP2ylIL6/MwqMYne54azNG49VfzKPRid8e8uEfbzF5RieMDvk0nifC/kCod/TuX3T5MAKNPah1ZTQtDoxO+uIAg5348b4bXpymaR5+vCsgngk55mvAmXYNto5XHLaRBcNN3HnHV7IVctt8inDePdgq+6kzYAph9+xvH3GaSQEHw/cK0oVxAEQfiHKOMVBCFTrN4NHy+C/Lrb/FK5O5LsgMp9oWbWzsTNLLuTD9Lu9Ctcs9yisL4A68p9ly0FEbLTiWnRMuLKVMMwejxyaiqaalUI3rmRoLXLREGEIAgZcu2uMiczMRXeq7KGt3UvIiFD7SHQYqrL8X6OWcWWpN3oJC3flpyMr9qzYx3My1dhWb4a1GoC53+XZ8YLWY1OLu02A0pRhCAIgpAzXDx2mlryagAi2o126bUmh/nBeL6+ER3++fsvvwXAq2dXVBFP6t3sHodNZtP78ThsULyRF+XbuXZu+acowvafr6nCw9HWrgmAZeOWR8Z4NqAGbYKb4MTJuGufIcuySzl8f3cZt6x3ya+L4PV8vR75PMuW7QDoWjb/f3+f/K/RGRktPvAJVtNpVhheASrunLCyv+w3yBotljXrsfyqFD80DKzFyHvdLN6/Op2rlpv4qLxpE9LkQRzD2EngcKBr0wpdowYZykkQsprslPn906QHBRHV+/rR5hNRECEIQs4nyzBtMQz8RCmI6NcKVn+YzoIIpxN+eRlsRijWBGo8vFPVw9yw3GHWnQUAjC88DH91+saW/SeF5GQM4yYD4DdhNKrgYLfiCIIgCKIoQhCETHD6KgyYChrJxp4G3fC2RUNkJWg3O93txDxpQcwv9Dk3ghSHgZp+lVhf7ntKeRfN8uNad+0hoVYjUvq8jPP6DVSFChKw4HtCDu1G17hhlh9fEIS8LTYJWr0Dt2Lh5TLbmBp8r2Ctan94/kuX35//Nl5g0nVl5vWYQkPcbvuYWRzR0aQMHg6A7/vvoK1e1aP5ZKYre8zYTTKBBdVEls+6NuqCIAiCa6LXfIRKktkvd6RU9QouvXZdwm+kOAwU0UfxbEANABy372Be8QsAPm8OyvR87zs0L5Xo0za8AlQ8Nz7E5aKA4CLKuSgt1ok1zfmfr+vatATAuuHRRREAHxQeipdKz/7U46xL2J7u48dY4/nq9nwARhcchLf64XcxnLGx2I8cU3J6rtn/+1rSvaIId0dn/K+QYlrazQxFpYHzf2o53Ubp+JAy9B3ktDQAhuTvS+vgRjhRfmZtQpo8KCi1HTyMZcUvIEn4fzwxU3IShKzisMlsHJ3A4Z+VrpYNRwTS+L0gJFXOX+8RBOHpZrbAG5/D6DnKn9/tCfNGgTa9lwOHZsPVXaD1gQ7fgyr9t9MmXv8Cs2ylnn91Xghp9uQXPELa1OnIsXGoS5fC+/WBbscRBEEQRFGEIAgZlGyAzmPBYILFtd6lmG0feAVCz1Wgy9m7Wx2yg/HXZjLq6jQcOOgU2oplZb4iVJu1Fbf2i5dI6tCDxMatsR85huTvj9/UCYSdO4Z3nx7/r82rIAiCO1KN0PY9OH8DOhbZy+wC7ZEcVijXGdq79kEewOgwMejiWCyyleZB9Xk5slsWZZ4+siyT+tow5PgENFUq4Tt2pEfzyWzntojRGYIgCDnNtdOXqO1YAkDg866Pa1pwb3RGr/B2qCTlPGz69juw29E+WxdttSqZler/E3vOyh/fKmMzmr4fhF+E2uUYXgEqvEOUnBOvP2SERltlJITlt53IZvMj4xTU5+eN/H0BmHzjK4wOU7qOP/3Wd6Q5jVTxLUvH0Oce+TzLtp0gy2gqVUCdP9//+1rSvzpFZJbCtbx4bkIIAEcvVudy8ZdwXruO4cNpAEiSxOfFx1HKqygSEr3D2wP3rmNGjgPAq39vNBXKZ1pOgpDZrEYnvwyJ48wGI5IaWk8JodZLAeIaVRCEHO/iTXh2CMxeq/z508Hw8esu7A9JvAJb31MeP/cJhBRP97F3JR9gU+Iu1KiZXGS42++Z9stXMM78BgD/6VORtGLThCAIQkaIO2+CILjN6YT+U5WbboNKLKWz/gvlC53mQ6hrM2Kzm8GRxksXRvJ99DIA3o16lS+Lf4BepcuyY8qyjGnefOIr18Wydj2o1XgPGkjYxRP4jn4Hyds7y44tCMLTw2JVitUOn4Mm+Y6wrGQbVHYTlGoFXReD2vWbAeOuzeCS+Tr5tGF8XmysxxdBzQuXKu+jWi0B8+ci6bLuvTu7WY1OLovRGYIgCDnO9ZWfoJEcHHa0omy96i699m/jBY6l/Y1GUtM9vC0AstmMcc48IOu6RDhsMpvGJuC0Q8mm3pRt4/55JeT+CI2r/y2K0FSuiCqqABiNWH/f89g4r+fvTSFdfu5YY/jqzvwnHve08SJLYn8FYELhYQ8KSh7GuuU3AHStWvzna1lRFAFQoYMvtV/xB+BPv7eJ9qmJcfoX2P8+DYC/2pf15b/ntwoLqOlf6UGett/3gF6P30TXC2wEIbukxTtYNiCGq3+Y0XhLdPw6jPLt3Wv/LgiCkJ2W7YAar8CxCxAaCOs/gRHdXQggy7BmIFjToGhDqDU43S+1Om2MuzYDgBcjO1PGp4SL2f/DMOoDsFrRNW+Crk0rt+PkBTFnrez7Opn4y/8d5yYIgpBeoihCEAS3TV0Av+6DSgGn+aLIvfZdDUdD2XaeTewJblmi6XhmEL8l7cNL0vFticm8FTUgS2/yOZOTSe41gJSXB4PRiK5pI0JPHiBg1swsmx0sCMLTx+mEFz+C7UegevDfbKrYErUtRfkQ32MVaFwvHlgTv5WlceuRkPiqxERCtEGZn7gLHLdukzr0HQD8JryPtqJr7ctzusu/m7GbZYIKaYgoK3aBCIIg5AR3Lt+ktuUnAHTNXb+Jvehel4hWwY0I1yqdBczLViHHxqEqGIW+wwuZler/c+D7FGLO2PAKVNHig+AMfd65P0Ij8dp/F6IlSUL/vNLBwbJh82PjeKu8GF/4TQBm31nEVfPNRz5XlmUmXv8CJ07ahjSlpn/lxz7XulUZyaFv+d8W1ck37xVFZNL4jH97dmggpVt643So2FViNimqgqQMegtZlgHwU/s+uCEiO50Y7nWJ8Bn6OurChTI9H0HIDEk37CzpG0P03za8g1V0nxdO8QZiI4cgCDmbyQKDPoNeE5UOms9WhKPfQ+s6LgY6PBcu7wCtN3T4waVum/Oil3PJfJ1QTTBvR7k/7sK69w9l1JZKhd+Mjzy+OcVT7vxl4Zc3YpnfJZo/Z6ewoHs0J38xPLjOEgRBcIUoihAEwS0b98OEH8FfncLOOp1Q29OgeDNoNtnTqT3WccNp2p5+mdPGC4RpgllRdhbtQptn6TFtBw+TULU+lqUrQaPB7+NJBG37FU3ZMll6XEEQni6yDG99Cct3QGnfS+yp0QKtJR6iakLvX90aaXTVfJORVz4BYFiBF6kXUC2z03aJLMukDByCnJyMplYNfN4b7tF8ssKD0RmtvJ/aRQ9BEISc5vzST9GpbBy3N6JS02ddeq3RYWJ1/BYA+oR3AJTzmfGLWQD4DHk1S1ohx5y1sn9OCgDNxwTjG+b62Ix/C77fKeLafztFAA92L1o3bHniInWr4EY0CKiJVbYx8fqXj3zeb0n72JtyGJ2kZUyhIY+Naf/rFM670eDjg7Z+3f/3NadDflAUEZjJnSIAJJVEqykh5K+sw+L0YUfRORj+OI3550X/ea550TLsf51CCgzEd/TbmZ6LIGSG6DNWFveJJum6nYAoNT0XRJC/ot7TaQmCIDzW+RtQfzDMXaeMyBjdB7bPhIKu7kVLugablY0YNJ/qUjfkaGscM24pncDeLzSIQI2/iwdXyE4nqcNHAeA9sH+e2wzyJLIsc+OQmRUDY1jUK4ZLv5tBgpBiGuwmmS3jEtk4KgFrmtPTqQqCkMuIoghBEFx28Sb0maxcoOxo/BJB5nMQUBC6LQFVxhbbstL6hB10PjuYGFs8Zb1LsKH8D1Tzy7r5rbLTSdq0z0mo3xzHlauoihYheM9WfEeOQHKhwlgQBCE9psyHb36BQvobHKrXDL3lDkRUgH6bwSvA5XhWp40hlz7A4DRSy68yw6NeyoKsXWP64Wesm7eBXk/gT7ORNJl/Y8OTrGlOLu9R5quL0RmCIAg5Q+yNaGoavgPA8azrXSLWJmwj1ZFGUX1B6gcoYzds+/7EfuwEeHnhPbB/puYL98ZmvK+MzSjVwpvSrTO+uzu46BOKIpo1Bp0Ox5WrOM6cfWwsSZKYXGQEGknN1qQ97Ez68z/PsTntTL7xFQAD83WnsL7AY2NaN29T8mjSEEn//2/eGmIcOGyg0kBAvqz5vKr1UtHhyzACotSkagvze6GvSHp3As74+AfPkc1mDGMnAeA7+m1UISFZkosgZMS1/WaWvRiDMd5JeGktvRZGElJUdC8TBCFnW7wNar4CJy5CeBBs/BQ+fAVcXjKQZVjzClgNULg+1Bnq0sun3PiGNKeRqr7l6BbWxsWD/8O8eDn2w0eR/P3xnTTW7Ti5jSzLXNlrYmm/GJYNiOXafguSGsp38OGldfkYsDYfDYYFIqnhzAYjC7pFE33G6um0BUHIRcRdOUEQXJJmUmbVJxtgZvUZVLOtArUWeqwE33BPp/dQsizz1e2fee3iGMxOC00D6/FLuTkU1OfPsmM67kaT1Lqj0hrVbkffrROhx/ahq1Mry44pCMLTa/ZaGD8PwrUxHGvYHF/LNQgtBS9uAx/3Ftyn3ZzD8bQzBKn9+brERDSSZwsQHNeuYxgxGgC/KePzZLedS7+bcFiVG0/hpcXisyAIQk7w95LP8VGb+NtWi2qtXe8wt/De6Iw+Ee1RScoSjPHLbwHw6t0dVVhYpuV6359zUog9r7S8bz42Y2Mz7gsufK8o4urDiyJUfn7omjQEwLJhyxPjlfIuyoCIrgB8cH0mVuf/H8uxIOaXB62nh+Z/cuGIZctvwMNHZyTdUHIOKKBBpcm6Lky+oWo6zQpH5ycR41uDP/VvkTpq/IOvG7/9Huf1G6iiCuDz5qAsy0MQ3HV2o5FVr8diTZMpVFNPj58i8AvPuRtfBEEQTBZ4dRr0/RAMJmhcBY7+AM/VdDPgkR/g0jbQeEHHeS5t/juUeoJV8ZuRkPiwyNsPrvtcJRuNGEYr1w++77+DOjLSrTi5ieyUubDdyMLu0ax6PY5bx6yotVC5uy8DN+an9YehhBTTIqkkar8SQI8fI/DPpybxmp3FvaI5ujhVjNMQBCFdRFGEIAjpJsswcBqcugLtCu7mDb+Ryhdaz4RCtT2a2/9yyk4SbMlcMF1l+JUP+fjmbABejuzGj898gr/aN8uObdm6nYTKdZSZtt7e+H/3NYFLf0YVFJRlxxQE4em18nd443MI0iRyrOFzBFvOQ2BhePE38M/nVsydSX/y7V2l5fNnxccQpffsh3DZ6STlpUHIqalo69fF563Ht9DOrc5t+adLhBidIQiC4HmJ0QlUT/oGAEPtMUgq196bT6Wd43jaGXSS9sFuQceNm1hWrwPIkhvjd/+2cuC7e2MzxgbjG5o5NzSD7hVFmFOcmJIcD32Ovk1LACwbNqcr5oiolwnTBHPZfJ150csf/H2SPYXPbn0PwDsFBxKg8XtsHKfBgG2v0m1C1/K/hSvJ94oiggpmfYFnWAkt7WaEIalkLge15+Bab6x/7MeZnEzah9MA8Js4Bsk74907BCEzHVmQyvr34nHa4ZmW3nSeE47eXywbC4KQc529BnVegx82KOMyxvWHrTOggLv1psk3YPO90VbNP4SwZ9L9UofsYMy1zwDoEd6WKn7l3EwC0qZ/gfPmLVRFCufZtY/7nA6ZMxvT+KnTXdYOiyf6tA2Nt0T1fn68sqUALcaFEBj13+u3qGp6+q2KpEQTLxw22DE1iXVvxWNOFuM0BEF4vLzVc1gQhCz1+XJlVn0h79ssK9sNyeKAyn2gVtbvcpFlmTSnkXhbEnH2ROJticTZEomzJxBnU/4cb09SHtsTibcl4eCfxTo1aiYVGc6LkZ2zLkerFcPYSRg/nQmApmJ5Apf+hKZc2Sw7piAIT7cdR5UdEb6qVA43aE1+2wnwi4QBv0FQYbdixljjeevyZAD6R3SiVXCjzEzZLaZZc7Hu2AU+PgT8NBtJnfd2rFkMTq48GJ0hbpQIgiDkBCcWfUVjtYHztkrUfKGty69fcK9LROvgxoRqgwGlWwAOB9rGDdBWytz50HarzKYx8cgOKN3KO1NHMWm9VfjnU5N610HiVTveVf57Lta1aQVvvott7584k5KeWBQeoPHj/UKDGXFlCjNuzaNjaEsidWHMvPUjSY4USnsXp1d4uyfmZvt9D9hsqIsVRV3qv3O/k24qRRGBhbLn+qFoPS9afBDC1gmJnIh4k6DXPqdMax/khATUZUvj1b93tuQhCOkhyzJ7ZiZz8IdUAKr28qPJyCBUalGgKwhCzjV/Mwz5HIxmiAyBBWOhWfUMBJRlWPsqWFKgUB2o+5ZLL18Uu5a/jRcIUPsxquDrbqfhuHWbtE8+B8D/k0lIXl5ux8rJHDaZ07+mcfCH1Aej2XR+ElV7+lG9rz8+IU++ZvMOVNPhyzCOLjSw67MkLmw3EX3mLm2nhVKgiv6JrxcE4ekkiiIEQUiXHUdh5GzQSDb+aNwNXVo0RFaEdnOUclw3WJxW4u1J9wocEh4UO9wvbrhf4KAUPSRgll2fERao9qegPh/vFxxM46A6buWZHvbLV0juOQD7wcMAeA9+Bf/pU8UOIEEQssyRc9DxfVA5TOx7tj3FHAfAOwT6b1NGZ7jB5rTz5uWJxNkTKetdkg8Kv5nJWbvOfvESqSM/AJRFAU3JEh7OKGtc3GHCYYOQYhrCSonRGYIgCJ6WmphK5dgvQANxld/nGY1rO6YNjjR+id8KQJ+IDgDIJhOmufOArOkS8eesZOIv2vEJUdFsTHCmxw8uolGKIq7ZH7rYrCleDHWZZ3CcPY9163a8uj25IL1r2PMsiPmFY2mnmXpjFsOiBvBTzEoAxhd+M13ju+6PztC1bPbQTkv3x2cEFcq+JbBKXfyIP5PCkWUO9jiG4PX1i0QAfh9NRHJ5wLkgZA2HTWbL+AROrzMC8OybgdR+xV90LBMEIccymmHoTPhpk/LnptWUgoh8oRkMfOxnuLAZNHro4NrYjARbMp/cmAPAO1GvEKZ1b4QpgGHsJDAa0dargz4d11G5jd0ic/IXAwd/SCX1jrKZ0StQRfV+flTt6Y9XgGvX25IkUb2vP1FV9ax/N56kG3aW9I+hwbBAar7o73KXN0EQ8j7xSUwQhCe6Hg09J4DTCeubvEeBtH2gD4Ceq0D35N1H+1KOsDZ+24MCh/vFDqmONJdz8VLpCdeEEKYNJlQbTKgmiDBtCKGaYMK0yj/3H4dogtCpsv7GknnpClJeG4ackoIUHEzAD9/g1fHJO5oEQRDcdeEmtHkPLGYrv9ftSgV2gt4f+m2GfBXdimlxWnn94lj2pBzCS6Xn25KT8VJ5trpedjhIefF1ZVGgSUO8B7/q0Xyy0rktymK0GJ0hCIKQMxxd+C2NNIlcsT5D7S5dXH79mvhtpDmNFPcqTF3/qgCYFy9Hjk9AVaQw+nZtMjXfOyctHJyn7PRu8UEwPsGZ3xUhuIiG6wcsD3b0PYy+bWuMZ89jWb85XUURKknF5CIjaHt6ICvjN3HGdBGbbKdpYF0aBaZvRKN1y3bg4aMz4F9FEdkwPuPfGo/JT8Lho1y5FMHvhb+mU/DETP/vLgjushqd/Pp2PFf2mJHU8NyEYCp2fPyoGkEQBE86fRW6j1f+rVLBB/3h/b6Q4UaSKbdg01vK4yYTIcK1jr+f3ppLkiOFMt7F6R/Zye00bEePY/5ZGWPq//nHeWpdwGp0cmK5gcM/pZIWp4y48AlVUfNFfyp390Pnk7FxTfkq6Oi7IpJtExM5u8nI7hnJXD9gofXUkEwbJScIQt4giiIEQXgskwW6jIO4ZHiv0nJaOmYqX+g8P107kU8YztDr3DDs8sPnzmokNaEapcAhTPP/ixruPw699zhME4yPOud0XpDT0kh5813M8+YDoH22LoGL5qEuXMjDmQmCkJfdjoNWb0N8koONNftSR7MBtN7QZz0UrOlWTJPTzMALo/g9+QBeko7vSn5EKe+imZu4G4wzv8G2708kPz8C532LpMqbc43NKU6u7jMDULpV5rU6FwRBENxjMpgod+sz0MKtcqMppnV9MXXhvdEZvcPbI0kSsixj/PJbAHzeeC1TR0HZLTKbxiQgO6FsGx9KNc+ac0lwEaXgPOGa7ZHP0bdpiXH6F1g2bUV2OBzuutUAAQAASURBVNL1fVb1K0+PsLYsjVvP38YLqFEzrvDQdOVkv3wFx4WLoNGga/rwkV/JN5XPotnZKQJAUkm8sKgyC549TCJR3Hx+ElF56AaHkHsZExysHhLH3ZNWNF4SL0wPpUTjnLPWIgiC8L9+2gRvfK6sU+cLgUUfQOOqmRBYlmHta2BOhqiaUP9tl15+Ku3cg2u+yUXeTleHq4enIZM6fCTIMl69u6OtVcOtODmNOcXJsSWpHF1gwJSkFEP451NT62V/KnT0ReuVeWs8ej8VbaaFULi2nh0fJ3F1n5n5Xe7S5uNQCtfOm2NIBEFwnSiKEAThkWQZhsxQWrTXjTjNlLCXwA40GAVl2z/x9SaHmTcvT8QuO6gfUJ02wU3/080hUJ07WzPaTpwkuUd/HGfPgyThO24kvuNGiVaogiBkqcRUaP0OXLvrZFmVV2jhvRzUWui5Goo2dCum0WGi//l3+SP1CN4qL34sNY0Gge4VV2Qm008LMYwcB4Df5x+jLlrEwxllnYs7TTjtEFpSQ1hJMTpDEATB0w4t/J6G2hhu2opQu0dvl19/wnCGk8Zz6CQt3cKeB8C2ey/2v06Bjw/eL/fL1Hz3fZNMwmU7vmEqmo4OytTY/xZcRPmsk/SYThHa+nWRAgOR4+KxHTqCrk6tdMUeVWgQGxJ3kupIo09Ee57xLpau11nvjc7Q1q2FKiDgP183pzgxJyuL8IHZXBQBoPPTUOWt0uycbuDKpQjS1/tCELJO0k07q16LJfGaHa9AFZ2+CROz1wVByLEMRnhjJizYovy5eQ1lXEZEZk0JO7EQzm8AtQ46/gjq9F8ryLLM2GszcOKkXUhz6gVUczsNy5pfse3eB15e+E2d4HacnMKY4ODIglSOLTFgNcgABBXWUHugP+Ve8EWtzZp7AZIkUamLH/kr61j/Tjzxl+wsHxhLndcCqPd6ACpN7rsHIQhC5hJ37wRBeKTZa+DnzRCoTWFLjU6oDGlQvCk0m5yu10+58Q0XzdeI1IYxu8QUQrSBWZtwNpBlGdM3c0h9ZwxYLKgK5Cdw0Q/oGrt3M1IQBCG9jGZoPxpOXZGZU244nQN+BEkFXZdAqVZuxUx1pNH33AgOGf7CT+XD/NKfUdu/SuYm7iJZlkmbMo20ccq5xuvFPni/3N+jOWW1c5v/GZ0hCIIgeJbVbKXk1WmghcslRlJQ73qx2qLYtQC0CWlCiDYIAOMXswDw7tsDVXBmreTD7eMWDv90b2zG+BC8g7KuRXBwUWUJKeGaHVmWH1rcLmm16J5rimXFL1g3bE53UUS4NoRvSkxiS+JuRhZ8Pd053R+doW/V4qFfvz86wydEleHWzO4q+Zw/O6cbuHXUgjHBgU+IaOMseEbMWSurXo8lLc6Jf341XeaEE1pcFOQKgpAznbwEPSbA2evKuIxJL8HI3srjTJF6BzYOUx43GQ+R5V16+er4LRwy/IW3yivdHa4eRrZYMLw7FgDfd97M1R2IDbEODv2UwonladhNSjFEaEkNdV4JoHRLn2wrSggvpaPP0kh2fJTEydVp7J+dws3DFtp8EoJ/pLglKghPs7zZg1gQhAz74xS89RWAzJ/PvYSv4RwERCk339JRNft70n5+jFkJwIxiY/JEQYQzPp7kjj1JHfoOWCzoXnie0BN/ioIIQRCynN2uLAbsOwmflBrHwLAvlS90/BHKP3le98Mk2VPoefZNDhn+IkDtx5IyX3q+IMJuJ3XQsAcFET6j3yFg3re5sqNQepmTnVz7897ojOdEUYQgCIKnHVg8nwLam9y15adWrwEuvz7VkcYv8VsB6BPeAQDH1WtY1m4AwGdo+m/4P4nN7GTTWGVsRrl2PpRskrXt7wOjNEhqsJtkDDEPH48IoG/bGgDL+s0uxW8WVI9pxUYRqPFP1/Nlmw3rjl0A6Fo2f+hz7hdFZPfojH8LLKAhoqwW2QmXdpk8lofwdLt+0MzSF2NIi3MSVkpL70WRoiBCEIQcSZbhhw1Q53WlIKJAGGyfCaP7ZmJBhCzDukFgSoQC1eDZd116ucGRxpQb3wDwZoH+FNBFuJ2K8es5OC5dRpU/Hz4jR7gdx5OSb9v57cNEvmt5myM/G7CbZCLLaWk/M5QXV+ejbBvfbO/SoPVW0XJSCG0+CUHrI3HzsIX5naPFtZggPOU8XhTxzTffULRoUby8vKhduzYHDx587POTkpIYMmQI+fPnR6/X88wzz7Bx48ZsylYQng534qHrOLA74KdGMyidukppz95jJfg9+SIvwZbMiCtTABgQ0YXGQXWyOuUsZ929l/gq9bCsXQ86Hf5fTCNo7TJUYWGeTk0QhDxOluHVT2HDn/B+0U94J7/y/krbb6Cqe+23E2xJdDv7BsfSThOsCWR5ma+p5ufarojMJhuNJHfujWnOPJAk/L/+DP+pE/J0QQTAhR1GnHYIK6UltIRYmBYEQfAku9VO4fMfA3Cu0Dt4+bo+f/iX+C0YnSZKeRV9UGxonPUdOJ3omjdBU75cpuW796tkEq/a8YtQ03Rk5nWfeBS1ViIwSikuSHzMCA196xYgSdiP/4Xj1u0sy8f25wHk1FSk8DA0VSs/9DnJNz1fFAFQqplSsHJxu1iIF7LfuS1GVr0Wi9UgU7CGnh4/R+AXITqWCIKQ86Qaod8UeHUamK3QshYc/QEaPvw0776TS+HsWmW9u+OPyr9dMPPWj0Tb4iiqj+K1fL3cTsMZG0va5E8A8JsyHpWfn9uxPCHhqo3NYxP44fk7HF9qwGGFqKo6Os8Oo8+ySEo190FSeXZNp2wbX/qtiCSirBZTkpNfhsTx+6dJOGyyR/MSBMEzPFoUsWzZMkaMGMH48eM5evQolStXpmXLlsTExDz0+VarlRYtWnD16lVWrlzJuXPn+O6774iKisrmzAUh77LaoNsHcDcB+pXZTR9GKl9oPRMKPbm4QZZlRl79hGhbHCW9ijCm0JCsTTiLyXY7hglTSGzyPM6bt1A/U4qQ/TvxeXNwnr9RJwhCzjB6jjLKaHDULCYXHqX8ZYuPofZgt+LF2hLocnYIfxsvEKYJZkWZr6noWzoTM3adMy6OxGZtsazbAF5eBK5ahM+Q1zyaU3Y5t1m5OVK6Vdbu7hUEQRCe7MDyZRTRXiLeHkqNPq6fh2RZZmHMGgB6R7RHkiTktDRM3/0EgM+bgzIt15tHLRyZbwDguQnBeAVmz/JOcJEnF0WowsPR1qoBgGXjlizLxbL5NwD0LZoiPWLr6P1OEYEeLooo2VQ5z1/9w4zV6PRoLsLT5ejiVH59Jx6HDUo196bLnHC8Ajy+R04QBOE/TlyEWq/C4m2gVsNHr8H6TyA8KJMPZIiG9W8ojxuNhXyVXHr5RdNVvo9eBsDEIsPRq3TupzLxI+TkZDRVKuHVz/3iiuwWe97K+nfj+bHdXU6tScNphyJ19HT/MZwe8yMo9qx3jlo3Dy6ipdeiSKr2UopODv+cypJ+MSTdfPT1rCAIeZNHr4JnzJjBK6+8woABAyhXrhyzZ8/Gx8eHefPmPfT58+bNIyEhgTVr1lC/fn2KFi1Ko0aNqFw5s0sFBeHpNeJrZXRG6eDbfFekG5LsgMp9oFb6FvBWxG1kY+JONJKar0tMxFvt+u6qnMJx4yaJTZ8nbeJH4HTi9WIfQo7sQfuIXUiCIAiZ7bOl8OkS6Bsxn69K3CsyazQGGo50K94dawydzwzinOkykdowVpWdRVmfkpmYsescV66SUK85tv0HkYKDCf7tV7w6tvNoTtnFlOTg2n4xOkMQBCEncNqdRJ6cCsDJyOH4Bvq6HON42mn+Nl5AL+noEqaMkDAtXIqclIS6eDF0z7fMlFytRiebxyaADBU6+lK8YfYV1qWnKAJA10b5Xq0bsq4owrpFKYp41OgM+Nf4jIKeLYoIK6UlsKAahxWu7jN7NBfh6SDLMnu+SGLH1CSQoXJ3X174LBSNPufcpBIEQQClO+acdVB3EJy/AQXDYecX8F6vTByX8e+D/ToYTAmQrwo0HO3iy2U+uDYTm2ynWWA9mgfVdzsV++kzmGb/AID/5x8jqXN+B587Jy2seTOOnztFc3aTEdkJJRp70XtxBF2/j6BQTa8cVQzxbxqdRLP3g2n/RSj6AIm7J60s6HqXc1uNnk5NEIRs5LGiCKvVypEjR2je/J8PryqViubNm/Pnn38+9DXr1q2jbt26DBkyhMjISCpUqMDUqVNxOB49y9JisZCSkvL//hEE4eF+2gTfrgGNZGNvw25oTNEQWRHazYF0XNDcsNxh3LUZALwdNdDjO48zwrx2PfFV6mHb8weSvz8Bi+YR+OPsXNfGTBA8TZyH3ffzZnjvW+gUtop5Ze7NNK/zJjSb7Fa8m5Y7dD4zmEvm60Tp8rGq7CxKehfNvITdYDt6nIS6TXFcuIiqcCFC9m1DV7+uR3PKThd+MyE7ILy0lpBiYnSGIAiZT5yH0+/gL2soqTtNiiOAqr3d63Z3v0tE25CmBGsCkWUZ45ffAuD9xmuZtti994tkkq7b8Y9U0+S9oEyJmV7BRe8XRdge+zx9W6UoxLJtB7I584sAnDEx2I8eB0D3XLNHPi+njM+QJIlSzZQCSDFCQ8hqTrvMlnGJHPguFYD6QwNoPjYYlTpn3qjKy8R5WBAeLyUNek2CwZ+BxQrP11XGZdSvmEUHPLUCTq8GlQY6uT42Y0vSbnalHEAnaZlY5K0MpZL6zhhwONB3aIuuccMMxcpqN49YWPlaLIt6xnBxhwkkeKalN/1WRtLx63DyV9J7OsV0K9XMh34r81Ggig5LqsyvI+LZNikBm1l08hKEp4HHiiLi4uJwOBxERkb+v7+PjIzk7t27D33N5cuXWblyJQ6Hg40bNzJu3Dg+++wzPvzww0ce56OPPiIwMPDBP4UKFcrU70MQ8orDZ2GwUs/ArrbvEZK4D/QB0HMV6J68e9UhOxh2eRIGp5EafhUZkr9vFmecNWSzmZShb5PcoQdyQgKaGtUIObYP717dPJ2aIORK4jzsnvV/wCvToGXwZpaU64kKJ1R7CVp/nq4itf911XyTTmcGc81yiyL6KFaXnUUxL8/+t7Bs+Y3ERq1wRsegqVyRkD93oClbxqM5ZbdzW5QdCaVbii4RgiBkDXEeTh/ZKRN4ZAoAR4OHEuhGn+YUu4G1CUrngr4RHQCw7vgdx+mzSL6+eL+UOZ+Pbhwyc3SRMjaj5aQQ9P7Zu6wTXFi5eZB49fGdIjRVKqEqkB+MRqy79mZ6HpZtOx8cR50v8qHPcdhkUu8qm2iCCnu2KAKgZDOlo8el3SYxx1rIMjaTkzVvxnFqTRqSShmvU/e1wBy7czevE+dhQXi0Y+eh5iuwfAdo1DBtEKydCqGBWXTAtFhYf6/wteH7kL+KSy83Oc1MuPYFAK/m65mhNRXLlt+wbtoKWi1+0x59b8uTZFnm6h9mlr4Yw9L+MVzdZ0ZSQ7l2PgxYm492n4URUcb90SGeFFhAQ/cfI6g90B+AE8vTWNwrhvjLjy/6FQQh98tVQ+ScTicRERHMnTuX6tWr0717d8aMGcPs2bMf+ZrRo0eTnJz84J8bN25kY8aCkDvEJkGXcUpF7kf1l1Mneabyhc7zIbRUumLMvrOYA6nH8VX58GXx8ailnN/y63/Zz54joU4TTF/PAcDn7TcJ2fcbmhLFPZyZIORe4jzsun0noccEqOe3mzUVO6LBBhW6Qfu5bvWOvGi6Suczg7hlvUtxr8KsKjuLgvr8mZ+4C0zzF5PUtguywYCuWWOCd29BXcCzOWU3Y4KD6wctAJRulX1tzwVBeLqI83D6HF6/mbLao6Q5fKjY+y23YqyO34zJaaa0d3Fq+CmzqU1fKmsVXi/2RhWY8RV+q9HJ5nEJAFTq6kvR+tk/qvB+p4ikG3acjkff2JckCf29cSGWDZszPY/0jM5IvmVHdoLGW8In1PPLXwUq6/AJUWFJkbl52OLpdIQ8yJTkYPnAWC7vNqPRS7T/IoxKXUS3S08S52FB+C9Zhm9/gXqD4eItKBwJu76Ct3tkwbiMf1v/BhjjlK7Ijca4/PLZdxZxw3qHfNpw3izQ3+00ZLud1LeVsR0+b7yGppRnR5r+L1mWubjTxKJeMax8NZabhy2oNFC5qy8vr8/P81NDCS2e+ztdqrUSDd4KosuccHxCVMSet7GgezSn1qZ5OjVBELKQx0rlw8LCUKvVREdH/7+/j46OJl++fA99Tf78+dFqtaj/1XKybNmy3L17F6vVik7338o0vV6PXp972vcIQnaz26HXRLgRA62KneZdr5fABjQYBWXbpyvGqbRzfHprLgCTirxFEa+oLMw488myjPnHBaQMfQeMRqTwMAJ/nou+9XOeTk0Qcj1xHnbNqcvQbhSU1x5iY6W26DDDM22g8wJQuV5sdtZ4ie5nhxJnT6S0d3GWlv6SCF1oFmSePrIsY/xoOoYxEwHw6t2dgHnfIj3kGi6vu7BdGZ0RWU77YNetIAhCZhPn4SeTnTJef3wIWjjs/zqNCoS5HkOWH4zO6B3eHkmSsF+6jOXXjYCy4J0Zdn+eTPJNB/751TR6OyhTYroqIJ8atQ4cVki57XjsWApdm5aYvv8J64YtyF98mmk71WWnE+vW7QDoW6ZjdEZBTY7YJa9SS5Ro4s3JVWlc2GGiSN3sL2oR8q7k23ZWvRZLwhU7XgEqOn4dRlQ18f7vaeI8LAj/NWEefDhfefxCfZg3CkICsvigf6+CU8uVdZVOP4HGtTWIG5Y7fH1bSfqDwm/iq3a/26Pp+59w/H0GKTQE33Ej3Y6T2ZwOmfPbTByYm0LseaVjgsZLolIXX2q+6I9/Ps933coKRet70W9VPjaOiuf6AQubxyRw/YCZ5mOD0fl4vqhWEITM5bH/q3U6HdWrV2f79u0P/s7pdLJ9+3bq1n34LOn69etz8eJFnM5/5vucP3+e/PnzP7QgQhCEJxs9F3YchUjfVFZX6IxkS4PiTdM9s97kNDP08kRssp1WwQ3pHtY2izPOXM7kZJJ7DSDl5cFgNKJr3oTQE/tFQYQgCNnu6h1o/S4UdJ5kW5WW+EipUKwJ9Fjh8gd2UArWupwdQpw9kfI+pVhZ5hvPFkQ4HKQOGf6gIMLnveEEzP/uqSyIgH9GZzwjRmcIgiB41InfdlFR+wcWp47SPd92K8YRwynOmC7hJenoHNYKANM3c0GW0bVsjqZM6Qznef2AmeNLlLEZrSaFoPfzzHKOpJIejKJIvP74FsO65k1Ap8Nx+QqOc+czLQf7iZM4o2OQfH3R1n/4+hEo3SyAxxZuZLeSTZXuUBd3mJDlp3OExvUDZrZPTSTlzuNHsAjpF3veypI+MSRcseMfqabHgghRECEIQo707S//FER8/Br8MiUbCiLS4uDXwcrjBqOgQDWXQ0y6/iVm2Upd/2q0C3l0QeaTOJOTMXygjMvwm/A+quBgt2NlFodN5tTaNH7qcJf178QTe96G1kei1sv+vLIlP01HBefZgoj7/MLVdJkbTv2hAUgqOL3OyMLu0cSctXo6NUEQMplHS51GjBjBd999x88//8yZM2cYNGgQaWlpDBgwAIB+/foxevToB88fNGgQCQkJDBs2jPPnz7NhwwamTp3KkCFDPPUtCEKutmwHzFgGIHOw9Uvok89CQBR0XQLq9F3sfHTjW86brhCuDWFa0VE5YgdOetkOHiahan0sS1eCWo3fRxMJ2rIWdf6Hd6sRBEHIKjGJ0Ood8DFcYHvVFgSoEqFQHei9DrSuj1Y4avibbmeHkmhPpopvWZaX+ZoQbVDmJ55OsslEcpfemL79HiQJ/y8/xf+TyUhZ2hsz50qLc3Dj/uiM50RRhCAIgic5f58CwAHvl8lXtIBbMRbGrgHghdDmBGkCcBoMmH5QVvx9hg3OcI7WtH/GZlTu7uvxDgMhRZQOR4lXH39TW+Xnh65xAwAs6zNvhMb90RnaJg0fW1x5vygisGDOGe1YpI4XWh8JQ7SDu6eevoV2h01m/XvxHFtsYH6XaC7vMXk6pVzvxmEzS/vHYIhxEFpSQ69FEYSVEF3IBEHIeVb+DkO/UB5PfAne7QVZvowsy0pBRFoMRJSHxuNcDrE7+SAbE39HjZrJRYZnaO07bep05Ng41GWewfu1l92OkxnsVpnjywz80PYOm8ckPOg0VG9wAK9uy0/D4UH4huaca6isplJL1H0tkG7zwvGLVJNwxc6iXtEcX2p4agtZBSEv8miJV/fu3YmNjeWDDz7g7t27VKlShc2bNxMZGQnA9evXUf1rsbxQoUJs2bKF4cOHU6lSJaKiohg2bBgjR+acNkOCkFucvAQDP1Eer237OQVjVoJaCz1Wgl9EumLsTj7ID9HLAfis2BhCtZ6vbk0P2enEOP0LZbey3Y6qaBECl/yIrk4tT6cmCMJTKNUIbUeCOfY6+6o1I0wdDfkqQ9+NoHd9BvDB1BP0PTcCg9NITb9KLCg9A3+1bxZknj7O+HiSXuiG7c8DoNcTuOgHvDp38Fg+OcGF7SZkJ0SW1+ao3auCIAhPm1O7D1BN/Rt2WU3xru+5FSPJnsKv8cpN+j7hHQAwz1+MnJKCulRJdC2bZzjPXdOTSLntICDKc2Mz/i2oyL1OEdeevNNf36Yl1q3bsWzYjO87wzLl+JZ7RRH6Vo//2SbfdAA5q1OERi9RrIEX57eYuLjDRP6KT9du/vPbjBjjle6v5mQnqwfFUefVAOoNCUClzj0bLHKK89uMbBgZj8MKUdV0dPwqHK/Ap7PoWBCEnO33Y9D3Q6VG4bV2MKZfNh344Lfw9wpQaaDjj6Bx7bxrc9r54NrnAPSP7ERZn5Jup2K/fAXjzG8A8J8+FUnrmQI2u0XmxHIDh35MxRCjXCv5hKio8aI/Vbr7ofN9us8jhWp40W9lJJvHJHB5t5nfPkzk2gEzLSeG4BXwdP9sBCEv8PgnwzfeeIM33njjoV/7/fff//N3devWZf/+/VmclSDkbYmp0HkcGM3wVs3dtEm9twDY+nNlZ3J6YtiTGX5ZGbHRL6ITzYLqZVW6mcoRHU1Kv1f/mUHbrRMBc75EFRTk2cQEQXgqWazQeSzcvHyXvdWaEaW9AWGlof9W8Ha90GxvymFePP8uJqeZev7V+emZaRmadZlRjqvXSGzVAce5C0hBQQT9uhzds7njfJGVruxVdkU+01x0iRAEQfAk45YpoIL9mr48W7qoWzFWx23BLFsp612C6n4VlALsL78FwGfoaxnuinR1n5kTK9IAaDU5JEfMNg5xoShC16YVDHsP294/cSYnowoMzNCxnQYDtn3KmtCTCk5y4vgMgFLNvDm/xcSF7SYaDAvydDrZ6thiZQRM7Vf8saTKHF9qYP/cFG4dt9B2Wii+YU/PjtSMOr7UwG9TEkFWxrK0mRaC1svz7w+CIAj/68RF6DgGrDbo2BC+eisbOkQA3DoCm4Yrj5/7BArWdDnEvOgVXDBfJUQTxNtRAzOUjmHkOLBa0bVoiu75lhmKlRFbJyRw+ldlnKd/pJqaL/lTsZMvWm9xDrnPJ1hNx2/CODLfwO7Pk7iwzUT06bu88Gko+Ss9XQWtgpDXiHc6QXjKHDgNdV+HS7egRtQdPg3rjiQ7oFJvqJW+1q6yLPP+1enctcVRTF+IcYUeXtiU01i2biehUh2lIMLbG//vviZw6c+iIEIQBI9wOKDfFDh6IoFtlVtQXH8RgorAi7+lu2PPv+1M+pP+597G5DTTOLA280tP92hBhO3YCRLqNsVx7gKqQgUJ2bdNFEQATrvMjUPK6IzCdcSHaUEQBE85d/AEtVS/4pQlCnQa5VYMWZYfjM7oE9EBSZKwbtuhFAP6++PVv3eGcrSkOtkyXhmbUbWXH4VreXZsxn3BRe+Nz7hme+JzNSWKoy5dCuz2B4XpGWHbuRtsNtTFi6EpWeKRz5NlmaSbObMoongDb1QaSLhsJ+HKk3+GeUXMWSu3j1tRaaBqL3+ajw1WbuR7S9w4aGF+l7vcOGT2dJo5nizL7P06md8+VAoiKnX1pd2MUFEQIQhCjnT1Djz/LqSkQcPKsHAsqLOj/s2cDMu6gcMKZdpDveEuh4i2xjHj1vcAvF9oEEGaALfTse7Zh2XlGlCp8PtsqsfGTyfftnNmg1IQ0WxsEC9vyk+13v6iIOIhJEmiRn9/ei6IILCgmpRbDpb0i+HQjynITjFOQxByK/FuJwhPCZsdJsyDBm/AhZtQJNzG9rrdUKXdhYgK0H5Oust0f4nfyrqE31Cj5qsS4/FRuz7vPjvJViup740lqWV7nDGxaCqUI/TwbnwGvuixi1BBEJ5usgzDvoQte1LYVLEV5X1OgX9+GLAdAgu6HG9r4h5eujASs2ylRdCz/FDqE7xVnrtxYtm2g8SGLXHejUZTqQIhf+5AU66sx/LJSaLPWLEaZPT+EpHlHj0HXRAEQchaCeunArBf1Y3ilUq7FeOw4S/OmS7jrfKiU2grgAddIrxf6osqwP3Fc4DfP00i9a6DoEIaGryVsQ4LmSn4XqeIlNsO7NYnLwrr27YGwLJ+c4aPbdm8DQBdy2aPfV5anBO7SUZSQUCBnFUUofdXPShwubjT5OFsss+xJUqXiGda+OAXrtwRK/u8L32WRRJaUkNanJPlL8dy4Adxs+FRnHaZbRMT2T87BYC6gwJo8UEwKo1Y1xAEIeeJS4LW78LdBKhYHH6ZAl7ZsS9AluGXlyDxMgQVhU4/utWaYuqNWRicRqr4lqV7WFv303E6SR0xGgDvgf3RVqzgdqyMOr7EgOxUNmhU7eGPRifOH0+Sv6KefivyUbqlN0477PosmdVD4jAmODydmiAIbhBFEYLwFDh3HRoMgck/KzuTezSD031H4hezF/QB0Gs16NI3b/6W5S5jrk0HYHjUAKr6lc/K1DPMfukyCQ2ew/jpTAC8B79CyMFd4uacIAgeNfln+GmdkXUVXqCm/yHwCVU6RIQ8esfjo/yasJ1XLo7GKtt4PrgJc0tOxUvluQ4EpgVLSHq+E7LBgLZJQ4J3b0EdVcBj+eQ01/crXSIK1fQSs7MFQRA85PJf56jtXAFA2Avvux1nQcwaANqHNCdA44f9wkWsG7eAJOH9xmsZy3GPiZOr00CCVh/mjLEZ9/mEqtD5SshOSL7x5BEa+jZKi2jLpq3ITmeGjm3donSbeNLojPt5+edTo9bmvPNtyWbKxoIL25+OoghzsvPBztQqPf3+39dCi2vpvTiSci/4IDthz+fJ/DI0DlOyuNnwbzazk7XD4/hrZRqSCpqPC6b+kECx0UMQhBwpzQQvjILzN6BwJGz8FIL8s+ng+7+C06tBrYXuy90aTXoo9S9Wxm8CYHKRt1FJ7l+HmRctw374KJK/P76TxrodJ6OsRid/rVIKFKv3ya7/GHmD3l9F2+mhtPggGI1e4soeM/O7RIsOV4KQC+WcT9WCIGQ6WYZvf4HqA+HQWQjyg0UfwKJOK/A6/LnypE4/Q2ipdMVzyk6GXZ5MisNANd8KDC3QPwuzzxhZljF++x3xlepgP3gYKSiIwNWLCfjmcyTvnN3ZQhCEvO3bX2DqT1ZWlutMw8DdSnFa/60QUc7lWKviNjP44gfYZQcdQ5/j25KT0Km0WZD1k8myTNrHn5HS7xWw2/Hq2ZXgTb9keHZ4XnPtgPKhuXBtMTpDEATBU26v/giVJHNAbsczNSu5FSPRnsz6hB2AMjoDwPjVbAB0z7d87GiHJzGnONk6IRGA6n39KFg9Z50zJEl60C0i8dqTiyK0z9ZDCghAjo3DfuiI28e1X7qM49Jl0GjQNWn42Ocm3ciZozPuK9lE+Ux654QVQ2zev/l/ak0adrNMeGktUVX/2ylL56Oi9dQQnpsQjFoHl3eZWdA1mjsnLR7INucxJTtYMTCWSzvNqHXQbkYoVbr7PfmFgiAIHmCzQ7fxcPAMhAbCpk+hQFg2HfzmQdjyjvK45XQoWNPlEA7ZwbhrMwDoHtaGahnYECinpWEYPR4A3zHvoo6MdDtWRp3+1YglRSaokIbiDXPGSLbcRJIkKnfzo/eSCEKKaTDEOFj+cix/zErG6RAdrgQhtxBFEYKQR92Og+ffgzdmgskCzarDiR+hR5ULsOZl5UkNRkK5DumOOffuEv5MPYqPypsvS3yARsqZC0yOGzdJatme1MHDwWhE27gBoSf+xKtjO0+nJgjCU275DnjrCzuLyvSiVchm0PpA341QoJrLsZbG/sqwy5Nw4qR7WBu+KO6592XZ4SB16NsPPuz7vPsWAQt/QNLnrJs4nma3yNw+ZgWgcB2xCCEIguAJN89dpY59IQB+Lce4HWdl3CYsspXyPqWo4lsOZ0oK5h+VuD5vDspQjjunJWKIdhBcRMOzQ3NmcWFwEaUIM/Ga7YnPlbRadM81BcCywf0RGtYtvwGgrV/niaNJ7hdFBBbMmZ9Z/SLU5K+sFAdc3JG3u0XITpnjS5WdqVV7+j2ys4EkSVTq4kevRZEEFdKQctvB0n4xHFuSiiw/vTcbUu7YWdovhtvHregDJLp+F0Gp5j6eTksQBOGhZBle/RQ2HwBvPaz7CMoUyaaDmxJhWTdw2KBcZ6gz1K0wS2J/5aTxHP5qX0YXGpyhlNI+/xrnrduoihbBZ1jGYmWELMscXZQKQNVefkgq0WXIXeHP6OizLJLyHZQOV3/MSmHFwFgMMXm/yFUQ8gJRFCEIedDK36HyANh6ELx08MWbsHk6FAw2w9JuYEmFog2h2YfpjnnaeJFPbs4BYELhYRTzKpRF2btPlmVMPy0kvkItrNt2gLc3/l9MI3j7BtSFc16+giA8XX47DP2nOPnumZfpHL4KWa2DXmugSH2XY/0UvYq3r0xFRqZfRCemF3sftaTO/KTTQTaZSO7aB9M3c0GS8J/5Cf7TPkRSicvM/3X7hAW7RcY3TEVo8Zx5k0YQBCGvu7z8EzSSgyOOFpRvUMutGLIss/De6Ize4R2QJAnzTwuRDQbUZUuja9HU7fwu/W7i7zXGB2MztN4583zqSqcIAH3b1gBY1mekKEIZnaF/wugMgOSbObtTBEDJpkq3iLxeFHFln5mkG3b0ARJlnn/yzfzIsjr6Lo+kVDNvHDbYPiWJDe8lYE3L2OiV3Cjuoo3FfWKIv2THL1JNj58jclznGEEQhH97fy7M3wxqNSybCHWya+qyLMPqAZB0DYKLQ8cfwI3xQon2ZD6+qXT+eifqFcK1IW6n5IyLwzhtJgB+U8cjeXluY8S1Py0kXLaj9ZGo0CF9I7SFR9P5qGj9YSitp4ag9Za4ccjCz53vcmVv3r6mE4S8IGd+uhYEwS3JBug/BbqPh4QUqPYMHPoO3ugMKhWwaTjcPQ6+4dB1CajTt0Bkdlp489IErLKNFkHP0is853VccNyNJrlDD1IGvI6ckoK2Ti1Cj/+Bz5uDxY05QRA87vBZ6DxW5rOiQ+kXOR9ZUiN1Xw4lW7gca+7dJYy5Nh2AgZHdmVrknQzNt8wIZ0ICiS3aYfnlV9DpCFz2Mz7Dhngkl9zg+n6lBXTh2l5i/rMgCIIH3L16m9rmeQCom7jfJeJA6nEumq/ho/KmU1hLZKcT41dKAbnP0Nfdfo+3Gp1snZgAQI3+/kRVzbk3P+8XRSRcTWdRROsWIEnYj53AcfuOy8eTrVasO3YBoEtHUUROH58BUOpeUcT1A2YsqXn3hv+xxUqXiAodfNH5pO+aVe+vot3MUBq/G4RKA2c3GVnYI5rYC9asTDVHuXnUwpJ+0RiiHYQU09BrYQThpf47ekQQBCGn+HIlTFusPJ77LrSpm40H/+NzOLsW1DrosQK83Ou09enNuSTakyntXZz+EZ0zlFLa1OnIqaloqlbGq3uXDMXKqKMLlS4RFTr4ovcX6+SZpXw7X/oujyS8tBZTopNVr8ex67MkHLant8OVIOR04h1QEPKI349BlZdg4ValAOL9vrBvFpQreu8Jfy2BQ7OVKtkuCyGgQLpjT7s5hzOmS4Rqgvm02OgcdyPHvGI18RVqYlm3AXQ6/D6eRPDebWieKeXp1ARBEDh/A9q8B6Mj32dwgVnISEidf4ay7V2O9dXtn5l4/UsA3sjfjwmFh3nsPdlx7ToJ9Ztj2/cnUlAQwVvX4tW1k0dyyS2uHTADULh2zr3JJQiCkJedWzIdvcrKX7ZnqdysodtxFsauAaBDaAv81b5YN23FcfESUmAgXn17uh330I+ppMU6CSqkof4bjx8P4WnBRZVig6Tr6SuKUEVEoKlZHQDLxi0uH8/2x35kgwEpPAxNlUpPfH5OH58BEFJMS0hxDU47XN6TN3cWJt2wc2Wvcv1TpbufS6+VJIka/f3p/mMEfpFqEq7YWdQzhlNr07Ii1RzlwnYjK1+JxZIiU6Cyjp4LIgjIn3N/lwVBEJZuh+FfKY+nvgovts7Gg9/YD1tHKo9bf+7WeFKAv40XWHCvE9jkIiPQqtx/33Vcu47xm7kA+H000aMb9hKv2bi82wwSVOvt2rlYeLKQYlp6L46kSk/lZ3vox1SWvhhD8q30XSMLgpC9RFGEIORyZgu8OwuaD4fr0VC8AOz6CiYPBJ323pNiz8HaV5XHDcdAyefSHX9fyhHm3l0KwPRiozPUNiyzOePjSerRn+Ru/ZDjE9BUqUTI4d34jhyBpPZMG3lBEIR/uxULrd6BgQFTGVX4YwCkdrOhcm+X4siyzPSb3/2rjeNARhV0fydqRtmO/0VC3aY4zp5HVTCKkL1b0TVq4JFccguLwcndU8ruxsJ1PNc2UxAE4WkVdzuWGqlKNwdr/TFuz1JOsCWzIWEnAH3COwBg/PJbALxf7ofKz73FZkOsg8M/Kbv4GgwPROuVs5drggsrHzYNMQ6sxvR1OdC3aQmAdYPrIzQs90dnPNfsiTcWrEYnxgQlp5zcKQL+6RZxcXveLIo4vswAMhR91ovgItonv+Ahoqrq6bcikqL1vLCbZTaPSWDLBwnYzHmzu8aJFQbWDY/HbpEp3siLrt+H4x0k1jcEQci5fjsML05VHg/tDO/1ysaDG+NhWTdw2qFCd6g1yK0wsiwz7toMnDhpG9KU+gHVM5SWYfwUsFrRNmmI7rlmGYqVUUcXKR2bijdw/1wsPJ5GL9F8TDDtPg9F7y9x54SV+V3vcn6b0dOpCYLwP3L2p2xBEB7rr0tQ53WYsUwZnTawLRz7AepV+NeTbCbl4tBqgGKNoemEdMdPtqfy1uXJyMj0Dm/Pc8E554aX5deNxFeohWXZKlCr8f1gFCEHfkdbscKTXywIgpANElPh+XfhBdWXTCl2r0V3q+lQ81WX4siyzNSbs/j8ttLu+/2Cgxke9bLHCiIs23eS2LAlzjt30VQoR8ifO9CUL+eRXHKTm4ctyA7l5kxggZx9g0YQBCEvOrVoJr5qI2ds1al+7+a8O1bEbcQq26joU5rKfmWxnzmLdet2kCR83njN7bh/zErGZpLJX1nHMy283Y6TXbwCVXgHK0tKidfSOUKjTSsArNt2IlssLh3PuuU3IH2jM5LvdYnwClThFZCzl71KNlP+W1/eY8ZuyVutlm0mJ6dWK10dqvbI2M5UnxA1nb4No96QAJDg5Oo0FveOIfGaLTNSzRFkWeaPWclsm5iI7IQKHX3p8EUYWu+c/TssCMLT7eh56DwWbHbo1hRmvKE0Kc4WTies6g/JNyC0FLSf6/bB18Rv5UDqcbxUej4oNDRDadlP/Y15vjJHxP/jSR7tuGxJdXJqjXIurtbH32N5PC2eaeFDv5X5yF9JhyVFZt3weH6bkpjnrvEEITcTV9aCkAs5HDB9CdR+DU5ehohgWDMV5rwLfj7/8+SNwyD6L/CNgK6LQZX+HQZjrk3ntjWaovqCjC/8ZuZ+E25yJieT/NIgktp1w3k3GnXZ0oTs34nfxLFIOjFfUxCEnMFohvajoYbxR74oOUz5yybjof7bLsWRZZnx12cy685CACYWfoshBfpmdrrpZlq0jKTWnZBTU9E2bkDwnq2oC0Z5LJ/c5LoYnSEIguAxybFJVEv8Wnlcw/0uEbIss+je6Iw+ER0AMH6ldHHSt2uDulhRt+LGX7JxcpWyYN3o7aAcN67wUYKLKEV+6S2K0FStjCp/PuS0NKy79qb7OI7oaOzHTgCge67pE59/f3RGTu8SAZCvvA6/SDU2o/zgWiGvOLvJiDnFSWBBNcUaZLxLlkotUW9QIF3nhuMdoiL2nI0F3aLzxC5Mp0Pmt0mJ/DErBYA6rwXQclIwKk3ueC8QBOHpdOmWMirUYIJm1eGn0cpI52yzbzqc3wAaPXRfDl7ujR4zONKYfEO5TnyzwItE6fNlKK3U9yeCLKPv3B5trRoZipVRp9akYTPKhBTXUKSuWIvIDoFRGnr8HEHNl5QilONLDCzuHU3C1bxTyCkIuZkoihCEXObqHWVUxsjZYLXBC/XhxI/Kv//jxCI4/J1SJdt1MfjnT/dx1sZv45f4rahR82WJ8fiq/7faIvtZtu8kvmJtzD8uUHZivTOM0KP70NZwb1acIAhCVrDZofsEyH9nBXOfGaj8Zb0RSlGEC5yyk5FXP+GH6OUAfFz0PQbm657J2aaPLMukTfuclD4vg82GvntngjevQRUU5JF8cqNr+5UdsYVri9EZgiAI2e3Yoq8JUKdw0VaeWh3aux3nz9RjXDJfx1flQ4fQFjiTkjD9rOwE9Hnzdbfj7p6ZhOyEkk29KVgt9yxY/1MUkb5FXkmlQve80qXD4sIIDes2ZVyJpmpl1JGRT3z+/aKIwII5f+SApJIo2eTeCI0deWeEhizLHFuitOuu3M0PlTrzbu4XqetFvxWRRFXTYU1TdmHu/CQRhy137sK0mZ2sGx7PiRVpIEGzMUE8OzQw1xRHCYLwdIpOgNbvQkwiVC0FKyeDPjv3ql3bC7+9rzx+/kvIX8XtUF/c/oloWxxF9FG8lq9nhtKy7v0D668bQa3Gb4pra0CZzemQObZYORdX6+0vzivZSK2VaDQiiE7fhuEdrCLmrI0FXaM5/Wuap1MThKeeKIoQhFxCluHnzVDlJdh9Avy84bv34JcpSqeI/4g9C+vutW9t/AGUSP/8stvWGEZf/RSANwv0p7qfZ0dSyGlppLwxgqTmL+C8cRN18WIE796C/6dTkLzEzSVBEHIOpxNemQac28DCMr1QS06o8YoyNsOFD6AO2cGIK1NYFLsWFSpmFBtL34iOWZf4Y8gOB6nD3sUwchwAPiOGErj4RyR97rlp42lp8Q7iLig3jArVEj83QRCE7GRIMlAxeiYA0RXfR6VxfxlkYcwaADqGPoef2hfTvAVgNKKpUA5tk0Zuxbxx2MylnWYkNTQcHuh2bp5wfy51ejtFAOjvjS6xbtiCLKfvJrZ18zYgfaMzAJJu5p5OEQClmv1TFOF05M4b+//rzgkrMWdsaPQSFTv5Znp8/0gN3X6IoOYAZRfmkQUGlr4YQ8qd9P8u5gTmZCerXovj4g4Tai288FkoVXuK9uaCIORsqUZoO1LpFFEsP6z/BAIy/63+0dJiYXkPcDqgUi9lzcVNF03X+O7uUgAmFB6Gl8r9z+uyLGMYpRRCeL/UF03pZ9yOlRmu7DGTdMOOPkCi3Aue3+z4NCrewJv+q/JRqKYem0lm4+gENo2Nx2p0ejo1QXhqiaIIQcgF4pKg6wfw0kfKhWf9inBsHrzU5hH32KxGWNoVrGlQvCk0HpfuYzllJ8MvTybZkUoV37IMKzAg074Pd1j3/Ul85bqYvpkLgPfgVwg58Se6Z+t5NC9BEISHGTUHbuzfyYpyndGq7MoH9Be+dakgwua0M/TSRFbEbUSNmq9KjKd7eJsszPrRZLOZ5O79MN1rDe4342P8P/sIKVt7YuZ+Nw4qXSLCSmnxDc35u1YFQRDykiOL5hCqieeqtSS1u3ZzO068LZGNiUrHgr4RHZAdDkxfzwHA+81Bbu2+k2WZXdOTAajUxZeQYlq38/OE4KKujc8A0DVvAlotjkuXcZy/8MTny04nlq3bAdC3TF+hf/INB5B7iiIK1tCjD5AwJji5c8Lq6XQyxf0uEWVa++AdlDXXPmqtRKO3g+jwVRj6AIk7J6ws6BrNlb25o+NG6l07S1+M4eYRCzo/ic5zwin9nLhpJQhCzma1QeexcPQ8hAfB5umQLzQbE3A6YWVfSLkFYaWh3RyX1lv+TZZlJlyfiU220zSwLi2Cns1Qatb1m7Dt+xO8vPAd/36GYmWGIwtTAajU2Q+dj1jD8RS/CDVdvw+n3uAAJBX8vcbIwu7RxJ7LG9d8gpDbiHdDQcjhNu6HSgPgl92g1cDUV2HnF1C8wGNetGEoxJwCv0josghU6V+E+CF6OXtTDuOl0vNF8fFoVZ5ZSJLNZlLfG0tig+dwXLqMqmAUQVvXEfDN56j8/DySkyAIwuNMXwJ7NhxgTfl2eKksUKY9dPrJpfdgq9PGoEtjWZuwDa2kYXbJD+kQ+lzWJf0YzoQEEp9rh2XVWtDpCFz6E77D3/BILrnd/RnhReqILhGCIAjZyZxmpsyN6QDcKDMKjc79zzbL4zZgk+1U8S1LBd/SWNZvwnHlKlJwMN693RtvdW6LibunrGh9JOoNyl1dIgCCC98riria/qIIlb8/usYNALCsf/IIDfvxv5Bj45D8/NDWq5OuY/wzPiN3FEWotRIlGirdIi5szx039B8nLc7BuS1GAKr0zPrP7iWbeNN3eT4iy2kxJTlZNSiOvV8l5+iuG/GXbCzuE0PcBRu+4Sp6/hxB4VqiC6YgCDmb0wkDPoLtR8DXW+kQUbJgNiex52O4uAW03tB9BejdP89sS9rLzuT9aCUNEwq/laHxErLDQepopUuEz7DBqKMet3Cf9WIvWLm+34Kkyp5zsfB4KrVEvcGBdP0+HL8INQlX7CzqFcOJ5YZ0d04TBCFziKIIQcih0kww+DN4YaQyp61cUfjzWxjZG9SPu792bD4cnQeSCrouAf986T7mWeMlPrrxLQAfFHqTkt5FMvZNuMl25Bjx1Z/F+OlMkGW8XuxD6KmD6Fs09Ug+giAIT/LTJli04AQbK7TCX2OAEs2h21JQp3/Hp9lpYeCFUWxK3IVO0vJdyY94PqRx1iX9GI7rN0h4tgW2PX8gBQYSvGUNXt27eCSXvOD6AaVTROHaYrFbEAQhOx1cNI9I7V1u2QpRu2dft+M4ZScLY9YC0Du8AwCmL5XPTd6vvIjk4/rubrtVZs/MJABqveSPb1ju6yQUdK8owpzsxJTkSPfr7o/QsGx4clGEdctvAOiaNkLSPXlYudMuPxihkFs6RQCU/NcIjdy+OP7XKgNOO+SvrCNf+ewZMB9UUEPPBZFU7uYLMuyfk8LK12JJi0v/72V2uXXMwpK+MaTedRBSTEOvRZGEl86en5MgCIK7ZBnenQVLt4NGDSsnQ40y2ZzElV2w/V435DZfQ76KbocyOc2Mvz4TgNfy9aSEd+EMpWZetAzH32eQgoLwHTk8Q7Eyw7FFSsemkk29CSyQe66H8rrCtbzotzKSYg28sFtktk1KZP078VhSxTgNQcguoihCEHKgA6eh+kCYs07581td4dBcqPqkUWQxp+HXQcrjJuOheJN0H9PitDL08kQsspWmgfXo54HZ9bLNhmHCFBJqN8Zx+iyqyAgC1y4j8MfZqAJz384pQRCeDr/ug+lfn2NLxRYEa5OgcD3otQa06b8BbnKYefH8u2xP/gMvlZ6fnvmUFsEZa93oLttfp0io2xTHmXOoogoQvGcLusYNPZJLXpB8207SDTuSWmmPLQiCIGQPm8VGicufAHCp2HvovNy/6bgv5QhXLTfxU/nQPrQ59lN/Y92xC1QqfAa7N8f6xDIDyTcd+IapqN7P3+3cPEnno8IvUinmcGmERptWANj2/IEzOfmxz7XcL4pI5+iMlLsOnHalLtU/MvcUmhSt74Vap3S5iLto83Q6bnPaZf5angZA1R7ZuzNVo5do8UEIbT4JQestcX2/hfld73LziCVb83icS7+bWPFKLOYUJ/kr6egxP0LcrBIEIVf4bCnMXKE8njcanquZzQkYomFFT5CdUKUfVMvYuOfZdxZz3XKbfNpw3izwYoZiyRYLhg8+BMB39NuogoMzFC+jTEkOTq9XOjZV6yO6ROQ0PiFqOn0TRqO3A1FplM5x87ve5c7JnHO9Igh5mSiKEIQcxGaHCfOgwRtw4SYUDIetM+CzN8DrSfdRrGmwtCvYjMoO5UZjXDr2Z7e+57TxAiGaID4r9n6GWoa5w37qbxJqNyZt4kfgcKDv1onQUwfxatcmW/MQBEFwxd6/4L2PrrKpfHMidLHI+atCnw2g8013DIMjjT7nh7Mn5RA+Km8WPDODRoG1szDrR7P9dYrEhi1x3r6DunxZQv7cgbZiBY/kkldc36+MzshXQYfeT1x6C4IgZJf9SxYSpb1OjC2Smr1fzlCshbFrAOgU1gpftQ/Gr2YDoO/4Auoiru8sNKc42T8nBYD6bwTm6jnPwUXujdBwoShCU7IE6mdKgd2OdduORz7PmZqKbd9+AHQtm6crdvK/RmdIquz9TJsROh8VRespBbUXc/EIjYs7TaRGO/AOUfFMS9c7qGSGsm186bM0ktASGtJinSx7KYaD81KQnZ7twHFylYE1w+Kwm2WKNfCi6/fh+ATnnsIdQRCeXgu2wEjl0odPB0PvFtmcgNMBK/tA6h0ILwcvzIIMrFvftNzh6zvzARhX+A181Rk7Xxm//R7nteuoogrgM/T1DMXKDH+tSsNulokoo6VgdbExIyeSVBI1BwTQc34EAVFqkm86WNI3hsM/p+b6jmGCkNPl3k/egpDHHL8A9QfD5J/B4YBeLeDEj9CsejoDrH8DYk+Df37ossilGfb7U44x685CAD4tNooIXagb34F7ZIeDtGmfE1+9AfZjJ5BCQghc+hNBy+ajCgvLtjwEQRBc9dcleGXcHX4t05xC+pvIYWWR+m8B76B0x0ixG+h17i32px7HX+3L4tIzqRdQLeuSfgzH1WskteqAnJyMtl4dQvZuQ10ouweE5j33R2cUEaMzBEEQso3D5qDQmY8AOBP1Nt5+3m7HirUlsDlxFwB9IjrgTEjAtGApAD5vDnIr5sEfUjAlOQktoaFCh/QXUuZEIW4URQDo2yrdIizrHz1Cw7pjF9jtqEsUR1OieLriJt38pygitynZ9J8RGrnVsSVKu+5KnX3R6DxXlBJaQkvvJZGUa+uD7IDdM5JZ82Yc5uTsb08tyzL756SwZXwisgPKd/Chw5dhuboYShCEp8fmAzBQabzFiO7KP9lu1xS49BtofaDHCpc2oTzMpOtfYXZaqONfhfYhGavwcKakkDZlGgC+E95H8nb/mjMzOO0yx++di6v18c/2TY+Ca/JX0tNvRT5KtfDGaYffP03ilyFxGBNz3vgvQcgrxBW4IHiY0QyjZkOt1+DIOQj2h8XjYcFYCEpvF9WjP8Gxn0BSQdcl4BeR7uOn2A0MuzwJGZkeYW1pFdzInW/DLfYLF0ls8ByGkePAakXXtrXSHULMrRcEIYe7cgd6j4pjZYnmlPS+hDOoGNKAbeAbnu4YifZkup8dyhHDKYLU/iwr/RU1/StlYdaP5oyNJbFlB5x37qKpWJ6gDStRBQV5JJe8RJZlrh9QOkUUriN2aAiCIGSXAytWUFR3gQR7CNX6ZGzH3vLYDdhlB1V9y1PepxSm738GkwlN5YpoG9R3OV7KHTtHFyqL1Q2HB6HS5O7F6qD7RRFXXRv5oG/TEgDrpq3IzoffqLa6ODoDlPETAEGFcl9RRInG3kgqiD5tI+WOa0UmOUHcJRs3DlqQVFC5m+fbdet8VLT+KIQW44NR6+DS72bmd7vL3VPWbMvB6ZDZPjWJvV8pY2JqD/Sn1eQQ1Nrc/f+9IAhPh4NnoOsHYL+3ee8TTzRBuLwDdk5QHr/wLUSUy1C4PcmH2JC4ExUqJhUZkeGiAeP0L5Dj4lGXeQbvF/tkKFZmuLDdROpdpWNTmdae6dgkuMYrQEW7GaE0GxuEWgeXd5uZ3yU6R43/EoS8RBRFCIIHbT8CVV6CT5co3SG6NoFTP0P3pi4EiT4F6wcrj5tOgmKuFTWMuzaDm9a7FNYXYGKRt1x6rbtkpxPjV98SX7kutj8PIPn7EzDvW4LWLUedP1+25CC4LuGKjSMLUkm8nntn3ApCZohJhC7vJvNjVCvK+57G6ReF6qXtEBCV7hjxtkS6nnmDv4xnCdEEsbzsN1T2K5uFWT+anJZGYtuuOM5fQFW4EEGb14iCiEwSf9lOWpwTjV6iQGVRFCEIgpAdnHYn4SemAPBX+DD8g9Nbaf6QWLKTRbFrAegb0QHZbsf4zVwAfIYNdmshfd/XydgtMgVr6CneKPd3EQopqgUg8bprN/G1z9ZD8vfHGROL/fDRhz7HumU7kP7RGZC7iyJ8QtREVVOuF3LjCI37O1NLNvEmIH/O+PlLkkTlrn70WhhJYEE1KbccLOkbzbGlWd+e2m6RWf9uvPJzkaDp6CAavBUkdu0KgpArnL8BL4xUNvO1qAk/jARVdt9JSr0LK3qBLEO1l6BqvwyFszntjLs2A4D+EZ0o71MqQ/Ec0dEYZ3wNgN+U8Ugaz5/7ji5MBZTiRI1enG9yC0mSqNrDn96LIwkuqsEQ7WDZgBj+nJOM0yHGaQhCZhJFEYLgAQkp8PLH8NwIuHQLCobDmqmwdALkc2VyhcUAS7uCzQQln4OGo13KY33CDlbGb0KFii+Lf4CfOutbtzquXSexeVtS33wXTCZ0zRoTeuog3gP6isWBHEqWZU6uMjC/azQ7P0nih+fvsvTFGP5em4bNlP3tRwXBk1LSoPPINGaGtKWG/xEc3uGoXvoNgoulO0a0NY7OZwZzxnSRCG0oq8rOyvCHcXfJNhtJXfpgP3gYKTSE4C1rUBfI75Fc8qLr+5UuEQWq6sSChCAIQjY5tO5XSulOkeLwp0rfoRmKtTflMNcstwhQ+9EupDmWdRtwXr+BFBaKV8+uLseLOWvl73VGABq9HZgnPv8EFb7fKcLu0k1mSadD95yyG8Cy4b8jNOwXL+G4fAW0WnRNGqY7bnIuLoqAf0ZoXMhlIzQsBid/r0sDoEpPz3eJ+F+R5XT0XZ6Pkk29cdhg+4dJbHgvAWta1nyetaQ6WflaLOe3mlBroe2noVTr7X6BliAIQna6Ew+t34G4ZKhRGlZOAp02m5NwOpSCCEM0RFSANl9lOOSPMSu4YL5KiCaIdwq+kuF4aZM/QU5LQ1u7JvqO7TIcL6Pu/m3l1jErKg1UyQEdmwTXRZTR0Xd5JOVe8EF2wr6vUlj5aiyGWDFOQxAyiyiKEIRsJMuwdDuU7wc/bQJJgiEd4eTP8IKrnVdlGX4dDHFnwb8AdFnoUsnuXWssI68oQ+GG5O9LTf/KLibgGlmWMf3wM/EVa2PbuRt8fPD/+jOCtq5DXbhQlh5bcJ8l1cmG9xLYMj4Ru1lWFhcluHnYwqYxCXzb+DZbJyZw56Qly3faCIKnWazQY6yFD3QdaRC4F4cuEPWArRBeJt0xblmi6XRmEBfMV8mnDWdlmVk8453+gorMJDudpLw8GOvmbeDtTdD6lWjKlPZILnnV9QNKu8MitXP/TmBBEITcQHbK+B1UukQcDRpCUHhwhuItiFkDQOfQVnirvTB+MQsAn1cHIHm5/t6+e0YyyFCmtQ/5K+aNDkJBhTRIKrCZZNJiXbvBrG/bGgDLhi3/+dr90Rna+nVQ+afvZrIsyyTdVIoiAnN5UcTNIxZMSblnAfzvdWnYjDIhxTQUrp0zf7e9AlS0/yKUxu8GodLA2U1GFvaIJvZC5o7TMMQ4WNo/hpuHLeh8JTrPDqdMK9HCXBCE3CHZAG3eg6t3oWQU/PoJ+HniLWznRLiyE3S+0GMF6DKWRKwtgRm3fgBgVMHXCdIEZCie/dJlTHPmAeD38cQcUeh6dJHSJaJ0Sx/8ItQezkZwl85HxfMfhdJqSggab4nrByzM73yXq/vMnk5NEPIEURQhCNnkejS0Gw29Jymt18sVhT1fw5dvQYA7DRqOzoMTC0Clhm5LXZpjL8syIy5PIcmRQkWf0oyIetmNBNLPcecuSS90JWXgEOTUVLT16hB6/A98hryGlO2914T0unPSwvyudzm7yYikhgbDA3l5Qz5e3Zqf+m8EEFhQjTVN5q8VaSzqGcNPHe9yeH4qxoTcs3gnCOnlcMCLk228au5Bi+BtODS+qPtvgvxV0h3juuU2nc8M4qrlJoV0+Vld9ltKeBfOuqSfwDDqA8wLloBaTdDKhejq1PJYLnmR0yFz47DyobVwnZx5c0AQBCGvObppG+W1hzA6vCnfe3iGYsVY49matBuAPhEdsB3/C9vufaBW4z3I9d2FV/eZufqHGZUGnn0zMEO55SRqrURg1L1uEddcG7Ona90CAPuRYzju3P1/X7NsVooi9C6MzjAlObEalELtwKjceTMgqKCG8NJaZAdc2pU7Fr9lWeb4UmV0RpWefjnixtCjSJJEjf7+dJ8XgV+kmoQrdhb1VLogZoaEKzYW94km9rwN3zAVPX6OoLAojhUEIZewWKHTGDhxESJDYNN0iMhYfal7Lm6FXR8qj9vNdWkjyqNMvTGLVEcalXzK0CO8bYbjpY2bDHY7ulYt0DVOf0errJIW5+DcJqUbWbU+oktEXlChvS99l0US/owWY4LSgWr350k4bGJToiBkhLgbKQhZzOGAr1dBxf6w8U+l3diEAXD4O6hbwc2gd0/C+jeUx80+hKINXHr54th17Eo5gJek46sSE9Cpsq4Hmmw2k9iwJdYNm0Gnw+/TKQTv3oKmVMksO6aQMbJT5tBPKSzpG0PyTQcBBdT0/DmC2i8HIKkkAvJrqPt6IAM35qfbvHDKtvFBo5eIv2jn92lJzG56m7XD47i82yTmngl5gizD0M+dtI0eQIewNThUetR910HhuumOcdl8g05nBnHDeoei+oKsKjuLIl5RWZj146V9/jXGT2cCEPDDLPTPt/RYLnlV9GkrlhQZvb9EZFmdp9MRBEF4Kmj2Kl0iDvm9SnhURIZiLY37FbvsoIZfRcr4lMD41WwA9F06oC7o2jlcdsrsmpEEQNVefrl2tMOjBBW5XxRhd+l16shINDWrA2Dd+E+3CNlqVboLAjoXiiLuj87wi1Cj9cq9y12lmindIi5uzx0jNG4ctJBw2Y7WR6J8u6wfyZkZoqrp6bcikiJ19djNMpvGJLBlfAI2s/vjNO78ZWFJ3xhSbjsILqKh58JIIsqIa0BBEHIHpxP6T4Xfj4O/D2z4BIoX8EAiKbdhZR9lIabGq1C5V4ZDHjGcYnncBgA+LPo2ailjhZO2YycwL1kBgN9HEzOcX2Y4sdyAwwb5K+vyTDcyAUKLa+m1OILK3ZTrq4M/pLJsQAzJt1275hYE4R+591OiIOQCpy5Dwzdg2JdgMEH9inD0exj3Iujd/WxsSYVlXcFuhlKt4dn3XHq5LMvMvrsYgHcLvkYp76JuJpI+xm/m4rh4CVX+fIQe3YvvO8OQ1Llz187TIC3eweohceyanozTDqVaeNNvZT4KVPnvBbWkkihcy4s2n4Ty+s4CNB8bTGR5LU47XNhmYvXgOOY+d4c9XySRdF1crAm518R5MpXODKF35CKckgZ1zxVQvGm6X3/edIXOZwZxxxpDSa8irCo7iyh9vizM+PFMi5ZhGDEKAL+PJ+Hdv7fHcsnL7o/OKFhDj0qTc3dMCoIg5BUnfttDZc1urE4tz/R4J0OxnLKTxTHrAKVLhDMuDvOiZQD4vDnI5XinfzUSe86G3l+izqsZa9ecE4W4WRQBoG+jFGZaNmx+8He2fX8ip6WhighHU7liumPdH52R24tO7o/QuPqHGZvJ/Zv02eXYYqVLRPl2vuj9cs8yo0+Ims6zw6k3OAAkOLkqjSV9Yki87lrHE4BLu0wsezkWU5KTfBV09FwQQVDB3P17KAjC0+XdWbBiJ2g1sHoKVH3GA0k47LC8B6TFQr7K8PzMDIe0OK0Pxkd3C2tDdT93dyj+wzB6PABePbuirVIpw/Eyym6VOb5MORdX752+kWNC7qH1UtHigxBe+CwUnZ/E7eNW5ne5y4XtRk+nJgi5Uu75tCIIuYjZAuN/gBqvwP7TSoXtNyPg9y+hbNEMBJZlWPc6xJ2DgILQeT64OH7ij9SjXDZfx1flQ5+I9hlI5smciYmkTfkUAL8p49GUL5elxxMy5voBM/O73OXKHjMavUSLD4JpNyMUr4An/455Baio0sOPvsvy0W9lJNV6++EVqMIQ7eDAd6l8//wdlr4Yo8yazQULe4Jw36zVMn573uP1ArORkVB1WQBlXkj36/82XqDLmSHE2OIp612CVWVnkU+X/nFHmc2ydTspL74GgM+wwfi8l7HW4sKjXT+gtLwuIlomC4IgZAvbDqVLxH6vAeQvXjBDsXYlH+CG9Q6Ban/ahjTFNPdHsFjQVK+Ktm5t1/IyO9n7VTIAtV8JwDso7xWIu9spAkDfphUA1m07kS1KQaFly3ZA6RLhyrjFpHudIgIL5e6fcXhpLQFRauxmmat/5OwRGil37FzcqXS0qNIz97XrVqkl6g0OpMuccLyDVcSctbGgWzTnt6X/RsPJXwyseTMOu0mmaH0vus0Lxyckd/8OCoLwdJm5HGYqjQ/4cTQ0reahRHZ8ANf2gN4feqwArXeGQ35263vOmC4Sogni/UKDMxzPunMX1i2/gUaD7+RxGY6XGc5vMWKMd+IXoaZUi4z/zIScqXRLH/qtyEe+CjosKTJrh8WzfWoidqvo0iwIrhBFEYKQyfacgGoD4cP5YLNDu2fh7/nwenuX6xf+68j38NdiUKmh21LwDXM5xMKYNQB0DH0OP3XWtrZM++gz5MRENBXK4dUv4+3OhKzhtMvs/SqZ5QNjSYt1ElJcQ+8lEVTu5t482IgyOpqODub1nQV44bNQitb3AgluHraw6f0Evm1ym20TE7hz0oIsiws3IedatgOif/mQdwpNB0Dq8B1U6pHu158wnKHbmSHE2xOp6FOa5WW+IUwbklXpPpHt8FGSO/UCux2vnl3xm/Fxjp75nJvZrTK3jlkBKFxHFEUIgiBktdN7D1FDvQW7rKZo15EZjrcwdg0AXcJa4+VQY5z1HaB0iXD13HlssYHUuw7886uplkd374UUUcYxJlx1fYe9ploVVPkikQ0GrLv3ASg3G3BtdAb8UxSR23foS5L0YITGhRw+QuPEcgOyEwrV0hNWIuvGcma1ovW86LcykqiqOqwGmXXD49k5LfGxc7tlWebAdylsGZeI7IByL/jQ8eswdD5iqVUQhNxj+Q54+xvl8SevQ0/XTr2Z5/wm2P2R8rj99xBaKsMhD6aeYNadhQBMKzqS8Ayux8iyTOoopUuE92svoSlRPMM5ZpQsyxxZmApAle5+qLVijScvCyqkoeeCCGr0Vz5THFtsYEmfaBKvuX4NLghPK3GlLgiZJNkAgz6Dxm/CueuQLwSWT4LVH0JUZmwKvnMCNgxVHjefCkXquxwizpbApsTfAegb0SETkno0x/UbGL/8FgC/TyaLkRk5VModO8sGxLB/TgrIULGTL32WRhL+TMZnn2p0EqVb+tBlTjivbs1P/TcCCIhSYzXInFiRxqKeMfzcKZrD81MxJjgy4bsRhMyz7RAcmjeTiUU/AEBuPROqv5zu1x9OPUn3c0NJcqRSzbcCy8p8RYg2MIuyfTL7hYskPt8JOS0NXfMmBPw0x6Wdl4Jrbh+3YDfL+ISqCC2Ru2/MCIIg5Aapm6cCcEDdi8JlMrZAfdcay7ZE5eZ8n4gOWH5Zh/PWbVQR4Xh17+xSLFOSgwPfpQDw7NBANPq8uVAdXFQ51yXfsON0uFb0LKlU6J5XRmhYN2zGcTca+/G/ANC3aOJSrOSbymeK3D4+A/4ZoXH5dzNOe84sJLdbZf5alQZA1VzYJeJ/+Udq6DYvghovKjcajsw3sOzFGFLu/LcDiuyU2fFREnu+ULrA1BzgT+spIeJmlCAIucqu49BfuYTijU7wdvr3gGSu5Buwqq/yuNZgqNgtwyENjjSGXZ6EjEzXsOdpHdI4wzEtq9diP3gYydcX33EZL8LNDLePW4n+24ZaB5W6Zu3mRyFnUGslGr8bRMdvwvAOUhF92sb8rtGc2ZDm6dQEIVcQq+GCkAl+2Q3l+8FcZewsA9sq3SE6N4JM2YRrSYVlXcFugWfaQH33ZuSuiNuITbZT2bcsFXxLZ0Jij2YYNxksFrRNGqJr/VyWHktwz4XtRuZ3jubWMSs6X4m200JpOSkkS3a2BOTXUPf1QF7ZlJ9uP4RTto0PGr1E3AUbv09LYnbT26wdHsflPSaXF1IFIbMdOgNrv/ie6cWU0RLOppOR6g1L9+v/TDlKz3PDSHWkUdu/CkvKzCRQ47mdoY670SS17IAcG4emWhUCVy9G0mW88El4tOsHlPbfhWt7iW4cgiAIWez84ZPUltbglCXydRyd4XhLYn/FgYNafpV5xrsYxi9nA+D9+stIer1LsfbPScGSKhNRRku5tj4Zzi2n8s+nRq0Fhw1S7rhe7KxvoxRFWDZswbpVGZ2hqVYFVUSES3EedIrIA0URUVX1eAerMKc4uXnU4ul0Hur8FiOmBCf+kWpKNskb7brVWonG7wTR/otQ9P4St09YWdA1miv7/unYYbfKrH83nmOLlfntjd8LotHbQUgqcc0nCELu8fcV6DQGrDbo2BBmvJFJa9iucthgeQ8wxkOBatB6RqaEnXT9K65bbhOly8ekwhkfGyrb7RjGTATAZ8QbqCMjMxwzMxy91yWibBtfMbrpKVOikTf9VkZSsIYem1Fmw8gEtnyQIMZWC8ITiKIIQciA23HQeSx0GQd34qFUQdjxBcx5F4Iy6/6XLMPaVyH+AgQWgs4/uzWHwyk7WRizFoA+4R0yKbmHsx3/C/OCJQD4T/tQ3BDKYewWme1TE1k7LB5zipN8FXT0W5GPMs9n/UKtpJIoXNuLNp+E8vrOAjQfG0xkOS1OO1zYZmL1oDjmPneHvV8mk3Td9ZnEgpBRZ6/Bdx8t5cuirwJgr/suqsZj0v363ckH6XN+BEaniQYBNVn4zIwsH1X0OM6UFJJad8Rx5SrqEsUJ2rgKlX/ebN2dk1w/oMz/LlLbtZtngiAIguvi1imtlg9InSlRpWyGYjlkB0tifwWULhG2I8ew7fsTNBq8Xx/oUqykG3aOLVFumub1G6YqtURQYaUQwZ32vboWTUGrxXHxEsZv5ip/5+LoDJvZiSFaKcgIzANFESq1RInG90Zo/JYzR2gcW6r8flfq5otKk7d+v0s186Hv8nxElNViSnKy6vU49n6djDnZyarXYzm3xYRKA22mhVCjn7i2FgQhd7kVC8+/C0kGqF8RFowFjzX4/W0MXP8D9AHQfTloMv4ZelviXhbFKmvgM4uPI0CT8W5Gph8X4Dh3ASksFJ930r9pJiul3LFz/t41QvU+ub9jk+A6/3waun0fTt3XA0CCk6vTWNgjmriLYpyGIDyKKIoQBDc4nTBnndIdYs0e0KhhdB84Pg8aVcnkgx2aAyeXgkoD3ZaBT6hbYfalHOGq5SZ+Kh/ah2btgDjDyHEgy+h7dEFbo1qWHktwTcIVG4t6RT/Y1VLjRX96Loh4sIiZnbwCVFTp4Uff5fnotzKSar398ApUYYh2sH9uCt8/f4dlA2L4e12aqHIVssXNGJg+4Ve+KdQXlSRjrToITetP0r1d4rekfbx4/l3MTgtNA+vx0zOf4qP23K452WIhuWNP7Mf/QhURTtCWNTlmN0NeZk1zcveUFYDCdbw8nI0gCELedvXvC9R2LgMguM37GY73e/IBblnvEqQOoE1IkwfjAL26dUKdP59LsfZ8kYTTDkXre1Gkbt4/HwQX0QKQeM31wmaVvz+6Rs8CYD94GAB9y2YuxUi+pRRE6HwlvIPyxlJXqWbKdeTFHSZkOWd107v7t5U7J6yoNFCpc968ERNUSEOvhZFU7uoLMuyfncKc5re5cdCC1kei06xwyj4vWpULgpC7JBugzXtwMxbKFIY1U8HbU7X859bD3k+Vxx3nQUiJDIeMtyXy7lWlYPaVyB7UC8j4urRsNJI2QZkz4jvmPVQBARmOmRmOLzUgO6BQTT3hpUU30KeVSiNR/41Aun0fjm+YivhLdhb2iOavlYYcd/0oCDlB3vikKAjZ6Nx1aDoMBn8GKWlQqywc+g4+fAW8Mvsi8vYx2PSW8vi5j6FwXbdDLYxdA0CnsFb4qrOuI4Bl2w6l5alWi9+U8Vl2HMF1p9amsaBbNLHnbHgHq+j0bRiN3wnKEXNPI8roaDo6mNd3FqDt9FCK1vcCCW4csrDp/QS+bXKbbRMTuHPSIi7ohCyRkAITx23n6wJd0arsmMv1Rdfh63QXRGxK+J2BF0Zhka20Cm7I96U+wkvluS4BstNJcr9XsO7YheTnR9CmX9CUyNiMdSF9bhy24LRDYEE1gVG5f6eqIAhCTnZj5ceoJSeHnG0oU6dqhuMtjFkDQNew59HGJmFeuhIAn2GDXYpz56SFc5tNIEGjEYEZzis3CC5yr1PEVfe6venatHrwWPL3R1u3tkuvT/7X6Iy80qmwcB09Wm+J1LsOok/nrB1/x+91QSnd0gffsLzbrlujl2gxPoTnPw5B4y1hM8n4hKjo/mMERevl/WInQRDyFqtN6XZ88jLkC4EN0yDEU/f3k67Bqn7K4zpvQvnOGQ4pyzKjrk4j1pbAM97FGFXo9QzHBDB+NRvn7TuoihTGZ5BrncOyis3s5K+VaQBU6503ixMF1xSu7UW/VfkoWs8Lu1lm64RENryXgMUgNhoKwr+JlVpBSCerDT5dAh/OVx77esOHA2FIxyxqMWZOgWXdwG6B0i9AvRFuh4q1JbA5cRcAvcPbZ1aG/yE7nRjeGwuAz+BX0BQvlmXHEtLPmubkt8mJnF5vBKBQLT1tPg7FLyLnLV5pdBJlWvlQppUPKXfs/L02jZO/pJFyy8GJFWmcWJFGWCktFTv5UratDz7BOe97EHIfoxneH/sHM0Pb4aWyYCzeEZ9u89I9qmht/G8MvTQBBw7ahTTny+Lj0ao8d4klyzKpw97Fsnw1aLUE/rIEbbUqHsvnaXP9oDI6o3BtsVAuCIKQlW6ev0Yd63xQgVeL9I+6epTb1hh+S9oHQJ+I9pim/whWK9raNdHWqpHuOLIss+uzZADKt/d5anbuPSiKcHMEnr5NSwzDRwKga9oISefazy3pXlFEXhidcZ/WS0XRZ724sM3ExR0m8pXPGb9LpiQHZzcpny2r9nw6bsSUa+tLZFkdZzYaqdDRl6CCeef3TBCEp4PTCS99DDuOgp+3UhBRNL+HkrFbYFl3MCVCVE1o+WmmhF0Zv4mNib+jkdR8VXx8pmxUcSYmkvbxDAD8Jo1F0ueMEZln1hsxJzsJiFJToonnOpQKOYtvqJrOs8M4+GMqe79M5uwmI3dPWWk7PTTHXEcKgqel+yq+U6dO6Q66evVqt5IRhJxq/9/w2qdw6ory51a1YdYIKOJaB9X0k2VYMxASLkJQEej0U7p3Kz/M8tgN2GUHVX3LUcH3mczL83+YFy/HfvwvpIAAfMe+l2XHEdIv+rSVX9+JJ+m6HUkF9YYEUHtgACp1zt89FZBfQ93XA6nzagA3Dlk4uTqN89uMxF2wsfOTJHZ9lkTJpt5U6OhL0XpeueJ7EnIemx1GTTjGx77P46s2khrVEv++S0Cdvkuk5bEbePvKVJw46RLamhnFx6CWPFusY/xoOqav5wAQOH8u+uZNPJrP0+b6fgsARURRhCAIQpa6vPxTCqrsHLM3pWpj9zvq3bc09lecOKnrX5US6gLEzfoOAO83B7mW1y4zNw9b0Ogl6g95OrpEwL87RbjX0UBTqiTqZ0rhOH8BnYujM+Cfooi8drO6VFPvB0URzw7NGb9PJ1enYbfIRJTVkr/y07PAHlpCm2P+GwiCILjq/bmw5DdlBPTKyVCllIcSiT0LK3vD7aPgFQTdl4Mm4+eSW5a7jLumFC+MiBpIBd/SGY4JkPbxDOSkJDQVyuHVu3umxMwoWZY5ukjp2FS1p59YDxX+H0klUfvlAApW07P+vXiSbthZ3DuaRm8HUa2PX57pqCYI7kr3p8XAQHHhLzx9Uo0w9jv45helTiEsEGa+CT2aZahG4ckOfgt/rwCVBrotA58Qt0M5ZSeLYtcC0CeiQyYl+F+y2Yxh7CQAfEe/jSosLMuOJTyZLMscXWhg94wkHDbwj1TT5tNQClbLGRXNrpBUEoVre1G4thfN3g/mzKY0Tq1OI/q0jfNbTZzfasIvUk2F9r7Krp08tDtMyFpOJ4ybeoZx8nMEaZNJDm9A4EurQZO+/08Wxqxh1NVpyMj0Cm/HJ0VHopI8O5nMNG8+hjETAfD/YhpePbp6NJ+njTHBQew55WZQoVq57/1WEAQht4i+fodapu+VgaCNM94lwi7bWRy7DlA+M5lXrsF5NxpV/nx4demQ7jhOu8yuGUkAVOvjR0D+p+e6NLioFoCU2w4cNtmtEX0Bc7/EsmY93i/2cfm1yTf/GZ+RlxRv6I1KA3EXbCRetxFcWOvRfJwOmRPL792I6SEW1gVBEHKDb1Yr3Y8BvnsPWtT0QBKyDIfmwOYRYDOBd4hSEBFcNMOhnbKTty5/SKojjWq+FRiS3/XriIdx3LyF8ctvAfD7aCJSlrSKdt2NgxbiLtjQektU7PR0dGwSXBdVVU+/lZFsGZfIxR0mdn6SxPWDZlp9GIJ3YM74XRYET0j3p8Uff/wxK/MQhBwnIQXqvg4Xbyl/7tsSpg+GsKAsPvCtI7BpuPK45TQo5Nos1f+1N+Uw1yy38Ff70i6keSYk+HDGb+bivHYdVVQBl2fuCpnLlORg89gELv2utHAv2dSblpOD88QFj1egiqo9/Knaw5+Ys1ZO/ZLG6fVGDNEO9s9NYf/cFArV1FOxky+lWnij9fLsDWoh55Jl+Piryww1NCdcH0dSYA2CXl0POp90vX7e3RWMu67sQhgQ0YVJRYZ7vCDCsn4TKa8OBcBn1Nv4vCnei7Pb9YNKl4iwUto8PV9bEATB084unkEjlYWTtrpUaZHxjkg7kv7kjjWGYE0grYMbk/ZlSwC8Bw10aYzDqTVpJFy24x2kovZATw3p9gzfMBVaHwmbUSbphp3Q4q7fvNc1aoCuUQO3jv+gU0QeK4rwClRRqIaea/stXNxuouYAzxZFXNljJvmmA68AFWWeT991syAIguA5q3fDsC+Vxx8OhH6tPJCEIUbpiHzuV+XPJVooXZEDCmRK+B+il/NH6hG8VV58UeIDNFLmXAukTfwIzGa0z9ZF18YTP7iHO7IwFYDy7X3xChDrnsKjeQeqaf9FKMeWGNj1aRKXdpqZ3zmattNCicqFGycFITOId01BeAhZhlc/VQoiCobzf+zdd3gU1dfA8e/WJJseSuihSld6E1GwUGyASBfsoiJ2EQRUilgQO6LYKQKKFEVBuoL03juEnr5Jtpd5/xjAn68FSHZ3Nsn5PE8exiR77zGEnZk7557Dognw1fAQJEQ4rTCrJ/jcULcrtH6q0ENOS5sHwF2lOmExBKfHmD87G9s4tf9bzJiR6KKkl5lWTmxy8vVd5zi80onBBB2GJ3Dne6WKRULE/1e2jpkOwxIZtLwCt00oRdU2kaCDExtd/Dwsi8ntT7NkdBZndrpQFEXrcEWYmfzNKXqfuImKEafJttQn4bFFEHl5Dy8+PjPtYkLEoHJ9GZPyjOYJEe4/1pHTcwD4fETe25+Y117RNJ6S6sR6NRmtSku5uRRCiGDJOptJ01x1156z9Uvo9IXfqX7hnqln6S7oN27Hs34jmM1EPXzfZY/htvtZ86EVgNaD4oiILVnLLTqd7s8WGse9IZ1b8StYT6lzxhez9hkANW9S768PLnNoHAlsnalWiWjQLRpTVMn6HRdCiKJmzU64Z4y6zv3IHfBiYAooXJkDP8OHDdWECIMZOr8DAxYFLCHigOMo40+o14UjKz9B9cjKARnXu28/ji++ASDmjTFhUxkp54T34ia4xn2lSoS4NJ1OR5O+sfSdkUxCFSN5Z33MvC+NdZ/movhlvVyUPJd9t9i4cePLfvPfsmVLgQMSIhx8vhDm/gYmI/wwDpoGpg3Zf1MUmPsAZB+BhKrQ7YtC9+hIc2eyOOc3APoFsXWGbfzbKNnZan+1AX2DNo/4d36fwrpPc1n7cS6KHxKrGrl9QinK1in+PV6NETrqdLJQp5OF3DNeds2zsWuejdxTPrbPtrF9to3StUw07B5N3dssWBKLX4KIuDIz5qVzw46bqG45Sra5JomDl4Cl1GW99p1TXzDhlNpj/KkK9/FcxYc0vzn27tlLzm13g8OBuUtH4j79QPOYSqrj69VKESmtIjWORAghiq8d097jBoONfZ5GNLu9S6HHO+U6ywrrOgD6lemKfdgrAET27oEhOfmyx9n0dR62DD/xlQxc06tkLlInphhJ2+sh+7gHCF2ifH6aD59b7T4ZV774XevXvCGKZWNzOL3djS3Dp1k1quzjHo6tdoIOGpXQ33EhhCgq9h2HO4eB0w23tYH3nwxyK+j/z22HX1+A9R+p/122Adw9HcpdHbgp/B6GHH4Vl+KmfXwrBpTtFrCx80eMBr+fiDtuxdymVcDGLayt3+aBAlWvjSxQVS5RciXXNTPgu2SWjM5m70I7q9+3cmKDky6vl5JKp6JEueykiK5duwYxDCHCx/5UePoD9XjsgyFKiADY8DHsmQMGE/SaBVGJhR5yVsZPeBUfTaIbUM9SMwBB/p3veOqf/dXeGBM2/dVKkrxzXhYOzeLkJvVhXP07Ldz4UiJmS8nbuRNX3kibR+Np/UgcqRtc7Jpr48ASOxkHPax4I4dVb+dQs0MUDbtHk9I6Er1BHhyXND+vzKHeqluoG7OPHENlEp9YCrHlL/k6RVF44+QnfHDmawBeqPQIT1a4N8jRXprv5CmyO3ZFyc7G1KoFCbO/QWeSG2Mt5J7xkpPqRaeHSk2lUoQQQgSDNdNK48z3wQjZjQNTJWJG+gL8+GkT25Sq2SYyZv8AgGXIo5c9hi3Dx8Yv1FLG1z2VgMFUMq8xE1NMgCPklSIutM6IK29Ebyx+P/vYckbKNTBzdpebwysdXN1Dm4SEbbPUKhHV2kaSUKX4VeQQQoji4kwmdHkBsvOgZT349mUwhvJt+/RW+L4fpO9V/7v1k3Dz62AK7OaB905/yU77fhIMcUyoNjxgm0M8GzbhmjMf9HpiXns5IGMGgtvmZ+cPNgCa9JfkRHHlzNF6uryeRJVWESwbl8PxdS6+vusst75eipTWsrlHlAyXfTp8+eXwOQEIESwuN/QbDXYn3NgUnukVoonPbINfnlaPb3kTKrUo9JB+xc+M9AUA9A9ilYj8kWPA5cLUvh3mzrcEbR7xzw6vcrDopSwcOX5MUTpuGplI/TuitQ5Lczq9jpRWkaS0iuTG4Yns/cXGrh9snNvj4cCvDg786iA22UD9rtE06Bpd7HoPi3+2enM+SfO60Ch2G7m6ssQ/vhQSUi75OkVRGH3iAz49+y2glmQcVF77qjj+rCyyO96J/+QpDHWuIuGn79BFy79/raSerxJRroG5xJVMF0KIUNk6bRI3GK0cdtel5V3dCz2eV/EyM13tb92/bFcc738OXi+ma1tjatr4ssf5Y5IVj0OhXEMztTuW3FaCF9tnHNMmKaI4X9PXujGKs7vcHFymTVKE2+5n1zz1QUzjPvIgRgghwlWeHW4fCsfPQs2KMH88WEL1rNPvhzUTYNkI8Hkgphzc9TXUDPx68Zb83XxwWm1vMb7q85QzlwnIuIqikPfiKAAiB/TFWL9eQMYNhF3zbbjzFRKrGql2rTzAFgWj0+lo2C2G8ldH8NNzmWQc9PDdw+m0eiiONo/FFcsEYyH+l6zYCvE/Rn4OWw9CqXj4ajjoQ/EvxJUHs3qBzw117lCzZwPgN+sGUl2niTPEcEfSjQEZ8//zbNuBc9pMAGLfHCvl2kPI61ZY8WY2cx/PwJHjp2xdE/d8lywJEf8gMl5P496x3DO7HAO+T6Zx3xgi4/TknfOx7pNcPut8hln3p7HnRxsep1/rcEWQ7NzvxPtNV1rFriVPScTyyBJ0Za665Ov8ip+Xjk+4mBAxLuXZsEiIUBwOcu7ohW/PPvQVypO4eD76UpfXAkQER+o6ta9nlZZSJUIIIYLBZrXR4OxEAM40GIbeWPibtWU5f3DWk0EpYyKdLK1wTP4cAMuQQZc9RuYRDzvmqA+Lr382vkTfEyVVPZ8UkapNUkR8peJbtbBmBzXZJnWdE1d+6O9Z9v1sx5WrEF/JQLW28iBGCCHCkccLd49S17bLJsLPb0GZhBBNbj0BX90Ivw5VEyLqdoXBO4OSEGH3ORhy+FV8+OiadDN3lLopYGO7f12GZ8VvEBFBzKsvBWzcwlL8ClunqxWbmvSLCUi1NFGyla5hot+MslzdIxoUWPdpLrPuTyP3TGiv44UItQKtIvh8PiZMmECLFi0oV64cSUlJf/kQoihaugneVp/v89lQqFA6BJMqCix4FDIPQFwl6PZFwBq8TU+fD8BdpToRZQjOokX+0JGgKET07oGpWZOgzCH+LjvVw7f9z7H5m/MXw/1j6Ds9maSqUjL/UsrWMXPj8EQGrajAbW+VomqbSNDBiQ0ufh6WxeT2p1kyOouzu9woiqJ1uCJAjp70cGZST26IW4ZdicF0/yKMFS/dx9Kn+Hjh2Ot8nfYDOnS8VXUY9yb3CEHE/03xerH2vhfPmrXo4uNJWDQXQ5XKWodVoimKwvH1alJESit5UCCEEMGwafoUShszSPVUo1WvPgEZc1raPAB6lbkV/3cL8Kelo69YgYhud1z2GL+/a0XxQY32kVRuVrLPAQnnK0Xkn/Phtofuwb31pE+dvxhXiihVw0RSNSM+Dxz93RnSuRVFYeu36r1no97yIEYIIcKRosDDb8GSjWpliAXjoUbFEE2+cxZ8eDUcXQkmC9w5Bfr8ANHBWVwfe+JDjrpOUM5UhnFVnwvYuIrfT/75KhGWxx8Oq3WWo6udZB/3Yo7RyYY4ETCmKD23vJLEbW+Wwhyt49QWN9/0OMfhlQ6tQxMiaAqUFPHqq68yceJEevXqhdVq5ZlnnqF79+7o9XpeeeWVAIcoRPBl5MC9r6nHg+6EO64N0cRbv4Id00FvgJ7fgiUwu3zPuTNYnP07ELzWGa4ly3H/ugxMJmLGSXudUNm70MY3Pc5xbo+HyHg9XT8oTYcXEzGaZWHqShgjdNTpbKHHp2V4aHF52jweR1xFA648he2zbUzrfY5v7jrH5ql52LN9WocrCuFcho/dEwZwS9yPOJVI/H1+JLL6pVsUeRUvTx0Zy7fpP6JHz3vVR9G37OU/IAkWRVHIe/QpXAsWQkQECT/OxtSwgdZhlXhZR7zY0v0YzFD+GrPW4QghRLHjsruonfoWAMdqvojRXPiH3ydcZ1hhXQdA39K3Y3//YwAsjz2EznR5ycYnN7s4tNyBzgDtnk4odExFXVS8gagEdZkpJ4TVIkpC+wz4s1rEoeWhXag+tdVN+n4PxkgdDbrJgxghhAhHL38B3ywCgwFmvQrN64ZgUmcufD8AZvcGZw5UbA6Pb4NmDwZs09//tzJnHV+n/QDAO9VHkGCMC9jYzlnf4922A11cHNHDA5dsEQhbzleJaNg9GnO0FH8XgVWni4V7vksmuZ4Jp9XP3MEZrHgjG59HNgyK4qdA76DTp09nypQpPPvssxiNRvr06cNnn33GqFGjWLduXaBjFCKoFAUefBPOZELdFHjrsRBNnLYHfhqsHncYAyltAzb0zIyf8OGjWUxD6lhqBGzcCxS/n/wXRgDqoqGxerWAzyH+ym33s2hEFguHZuGxK1RqGsHAOcnUbF9yexYHSnwFI20ejeehX8pz92dlqNPFgsEM6Qc8rHgjh086nGbBsxkcXe3A75OLwaIkN1/hj/GDuC12Jm7FhL3rHGLq33DJ13n8Xh4//DI/ZC7CqDMwqeZo7irdKfgBXwbby2NxfPYV6PXEz/wK83WhyuIT/yV1g7pjs2LjCEyRskAhhBCBtn7GV5QzneaMpyIt+w4MyJgz0hegoHBdXHMqbj2Nd/NWiIgg6uH7Luv1iqKw6u0cAK7uHk2p6lK1DSDxfLWI7OOhT4qIr1QykiKO/ObA6w7dfcm281Ui6naxEBVffFuUCCGEosCIKdDrZZi6GHLytI7o8nyyAMZ9ox5//Cx0aRWCSY+vgUmNYPtU0OnhhpHw0BooVStoU2Z7rTx7dBwA95XtQbv4S294uVyK241txBgALC88FVbtSTOPeDi2xgk6aNwnVutwRDGVWMVEn2nJNL0nBoDNU/OZ0e9cSBOdhQiFAt0xnj17loYNGwIQExOD1WoF4LbbbmPkyJGBi06IEJg8H35cA2YTTB+llhgLOrcdZvUCjx1q3AzXDQ3Y0D7Fx4w0tXVGsKpEOGfM/jNzdsQLQZlD/Cltn5ufns8k66gXnR5aPRJH60fi0BulOkQg6fQ6UlpFktIqEqc1kb0/29g118a5PR4OLHZwYLGD2GQD9btG06BrdLHfiVbUOZ0Kv455lh6Wz/ApejJvmUH5Zl0u+TqX382gQyP4Ned3TDojn9QcR8fEdiGI+NLskz7FNuYNAGI/fpfIrrdrHFFwed0K84ZkoHgVun9cBoMpfN/zUte5AKjSsmSXTRdCiGDwuDxUO/Q6mOBAyvNcb4ko/Jh+LzPTfwTUeyb7K2qViMh+vdCXvrxSzweWODizw40pSkebx+MLHVNxkZBi5PR2N9nHQrOA6sz147SqrTqK+/V5+YZmosvosaX7ObHBSbW2wU+Qz0/3cWCJHYBGfWKCPp8QQmjptakwfpp6/P1KMBnhpmZw1/VqVeFSYXi6/3ENDH5HPR51Lzxwa5An9HlgxWj47TVQ/JBQFXpMg5Tgb9h46djbnPVkUCOyCi9VfjygYzumfInvyFH0yWWJfiqwYxfWlulqdk7N9lHF/lpHaMto1tF+aCJVWkbyy0tZnNvj4Zu7z3LLy0nU6WLROjwhAqJAW9kqVarEmTNnAKhRowa//vorABs3biQiovALFEKEyu6j8NxH6vEbg+CamiGa+JenIG0XxCRDj6mgD9yu0t+sGzjpPku8IZbbkjoEbNwLFKeT/BGjAYge9uxlLxqKK6coCltn5jG97zmyjnqJKWvg7s/KcO3j8ZIQEWSR8Xoa94nlntnlGPB9Mo37xhAZpyfvnI91n+TyWeczzH4gjT0/2fA4Q9cvWVwenw8WjHuFHmZ1ZeDEtV9Qvl2PS77O4XfywMGh/JrzO5E6M1/UejNsEiKc388lb/CzAES/MhzLw/drHFHwrf3YyrHVTo6vc7FjTr7W4fwrv08hdaNaKSKllVwHCyFEoK2f9S2VTcfI8Jahef+HAjLmkpzVpHkyKW1M5Kb86ri+nweA5YlBl/V6n0fh93fUzSHN74slurTsnr8gKUWtmJGd6gnJfNaTavKFJUlf7MtJ6/S6i5UCDy0LTQuNHd/n4/dChUZmkutKizAhRPH1w28w6nP1uN/NUK8qeLzwyzp48A0o3w06PgufLoC0bE1DvWj9HujzKvj9cP+talJEUGUehM/awqqxakJEowHw+PaQJETMz1zC/KwlGDDwXvVRRBkCtyHBn5+PbfTrAESPehFddPi0inJa/exeoCYnNukvyYkiNGrcEMWA75Op2NiM26bw0wuZ/PpKFh6HrIGLoq9Ad4zdunVj2bJlADzxxBOMHDmSWrVqMWDAAO6/v/gv0oviwemC/mPA6YaOLeCJu0I08Y6ZsGmK2lutx3Q1MSKApqXPA6BH6c5E6QO/Y9X+0af4j6eir1gBy5Oh6jVS8jitfhY8lcmysTn43FC9XSQD5iRTpYXsQg61snXM3Dg8kUErKnDbW6VIaR0BOkhd7+LnF7OY3P40S8ZkcXaXG0WR9hpaUxSY9/oEeqImbx24+gOqdr50mW27z8HAA8+xwrqOKH0kX101gQ4JrYMd7mVxr/wNa78HQFGIGvQA0aOGaR1S0J3Z6WLDF3/WKl03OTdsb77S9npw5SqYY3Qk15OHBUIIEUg+j4/yu8cDsKv8M1hiA7NDaVraPAB6l7kN7ydfgc+Hqd21mBpdfVmv3z47n5wTXiyl9DS7V8oY/6+EC+0zQlQp4kLrjJKyc7LWjeq/gUMrHCj+4N57+DwKO76zAdBYqkQIIYqxbQdhoNqVgSfugm9GwM6vYdfXMPoBdROdzwdLN8Gjb0PF7nDjkzBpLpzO0CbmgyfhjhfB4YJOLWHSM+pSc1AoCmz6DCY1hpMbIDIBes6Cu76GyLggTfqnM+40hh17C4AhFQbSOKZ+QMe3v/Mh/rR0DDWqE/XQ5bVRC5WdP+TjdSiUrmWicnPZhCFCJ668kV5flqXVw3Gggx3f25jW5xwZh0OT+CxEsBTorvH111+/eNyrVy9SUlL4448/qFWrFrffXrxLOYviY9insOMwlE2EL4cF8cLxf2UeggUPq8ftXoIaNwZ0+LPudJZkrwGC0zrDn52NbZx6ERozZiS6qOCX6yyJTm1x8dPQTPLO+NAb4fpnE2jSPwZdSH5Jxb8xRuio09lCnc4WrKe97J5nY9c8G7mnfWyfZWP7LBtlrjLRsHs0dW+zEJUgOwa18NN7n3CX83kAdtV4jQZ3D77ka/J8Ngbsf5YN+duJ0Vv4pvbbtIxtFORIL49n+05y7uwNbjcR3e8g9sOJxf69wOtSWDQiC8UHV90SxdndbnJP+dj6bT4t7g/+gsuVSt2gVomo3CxCqvgIIUSAbfjhB1qb95HjTaBJ/8AkZB93nmJV7noA+sZ0xP5Je4DLTvh25flZOzkXgGsfj8dsKd7VCa5UUtXzSRHHQ5QUcb5SRHylkpEUUblFBOYYHbYMP2d2uKnQKHgPSA4td5Cf5sNSSs9Vt0jJZCFE8XQuC7oOB7tTbZUx4X8uB+pWhZeqwksD4NBJtZrEnJWwaT+s3KZ+DHkP2jRQW2x0awdVArv37R+lZcOtL0CGFZrWhlmvqK0+gsKWAfMfgr3z1P+udgPc9Q3EVw7ShH+lKArPHnkNqy+Pa6Lr8mSFwCYt+NPTsb/1HgAxY0eiM5kCOn5h+H0KW79Vq2Y26SfrwiL09EYdbYfEU7l5BAtfzCTzkJdpvc5x4/AEGnSLlt9JUSQF5O69VatWPPPMM5IQIYqMX9bB+9+rx5+/CMlJIZjU64LZvcCVBynXQfuXAz7Ft+k/4sNHi5hruCqqWsDHt41/GyU7G2ODekQO6Bvw8Us6v09h3ae5zLwvjbwzPhIqG+k7PZmm98TKRUaYia9gpM1j8Ty0qDx3TylDnS4WDGZIP+Bh+es5TG5/mh+fzeDoGgd+n1SPCJVfp0zj1oxHAdhafhgN7r10RYUcby599g1hQ/524gwxfFvn/bBJiPAdPUZOp64oubmY2l1L/PQv0BmKf7LNH5OsZB5Wd9/ePCqRax9TG7du+CwPV174VYtIXecCoEpLqeQjhBCBpPgVkraq2za3lR5CXFJgEuNmpM8H4Pq4lpSd9wdKZhb6KpWJuOPymnBv+DwXR7afpGpGGnYPn/LK4SKhivpUxpHjx2H1BX0+awmrFGEw6ajeTt2ccHB5cFtoXHgQc3WPGAwmuR8VQhQ/LjfcNQJOpMFVlWHmK2D8l9NJzUrwQl9Y/ykcnglvPQat66tFFNbshGc+hGo9ofUgmPAtHDkdnJhtDrVCxOFTUL0C/Pg6xAQrb+3Qr/DR1WpChMEEHd+Ee5eFLCEC4Ou0H1iVu55InZn3q4/CpA/s+d722gSUvDyMja8homeoykhfnsMrHOSe9hGVoKfubZKcKLST0jqSgXPKkdIqAq9TYfGobH5+MQu3LfzW6IS4lAIlRYwfP54vvvjib5//4osveOONNwodlBDBdC4L7j9f7OSJu6BLqxBNvPgFOL0FLKXg7hlgCOxFnE/xMSN9ARCcKhG+46nY3/8YgJg3xpSIB3OhlJ/u4/tH0ln9vhXFB3VvtXDPd8mUqy+l2MOZTq8jpXUkt71ZikErKnDjSwmUrWvC54H9ix3MeSSDKR3PsPpD68VdbCI4fp85lw7H70WvU9gYP5jGj4675GuyPDn02vcEW217SDDEMbvOhzQJcBnGgvKnp5PdsSv+s+cwNqxPwvxZ6CKL/0P309tdbPxSbZtxy8tJRCUYqHubhaTqRpy5fjZ+nXeJEULL61Y4ueV8UkQrKWUphBCBtHHBQmqbtpPni+HqfkMCMqbb72Fm+k8A9C9zJ/b3JgFgefxhdP/2FOR/5J31snmq+qC43TMJUiHoH5gtemLKqveKOSGoFlHS2mcA1LpRTYo4tMwRtPZ96QfcnNzkQmeAa+6W5B8hRPGjKPDIBFi7GxJiYP54SLzMjlhVy8MzvWD1JDj+Hbz7BFx3tVqFeMNeGDoZavWBZg/C+Klw4ERgYvZ6odcrsHEflIqHhW8GaaOfxwk/PwVfd4S8M1CmLjy8Hto+D/rQVcg67EhlzIkPABhe+XFqRlUN6Pi+46nYJ00BIOb10ehC+P92OTZPu5CcGI0pMrxiEyVPdGkDPT4tQ9sh8egMsHehnak9z3Fur1vr0IS4IgV6N/3kk0+oU6fO3z5fv359Jk+eXOighAgWRVETItKyoWF1eP2REE28Zx6se1897v41xFcK+BQrres57T5HgiGWLkk3BHz8/JFjwOXC1L4d5s63BHz8kuzoagdf33WW1HUujFE6Oo1NosvrSUTEyAVvURIVb6Bxn1gGfFeOe75LpnHfGCLj9OSd9bFuci6fdTrD7AfS2LvQhscpmbSBtOmnX2mxszdGnY/1EffS7On3LtkTKd2Txd37HmeX/QCljYl8X/cjGkbXDlHE/82fn0/2rT3wHTyEPqUKCYvmoU9I0DqsoPM4/WrbDL+aGFazg7rgrzfoaPuEWi1i89d52DKDv+v0cp3Z4cLrVLAk6SldM3zKbAohRFGn+BUs68YCsDnuUZLKlQrIuItzfiPDm01ZUylu2KnHu30nREUR9eDAy3r9mg9z8boUKjWNoMYNxT9ZsaASU0LXQuNCUkR8CUqKqNY2EoNZ/flmHgnOz3jbTPVBTM0OUcSWKzk/WyFEyTFxFkxdDAaDWiHiqgIWP6hUFp7oASs/gJNz4MOnoUMTNXdg60EY8RnU7Q/X3Aujv4LdR9X16SulKPDYRLX6caQZ5r9W8Jj/09mdMLk5rFVbStDycRi0CSo0DsJk/86reHnyyKs4/S7axjXjvuQeAZ8jf9RYcLsxd7ge880dAj5+YaTt+zM5sVHvGK3DEQJQNwe2ejiO3l+WJbacgezjXmb0PceW6XlBS9QVItAK9MTt7NmzlC9f/m+fL1OmDGfOnCl0UEIEy4dzYNF69eJx+iiIDMWmzpzjMPd8v7Nrn4Xal1eW9UpNS5sHQI/SXYjSB3aBzrNtB85pMwGIfXOstHIIEJ9HYdXbOcwZlIEjy0+Zq0zcMyuZBl2lJ1dRl1zXzI3DExm0ogK3vVmKlNYRoIPU9S4WDs1icofTLB2bzdndbrloLCSv20up358gQu9mva4HzYdOQWf478ubM+407tr7KPscR0g2lWZO3UnUtdQMUcT/TfF4sPboj3fjZnSlkkhcPA9Dhb9fcxVHaz7MJeuol+jSejoMT/jL12rdFEVyfRMeh8KGz3K1CfAf/G/rDHnfFkKIwNn663IamNbj8EdSr+8zARt3epraOqN3mdtxf/gpAFH39EafdOltlun73eyabwPg+ufi5X3/P1xIisgKclKEz6OQd1ZNlixJlSLM0XpSWqn3/IeWBr6FhivPz54f7QA07iMPYoQQxc/CtWo1B4CJj8PNzQMzbrlS8GhXWPIOnJ4LnzwPt7QAowF2HYVXv4Sr74UGA2DkZ7Dt4OUnSIz9Gj5fqCZbzHgZWjcITMx/seNbmNwM0nZBdFno/xPc9iGYQ9+64YPT37DVtoc4QwwTq41ArwvsxjHPzl04p34LnK8SEWbXdVvOV4m46mZJThThp2KTCAbMSaZG+0h8Hlg+Pof5T2bitMomQBH+CnQ2qVy5MmvWrPnb59esWUOFChUKHZQQwbDjMLxw/oJ3wmNQv1oIJvV5YHYfcOZApRZw02tBmea0O42lOeq/yWC0zsgfOhIUhYjePTA1axLw8UuinBNevh2QdrFMfKM+MfT7NplS1WWncXFijNBRp4uFu6eU5aHF5WnzWBxxFQy4chW2zcxnWq9zfNPjHFum5eHICZ/d70WJ0WzEeP8ifjM/QuPh09Gb/vtm8aTrDHftfYzDzlQqmJOZU3dSwEswFpTi95N7/6O4Fy8Fi4XEhXMw1r5K67BC4tRWF5vOt8a45ZUkouL/2qJJp9Nx3ZMJgLpzMfdMeLSjSV3vBKBKS2mdIYQQgaRbpbbB2mB5kLJVygVkzKPOE/yeuxEdOvo5muGa+yMAlicGXdbrV71jBQVqd4yifEN53/8vFytFHPMEdZ7c014UPxgjdUSXLllV9i5U1Dq43B7wsXfPt+FxKJSqaaRyc/ldF0IUL7uPQr/RajLCQ7fD492DM0+ZBHjwNvjlLTg7H74YBre2BrMJ9qXCa1Oh6YNQux+8OBk27v33BIkvFsIrX6rH7z8Jd7YNQsDndsHc+8HnhqtuhcE7g7ax71J22Pbx7mm1dfvYlGepGJEc8Dnyh7+qrnX36IqpedOAj18Y9iwfe39WE3Gb9LvMni5ChFhUvIGu75em/dAE9EY4tNzB1z3OcnqbS+vQhPhPBUoze+ihh3jqqafweDx06KCWFlq2bBkvvPACzz77bEADFCIQHC71gtftgdvawKCuIZp42Ug4sRYi46HnTDCagzLNzPQf8eOnVWwjagX44Z5ryXLcvy4Dk4mYcS8HdOySyJHjY98vdn5/z4o7XyEiTken0UnUuin0WdcitOIrGGnzWDytB8WRut7Fzh9sHFxmJ32/h+Wv57Dq7RxqdoiiYfcYqrSKQG8Iryz1cFa5djUqj7x0+65jzpP03PcEp9xnSYmoyKw6H1A5InyqMOQPHalW5TEYSPh+GqaWAdquEuY8DrVtBgrUu8NCjRui/vH7UlpHULl5BCc2ulg7OZeOrwajeerlc9v9nNmp9k6s0lJKqAshRKDsXPkHjY0rcPtN1Oz1fMDGnZG+AID28a2I/2wedr8fc4frMTaof8nXHl/r5NhqJ3ojF5P0xL9LrKomeuekBjeJ8WLrjEqGsNvhGWw1bogCXTbndnvIPeMlrnxgdpEqfoWt51tnNOodU+J+rkKI4i0jB7oOhzw7XN9ITTAIxdtcYiwM7KR+WPPhp7Xwwyq1mvHhU/DWt+pHlWTo3g7uugFa1VOrQvyyDga9rY7zYj+1EkXAue0wqxd4nVCrM/RboE6uAYffyZDDr+JVfNya2J7upToGfA736j9w//QLGAxhuda94zsbPjck1zdRoVFwniUIEQg6nY6m98RSsXEEPz2fqW4CHZhG2yHxtLgvFp1eriNF+CnQXdPzzz9PZmYmjz32GG63uhgcGRnJ0KFDGTZsWEADFCIQnp8Ee45BuST4bGhoLng5uBh+f0M9vvMzSAxOaQqf4ru4wNevTNeAjq34/eS/MAIAy2MPYaweivIaxY/T6ufgcjv7Fzk4vs6Jcr4gQIVGZm59sxTxFaQMWkmi0+tIaR1JSutIHNYE9i60s2uujbS9HvYvdrB/sYPYcgYadI2mftdoEirJ70cgHHIcp9e+wZz1ZFA9sgqz6nxABXNZrcO6yDbxA+wT1J6dcV98TETnWzSOKHRWf2Al+7iXmLIGOgxN/Nfv0+l0tB0Sz7f3pLFrno3m98WSVFW76jonN7vweyGuoqFElewWQohgcy4ZB3pYHzGA62pWCciYbr+HWekLAbgnphOOKQ8AEPXkY5d8reJXWDUxB1AfEidUkff8S0k8/zPKOuZFUZSgPVjPOakmRZTE83B0aQMVG5s5tcXNoRUOmvQNzE7S4+tcZB/zYo7WUf/26ICMKYQQ4cDtgZ4vw5HTUK08zH5VrdoQavEx0O9m9SPfDj+vgx9+U1t6pJ6Dd79TPyqUVitLzFgKPh/0vwXGPhSkoH55GtL3QEw56P6VZgkRAK+fmMxB5zHKmkrxetWhAb+GUBSF/KGjAIh6YADGq2oFdPzC8nkUts1SkxOb9o+V5ERRJJRrYOae75JZ8mo2+36xc/R3J80HxhLgrjdCBESB7hx1Oh1vvPEGI0eOZO/evURFRVGrVi0iIqSsngg/C9bAx/PU46+Gq+XLgi73NMy5Rz1u8Rg06BG0qZbnrOWMO41EYzxdkm4I6NjOGbPxbtuBLi6O6BEvBHTs4s6V7+fwCgf7Ftk5tsaJ/382SZWtY6LeHdE07hODwSQXtyVZVLyBJn1jadI3lnN73eyaa2PvT3byzvpYOzmXtZNzqdIqgobdoql5YxSmSLmaLIh99sP03j+EdE8WtaOqM7P2+5Q1l9I6rIsc02eR/6yaVBrzxhiiBvTVOKLQObnZxeap6g3/La8kEhn/37/jFRtHUP36SI6scvLHR7nc9pZ2f4+p69SSgClSJUIIIQJm79otNNf/jE/RU+WuFwM27i/Zq8j0ZlPOVJo2C09gy87GUK0qEbd2unRMC+2k7fVgjtHR6pG4gMVUnMVXNqLTg8euYMvwE1PGcOkXFcCFShElMSkC1BYap7a4ObQ8cEkR285Xiah/ZzTmaLn3EEIUD4oCQ96DVdsgJgrmj4fSCVpHBTEW6NlB/bA7YfEGNUHixzVwOgOmqJ2+uLEpTHkhSJv8ds6GTZ+qg/eYBjHabR5ZnbuJz87NAmBCteEkmeIDPofrx5/x/LEOoqKIfnl4wMcvrANL7OSn+Ygurad2J6kqLIqOiBg9t76ZREqbCKq2iURvlGceIjwV6s7x7NmzZGVl0a5dOyIiIoK6A0CIgjidAQ+eL9bwTC+4ORSVyP0++L4/2NKh3DXQ6e2gTjctfR4Ad5fuQqQ+cIlJitNJ/kuvAhA97Fn0pUsHbOziym33c2Slk32L7Bxd7cDn/vNrpWuZqN0xitqdLJrubBbhK7mumeS6Zq5/NoFDyxzs/CGf4+tdpK5TPyLidNTtEk3D7tGUrWuS8+1l2mXbT+/9T5LttVLfUouZtd8nyZSgdVgXuRYvJffeRwCwPPU4luef0jagEHLb/2yb0aBbNNXb/XPbjP+v7RPxHFnlZN8vdlo8EEvZOtqUk0xd7wSgSitJChZCiECx/vwaAOsMvbm2fs2AjTstbR4AvUvfhuuDTwCIGvwIOsN/P6z3uhR+f98KQMsH47AkBufhfnFjNOuIq2DAetJH9nFP0JIirCfUEnwlNSmiVgcLqyZYObHRhdPqv2Ry6aVYT3s5vNIBqFVRhBCiuJg0V00w0Olg+iioH4aFcC2R0K2d+uFyw5JNaosNrw8+fDpIVS2yj8L88+Un2g2HGjcGYZLLY/Xm8fSRsQD0K3MnNya0Cfgcis9H/vBXALA8+RiGCuHTTvWCLdPU5MRreslGOlH06HQ6GnaTa0gR3gp055iZmUnPnj1ZsWIFOp2OgwcPUr16dR544AESExN5++3gPgQW4nL4/XDva5Bphca1YOyDIZp41Tg4ugLM0dBzFpiCt4P0lOscy3PWAuoFYyDZP/oUf+oJ9BUrYLmMsrIllcfp5+jvaiLEkVVOvE7l4teSqhmp3dFC7U4WSteURAhxeYwROup0sVCniwXrKS+75tnYNc9G3hkf22bms21mPmVqm2jYPZq6t1qISpDF+X+zNX83/fY/jdWXR6Poukyr/Q6JxsDvNCgoz8bNWO/qB14vkX3uJubt8SUq2WX1e1ZyTniJTTbQ/oWEy35d2Tpm6nSxsO9nO6vft9J9UpngBfkvHDk+0vZ5AKjSQipFCCFEIBzauodWzAEg+c7A7dw77Ejlj7zN6NHTb3dZvLv2oIuOJur+ey752i3T88g74yM22UCT/rLAdyUSU0xqUsQxL5WbBWeOC5Ui4ktou7mEKkZK1zKRcdDD4VUO6t9RuHYX22flo/jVhM9S1eX+VQhRPCzZCE9/qB6//gjcFvhn7QEXYVbjDGqsPg/M7gOuXKjSBtq/EsTJLm3U8Xc47T5H1YiKvFxlSFDmcE79Ft/uvegSE4ke+nRQ5iiMMztcnNnhxmCCa+6W604hhAiGAqWRP/3005hMJlJTU7FY/izj06tXLxYtWhSw4IQojHdmw7LNaqbt9FHqBWXQHV0JK9TqCtw+GcrUDup0M9N/xI+f1rGNqRmVErBx/VlZ2Ma+CUDMmJHooi5v925J4XUrHFrhYOHQTCa1O82CpzM5sNiB16kQX8lAywdjGfB9MvctKMe1g+MlIUIUWHxFI9c+Hs/Di8vT49My1OlswWCC9P0elo/PYXL70/z4XIbaosWnXHrAEmRj3nZ67xuC1ZdHs5iGfFv7/bBKiPAeOEh2l+4oNhvmm9oT99Un6DTs2xlqJzY62TL9fNuM0YlExF7Z//u1j8ehM8CR35yc2uIKRoj/KXWDOmepmkaiS0tikhBCBMK5eeMBWKd0o2aT+gEbd/r5ynrt41thmayWZI4c2Bd9QsJ/vs6R42P9lFwArh0SL23MrlBiipqokJ3qvcR3FoyiKFhPluz2GQA1b1Tv1Q8tdxRqHK9LYeccGwCN+8iDGCFE8XDgBPR+BXw+uKcjPNtb64jCyLKRcHI9RCbA3TPAoN259OeslXyf+Qt69LxbfRTRhsC3jVCcTvJHqZUoooc9e8nrQC1cWCOp3dki6wxCCBEkBTrb/frrryxevJhKlSr95fO1atXi+PHjAQlMiMLYcgBemqIeTxwMtauEYFJbOnzXFxQ/NL4XGvUP6nRexcuM9AUA9C/bNaBj28a/jZKTg7FBPSJLUG/7/+LzKBxfq1aEOLTcgTv/zwfQcRUMFytCJNeTtgYi8HR6HVXbRFK1TSQOawJ7F9rZ9YONtH0e9i9ysH+Rg9jyBhrcGU2DbtHEVyy5C8MAa3I3c++B57H7HbSObcLXV70VlJvqgvKdOUt2x64oGZkYmzYm/ocZ6MzatIDQgtvuZ9HILACu7hFNtWuvPPEuMcVEw27R7Pjexu/vW+n1ZZmQvvemrlNbZ6S0lCoRQggRCMf3HKaVbwboIL7LSwEb1+l3MTvjZwDud7TCteB+ACyDH7nka9dNycWVp1DmKhP1bguf64ii4mJSxLHgJEXYM/14HIr6O1OCr31r3RjFusm5HF3jxOP0Fzh5Z/8iO44cP7HlDNS4XjZFCCGKvuw8uHMY5ORD6/ow+Vm1fYYADv0Kv5/vN931c0gI3Ea7K5XmzuSFY68D8Fj5/jSPvToo89g//gz/iZPoK1W8rOvAUMtP87F/sR2Apv1jNY5GCCGKrwLdOdpstr9UiLggKyuLiAjpqyy0ZXNAv9Hg8ap92B68LQST+v0wZwDknYHSdeC2D4M+5fKctZz1pJNkTKBz4g0BG9d3PBX7B5MBiHljzCX77BZnfq9C6gYX+xfZObjUgTPXf/FrMckGat8SRe1OFspfbZZECBEyUfEGmvSNpUnfWM7tdbPzBxt7F6rtNdZOzmXt5Fya9Iuhw7BErUPVxMqcdTxwcChOxc31cS35vNbrRBnC58G132olp3M3/MeOY6hRncSf56CPLVk3vL9NtGI96SO2vIHrn0so8DitHolj9wIbJze5OP6Hi6rXhu7vOXW9WimiSqvw+d0SQoiiLPX7N0jR+dnk60SzNk0DNu4vWSvJ9lopby5L46mbcSoK5ltuxFi3zn++Luekl20z1N167Z6NR2+Qa/0rlVj1fFLEcU9Qxs85X4EitpyhRPfcLlvHRFwFA7mnfRxf66Jm+4IlNGz99nwP854x6I0l9+cphCgevF7o86paKaJyWfh+DETKIwtV3ln4/nwLsRaPQf3umoWiKArPHX2NbK+VepZaPFsxOL2v/VYrtnHnKyK/MjwsKyJvm5WP3wsVm5hJrldyNs0IIUSoFSgp4rrrruObb75hzJgxAOh0Ovx+P2+++Sbt27cPaIBCXKmnP1AveiuWgU+fD1EW8B9vw8FFYIyEXrPBXLhenpdjato8AHqW7kKEPnAXS/kjx4DLhal9O8ydbwnYuEWF36dwcrOaCHFgqQNH1p+JEJZS+osVISo2MqPTy2KR0FZyXTPJL5m54bkEDi5Tq0ccX+eiVI2S2bLl1+zfeeTQS7gVDzcntGVyzbFE6sNn5UNxucjp2hvv9p3oy5YhYfE89GXLah1WSKWud7Jtprro3ml0EhExBS9FHlfeSKPeMWz+Jp/f38shpU1ySBLUcs94yT7uRaeHSk3D5/dLCCGKqtOHT9DS9RXowXxT4KpEAExPnw/AAEtHXJ+PA8Ay5NFLvm71+1Z8HkhpHVGgikZCreoEkHPCi9+nBDyxJEdaZwDqelzNDlFsmZbPoWWOAiVFnNnp4uwutYd5w7uCv5YhhBDB9vzHsGSj2lJ57jgoV0rriMKE3w9z7gFbGiQ3hE4TNA1nRvoClln/wKwz8UH1lzHrg7OWZX/rXZTMLAx1riJyYL+gzFEYXpfC9u/UdZImUiVCCCGCqkB3j2+99RYdOnRg06ZNuN1uXnjhBXbv3k1WVhZr1qwJdIxCXLY5q+DzhWoixNfDISkuBJOmroUlw9XjW9+Hcg2DPuVJ1xlWWNcC0LfMnQEb17NtB85pMwGIfXNsial+oPgVTm1zq4kQv9qxZfyZCBGVqOeqm6Ko3dlCpaYRsktMhCVjhI66XaKp2yUa6ykvUQklr+f1T1nLefzwKLyKjy6J7fmoxqtBu6EuCMXnw9r/ATwrf0cXG0vConkYa1TXOqyQctv+bJtxTc9oUloXvspCywfj2PG9jXN7PBxc6uCqm4Nf3jx1g1olIrm+mci4kvdvTQghAu3grAlU0HvY5r2eRh3aBmzcQ45jrM3bih49dy92olitGGrWuGTi99ldbvb9bAcdtHsmIWDxlDRx5Q0YTOBzQ95ZX8BbXOSckKSICy4kRRxe6cDvVa640sOFhNXaHS1Elyq5lSKFEMXDlB/h/e/V46+GQ+OrtI0nrKx+Cw4vBZMFes4Ck3aJn8edp3gl9T0AhlZ6hDqWGkGZx3vwELYJ7wMQ89or6Izhd92w92cbjiy1hVWtDpKMK4QQwXTFZwGPx8OQIUP48ccfWbJkCbGxseTn59O9e3cef/xxypcvH4w4hbikE2nwyFvq8dC+0L5JCCZ1ZMPs3uD3QoNe0DQ4Zb7+v2/Tf0RBoU1sU2pEVQnYuPlDR4KiENG7B6ZmofgBakdRFM7udLNvkZ0Dix3knfNd/FpknJ5aN6mtMaq0iJDyoaJIKYk9lX/IWMyTR0bjx0+3UrfwbvWRGHXh83NQFIW8J5/H9f08MJlImPctpsbXaB1WyK2akEPuaR9xFQ1c/2xCQMa0JBloNiCWtZNzWf2+lZodooKevJa6zglASkupEiGEEIWVfuIcLWyfgh58bQNbJWJamlol4qb4NpgmTcMHWJ54BJ3+3xPaFEVh1ds5ANS7zUJyXSlfXFB6g474ykayjnjJPuYN+DWq9UJSRKXwuebTSqUmEUQl6HHk+Dm11UXl5pefeGrP9rHvF7WHeeO+McEKUQghQmLVNhj8jnr86v1w1/WahhNeUtfCsvPXWrd+AGXrahaKT/Hx5JHR2P0OWsU24qFyvYMyj6Io5D3xHLhcmG+5kYiutwdlnsJQFIWt09XkxEZ9pIWVEEIE2xXfPZpMJnbs2EFiYiIvvRTYRQshCsrng4HjIDsPmteBV+4PwaSKAnMfAGsqJNWAOz8NSa8Or+JlZvqPAPQv2zVg47qWLMf96zIwmYgZ93LAxg0niqJwbo+H/Yvs7F9sJ/f0n4kQ5hi17GidThZSWkeW6L60QhQlXsXL5LPT8eOnV+lbeavaMAy68NrhZnvtLRwfqeeI+KlTMHe4QeuQQu7YH062f2cDoNOYJMzRgauw0GxgLFu/zSfrqJc9P9lpcGfwyj4rikLqerVSRJWWha90IYQQJd3ub9/hBr2T3Z4WNOl8U8DGdfpdfJfxMwCP7KmCb98BdDExRN7b/z9fd+Q3Jyc2ujCYoe2Q+IDFU1IlppxPikj1UPXawJ43L7TPiJdKEeiNOqrfEMnueXYOLnNcUVLEzh9s+NyQXM9EuYaSBCSEKLqOnoG7R4HXBz07wEsDtI4ojDhy4Ls+4PdBw97Q5D5Nwxl/4mM25u8gRm/h3eqjgraG4/p+Lu7FSyEigtgP3w7LisgnN7tI2+fBGKnj6h7SwkoIIYKtQHeP/fv35/PPP+f1118PdDxCFMhb36rZwNFRMG0kmEKxLrL+I9g7FwwmteRYZCh6dcDSnDWc9WRQyphI58TApDwrfj/5L4wAwPLYQxirVwvIuOEi/YCbfb/Y2b/YQU6q9+LnTRYdNdtHUbujharXRmKMCL+LYyHEfzPqjMyo/S7T0uYzpMJA9Lrwamfg+PxrbCNGAxD77htE9uqhcUSh58r3s3iU2jajUZ8YqrQI7EORiFg9LR6I5beJVv74yEqdzhaM5uC8n2cf85Kf5sNghgqN5cGBEEIURva5LJrmfAQGyG/5Ejp94N67F2atIMeXS0VzOa76fCUeIPK+/ujj/v2eze9V+G1iDqD2c44rLw/bCysxxQQ4yT7mveT3Xilpn/FXtTpY2D3PzqHlDtoPTbisBz9+n8L2Weru1MZ9Y8PyYZEQQlyOXBvcOQwyrdC0Nnw+NCT71ooGRYH5D0HOcUisDndM1vSH89W57/n47HQA3qg2lMoRwak67s/LI++poQBEv/gMxlo1gzJPYW2Zpp6H691uISo+vDb4CCFEcVSgu0ev18sXX3zB0qVLadq0KdHRf81imzhxYkCCE+JybNgLL3+hHr//JNSsFIJJT2+BRc+qxx3fgopNQzCpalraPAB6lbkVs94UkDGdM2bj3bYDXVwc0SNeCMiY4eKPSVb+mJR78b+NkTqqXx9JnU4Wql0XiSkyvB6gCiGuXGlTEk9V1Hanwz9xLlhI7sNPAGAZ9hyWIY9pHJE2Vr6Vo/YSr2Sg3dPB2XXbuE8Mm6fmkXvax845+TTuExuUeY6vV1tnVGgUIecPIYQopO3TP+AGQz4HPFfT/PbbAjr2hXumh/Na4lk4FgDLE4P+8zW75tnIPOwlMl5PywdDk/Be3CVVVZecslMDmxThtvuxZ/oBSYq4IKVNBMYoHbmnfaTv91C2zqWTN4/85iT3tI/IeD21O0kPcyFE0eTzQf8xsPsolC8Fc8eBRYr6/WnTFNj9PeiN0HMmRGpXCevX7N8ZeVztb/JCpUfoWuqWoM1le+U1/KfPYKhRneihzwRtnsKwnvJyaLkDgCb9grOGIYQQ4q8KdPe4a9cumjRpAsCBAwf+8jXJLBehlGdXL3wvlEYb2CkEk7ryYFYv8Lmhzh3QakgIJlWdcJ1hpXU9AH3L3BGQMRWnk/yXXgUgetiz6EuXDsi44eDkZhd/fKwmRFxojVH9hkjMFnmQJYQILveatVh7DQS/n8j77im2bYku5ehqBzvnnG+bMTYpaO+/pig9rR+JZ+nYbNZOzqX+ndFBmSt1ndo6I0VaZwghRKHkZedxTfp7YISMa4ZzlTFw79n77UfYkL8dAwZum30KAHOXjv+5Q9Bt97PmIysArQfFERkn9wuBkFDlfFJEgCtFWM+3zoiM08vf1XmmSD3V2kRycJmDg0sdl5UUsXVGHgANu0dLsqcQosga8RksXAsRZvhhHFQso3VEYeTcLvj5SfX45vFQqblmoWzN382jh0fix0/fMncwpPzAoM3l2bEL+3uTANS2GVHhmfi39dt8FD+ktIqgdM3AbHwUQgjx3wqUFLFixYpAxyFEgQx5Dw6fgirJ8PEzIaj+pSgw/xHIOgTxlaHblyEtOTYjfQEKCm3jmlEtsnJAxrR/9Cn+1BPoK1bA8mTx2cXstvn55aVMUKBBt2g6jUnSOiQhRAnh3b2HnNt7gtOJ+dZOxH36QYlMGnXm+ln8cjYATfrFULlZcBMJGt4VzcavcrGe9LF1Rn7Ad/kqfoUTG9SkiCotIwI6thBClDRbpn3M9cZsjrqvomWPwLaWmp4+H4DbTM3Rfz0TBbAMefQ/X7N5ah62dD/xlQxc0ysmoPGUZElV1QV+6ykvPo+CwRSY66ELrTPiK0uZ6f9Vs0MUB5c5OLTcwbWD/3sncNZRD8fXukCH/M4LIYqsqYvhzRnq8WcvQIu62sYTVtx2dVOf1wm1OkEb7aolHHOeZOCB53H6XXSIb834qs8HbY1E8fvJe/Qp8PmI6NGViE43B2WewnLb/ez8QW2d0aS/VIkQQohQkVRwUWTNXAbfLAK9HqaOgIRQXD9s+QJ2fgt6g1pyzBK6B+0ev5eZ6T8C0L9s14CM6c/Kwjb2TQBixowM28zZgljxZg7Wkz7iKhpoPzRB63CEECWE78RJsjt1Q8nOxtSqBQmzv0FnLJllnVe+mUP+OR8JVYy0fTL4JToNJh3XPq7Os+GLXJy5/oCOn7bPgzPXjzlaR7kGl959KYQQ4p858h3UO/U2AKfqDcNgCtyDbYffyfcZvwDw8BIzSl4ehtq1MN/c4V9fY8vwseFzdcf8dUMSMJpLXiJjsESX0WOK0qH4/6zuEAgXkiKkdcZfVb8hEp0B0g94Lv6M/s22meqDmOrtIkmoJD9HIUTRs243PPyWejysP/QNz2ff2vnlKUjfAzHloPvX6gK6BrI8OfTf/wyZ3mwaWmozueZYjLrgnXecX03D88c6dNHRxL7zRtDmKaw9P9px5SokVDZSvZ1UohRCiFCRpAhRJB07A49NVI9fugfaXh2CSc/thoVqb3huHAtV2oRg0j8tyVlNmieT0sZEOia0C8iYtvFvo+TkYGxQj8gBfQMyZjg4vPJ8uXYddB6bRESMvNUJIYLPn5VFdqeu+E+ewlDnKhJ++g6dxaJ1WJo4vMrBrnnq+3Aw22b8f3W6WChV04grV2HTV3kBHfv4OicAlZpFoDfKAzMhhCiojdM+o4wpjZOeFFr27hfQsX/MXIbVl0cVYzkqfbYIUKtE6P7jQcDaybl47ArlGpip3an4JImHA51OR2LK+RYax4OQFCEP8/8iKt5A5WZqNasLPcr/idvuZ9d8tb1Z475SJUIIUfScSIPuI8DtgTvawugHtI4ozOycDZumqNWNe0yDmLKahOHwO7nv4AscdZ2gkrkcX181gWhD8NZI/JmZ5L0wAoDoV1/CUKli0OYqDEVR2DJdXa9o3DcGnV7WF4QQIlTC4knhRx99RNWqVYmMjKRly5Zs2LDhsl43c+ZMdDodXbt2DW6AIqx4vTBgHFjzoXV9GDEgBJO67TCrJ3gcUPMWaPtCCCb9q2lp8wDoVeY2zPrC9xnzHU/F/sFkAGLeGIPOUDxKj9qzfCwelQVAswGxVG4u2bZCiOBT7HZybu+Jb88+9BUrkLh4PvpSpbQOSxNOq58lr6ptM5reE0OlJqFrNaE36Gj7hFotYvPUPGwZvoCNnbpebZ2R0krOK0IIUVBup5uax9RKdUdqDMUUEdj+ydPS5wHw9J6a+A4eRhcX95/J31lHPWz/Tt0x3+6ZeFmUDoJgJEVYT6rnd6kU8Xc1O6iJPf+VFLH3JzvufIWEKkaqtpbrGiFE0WJzQLfhcC4Lrq4BU1/SrAhCeMo+CvMfUo+vGwY1btQkDJ/iY8jh0WzK30m8IZaptSeSbC4d1DnzX3wZJTMLY8P6l2ydpqXjf7jIOuLFHK2jQbdorcMRQogSRfNLhlmzZvHMM8/w8ssvs2XLFq655ho6duxIWlraf77u2LFjPPfcc1x33XUhilSEi/HTYM1OiLXA1JEQkqrkPw/5s+TYXVNDfrWd6jrNqtz1APQtc0dAxswfOQZcLkzt22HufEtAxtSaoigseTUbe5af0rVMtB0S/HLtQgiheL3k9L5XLdGYkEDiorkYqlTWOizNLH8jm/w0H4lVjRcTFEKpZocoyjUw43EorP8sNyBj+jwKJ7eoSRFVWoQuyUMIIYqb9TO+oYLpJGc95WnR976Ajr3XfojN+bsw6gxc/80eAKIeGIA+5t93wv/+rhXFB9Wvj6RKC3k4HAyJKWriS/YxT8DGvFApIl6SIv7mQlLEyS0ubJl/Tw5VFIWt36qJQI37yO5UIUTR4vfDveNh60EokwDzXoOYklmc8Z/5PDC7N7hy1QrHHV7RLJQxqR/yc/YKzDoTn9d6nauiqgV1Pvfa9Tg++wqA2EnvoDMFNvE2kDZPU6tENOgaLdWNhRAixDR/1504cSIPPfQQ9913H/Xq1WPy5MlYLBa++OKLf32Nz+ejX79+vPrqq1SvXj2E0QqtrdkJo79Wjyc9A9XKh2DS7dNh8+dqybG7p2tScmx62nwA2sW1oGpkpUKP59m2A+e0mQDEvjkWna54LITsWWDn4DIHeiN0GZ+EMaJ4/H8JIcKXoijkDnoS948/Q0QECQtmYWxQX+uwNHNohYM9C+zo9Gr7IlNU6C81dTod1z2pJmNsn5WP9XThd6ae2eHG61CIStJTulb4Lq4IIUQ487q9pBwYD8D+ys8RGR3YJIQL90x9MxvAklWg0xE1+JF//f5TW1wcXOZAp4d2zyQENBbxpwuVIrICVCnC71XIPX9ul0oRfxdX3khyPRMocGTl36tFnNzsIuOgB2OUjvp3yu5UIUTRMuZr+GEVmIzw/RhIKad1RGFm6Qg4uQEiE+DuGWDQ5t71s7OzmHJOXXd+p/oIWsc1Cep8itdL3qNPARB53z2Y24a25fWVyDrm4ejvTtBJCyshhNCCpkkRbrebzZs3c9NNN138nF6v56abbmLt2rX/+rrRo0dTtmxZHnjg0g3DXC4Xubm5f/kQRZM1H+4Zq2YF97sZ+t4cgkkzD8KCQerx9SOheocQTPpXHr+XWRk/AdC/bNeAjJk/YjQoChG9e2BqFtwL01DJPeNl2Xi1XHubx+IpW8escURCCCj+52HbqDE4P/8a9HriZ36F+bprtQ5JMw6rjyWvnm9fNDCWCo20q6iQ0jqSKi0j8Hlg7ceF/507vs4JqFUiZEelEKIoCafz8PrZs6hiOkKmtxTN+v97skJBOHxO5mQuAmDgD+ruu4jbu2Cs/s+7EhVFYdXbOQA07B5N6RqS8BYsF5IicgKUFJF3zoffqz7niSlbPFpABlqtG9Vt0weX/T0p4kKViHq3WoiM03yflBDFXjidh4u62cth9Ffq8aRnoO3VmoYTfg79CqvVFmV0/RwSUjQJ4+eslbyS+h4Awys9RtdSwa9ObP/wE7zbd6JLSiL2zTFBn68wts5Qz8PVr4u8WE1LCCFE6Gh6B5SRkYHP5yM5Ofkvn09OTubs2bP/+JrVq1fz+eefM2XKlMuaY/z48cTHx1/8qFy55JazLsoUBR6bCMfPqtUhPnw6BJP6fWrJMXc+VG0HN4wMwaR/tzjnN9I9WZQxJXFLQuHbxXg2bcG9cBHo9cSMHhGACLWn+BV+eSkLd75ChWvMtLg/VuuQhBDnFefzsP3DydjGqosOsZPfI7Lr7RpHpK3lr+Vgy/CTVM3ItYO1b190oYXS7vk2so4WrmT3iQ1q64yUVlJaXQhRtITLedjv9ZO88zUAdiY/TXR8YHeoL8haSq4vn7rusiTOWApA1JBB//r9B5c6OL3djTFKR5vHtT9nFWeJVdWkiLxzPtx2f6HHu9g6o5IRvUESFf9JzRvVFhrH1zlx2/78meed83LofKJEo96yO1WIUAiX83BRt3k/3P+6evx0T7j/Vm3jCTt5Z+H7e9TjFo9C/e6ahLExbwdPHH4ZBYUBZbvzWPn+QZ/Td+o0tpFqIkTM66+iL1066HMWlCvPz655NgCa9Je1ayGE0EKRSgvPy8vjnnvuYcqUKZS+zBPcsGHDsFqtFz9OnDgR5ChFMEz7FWYuA4MBpo2EuFBUeTzwM5ze8j8lx7QpzXmhDGyv0rdh0hc+hvzR6l1EZN+eGGvVLPR44WDL9HxObHBhjNLReXwSeqMsjgkRLorredj53Q/kDXkegOhXX8LyUGD7ohc1B5fa2bvwfNuMceHRvqjCNRHUaB+J4oc1H1oLPI7b7uf0djUpQvrNCyGKmnA5D2+YO4+a5j1YvfE0vmdwwMefmjYPgBeWJoLNhqFeHcwdbvjH7/V5FH57Rz0vNB8YS0wZqTYQTFEJBiLj1aWnnNTCV4v436QI8c9K1TCSUMWIzw1H1zgvfn7Hdzb8XqjYxCyVFYUIkXA5DxdlZzKh20vgcEHHFvDGv+c8lkx+P8y5B2xpkNwQOr2tSRhHnCe47+ALOBU3NyVcy5iUp0PSrjnv2WEo+fmYWrUg6oGBQZ+vMHbNs+GxK5SqYSSltXaVNYUQoiTT9C6ydOnSGAwGzp0795fPnzt3jnLl/t4U7PDhwxw7dozbb/9zJ6bfr2a9G41G9u/fT40aNf7ymoiICCIi5CRTlB0+BYPfUY9fvhdahapV+4aP1T+bPgBxFUM06V8dc57kt9wN6NDRr+ydhR7Ps2Wb2vderyd6xAsBiFB7GYc9/PZODgA3PJdAYhUpPSZEOCmO52H3ilVY+z8IikLUoAeIHvmi1iFpyp7tY8lotX1R8/tiKX91+Px9tx0cz+GVTvYvdtDiQTfJda/8AcCpLS78XoirYCC+sjw4E0IULeFwHlb8Cgmbx4IJtiYN5oZSga3MsNt+kK223Zj9eq6ZugEAy5BH/3Uhfsf3+eSkerEk6Wl+n+zSC4XEFCNndrjJTvUW+mG89aSaFJFQWZIi/o1Op6PWjVFs/DKPQ8sc1L7Fgs+jsON7tWR34z7yey9EqITDebgoc7ig+0twKh3qVIFvX1Y3zIn/sfpNOLwUTFHQc5b6Z4hleLK4Z//TZHutNIquy8c1xmDUBf887VqyHNesOaDXE/vxu+j04bv/1+9T2DJdbfHWpF9sSBJGhBBC/J2mZwqz2UzTpk1ZtmzZxc/5/X6WLVtG69at//b9derUYefOnWzbtu3ixx133EH79u3Ztm2blCArhjxeuGcs5DvguqvhxX4hmjj7KBxSe9LSPLD9bq/EjPQFAFwf34IqERUKPZ7tQpWI3j0w1r6q0ONpzedR+GVYJj43VG0byTU9Q1FCRAhRknm27SDnzt7gdhPR/Q5iP5xY4m9ml7+Wgz3LT6kaxrArQV6mtpm6XdS+2qvfL1i1iOPrzleJaBlZ4v+uhRCiIDb9tIg6pq3YfBYa9nsq4ONPO18l4ontVeBIKrrERKL69/7H73Xl+/njY7Wfe5vH4jFHh+/ieXGSmKI+GMk+FrhKEZIU8d9qdlAfih35zYHPo3BwqQNbhp/o0npq3RT6B2ZCCHGlFAUefgs27IXEWJg/HuKl889fpa6FZedbI9/6AZStG/IQHD4n9x54nmOuU1SJqMBXV03AYgj+eUZxOsl7TO2vbXliEKZGVwd9zsI48psT60kfkXF66t5m0TocIYQosTS/i3zmmWcYOHAgzZo1o0WLFrz77rvYbDbuu08tQz1gwAAqVqzI+PHjiYyMpEGDBn95fUJCAsDfPi+Kh9Ffwfo9kBAD34wIYTbwxk/Vq+8aN0OpWiGa9K/cfg+z0n8CoH+ZroUez7NtB675P4FOV2yqRKz9JJdzezxExuvpNDpJHlYJIYLKd/QYOZ27oeTlYbq+LfHTv0BXwrep7P/Vzr5f7OgM0GlsEkZz+L0Pt3k8jv2L7Rz93cnJLS4qNbmynVonNqhlp6u0lB1eQghxpRS/QuQfapWITbGDuL5CYPs823x2fshQk9m7zjwNQNSDA9FF/3Oy9MYv8nBk+UmqZqThXZJQHSqJVc8nRaR6Cj2WJEVcngrXmLGU0mPP9HNig4ut36q7U6++OwaDKfyu14QQ4v97cwbMWKKuBc8eDTUraR1RmHHkwHd9wO+Dhr2hyf0hD8Gn+Hj88Mtste0hwRDH1KsmUsaUFJK5bW+9i+/QYfTlyxE9ekRI5iyMLdPU83DDu6IxWyQpVwghtKL5O3CvXr2YMGECo0aNolGjRmzbto1FixaRnJwMQGpqKmfOnNE4SqGFVdtg/DT1+ONnoUpyiCb2umDL5+pxi0dDNOnfLc75jQxvNmVNpbgpoW2hx7ONUatERPS6C2PdOoUeT2tndrhYP0Xd5XXTyERiypbsB5NCiODyp6eT3bEr/rPnMDasT8K8megiI7UOS1O2TB9Lx6htM1o+EEf5huGZNJBYxUTDbuqDr9/fzUFRlMt+rcPq49xe9QFOlZYl++9bCCEKYvvSVTQ0/YHTH0HtPs8GfPz5mUvJ99u57kQ80Ss3g16P5bGH/vF788552fSNuiB93VPx8mA4hC60OCxspQhFUS4mRcRXkqSI/6LT6y5Wi1j3aS6ntrjRG+Gau2WbtRAi/M1fDS9NUY/fGwIdmmgbT9hRFJj3IOQch8RqcMdkCPFGMUVRePn4uyzO+Y0InZkvr3qTmlEpIZnbe/gItnFvARD7zuvo4+JCMm9BpR90k7rehU4PjfrIeVgIIbQUFneRgwcPZvDgwf/4tZUrV/7na7/66qvAByQ0l50HA8aq13j3doaeHUI4+Z4fwJYOcRWh9u0hnPivLpSB7V3mdkz6wv1T9ezYheuHBaDTETNyaACi05bH4efn4VkoPqjTxUKdTlJ2TAgRPP78fLK73IXv4CH0KVVIWDQP/flKVSXZsnHZOLL9lK5lotWg8F6EaDUojl3zbZza4ubYGifV2l5eOc8TG1ygQKkaRmLKSPKdEEJcKf/KsWCADVH3065q4dsB/n/T0ucB8OR89UFAxJ23Yqj6zwvyaz7MxetUqNjYfPFhsQiNi5UijhcuKcJp9ePOV5Mb4yvJeflSanaIYsd3Nk5uVluB1bwxSjYTCCHC3o7DaitlRYFHu6of4v/Z9CnsmQN6I/ScCZGhb2P5ydlv+TLte3ToeK/GKFrEXhOSeRVFIW/ws+ByYb6pPRE97wrJvIWxdXo+oJ6H4yuExeM4IYQosTSvFCHE/6co8MhbcDIdalVSM4JDasPH6p9NHwKDNhcqR50nWJ27CR06+pW5o9DjXawScXc3jPVC318u0H57x0r2MS8xyQZueilR63CEEMWY4nZjvasf3k1b0JVKInHxPAwVymsdlub2LbJz4FcHOgN0HheebTP+V2yykcZ9YgH4/T0riv/yqkUcX3ehdYZUiRBCiCu1a9U6mhiW4fEbqX534Nv37bTtZ7ttL6XydFT/fiMAlicf+8fvTT/gZvd8GwDXP5cgbfdCLLGKel/tyPbjtPoLPM6FKhExZQ2YImU561KqtIzEHP3n73pj2Z0qhAhz6TnQdTjYHGp1iHee0DqiMHRuF/z8lHp883io1CLkISzIXMqYEx8AMLLyE9yedGPI5nbNXYB70RIwm4n9aGLYX9M5cnzs+dEOQNP+sRpHI4QQQu4iRdj58meYswqMBpg2EmJCWQTg3C44/jvoDdDswRBO/FfT0+YD0D6+FZUiCvfwzbtrN67v5wEUiyoRx/5wsnWGmmHbaUwSkfHyNiaECA7F7yf3/kdx/7oMLBYSF87BWPsqrcPSnC3Dx7KxatuMVg/FkVzPrHFEl6fFg7GYLDrS9no4sNRxWa85sUHdWVmlZXi2BhFCiHBm/3UcAOtN/alUu2rAx79QWe/5JQngcGK8ugGmdv/cdvC3d6wofrjqligqXCPv6aFmjtYTXUa9b8tO9RR4nD9bZ0i1g8thNOuodp2a2Fm6lolKTeV3XwgRvtwe6DECjp+FGhVh1qtgkk31f+W2w6xe4HVCrU7Q5pmQh7A+bxtPHhkNwP3Jd/Nwud4hm9ufn0/ek2qibfTQpzFeVStkcxfUtpn5eF0KZeuaqNikaKydCCFEcSZPE0VYOXACnnxfPR7zIDSrE+IANk5W/6x9h9o+QwMuv5tZGQsB6Ff2zkKPlz/mDQAienTF2KB+ocfTktPqZ9HILEDtwVa1jezcFUIET/4LI3BOnwVGIwnfT8PUsrnWIWlOURSWjsnGkeOnTG0TrR4J77YZ/8uSaKDZQHVnxpoPrPi9/10tIu+cl6yjXnR6qNxczjdCCHEl9m/YTgv9T/gVHRXvGhbw8fN9NuZm/orBq9D+2wMAWIY8+o+7BVPXOzn6uxO9Ea57MvTlpYUqMcUEQPaxgrfQsJ7wAZBQWZ6SXa4WD8SRXM9E+xekQooQInwpCjw2EVbvhLhomP8aJBWdW83Q+eUpSN8DMeWg+9egD+2jnUOOY9x/4AXciofOidfzSpUnQ3pusb06Hv/JUxiqVSV62HMhm7egXPl+Nn+jbuxrfl+snIeFECIMSFKECBseL9wzBuxOaN8YngtdoqnKlQ/bvlGPWzwa4sn/tCj7N7K8OZQzleamhGsLNZZ3z15c380FIHrki4EIT1PLXssm/5yPxKpGrn9GFjSFEMFjm/Ae9rfVLL24zycR0fkWjSMKD/t+tnNwmQO9UW2bYTAVrZv6ZgNjiUrQk3XUy+4fbf/5vanr1CoRyfXMRMbJJbMQQlyJrJ9eA2CdvifVGga+ytK8zCXY/HZ6ro/AlHoWXakkIvv2/Nv3KX6FVW/nAHBNz5iLD+ZF6CWmqIkM2ccLnhRxoVKEJEVcvuS6Zu6ZXY6U1pLgKYQIX+9/r1YO1uthxiioW1XriMLQzlmwaQrodNBjKsSUDen0ae5M+u9/hhxfHk2iG/BB9Vcw6EJXucm7azf2dz4EIPbDt9FFRYVs7oLa9m0+zlw/SdWM1O4YylLYQggh/o2s8Iqw8eqXsGk/JMbCV8NDnuwKO78FVx4k1YTqoeuF9v9dKAPbu8ztGHWFW+zJH/MGKAoR3W7HdHWDAESnnX2L7OxdaEdngC6vJWGKkrcvIURwOKZ+S/7zLwEQ8+ZYogb01Tii8JCf7mPZuBwAWj0SR9k6Ra/0Y0SMnhYPqtUi/piUi9f979UiUjc4AWmdIYQQV+rI9n209H8HQOnbhwdljgv3TPd+r+6+i3r4/n9cHN/3i51zezyYo3W0HiRbTrUUkKSIk5IUIYQQxc2i9fDcJPX4rUehcytt4wlL2Udh/sPq8XXDoMZNIZ3e7nMw8MBznHCfoWpEJb666k2iDKFLtlP8fnIffQp8PiK630FEl44hm7ug3HY/m77OA6DVw3HoDUVrQ4kQQhRX8lRRhIXftsPr09Xjj5+FSqFNdlXrtG34WD1uMUiDjAzVYUcqf+RtRo+evmXuKNRY3r37cM2aA0D0qMCXrA2l/DQfS0er/etbPhRH+avlAZUQIjhci5aQe79aLcjy9GAszz2pcUThQVEUlryahTPXT9m6Jlo+WHQfLDXqHUNMWQN5Z3zs+C7/H79HUZSLlSKqtJSdlUIIcSVOz30dvU5hvXIHVzW/OuDjb8/fy077fuod8lDmj/1gMGB59MG/fZ/XpfD7e1ZAbSFgSQrdbkbxd38mRXgKPIb1fKWI+EqSFCGEEMXBvuPQ51Xw++G+LvDk3VpHFIZ8HpjdG1y5ULk1dHglpNN7FS+DDo1gh30fScYEptWeSClTYkhjcH4zA8/qteiio4l9982Qzl1Q22bm48jxk5hipE5nqRIhhBDhQpIihOZy8mDgODUvYWAnuLu9BkGc3ABntoIxAhrfq0EAqunp8wBoH9+KihHlCjWWbeybapWIO2/D1Cjwi5GhoigKi0apD+KS65loXYT61wshihbPxs1Ye/QHr5fIvj2JmfCa9Hw8b8+Pdg6vdBbZthn/yxSpv7hbeN0nubjt/r99T/ZxL3nnfBhMULFx0auIIYQQWjmx/yitvNMAiOn4UlDmmHb+nunZeeqD8Yjud2CoXOlv37f12zxyT/uISTbQ9J6YoMQiLl9iVbV1SfZxL4ry75Wa/o3XpZCX5gOkUoQQQhQHWblw5zDItUHbhvDR02pnCPH/LB2hrltHJsDdM8AQulZgiqIw4vhElln/IFJn5qur3qJaZOWQzQ/gz8oi73wlz+iXh/3jNV+4cdv9bPxKrRLR8uE49Eb5xRZCiHAhSRFCc4PfhdRzUL0CvKfVhtyN56tENOgFllKahGD3OZiVvhCA/mW7Fmos7/4DOGd+D0D0qBcLG5qmts+2cWy1E4MZOo8vVaQfxAkhwpf3wEGyu3RHsdkw39yBuC8no9OoalC4yU/zsfx1tVpPm0fjKXNV0U8SaNAtmoTKRuxZfrZO/3u1iAtVIio0ipB2TUIIcQWOzn4To87HZt/N1L+uRcDHz/PZmJe5hIQcL9f8eAAAy5OP/e37HFYf6z7NBeDawXHyXh4GEiobQQdum4I98+8JiZdiPekFBczROqIS5e9TCCGKMo8Xer8Ch05BSjn4bgxEFP3bzMA78AusPl8ZoetnkFg1pNN/dGYqU9PmokPHhzVepWlM6Fsz5w97GSUjE0P9ulieejzk8xfE9tn5OLL8xFcyUO9WqRIhhBDhRO4khaamL4Fvl4LBAFNHQKwW1wn2LNg5Sz1uPkiDAFSzMxaS48slJaIiNya0KdRYtnFvgd+P+fYumJo0CkyAGshO9bByQg4A7Z5OoHSN0GVDCyFKDt+Zs2R37IqSkYmxaWPi50xHZ5YVGVB3hvz6ShauXIXkeiZaPBCrdUgBYTDpuHawWi1iw5e5OK1/fTiTusEJQJWW0q5JCCEu15mjp2jp/AIAY4cRQZnjh4zF2P0OHlyooHe6MTZphKnN35uPr/80D1euQulaJurfER2UWMSVMZp1xFVQW5hkH/de8etz/qd1hlTyEkKIou2ZD2HZZoiOgnmvQdnQdmMIf+d2wazeMO1W9b+bD4L6d4U0hLkZixl/Ut1E+GqVp+icdENI5wdwr9uAY8pXAMR9/C46U/ivC3scfjZ+oVaJaCVVIoQQIuxIUoTQzLEzMPgd9XjkAGhVX6NAtn4FXieUuwYq/31BLRR8io9Pz84E4OFyvTHoCt7v1nvwEM7papJHzMvDAhKfFvxehV+GZeF1KFRuEUGTflLyVggReH6rlZzO3fAfO46hZg0Sf56DPrZ4PPgPhN3z7Rz5zYnBBJ1fK1WsbujrdLZQupYJV67Cxi9zL35e8Suc2KBWiqjSMlKr8IQQosg5MPNtIvRudnjacs1N7QI+vqIoTEufh8Gr0O37cwBYhjz6twfk1lNets5QF6PbPROP3lB8zl1FXVLK+RYaxzxX/FrrSTUpQlpnCCFE0fbxPJg0V22VMXUEXF1D64jCyJlt8G0P+LAh7Jql9pqufzd0nhjSMNbkbubpo2MBeLhcHx4o1zOk8wMoXi95jz0NikLkwH6Yr7s25DEUxI7vbdiz/MRVNFDvdknMFUKIcCNJEUITPh8MHKf2jWvTAIb11ygQRYGNk9XjFo9q1rxuUfZvHHedIsEQR8/StxZqrItVIm7thKlp4wBFGHobvsjj9HY35hgdncclodPLYqYQIrAUp5Ocrr3xbt+JPrksCYvnoS9bVuuwwkbeWe+fbTMGx1O6ZvjvyrgSOr2OtkPiAdg8PR9bhtqnPG2/B0eOH5NFR7kGUjFECCEuR8bpdJrnqfdV7mtfCsocW2172GM/yC2r7ESdzkZXpjSRvf6+a3L1+1Z8HqjSKoJqbSW5LZwkpKgJDdmpBa8UIUkRQghRdC3fAk++rx6PfRDubKttPGHj1CaYfidMagx75qifq98DHtsGvWeDKSpkoey3H+HBgy/iUbzcmtiekZUHh2zu/+WY9CnerdvRJSYS+9ZYTWK4Uh6nnw2fqxsuWj0UJy2ghRAiDElShNDEGzNg9U61XcbXL4FRq3WNI8sh8yBExMLV/TQJQVEUPj4zHYCByd2xGAp+oes9fATnNLXiRFGuEnFur5s/JlkBuHFYInHlZeFLCBFYis+H9Z4H8az8HV1sLAm/zMVYvZrWYYUNRVFY/Eo27nyFcg3NNB9YPKtn1LghkvJXm/E6lIu951PXq60zKjeLkEUMIYS4TLumv4vF4GCvpylNb+0YlDmmpc0F4JEf1Go+lkEPoIv8a9LD2d1u9i60A3D9MwnSZiHMJF1IijhWuPYZQgghip5DJ6HnKHWjXJ+bYKg2y7DhJXUtfNMFJjeHfQvUzXoN+8DgXdD7Oyh/TUjDOetOp/+BZ8j15dM85mrer/Eyel3oHx/5zpwlf8QYAGLGv4K+TJmQx1AQO+fYsGX4iS1voP6dUiVCCCHCkSRFiJDbsBde+VI9fv9JqF5By2DU3mhccw9EaNOeYVP+DrbadmPWmbgv+e5CjWUb9xb4fJg734KpedMARRhaXpfCz8My8Xuh1o1R1LvDonVIQohiRlEU8oY8h+v7eWA2kzDvW0yNQ7vYEO52/WDj2GonBjN0HptUrNpm/C+dTsd1T6rVIrbPzsd62kvqemmdIYQQV8KankOT7A/V42YvBaXCW643n/lZS6mzz0GVTafAaCRq0IN/+R5FUVj1dg4AdW+1kFxPqv2Em8SqakJD1vErb5+RI+0zhBCiyLLmQ9fhkJ0HLerClBc0K9YbHo79Dl/dDFPawMFfQKdX16af2AM9Z0By6HtM+xU/gw+/zGn3OapHVuGLWm8SqY8IeRwA+c8OQ8nLw9iiGVEP3adJDFfK61LY8Lnavq3lg1IlQgghwpXcTYqQyrfDPWPUrOCeHeCe4Gwiujy5p2HfPPW4xaOahTH57AwAepTuTBlTUoHH8R45ivMbdayiXCVi9QdWMg95sSTpufnlRNndJYQIONu4N3FMmgI6HfFTp2DucIPWIYWV3DNeVryZA0DbJ+IpVaN4tc34/6q0jKRKqwhS17lY/Z6Vk5suJEVoswAkhBBFzdbpH3KDIZdDnvq06HpnUOb4IXMRTr+Lh89XiYi8uxuGCuX/8j1HVzs5scGFwQRtzye8ifCSWEW9pshJ9aL4lctOoFH8ClZJihBCiCLJ54O+o2HvcahYBn4YB1El8VZLUeDoSlg5Wv0TQG+ERgOg3TAoVVPL6JiRvoC1eVuJ0kfyzVUTSDJpcy3lWroC57ffgV5P3MfvotMXjT29O+fmk5/mIzbZQINuUiVCCCHCldxNipB6+kM4dAoql4VJz2icFbz5M/D7IKUtJDfQJIQjzhMszv4dgIfL9SnUWLbXJqhVIjrehKll80CEF3InNjrZ9LWaVdtxdBKWJIPGEQkhihv7Z19hG6mWYYx9700ie/69F3lJ5vMoLBqZhdumUOEaM00HFM+2Gf/fdU/GM31d2sWS61GJespcVbyTQYQQIlAiM7aADs41HE5NY+AXrhVFYVraPBKzvFz3yxkAoob8Nand71P4baLafq9xv1jiK8hSRziKq2BAbwSfG3LP+i777yk/zYfPDToDxJWXe0QhhChKXvwEFq1XEyHmjoPypbSOKMQUBQ4vgRWjIXWN+jmDCZrcD9e9CIlVNQ0P4Iw7jbEn1KpfQys9QrXIyprEobhc5D3+DABRjz+MqUkjTeK4Ul63woYp6np2iwdjMZplg58QQoQrWSkQIfPDb/DFQjUR4qvhkKjlcxafFzZ9qh43165KxJSzM1FQuCnhWmpFVS3wOL5jx3F+PR2A6FEvBii60HLl+/nlpSxQoGH3aGrcEKV1SEKIYsY5/yfyHhkCQPTw57A8od37fziyZ/tY8FQmJze7MEbo6DQ2Cb2hZNzMl28YQc0OURxa7gCgSouIoJR/F0KI4qjV2B/YufIPWrZpEZTxN+fvYq/jMIPmWTG4vRhbNMPc6q9z7Z5vI+Ogh8g4Pa0eigtKHKLw9EYdCZWNZB31kn3Me9lJERdaZ8SVNxTbll5CCFEcffkzTJylHn/xIjStrW08IaUocOBntTLEyQ3q54wR0PRBuG4oxGuTePD/KYrCS8feJs9no3F0fe4vZGvnwrBNeA/fgYPoyyUTM2akZnFcqd3zbOSd8xFT1kDD7tq05xZCCHF5JClChMSpdHjkLfX4+T5wQ2Nt42H/T5B7Ciylob42u4QzPdnMTv8JgEHl+hZqLNv4CeD1Yr6pPeY2rQIRXsiteCOH3NM+4ioaaD80QetwhBDFjHvNWqy97wW/n8j7BxA99mWtQworGYc9zH08HetJH+YYHbe/XYqkaiWrUsK1T8RxaIUDFLWlhhBCiMvX8IY2QRt7Wvo8jF6FPnNzAbD8vyoRHoefNR+qX2v1SByR8UWjzHJJlZhyPiki1UPVNpd3vs05Ia0zhBCiqFmzEx59Wz0eOVBto1wi+P2wbwGsGgOnt6ifM0VBs0eg7fMQV0Hb+P6fn7KXszjnN4w6AxOqDcOg06Yik/fIUWxj3wQgZuJ49PFFoxWaz6Owbop6Hdri/liMEZK8KYQQ4UzuKEXQ+f1w33jIyoUmV8Gr92sdEbDxY/XPJverWboa+CbtB5yKm2ui69IqtuBZIr7UEzi+nAZA9MvDAhVeSB1a7mDXXBvooMtrpTBHy0KmECJwvLv3kHPb3eB0Yr6tM3GfvI9O0/5N4eXoagc/PpeJO18hvpKBbh+VoXSNkpUQAVCmlpnWg+I4utrJVbdItSIhhAgHOd5cfsxcSoflVmLT8tGXSyby7m5/+Z7N36g9nOMqGmjUR3bnhbvEFBPgJPuY97JfYz3hAyQpQgghiorjZ+GuEeDxQvfrYdS9WkcUAn4/7JkDK8fCuR3q50wWaPk4XPssxCRrG98/yPZaGXFMzVwZXH4AdSw1NIlDURTynnhOXbPpcD2RvbWrVnGlds+3kXfGR3RpPQ17RGsdjhBCiEuQO0oRdO99B8s2q73jpo4As9bPWbIOw6Ff1T4ezR/RJASH38mX5+YA8Ei5voV6OGcbPwE8HswdrsfcNng7tILFlulj8StZADS/N5ZKTbVJUhFCFE++EyfJ7tQNJScHU+uWJMz6Gp1RLn9AXXjYOiOfFW/koPihUtMI7ni3FJbEktur+9rH47n28aKxI0UIIUqCORmLcCpuHvguH4CoQQ+gM5svft2W6WPDF+ruvOuGxEsP5yIgMUW9Dss+fvlJERcqRcRXkms4IYQId/l26Doc0nOgUU34ahjoi/PeJ78Pds1WkyHS96ifi4iFloOhzdMQXUbb+P7DmNQPyPBmUyuyKkMq3KtZHK75P+H+eTGYTMR+NLHIbGL53yoRze+PwxRZnH/RhRCieJA7ShFU2w/B8Cnq8duDoU6KtvEAsPET9c+aHSGpuiYhzMlYRKY3m0rmctyadEOBx/GdOInj82+AolklQlEUlryajSPLT+laJq4dLA+ihBCB48/KIrvjnfhPnsJQtzYJP85GZ7FoHVZY8HkUlr+ezfZZNgDqd7Vw86gkeZgkhBAibCiKwrT0edTfbafWjmwwmYga9MBfvmfdJ7m4bQrJ9UzU6Szn+KIgsWoBkiJOSvsMIYQoCvx+GDAOdhyG5CSY+xpEF9cifD4v7JgBq8ZB5gH1c5Hx0OpJaP0kWJK0je8SfrNuYFbGQnToeKvaMCL05ku/KAj8+fnkDXkegOgXnsJYp7YmcRTEnp9s5J7yYUnSc83dUiVCCCGKArmjFEHjcEH/MeD2wO3XwsO3ax0R4HHCli/U4+aP/vf3Bolf8fPJ2W8BeKhcb4y6gv8ztL3+Nng8mG64DnO7toEKMWR2z7dzaLkDvRG6jE+SvmtCiIBR7HZybrsb39796CtWIHHxfPSlSmkdVlhwWv0seDaD1HUu0EG7p+Npfl9skdmNIYQQomTYmL+DA46jvPZdDgCRvXtgSP6z9HTWMQ/bZ6sVJK5/LgGdXs5jRcGFShHWU158HgWD6dJ/b9YTkhQhhBBFwctfwPzVapXgOWOgSvh1jCg8nwe2TVWTIbKPqJ+LSoQ2z6jVIaISNA3vcjh8ToYeewOAgWW70zz2as1isY15A/+Jk+irphA9/HnN4rhSfq/C+k/zAGh+XyymKKkSIYQQRYHcUYqgeXEy7DmmZgZPeUHtVqG53d+DPRPiK0PtWzUJYWnOGo44U4k3xNK7zG0FHsd38hSOz74GIKYIVomwnvayfHw2ANcOjqdsHW0ykoUQxY/i9ZLTayCetevRJSSQuHgehsqVtA4rLGQf9/DD4xlkH/NiitJx65ulqNm+uG7dEUIIUZRNTZtHqUwPNy9V7xksTwz6y9d/f8+K3wvVroukSotILUIUBRBT1oAxSofXoWA95SWp6n/313Tl+XHk+AFJihBCiHA2Ywm8NlU9/uQ5aN1A23gCzuuCrV/Bb+Mh57j6OUtpuPY5aPmY2jKjiHjr1Kekuk5TwZzMsMrabBoE8O7eg33iBwDEfTChSFX23LvQTs4JL1GJeq7pFaN1OEIIIS6T3FGKoPhlHXz4g3r8xYtQJkHTcP608WP1z2YPg16bnumTz84A4J6yXYkxFLy0lu2NieB2Y2p3LeYb2gUqvJBQ/AqLXsrCbVOo0MhM8/uKzo2DECK8KYpC7iNDcP/0C0RGkvDjbIz162kdVlhI3eBkwVOZOHP9xJYz0O3D0pKQJoQQIixleawszFrOvT9kYfD4MbVuial504tfP73NxcElDnR6aPeMtOArSnQ6HYlVjKTv95B97NJJERdaZ0Ql6TFHyy5MIYQIRxv2woNvqsfP94EBnbSNJ6A8Ttj8Gfz+BuSeVD8Xkwxtn4fmg8BctNombMvfw5SzswB4veoLhVqbLgxFUch97GnweonoehsRt3XWJI6C8HsV1n2aC0Cze2MxW+T6RAghigpJihABl5YND6gVuHjiLujUUtt4Ljq7A1L/AL0Rmj5w6e8Pgi35u1mftw2Tzsh9yXcXeBzf6TM4pnwFFM0qEZun5nNiowtTlI4ur5VCbwiHMiJCiOLANuJVnF98A3o98TO/wty2jdYhhYXt3+WzbFw2fi+Uv9pM1/dLE11am+RAIYQQ4lLmZP6C3+Wk11wrAJYn/9zFqCgKKyfkANCgazRlakmCX1GTmHI+KSLVe8nvzZHWGUIIEdZOpUP3l8Dlhltbw7iHtI4oQNx22PQJrH4L8s6on4utANcNhWYPganoVVz0+L08d3Q8fvx0K3ULNyZot17inPotnt/WgMVC7HtvaRZHQexbZCf7uJeoBD2N+0iVCCGEKErkrlIElKLAg2/AuSyoXw3GP6J1RP9jw/kqEXW7Qmx5TUL45HyViG6lOlLOXKbA49jemAguF6a2rTG1vz5Q4YVExiEPv7+XA8ANLySQUEXehoQQgWH/4GNsr00AIPaT94m8s+AtiooLv09h1YQcNk9Ve67X6WKh05gkjBGSjCaEECI8KYrCtLR53LzMSkKmC32F8kR0v/Pi1w8tc3B6mxtjpI42j8dpGKkoqMQU9R4w+5jnkt97MSmiktw3CiFEuLE71YSIM5nqOvC0kWAo6rn3rny10vDqCWBLUz8XXxmuexGa3A+motuy6+Oz09jrOESiMZ5XqzylWRz+7GzynhsOqJv9DFUqaxbLlfL7FNZ9olaJaDpAqkQIIURRI3eVIqA+WQAL14LZpF4IR0VoHdF5rjzYPk09bqFNr7TjzlP8nLUSgEfK9SnwOL4zZ3F8+iUA0aOGodMVnQdbPo/Cz8My8bnV3r9X9yhaJeaEEOHLOXsOeU++AED06BFYHrxX24DCgCvfz0/PZ3L0dycA1z4RR6uH44rUeUMIIUTJsz5vG4ccx3h1VjYAUY89hM6ktljweRR+e1etHtFsYCyxybKkURQlnm+ZkX380pUirOfbZ8RLpQghhAgriqJWCt60H0rFw7zXIK6oL/NZT8IXN0DWYfW/E6rC9cOh0UAwFu3KVIccx3n3lLqe/GqVpyhlStQkDkVRyH1oMEp6BoZ6dbA89bgmcRTUgcUOso56iYzT07ivVIkQQoiiRu4qRcDsOw7PfaQej38Yrq6hbTx/sX06uPOhdG2o1l6TED47Nws/fm6Ib0kdS8F/OPa33gWnE1Prlphv0ub/paDWTs4lba+HyHg9HUcnyYM5IURAuJevxHrPQ6AoRD32ENEjhmodkuZyTnqZOzidzENejJE6Oo9LonZHi9ZhCSGEEJc0LX0eV++yU3evDSIisDx838Wv7ZiTT/YxL1FJeprfF6thlKIwEs9XC7ycpAhpnyGEEOHptakwezkYDfDdaKheQeuICinvLHx5o5oQEV8ZOoyGa/qBwaR1ZIXmV/w8f3Q8LsVN+/hWdC/VUbNYHB99gmvOfDCZiP9yMjpz0Uk2UfwKaz9Rk3ObDoghIkaqRAghRFEjd5UiINwe6D8GHC64qRkM6aF1RP9DUf5sndF8EGjwID7ba+Xb9B8BeKRc3wKP4zt3DvvkzwGIfrloVYk4vd3F+ilqebGbRyUSU6ao19MTQoQDxesl9+Eh4HYTcdedxL4/oUi9NwbDyS0u5j+ZgSPbT3QZPd0+KEO5BkVnoUEIIUTJleXJYWHWCl6ZlQlAZN+e6MuobQfdNj9/TFLvJ9o8GicL0UVYYlV1KSrvrA+Pw48p6t//LiUpQgghws8Pv8EodXmSD5+G6xtpGk7h2TLgq5sg8wAkpMADv0FCFa2jCphp6fPYkL8diz6K16u+oNmaiWfTFvKeVdtmxL41FlOLZprEUVAHljjIPOwlIlZHk36SnCuEEEWRrCKIgBj1OWw9qJZL+3IY6MPpN+vEWji3A0xR0HigJiFMTZuLw++knqUW18U1L/A49rfeA4cDU8vmmG+5MYARBpfb7ufnYVkofqh7q0V2KwshAkZnNJLwyw9EDuxH/LTP0RX5BqaFs3u+je8eSMOR7Se5non+M5MlIUIIIUSRMTvjZ+LP2blphZr8YHli0MWvbfgyD0eWn8QUI1f3kHLFRVlUgp6IOPWBTE7qv1eL8HkU8s74AEioJEkRQggRDrYdhIHj1OMn7oKHbtc2nkJz5MDXt0DaboitAPctK1YJEafdaYxLVUs7v1hpEJUiymsShz8nB2vPAeqGlm63EzXkMU3iKCjFr7B2snp92qR/LBGx4fTwQwghxOWSd29RaCu2wISZ6vEnz0GF0trG8zcXqkQ07A1Roe+X5vK7+eLcdwAMKte3wNm4/rQ07JOmAEWvSsRvE63kpHqJSTZw40va9KwTQhRfxlo1if/qE3SRkVqHohnFr/DbOzn88lIWPg/UuimKXl+VlV7rQgghigxFUZiePp8eP2Ri9CqYrmuDqfE1AOSn+dj0dR4A1z0Vj8FUdO6FxN/pdDoSU9Ry5Nn/kRSRe8aL4gdjpI7oMrJ8JYQQWjuXBV2Hg92pVgqeULSea/+dKw+mdoYzWyG6jJoQkRRO/aALR1EUhh97i3y/nSbRDbg3+S7N4sh94DF8R4+hr5pC3BcfF6l1bYCDyxxkHPRgjtHRtL9UiRBCiKJKVspFoWTnwb2vqR0qHrgVurXTOqL/x5YBu2arx80f1SSEuZmLSfdkUc5UhjuSbirwOLYJ74PDgbF5U8ydbg5ghMF1eruLbTPzAeg0JonIOFnMEkKIQHLb/fz8YhaHljsAaPVwHNcOjkOnL1qLDEIIIUq2P/K2cNJ6jB7zsgGwDPnz/m3NR1a8DoUK15ipdVOUViGKAEpKMXJ2p5vsY/+eFHGhdUZ8JUORe3gihBDFjcsNd42AE2lwVWWY+QoYi/KTBbcdpt0GJ9ZBVBLcuxTK1NE6qoD6MWsZS3JWY9IZmVBtGAadNpU1HR9OxvXDAjCZSJj9DfqEBE3iKKi/VInoF0tkvKxtCyFEUVWUL12ExhQFBk2Ak+lQqxJMHKx1RP9g65fgc0OFJlAx9H3K/IqfyWdmAPBQuV6Y9AX7J+dPT8f+0acAxBShKhF+n8LSseqiZv2uFqq2Kbm7uIUQIhhyz3iZ90QGafs8GEzQcXQS9W6P1josIYQQ4opNS5tHxyVWErO96CtXIqKrWo8745CHXXNtAFz/XEKRuRcS/y0hRb03zj5+6aQIaZ0hhBDaUhR4ZAKs3Q0JMTB/PCQW5c3yHifM6ArHfoOIOBi4GMpdrXVUAZXlsTLy+EQAnig/kNqW6prE4dm0hbxnhwMQO2EcpuZNNYmjMA6vdJK+34PJoqPpAGnhJoQQRZncWYoC+2YxfL8SjAaYOgJiLFpH9P/4/bDxE/W4+aOgweLZCus6DjqPEaO30LfMnQUex/b2B2C3Y2zWBHOXjgGMMLi2zconba+HiDgd7Z5O0DocIYQoVs7sdDHviQxsGX4sSXq6vl+aCo0itA5LCCGEuGIZnix+yVrBV7MzALA8/jC689tPf5uYg+JXW0NVbCznueIi6UL7jOOef/0e6wkfAAmVZelKCCG0NHEWTF0MBoNaIeKqylpHVAg+D8zqCYeXgDkaBvyiyUa6YBt94n0yvNlcFVWNwRUGaBKDPycHa88B4PEQ0f0Oop7QpopzYSiKwh8fWwFo0jeGqHhtqm0IIYQIDLmzFAVy+BQMeVc9fuU+aF5X03D+2ZGlkHUYIuPh6j6ahHChSkS/sncSZyxYJqk/IwPHh2pyR8yoF4vMzihbho81H6gXjW2HxBNdSi4ahRAiUPb9bGfRyCy8LoXStUx0+6g08RXksk4IIUTR9F3Gz9Tflkvd/U6IjCTqwYEApG5wcuQ3JzoDXPdUvMZRikBKrKpet2RdRqWIeEmKEEIIzSxcC0Mnq8cTH4ebm2sbT6H4vPBdP9j/Ixgjod+PUKWN1lEF3Crrer7L+BkdOt6qOowIvTnkMSiKQu79j+I7egxDtarEfT6pyKxp/68jq5yk7fVgitLRdGBRLo8ihBACJClCFIDXCwPHQb4DrrsaXuirdUT/YsPH6p+NBqiZvyG2w7aPP/I2Y9QZeCC5V4HHsU38EMVmw9ikEebbOgcwwuBaNTEHV55Ccj0T19wtpcWEECIQFEXhj0m5rP1Y7WdZ/fpIbnuzFOZo6WkphBCiaPIrfqalzefRWWqViKj+vdGXKoXiV1j1dg4A19wdQ1JVk4ZRikBLPN8+w5Hlx5nrJzLu79cyF9tnSFKEEEJoYvdR6DdabZ/x0O3weHetIyoEvx/m3g+7vwODCfrOherttY4q4Ow+B0OPvgHAfck9aBbbUJM4HB98jGvuj2AyET/7G/QJCZrEURj/WyWiUZ8YLImy4U8IIYo6WUEXV+y1aWoPubho+PoltXRa2LGehH0L1OPmgzQJ4ZPzVSLuSLqJihHJBRrDn5mJ4wM1HTu6CFWJOLnZxZ4FdtDBTSMT0RuKRtxCCBHOPE4/Pz2XeTEhotm9sXR9v7QkRAghhCjS1uRuxnn8CO1Xqee3qCHq/du+RXbO7Vb7N7d+NE7LEEUQmKP1RJdWr2H+qYWGoihYT55PiqgkSRFCCBFqGTnQdTjk2eH6RvD+k5p0Jg4MRYEfH4XtU0FvgJ6zoVYnraMKijdPfsoJ9xkqmsvxYiVt1sQ9GzaR99xLAMS+/RqmZk00iaOwjq52cm63B2OUjmZSJUIIIYoFWUUXV2TtLhjztXr80dOQUk7beP7Vpimg+KHq9VC2XsinP+k6w49ZywF4pFzBW3fY3/0IJT8f4zUNibjj1kCFF1Q+j8LSsdkAXN0jmvINpe+vEEIUVn66j1n3prN/sQO9ETq+msgNzyVI0pkQQogib1r6PHrMycLoA1P7dpgaNsDrVvj9PXVnXosHYqUVXzGVmKJW/8j+hxYa9kw/HocCOoirKEkRQggRSm4P9HwZjpyGauVh9qtgLqoFmxQFfnkaNn0KOj30mA71umodVVBszd/N5+dmA/B61ReINlhCHoM/O5ucXgPB4yHirjuJGqxNYkZhKYpycUNKo54xci0qhBDFhCRFiMuWa4N7xqrVxvrerH6EJZ8HNk9Rj1s8qkkIn52djQ8fbeOa0SC6doHG8GdnY3+/6FWJ2Dojn4yDHqIS9Fz3pPT9FUKIwjq318303uc4u8tNZLyeu6eUoeFd0pZICCFE0ZfuyWLFmRV0n5cFgGWIev+2bWY+uad8RJfR0/Qe2ZlXXF1oofFPSREXWmfEljNgNBeNe2EhhCgOFAWGvAertkFMFMwfD6UTtI6qgBQFlgyHte+p/931c2hY8BbH4czt9/D80fH48dO9VEc6JLQOeQyKopB7/6P4jx3HUL0acZ9PKjLr2f/f8T9cnNnhxhiho/l9ci0qhBDFhaTbi8v25Ptw9IxaHeLDp7SO5j/sWwB5ZyC6LNTtFvLprd48ZqSrrTsGletb4HHs736EkpuLsWF9IrreHqjwgirvnJc1H6k7uto9HU9UgmTRCiFEYRxcamfhsCy8DoWkaka6fVSaxCpFdYuOEEII8Vez0n/i5kWZJOT60FdNIeL2LjitftZNVnfmtR0cj9kiezmKq8Sql06KkNYZQggRWpPmwpQf1VYZ00dB/WpaR1QIK8fC76+rx7dPgib3ahpOME06M429jsMkGRN4tcpTmsTgeH8Srnk/gdlM/Oxv0McXzc1yiqLwx8fq+vY1PaOJLi3r20IIUVzI3aW4LLOXwzeLQK+Hr4dDfDhvUN3wsfpn0wfAaA759NPT52Pz26kTVZ0b4lsVaAx/Tg7299T/j+hRL6LTF42FwJVv5eCxK1S4xkyDbtFahyOEEEWWoihs+DyP399Vb8SrtonktgmliIwrGucDIYQQ4lL8ip8ZafN5c3YmAJbBj6AzGFj/WQ7OXD+lahqpf6fcUxRniVUuJEV4/vY168nzSRGVZdlKCCFCZclGePpD9fj1R+C2NtrGUyirJ8DyUepx54maVRMOhYOOY7x3+ksARld5iiRTQshj8GzYRN7zIwCInTgeU9PGIY8hUFLXuzi9zY3BDM3vj9M6HCGEEAEkd5fikk6kwaNvq8cv9oPrrtE2nv+UcQCOLFPTmZs9HPLp3X4Pn5+dBcDD5foWuESY/b1JKFYrxgb1iOh+ZyBDDJrj65zsX+RAp4cbRySi0xfN8mhCCKE1r1vh11ey2LPADkDjvjG0fyEBvVHeV4UQQhQfv+dupPTaA9Q65ASLhaj778F62suW6XkAtHtazn3FXWJVtfpV9nEviqL85f75YqUISYoQQoiQOHACer8CPh/c0xGe7a11RIWwfhIsfl49vnEstHla23iCyK/4ef7oeNyKhw7xbeha6pbQx5CdTU7PAeDxENGjK1GPhX5NPlAURWHtx2rFsqt7xBBTRqpECCFEcSJ3l+I/+Xxw7zjIyYfmdWDUvVpHdAkbP1H/rNUFEquGfPr5WUs468kg2VSarqVuLtAYfqsV+7uTAIgeObRIVInweRSWjcsGoFHvGJLrhr5ChxBCFAf2LB/zn8zg1FY3OgN0GJZA497Sv1IIIUTxMy1tHn3OV4mIGtAHfWIia97IxOeGyi0iqN4uUuMIRbAlVDaCDtz5CvZM/1/KU19IioiXpAghhAi67Dy4c5i6/tu6Pkx+Vt1vViRt/gJ+elw9bjccbnhJ23iC7Ju0uWzM30G03sLrVZ8v8Aa9glIUhdz7HsV/PBVD9WrEffZRyGMIpBMbXZzc7MJgghYPyFqMEEIUN+H/tFVoauIsWLkNoqNg6kgwhfN6hMcBW9VSYVqURFMUhU/OzAD+r737Do+iXPs4/t2eXoCE3jsivUiTDjYUj11RxN71oB57OceCXez1YMFeUYoFAqj0DkoH6ZBKetk67x8LwbzikbLZ2SS/z3XlYnZ3Ms+9CbPPZOae+4Yr6p6Hy3psiQElL76GkZeHrUM7XOeeHcoQK82y9wrZv81HTG0r/W6qmv3iRETMlrXZwwcXZbBnpQdXvIVzXktRQoSIiFRLGZ5s1qydxcCfg3fixdx8HRnrPaybFqySNHB8UpU+oS5Hxu6ykFA/mAiRu9NX4bXy9hmNIvkkhIhI1efzwUX/DlaKaJwKXzwCUS6zozpGaz6Gb64KLvf9Jwx71Nx4KtkedwaP7wreWHdP4+to6KoX9hhKJr6C+5tp4HSS+PlkrIlV+7zwwSoRJ54TR3xdHYOIiFQ3SoqQv7RiEzzw3+Dy8zdD60bmxvO3fvsMSnMhqSm0PiXsw/9csIT1pVuJsUYzJnX0MW0jUFBAyfOvABBXRapEFOzzsfCN4AHjwNuT1O9eROQY/P5zKR+PyaRgj5+kxnYu/rAuzfrqDlkREamePsmexrlfZGELgHP4EGzt2/HTs3kAtDsthnodVXmupkhuGrzgkLvdW/6cpyRAcXYAUPsMEZHKdudrMHMpxETB149BvdpmR3SM1n0NX14KhgE9r4NTnq3C5S7+nmEY3LP9KYoDJXSP68jY1HPCHoN38VKK/nU/APHPP4GjW5ewxxBKu5aVsWupG6tdVSJERKorXb2UwyopgzGPgNcHowfAFaeZHdERWPJa8N8e14I1/P2+Xj9QJeKilFEk2ROOaRslL72OkZuLrV0bXOf9I5ThVZo5T+ThKzVo1MNFh1ExZocjIlKlGIbBsvcL+fqmbDzFBo17urjk41Rqt3CYHZqIiEilCBgBvtzxFaO/3Q9AzC3Xs31+GTsXBUsV97+lat9hKEcnuWnwmCd3x6FKEQerREQlWIlK1GkrEZHK8tZUePGL4PK790LXNubGc8w2zYDPLoCAH7qOhTNeqdYJEQDf7p9FWv4CnBYHzzS/F6slvPNlYP9+8i4YCz4frvPOJvr6q8M6fmVY+PqBKhFnx5JQX0mZIiLVkT7d5bDufBU27oQGdeDNO6vAceTelbB7Mdgc0P2KsA+/tmQzPxcswYqVq+tdeEzbMPx+Sl9+A4DY++/CYgt/YsfR+v2XUjanlWKxwdD7VOJWRORo+L0GaY/lsuaLYgBOPCeWYfcnY3Pos1RERKqvn/IX0+WbDSQUBrC0bI595Ah+Oj8LgC4Xx6ldQg1TXimiQlKEH4DERpH/N7GISFX10yq46fng8r+vgHMGmhrOsduaBh//A/xe6HgBjP4vVIHKu8djvzefB3YEf3m3NBhLm+jmYR3fMAwKxl1PYMdObC1bkPDWy1X+nPCeFW52LjpQJeLqY7vZUUREIp/ONsifTJ0Pr38TXJ50N9SuCjfqLD1QJaL9PyCubtiHf+NAlYgzag2hsav+MW3Du3gpgfQMLImJRJ13dijDqxQ+t8Hsx/MA6D4mnpTWKnErInKkSvP9fHtbDruWusECg+5MovulcVX+RIKIiMjf+SDza678LAeAuJuvY/30MrI3e3ElWDjpGp2ErmkOlxSRtyu4rNYZIiKVY9s+OO9B8Pnh/CFw32VmR3SMdsyHD88EnxvanQXnTjalenC4PbxzIjm+XNpGt+DG+uH/5ZU8/zLub6eD00ni55OxJlaFiwf/28EqESecFUtiAx1/iIhUV/qElwrSc+Dqp4LL/zwfhvc0N54jUpYPa4JJCfS6PuzD7/Vk8s3+mQBcV+/iY96Oe8o0AFynj8TijPwEgyX/LSBvl4+4VBt9b9DJSxGRI7V/m5evbswmb6cPR4yFM56uTcuB0WaHJSIiUunSPVnk//gDLbe5MeJisF10CfMuygfgpKsTiE6s/hcypKLkZsHTUnk7fRgBA4vVoqQIEZFKVFAMZ90DOfnQvS38964qUCH4cHYvhcmngrcEWo2ECz4NVhCu5ubmLeLLnO+xYOHp5vfgtIb3PXsWLaHorgcAiJ/4JI6uncM6fmXYu9rN9gVlWGzQW1UiRESqNf2FKeUMA654ArLyoFNLeKyqtAJb/QF4iiGlAzQ7OezDv5PxOT7DT5/4rnSOa39M2zAMA/fXUwFwjT4jlOFVirxdPha/HcygHfSvJJyx1bssnYhIqOxYWMa347NxFxokNLBx9st1SGkT+YlwIiIiofBx1lTO/ywTgJjLL2XVN1aKMvzE17fR9eJ4k6MTMyQ2sGO1BysRFmb4SahvL0+KSFQrFRGRkPL7YcwjsHYb1K8NXz8GMVFmR3UM9q2G90eCuxCaD4KLvgK7y+yoKl2xv4S7tj8JwBV1z6N7XMewjh/Yv5/8C8aCz4fr/H8Qfd1VYR2/spRXiRgVqzZuIiLVnK5kSrlXv4YflkCUEz54AFxV4RqNYcCSA60zel0X9tTmQn8xkzO/BuDa46gS4V+/Af+WreB04jxleKjCqxSGYTB7Qi5+DzQ9yUXbkbq7WUTkSKz6pIgvrsvCXWjQoIuTSz6uq4QIERGpMfyGn9krPmHAvMLgE5deW55oPeCWROyuqnibqhwvq91SnvyQuz2YDJG/+0CliCa6MCEiEkr3vw3TFwbP+X71GDRMMTuiY5C5Dt4bDqW50LgPXDIVnDFmRxUWT+5+g92edBo563FXo2vDOrZhGORffh2BnbuwtWpJwlsvV4v2n/t+dbPtl2CVCLVxExGp/pQUIUAwQ/jOA7kFT14HJzQ3N54jtmMeZK4FRwx0CX8PtY+zvqXQX0yrqKYMTep7zNs52DrDOWww1vjIvkNq65wyfv+5DKsdht6XXC0OgEVEKlPAZ5D2eC6zHs3F8EOHM2I4/7+pxNZWiXAREak55uQvYvBHG7EaYD9lGMvSUvAUG6S2d9D+9JpxMUMOL7npgaSIHT4CfoP8PWqfISISapN/gKcOdB9++1/Q69iK3ZorZwu8OwyKs6BBd7jsO3DFmR1VWCwv+o1JGZ8D8GSzu4i1hffYqeS5l/BMnQEuF4mfvY81oXokEBysEtH+9BglY4qI1ABKihDcnmDpNLcHRvaCG/9hdkRH4WCViE4XQ1RiWIf2Bny8nf4ZEKwSYbUc++5U9s10AFxnnR6S2CqLtzTA7CdyAeh5eTy1mlf/Xn0iIsejrCDAVzdks/KjIgAG3JrIqRNq6W5YERGpcT77/TPOnBr8W8J3yW2s+jQ4Nw68PQmLVfNiTZbc7GBShJfCdD8BX7AtfFyqEkhFREJh0Vq45ung8j1j4OLILlJ7eHk74J2hULgPUjvC2B/Cfi7YLJ6Alzu3TcDA4JzapzAo6aTwjr9wMUV3PwhA/MQncXTtHNbxK0vGOg+//1SGxaoqESIiNYXS34T73oI1W6FOIky6O+wdKI5dUSas+yK43Ov6sA8/PXc2ezzp1LEn8486I495O/49e/EtWQYWC64zIzspYtGbBRTsDfb87a2DRRGR/ylvp4+vbsxi/zYf9mgLpz1eizbDdSesiIjUPHvcGcR9/D3xxQECrZuxdEVHAr5SmvWPoulJVbGZuYRScpNgsn3uDl9564yEhnastqpyckJEJHLtyoR/3A8eL5zZH/5zpdkRHYOCPcGEiPydUKctjJsFMbXNjipsXtn3PhtLf6e2PZmHm9wW1rEDOTnkXzAWfD5cF5xD9LVV8T/Q4R2sEtHu1BhqNdONfyIiNYGSImq4Wcvg+WCxA96+C+pVpePJFZPA74VGvaBBt7AObRgGr+8L1pwbV/c8oqyuY96W+9tglQjHSb2w1asbkvgqw/5tXpa+E+z/O+TuJJwxKjQjIvJXdi0r49vbcijNCxBX18bZL9Whbgen2WGJiIiY4pOMb7jgsywAyi64n01fl4IFBo6vGXd4yv9Wq9mh9hl5u9Q6Q0QkVIpL4ex7IWM/dGoJk+8Da1U7nVeUCe8Mg/1bIbkFjEuDuMg9fxpqm0q38cLedwF4pOk/qeUI37GTEQiQP/ZaArt2Y2vdioQ3X6o2bZQzN3jYMjt4PHrStbrxT0Skpqhqh0ESQjn5MG5CcPnaM2FUP3PjOSoBPyx9I7jc87qwD7+gcAW/lmwkyuristTj6zfinjINANfoM0IRWqUwDIO0x3IJ+KD5gChaDYk2OyQRkYj161dFfH5VFqV5Aeqe4GDMx3WVECEiIjWWz/Cx8dv3aLbTgzc+hkW/nwxAx7NiSWmj+VEo7+Gdt9vH/m1KihARCYVAIHjed+VmSEmCKY9DXFUrXFiyH94dDtkbILFxMCEioaHZUYVNwAhwx7bH8Ro+hib25cxaw8I6fslzL+GZ/j24XCR+9j7WhOqTPFBeJeKUGGq3UJUIEZGaQn9l1lCGEewltzcb2jaBZ240O6KjtOVHyNsOUUnQ8YKwD3+wSsSFdc44rgzdQF4entk/AZGdFLHpx1J2LHJjc8LQe5KrTVawiEgoBfwGPz+fz7J3g1V12o6M5pRHa+GIVg6qiIjUXLPzFjLyo60A5JzxMHtW+7G7LPS7qfqcWJfjE1/Xhj3Kgq/MYOfiMgASG+l0lYjI8Xj0ffjyJ3DY4YtHoGk9syM6SmX58P5IyFgDcfWCCRHJzcyOKqzezfiS5UW/EWeNYUKzf4X1fKxnwSKK7n4QgPgXnsLRpVPYxq5sWZs8bJ6lKhEiIjWRztLXUJNmwJRfggfGHzwAMVWtjeuS14L/dr0cnOFNc95Y8juz8xdgwcLV9S48rm25v/sRfD5s7dtib9M6RBGGlqc4wJyn8gDofVVC+V08IiJyiKc4wDe3ZpcnRPS5PoEznq6thAgREanxvl/8Lv0XFuG32FmWE0wE735pHPH19HeFBFmsFpIP/J2ZucELqFKEiMjx+HwO/Pud4PKr46F/Vbue7S6CyafBnmUQUyeYEFE7Ms+bVpYpOT/y710vAHBP4xto6Apfy5BATg75F14Ofj9RF51H9DVXhG3scFj4RrBKRJsR0dRppSoRIiI1if7KrIE274Z/vhRcfuRK6NbG3HiOWt5O2DQ9uGxC64w30z8G4NTkQTSLanRc2zrUOmPU8YZVaRa8VkBRhp+kxnZ6XansWRGR/y9/r4+vb8wme7MXmxNOfbQ27U6ranVJRUREQm+PO51mk2YBsKnfPeTusRCdbNXfFfInSU3tZG3yHnqspAgRkWOyYtOhdsn/PB+uON3ceI6atxQ+Ogt2LghWCL58JqR2MDuqsPogcwp3b38KA4Nzap/CZalnh21sIxAgf+y1BHbtxta6FfFvvFitKgZnb/Gy6cdSAPqoSoSISI2jvzJrGK8PLn0EikthUBcYH/7OE8dv2ZtgBKDFEEhpG9ahMzzZfJXzAwDX1b/4uLZluN14vpsJQFSEts7I3uJlxQfBu56H3JuE3VV9DoJFREJh7yo3U27JpmR/gJjaVs5+qQ71O7nMDktERCQifL71U86cnovXGsNa7/kA9LkuAVe8KilJRbWaVjw9ldjQZlIkIiJV174cOPteKHXDyF7wZPjvJTs+Pjd8fA78Phtc8TD2B6jfxeyowuq1fR/w6K5XABib+g8ebXo7Vkv4jptKnn0Rz/TvweUi8fPJWOPjwzZ2OCx6owAMaD0smpQ2TrPDERGRMFNSRA3zyHuwdAMkxcG794Gtqp1n8Hlg+dvB5Z7Xh334dzK+wGN46RnXie5xHY9rW545P2MUFmKtXw97j24hijB0DMNg1qO5BHzQakg0LQZEmx2SiEhEWTetmB8e3I/fAyltHZz9ch0S6uvQSkREBMBn+Ch45x1iSwIsa3crpUV2kprY6Xx+nNmhSQRK+kNSRGyKVS3IRESOUpkbzrkfdmdBuybw8UNV7Lyv3wufXQSbvwNHNIyZDo16mR1V2BiGwVN73uTFve8CcFP9S7m70fVhrdLgTptD0T0PARD/4tM4Op8YtrHDIed3Lxu+LwGCSboiIlLz6Mx9DTJvDUz4ILj82u3QONXceI7J+ilQlAFx9aD9WWEduthfwuTMr4DjrxIB4J4yFQDXWadjsUbeCZ/100rYvcyNPcrC4LuTzA5HRCRiGAGD+S8XsOjNYB/KVkOiOe2JWjhjIu+zXERExCyz9v/CaZ/spMSewmbXxeCDAbclYnOo+pz8Wa2mh3p6q3WGiMjRMQy45mlYvA6S4+GbCZBYlXIQA3748jJY/zXYXXDJt9BsgNlRhU3ACPDQzolMyvgcgHsaXc9NDS4L3/hFRRQ/8AglL7wKhkHUxecTffW4sI0fLgerRLQaEk1qO1WJEBGpifSXZg2RXwSXPQaBAFx2Cpw/xOyIjtHS14L/dr8KbI7/vW6IfZo1nTx/Ic1djRme1P+4tmUEAri/mQ6Aa/SoUIQXUmUFAeY+kwcE+6slNtBHhYgIgKckwHf37WfzzGAPyl5XxjPg1kQsVl3gERER+aPln7/EVbs9zG96Kz6fnfqdnLQZrupzcnjJzQ79zamkCBGRo/P0x/DhzGBliM/+A60amR3RUQgEYMpV8OsnwXO9F34JLYeZHVXY+Awfd2ybwOfZM7Bg4bGmdzC27j/CNr77h1kUXHsLgR07AYgacyEJr78Q1goV4bB/u5cN36lKhIhITae/NGuImybCjnRoXh9euMXsaI5R1gbYNhcsVuh5TViH9hk+3sr4BIBr6l+IzXJ89ee8S5YRSM/AkpCAc/DJoQgxpBa8kk9JToBaze30uLx69Y4TETlWhRk+ptycTcY6L1Y7jHi4Fh1Hx5odloiISMTZ5d5Hx3cWkO9swba4swEYeEdStTvBLqETnWzFFW/BXWiQ2EinqkREjtS38+HeN4PLL9wCQyKvQ+9fMwyYfjOsfDd4vve8j6Ht6WZHFTbugIebtj7EjNy52LDxfIv7OafOKWEZO5CTQ+E/76Zs8scAWJs0JuGNF3GdMjws44fbojcLMALQYmAUdTuoSoSISE2lOs81wEczg182G0y+HxKq6vWbpa8H/217BiQ2DuvQ3+X+xE73XmrZkziv9mnHvT33lGkAOE8bgcUZWQdimRs8rPy4CICh9yWrvK2ICJC+1sOHF2WSsc5LdLKV8yelKiFCRETkL0yb9wYnLSlieb3bMbDSakg0jbq5zA5LIpjFYqFW82A1yOSmSooQETlS730XzC24fnTwq8owDPjhTljyKlgscM77cMI5ZkcVNiX+UsZt+hczcufitDh4q/XjYUmIMAyDsk8+J7t992BChMVC9C3XU3vt0mqbEJG708v66aoSISIiqhRR7e1IhxufDy7fdyn06WhuPMfMUwIr3wsu97o+rEMbhsHr+z4E4PLUc4i2RR33Nt1TpgIQNfqM495WKBkBg1mP5GIEoO0p0TQ96fjfq4hIVbfxxxK+u3c/vjKD2i3tnP1yiso6i4iI/AVvwIfjjY/IiOnJnvghWGww4LZEs8OSKmDg7UlsTiuh1RC1WREROVKfPgxvfAvXnGl2JEdp9kMw/9ng8llvQedLzI0njPJ9hYzddAdLi9YQY41mUusnGZDYs9LH9e/aTcEN/8Qz7TsAbCe0J+HtV3Ce1KvSxzaDuyjAhhklLP+gEMMPzQdEUf9EJemKiNRkOqNfjfn9MPYxKCiGkzoEkyKqrF8/gbI8SG4BLUeEdeglRatZVbyeKIszJD3dfBs24t+4GRwOnKeG9738nd+mFLN3tQdHjIVBdyaZHY6IiKkMw2DRmwXMf6kAgGb9oxj1dG1c8Sq0JSIi8lfStn/H0Kn7mFs/mJ3f6ZxYardwmByVVAWNurto1F0XK0REjobdDjce/+nK8PppAsx9JLh8+ovQ/Upz4wmjHG8uF228lbUlm0m0xfN+m2fpEX9ipY5pBAKUvv42RXc/hFFYCA4Hsff/i9i7b4+4CsbHyzAM0n/zsOaLYjbMKMFbagDgjLUw4FYl6YqI1HRKiqjGnvoIflkDcdEw+YHgQXKVtfS14L89rwVreC9Gvb7vIwDOrXMadRy1jnt77m+mA+AcMhBrQuSU7CrN9/Pz8/kA9Lsxkfi6Vfk/jIjI8fG5DX54cH95icXul8Yx8PYkrHa1FBIREflfdr7xPMnOU8iJ6YQj2kLfG3QCWkRERA5YMBFm3RtcHvEknHSzqeGE015PJhdtuIUtZTuoY0/mo3YvcEJM60od07dhIwVX3YR3/kIAHH16k/D2y9g7tK/UccPNXRhg/fQS1nxRROYGb/nztZrb6XRuHB3OjCEm2WZihCIiEgl01bOaWroeHn4nuPzibdCiganhHJ89y4JfNid0GxfWobeU7uDHvF+wYOHqeheGZJvuKdMAcEVY64x5E/MpzQ1Qu5WdrhfHmR2OiIhpirP9TLklm31rPFjtMPTeZDqfr89FERGRv7OjeCfdJv/GsrpTAOh5RTyxdXQCWkRERIClb8B3/wwuD34YBvzL1HDCaVvZLi7ccAu7Pek0cNblk7Yv0jK6SaWNZ3g8FD/1PMWPPAkeD5a4OOImPEz0DddgCfMNh5XFMAzSf/Ww+vNiNnxfgu9AVQibE9oMj6HTebE06u7CYtHNLSIiEqSkiGqoqAQufRR8fjh3EFw20uyIjtOSA1UiTjgPYlPCOvSb6R8DMCJpAK2imx739vz70vEuWgKA68zTj3t7obLvVzervygGYNj9ydgcOlgUkZopa6OHr27MpjDdT1SClTOfr02T3lFmhyUiIlIlzPvkSRq6z6GoVmNia1voMTbe7JBEREQkEqx8H6ZeH1zu/y8Y/KC58YTRhpKtXLTxVjK9OTR3NebTdi/S0FWv0sbzLllGwVU34vt1LQDOU0eQ8PoL2Jo0rrQxw6msIMD66cWs+byYrE1/qArRwk7n8+LoMCqG6CQl5YqIyJ8pKaIauv0V2LwbGqXAa7dDlU6GLM2DX4OJCfS6LqxDbyrdxhfZ3wFwXf2LQ7JN97fB1hmO3j2xNagfkm0er4DfYNajuWBAh1ExNO6hi38iUjNtmVPK9H/l4C01SG5m5+yX61CrmXqgi4iIHAlPwEvya7NYk/IFAP1uTsIZUz3uRBQREZHj8Otn8PU4MIxgu4wRT1TxE9ZHbmXRWsZsHE+ev4D20a34uN0LpISgPfPhGMXFFD3wCCUvvAqBAJY6tYl/8WmiLjyvyldLMAyDfas9rP6iiI3fl+IrO1QVou3IGDqdF0fDrs4q/z5FRKRyKSmimvn6Z3h7WvC48t17oVaC2REdp1Xvg7cUUjtCk35hG7bUX8Z1W+7HbXgYlNibnnGdQrLdSGydseaLYjLWenHFWxh4e5LZ4YiIhJ1hGCx9p5Cfn88HA5r0dnHmc3WIStSFHBERkSP184L3sey6AE9KEsmNDTqOjjU7JBERETHb+m/hi0vACED3q+DUiTUmIWJBwQou33QnxYESusV2ZHLbZ0myV87JevePaRRcewuB7TsAiBpzIfHPP4G1Tp1KGS9cyvIDrJtWzJovisnefKgqRO2WwaoQ7UfFEJ2oqhAiInJklBRRjezNhmufCS7fcSEM7mZuPMfNMGDp68HlXteH9YD5gZ3PsbH0d1IdtZnY4sGQZJkGCgrwpM0FIicpomS/n3kv5APQ7+ZE9fsVkRrH7zWY+e9cfpsSbCHU+bxYhtyrNkIiIiJHa/+zn7K79qsADLorBatdc6mIiEiNtvkH+PQ8CPig0yVw5utgrRk3H8zMnce1W+7DbXjol9Cdd1o/RawtJuTjBHJyKBx/D2XvfwSAtUljEt54Edcpw0M+VrgYhsHelcGqEJt+KMXnDlaFsLsstD0lmk7nxtGgi6pCiIjI0VNSRDURCMC4CZCTD11bw3+uNDuiENj+E2StB2csdB4TtmG/yv6Bj7OmYsXKyy3/HbKSZp7vZ4LXi61ta+zt2oZkm8fr5+fyKSsIkNreQZcL4swOR0QkrEpy/Xx7Ww67l7uxWGHwv5Loekmc/rAWERE5Stv2rMGyfBSBBBeprQppMbCR2SGJiIiImbbNhY8b2Pj9AABZPElEQVRGg98DHc6Bf7wL1ppxM9Y3OTO55fd/4zP8jEgawGutHiHK6grpGIZh4P70CwpuuRMjKxssFqJvvo64xx7CGlc1z/GW5vtZ920Ja74oImerr/z5Oq0ddDovlg6nx6qip4iIHJeImEVeeeUVmjVrRlRUFL1792bJkiV/ue5bb73FgAEDSE5OJjk5mWHDhv3P9WuKl76EWcsg2gWT7wdndWiBvuS14L+dx0BUePqAbC3dyV3bnwTgnw2voF9C95Bt+1DrjFEh2+bx2LPCXX5n9LD7k7HadBFQRGqO7K1ePrwog93L3TjjLPzj1Tp0GxOvhAgREZFjsOyxt9kRfyYAw/7TUvOpiIhITbZzIXxwBvjKoM3pcN5HYKsZ92Z+kDmFG7c+hM/w84/aI3mz1eMhT4jw795D3pnnk3/ROIysbGwntCd5QRoJLzxd5RIiDMNg93I3M+7O4fXBe5nzZB45W33Yoyx0HB3LxR+mMvarunS7OF4JESIictxMPxr59NNPGT9+PK+//jq9e/dm4sSJjBw5ko0bN5Kamvqn9efOnctFF11E3759iYqK4sknn2TEiBGsXbuWhg0bmvAOzLdmK9z9RnD56RugfTNTwwmNwnRY91Vwuef1YRmyLODmuq33UxIopW98d25tcHnItm14PLin/wCA66zTQ7bdYxXwGcx6NBeAE8+JpUHn0B6ci4hEsm3zSpl6Rw6eIoPERjbOfiWFOi2rQzahiIhI+JV5Siia1Q+cVlJabaVBp8ZmhyQiIiJm2bsCJp8KnmJoOQwu/ALsTrOjCovX933EI7teAuDS1LN5vOkdWC2hu5BvBAKUvv42RXc/hFFYCA4HsffdSew9d2BxVq2fcWmen7XflrDm8yL2bztUFSKljYNO58fS/rRYohKUBCEiIqFlelLEc889x9VXX824ceMAeP3115k+fTqTJk3i7rvv/tP6H374YYXHb7/9Nl9++SVpaWlcdtllf1rf7XbjdrvLHxcUFIT4HZir1A2XPgIeL5zeB647y+yIQmT5f4P95hr3gfqdwzLkwztfYF3JZurYk3m55cPYLKEr6eaZ+wtGQQHWuqk4evcM2XaP1eovisja5CUq0cqA2xLNDkdEqrFImocNw2DlR0XMeTIPIwANuzk5a2IdYmrVjBKeIiJS84RjHp75+EfkOEdiMbyc/nTXkG9fRESkqoqkv4fDIuM3eHc4lOVD0wFw8RRwRJkdVaUzDINn9rzFxL3vAHBj/Uu5p9H1Ia2c5duwkYKrb8I7byEAjj69SXj7Zewd2odsjHDZ8F0J3z+wH1+ZAYA92kL7U2PodF4s9To6VXFMREQqjanpdh6Ph+XLlzNs2LDy56xWK8OGDWPhwoVHtI2SkhK8Xi+1atU67OsTJkwgMTGx/Ktx4+p118o9b8Bv2yA1Gd6+C6rFMUPAD8veDC73vC4sQ36bM4vJmV9jwcJLLR+mrrNOSLfvnjIVCFaJsFjNzXI1DINVnxQB0PeGBGKSdTFQRCpPpMzDfm+wQs7sCcGEiBNGx3De26lKiBARkWotHPPw7i+bAFCnyTzqtFbCtYiIyEGR8vdwWGRthHeHQel+aNQLxkwDZ6zZUVW6gBHgoZ0TyxMi7ml0Pfc2viFkF/YNj4eiR58kp3MfvPMWYomLI/6lZ0ieN7NKJkT8+nUR0/6Vg6/MIKWNg2H3J3P9nAaM/E8t6p/oUkKEiIhUKlOvzmZnZ+P3+6lbt26F5+vWrUt6evoRbeOuu+6iQYMGFRIr/uiee+4hPz+//GvXrl3HHXek+H4xvPRlcHnS3cHEiGph83eQvxOia0HH8yt9uG1lu7hz2wQAbm4wlpMTe4V0+0YggPub6QC4Ro8K6baPReYGLzlbfNic0GFU9f/jRETMFQnzcFl+gC+vz2L1p8VggZPHJ3LKI7WwO/XHtoiIVG/hmId7P2UnudbPDJgQngp/IiIiVUUk/D0cFvt/h3eHQlEG1OsCl30PUQlmR1XpfIaP27c9zn8zPgPgsaZ3cFODP1eyPlbeFavY32MAxQ88Ah4PzlNHUHvtUmJuus70m+6OxcqPC/nhgVwwoNN5sVz2RV26XBiHK67qvRcREamaTG+fcTyeeOIJPvnkE+bOnUtU1OFLcblcLlwuV5gjq3xZeXDFE8HlG8+GU08yNZzQWvJa8N9u4yq9xJo74OH6LQ9QFCihd3wXbm94ZcjH8C1bQWDvPixxcTiHDAz59o/WuqnFALQcHK3ebCJS6cyeh3N3ePnqxmxyt/twRFs4/cnatBoSbVo8IiIi4RSOebjbqUPodmqlDiEiIlIlmf33cFjk74J3hkLBHkjpAJf/CNHV5c69v+YOeLhp68PMyJ2DDRvPtbiPc+uE7oDIs2AReSPOwiguxlKnNvEvPE3URedV2UoKSyYV8PNz+QB0vzSOQf9KqrLvRUREqi5TkyLq1KmDzWYjIyOjwvMZGRnUq1fvf37vM888wxNPPMGsWbPo1KlTZYYZcQwDrn4KMvZDh2bw5PVmRxQi+btg9sOwaUbwcc9rK33IR3e9zK8lG0m2J/Jyy39jt4R+l3B/Mw0A52kjsJj8h1DAZ7B+egkAJ6hKhIhUczuXlPHtbTmUFQSIr2fj7JfrkNrOaXZYIiIiIiIiIlVf4b5gQkTedqjVCsbNgtgUs6OqdKX+Mq7acjdz8xfjtDh4teV/OLXWoJBt37tsBXmn/gOjuBjnsMEkfvwO1jqhbfUcLoZhsODVAha+VgDASdck0O/mBCVEiIiIKUy9TdzpdNK9e3fS0tLKnwsEAqSlpdGnT5+//L6nnnqKRx55hO+//54ePXqEI9SI8uZUmDofnA744AGIruoJxyU58P0dMLE1rJgUfK7PbVC7daUOO2P/XCZlfA7Aiy0eooEztVLGKZsSTIpwjT6jUrZ/NHYsKqMkJ0B0spVm/Sq3CoeIiJlWf17EF9dkUVYQoH4nJ2M+qauECBEREREREZFQKM6Cd4ZBzmZIagpXzIb4+mZHVekKfEVcvPE25uYvJtoaxXttngltQsSa38gdcRZGQQGOgf1J+ubTKp0Q8dOz+eUJEQNuTaT/LYlKiBAREdOY3j5j/PjxjB07lh49etCrVy8mTpxIcXEx48aNA+Cyyy6jYcOGTJgwAYAnn3ySBx98kI8++ohmzZqRnp4OQFxcHHFxcaa9j3DZsANufzm4/PjV0LmVufEcF3cRLJwI854Gd/DgiGYDYcQT0Lhy+4HsdO/l9m2PAXBD/TEMSfrrJJzj4du0Gf+6DWC34zp1RKWMcTTWTQ1WiWh3agw2hw5ARaT6CfgNfnomj+WTiwBod1oMI/+TjCNK7YJEREREREREjltpLrw7ArLWQXwDGDcbEhubHVWly/HmcsnGf/JryUYSbHG83+ZZesaHroK1b8NGcoedgZGbi6NPb5Kmfo4lJiZk2w8nI2Aw67FcVn8abOM8+K4kul8ab3JUIiJS05meFHHBBReQlZXFgw8+SHp6Ol26dOH777+nbt26AOzcuROr9dCFjNdeew2Px8O5555bYTsPPfQQDz/8cDhDDzuPFy59FErdMLQ73Hqe2REdI58Hlr8Fcx+BogOtU+p1gREToNVIqORsUU/Ay/Vb7qfAX0SPuBP5V8PKa9Ph/mY6AM7BJ2NNSqq0cY6EpzjA5rRSADqMqpoH1CIi/4u7KMC0O3PY9ksZAP1uSuCka1WWUURERERERCQk3IXw/qmQvgpiU2FcGtRqYXZUlW6fJ5MLN9zClrId1LYn81HbiXSMbROy7fu2/k7u0DMwsrKxd+tC0owvscZXzSSCgN/gh4f2s3ZKCVhgxEPJdDq3+t/MKiIikc/0pAiAm266iZtuuumwr82dO7fC4+3bt1d+QBHq4XdgxSaolQDv3APWqnbTayAAv34CaQ9A7u/B55JbwLBHoeMFYXtDj+96lVXF60myxfNqy//gsFbebuCOoNYZm2aV4iszSG5mp15HlZAXkeolb7ePr2/KImeLD3uUhVMfq0XbkUoAExEREREREQkJTwlMPh12L4boWnD5LEhpZ3ZUlW572W4u3HALuzz7qO9M5ZO2L9IqumnItu/fsZPcIacT2LsPe8cOJP/4jek31x0rv9dgxt05bPyhFIsNTn2sFh3OiDU7LBERESBCkiLk781dCU99FFx+405omGJuPEfFMGDzdzDzXkhfHXwurh4MfhC6XQn28F2g/zH3F97K+ASA51s8QENXvUoby5+egXfhYgBcZ55eaeMcqXVTg+XKOoyK0V3TIlKt7F7h5ptbsynNDRCbYuXsl1KU/CUiIiIiIiISKt4y+Gg07PgFXAkw9keod6LZUVW6jSW/c9HGW8nwZtPM1YhP271II1f9kG3fv3cfuUPPILBzF7Y2rUmaNRVr7doh2344+dwGU2/PZuvcMqx2OOPp2rQZrptVREQkcigpogrILYTLHw/mFlxxOvzjZLMjOgo7F8DMe2D7z8HHrgQYcBf0uRWc4c0S3eNO55+/PwLA1XUvZETygEodzz11BhgG9p7dsTVqWKlj/Z3CdB87F7sBlJ0rItVKwGfwwwP7Kc0NkNrewdkv1SG+ng5vRERERERERELC54FPz4OtM4Pncy/7Dhp2NzuqSreqaB2XbPwnef4C2ke35KO2L5DqDF3CQiAzk9yhp+Pf+ju25s1ITpuG7UBL8arGWxpgyi3Z7Fjoxu6ycObztWlxcrTZYYmIiFSgqwYRzjDghudgVya0agjPH77LSOTJWAuz7oUN3wYf213Q+2Y4+W6ICX+2qzfg4/qtD5DnL6RrbAfubXxDpY/p/mY6AFER0Dpj/YwSMKBRdxeJDbXbi0j1YbVbOPO52ix9t5BhDyTjjKlqvaVEREREREREIpTfB19cAhungT0KxkyDJn3NjqrSLSxYweWb7qQoUELX2BOY3PZZku2JIdt+YP9+coefiX/DJqyNG5E8e7rpN9UdK3dRgK9vzGb3cjeOaAtnv1KHJr2izA5LRETkT3R1NMJ98CN8NhtsNpj8AMRFesWpvB0w+yFY9X4wo8NihW5XwOCHILGRaWE9tecNlhf9RoItjldbPYLT6qjU8QKFhXhmzQHAZXJShGEYrJtaAgRbZ4iIVDcpbZ2cNqFqlpcUERERERERiUiBAHw9DtZ+ATYnXDwFmg8yOajKl5a3gGs230OZ4aFvfHfeafMkcbbQVd4N5OeTO+IsfGt+w1qvbrBCRLOmIdt+OJXm+/ny2mzSf/Pgirfwj1dTaNjVZXZYIiIih6WkiAi2bR/cPDG4/NDl0Ku9mdH8jeIs+OlxWPIq+D3B5zqcA8MehZR2poaWlreAV/d9AMCzze+jiatBpY/p+WEWuN3YWrfC1t7c95+10Uv2Zi82J7QZoaQIERERERERERER+R8MA6ZeB6s/AKsdLvgMWo80O6pKZRgGn2fP4M7tE/AZfoYn9ef1Vo8SZQ3dRf5AURF5p52Db/lKLHVqk5w2DXvrViHbfjgV5/j54uossjZ5iU6ycu6bKdTt4DQ7LBERkb+kpIgI5fPBZY9CYQn0PxHuvsTsiP6CuxDmPwfznwFPUfC5FkNg+ARo1Mvc2IC9nkxu/f0/AIxLPZfTag0Ky7juKdMAcJ11OhaLJSxj/pW1U4sBaDkomqgElZUXERERERERERGRv2AYMOM2WPZWsArwuR9A+7PMjqrSGIZBWv4Cnt39NmtKNgAwutZwJrZ4EIc1dJdPjNJS8s48H++CRViSkkieORV7h0i+C/KvFWb4+PyqLPZv8xFT28p5b6eQ0loJESIiEtmUFBGhJnwAC36DhFh4775g+4yI4nPD0jfgp0eDVSIAGnSD4U9Ay2FgciIAgM/wceOWB8n15XNiTFseaHJzWMY1vF7c074HzG+dEfAZbJh+sHVG6Mq8iYiIiIiIiIiISDVjGDDzHlj0YvDx2ZPgxAvMjamSGIbBT/mLeWbPW6wsXgdAjDWa6+pdzG0Nx2GzhO6EvOF2k3f2RXjn/IwlPp7kH6bg6NIpZNsPp/w9Pj67MpP83X7i69k4/78pJDet3FbVIiIioaCkiAi0aC088n5w+eV/QrP65sZTQcAPaz6CtAchb3vwudqtYdhjwXYZ1sipRPDsnv+ypGg1cdYYXmv1CC5reLJVPT/Nw8jPx5qaguMkc6tl7FhcRnF2gOgkK837R5kai4iIiIiIiIiIiESwuY/AL08Gl898HbqONTeeSmAYBvMLl/PM7rdYWrQGgCiri3Gp53J9/Uuo7UgO7XheL/kXjA22W46JIWnGlzh69QjpGOGyf7uXz6/MojDDT2IjG+dPSiWxgS4xiYhI1aAZK8IUlsClj4LfDxcOhUuGmx3RAYYBG6fBzHsh87fgc/H1YfDD0G0c2CIrG/Tn/CW8tPc9AJ5ufg/NoxqHbWz3lKkAuM48HYvJJT7WfRusEtH21BhsDvOrd4iIiIiIiIiIiEgEmvc0zH4ouHzq89DzWnPjqQSLClbyzJ63WFi4EoAoi5NLU//BjQ0uJcVRK+TjGX4/+ZdehfubaeBykfTtpzj79w35OOGQtdnD51dlUZIToFYLO+e/nUpcaqSVtxYREflrSoqIMLe9CL/vhSZ14ZV/mh3NATvmwY93w875wcdRSTDgbjjpZnDGmBra4WR4srlp68MYGFyaejZn1h4WtrENw8D9zXTA/NYZnpIAm2eXAnDCqMj7PYmIiIiIiIiIiEgEWPQy/PCv4PKwx6DvbaaGE2pLC9fwzJ63mFewDACnxcGY1NHcWP9S6jlTKmVMIxCg4IrrcX/6JTgcJH31Ea6hgytlrMqWvtbDF9dkUZYfIKWtg/PeSiGmlhIiRESkalFSRAT5Yi68+x1YLPDefZAUb3JA6Wtg1n3BChEAjmg46VYY8C+IDm0ZsVDxG35u2vowOb5c2ke34qEmt4R1fN+KVQR278ESG4tz6KCwjv3/bZ5Ziq/UILmpnXonhqd1iIiIiIiIiIiIiFQhy/8L028OLg+8Hwbea248IbSiaC3P7nmLufmLAXBY7FyUciY3NxhLA2dqpY1rGAaFN9xG2fsfgc1G4qfv4TptZKWNV5n2rHDz5Q1ZeIoM6p3o5NzXU4hKjJwW2iIiIkdKSRERYncmXPdMcPnuS+DkziYGk7sN0h6ENR8G22ZYbdD9Khj0ICQ0MDGwvzdxzzssKFxOjDWa11s9SrQ1KqzjH2yd4Tx1OJao8I79/62bWgxAh1ExWCxqnSEiIiIiIiIiIiJ/sPoj+Obq4HLf8TD0P+bGEyJrijfwzO63SMtfAIDdYuOCOmdwS4OxNHLVr9SxDcOgaPzdlL4xCSwWEia/RdTZZ1bqmJVl5+IyvropG1+pQaMeLs5+uQ6uOCVEiIhI1aSkiAgQCMC4CZBbCD3awkPjTAqkKAN+egyWvg5+b/C5jufD0EegThuTgjpy8wqW8fzeSQA82ewuWkU3DXsM7inBqhqu0aPCPvYfFWb42LHYDUD7M2JNjUVEREREREREREQizNov4avLgjfF9boeTnkmWMK4Cltbspnn9rzN97k/A2DFyrl1TuW2BuNoGtWw0sc3DIOi+/5NycRXAEj476tEX3R+pY9bGX7/uZRvbsvG74FmfaM464XaOKKVECEiIlWXkiIiwPOfwewVEBMFkx8AR7h/K2UFMP8ZWPAceILVBWg1AoY9Dg27hzmYY5Pl3c/NWx/GwOCilFH8o074y5H5tmzF99s6sNlwnTYi7OP/0frpJWBAw25OkhppNxcREREREREREZEDNk6Hzy+CgB+6Xg6nv1ylEyI2lGzluT3/ZXruHAAsWDi79kj+2fAKWkQ1DlscxY89RcmEYDno+FeeI3rcpWEbO5Q2zSxh2p05BHzQakg0ZzxTG7uz6v7/EBERASVFmG7lJrjvreDyczdBm/Ado4G3DJa+FqwOUZITfK5hTxjxBLQYEsZAjk/ACHDL1n+T6c2hbXQLHmky3pQ43N9MB8A5aADW5GRTYjho3dQSADqMUpUIEREREREREREROWBrGnxyTrBScMcLYPTbYK2aFQC2lG7nuT2T+Hb/LAwMLFg4s9Yw/tnwClpHNwtrLMXPvkjxA48AEPfsBGJuuCas44fKuqnFfHfffowAtDs1hlMfr4XNoYQIERGp+pQUYaKSMrj0UfD64Kz+cNUZYRo44IdVk2H2Q5C/M/hcnbYw7DHo8I8qlxX80r73+blgCdHWKF5v9SjRtihT4nBPmQqAa3S4fpGHl7nBQ/ZmLzYHtB0RY2osIiIiIiIiIiIiEiG2/wIfngk+N7QfDedOBqvN7KiO2u9lu3h+zySm5PxIgAAApycPZnzDK2kX0zLs8ZS88gZFd9wLQOwjDxA7/uawxxAKqz8vYuZ/csGAjqNjGfHvZKy2qnWtQERE5K8oKcJE/3oN1u+A+rXhzTvDkItgGLD+G5h1H2StCz6X0BCG/Bu6jAVb1fvvsKhgJc/sDpbaeKzpHbSJbm5KHIHMTLzzFwHgOsvcpIiDVSJaDIomKrFqZnmLiIiIiIiIiIhICO1eAh+cDt4SaH0KnP8J2BxmR3VUdpTt4YW97/BF9vf48QNwSvLJjG94FSfEtDYlptL/vkfhTbcDEHvvHcTdf5cpcRwPT3GAhW8UsHRSIQBdLopj6D1JWKxKiBARkeqj6l0FryamLYDXpgSXJ90DdZIqecBtP8HMu2FX8MI90clw8r3Q+0ZwRFfy4JUjx5vLjVsfJECAc2ufygUpp5sWi3va92AY2Lt3xda4kWlxBPwG62cUA3CCWmeIiIiIiIiIiIjIvlXw3khwF0LzwXDRV2B3mR3VEdvt3seLe9/j0+xp+IxgMsTQxL7c0ehqOsW2My2u0o8+o+DqmwCI+edNxD76kGmxHAsjYPDbN8XMeyGf4uxgxY2e4+I5eXwilipWTVpEROTvKCnCBBn74aong8u3ngcjelbiYPtWwcx7YPP3wceOGOhzG/S/E6KTKnHgyhUwAtz6+39I92bTKqopjze7w9R4yqZMA8xvnbFzkZvirADRSVaaDzCnjYiIiIiIiIiIiIhEiMx18O5wKMuDJn3hkm+rzE1yez2ZvLT3PT7O+hav4QNgUGJvbm94Nd3iTjA1trIvp1Bw2dVgGERfdyVxz06oUokEu5aVMefJPDLXewFIamxn0J1JtBpSNf5viIiIHC0lRYSZYcCVT0JWHpzYAh6/upIGytkCaQ/Crx8HH1vt0OMaGHQ/xNevpEHD5/X0j5iTv4goi5PXWz1KrC3GtFgCRUV4fkwDIMrkpIh1U4NVItqeEoPNUXUOwkVERERERERERCTEcjbDO0OhJBsadIdLZ4Arzuyo/laGJ5uX973PB5lT8BjBi/b9E3pwR8Or6Bnf2eTowD39e/IvGgd+P1GXjyH+leerTEJE3i4fPz2Xx+aZpQA44yz0uS6BrhfHY3dWjfcgIiJyLJQUEWavTYHvFoHLCR88AFGhrlJWmA5z/wPL3oJAMHuWEy+CYY9ArZYhHswcSwvX8MSu1wH4T9PxtI9pZWo8nh/TwO3G1qI5thM6mBdHSYBNacGD2Q6jzEsSEREREREREREREZPlbg8mRBSlQ90TYewPEJVodlT/U5Z3P6/snczkzK8oMzwAnBTfhTsaXk2fhG4mRxfknjWHvHMuAa8X1wXnkPD2K1isVrPD+lvuogCL3ypg+fuF+L1gsUKnc2Ppd1MiMbVsZocnIiJS6ZQUEUbrtsOdrwaXn7wWOrYI4cbL8uGXp2DhRPCWBJ9rfQoMnwD1u4RwIHPt9+Zzw9YH8eNndK3hXJxyptkh4f5D6wwzM4I3zyrFV2qQ3NRO/U5O0+IQERERERERERERExXsCSZE5O+COu3g8lkQU9vsqP5SjjeX1/Z9yDuZX1AWcAPQI+5E7mh4Nf0TekRMFQbPL/PJO/N8cLtxjT6DxMlvY7FFdkJBwG/w29fFzHsxn5L9AQCanuRi0L+SSGmjc8giIlJzKCkiTNweGPMIlHlgRC+46ZwQbdhbCotfgZ8nQOn+4HONTwomQzQfFKJBIoNhGIzf9ih7PRk0dzXmyeZ3mX5AbHi9uKd9DwSTIsx0sHVG+zNiTP+5iIiIiIiIiIiIiAmKMoIJEbm/Q3ILGDcL4lLNjuqw9nvzeSP9IyZlfE5JIFgBt2tsB+5oeDUDE3tH1DlO7+Kl5J12DpSW4jxlOImfvIfF4TA7rP9p55Iy5jyZR9bGYAuS5GZ2Bt2RRIuBURH1sxUREQkHJUWEyQP/hdVboE4iTLobjvuYw++Dle/CnIeDmb8AKR1g+OPQ7swQDBB53kz/hJl583BZnLze6lHibLFmh4T3l/kYublY6tTG0fck0+IoyvSzc3Ewi7rDGeb/XERERERERERERCTMSnLg3eGQvRESG8MVsyGhodlR/Um+r5C30j/hrfRPKAoEqx6fGNOWOxpdzdDEvhF3wd67cjW5p5yNUVSEY/DJJH31ERZXqPtih07eTh8/PZvH5gOtll0JFvpen0iXC+OwOSLrZysiIhIuSooIg7Tl8OwnweW37oL6x1OpzDBg3Vcw677gwS0ED3CH/Ae6XArWyC7XdaxWFK3l8d2vAPBgk1voGNvG5IiCyr6ZDoDrzNNNLZW2fnoxRgAadnWS1Fi7tYiIiIiIiIiISI1Slg/vjYSMXyG+PoybDUlNzY6qgkJ/MW+nf8qb6R9T4C8CoH10K+5sdDUjkgZEXDIEgG/tOnKHj8LIy8PRrw9J336GJTra7LAOy10YYNGbBaz4oBC/Fyw26Hx+HH1vSCAmuXpeNxARETlSunpayXLyYdyE4PLVo+DMfsexsd9nw493w56lwccxtWHgfdDzenBEHXeskSrPV8D1W+7HZ/g5PXkwY1P/YXZIQLCdh3vKNACiTG+dEcyo7jBKVSJERERERERERERqFHcRTD4N9i6HmDpw+Syo3crsqMoV+0uYlPE5r+/7iDx/AQBto1twe8OrODV5IFaL1eQID8+3aTO5Q8/AyNmPvUc3kqZ/gTUuzuyw/iTgN/j1y2LmvZxP6f4AAM36RjHoX0nUaRXZLT5ERETCRUkRlcgw4LpnYU8WtGkMz954jBvasxxm3gNbZwYfO2Oh7+3Q73aISghZvJHIMAzu2PY4uz3pNHU15Jnm90ZMxrBv1RoCO3dBTAzOYYNNiyNro4esTV5sDmg7Msa0OERERERERERERCTMvKXw4SjYuQCikuDymZDaweyoACjxl/Je5pe8uu9D9vvyAGgV1ZTxDa9iVK0hEZsMAeDftp3coWcQyMjE3qkjyT9MwZqYaHZYf7JjURlznswje7MXgFrN7Qy6M4nmA6Ii5jy6iIhIJFBSRCV69zv46iew2+CDByD2aKtqZW+CtAfgt8+Cj20O6HldsDpEXN2QxxuJ3sn4gu9yf8JhsfNay0dIsEdOJq57ylQAXKcMM7Vk2toDVSJaDIwmKjFy/5AQERERERERERGREPK54eN/wLa54IqHsT9A/S5mR0VpoIzJmV/zyt7JZPtyAWjmasT4hlcyuvZwbJbIbuXg370nmBCxew+29m1Jnvkt1lq1zA6rgtwdXuY+k8fWOWUARCVY6XtDAp0viMPmUDKEiIjI/6ekiEqyZTfc+mJw+T9XQve2R/HNBXth7n9g+dsQ8IPFAp0ugSH/hlotKiXeSLSmeAOP7HoJgAca30znuPYmR1TRwdYZrrPMa50R8BtsmHGwdYaqRIiIiIiIiIiIiNQYX1wKm78HRwxcOgMa9TI1nLKAm4+zvuWlve+T4c0GoImrAbc1uIJz6ozEbon8yxH+9Axyh56Bf9t2bC1bkDxrGtbUVLPDKldWEGDhG/ms/LCIgA8sNuh6YRx9bkggOjGyk01ERETMFPlHIVWQ1weXPQbFpXByZ7jjwiP8xtJc+OVJWPRisOwZQJvTYfjjUK9TpcUbiQp8RVy35X48hpdTkk/mirrnmR1SBb7ft+Fb8xvYbLhOH2laHDsXuynK9BOVaKXFyeZVqxAREREREREREZEw6zwGtv4IF34JTfubFoYn4OWT7Km8uPc99nkyAWjorMdtDcZxXp3TcFirxmWIQHY2ucPOwL9pM9YmjUlOm4atQX2zwwIg4DNY80Ux81/JpzQ3AEDzAVEMuiOJ2i0dJkcnIiIS+arG0UgV8+h7sHgdJMbBe/eB7e8SND0lsOgl+OUJKMsLPtekLwx/ApoNqOxwI45hGNy5fQI73Hto5KzHs83vi7j+Z+5vpgPgOLkf1tq1TYtj3dRiANqeEq2yaCIiIiIiIiIiIjVJ+zNh/HaITjJleG/Ax+fZM5i49x32eNIBqOdI4daGl3NhnVE4rZF/sd6fkYFn1lw8M2fj+X4mgYxMrA3qkzx7OramTcwOD4DtC8qY81QuOVt8ANRqYWfwv5Jo3l83yYmIiBwpJUWE2Pxf4fEPgsuvjocmdf/Hyn4vrJgEc/4NhfuCz6V2DFaGaHtGsG1GDfR+5tdM2z8bu8XGa60eJcmeYHZIf+L+Jtg6I2q0ea0zPCUBNs8KVhQ5YVSsaXGIiIiIiIiIiIiISUxIiPAZPr7M/oGJeyex070XgFRHbW6uP5aLU88kyuoKe0xHyigpwfPLgmASxMzZwWrAf2Bt2IDkWVOxtzS/jfX+bV7mPpPH7z+VARCVaKXfTQl0Pi8Oq71mXjsQERE5VkqKCKH8IrjsUQgEYMwIuHDoX6wYCMDaLyDtfsjZHHwuqSkMfQQ6XQzWmtX7K9u7nwUFK5hfsJx5BcvY7t4NwD2NbqBb3AkmR/dngexsvL8sAMB1lnlJEVvSSvGWGiQ1sVO/s9O0OERERERERERERKT68xt+vsmZxXN7/ss29y4A6tiTubHBpVyaejbR1iiTI/wzIxDAt3J1eRKEZ95C8HgqrGPv2hnnsME4hw/BOaAvlihz34e7KMCCV/NZ+VERAR9Y7dD1ojj6XJdIVKLV1NhERESqKiVFhNAtL8D2dGhWD1667TArGAZsnQUz74G9y4PPxabAwPuh57Vgj9wM2lDK9xWyuHAV8wqWsaBgOetLt1Z43YqVi1JGcW29i0yK8H9zT/seAgHsXTubWkJt3dQSADqcERNx7UVERERERERERESkeggYAabun81ze95mS9kOAJLtidxYfwxjU88hxhZZbRz8O3biPpgEkTYXI2d/hdetjRvhHD4E1/DBOIcOwpqSYlKkFRmGwYYZJcx9Oo/i7AAALQZGMeiOJGo1j/xWJCIiIpFMSREh8kkafPAjWK3w/v2Q8P+7GexeCjPvht9nBx8746DfHdBvPLjiwx5vOJX6y1hStJr5BcuZX7CMNcUbCRCosE776Fb0T+hBv4Tu9I7vQoI9zqRo/557SrB1hsvE1hlFWX52LAqWTetwhlpniIiIiIiIiIiISGgFjADf5f7Es3veZmPp7wAk2eK5rv4ljKt7LnG2yDgvGcjPxzPn5wPVIObg37ylwuuW+Hicg0/GOTxYDcLWpnXE3WSWvcXLrEdz2b3MDUByUztD7k2ieb/ISjgRERGpqpQUEQI7M+CG54LL946Bfif+4cWsDTDrflj3ZfCxzQm9boCB9warRFRDnoCXlcVry5Mglhf9htfwVVinRVQT+iV0p19Cd/rGd6O2I9mkaI+OUVKC+8c0wNzWGeunF2MEoEEXJ0lNtBuLiIiIiIiIiIhIaBiGwY95v/DMnrdZVxJs/5xgi+OaehdxZd3zTb+hzfB68S5eWp4E4V2yDPz+QyvYbDh69yxPgnD06oHFEZmVFjzFARa8WsDyDwox/GCPsnDSNQn0uDweuzOyEjdERESqMl1NPU5+P4x9DPKLoHcHuH/sgRfyd8Och2HFO2AEwGKBLpfB4IchuZl5AVcCv+Hn1+KNB5IglrOkaDWlgbIK6zRw1i2vBNE3oTsNnKkmRXt83D+mQWkp1mZNsXfqaFoc5a0zRkVGNraIiIiIiIiIiIhUbYZhkJa/gGd3v82akg0AxFljuKreBVxd70KS7AmmxeXfuAnPzNm4Z87BO/cXjMLCCuvY2rQuT4JwDhqANTHRlFiPlGEYbPyulLnP5FGUGUzoaD00mkF3JZHYQJdtREREQk2z63HyB6BHO1i5Gd6/DxyeHJj1BCx+CXzBUle0OxOGPQZ1zbuIHkqGYbCx9HfmFyxnXsEyFhWupMBfVGGd2vZk+iV0L0+EaOpqeEQlyXxbtuL9aR7W1BScpwyPuAzeg60zokafYVqJtaxNHrI2erE5oO0pKp8mIiIiIiIiIiIix84wDH7KX8wze95iZfE6AGKs0VxR9zyurXcxtRzhTzAIZGXhnjUHz8w5eGbOJrB7T4XXLbVr4Rw2GNfwITiHDcbWtEnYYzxW2Vu9pD2Wy64lwesHSU3sDLkniRYDdK5XRESksigp4jg5HfD0DXDnucWkrn8B3n0S3AXBF5sOgBFPQJO+5gZ5nAzDYLt7d3kliPkFy8nx5VZYJ8EWR5/4buUtMdpGtziipIFAfj6e2T/h+TENz4+z8f++rfw1a2oKUZdeRPS4MdhP6BDy93W0DJ8P97TvAHCNNq91xsEqES1OjiY60WZaHCIiIiIiIiIiIlJ1GYbB/MLlPLP7LZYWrQEgyupiXOq5XF//krC2PDZKS/HMW3igJcZsfKvWVFzB5cLZv0+wEsTwIdi7dMJitYYtvlDwFAdY+HoByycXEvCB3WWh9zXx9Lw8AbtLrTJEREQqk5IijpffB8vfInXOf6AoPfhc3U4wYgK0PjXYNqMK2uvJZH7BsvIkiL2ejAqvR1uj6B3fmX4JPegX352OsW2wWf7+Ar3h8+FdtiKYBPFDGt7FSyv2e3M4cJzUE/+mLQQyMil59kVKnn0RR++eRI0bQ9SF55pW+sw7fyFGzn4stWvh6NfHlBgCfoP10w+2zogxJQYRERERERERERGp2hYVrOSZPW+xsHAlAFEWJ5em/oMb6o8h1Vm70sc3AgF8q38tT4Lw/LIA3O4K69g7n1ieBOHs3wdLTNU8H2oYBht/KGXu03kUZQTPhbcaEs3gu5JIbKhLNCIiIuGgGfd4Wayw9M1gQkRycxj6KJx4IVSxLNUcby4LClcEW2LkL2Obe1eF1x0WO93jOtIvoQf9E3rQJbYDTuuRtbbw79iJ+8c0PD/MwpP2E0ZeXoXXbW1b4xwxFNfIYTgG9scaF4fh9eL5fialk97HPe17vIuX4l28lMJ/3k3UOWcRPW4MjkEnhzUb+GDrDNeo07DYzdl1di1xU5TpJyrBSvOTVU5NREREREREREREjtzSwjU8s+ct5hUsA8BpcTAmdTQ31r+Ues6USh3bv2s3npmzcc+cjSdtLkZWdoXXrQ0bHEqCGDoQW926lRpPOOT87iXt8Vx2LgomfCQ2sjHknmRaDtS5XRERkXBSUsTxslrh1Gchaz10vxrsTrMjOiIFviIWFa4srwSxvnRLhdetWOkc2+5AO4we9IzrRLQt6oi2HSgqwjv3F9w/zAq2xNi0ucLrlqQknMMG4Rw5DNfwIYft92ZxOHCNOg3XqNPwZ2RQ9sGnlE56H/+6DZR98AllH3yCtVlToseNIXrsJZXeM84wDMoOJkWY2Dpj7dRiANqeEo3dWTWrkIiIiIiIiIiIiEh4rShay7N73mJu/mIgeBPchSmjuLn+WBq6Kif5IFBQgGfuL+XVIPwb/9954rg4HIMG4Bo+GOfwIdjatT2ilsxVgackwKI3Clj23qFWGb2uiqfXFWqVISIiYgaLYRiG2UGEU0FBAYmJieTn55OQkGB2OGFT6i9jadGa8pYYq4s3ECBQYZ320a0OJEF056T4riTY445o20YggG/lajw/zML9YxreBYvB6z20gs2G46ReOEcOxTViKPYe3bDY/r7Vxp/GMQx8S5dTOul9yj7+AqOgIPiCxYJz2GCir7gU1+hRWKKOLHnjaHhX/8r+Ln0gOprU7B2mlGrzlAR4beBevKUGF01OpWFXV9hjEBE5XjV1HhYREYkEmodFRETMY9Y8vKZ4A8/sfou0/AUA2LBxQcrp3NLgchq76od0LMPnw7tk2YEkiDl4Fy2p2DrZasXRqwfOA0kQjt49sTirxk2GR8owDDbNLGXuk3kUHmiV0XJQFIPvSiapse5RFRERMYtm4WrKE/CyqnhdeRLE8qLf8BjeCus0dzUuT4Lol9Cd2o7kI96+f89ePD+mBdtizJyNkbO/wuu2Fs1xjhyKc8RQnINPxpqYeNzvyWKx4OjVA0evHsQ/9wRlX31L2TuT8cz+qTzb2JKURNTF5xF9xWXYu3UJWWaxe8pUAFwjhprWu27L7FK8pQZJje006FK9/lgQERERERERERGR0Flbspnn9rzN97k/A8HKwOfWOZVbG1xOs6hGIRnDMAz8m7eUJ0F45vx86Ea2A2ytWpYnQTgHn4w1KSkkY0ei/duCrTJ2LPxDq4y7k2k5SK0yREREzKakiGrCb/j5rXgT8wuXM79gGYsLV1MaKKuwTn1nKv0TetAvoTt947sfVVk0o6QEz8/zyxMh/GvXV3jdEh+Pc+jAYBLEiKHYW7YIyfv6K5aYGKLHXEj0mAvxb9tO6bsfUPrOBwR27ab01bcoffUt7J06EjXuUqIvOR9ryvH1w3NHQOuMdVNLAGh/Rky1KSMnIiIiIiIiIiIiobOhZCvP7fkv03PnAGDBwtm1R3BbgytoGX38LYgD2dl40ubinjkHz8zZBHbuqvC6pVat4Hni4UOCrZObNT3uMSOdpyTA4jcLWPpusFWGzQm9rkyg15XxOKKsZocnIiIiqH2G2eEcM8Mw2FS6jfkFy5lfuIyFBSvJ9xdWWKe2PblCJYhmrkZHfDHdMAx8a37D82Na8OuXBeB2H1rBasXRszvOEUNwjhgaLHXmcITyLR41w+/HM/snSie9j/vrqYfidThwnXka0VdchnPEUCz2o8sF8u/YSXazDmC1kpLxO9Y6dSoh+v+tKMvPG0P3YgTgyhn1SG5i7s9aRORYVZd5WEREpCrSPCwiImKeyp6Ht5Ru57k9k/h2/ywMDCxYGFVrKOMbXknr6GbHvF2jrAzPvIXllXp9K1dXXMHpxNHvJFzDh+AcPgR7187H1Dq5KjIMg82zSpnzZB6F6cFWGc0HRDH0nmSSmuh+VBERkUiimbmKMAyDHe49wSSIgmA1iGxfboV14m2x9InvVp4E0S665VFVFPBnZATLnP0wK5jlm5FZ4XVr40a4Rg4LJkIMHYS1Vq2QvLdQsdhsuA5kIAdycyn7+HNKJ03Gt3wl7i+/wf3lN1jr1yNq7CVEjxuDvU3rI9qu+5tglQjHgL6mJEQAbJhRghGABp2dSogQERERERERERERAH4v28XzeyYxJedHAgQAOC15MOMbXkH7mFZHvT0jEMD369ryJAjPz/OhrGJFYvuJJwTbYQwfgnNAXyyxsSF5L1VJ7g4vaY/nsX1+8GeT0MDGkHuSaTkoSlV+RUREIpCSIiLYPk/mH5IglrPHk17h9Siri95xXcqTIDrGtsFuOfJfqVFWhmf+Qjw/BKtB+Fb/WnGFmBicg0/GNTLYEsPWpnWVOaCzJicTc8M1xNxwDd41v1H2zmRKJ39MYF86JU88S8kTz+Lo34foKy7Ddd7ZWOPi/nJbZeWtM0aFK/w/WTe1GIAOo2reHxgiIiIiIiIiIiLyZ//Z+SJvp3+Gn2CVgpFJJzO+4ZV0jG1zVNvx79l7KAli1hwCmVkVXrfWr3coCWLYYGz1jrwtc3XjLQ2w+K1Clr5TgN8LNgf0vDKB3lfG44hWqwwREZFIpaSICLLfm8eCwhXML1jOvIJl/F62s8LrDoudbnEd6Z/Qg34J3ekS2wGX1XnE2zcMA//6DbgPJEF4fpoHpaUV1rF364Jz5DBcI4bg6NMbi8sVkvdmJkenjjief5K4Jx/BPXUGpZMm4/l+Jt55C/HOW4jl5jtwnf8Poq+4FEe/PhUSPwI5OXh/ng9A1FmnmxJ/1mYPmRu8WO3Q9pRoU2IQERERERERERGRyFLbnowfP0MT+3JHo6vpFNvuiL4vUFiI96d5uA8kQvjXb6zwuiU2FsfA/jiHD8E1fDC2Du2rzM1ylcUwDLbMLmX2E3kU7jvUKmPIPUmq7CsiIlIFKCnCRIX+YhYVrAxWgihczrqSzRVet2KlU2xb+h1IgugZ14kY29FdFA9kZ+OZNQf3j7Px/JhGYM/eimM0qI9zxFCcI4bgGjYYa0rKcb+vSGVxOok6ZzRR54zGv2cvZZM/pnTSZPybt1D2zmTK3pmMrXUroseNIeqyi7E1bIB7+g/g92PvfCK25s1MiXvd1BIAWpwcTXRSzejHJyIiIiIiIiIiIv/b5XXP4aSErnSP6/g/1zN8PrxLl+OZNQfPzNl4Fy4Bn+/QClYr9h7dcA0fjHP4gZvlnEd+M151l7vTy+wJeWz7JdgqI76+jSF3J9FqSHSNTxYRERGpKpQUEUalgTKWFf7KvIJlzC9YzpriDeWlzQ5qH92Svgnd6Z/Qg97xXUi0xx/VGIbHg3fhYjw/puH+cTa+5SvBMA6tEBWFc2B/nCOG4hoxBNsJHWrkgZutYQNi776dmLvG452/kNJJk3F/9hX+zVsouvdhiu7/D85ThhPIygbAZVKViIDfYP30YFJEh1ExpsQgIiIiIiIiIiIikSfWFnPYhAjDMPBv2XqoJcacXzDy8yusY2vRHOeBJAjnkIFYk5PDFXaV4S0NsPi/hSz97x9aZYxLoPfVapUhIiJS1SgpohJ5Al5WF69jXsFy5hcsZ3nRr3gMb4V1mrka0S+h+4FqEN2o46h1VGMYhoF/85byJAjvnJ8xiooqrGPv1PFANYihOPv3wRKtFgwHWSwWnP374uzfl8CLT+P+/GtKJ72Pd95CPDN+KF/PNXqUKfHtWuqmKMNPVIKVFgP1exMREREREREREZE/C+Tk4Embi2fmHNwzZxPYUbE1syU5GeeQk4NJEMOHYG/R3KRII59hGGydW8bsJ3Ip2BO8qbFZ3yiG3JtErWZqlSEiIlIVKSkihPyGn7Ulm5l/oBLE4sLVlARKK6xTz5FC/wPtMPoldKehq95RjxPIzcUz+6fyRIjA9h0VXrek1MF1MAli+BBs9Y9+jJrIGhdH9LhLiR53Kb5Nmyl95wPKPv4ce8cO2Lt0MiWmdVOLAWg7Mhq7s+ZV9BAREREREREREZHD8yxcjPvbGXhmzsa3YlXFisEOB46+vXEOH4Jr+BDs3btisak179/J2+lj9hO5/P7zgVYZ9WwMviuJ1sPUKkNERKQqU1JECLyf+RU/5y9hYcEK8vyFFV6rZU8qT4Dol9CD5q5GR33wZPh8eJcsw/NjGp4f0vAuWQaBwKEVnE6c/fsEkyBGDsPeqSMWq8p3HQ97m9bET/g38RP+bVoM3tIAm2YGk2o6jIo1LQ4RERERERERERGJPKVvvkPZux+UP7ad0B7XgUoQjpP7YY2LMzG6qsHnNsje4iVrg4d9v3lY+00xfg9Y7dDz8nh6X5OAM0bn2kVERKo6JUWEwOdZ37Gi+DcA4m2xnBTflX4J3emf0IO20S2wWo7+oMm/bTvuH2YFEyHSfsIoKKjwuq1922A1iJHDcJ7cD0ts1b5o7vcaFGb4KUz3UZTpJzrJRv1OTlxxNfeAc8vsUrwlBomNbDTo6jQ7HBEREREREREREYkgrrNHgc8XbIkxbDC2BvXNDimileb5ydzgJXODh6wNXjI3esn53Yvhr7he0z4uht6bTK3mapUhIiJSXSgpIgQuTR3NSO8A+iV058TYttgtR/9jDRQU4JnzczAJ4sfZ+LdsrfC6pVYtnMMG4Ro5LNgSo3GjUIVf6fxeg6IsP4XpforS/RSk+4LLGYeWS3ICf/o+ixVS2jho0NVFo64uGnR1klC/5vyXXTu1BIAOZ8SqNJuIiIiIiIiIiIhUEHXm6USdebrZYUQcwzDI3+0nc4OHzI1eMtcHkyAKM/yHXT86yUpqOwcp7Zw06e2ief8onY8VERGpZmrOFeZKdH7K0R94Gn4/vuUrcf+YhufHNLwLl4DPd2gFuz3Y823EUFwjhmLv1iUie74FfMGEh2CCw4FKD+XLweeLsvxg/P22bE6Ir2cnLtVGwT4fBXsOZu56WfVxERDs4dawm4uGXZ007OqiTmsHVlv1O0AtzvazY0Gwb12HUTEmRyMiIiIiIiIiIiISeXweg5wtweoPmRu8ZG30krnRg6fo8CekkxrbSWnnoG47JyntHKS2cxCXalMShIiISDWnpIgw8u/ajefHtGAixKy5GPv3V3jd1roVzhFDcI4YinPQAKwJCSZFGhTwG5TkBChM91Hw/yo7HKz6UJTlx/hzkYc/sdqDCQ3x9ezE17UdWK74ODrZWuHgsyjTz56VbvascLNnpZvMjV4K0/1smFHChhnBKgrOWAsNOgerSDTs6qJ+J2e16PG2fkYJRgDqd3aS3FRl2kRERERERERERKRmK833B5Me/tACI+d3LwHfn9e1OaBOawep5ckPTlLaOGp0u2YREZGaTEkRlcgoLsbz07zyRAj/+o0VXrckJuIcOrC8GoStebPwxRYwKNkfoGDfH1tZVKz0UJzlP+wB5f9ntUNc6oEkh7r2PyQ8HHocU8uKxXp02bZxqTbajoyh7chgpQRPSYB9azzsWelm70oPe1e78RQbbF9QxvYDVRUsNkht66BhVxcNugYrSsTXrXr/zddNLQZUJUJERERERERERERqFsMwKNh7oP3F+mDlh8wNXgr3Hb79RVTiwfYXDlLbOklt76BWMwc2h6o/iIiISFDVu1ocwYxAAN/qX/EcaInhmbcQPJ5DK1itOHr3LK8G4ejVA4s99L8CwwgmPBT+v+oORRnBCg8FBxIfjiThwWKDuJSDCQ4HKjvUq1jpIaaWNSwtLJwxVpqeFEXTk6KAYCWL7M3eYDWJlR72rHBTmO4nY52XjHVeVnwYbLmR0NBGwy6u8rYbdVo5jjpBI5yyt3jJXO/Faod2pygpQkRERERERERERKonv9cgZ+uh6g/BFhge3IWHb3+R2MhGajsnqQerP7R1EF9P7S9ERETkf1NSRAiUfvAJnu9n4pk5m0BmVoXXrE2b4Bo5FOfIYTiHDMSalHRcYxmGQWleoGKCQ/rB5QOVHjL9+D1/vy2LFWJTbBXbWfyx0kNdG7F1bFjtkXlAabVZDhwAO+l6UfC5gn0+9q70sHulm70r3WRt8lKwx0/BnhLWTw+23HDFW2jQxUXDLsG2G/VPdOKIjpyyaQerRLQ4OZroJJvJ0YiIiIiIiIiIiIgcv7KCAFkHqj5kbgxWgcjZevj2F1b7gfYXbZ3lVSBS2jiJSoic87giIiJSdSgpIgRKXngV37IVAFji4nAMPjmYCDFiKLZWLY84S9UwDNwFBoXpvgMJDoep9JDhx1d2+CzZCiwQW9t6qLJD3UOVHQ4mPcTWsVW7EmIJ9e0k1LfT7rRghQV3UYB9q4MtN/ascrNvdTDLeNsvZWz7Jdhyw2qH1PZOGnZ10rCri4ZdXcTWMScZwQgYrJ8WTN5Q6wwRERERERERERGpagzDoDDdH2x9seFQEkTBnsO3v3AlWMqTHw5WgajVQu0vREREJHSUFBEC0VeNJXAgCcJxUi8sTuef1jEMA0+RUSHBobyyQ3ow2aEg3Y+v9AgSHoCYWtY/JTn8sdJDXGr1S3g4Fq44K836RdGs34GWGz6DzI1e9q50l7fdKMr0k/6rh/RfPSx/P9hyI6mxnQYHkiSSm9qxOSxY7WBzWMq/rA4q/HtwneMp1bZrqZvCDD+uBAstBkaH5GcgIiIiIiIiIiIiUhn8XoP9v3sPVX/Y4CVrg5eygsBh109oaKuQAJHSzkFCfbW/EBERkcqlpIgQiLn2SjzFAQrS/RQt9VOYXnTYSg/ekiNLeIhOtv6husOfKz3E1bVhd+og8VhY7RbqneCk3glOuo2JxzAMCvb6DyRIuNmzwkP2Fi95u3zk7fKx7tuSYxgDrA4LNkdwPNuB5WDSxIHnDyZX2A8tWx2w//dgrbi2I2P0OxYREREREREREZGI4S4MkLXJS+b6Q9UfcrZ48Xv/vK7VDrVbOg4lP7QNtsKISlT7CxEREQk/JUWEwEeXZLB3teeI1o1KtP4hweFQZYf4+rbyCg+OKB0YhovFYiGxoZ3EhnY6nBELBHvb7VsTTJDYs8pNcbafgBf8PoOA18DvDWZAB3wG/sP82gO+YEUKXynAkSXC/H8nnBl77G9KRERERERERERE5BgdbH+RtfEP7S82eMjfffj2F844S3nbiz+2v9BNXyIiIhIplBQRAq6EYBKDK95y2MoOBx/H1bXhjFHCQ6SLSrDSvH80zfv/ffsKwzAw/AeTJIL/+g8kTgR8weWA98+v//8ki4Pr+r2Q2MBGw66uMLxTERERERERERERqcn8XoP924MtLw4mP2Ru8FKWf/j2F/H1bcHkhwMtMFLaOUlsqPYXIiIiEtmUFBECpzxSC0e0BWesEh5qGovFgsUebJMhIiIiIiIiIiIiEqk8xQEyD1R/yDqQAJG9xXvYargWG9Ru4ahQ/SGlnYPoRFv4AxcRERE5TkqKCIHYOjoQFBERERERERERERHzGYZBUaafzA0HKkBsDFZ/yNvpO+z6zthg+4uUtoeSIGq3dGB36UYwERERqR6UFCEiIiIiIiIiIiIiUgUFfAb7d/jI2uAhY72XrA0eMjd6Kc39i/YXdW2k/KH6Q2pbJ4mNbFisSoAQERGR6ktJESIiIiIiIiIiIiIiVcycp3NZ/UkxPrfxp9csNqjV3E5q2wPJD+2DlSBiklX1WERERGoeJUWIiIiIiIiIiIiIiFQxjmgrPreBI8ZCalsHKe2cpLY90P6ilR1HlNXsEEVEREQigpIiRERERERERERERESqmM7nxXLCqBiSGtvV/kJERETkf4iIVNFXXnmFZs2aERUVRe/evVmyZMn/XP/zzz+nXbt2REVFceKJJzJjxowwRSoiIiIiIiIiIiIiYr74unaSmzqUECEiIiLyN0xPivj0008ZP348Dz30ECtWrKBz586MHDmSzMzMw66/YMECLrroIq688kpWrlzJ6NGjGT16NL/99luYIxcREREREREREREREREREZFIZjEMwzAzgN69e9OzZ09efvllAAKBAI0bN+bmm2/m7rvv/tP6F1xwAcXFxUybNq38uZNOOokuXbrw+uuv/+14BQUFJCYmkp+fT0JCQujeiIiIiPwtzcMiIiLm0TwsIiJiHs3DIiIiIuaxmzm4x+Nh+fLl3HPPPeXPWa1Whg0bxsKFCw/7PQsXLmT8+PEVnhs5ciRTpkw57Pputxu3213+uKCg4PgDFxERkSOieVhERMQ8modFRETMo3lYREREJHKY2j4jOzsbv99P3bp1Kzxft25d0tPTD/s96enpR7X+hAkTSExMLP9q3LhxaIIXERGRv6V5WERExDyah0VERMyjeVhEREQkcpiaFBEO99xzD/n5+eVfu3btMjskERGRGkPzsIiIiHk0D4uIiJhH87CIiIhI5DC1fUadOnWw2WxkZGRUeD4jI4N69eod9nvq1at3VOu7XC5cLldoAhYREZGjonlYRETEPJqHRUREzKN5WERERCRymFopwul00r17d9LS0sqfCwQCpKWl0adPn8N+T58+fSqsDzBz5sy/XF9ERERERERERERERERERERqJlMrRQCMHz+esWPH0qNHD3r16sXEiRMpLi5m3LhxAFx22WU0bNiQCRMmAHDrrbcycOBAnn32WU4//XQ++eQTli1bxptvvmnm2xAREREREREREREREREREZEIY3pSxAUXXEBWVhYPPvgg6enpdOnShe+//566desCsHPnTqzWQwUt+vbty0cffcT999/PvffeS+vWrZkyZQodO3Y06y2IiIiIiIiIiIiIiIiIiIhIBLIYhmGYHUQ4FRQUkJiYSH5+PgkJCWaHIyIiUqNoHhYRETGP5mERERHzaB4WERERMY/171cRERERERERERERERERERERqXqUFCEiIiIiIiIiIiIiIiIiIiLVkpIiREREREREREREREREREREpFpSUoSIiIiIiIiIiIiIiIiIiIhUS0qKEBERERERERERERERERERkWpJSREiIiIiIiIiIiIiIiIiIiJSLSkpQkRERERERERERERERERERKolJUWIiIiIiIiIiIiIiIiIiIhItaSkCBEREREREREREREREREREamWlBQhIiIiIiIiIiIiIiIiIiIi1ZKSIkRERERERERERERERERERKRaspsdQLgZhgFAQUGByZGIiIhUHfHx8VgsluPejuZhERGRYxOKuVjzsIiIyLHRPCwiImKeUJ2blpqtxiVFFBYWAtC4cWOTIxEREak68vPzSUhIOO7taB4WERE5NqGYizUPi4iIHBvNwyIiIuYJ1blpqdksxsEU1RoiEAiwd+/eo84q6tmzJ0uXLj2mMY/le4/2e45k/YKCAho3bsyuXbv04cHx/U7DIdzxVcZ4odpmJO9/R7qu9r+KInn/qw77Xii3e3A7ocrG1Tysz4GDIvlzAKrHZ4Hm4UO0/1Wk/a/yx6qM/S8Uc7HmYX0OHKTPgcofrybMw0e6vva/irT/Vf54moeP73v1OVD59DlQ+eNpHj5E+19F2v8qf7xInYdFalylCKvVSqNGjY76+2w22zFPGMfyvUf7PUezfkJCgiY/ju93Gg7hjq8yxgvVNiN5/zva7Wv/C4rk/a867Huh3G6o49M8rM+BgyL5cwCqx2dBJHwOaB6OTNr/Kn+sSNj/DkfzsD4HDtLnQOWPFwmfA9r/IpP2v8ofLxL2v8PRPKzPgYP0OVD540XC54D2v8ik/a/yx4uE/U/kcKxmB1BV3HjjjWH93qP9nuOJr6aK9J9ZuOOrjPFCtc1I3v8i/f9RpIrkn1t12PdCud1I+V1F8ufAsY5R00X6z6w6fBZEwueA5uHIFOk/t3DGp3n4yETy58CxjlHTRfrPTPNwaLaj/S8yRfrPTPtf6LdzvPQ5UP1E+s9MnwOh2Y72v8gU6T8z7X+h347IQTWufUZNVlBQQGJionrviJhA+5+I6HNAxDza/0REnwMi5tH+JyL6HBAxj/Y/EZEgVYqoQVwuFw899BAul8vsUERqHO1/IqLPARHzaP8TEX0OiJhH+5+I6HNAxDza/0REglQpQkRERERERERERERERERERKolVYoQERERERERERERERERERGRaklJESIiIiIiIiIiIiIiIiIiIlItKSlCREREREREREREREREREREqiUlRYiIiIiIiIiIiIiIiIiIiEi1pKQIERERERERERERERERERERqZaUFCEAnH322SQnJ3PuueeaHYpIjbJr1y4GDRpEhw4d6NSpE59//rnZIYmICTQPi5hD87CIgOZhEbNoHhYR0DwsYhbNwyJS01gMwzDMDkLMN3fuXAoLC3nvvff44osvzA5HpMbYt28fGRkZdOnShfT0dLp3786mTZuIjY01OzQRCSPNwyLm0DwsIqB5WMQsmodFBDQPi5hF87CI1DSqFCEADBo0iPj4eLPDEKlx6tevT5cuXQCoV68ederUYf/+/eYGJSJhp3lYxByah0UENA+LmEXzsIiA5mERs2geFpGaRkkR1cDPP//MqFGjaNCgARaLhSlTpvxpnVdeeYVmzZoRFRVF7969WbJkSfgDFamGQrn/LV++HL/fT+PGjSs5ahEJJc3DIubRPCwimodFzKN5WEQ0D4uYR/OwiMjRUVJENVBcXEznzp155ZVXDvv6p59+yvjx43nooYdYsWIFnTt3ZuTIkWRmZoY5UpHqJ1T73/79+7nssst48803wxG2iISQ5mER82geFhHNwyLm0TwsIpqHRcyjeVhE5CgZUq0Axtdff13huV69ehk33nhj+WO/3280aNDAmDBhQoX15syZY5xzzjnhCFOkWjrW/a+srMwYMGCA8f7774crVBGpJJqHRcyjeVhENA+LmEfzsIhoHhYxj+ZhEZG/p0oR1ZzH42H58uUMGzas/Dmr1cqwYcNYuHChiZGJVH9Hsv8ZhsHll1/OkCFDuPTSS80KVUQqieZhEfNoHhYRzcMi5tE8LCKah0XMo3lYROTPlBRRzWVnZ+P3+6lbt26F5+vWrUt6enr542HDhnHeeecxY8YMGjVqpANTkRA4kv1v/vz5fPrpp0yZMoUuXbrQpUsXfv31VzPCFZFKoHlYxDyah0VE87CIeTQPi4jmYRHzaB4WEfkzu9kBSGSYNWuW2SGI1Ej9+/cnEAiYHYaImEzzsIg5NA+LCGgeFjGL5mERAc3DImbRPCwiNY0qRVRzderUwWazkZGRUeH5jIwM6tWrZ1JUIjWD9j8R0eeAiHm0/4mIPgdEzKP9T0T0OSBiHu1/IiJ/pqSIas7pdNK9e3fS0tLKnwsEAqSlpdGnTx8TIxOp/rT/iYg+B0TMo/1PRPQ5IGIe7X8ios8BEfNo/xMR+TO1z6gGioqK2LJlS/njbdu2sWrVKmrVqkWTJk0YP348Y8eOpUePHvTq1YuJEydSXFzMuHHjTIxapHrQ/ici+hwQMY/2PxHR54CIebT/iYg+B0TMo/1PROQoGVLlzZkzxwD+9DV27NjydV566SWjSZMmhtPpNHr16mUsWrTIvIBFqhHtfyKizwER82j/ExF9DoiYR/ufiOhzQMQ82v9ERI6OxTAMo/JSLkRERERERERERERERERERETMYTU7ABEREREREREREREREREREZHKoKQIERERERERERERERERERERqZaUFCEiIiIiIiIiIiIiIiIiIiLVkpIiREREREREREREREREREREpFpSUoSIiIiIiIiIiIiIiIiIiIhUS0qKEBERERERERERERERERERkWpJSREiIiIiIiIiIiIiIiIiIiJSLSkpQkRERERERERERERERERERKolJUWIiIiIiIiIiIiIiIiIiIhItaSkCJEINmjQIG677Tazw6hStm/fjsViYdWqVce1nWbNmjFx4sSwjysiIpFD8/DR0zwsIiKhonn46GkeFhGRUNE8fPQ0D4uIRDYlRYiIHMbSpUu55pprQrrNd999l6SkpJBuU0REpDrSPCwiImIezcMiIiLm0TwsIlI57GYHICISiVJSUswOQUREpMbSPCwiImIezcMiIiLm0TwsIlI5VClCJML5fD5uuukmEhMTqVOnDg888ACGYQCQm5vLZZddRnJyMjExMZx66qls3rwZgKysLOrVq8fjjz9evq0FCxbgdDpJS0v723EffvhhunTpwqRJk2jSpAlxcXHccMMN+P1+nnrqKerVq0dqaiqPPfZYhe/Ly8vjqquuIiUlhYSEBIYMGcLq1avLX9+6dStnnXUWdevWJS4ujp49ezJr1qwK22jWrBmPP/44V1xxBfHx8TRp0oQ333zzqH5uv//+O4MHDyYmJobOnTuzcOHCCq/PmzePAQMGEB0dTePGjbnlllsoLi6uEMMfy5Rt2LCB/v37ExUVRYcOHZg1axYWi4UpU6Yc0bhz585l3Lhx5OfnY7FYsFgsPPzww0f1nkREJPw0D2seFhER82ge1jwsIiLm0TyseVhEpFoxRCRiDRw40IiLizNuvfVWY8OGDcYHH3xgxMTEGG+++aZhGIZx5plnGu3btzd+/vlnY9WqVcbIkSONVq1aGR6PxzAMw5g+fbrhcDiMpUuXGgUFBUaLFi2Mf/7zn0c09kMPPWTExcUZ5557rrF27Vrj22+/NZxOpzFy5Ejj5ptvNjZs2GBMmjTJAIxFixaVf9+wYcOMUaNGGUuXLjU2bdpk3H777Ubt2rWNnJwcwzAMY9WqVcbrr79u/Prrr8amTZuM+++/34iKijJ27NhRvo2mTZsatWrVMl555RVj8+bNxoQJEwyr1Wps2LDhb+Petm2bARjt2rUzpk2bZmzcuNE499xzjaZNmxper9cwDMPYsmWLERsbazz//PPGpk2bjPnz5xtdu3Y1Lr/88goxPP/884ZhGIbP5zPatm1rDB8+3Fi1apXxyy+/GL169TIA4+uvvz6icd1utzFx4kQjISHB2Ldvn7Fv3z6jsLDwiH4XIiJiDs3DmodFRMQ8moc1D4uIiHk0D2seFhGpbpQUIRLBBg4caLRv394IBALlz911111G+/btjU2bNhmAMX/+/PLXsrOzjejoaOOzzz4rf+6GG24w2rRpY1x88cXGiSeeaJSVlR3R2A899JARExNjFBQUlD83cuRIo1mzZobf7y9/rm3btsaECRMMwzCMX375xUhISPjTGC1btjTeeOONvxzrhBNOMF566aXyx02bNjXGjBlT/jgQCBipqanGa6+99rdxHzwIfPvtt8ufW7t2rQEY69evNwzDMK688krjmmuuqfB9v/zyi2G1Wo3S0tLyGA4efH733XeG3W439u3bV77+zJkzD3vw+b/Gfeedd4zExMS/fQ8iIhIZNA8HaR4WEREzaB4O0jwsIiJm0DwcpHlYRKT6UPsMkQh30kknYbFYyh/36dOHzZs3s27dOux2O7179y5/rXbt2rRt25b169eXP/fMM8/g8/n4/PPP+fDDD3G5XEc8drNmzYiPjy9/XLduXTp06IDVaq3wXGZmJgCrV6+mqKiI2rVrExcXV/61bds2tm7dCkBRURF33HEH7du3Jykpibi4ONavX8/OnTsrjN2pU6fyZYvFQr169crHORJ//P769esDVIjz3XffrRDjyJEjCQQCbNu27U/b2rhxI40bN6ZevXrlz/Xq1euoxxURkapH87DmYRERMY/mYc3DIiJiHs3DmodFRKoTu9kBiEjl2rp1K3v37iUQCLB9+3ZOPPHEI/5eh8NR4bHFYjnsc4FAAAgeWNavX5+5c+f+aVtJSUkA3HHHHcycOZNnnnmGVq1aER0dzbnnnovH4/nbsQ+Oc7SxHzx4/2Oc1157Lbfccsufvq9JkyZHPMbRjisiIjWP5mHNwyIiYh7Nw5qHRUTEPJqHNQ+LiEQSJUWIRLjFixdXeLxo0SJat25Nhw4d8Pl8LF68mL59+wKQk5PDxo0b6dChAwAej4cxY8ZwwQUX0LZtW6666ip+/fVXUlNTKyXWbt26kZ6ejt1up1mzZoddZ/78+Vx++eWcffbZQPBAcPv27ZUSz1/p1q0b69ato1WrVke0ftu2bdm1axcZGRnUrVsXgKVLlx71uE6nE7/ff9TfJyIi5tE8HHqah0VE5EhpHg49zcMiInKkNA+HnuZhERHzqH2GSITbuXMn48ePZ+PGjXz88ce89NJL3HrrrbRu3ZqzzjqLq6++mnnz5rF69WrGjBlDw4YNOeusswC47777yM/P58UXX+Suu+6iTZs2XHHFFZUW67Bhw+jTpw+jR4/mxx9/ZPv27SxYsID77ruPZcuWAdC6dWu++uorVq1axerVq7n44ovDnrF61113sWDBAm666SZWrVrF5s2b+eabb7jpppsOu/7w4cNp2bIlY8eOZc2aNcyfP5/7778foEIJub/TrFkzioqKSEtLIzs7m5KSkpC8HxERqTyah0NP87CIiBwpzcOhp3lYRESOlObh0NM8LCJiHiVFiES4yy67jNLSUnr16sWNN97IrbfeyjXXXAPAO++8Q/fu3TnjjDPo06cPhmEwY8YMHA4Hc+fOZeLEiUyePJmEhASsViuTJ0/ml19+4bXXXquUWC0WCzNmzODkk09m3LhxtGnThgsvvJAdO3aUZ7I+99xzJCcn07dvX0aNGsXIkSPp1q1bpcTzVzp16sRPP/3Epk2bGDBgAF27duXBBx+kQYMGh13fZrMxZcoUioqK6NmzJ1dddRX33XcfAFFRUUc8bt++fbnuuuu44IILSElJ4amnngrJ+xERkcqjeTj0NA+LiMiR0jwcepqHRUTkSGkeDj3NwyIi5rEYhmGYHYSISFUzf/58+vfvz5YtW2jZsqXZ4YiIiNQomodFRETMo3lYRETEPJqHRUSOjZIiRESOwNdff01cXBytW7dmy5Yt3HrrrSQnJzNv3jyzQxMREan2NA+LiIiYR/OwiIiIeTQPi4iEhtpniNRQJ5xwAnFxcYf9+vDDD80O7y89/vjjfxn3qaeeWmnjFhYWcuONN9KuXTsuv/xyevbsyTfffFNp44mISPWmefjoaB4WEZFQ0jx8dDQPi4hIKGkePjqah0VEQkOVIkRqqB07duD1eg/7Wt26dYmPjw9zREdm//797N+//7CvRUdH07BhwzBHJCIicvQ0D4uIiJhH87CIiIh5NA+LiIgZlBQhIiIiIiIiIiIiIiIiIiIi1ZLaZ4iIiIiIiIiIiIiIiIiIiEi1pKQIERERERERERERERERERERqZaUFCEiIiIiIiIiIiIiIiIiIiLVkpIiREREREREREREREREREREpFpSUoSIiIiIiIiIiIiIiIiIiIhUS0qKEBERERERERERERERERERkWpJSREiIiIiIiIiIiIiIiIiIiJSLf0fii648ELOzJIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "g = sns.relplot(\n", " data=recall_at_precision,\n", @@ -3537,2029 +1191,23 @@ "interpreter": { "hash": "abc9a1dac9bd8889ac80f2172f7e9696d54384b48ab3353122145881864117fe" } - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "0320c832326e4ecf957e2a1bf1ddd538": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_1a0cf470216242238b4620ded5f5bdc3", - "style": "IPY_MODEL_0f1320dc33754f9487d93c7c5085f7eb", - "value": " 11/11 [00:00<00:00, 358.29it/s]" - } - }, - "0328eae25424440c860e8b1175b377e7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "03b39dc69c9c4885a4b83bfa4828ac33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_4f5a3ba17be54da2b084101a68c1cf93", - "max": 1, - "style": "IPY_MODEL_3b44d92aaff847daa589468cffec2aa7", - "value": 1 - } - }, - "052a98e5a13d4331a58c642fb2ecd06a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "07d26df5bf464cb4aa7229e7b37dc759": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "08318894a2784fdcb0845fd6289bfef9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "097ce42b92c441b087ce5cce02433716": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6d41c2738d774db29f30600179083964", - "style": "IPY_MODEL_5d202c4b9f224e9c8680a30e30930add", - "value": " Evaluation object, containing 5,000 images, 16,147 groundtruth objects, and 2 prediction sets " - } - }, - "0c2fee8301484816b9c6d27f6310f88e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_10fb8ffa0bee4a4d8419b20d900e1eb8", - "IPY_MODEL_116c471656f446f2b9327c97ff47ae54", - "IPY_MODEL_724f228a2f22457abd689362ed21eaec" - ], - "layout": "IPY_MODEL_65fc4a2ed64b4618b58f805babbea4c7" - } - }, - "0cc0279e1a644d739a18c5b4695602ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_052a98e5a13d4331a58c642fb2ecd06a", - "style": "IPY_MODEL_175e6d4bbafb437ca64f19cb98f390de", - "value": " 11/11 [00:00<00:00, 359.20it/s]" - } - }, - "0d4b4de90b5a437a9f66a155e39716bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0d7ef7b8be0d4a9cb02df7a6af9b9d42": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0e120820730a4364a490690d2ebf1d40": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_e5a390806e9c47f2967aeb4f3a361512", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtype
id
352582425640Images/valid/000000352582.jpg.jpg
113354640480Images/valid/000000113354.jpg.jpg
58393640486Images/valid/000000058393.jpg.jpg
147729500375Images/valid/000000147729.jpg.jpg
310072640383Images/valid/000000310072.jpg.jpg
...............
311180480640Images/valid/000000311180.jpg.jpg
302030640359Images/valid/000000302030.jpg.jpg
105455427640Images/valid/000000105455.jpg.jpg
428280500333Images/valid/000000428280.jpg.jpg
349837500333Images/valid/000000349837.jpg.jpg
\n

5000 rows × 4 columns

\n
", - "text/plain": " width height relative_path type\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg\n113354 640 480 Images/valid/000000113354.jpg .jpg\n58393 640 486 Images/valid/000000058393.jpg .jpg\n147729 500 375 Images/valid/000000147729.jpg .jpg\n310072 640 383 Images/valid/000000310072.jpg .jpg\n... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg\n302030 640 359 Images/valid/000000302030.jpg .jpg\n105455 427 640 Images/valid/000000105455.jpg .jpg\n428280 500 333 Images/valid/000000428280.jpg .jpg\n349837 500 333 Images/valid/000000349837.jpg .jpg\n\n[5000 rows x 4 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "0e679ec566424dfeaf2ee0cff4ad80b7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0ea9c0ed3f064f61a18d056528a4b085": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_347dc6d4ac2142309f8459fe8bb25500", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtype
id
352582425640Images/valid/000000352582.jpg.jpg
113354640480Images/valid/000000113354.jpg.jpg
58393640486Images/valid/000000058393.jpg.jpg
147729500375Images/valid/000000147729.jpg.jpg
310072640383Images/valid/000000310072.jpg.jpg
...............
311180480640Images/valid/000000311180.jpg.jpg
302030640359Images/valid/000000302030.jpg.jpg
105455427640Images/valid/000000105455.jpg.jpg
428280500333Images/valid/000000428280.jpg.jpg
349837500333Images/valid/000000349837.jpg.jpg
\n

5000 rows × 4 columns

\n
", - "text/plain": " width height relative_path type\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg\n113354 640 480 Images/valid/000000113354.jpg .jpg\n58393 640 486 Images/valid/000000058393.jpg .jpg\n147729 500 375 Images/valid/000000147729.jpg .jpg\n310072 640 383 Images/valid/000000310072.jpg .jpg\n... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg\n302030 640 359 Images/valid/000000302030.jpg .jpg\n105455 427 640 Images/valid/000000105455.jpg .jpg\n428280 500 333 Images/valid/000000428280.jpg .jpg\n349837 500 333 Images/valid/000000349837.jpg .jpg\n\n[5000 rows x 4 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "0f1320dc33754f9487d93c7c5085f7eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "107e56d894774ea48cc030080fbe88e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_247a267be1594abc948d41d7b3afb798", - "IPY_MODEL_1ac2fc48788f4857a331d227af5969cb", - "IPY_MODEL_51931c70562140708779df87a7b5fa60" - ], - "layout": "IPY_MODEL_2625496101f44c97a7d0d2bbd1c68c2d" - } - }, - "10fb8ffa0bee4a4d8419b20d900e1eb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_4f4831218c8c4523b5c0659b662cca5e", - "style": "IPY_MODEL_4bd59ecdcebd47b4bdf076fd2fb9c646", - "value": "100%" - } - }, - "111cbbb3fdb5436cb87cd3290222bf52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6b96f83eb88a4eb3a395e828fd79dd53", - "style": "IPY_MODEL_0d4b4de90b5a437a9f66a155e39716bb", - "value": " 1/1 [00:00<00:00, 23.50it/s]" - } - }, - "112847e40e0848a3adf1811db6a19bcc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_097ce42b92c441b087ce5cce02433716", - "IPY_MODEL_1871c47694af45d5b0782e5317316d4b" - ], - "layout": "IPY_MODEL_777798fd2e254f6692d2533b451b0524" - } - }, - "1158c7dfd9bf4f088879e1e70697e537": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "116c471656f446f2b9327c97ff47ae54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_a13a6ad6da0045f48b43c6635084633e", - "max": 11, - "style": "IPY_MODEL_bd668808fc46447ea4dcffbcb2f58362", - "value": 11 - } - }, - "128bf900e4d44324a2c7fa73ba843efb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "12fa7eba7ca542a3a1c8b7ba9835870f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "12ff0de6e83744559ffa309830b9f1bf": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_145d2a21c7f0470b9ff6240c4fdb4316", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightconfidence
id
1352582sedan100eval374.986850393.80736050.85295032.7846400.567461
2352582car10eval374.986850393.80736050.85295032.7846400.298446
3352582person2eval96.376400185.985280256.949900459.4867200.992746
4352582person2eval0.072887250.96672076.917775385.5404800.762402
958393person2eval343.573440167.931225190.98944075.1992660.639789
..............................
84037105455sedan100eval333.124477516.89024019.63687614.8339200.795076
84038105455sedan100eval349.461497517.6080006.5322469.8054400.157052
84039105455sedan100eval355.505255517.7443207.2444828.1593600.077184
84040105455person2eval-0.208590515.31904017.49547179.6876800.101198
84041105455person2eval0.040779513.5504005.83837184.3718400.074478
\n

34466 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n1 352582 sedan 100 eval 374.986850 393.807360 \n2 352582 car 10 eval 374.986850 393.807360 \n3 352582 person 2 eval 96.376400 185.985280 \n4 352582 person 2 eval 0.072887 250.966720 \n9 58393 person 2 eval 343.573440 167.931225 \n... ... ... ... ... ... ... \n84037 105455 sedan 100 eval 333.124477 516.890240 \n84038 105455 sedan 100 eval 349.461497 517.608000 \n84039 105455 sedan 100 eval 355.505255 517.744320 \n84040 105455 person 2 eval -0.208590 515.319040 \n84041 105455 person 2 eval 0.040779 513.550400 \n\n box_width box_height confidence \nid \n1 50.852950 32.784640 0.567461 \n2 50.852950 32.784640 0.298446 \n3 256.949900 459.486720 0.992746 \n4 76.917775 385.540480 0.762402 \n9 190.989440 75.199266 0.639789 \n... ... ... ... \n84037 19.636876 14.833920 0.795076 \n84038 6.532246 9.805440 0.157052 \n84039 7.244482 8.159360 0.077184 \n84040 17.495471 79.687680 0.101198 \n84041 5.838371 84.371840 0.074478 \n\n[34466 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "1457c0c155964296bd02a3c707826d2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "145d2a21c7f0470b9ff6240c4fdb4316": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1661b2d1af8e4218a65ccbe7111c4c18": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "175e6d4bbafb437ca64f19cb98f390de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1871c47694af45d5b0782e5317316d4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TabModel", - "state": { - "children": [ - "IPY_MODEL_0ea9c0ed3f064f61a18d056528a4b085", - "IPY_MODEL_35ece8dd369e41d0906799afb730068b", - "IPY_MODEL_12ff0de6e83744559ffa309830b9f1bf", - "IPY_MODEL_e6c9211392724ac084771445c8216097", - "IPY_MODEL_5bca9cfcbb184dabb67afaa071d35d29", - "IPY_MODEL_3b1cd10a6efc4360b28c3ab88430784c", - "IPY_MODEL_d66a668515754d3aaa631f882cfa2b92" - ], - "layout": "IPY_MODEL_f21e698a64694e5f9b2f676f14023029", - "selected_index": 0, - "titles": [ - "Images", - "Groundtruth", - "predictions", - "predictions2", - "label_map", - "category_specific predictions Matches (class)", - "category_agnostic predictions Matches (class)" - ] - } - }, - "1876fb74658141449cb7c7125db36b2b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "190483ac9d494aa7be4e9fc9ce6b83a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "1a0cf470216242238b4620ded5f5bdc3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1a1de0f0816e40a6ab14d22592774414": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_b46373d019a640e19fc25862a7ab8608", - "max": 11, - "style": "IPY_MODEL_8f94ed7dbdd443c7a5d2e16e885d5c58", - "value": 11 - } - }, - "1a990080f12244b58765bdaea4e7852d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1ac2fc48788f4857a331d227af5969cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_6be0f50365034a75ae7bba90169bdbc7", - "max": 10, - "style": "IPY_MODEL_bee69e706d1a42498930f84332a49463", - "value": 10 - } - }, - "1c91773ba0774948939ab67727bf644d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "1d113d3abf5d4d9cbaf92777a9187653": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1eccfcdd44814e8a991361622bf55ea3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1f8c2f670f2c4cb29281500b640c1556": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1fe638bb83044de9a8e803c95cf534e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "214a762712724d809f95580910f9dbc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_59fc6555db3c46b094f87b0a95ba6f6d", - "style": "IPY_MODEL_6df47485e4594712a5138b20daaff4b9", - "value": " 108/108 [00:00<00:00, 654.20it/s]" - } - }, - "229b76c082d54a11ad1f96114dbd4c5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "22c10dc7326842efa91bb01abaf35bc4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "22fe488cf5994058b70963301675e969": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "23a1b88b7f844054b66d0d0f32723ba2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "23fd2d6a6bd544a79975778c49dcc236": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "240009cae444410c8187d5ade68b59f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_37bd5ac34238460daaf7ee71ce0c85e4", - "IPY_MODEL_e1e4cfeedbfc41818d43e9fc719f1051", - "IPY_MODEL_5e9b980fbc3f4c6784c77214dcd93651" - ], - "layout": "IPY_MODEL_f2b478d03f684493926c299be2828352" - } - }, - "247a267be1594abc948d41d7b3afb798": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_748e667234014a8e8dc29fb28fae4363", - "style": "IPY_MODEL_8c58260f4c6f4fbc9da370021b3d3729", - "value": "100%" - } - }, - "2625496101f44c97a7d0d2bbd1c68c2d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "2682a8ba23884dd9b87f6b299346b85e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_f3981bf7435446a4a64bdd32a11fe11c", - "style": "IPY_MODEL_9fa3a1dac61a40c1a207f4e68b3d0e68", - "value": " 108/108 [00:00<00:00, 333.41it/s]" - } - }, - "29d68c678cde4bdb9c524dfa83f4908e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2a618e856626488c93071ac360cc3f38": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "2b5d445c1685456d96b8c87a1198641d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TabModel", - "state": { - "children": [ - "IPY_MODEL_0e120820730a4364a490690d2ebf1d40", - "IPY_MODEL_4c7099f4841641e490b40ccb2a40573e", - "IPY_MODEL_36812d3f4a3b48898826b46461a5b1d4", - "IPY_MODEL_91beecd020f34bf4aec52f86ac3e55ba", - "IPY_MODEL_41370b50b0f24daeb818b7a52aea59e1" - ], - "layout": "IPY_MODEL_dc4257a4560e4f07864536c33c26b4e1", - "selected_index": 0, - "titles": [ - "Images", - "Groundtruth", - "predictions", - "predictions2", - "label_map" - ] - } - }, - "2c5147c21304443db3f4849b00d4bab7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_4b99c8cf45b44f8da9e5659d2104b75d", - "style": "IPY_MODEL_e4bf402f34bc490d9adf350a5f8dc52c", - "value": " 11/11 [00:00<00:00, 345.49it/s]" - } - }, - "2d644f23ce1040309ef27a4e8abb9ba8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "2f8b1324a38b49aeb70a47d045f34766": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6009a0190ee54a6981484b1bd695cf74", - "style": "IPY_MODEL_c8159c8798874419a0a96799d1a84a59", - "value": " 3533/3533 [00:23<00:00, 173.38it/s]" - } - }, - "317fca539f5542e8aea56a1ee9cf7184": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "31e20c8463e0476491374e152413e10b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_4f81578d73d44083bdd18d0d0df3f9a9", - "IPY_MODEL_f07062e9b08540d8aba44e7b1a428868", - "IPY_MODEL_a2f9289370154248b77538aff36262a4" - ], - "layout": "IPY_MODEL_789e5ab928a845e6b20403b227380f3d" - } - }, - "321c1f0369f34122a5422adf073698eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "347dc6d4ac2142309f8459fe8bb25500": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "35dc7139658d4010acba33cfe5561f4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "35ece8dd369e41d0906799afb730068b": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_3c697b53885b47469100820223fe5a62", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person2valid112.43195.32214.78438.1948685.67910
535917352582person2valid0.00256.0080.54376.8122650.73800
46790558393person2valid342.52163.33192.2477.475408.64720
171099058393person2valid418.99182.6561.1245.001792.80770
1238519147729person2valid0.0087.01310.67287.9955847.52705
..............................
1420625363188bag61valid221.41199.7691.3663.64865.42470
2026890363188person2valid80.77158.4623.1445.34600.52020
900100363188363188person2valid0.00129.00305.00115.004293.00000
1724916311180person2valid0.92103.12446.49536.47125482.38805
1192747105455sedan100valid333.56517.2117.4314.58182.21680
\n

16147 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 2 valid 112.43 195.32 \n535917 352582 person 2 valid 0.00 256.00 \n467905 58393 person 2 valid 342.52 163.33 \n1710990 58393 person 2 valid 418.99 182.65 \n1238519 147729 person 2 valid 0.00 87.01 \n... ... ... ... ... ... ... \n1420625 363188 bag 61 valid 221.41 199.76 \n2026890 363188 person 2 valid 80.77 158.46 \n900100363188 363188 person 2 valid 0.00 129.00 \n1724916 311180 person 2 valid 0.92 103.12 \n1192747 105455 sedan 100 valid 333.56 517.21 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n1420625 91.36 63.64 865.42470 \n2026890 23.14 45.34 600.52020 \n900100363188 305.00 115.00 4293.00000 \n1724916 446.49 536.47 125482.38805 \n1192747 17.43 14.58 182.21680 \n\n[16147 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "363e03b53c444485a6339fe50df9b360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6ecd7b534628422c94de22eb3e771dfe", - "style": "IPY_MODEL_29d68c678cde4bdb9c524dfa83f4908e", - "value": "100%" - } - }, - "36812d3f4a3b48898826b46461a5b1d4": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_128bf900e4d44324a2c7fa73ba843efb", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightconfidence
id
1352582sedan100eval374.986850393.80736050.85295032.7846400.567461
2352582car10eval374.986850393.80736050.85295032.7846400.298446
3352582person2eval96.376400185.985280256.949900459.4867200.992746
4352582person2eval0.072887250.96672076.917775385.5404800.762402
958393person2eval343.573440167.931225190.98944075.1992660.639789
..............................
84037105455sedan100eval333.124477516.89024019.63687614.8339200.795076
84038105455sedan100eval349.461497517.6080006.5322469.8054400.157052
84039105455sedan100eval355.505255517.7443207.2444828.1593600.077184
84040105455person2eval-0.208590515.31904017.49547179.6876800.101198
84041105455person2eval0.040779513.5504005.83837184.3718400.074478
\n

34466 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n1 352582 sedan 100 eval 374.986850 393.807360 \n2 352582 car 10 eval 374.986850 393.807360 \n3 352582 person 2 eval 96.376400 185.985280 \n4 352582 person 2 eval 0.072887 250.966720 \n9 58393 person 2 eval 343.573440 167.931225 \n... ... ... ... ... ... ... \n84037 105455 sedan 100 eval 333.124477 516.890240 \n84038 105455 sedan 100 eval 349.461497 517.608000 \n84039 105455 sedan 100 eval 355.505255 517.744320 \n84040 105455 person 2 eval -0.208590 515.319040 \n84041 105455 person 2 eval 0.040779 513.550400 \n\n box_width box_height confidence \nid \n1 50.852950 32.784640 0.567461 \n2 50.852950 32.784640 0.298446 \n3 256.949900 459.486720 0.992746 \n4 76.917775 385.540480 0.762402 \n9 190.989440 75.199266 0.639789 \n... ... ... ... \n84037 19.636876 14.833920 0.795076 \n84038 6.532246 9.805440 0.157052 \n84039 7.244482 8.159360 0.077184 \n84040 17.495471 79.687680 0.101198 \n84041 5.838371 84.371840 0.074478 \n\n[34466 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "37a37d6067be48b9854e7473cdaa1c1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_bb87aaa7033c48eeb0ef33bb40aa1a8e", - "style": "IPY_MODEL_40bc32da417848fd8b36a400b8e4af37", - "value": "100%" - } - }, - "37bd5ac34238460daaf7ee71ce0c85e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b7c8ff83de7a4b76b2e0cc96eb39af81", - "style": "IPY_MODEL_ffbc8edca3ef4ef0bf86a849e65a0136", - "value": "100%" - } - }, - "38699327aeef4640a56c5a5aabbc5813": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_f6f66edfd532423fa322499d19a9f0c1", - "style": "IPY_MODEL_54ad7f16c81f46eab3eed73ad38d50f5", - "value": " 108/108 [00:00<00:00, 577.88it/s]" - } - }, - "399f33269b444427a970c3535a20f86e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "39b91e1da70e4d77b99d0eb6043857dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_c7f8daabc92e4e2d8bd3835eb6e5b971", - "IPY_MODEL_8c7142f0a86842cca606bea2f26a14dc", - "IPY_MODEL_6feb09df369649729ef32248f365a7a2" - ], - "layout": "IPY_MODEL_75d385d20d2d4c76b8c210f9a052fd3d" - } - }, - "39c5c08a914347069525ee8db13fd596": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_1eccfcdd44814e8a991361622bf55ea3", - "max": 11, - "style": "IPY_MODEL_57b3e755b9384c8fa063cd67f8ed130a", - "value": 11 - } - }, - "3a2e8a45ddb24d27b1cac9d43e4f152d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3b02344654bb4c958f8db2f24cc6a5bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_b407ef68d5774e7aa6e1c10377c62372", - "max": 11, - "style": "IPY_MODEL_bbd0b43e85cc4c0f9ed3d077270d0e31", - "value": 11 - } - }, - "3b1cd10a6efc4360b28c3ab88430784c": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_ba666017edad44db90a6e60c9a0fc909", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
prediction_idiougroundtruth_id
0480420.895466230831
1480300.840631233201
0681960.4122711197746
1681990.000000<NA>
0681980.000000<NA>
............
2292160.000000<NA>
2392170.000000<NA>
2492180.000000<NA>
2592190.000000<NA>
2692200.000000<NA>
\n

35250 rows × 3 columns

\n
", - "text/plain": " prediction_id iou groundtruth_id\n0 48042 0.895466 230831\n1 48030 0.840631 233201\n0 68196 0.412271 1197746\n1 68199 0.000000 \n0 68198 0.000000 \n.. ... ... ...\n22 9216 0.000000 \n23 9217 0.000000 \n24 9218 0.000000 \n25 9219 0.000000 \n26 9220 0.000000 \n\n[35250 rows x 3 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "3b44d92aaff847daa589468cffec2aa7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "3b535505dd394ba89631703d151be004": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_9789d78f81bf400ea071fe0058397fa4", - "IPY_MODEL_39c5c08a914347069525ee8db13fd596", - "IPY_MODEL_55448d4dc35b482db63acd1c1ae158ef" - ], - "layout": "IPY_MODEL_c125ec59e1f3435eaf8f9458827934ae" - } - }, - "3c04813cdf3a4b5b951b2df450dccc52": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3c697b53885b47469100820223fe5a62": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3d94416613c74093b5c0e40b3684563e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "3f4832a6ab464d36afdc5fae61ea9dda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "3f4a75271dfb4a1db64d15d365abb1aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_67a82b22eefd44459494385a5bffb03c", - "style": "IPY_MODEL_1a990080f12244b58765bdaea4e7852d", - "value": " 11/11 [00:00<00:00, 310.20it/s]" - } - }, - "40bc32da417848fd8b36a400b8e4af37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "40e11200084d45a7a87af35521bbdc53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "41370b50b0f24daeb818b7a52aea59e1": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_c9d6aee7e9814e3ca166bb22dad6628b", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
categorty_id
2person
111bicycle
100sedan
110motorcycle
102bus
12train
10car
41domestical animal
410dog
61bag
60suitcase
\n
", - "text/plain": " category string\ncategorty_id \n2 person\n111 bicycle\n100 sedan\n110 motorcycle\n102 bus\n12 train\n10 car\n41 domestical animal\n410 dog\n61 bag\n60 suitcase" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "42f3ecf27c914ebe882f5db767525463": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "44a9b9d6e6434dad8a96308b268f5179": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "44ef1cb966f6474e9c52b6de5e7cb6f3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "458d0ed1d78e44899221caefef75bf2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_2a618e856626488c93071ac360cc3f38", - "style": "IPY_MODEL_ad6d91ed2f684d1c8ca01228bbdeb57e", - "value": "100%" - } - }, - "49850e70eb49413884aae1204741f104": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "49eef5f50bd94a238f01e8c1c8c00a49": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4a213bd46a804da8b5b31a15fd8dd02e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_e5b6520e0727400299d30afe51c98e2f", - "max": 108, - "style": "IPY_MODEL_3f4832a6ab464d36afdc5fae61ea9dda", - "value": 108 - } - }, - "4a527f3915ab4bb884db55f903db4c59": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4b99c8cf45b44f8da9e5659d2104b75d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4bd59ecdcebd47b4bdf076fd2fb9c646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4bf9fa7bda364ca88a1a6d697c993acb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4c7099f4841641e490b40ccb2a40573e": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_49eef5f50bd94a238f01e8c1c8c00a49", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person2valid112.43195.32214.78438.1948685.67910
535917352582person2valid0.00256.0080.54376.8122650.73800
46790558393person2valid342.52163.33192.2477.475408.64720
171099058393person2valid418.99182.6561.1245.001792.80770
1238519147729person2valid0.0087.01310.67287.9955847.52705
..............................
1420625363188bag61valid221.41199.7691.3663.64865.42470
2026890363188person2valid80.77158.4623.1445.34600.52020
900100363188363188person2valid0.00129.00305.00115.004293.00000
1724916311180person2valid0.92103.12446.49536.47125482.38805
1192747105455sedan100valid333.56517.2117.4314.58182.21680
\n

16147 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 2 valid 112.43 195.32 \n535917 352582 person 2 valid 0.00 256.00 \n467905 58393 person 2 valid 342.52 163.33 \n1710990 58393 person 2 valid 418.99 182.65 \n1238519 147729 person 2 valid 0.00 87.01 \n... ... ... ... ... ... ... \n1420625 363188 bag 61 valid 221.41 199.76 \n2026890 363188 person 2 valid 80.77 158.46 \n900100363188 363188 person 2 valid 0.00 129.00 \n1724916 311180 person 2 valid 0.92 103.12 \n1192747 105455 sedan 100 valid 333.56 517.21 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n467905 192.24 77.47 5408.64720 \n1710990 61.12 45.00 1792.80770 \n1238519 310.67 287.99 55847.52705 \n... ... ... ... \n1420625 91.36 63.64 865.42470 \n2026890 23.14 45.34 600.52020 \n900100363188 305.00 115.00 4293.00000 \n1724916 446.49 536.47 125482.38805 \n1192747 17.43 14.58 182.21680 \n\n[16147 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "4d5895973fc24379b5d5a5dae6b7e79e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_c96902da81f54cd3a359f3cdfb73522c", - "style": "IPY_MODEL_77b684d52119499e846596a775f73bdf", - "value": "100%" - } - }, - "4db42b1cab1c4bd187557c99d94a6885": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_979da3107a304236bdbb1efd54ac87a1", - "max": 11, - "style": "IPY_MODEL_321c1f0369f34122a5422adf073698eb", - "value": 11 - } - }, - "4e90b8aceb8443399d70828fcece0ba6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f4831218c8c4523b5c0659b662cca5e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4f5a3ba17be54da2b084101a68c1cf93": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4f81578d73d44083bdd18d0d0df3f9a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_317fca539f5542e8aea56a1ee9cf7184", - "style": "IPY_MODEL_22fe488cf5994058b70963301675e969", - "value": "100%" - } - }, - "51931c70562140708779df87a7b5fa60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_7e7f98545c9a42588f420f463058d889", - "style": "IPY_MODEL_81e534e0489f4d539b399162deb703d8", - "value": " 10/10 [00:00<00:00, 29.59it/s]" - } - }, - "53163703d7a340e996f5fb25014f7dc8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "543320ab14a944e4877f00dc9a959a81": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "54ad7f16c81f46eab3eed73ad38d50f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "55448d4dc35b482db63acd1c1ae158ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_49850e70eb49413884aae1204741f104", - "style": "IPY_MODEL_95eb43405b554b1aa4adaaa1b4d1d759", - "value": " 11/11 [00:00<00:00, 411.62it/s]" - } - }, - "564af0541d2a432499e58d26195a2231": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_fa5ca00b557f4b1ba0a0943a6d0f13bd", - "style": "IPY_MODEL_5ad97725a3c7436e8523b465b2c27092", - "value": "100%" - } - }, - "565272f5fb12499daee21263d4a1aa47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_f87b5a0490294bb5b07cd8be8c1c4d94", - "style": "IPY_MODEL_ebe5adc46128489c8fffdc408cf96a0a", - "value": "100%" - } - }, - "566b9ca58d09495db9386e5809cd198f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_67f175bbf2654e2daa4acdf166cf20c4", - "style": "IPY_MODEL_3a2e8a45ddb24d27b1cac9d43e4f152d", - "value": "100%" - } - }, - "5781bd3d22e54b13929f308fd77f6d4d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "57b3e755b9384c8fa063cd67f8ed130a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "58cf249ac7f04775916f18e059d25e48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_363e03b53c444485a6339fe50df9b360", - "IPY_MODEL_1a1de0f0816e40a6ab14d22592774414", - "IPY_MODEL_dca1190908be414a9b396599df438635" - ], - "layout": "IPY_MODEL_543320ab14a944e4877f00dc9a959a81" - } - }, - "5995179873b34330a46194e174297eda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "59f5a64e1560433ebf671de4ea7c5c7e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "59fc6555db3c46b094f87b0a95ba6f6d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5a2b69c98a1d4faeb7bc9c1ed0a4c51f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_ebc1aeeffa9d4466bd40f2ac022bd6bb", - "IPY_MODEL_5df3f74ec0454993bae46b59e30fe16a", - "IPY_MODEL_214a762712724d809f95580910f9dbc7" - ], - "layout": "IPY_MODEL_53163703d7a340e996f5fb25014f7dc8" - } - }, - "5ad97725a3c7436e8523b465b2c27092": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5bca9cfcbb184dabb67afaa071d35d29": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_44a9b9d6e6434dad8a96308b268f5179", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
categorty_id
2person
111bicycle
100sedan
110motorcycle
102bus
12train
10car
41domestical animal
410dog
61bag
60suitcase
\n
", - "text/plain": " category string\ncategorty_id \n2 person\n111 bicycle\n100 sedan\n110 motorcycle\n102 bus\n12 train\n10 car\n41 domestical animal\n410 dog\n61 bag\n60 suitcase" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "5bcae8641c6b4a9ebea4726c751e1882": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5d202c4b9f224e9c8680a30e30930add": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5dafa5fdb91746ae9e7275890c583454": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_71c73ef74427494594919391431ac8ba", - "max": 3533, - "style": "IPY_MODEL_3d94416613c74093b5c0e40b3684563e", - "value": 3533 - } - }, - "5df3f74ec0454993bae46b59e30fe16a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_7a6422c988744703b397dc0ea255967c", - "max": 108, - "style": "IPY_MODEL_190483ac9d494aa7be4e9fc9ce6b83a0", - "value": 108 - } - }, - "5e9b980fbc3f4c6784c77214dcd93651": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_5bcae8641c6b4a9ebea4726c751e1882", - "style": "IPY_MODEL_fa77c84a896442d38532c76004b11e8f", - "value": " 11/11 [00:00<00:00, 343.55it/s]" - } - }, - "6009a0190ee54a6981484b1bd695cf74": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "612d7ff449cc4275a29598f00ad5742b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6571c87b309c41bab7a0695f0f544211": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "65fc4a2ed64b4618b58f805babbea4c7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "663b41fb0be04e45a5aaa8e9667ee4ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67a82b22eefd44459494385a5bffb03c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "67d1aedd8b104387a7b480a1ae1f999a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "67f175bbf2654e2daa4acdf166cf20c4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6a35f8b10b19494eb30a20df251c19c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_beabb1f7550945dd8bcf72e6ddbc467b", - "IPY_MODEL_fec53b543d804ca3a1a57cf3c1ec61a5", - "IPY_MODEL_c54f53471872436aa80bb979137236c6" - ], - "layout": "IPY_MODEL_726ec51aaf4e416daa722b205baa8e66" - } - }, - "6b96f83eb88a4eb3a395e828fd79dd53": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6be0f50365034a75ae7bba90169bdbc7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6d41c2738d774db29f30600179083964": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6da44c17a2c043e29b1ef6fb6843398f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6df47485e4594712a5138b20daaff4b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6ecd7b534628422c94de22eb3e771dfe": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6feb09df369649729ef32248f365a7a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_fdb527bd96074ca8868cf2f8dd310b04", - "style": "IPY_MODEL_1457c0c155964296bd02a3c707826d2b", - "value": " 11/11 [00:00<00:00, 305.09it/s]" - } - }, - "71c73ef74427494594919391431ac8ba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "724f228a2f22457abd689362ed21eaec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6571c87b309c41bab7a0695f0f544211", - "style": "IPY_MODEL_23a1b88b7f844054b66d0d0f32723ba2", - "value": " 11/11 [00:00<00:00, 363.60it/s]" - } - }, - "7251cf3a5b5b4799a895a92da597ded2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "726ec51aaf4e416daa722b205baa8e66": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "748e667234014a8e8dc29fb28fae4363": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "75d385d20d2d4c76b8c210f9a052fd3d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "761585869c9d4f08904951ab2ba04b21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_ba3cab3cb0164708885d31eb61ee3d2f", - "style": "IPY_MODEL_663b41fb0be04e45a5aaa8e9667ee4ae", - "value": "100%" - } - }, - "777798fd2e254f6692d2533b451b0524": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "77a882c0e6a74a78bab479150233888b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "77b684d52119499e846596a775f73bdf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "785e94a3264d49288935637e7ac131b7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "789e5ab928a845e6b20403b227380f3d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7a6422c988744703b397dc0ea255967c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7c7afa4eedcd47a5aa21186a8c6eedf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_95e93ce10c4a451e979b3c53078ae140", - "style": "IPY_MODEL_94a597e83d014497823ad803a0074db2", - "value": " 11/11 [00:00<00:00, 389.53it/s]" - } - }, - "7e18de7261204e50b8771d7edc14f184": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_6da44c17a2c043e29b1ef6fb6843398f", - "max": 4, - "style": "IPY_MODEL_d5b4397374ad4f6fbaca3c20bcfb92d9", - "value": 4 - } - }, - "7e7f98545c9a42588f420f463058d889": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7fa0d62d5a084f3690f5a751eb20b385": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_565272f5fb12499daee21263d4a1aa47", - "IPY_MODEL_e924a676774a40cfa79368540f0bec7b", - "IPY_MODEL_2682a8ba23884dd9b87f6b299346b85e" - ], - "layout": "IPY_MODEL_b505a07e56144bed8a743a959cb6d949" - } - }, - "810209d0d55341d3a6ba97d11e8ae107": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_a29b1f94a806408ebfea6b4db76034f2", - "style": "IPY_MODEL_ed7a55850859453c813514f6696c43a8", - "value": "100%" - } - }, - "81e534e0489f4d539b399162deb703d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "85515e233820460fae1d424923bddbfc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "85a918cd2764432c8d0509e38bbfb044": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "867d051970354bed8233deb3f5379a1c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "876a7e3e0c4342d2acf5cf3b84d5fdb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_564af0541d2a432499e58d26195a2231", - "IPY_MODEL_4db42b1cab1c4bd187557c99d94a6885", - "IPY_MODEL_2c5147c21304443db3f4849b00d4bab7" - ], - "layout": "IPY_MODEL_2d644f23ce1040309ef27a4e8abb9ba8" - } - }, - "888311b2e2fb4936a14ec6981a5158b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_37a37d6067be48b9854e7473cdaa1c1a", - "IPY_MODEL_4a213bd46a804da8b5b31a15fd8dd02e", - "IPY_MODEL_38699327aeef4640a56c5a5aabbc5813" - ], - "layout": "IPY_MODEL_c62b97eee24a4d938fa2bdfbfbebb496" - } - }, - "88c29540e6834d15a3e0624990d76588": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_cf6a90f307eb4fb3bf3b9e3826f3ff90", - "IPY_MODEL_03b39dc69c9c4885a4b83bfa4828ac33", - "IPY_MODEL_111cbbb3fdb5436cb87cd3290222bf52" - ], - "layout": "IPY_MODEL_1876fb74658141449cb7c7125db36b2b" - } - }, - "8b07d3a75ae844a0b62e386b1e841318": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_1f8c2f670f2c4cb29281500b640c1556", - "style": "IPY_MODEL_7251cf3a5b5b4799a895a92da597ded2", - "value": " 108/108 [00:00<00:00, 706.42it/s]" - } - }, - "8b7fe3d3af20402996289feb94e0f7f0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8c277d0958ab43128dc28ecd372b9d48": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8c58260f4c6f4fbc9da370021b3d3729": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8c7142f0a86842cca606bea2f26a14dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_8f60b896daa54310ae23ed37a8349227", - "max": 11, - "style": "IPY_MODEL_93571bbc30ee46f6be7c92596b55d851", - "value": 11 - } - }, - "8c77fd5134e64d57a6afa192a7a6307b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "8c900d50467b4811b2c434538e662600": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8d5f0fd1de2a4683bf93bd2be41e84dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8eb693b5fe9447e281447cf9a5382eb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_cdc9409af0374a00a3df102bdc6f0b05", - "max": 11, - "style": "IPY_MODEL_1c91773ba0774948939ab67727bf644d", - "value": 11 - } - }, - "8f60b896daa54310ae23ed37a8349227": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8f94ed7dbdd443c7a5d2e16e885d5c58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "90c011e3f238495b93853918fa39c8e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "91684c4b003b4bf691eb84e7c3ef6884": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "91beecd020f34bf4aec52f86ac3e55ba": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_9b1b5a0721db41bbb16a33d02f00690b", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightconfidence
id
1352582sedan100eval374.986850393.80736050.85295032.7846400.567461
2352582car10eval374.986850393.80736050.85295032.7846400.298446
3352582person2eval96.376400185.985280256.949900459.4867200.992746
4352582person2eval0.072887250.96672076.917775385.5404800.762402
958393person2eval343.573440167.931225190.98944075.1992660.639789
..............................
84037105455sedan100eval333.124477516.89024019.63687614.8339200.795076
84038105455sedan100eval349.461497517.6080006.5322469.8054400.157052
84039105455sedan100eval355.505255517.7443207.2444828.1593600.077184
84040105455person2eval-0.208590515.31904017.49547179.6876800.101198
84041105455person2eval0.040779513.5504005.83837184.3718400.074478
\n

34466 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n1 352582 sedan 100 eval 374.986850 393.807360 \n2 352582 car 10 eval 374.986850 393.807360 \n3 352582 person 2 eval 96.376400 185.985280 \n4 352582 person 2 eval 0.072887 250.966720 \n9 58393 person 2 eval 343.573440 167.931225 \n... ... ... ... ... ... ... \n84037 105455 sedan 100 eval 333.124477 516.890240 \n84038 105455 sedan 100 eval 349.461497 517.608000 \n84039 105455 sedan 100 eval 355.505255 517.744320 \n84040 105455 person 2 eval -0.208590 515.319040 \n84041 105455 person 2 eval 0.040779 513.550400 \n\n box_width box_height confidence \nid \n1 50.852950 32.784640 0.567461 \n2 50.852950 32.784640 0.298446 \n3 256.949900 459.486720 0.992746 \n4 76.917775 385.540480 0.762402 \n9 190.989440 75.199266 0.639789 \n... ... ... ... \n84037 19.636876 14.833920 0.795076 \n84038 6.532246 9.805440 0.157052 \n84039 7.244482 8.159360 0.077184 \n84040 17.495471 79.687680 0.101198 \n84041 5.838371 84.371840 0.074478 \n\n[34466 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "92437bb6ff6d4293b61f850abb0512d5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "93571bbc30ee46f6be7c92596b55d851": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "94a597e83d014497823ad803a0074db2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95e93ce10c4a451e979b3c53078ae140": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "95eb43405b554b1aa4adaaa1b4d1d759": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9789d78f81bf400ea071fe0058397fa4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_07d26df5bf464cb4aa7229e7b37dc759", - "style": "IPY_MODEL_40e11200084d45a7a87af35521bbdc53", - "value": "100%" - } - }, - "979da3107a304236bdbb1efd54ac87a1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "990b1faa2bf849a693a8a28954427da4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_f382d70669924ffeab3eaac2334a0d1f", - "IPY_MODEL_ee898d74e5fa4425b36dcabd5e3e4d94", - "IPY_MODEL_3f4a75271dfb4a1db64d15d365abb1aa" - ], - "layout": "IPY_MODEL_91684c4b003b4bf691eb84e7c3ef6884" - } - }, - "9b1b5a0721db41bbb16a33d02f00690b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9ce7f37d78d04e709b579a76d7ccbe68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "9e1cdeb6c1ef47f2b351ffcebbe02584": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9f25534fce124f13909cd88bbeb1cd55": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9fa3a1dac61a40c1a207f4e68b3d0e68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a13a6ad6da0045f48b43c6635084633e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a29b1f94a806408ebfea6b4db76034f2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a2f9289370154248b77538aff36262a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_85a918cd2764432c8d0509e38bbfb044", - "style": "IPY_MODEL_90c011e3f238495b93853918fa39c8e8", - "value": " 11/11 [00:00<00:00, 405.24it/s]" - } - }, - "ab2256c1060f4d248143f068d7279f07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_566b9ca58d09495db9386e5809cd198f", - "IPY_MODEL_5dafa5fdb91746ae9e7275890c583454", - "IPY_MODEL_2f8b1324a38b49aeb70a47d045f34766" - ], - "layout": "IPY_MODEL_8b7fe3d3af20402996289feb94e0f7f0" - } - }, - "ac3186cda0034a539a8085fdd32b8628": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "ad6d91ed2f684d1c8ca01228bbdeb57e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "adb4616623af4cfdac3c38ba80794e22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_4d5895973fc24379b5d5a5dae6b7e79e", - "IPY_MODEL_dc4ae074f2354092bebe9ee1d6edf987", - "IPY_MODEL_8b07d3a75ae844a0b62e386b1e841318" - ], - "layout": "IPY_MODEL_3c04813cdf3a4b5b951b2df450dccc52" - } - }, - "b21929467a30443b9c1fde9838f1c202": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_e177ec1087f44b65b7846dd6891a0160", - "IPY_MODEL_7e18de7261204e50b8771d7edc14f184", - "IPY_MODEL_c93428c81d444129b1e933bbaa1b4048" - ], - "layout": "IPY_MODEL_67d1aedd8b104387a7b480a1ae1f999a" - } - }, - "b356a03d23d842ccb4acaf6ee206ad8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_458d0ed1d78e44899221caefef75bf2c", - "IPY_MODEL_3b02344654bb4c958f8db2f24cc6a5bf", - "IPY_MODEL_0320c832326e4ecf957e2a1bf1ddd538" - ], - "layout": "IPY_MODEL_85515e233820460fae1d424923bddbfc" - } - }, - "b407ef68d5774e7aa6e1c10377c62372": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b46373d019a640e19fc25862a7ab8608": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b505a07e56144bed8a743a959cb6d949": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b7c8ff83de7a4b76b2e0cc96eb39af81": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b9c97bd00c3a40dc84645e56fe1d6e3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_4bf9fa7bda364ca88a1a6d697c993acb", - "max": 3533, - "style": "IPY_MODEL_8c77fd5134e64d57a6afa192a7a6307b", - "value": 3533 - } - }, - "ba3cab3cb0164708885d31eb61ee3d2f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ba666017edad44db90a6e60c9a0fc909": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bb87aaa7033c48eeb0ef33bb40aa1a8e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bbd0b43e85cc4c0f9ed3d077270d0e31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "bccb7d9240534593bb2cb8ac469f5e33": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bd668808fc46447ea4dcffbcb2f58362": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "beabb1f7550945dd8bcf72e6ddbc467b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_1661b2d1af8e4218a65ccbe7111c4c18", - "style": "IPY_MODEL_5995179873b34330a46194e174297eda", - "value": "100%" - } - }, - "bee69e706d1a42498930f84332a49463": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "bfe85e0f2f0f40bc93e3cf984429cfd5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c125ec59e1f3435eaf8f9458827934ae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c3d0fe2fb25a4a7ba71f22ead5c969a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "c4a820d17c40456b9a6558b37aabd3cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_8c900d50467b4811b2c434538e662600", - "max": 11, - "style": "IPY_MODEL_9ce7f37d78d04e709b579a76d7ccbe68", - "value": 11 - } - }, - "c54f53471872436aa80bb979137236c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_4a527f3915ab4bb884db55f903db4c59", - "style": "IPY_MODEL_35dc7139658d4010acba33cfe5561f4a", - "value": " 6514/6514 [00:33<00:00, 197.73it/s]" - } - }, - "c62b97eee24a4d938fa2bdfbfbebb496": { + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "02f93a62366347e3a5479279d8804283": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c7f8daabc92e4e2d8bd3835eb6e5b971": { - "model_module": "@jupyter-widgets/controls", + "10b45e2a01a144298c3c716bfa90717d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_22c10dc7326842efa91bb01abaf35bc4", - "style": "IPY_MODEL_9e1cdeb6c1ef47f2b351ffcebbe02584", - "value": "100%" - } + "model_name": "LayoutModel", + "state": {} }, - "c8159c8798874419a0a96799d1a84a59": { + "17fb4bdf25d0411fb4c7212ec0e4db3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5569,83 +1217,41 @@ "text_color": null } }, - "c93428c81d444129b1e933bbaa1b4048": { + "1ce358ce7715497f9da51161adfb448f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "layout": "IPY_MODEL_59f5a64e1560433ebf671de4ea7c5c7e", - "style": "IPY_MODEL_4e90b8aceb8443399d70828fcece0ba6", - "value": " 4/4 [00:00<00:00,  5.09it/s]" + "description_width": "" } }, - "c96902da81f54cd3a359f3cdfb73522c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c9d6aee7e9814e3ca166bb22dad6628b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "cb2bce7330a34b18b840b4a58389a00f": { + "27f00536e4544328aea0e0bd87d1668a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_12fa7eba7ca542a3a1c8b7ba9835870f", - "style": "IPY_MODEL_399f33269b444427a970c3535a20f86e", - "value": "100%" + "layout": "IPY_MODEL_9ecbe5bd49ee4eadb44a0f55171c108e", + "style": "IPY_MODEL_b2d56018c19645e3be48129f823c55ad", + "value": " 6832/14503 [00:21<00:27, 276.50it/s]" } }, - "cdc9409af0374a00a3df102bdc6f0b05": { + "2a8c70f673504e07899e6ca00f9cecb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "cf6a90f307eb4fb3bf3b9e3826f3ff90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_92437bb6ff6d4293b61f850abb0512d5", - "style": "IPY_MODEL_8d5f0fd1de2a4683bf93bd2be41e84dd", - "value": "100%" - } - }, - "d286de93e860442390d59798b043d1e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d5b4397374ad4f6fbaca3c20bcfb92d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "d66a668515754d3aaa631f882cfa2b92": { + "2d642515e5c641e9b2be0980b45f8caa": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_5781bd3d22e54b13929f308fd77f6d4d", + "layout": "IPY_MODEL_f08721efc82346caaa13c24970635bd8", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
prediction_idiougroundtruth_id
0480420.895466230831
1480300.840631233201
0681980.8074901197746
1681960.0002271341991
2682000.000000<NA>
............
2292160.000000<NA>
2392170.000000<NA>
2492180.000000<NA>
2592190.000000<NA>
2692200.000000<NA>
\n

35009 rows × 3 columns

\n
", - "text/plain": " prediction_id iou groundtruth_id\n0 48042 0.895466 230831\n1 48030 0.840631 233201\n0 68198 0.807490 1197746\n1 68196 0.000227 1341991\n2 68200 0.000000 \n.. ... ... ...\n22 9216 0.000000 \n23 9217 0.000000 \n24 9218 0.000000 \n25 9219 0.000000 \n26 9220 0.000000 \n\n[35009 rows x 3 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtype
id
352582425640Images/valid/000000352582.jpg.jpg
113354640480Images/valid/000000113354.jpg.jpg
58393640486Images/valid/000000058393.jpg.jpg
147729500375Images/valid/000000147729.jpg.jpg
310072640383Images/valid/000000310072.jpg.jpg
...............
311180480640Images/valid/000000311180.jpg.jpg
302030640359Images/valid/000000302030.jpg.jpg
105455427640Images/valid/000000105455.jpg.jpg
428280500333Images/valid/000000428280.jpg.jpg
349837500333Images/valid/000000349837.jpg.jpg
\n

5000 rows × 4 columns

\n
", + "text/plain": " width height relative_path type\nid \n352582 425 640 Images/valid/000000352582.jpg .jpg\n113354 640 480 Images/valid/000000113354.jpg .jpg\n58393 640 486 Images/valid/000000058393.jpg .jpg\n147729 500 375 Images/valid/000000147729.jpg .jpg\n310072 640 383 Images/valid/000000310072.jpg .jpg\n... ... ... ... ...\n311180 480 640 Images/valid/000000311180.jpg .jpg\n302030 640 359 Images/valid/000000302030.jpg .jpg\n105455 427 640 Images/valid/000000105455.jpg .jpg\n428280 500 333 Images/valid/000000428280.jpg .jpg\n349837 500 333 Images/valid/000000349837.jpg .jpg\n\n[5000 rows x 4 columns]" }, "metadata": {}, "output_type": "display_data" @@ -5653,218 +1259,152 @@ ] } }, - "d6768b9da651431a9b8c28f835e42d94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_810209d0d55341d3a6ba97d11e8ae107", - "IPY_MODEL_8eb693b5fe9447e281447cf9a5382eb9", - "IPY_MODEL_0cc0279e1a644d739a18c5b4695602ce" - ], - "layout": "IPY_MODEL_9f25534fce124f13909cd88bbeb1cd55" - } - }, - "d73a836796a34b5dad71de38ed2c92d0": { + "2f92d79c3914488baaecc9915a2d4d42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "d85926def5ac44d5969ed2ab36a31ca0": { + "382b772d129044c4a8d143c83d5f635c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HTMLStyleModel", "state": { - "children": [ - "IPY_MODEL_df77ee2dd9bb46749962fb4698237823", - "IPY_MODEL_2b5d445c1685456d96b8c87a1198641d" - ], - "layout": "IPY_MODEL_0328eae25424440c860e8b1175b377e7" + "description_width": "", + "font_size": null, + "text_color": null } }, - "db2f18e338af48219e46c65091055846": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dc4257a4560e4f07864536c33c26b4e1": { + "41395e5b5c4f4cf2a9193ea8d952fe4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "dc4ae074f2354092bebe9ee1d6edf987": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_bccb7d9240534593bb2cb8ac469f5e33", - "max": 108, - "style": "IPY_MODEL_229b76c082d54a11ad1f96114dbd4c5a", - "value": 108 - } - }, - "dca1190908be414a9b396599df438635": { + "470f75e2ac12499191e687771ba89a3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_8c277d0958ab43128dc28ecd372b9d48", - "style": "IPY_MODEL_1fe638bb83044de9a8e803c95cf534e7", - "value": " 11/11 [00:00<00:00, 382.92it/s]" + "description_width": "", + "font_size": null, + "text_color": null } }, - "df77ee2dd9bb46749962fb4698237823": { + "48a21b9cc7ee42daafa0ac87f0471a7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_0e679ec566424dfeaf2ee0cff4ad80b7", - "style": "IPY_MODEL_867d051970354bed8233deb3f5379a1c", - "value": " Evaluation object, containing 5,000 images, 16,147 groundtruth objects, and 2 prediction sets " + "layout": "IPY_MODEL_02f93a62366347e3a5479279d8804283", + "style": "IPY_MODEL_382b772d129044c4a8d143c83d5f635c", + "value": " 47%" } }, - "e177ec1087f44b65b7846dd6891a0160": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "5124d2886e024aac8d2151dfe88107bc": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_77a882c0e6a74a78bab479150233888b", - "style": "IPY_MODEL_d286de93e860442390d59798b043d1e2", - "value": "100%" + "layout": "IPY_MODEL_9db2063e92784c4cbf2dfaed773ac64d", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
categorty_id
1person
2vehicle
3outdoor
4animal
5accessory
6sports
7kitchen
8food
9furniture
10electronic
11appliance
12indoor
\n
", + "text/plain": " category string\ncategorty_id \n1 person\n2 vehicle\n3 outdoor\n4 animal\n5 accessory\n6 sports\n7 kitchen\n8 food\n9 furniture\n10 electronic\n11 appliance\n12 indoor" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "e1e4cfeedbfc41818d43e9fc719f1051": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "788f1f9afb9c4f16a3606f55522041b4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "bar_style": "success", - "layout": "IPY_MODEL_bfe85e0f2f0f40bc93e3cf984429cfd5", - "max": 11, - "style": "IPY_MODEL_f761e5efcc1c4fcb8d319e81c6f17d7e", - "value": 11 + "layout": "IPY_MODEL_b70b3c9feba547dd9ccaeb8efdde6a5f", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightconfidence
id
0352582sports6eval173.500088422.78304084.09517542.1280000.993809
1352582vehicle2eval374.986850393.80736050.85295032.7846400.567461
2352582vehicle2eval374.986850393.80736050.85295032.7846400.298446
3352582person1eval96.376400185.985280256.949900459.4867200.992746
4352582person1eval0.072887250.96672076.917775385.5404800.762402
..............................
84056349837appliance11eval15.557250102.70952157.678500165.5556120.985206
84057349837appliance11eval232.22925028.451520113.910500306.2367900.974466
84058349837appliance11eval333.6140009.807183127.360000326.7429300.972766
84059349837appliance11eval458.77175024.93820441.755500295.5684690.904706
84060349837appliance11eval-0.16600059.78415616.650000183.8679480.772212
\n

84061 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 352582 sports 6 eval 173.500088 422.783040 \n1 352582 vehicle 2 eval 374.986850 393.807360 \n2 352582 vehicle 2 eval 374.986850 393.807360 \n3 352582 person 1 eval 96.376400 185.985280 \n4 352582 person 1 eval 0.072887 250.966720 \n... ... ... ... ... ... ... \n84056 349837 appliance 11 eval 15.557250 102.709521 \n84057 349837 appliance 11 eval 232.229250 28.451520 \n84058 349837 appliance 11 eval 333.614000 9.807183 \n84059 349837 appliance 11 eval 458.771750 24.938204 \n84060 349837 appliance 11 eval -0.166000 59.784156 \n\n box_width box_height confidence \nid \n0 84.095175 42.128000 0.993809 \n1 50.852950 32.784640 0.567461 \n2 50.852950 32.784640 0.298446 \n3 256.949900 459.486720 0.992746 \n4 76.917775 385.540480 0.762402 \n... ... ... ... \n84056 57.678500 165.555612 0.985206 \n84057 113.910500 306.236790 0.974466 \n84058 127.360000 326.742930 0.972766 \n84059 41.755500 295.568469 0.904706 \n84060 16.650000 183.867948 0.772212 \n\n[84061 rows x 9 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "e310dbcf56184b61999a0bbeaaa757c6": { + "8cb64832f8c648b39befc52303293a1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e3bfabca3d7740858dbc52c395dfa304": { + "9c6f1f5e57a44584ab85200723bf29ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e4bf402f34bc490d9adf350a5f8dc52c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e508b72540b9429eaa24adcd85334049": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e5a390806e9c47f2967aeb4f3a361512": { + "9db2063e92784c4cbf2dfaed773ac64d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e5b6520e0727400299d30afe51c98e2f": { + "9ecbe5bd49ee4eadb44a0f55171c108e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e6c9211392724ac084771445c8216097": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_e3bfabca3d7740858dbc52c395dfa304", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightconfidence
id
1352582sedan100eval374.986850393.80736050.85295032.7846400.567461
2352582car10eval374.986850393.80736050.85295032.7846400.298446
3352582person2eval96.376400185.985280256.949900459.4867200.992746
4352582person2eval0.072887250.96672076.917775385.5404800.762402
958393person2eval343.573440167.931225190.98944075.1992660.639789
..............................
84037105455sedan100eval333.124477516.89024019.63687614.8339200.795076
84038105455sedan100eval349.461497517.6080006.5322469.8054400.157052
84039105455sedan100eval355.505255517.7443207.2444828.1593600.077184
84040105455person2eval-0.208590515.31904017.49547179.6876800.101198
84041105455person2eval0.040779513.5504005.83837184.3718400.074478
\n

34466 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n1 352582 sedan 100 eval 374.986850 393.807360 \n2 352582 car 10 eval 374.986850 393.807360 \n3 352582 person 2 eval 96.376400 185.985280 \n4 352582 person 2 eval 0.072887 250.966720 \n9 58393 person 2 eval 343.573440 167.931225 \n... ... ... ... ... ... ... \n84037 105455 sedan 100 eval 333.124477 516.890240 \n84038 105455 sedan 100 eval 349.461497 517.608000 \n84039 105455 sedan 100 eval 355.505255 517.744320 \n84040 105455 person 2 eval -0.208590 515.319040 \n84041 105455 person 2 eval 0.040779 513.550400 \n\n box_width box_height confidence \nid \n1 50.852950 32.784640 0.567461 \n2 50.852950 32.784640 0.298446 \n3 256.949900 459.486720 0.992746 \n4 76.917775 385.540480 0.762402 \n9 190.989440 75.199266 0.639789 \n... ... ... ... \n84037 19.636876 14.833920 0.795076 \n84038 6.532246 9.805440 0.157052 \n84039 7.244482 8.159360 0.077184 \n84040 17.495471 79.687680 0.101198 \n84041 5.838371 84.371840 0.074478 \n\n[34466 rows x 9 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "e924a676774a40cfa79368540f0bec7b": { + "a1a8952dfe9d4de688ea676621e66eae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "bar_style": "success", - "layout": "IPY_MODEL_d73a836796a34b5dad71de38ed2c92d0", - "max": 108, - "style": "IPY_MODEL_08318894a2784fdcb0845fd6289bfef9", - "value": 108 + "description_width": "" } }, - "eaf92fb2e5a24aab8e700cb0c855781c": { + "a4f3939c67264382ad1b09cc1508f767": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { - "layout": "IPY_MODEL_612d7ff449cc4275a29598f00ad5742b", - "style": "IPY_MODEL_e508b72540b9429eaa24adcd85334049", - "value": " 3533/3533 [00:21<00:00, 164.55it/s]" + "bar_style": "success", + "layout": "IPY_MODEL_b9900cdb95184867a21b72f523032174", + "max": 4979, + "style": "IPY_MODEL_a1a8952dfe9d4de688ea676621e66eae", + "value": 4979 } }, - "ebc1aeeffa9d4466bd40f2ac022bd6bb": { + "aa255e02464345dd885e3155446b712d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_0d7ef7b8be0d4a9cb02df7a6af9b9d42", - "style": "IPY_MODEL_ed6953a6fb364a33bfb13f8eac10c761", - "value": "100%" - } - }, - "ebe5adc46128489c8fffdc408cf96a0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_8cb64832f8c648b39befc52303293a1e", + "style": "IPY_MODEL_470f75e2ac12499191e687771ba89a3f", + "value": " Evaluation object, containing 5,000 images, 36,781 groundtruth objects, and 2 prediction sets " } }, - "ed6953a6fb364a33bfb13f8eac10c761": { + "ae73360346b148089338d1a9ea0c7237": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_48a21b9cc7ee42daafa0ac87f0471a7d", + "IPY_MODEL_e1417c77cadf4c0589676f3d9119201e", + "IPY_MODEL_27f00536e4544328aea0e0bd87d1668a" + ], + "layout": "IPY_MODEL_10b45e2a01a144298c3c716bfa90717d" } }, - "ed7a55850859453c813514f6696c43a8": { + "b2d56018c19645e3be48129f823c55ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5874,139 +1414,140 @@ "text_color": null } }, - "ee898d74e5fa4425b36dcabd5e3e4d94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_44ef1cb966f6474e9c52b6de5e7cb6f3", - "max": 11, - "style": "IPY_MODEL_c3d0fe2fb25a4a7ba71f22ead5c969a2", - "value": 11 - } - }, - "f07062e9b08540d8aba44e7b1a428868": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_23fd2d6a6bd544a79975778c49dcc236", - "max": 11, - "style": "IPY_MODEL_42f3ecf27c914ebe882f5db767525463", - "value": 11 - } - }, - "f21e698a64694e5f9b2f676f14023029": { + "b70b3c9feba547dd9ccaeb8efdde6a5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f2b478d03f684493926c299be2828352": { + "b9900cdb95184867a21b72f523032174": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f382d70669924ffeab3eaac2334a0d1f": { + "ba243a40165a4eaaa14001ede688249f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_1158c7dfd9bf4f088879e1e70697e537", - "style": "IPY_MODEL_1d113d3abf5d4d9cbaf92777a9187653", - "value": "100%" + "layout": "IPY_MODEL_efd69a8c6f1840f7a705e37c59cecd2a", + "style": "IPY_MODEL_17fb4bdf25d0411fb4c7212ec0e4db3e", + "value": " 4979/4979 [00:24<00:00, 229.56it/s]" } }, - "f3981bf7435446a4a64bdd32a11fe11c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f49b15e957c64ddb967e2c316fdd18d0": { + "be8313e445274fa48df3bc9e22226fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_761585869c9d4f08904951ab2ba04b21", - "IPY_MODEL_c4a820d17c40456b9a6558b37aabd3cb", - "IPY_MODEL_7c7afa4eedcd47a5aa21186a8c6eedf1" + "IPY_MODEL_f52d246406954962bb788f21351c3cb1", + "IPY_MODEL_a4f3939c67264382ad1b09cc1508f767", + "IPY_MODEL_ba243a40165a4eaaa14001ede688249f" ], - "layout": "IPY_MODEL_db2f18e338af48219e46c65091055846" + "layout": "IPY_MODEL_41395e5b5c4f4cf2a9193ea8d952fe4a" } }, - "f56f52578fd04c34a9e5bf8aa49a3fbb": { + "ce5e2e8ed287438a8c7389b21f44b078": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_cb2bce7330a34b18b840b4a58389a00f", - "IPY_MODEL_b9c97bd00c3a40dc84645e56fe1d6e3a", - "IPY_MODEL_eaf92fb2e5a24aab8e700cb0c855781c" + "IPY_MODEL_2d642515e5c641e9b2be0980b45f8caa", + "IPY_MODEL_e35bc29b06e4413eaa31cba4e86b63a9", + "IPY_MODEL_788f1f9afb9c4f16a3606f55522041b4", + "IPY_MODEL_f87b5d76c0014809920440c6b42cd927", + "IPY_MODEL_5124d2886e024aac8d2151dfe88107bc" ], - "layout": "IPY_MODEL_e310dbcf56184b61999a0bbeaaa757c6" + "layout": "IPY_MODEL_ffea458d6edc4ef680fe9cb36ed8b4af", + "selected_index": 0, + "titles": [ + "Images", + "Groundtruth", + "predictions", + "predictions2", + "label_map" + ] } }, - "f6f66edfd532423fa322499d19a9f0c1": { + "cf6675d6c9f643e6845a1e025deb9392": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f761e5efcc1c4fcb8d319e81c6f17d7e": { + "e1340eaaa32d438ba1d3421f7f6e9808": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "" + "children": [ + "IPY_MODEL_aa255e02464345dd885e3155446b712d", + "IPY_MODEL_ce5e2e8ed287438a8c7389b21f44b078" + ], + "layout": "IPY_MODEL_2f92d79c3914488baaecc9915a2d4d42" + } + }, + "e1417c77cadf4c0589676f3d9119201e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "layout": "IPY_MODEL_9c6f1f5e57a44584ab85200723bf29ba", + "max": 14503, + "style": "IPY_MODEL_1ce358ce7715497f9da51161adfb448f", + "value": 6832 + } + }, + "e35bc29b06e4413eaa31cba4e86b63a9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_cf6675d6c9f643e6845a1e025deb9392", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightarea
id
460450352582person1valid112.43195.32214.78438.1948685.67910
535917352582person1valid0.00256.0080.54376.8122650.73800
602093352582sports6valid171.63424.0385.8940.672605.72090
589077113354animal4valid260.99158.88141.52194.119978.94125
589740113354animal4valid366.49174.59115.67142.715784.68620
..............................
331107349837appliance11valid66.0094.8771.25194.2612029.44125
332788349837appliance11valid138.0062.6398.25252.0023037.46875
333394349837appliance11valid234.4429.87113.49298.6530406.51295
333685349837appliance11valid335.0410.48125.17318.7837187.97840
333731349837appliance11valid460.390.0039.61328.6412492.52165
\n

36781 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n460450 352582 person 1 valid 112.43 195.32 \n535917 352582 person 1 valid 0.00 256.00 \n602093 352582 sports 6 valid 171.63 424.03 \n589077 113354 animal 4 valid 260.99 158.88 \n589740 113354 animal 4 valid 366.49 174.59 \n... ... ... ... ... ... ... \n331107 349837 appliance 11 valid 66.00 94.87 \n332788 349837 appliance 11 valid 138.00 62.63 \n333394 349837 appliance 11 valid 234.44 29.87 \n333685 349837 appliance 11 valid 335.04 10.48 \n333731 349837 appliance 11 valid 460.39 0.00 \n\n box_width box_height area \nid \n460450 214.78 438.19 48685.67910 \n535917 80.54 376.81 22650.73800 \n602093 85.89 40.67 2605.72090 \n589077 141.52 194.11 9978.94125 \n589740 115.67 142.71 5784.68620 \n... ... ... ... \n331107 71.25 194.26 12029.44125 \n332788 98.25 252.00 23037.46875 \n333394 113.49 298.65 30406.51295 \n333685 125.17 318.78 37187.97840 \n333731 39.61 328.64 12492.52165 \n\n[36781 rows x 9 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "f87b5a0490294bb5b07cd8be8c1c4d94": { + "ee137291f0b846498e172656b7b5ea13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "fa5ca00b557f4b1ba0a0943a6d0f13bd": { + "efd69a8c6f1840f7a705e37c59cecd2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "fa77c84a896442d38532c76004b11e8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fdb527bd96074ca8868cf2f8dd310b04": { + "f08721efc82346caaa13c24970635bd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "fec53b543d804ca3a1a57cf3c1ec61a5": { + "f52d246406954962bb788f21351c3cb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { - "bar_style": "success", - "layout": "IPY_MODEL_785e94a3264d49288935637e7ac131b7", - "max": 6514, - "style": "IPY_MODEL_ac3186cda0034a539a8085fdd32b8628", - "value": 6514 + "layout": "IPY_MODEL_ee137291f0b846498e172656b7b5ea13", + "style": "IPY_MODEL_f81d718550fd4fee974b001d451b825d", + "value": "100%" } }, - "ffbc8edca3ef4ef0bf86a849e65a0136": { + "f81d718550fd4fee974b001d451b825d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6015,6 +1556,30 @@ "font_size": null, "text_color": null } + }, + "f87b5d76c0014809920440c6b42cd927": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_2a8c70f673504e07899e6ca00f9cecb2", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightconfidence
id
0352582sports6eval173.500088422.78304084.09517542.1280000.993809
1352582vehicle2eval374.986850393.80736050.85295032.7846400.567461
2352582vehicle2eval374.986850393.80736050.85295032.7846400.298446
3352582person1eval96.376400185.985280256.949900459.4867200.992746
4352582person1eval0.072887250.96672076.917775385.5404800.762402
..............................
84056349837appliance11eval15.557250102.70952157.678500165.5556120.985206
84057349837appliance11eval232.22925028.451520113.910500306.2367900.974466
84058349837appliance11eval333.6140009.807183127.360000326.7429300.972766
84059349837appliance11eval458.77175024.93820441.755500295.5684690.904706
84060349837appliance11eval-0.16600059.78415616.650000183.8679480.772212
\n

84061 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 352582 sports 6 eval 173.500088 422.783040 \n1 352582 vehicle 2 eval 374.986850 393.807360 \n2 352582 vehicle 2 eval 374.986850 393.807360 \n3 352582 person 1 eval 96.376400 185.985280 \n4 352582 person 1 eval 0.072887 250.966720 \n... ... ... ... ... ... ... \n84056 349837 appliance 11 eval 15.557250 102.709521 \n84057 349837 appliance 11 eval 232.229250 28.451520 \n84058 349837 appliance 11 eval 333.614000 9.807183 \n84059 349837 appliance 11 eval 458.771750 24.938204 \n84060 349837 appliance 11 eval -0.166000 59.784156 \n\n box_width box_height confidence \nid \n0 84.095175 42.128000 0.993809 \n1 50.852950 32.784640 0.567461 \n2 50.852950 32.784640 0.298446 \n3 256.949900 459.486720 0.992746 \n4 76.917775 385.540480 0.762402 \n... ... ... ... \n84056 57.678500 165.555612 0.985206 \n84057 113.910500 306.236790 0.974466 \n84058 127.360000 326.742930 0.972766 \n84059 41.755500 295.568469 0.904706 \n84060 16.650000 183.867948 0.772212 \n\n[84061 rows x 9 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ffea458d6edc4ef680fe9cb36ed8b4af": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} } }, "version_major": 2, diff --git a/docs/notebooks/4_demo_evaluation_crowd.ipynb b/docs/notebooks/4_demo_evaluation_crowd.ipynb index 5347a7a..0c3b2e8 100644 --- a/docs/notebooks/4_demo_evaluation_crowd.ipynb +++ b/docs/notebooks/4_demo_evaluation_crowd.ipynb @@ -69,7 +69,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d866419a7f3146889831b04fceec84b4", + "model_id": "4f17ab117e64492c8076e20344bca75f", "version_major": 2, "version_minor": 0 }, @@ -136,7 +136,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3d2abbee1c724faeada0b2b74797e4a3", + "model_id": "13eb7739c18b42fe8916bd7d3ee71804", "version_major": 2, "version_minor": 0 }, @@ -1072,7 +1072,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 11, @@ -1234,56 +1234,58 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0342c5c0933b422a81d165e27c68fd00": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0cfc37b42b794125bd2d4c19edf3573d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "0d9da93229474cd7bc36d8f819130421": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_be23cc50f2f74e41a0110deb3eb7f5ad", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypecount
id
01024768IMG_70.jpg.jpg419
11024576IMG_262.jpg.jpg2197
2800530IMG_202.jpg.jpg216
31024681IMG_109.jpg.jpg862
4688801IMG_194.jpg.jpg296
..................
2951024683IMG_166.jpg.jpg899
2961024656IMG_51.jpg.jpg569
2971024683IMG_294.jpg.jpg2007
2981024683IMG_68.jpg.jpg201
2991024686IMG_59.jpg.jpg261
\n

300 rows × 5 columns

\n
", + "text/plain": " width height relative_path type count\nid \n0 1024 768 IMG_70.jpg .jpg 419\n1 1024 576 IMG_262.jpg .jpg 2197\n2 800 530 IMG_202.jpg .jpg 216\n3 1024 681 IMG_109.jpg .jpg 862\n4 688 801 IMG_194.jpg .jpg 296\n.. ... ... ... ... ...\n295 1024 683 IMG_166.jpg .jpg 899\n296 1024 656 IMG_51.jpg .jpg 569\n297 1024 683 IMG_294.jpg .jpg 2007\n298 1024 683 IMG_68.jpg .jpg 201\n299 1024 686 IMG_59.jpg .jpg 261\n\n[300 rows x 5 columns]" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } }, - "1952c7c0afad41439c6ab6b0ec74b8ef": { + "13eb7739c18b42fe8916bd7d3ee71804": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_90a5f8b683be4777a2ce2ad6fb82bb27", - "IPY_MODEL_790080f08b4347e1a1c3327ff7be43db", - "IPY_MODEL_f99fce7b2d8f40eeb478c6e0b516eeda", - "IPY_MODEL_a8fb92fb61cb4cd195fa7e9347c2bcab" + "IPY_MODEL_25cc208c5eeb47cb892d6f93c2846f98", + "IPY_MODEL_ed5665e0afc84a6f9e55deba83ef9f7f", + "IPY_MODEL_a9f763058fe94616a109cbf671244e98" ], - "layout": "IPY_MODEL_de36c4791d3c41cf92c16413106f9960", - "selected_index": 0, - "titles": [ - "Images", - "Groundtruth", - "predictions", - "label_map" - ] + "layout": "IPY_MODEL_f54d1174e3364a40a8241eb5670eaf25" } }, - "1ac4d5e9ac684ef4a7feedf07306ccfe": { - "model_module": "@jupyter-widgets/base", + "25cc208c5eeb47cb892d6f93c2846f98": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_5b85a0d2e1234a158c4cc39642e91108", + "style": "IPY_MODEL_45c193f119e04f59899f197e9849d4cc", + "value": "100%" + } }, - "1ee17b4bd4b54564b8d86e18a6f79d57": { + "314e00cdf0734a5084df9c4ca7b285c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_d2baa5b75dc442a394b0fe448da4067d", + "style": "IPY_MODEL_3eccfd282aa440809d7643e3fdbbbe09", + "value": " Evaluation object, containing 300 images, 162,707 groundtruth objects, and 1 prediction sets " } }, - "2620f061e1234a0f96616e925e40006e": { + "3eccfd282aa440809d7643e3fdbbbe09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1293,81 +1295,78 @@ "text_color": null } }, - "2d3742ae8b504225ba71a93749be9f4c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "38f389d7311647cda233fbb672c1c551": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "39b330ac8dfa402fb1592a4eaca4b67f": { + "45c193f119e04f59899f197e9849d4cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_0342c5c0933b422a81d165e27c68fd00", - "style": "IPY_MODEL_a8d29f13a1c0471cb2604a2de1bb3285", - "value": " 300/300 [00:00<00:00, 1333.61it/s]" + "description_width": "", + "font_size": null, + "text_color": null } }, - "46755d9b626542f4ad2d02c3d06a6046": { + "4f17ab117e64492c8076e20344bca75f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_685996a9a7914647a0191ea023735cdd", - "IPY_MODEL_1952c7c0afad41439c6ab6b0ec74b8ef" + "IPY_MODEL_314e00cdf0734a5084df9c4ca7b285c6", + "IPY_MODEL_7cb4c53a06474e4192379c04d5fe7b66" ], - "layout": "IPY_MODEL_7535dcd40aba4b40844ff0fba53aeff8" + "layout": "IPY_MODEL_d2ddf2f09e23432ea2992daa9822e2d5" } }, - "572f2b5c7ad74892ac7e80ef4551c97e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "574708bd3ee44fd096c97979672405ab": { + "5b85a0d2e1234a158c4cc39642e91108": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "685996a9a7914647a0191ea023735cdd": { - "model_module": "@jupyter-widgets/controls", + "6504fdfcf940423ea9c45076c1be51c1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_f6de5c36ab594912aa0ccc5900c9fb73", - "style": "IPY_MODEL_2620f061e1234a0f96616e925e40006e", - "value": " Evaluation object, containing 300 images, 162,707 groundtruth objects, and 1 prediction sets " - } + "model_name": "LayoutModel", + "state": {} }, - "7535dcd40aba4b40844ff0fba53aeff8": { + "70251921bc194b9699c261897606cf5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "790080f08b4347e1a1c3327ff7be43db": { + "7cb4c53a06474e4192379c04d5fe7b66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", + "state": { + "children": [ + "IPY_MODEL_0d9da93229474cd7bc36d8f819130421", + "IPY_MODEL_e3e76b1977cf4b55b8bfffb617d96d38", + "IPY_MODEL_8b1132fd3c6345f68609d0c3ba68d4dd", + "IPY_MODEL_a5f0c9fb4a164c21b62890e2b7c61788" + ], + "layout": "IPY_MODEL_c0ec8453942c4461a1fcfa3eac44bdbd", + "selected_index": 0, + "titles": [ + "Images", + "Groundtruth", + "predictions", + "label_map" + ] + } + }, + "8b1132fd3c6345f68609d0c3ba68d4dd": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_1ac4d5e9ac684ef4a7feedf07306ccfe", + "layout": "IPY_MODEL_b6bb5dcecc61482dbc8e63996d93647e", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_height
id
00head0crowd8.689560510.0761740.00.0
10head0crowd13.804446565.8284220.00.0
20head0crowd6.643606550.9952550.00.0
30head0crowd32.218032544.8573930.00.0
40head0crowd54.723526518.2599900.00.0
...........................
162702299head0crowd736.111655275.1632520.00.0
162703299head0crowd970.642967377.9619700.00.0
162704299head0crowd612.404084403.7746010.00.0
162705299head0crowd937.710777365.9244510.00.0
162706299head0crowd784.264224307.6147610.00.0
\n

162707 rows × 8 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 0 head 0 crowd 8.689560 510.076174 \n1 0 head 0 crowd 13.804446 565.828422 \n2 0 head 0 crowd 6.643606 550.995255 \n3 0 head 0 crowd 32.218032 544.857393 \n4 0 head 0 crowd 54.723526 518.259990 \n... ... ... ... ... ... ... \n162702 299 head 0 crowd 736.111655 275.163252 \n162703 299 head 0 crowd 970.642967 377.961970 \n162704 299 head 0 crowd 612.404084 403.774601 \n162705 299 head 0 crowd 937.710777 365.924451 \n162706 299 head 0 crowd 784.264224 307.614761 \n\n box_width box_height \nid \n0 0.0 0.0 \n1 0.0 0.0 \n2 0.0 0.0 \n3 0.0 0.0 \n4 0.0 0.0 \n... ... ... \n162702 0.0 0.0 \n162703 0.0 0.0 \n162704 0.0 0.0 \n162705 0.0 0.0 \n162706 0.0 0.0 \n\n[162707 rows x 8 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightconfidence
id
00head0predictions114.587845393.0091550.00.00.066380
10head0predictions728.133118389.9720150.00.00.232770
20head0predictions904.340088391.8792110.00.00.648270
30head0predictions911.673218390.7955020.00.00.569873
40head0predictions936.876099388.9821780.00.00.299653
..............................
272152299head0predictions326.513824592.2178960.00.00.059892
272153299head0predictions85.044373590.1255490.00.00.054019
272154299head0predictions182.776413618.8498540.00.00.249275
272155299head0predictions766.861450617.2125240.00.00.443736
272156299head0predictions182.405518627.4609380.00.00.154353
\n

272157 rows × 9 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min \\\nid \n0 0 head 0 predictions 114.587845 \n1 0 head 0 predictions 728.133118 \n2 0 head 0 predictions 904.340088 \n3 0 head 0 predictions 911.673218 \n4 0 head 0 predictions 936.876099 \n... ... ... ... ... ... \n272152 299 head 0 predictions 326.513824 \n272153 299 head 0 predictions 85.044373 \n272154 299 head 0 predictions 182.776413 \n272155 299 head 0 predictions 766.861450 \n272156 299 head 0 predictions 182.405518 \n\n box_y_min box_width box_height confidence \nid \n0 393.009155 0.0 0.0 0.066380 \n1 389.972015 0.0 0.0 0.232770 \n2 391.879211 0.0 0.0 0.648270 \n3 390.795502 0.0 0.0 0.569873 \n4 388.982178 0.0 0.0 0.299653 \n... ... ... ... ... \n272152 592.217896 0.0 0.0 0.059892 \n272153 590.125549 0.0 0.0 0.054019 \n272154 618.849854 0.0 0.0 0.249275 \n272155 617.212524 0.0 0.0 0.443736 \n272156 627.460938 0.0 0.0 0.154353 \n\n[272157 rows x 9 columns]" }, "metadata": {}, "output_type": "display_data" @@ -1375,17 +1374,25 @@ ] } }, - "90a5f8b683be4777a2ce2ad6fb82bb27": { + "9896646ee71b4aca8f708a4c6549d9be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } + }, + "a5f0c9fb4a164c21b62890e2b7c61788": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_2d3742ae8b504225ba71a93749be9f4c", + "layout": "IPY_MODEL_70251921bc194b9699c261897606cf5c", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypecount
id
01024768IMG_70.jpg.jpg419
11024576IMG_262.jpg.jpg2197
2800530IMG_202.jpg.jpg216
31024681IMG_109.jpg.jpg862
4688801IMG_194.jpg.jpg296
..................
2951024683IMG_166.jpg.jpg899
2961024656IMG_51.jpg.jpg569
2971024683IMG_294.jpg.jpg2007
2981024683IMG_68.jpg.jpg201
2991024686IMG_59.jpg.jpg261
\n

300 rows × 5 columns

\n
", - "text/plain": " width height relative_path type count\nid \n0 1024 768 IMG_70.jpg .jpg 419\n1 1024 576 IMG_262.jpg .jpg 2197\n2 800 530 IMG_202.jpg .jpg 216\n3 1024 681 IMG_109.jpg .jpg 862\n4 688 801 IMG_194.jpg .jpg 296\n.. ... ... ... ... ...\n295 1024 683 IMG_166.jpg .jpg 899\n296 1024 656 IMG_51.jpg .jpg 569\n297 1024 683 IMG_294.jpg .jpg 2007\n298 1024 683 IMG_68.jpg .jpg 201\n299 1024 686 IMG_59.jpg .jpg 261\n\n[300 rows x 5 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
categorty_id
0head
\n
", + "text/plain": " category string\ncategorty_id \n0 head" }, "metadata": {}, "output_type": "display_data" @@ -1393,13 +1400,17 @@ ] } }, - "a5056bae9b544f349b58578e2b50556f": { - "model_module": "@jupyter-widgets/base", + "a9f763058fe94616a109cbf671244e98": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_c9c71dea76b147a2bf040491b4ac4d6e", + "style": "IPY_MODEL_b2556c9b52b045b991c503d43a92ccfe", + "value": " 300/300 [00:00<00:00, 1826.97it/s]" + } }, - "a8d29f13a1c0471cb2604a2de1bb3285": { + "b2556c9b52b045b991c503d43a92ccfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1409,76 +1420,53 @@ "text_color": null } }, - "a8fb92fb61cb4cd195fa7e9347c2bcab": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_ad39174e79824f9299808e366fd1858f", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
categorty_id
0head
\n
", - "text/plain": " category string\ncategorty_id \n0 head" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } + "b6bb5dcecc61482dbc8e63996d93647e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "ad39174e79824f9299808e366fd1858f": { + "be23cc50f2f74e41a0110deb3eb7f5ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b83841da3c2648eca3c7703a31cd77b1": { - "model_module": "@jupyter-widgets/controls", + "c0ec8453942c4461a1fcfa3eac44bdbd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_0cfc37b42b794125bd2d4c19edf3573d", - "style": "IPY_MODEL_1ee17b4bd4b54564b8d86e18a6f79d57", - "value": "100%" - } + "model_name": "LayoutModel", + "state": {} }, - "de36c4791d3c41cf92c16413106f9960": { + "c9c71dea76b147a2bf040491b4ac4d6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "efae405bb328482a97fbd41ddcfbebc5": { - "model_module": "@jupyter-widgets/controls", + "d2baa5b75dc442a394b0fe448da4067d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_b83841da3c2648eca3c7703a31cd77b1", - "IPY_MODEL_fddac0ca2a784dd6bd4c7960413abff0", - "IPY_MODEL_39b330ac8dfa402fb1592a4eaca4b67f" - ], - "layout": "IPY_MODEL_a5056bae9b544f349b58578e2b50556f" - } + "model_name": "LayoutModel", + "state": {} }, - "f6de5c36ab594912aa0ccc5900c9fb73": { + "d2ddf2f09e23432ea2992daa9822e2d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f99fce7b2d8f40eeb478c6e0b516eeda": { + "e3e76b1977cf4b55b8bfffb617d96d38": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_38f389d7311647cda233fbb672c1c551", + "layout": "IPY_MODEL_6504fdfcf940423ea9c45076c1be51c1", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_heightconfidence
id
00head0predictions114.587845393.0091550.00.00.066380
10head0predictions728.133118389.9720150.00.00.232770
20head0predictions904.340088391.8792110.00.00.648270
30head0predictions911.673218390.7955020.00.00.569873
40head0predictions936.876099388.9821780.00.00.299653
..............................
272152299head0predictions326.513824592.2178960.00.00.059892
272153299head0predictions85.044373590.1255490.00.00.054019
272154299head0predictions182.776413618.8498540.00.00.249275
272155299head0predictions766.861450617.2125240.00.00.443736
272156299head0predictions182.405518627.4609380.00.00.154353
\n

272157 rows × 9 columns

\n
", - "text/plain": " image_id category_str category_id split box_x_min \\\nid \n0 0 head 0 predictions 114.587845 \n1 0 head 0 predictions 728.133118 \n2 0 head 0 predictions 904.340088 \n3 0 head 0 predictions 911.673218 \n4 0 head 0 predictions 936.876099 \n... ... ... ... ... ... \n272152 299 head 0 predictions 326.513824 \n272153 299 head 0 predictions 85.044373 \n272154 299 head 0 predictions 182.776413 \n272155 299 head 0 predictions 766.861450 \n272156 299 head 0 predictions 182.405518 \n\n box_y_min box_width box_height confidence \nid \n0 393.009155 0.0 0.0 0.066380 \n1 389.972015 0.0 0.0 0.232770 \n2 391.879211 0.0 0.0 0.648270 \n3 390.795502 0.0 0.0 0.569873 \n4 388.982178 0.0 0.0 0.299653 \n... ... ... ... ... \n272152 592.217896 0.0 0.0 0.059892 \n272153 590.125549 0.0 0.0 0.054019 \n272154 618.849854 0.0 0.0 0.249275 \n272155 617.212524 0.0 0.0 0.443736 \n272156 627.460938 0.0 0.0 0.154353 \n\n[272157 rows x 9 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idsplitbox_x_minbox_y_minbox_widthbox_height
id
00head0crowd8.689560510.0761740.00.0
10head0crowd13.804446565.8284220.00.0
20head0crowd6.643606550.9952550.00.0
30head0crowd32.218032544.8573930.00.0
40head0crowd54.723526518.2599900.00.0
...........................
162702299head0crowd736.111655275.1632520.00.0
162703299head0crowd970.642967377.9619700.00.0
162704299head0crowd612.404084403.7746010.00.0
162705299head0crowd937.710777365.9244510.00.0
162706299head0crowd784.264224307.6147610.00.0
\n

162707 rows × 8 columns

\n
", + "text/plain": " image_id category_str category_id split box_x_min box_y_min \\\nid \n0 0 head 0 crowd 8.689560 510.076174 \n1 0 head 0 crowd 13.804446 565.828422 \n2 0 head 0 crowd 6.643606 550.995255 \n3 0 head 0 crowd 32.218032 544.857393 \n4 0 head 0 crowd 54.723526 518.259990 \n... ... ... ... ... ... ... \n162702 299 head 0 crowd 736.111655 275.163252 \n162703 299 head 0 crowd 970.642967 377.961970 \n162704 299 head 0 crowd 612.404084 403.774601 \n162705 299 head 0 crowd 937.710777 365.924451 \n162706 299 head 0 crowd 784.264224 307.614761 \n\n box_width box_height \nid \n0 0.0 0.0 \n1 0.0 0.0 \n2 0.0 0.0 \n3 0.0 0.0 \n4 0.0 0.0 \n... ... ... \n162702 0.0 0.0 \n162703 0.0 0.0 \n162704 0.0 0.0 \n162705 0.0 0.0 \n162706 0.0 0.0 \n\n[162707 rows x 8 columns]" }, "metadata": {}, "output_type": "display_data" @@ -1486,17 +1474,29 @@ ] } }, - "fddac0ca2a784dd6bd4c7960413abff0": { + "ed5665e0afc84a6f9e55deba83ef9f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", - "layout": "IPY_MODEL_574708bd3ee44fd096c97979672405ab", + "layout": "IPY_MODEL_eebd44a418154b708bf833f705c00041", "max": 300, - "style": "IPY_MODEL_572f2b5c7ad74892ac7e80ef4551c97e", + "style": "IPY_MODEL_9896646ee71b4aca8f708a4c6549d9be", "value": 300 } + }, + "eebd44a418154b708bf833f705c00041": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "f54d1174e3364a40a8241eb5670eaf25": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} } }, "version_major": 2, diff --git a/docs/notebooks/5_demo_fiftyone.ipynb b/docs/notebooks/5_demo_fiftyone.ipynb index 3991c20..3a6dbd2 100644 --- a/docs/notebooks/5_demo_fiftyone.ipynb +++ b/docs/notebooks/5_demo_fiftyone.ipynb @@ -52,7 +52,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bcd8ec4da3924f0f85adc7fef4bb0340", + "model_id": "e2ff6e3043da4ac0a7c08a2dd415f62c", "version_major": 2, "version_minor": 0 }, @@ -81,7 +81,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "172eb48cfe2f4522b23b8a741480ef4d", + "model_id": "033af590e1c145d99193ae47e6935f42", "version_major": 2, "version_minor": 0 }, @@ -114,7 +114,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abfae99546804462b71777f1f6f9c315", + "model_id": "7aabeb9d1114477385ed7ce69d39d72a", "version_major": 2, "version_minor": 0 }, @@ -134,7 +134,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " 100% |█████████████████████| 2/2 [30.2ms elapsed, 0s remaining, 66.1 samples/s] \n" + " 100% |█████████████████████| 2/2 [28.6ms elapsed, 0s remaining, 70.0 samples/s] \n" ] } ], @@ -154,7 +154,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "cfb83bb2", "metadata": {}, "outputs": [ @@ -171,12 +171,12 @@ " width: 100%;\n", "}\n", "\n", - "#focontainer-3e64baeb-e6f9-4825-bee5-fdab247dd456 {\n", + "#focontainer-76833dd6-a721-43a6-a7e0-0049938076e3 {\n", " position: relative;\n", " height: 800px;\n", " display: block !important;\n", "}\n", - "#foactivate-3e64baeb-e6f9-4825-bee5-fdab247dd456 {\n", + "#foactivate-76833dd6-a721-43a6-a7e0-0049938076e3 {\n", " font-weight: bold;\n", " cursor: pointer;\n", " font-size: 24px;\n", @@ -194,10 +194,10 @@ " background: hsla(210,11%,15%, 0.8);\n", " border: none;\n", "}\n", - "#foactivate-3e64baeb-e6f9-4825-bee5-fdab247dd456:focus {\n", + "#foactivate-76833dd6-a721-43a6-a7e0-0049938076e3:focus {\n", " outline: none;\n", "}\n", - "#fooverlay-3e64baeb-e6f9-4825-bee5-fdab247dd456 {\n", + "#fooverlay-76833dd6-a721-43a6-a7e0-0049938076e3 {\n", " width: 100%;\n", " height: 100%;\n", " background: hsla(208, 7%, 46%, 0.7);\n", @@ -209,17 +209,17 @@ "}\n", "\n", "\n", - "
\n", - "
\n", - " \n", + "
\n", + "
\n", + " \n", "
\n", " \n", "
\n", "\n", "" + "" ], "text/plain": [ "" @@ -126,7 +126,7 @@ ".renderjson .key { color: #2684ff; }\n", ".renderjson .keyword { color: gray; }\n", ".renderjson .object.syntax { color: gray; }\n", - ".renderjson .array.syntax { color: gray; }
" + ".renderjson .array.syntax { color: gray; }
" ], "text/plain": [ "" @@ -138,7 +138,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -159,7 +159,7 @@ ".renderjson .key { color: #2684ff; }\n", ".renderjson .keyword { color: gray; }\n", ".renderjson .object.syntax { color: gray; }\n", - ".renderjson .array.syntax { color: gray; }
" + ".renderjson .array.syntax { color: gray; }
" ], "text/plain": [ "" @@ -171,7 +171,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -283,7 +283,7 @@ ".renderjson .key { color: #2684ff; }\n", ".renderjson .keyword { color: gray; }\n", ".renderjson .object.syntax { color: gray; }\n", - ".renderjson .array.syntax { color: gray; }
" + ".renderjson .array.syntax { color: gray; }
" ], "text/plain": [ "" @@ -295,7 +295,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -327,7 +327,7 @@ ".renderjson .key { color: #2684ff; }\n", ".renderjson .keyword { color: gray; }\n", ".renderjson .object.syntax { color: gray; }\n", - ".renderjson .array.syntax { color: gray; }
" + ".renderjson .array.syntax { color: gray; }
" ], "text/plain": [ "" @@ -339,7 +339,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -385,7 +385,7 @@ ".renderjson .key { color: #2684ff; }\n", ".renderjson .keyword { color: gray; }\n", ".renderjson .object.syntax { color: gray; }\n", - ".renderjson .array.syntax { color: gray; }
" + ".renderjson .array.syntax { color: gray; }
" ], "text/plain": [ "" @@ -397,7 +397,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -418,7 +418,7 @@ ".renderjson .key { color: #2684ff; }\n", ".renderjson .keyword { color: gray; }\n", ".renderjson .object.syntax { color: gray; }\n", - ".renderjson .array.syntax { color: gray; }
" + ".renderjson .array.syntax { color: gray; }
" ], "text/plain": [ "" @@ -430,7 +430,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -464,7 +464,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88a37355f05b4ef3b974f68388ddd16d", + "model_id": "83fa3e7b01c3437fa9ada7adbb43a4ab", "version_major": 2, "version_minor": 0 }, @@ -478,7 +478,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6c24e12e64e14b009abe66f9a3fd0ff0", + "model_id": "1edff217974249e28897179dbf04b14a", "version_major": 2, "version_minor": 0 }, @@ -878,7 +878,7 @@ ".renderjson .key { color: #2684ff; }\n", ".renderjson .keyword { color: gray; }\n", ".renderjson .object.syntax { color: gray; }\n", - ".renderjson .array.syntax { color: gray; }
" + ".renderjson .array.syntax { color: gray; }
" ], "text/plain": [ "" @@ -890,7 +890,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -911,7 +911,7 @@ ".renderjson .key { color: #2684ff; }\n", ".renderjson .keyword { color: gray; }\n", ".renderjson .object.syntax { color: gray; }\n", - ".renderjson .array.syntax { color: gray; }
" + ".renderjson .array.syntax { color: gray; }
" ], "text/plain": [ "" @@ -923,7 +923,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -981,7 +981,7 @@ ".renderjson .key { color: #2684ff; }\n", ".renderjson .keyword { color: gray; }\n", ".renderjson .object.syntax { color: gray; }\n", - ".renderjson .array.syntax { color: gray; }
" + ".renderjson .array.syntax { color: gray; }
" ], "text/plain": [ "" @@ -993,7 +993,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -1048,7 +1048,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cd6e10c8d20b4caf97173220374c6f9e", + "model_id": "e8bbf1c121694b819c95b56fce893fb2", "version_major": 2, "version_minor": 0 }, @@ -1108,7 +1108,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce270fd6fb914081b3c9bc69ca5e5cf1", + "model_id": "e86cdb20f4494218bb77df42d5f395a7", "version_major": 2, "version_minor": 0 }, @@ -1138,7 +1138,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "29a6b41de3114f749258456ab38f966e", + "model_id": "6f90bab6fd0a433d92b6568c10011d49", "version_major": 2, "version_minor": 0 }, @@ -1176,21 +1176,37 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00080efd6fc74beeb129eebc6f18c6ae": { + "020d9542b75c45f6855127e769e6c32e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "009938e3aace4fb5be4b7f9d753a6ec5": { + "0472a0c52b384c20bac6bba7be697d7a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "0778ae2a76624d2bb213cfd3edc6b0c0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "07c8022be9374b64aa3c20cf242c8cfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { - "description_width": "" + "bar_style": "success", + "layout": "IPY_MODEL_7261a2e98e4044d4a94b6cfcc1b66bf4", + "max": 2, + "style": "IPY_MODEL_747f2dd2e1ba4ddd86bfc4dd09db8fd8", + "value": 2 } }, - "0335d9e94cb5453b8e0b049b5a419f37": { + "08145d806a2e44a2b0c0b5b53c16e157": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelStyleModel", @@ -1205,267 +1221,288 @@ "text_decoration": null } }, - "04696e3cd993462dadfda0e1e6c6da90": { + "0af99b88e526451a8f116aa914a03c85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LinkModel", "state": { - "description_width": "" + "source": [ + "IPY_MODEL_6eb8130148024f58af7d2dfa7afea151", + "index" + ], + "target": [ + "IPY_MODEL_a0ac4aaf7a5449e09f480e6201bc05cb", + "selected_index" + ] } }, - "04b6d94f735744478c368ed662c26c9d": { + "0b51da5c21874f6580a40b2b7febf6aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "079fe507b8fe4c6bacc08bed21e28407": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_6624fa062dbf4e6a8010502eb7f8463e", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 label_book_versionlightlocationspectrumtimeviewweather
id           
200640427785.jpg.jpgV5natural-lightexteriorA BAD VALUEdayfront-viewsunny
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "07c8354f71934e158f3849257da4916e": { + "0cab193239a241ffb35beb1b574f5c7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "07f6ee033b804612b9120acf6c737cb3": { - "model_module": "@jupyter-widgets/base", + "1202c640ef9f41bbbc914724efe44bc1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_ed741ca35a4d43d381ed7b2535bf8072", + "IPY_MODEL_549d413cb13845379ee6a3a78e409fd7" + ], + "layout": "IPY_MODEL_512e1e5adafb41cbb38e71f29abd2a11" + } }, - "0806dbda179749f3b23409b7242c3fa3": { - "model_module": "@jupyter-widgets/base", + "132a6bc35e734f4f83266d240d1cd744": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } }, - "102150428d504944858d95e0718df1fc": { - "model_module": "@jupyter-widgets/base", + "1613cfa2cd45417ba93de2b5ce06cff1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } }, - "168f8465646742d6af40515e0c73e805": { + "1905b37bd49745b2a2e7458d07b4ce10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1edff217974249e28897179dbf04b14a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_4234234bd0224ffaa9f24021a6f47559", - "IPY_MODEL_ca8ef64a212942208b718cf64f69d33f" + "IPY_MODEL_64a23506013b4f4fbfbb29100ab4b3bd", + "IPY_MODEL_a6a54532063d4f2192b6d2789bdf1084", + "IPY_MODEL_f961f09764c94c2fa7b64cda94f2edcc" ], - "layout": "IPY_MODEL_58537903e8c5451cb568dfbe4a78fc1a" + "layout": "IPY_MODEL_57ed44748e5c4f1f82f65fe9c95a7a1a" } }, - "1789521777ef4b358ccb6ec920c4e88c": { + "1f1e688f42a0486f8b9d68d1c2d7e3d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "19b43f8983084133be47a20ab9d80be3": { + "3386375631aa45338f7e9edce9b94b09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LinkModel", + "model_name": "StackModel", "state": { - "source": [ - "IPY_MODEL_4234234bd0224ffaa9f24021a6f47559", - "index" + "children": [ + "IPY_MODEL_764544f8c3b744ba9273aa7f9aad35c7", + "IPY_MODEL_7ba1e595d0cd4e33a38718af458506e8" ], - "target": [ - "IPY_MODEL_7c1b3544327e4b86a6af0328908c9b8c", - "selected_index" + "layout": "IPY_MODEL_5a872f11b50b415fa8f19e1950438847", + "selected_index": 0, + "titles": [ + "", + "" ] } }, - "1a3b6f260a85451e90474f1222c46c2b": { + "339a0f00e9824c288198159a2f73f01e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsStyleModel", + "state": { + "button_width": "auto", + "description_width": "" + } + }, + "34c1d2ad78204bc7aa3de0d414b0fe0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "21430331a20a40f2b7bd4a9642576b67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelModel", + "3ba44a1d939448178ebc6cac1d2e714f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4799ce4fcbe949bcb531cbbf0a5d696e", - "style": "IPY_MODEL_0335d9e94cb5453b8e0b049b5a419f37", - "value": "Booleanize" + "layout": "IPY_MODEL_8de82515a9794723b9c81fb955f3e289", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
200640427785.jpg.jpgdaysunny
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n200 640 427 785.jpg .jpg day sunny" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "2710850c7d1d44868e2db2a2d3f3854c": { + "3c1d3ed53fcf45c8b92ac7eabb027f50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", + "model_name": "LabelModel", "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null + "layout": "IPY_MODEL_d19def3b87944cc99f9185b90eb2188f", + "style": "IPY_MODEL_832c102947f9488b830e9120d8b2c67f", + "value": "Booleanize" } }, - "2d407c197db543ca9c8a68930ed96f5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "3efb9b0c090f4637b0aed6db54106d50": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "description_width": "" + "layout": "IPY_MODEL_c01cc6cb84634d7681bec200fbf7c97c", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightchildren_idsconfidenceparent_idattributes
 occludedcolorsposition
id             
0200person21256.000000202.00000059.00000047.000000[]0.5000001True['blue', 'turquoise'][]
1200head8001256.000000202.00000059.00000047.000000[0]nanNone[]['side']
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "2f4d59a98fed40f29122cede91009a0d": { + "49005d311ed749579739e17178d63113": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "FloatProgressModel", "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 0, - "layout": "IPY_MODEL_faf56f6943b747259db2e44dec206377", - "style": "IPY_MODEL_3024bba3701f42498ee53cb3cec47644" + "bar_style": "danger", + "layout": "IPY_MODEL_b812c9c9a28e4f659fef5b2664c63d45", + "max": 1, + "style": "IPY_MODEL_c88961be156e4788a619d140851f9332" } }, - "3024bba3701f42498ee53cb3cec47644": { - "model_module": "@jupyter-widgets/controls", + "494095efddbe4d71b61a012fbf915854": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } + "model_name": "LayoutModel", + "state": {} }, - "3834552ef0e5488892fdd0a937db0710": { + "4c99ce4d531d4c93962e9128578d845e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_8302f7594c7246f0a5e034d84e8df039", - "style": "IPY_MODEL_7b05bbcf88fc453192fc6a16bf161174", - "value": " 2/2 [00:00<00:00, 342.17it/s]" + "layout": "IPY_MODEL_020d9542b75c45f6855127e769e6c32e", + "style": "IPY_MODEL_c6e6d89936094b358cf8e337738c153b", + "value": " 0/1 [00:00<?, ?it/s]" } }, - "3a713713799146e8bf49bcfc53ab9ec7": { + "4e6a9a7046c54d3dbc3a36ce7d9d01e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3dfc9daf7c534c988906f759cd8b8777": { + "512e1e5adafb41cbb38e71f29abd2a11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3ff80506461c407eb63971c6797b8c03": { + "5493f94105a7474980a9785fc1528de8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_6e04bb5e28db49e7933fd3bff4410226", - "IPY_MODEL_7c1b3544327e4b86a6af0328908c9b8c" + "IPY_MODEL_f3133f171cfe43638d63c5cf30547758", + "IPY_MODEL_6eb8130148024f58af7d2dfa7afea151" ], - "layout": "IPY_MODEL_ed9d86965d304f35b6cdbec3b117b6a3" - } - }, - "4156fd78fe4d483dbf211578ce948264": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_c371c772e6114cda9841bb0bb6e38374", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightattributes
 doubtactionscolorsheadwearposition
id            
0200person21256.000000202.00000059.00000047.000000True['sitting']['blue', 'white'][][]
1200head8001256.000000202.00000059.00000047.000000None[][]['partial']['side']
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_8111db8f01f8487588cc169fed9dcbed" } }, - "4234234bd0224ffaa9f24021a6f47559": { + "549d413cb13845379ee6a3a78e409fd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ToggleButtonsModel", + "model_name": "DropdownModel", "state": { "_options_labels": [ - "yes ", - "no " - ], - "button_style": "", - "icons": [ - "check", - "times" + "raw", + "nested" ], "index": 0, - "layout": "IPY_MODEL_a4d58d85324e4d7e864f762144ca8c58", - "style": "IPY_MODEL_db1e9b2211ba4fb692913b406877539d", - "tooltips": [] + "layout": "IPY_MODEL_945580f822df48c486846b21da68dad3", + "style": "IPY_MODEL_6e22121a4bec45e1b19131be7fc2b4c9" } }, - "45931f756db64979b5841710be916027": { + "57ed44748e5c4f1f82f65fe9c95a7a1a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "5829f3bb40cf45fe8cfd1f332a046774": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_9a0ac2337d0f4cf8b319a2cb3c1b0969", - "IPY_MODEL_2f4d59a98fed40f29122cede91009a0d" + "IPY_MODEL_efdd0543154c41419318d2792c78ffb1", + "IPY_MODEL_1202c640ef9f41bbbc914724efe44bc1" ], - "layout": "IPY_MODEL_63a1b2c42ad24882949a1475868eb955" + "layout": "IPY_MODEL_c99c8c543aef4dffb302a9e9063cb3dc" + } + }, + "582b250a8051424e8968e2b9769936c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null } }, - "4799ce4fcbe949bcb531cbbf0a5d696e": { + "59d75ec48f4647df9a21712316e07f34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "48e812286b9047ef82467faf16123e94": { - "model_module": "@jupyter-widgets/controls", + "5a872f11b50b415fa8f19e1950438847": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_00080efd6fc74beeb129eebc6f18c6ae", - "style": "IPY_MODEL_589812d4789b4d93a8d7a09d3cdb7424", - "value": "100%" - } + "model_name": "LayoutModel", + "state": {} }, - "495994a218f04e6da7a87704a07bfbfd": { + "5a93db12b02c4a8999caa5b9011074f6": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_d37f1a475ad4456f84892f38dc266932", + "layout": "IPY_MODEL_1f1e688f42a0486f8b9d68d1c2d7e3d9", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.label_book_versiontags.lighttags.locationtags.spectrumtags.timetags.viewtags.weather
id
200640427785.jpg.jpgV5natural-lightexteriorA BAD VALUEdayfront-viewsunny
\n
", - "text/plain": " width height relative_path type tags.label_book_version tags.light \\\nid \n200 640 427 785.jpg .jpg V5 natural-light \n\n tags.location tags.spectrum tags.time tags.view tags.weather \nid \n200 exterior A BAD VALUE day front-view sunny " + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
200640427785.jpg.jpgdaysunny
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -1473,191 +1510,146 @@ ] } }, - "4db3ba35209e423b8eebb4aa809ae08c": { + "62af9d68b3f64503919bd7735e1967ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "4e3798b135a44394ae37b4ae9a0cf288": { + "64a23506013b4f4fbfbb29100ab4b3bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_86158f6a277e4bd1b63f97037a48d44f", - "style": "IPY_MODEL_82c5e56bb7f144d8a4f3e21860a76d18", - "value": " 0/1 [00:00<?, ?it/s]" + "layout": "IPY_MODEL_a6d2854c1f394f7792db677090d9ae79", + "style": "IPY_MODEL_c4a7b899fde3414fb88c7a3fa4e993c7", + "value": "100%" } }, - "535006edd38641dd9eb373d611f6dcba": { + "667e4b4282a54423b9a533fe5208dba3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ - "IPY_MODEL_2f4d59a98fed40f29122cede91009a0d", + "IPY_MODEL_549d413cb13845379ee6a3a78e409fd7", "index" ], "target": [ - "IPY_MODEL_6334f79ec8b64697ada644a5dd062e11", + "IPY_MODEL_764544f8c3b744ba9273aa7f9aad35c7", "selected_index" ] } }, - "55e76c63abf14947a21f1440641d040f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "danger", - "layout": "IPY_MODEL_81662c2999f94c0c8d0114e4c6c7d44f", - "max": 1, - "style": "IPY_MODEL_04696e3cd993462dadfda0e1e6c6da90" - } - }, - "5851c0e9dec34bdaa6e699709b872cfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_d2ab51218bba428ca5e3ff1dead2b587", - "IPY_MODEL_802121038d4641229b0d4a5863e2e7a9", - "IPY_MODEL_7b701ff5bc0545c59e64d38f7de2c003" - ], - "layout": "IPY_MODEL_e7f6ac9c81494ef497f6625ff0c726f3" - } - }, - "58537903e8c5451cb568dfbe4a78fc1a": { + "6b20424f43e34457a459b9fb49563ebd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "589812d4789b4d93a8d7a09d3cdb7424": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6334f79ec8b64697ada644a5dd062e11": { + "6c6919eb334f47be98faf5ba28ec0e33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_cb60b12436ec46b492132064cde0f313", - "IPY_MODEL_079fe507b8fe4c6bacc08bed21e28407" + "IPY_MODEL_5829f3bb40cf45fe8cfd1f332a046774", + "IPY_MODEL_3386375631aa45338f7e9edce9b94b09" ], - "layout": "IPY_MODEL_1789521777ef4b358ccb6ec920c4e88c", - "selected_index": 0, - "titles": [ - "", - "" - ] + "layout": "IPY_MODEL_59d75ec48f4647df9a21712316e07f34" } }, - "63a1b2c42ad24882949a1475868eb955": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6624fa062dbf4e6a8010502eb7f8463e": { + "6d440019159f4d84a3c24a4b13ff5b89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "66e90ea266e54621886b53c328a12608": { + "6e22121a4bec45e1b19131be7fc2b4c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "layout": "IPY_MODEL_04b6d94f735744478c368ed662c26c9d", - "style": "IPY_MODEL_6f9693f15075420fbdb961e86c00e7aa", - "value": " 2/2 [00:00<00:00, 273.32it/s]" + "description_width": "" } }, - "6940c31217d34f6f84c03d60a6c88b59": { + "6eb8130148024f58af7d2dfa7afea151": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "DropdownModel", "state": { - "children": [ - "IPY_MODEL_891a822afb9543149f4ca877bb137eef", - "IPY_MODEL_55e76c63abf14947a21f1440641d040f", - "IPY_MODEL_4e3798b135a44394ae37b4ae9a0cf288" + "_options_labels": [ + "raw", + "nested" ], - "layout": "IPY_MODEL_72295d451fff4e88b260b53910998963" + "index": 0, + "layout": "IPY_MODEL_78b0abd0531a474bba9883a74b0279b6", + "style": "IPY_MODEL_8f894354dd5d49e98c0ee8bf67ee743b" } }, - "6e04bb5e28db49e7933fd3bff4410226": { + "6f90bab6fd0a433d92b6568c10011d49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_dfc240866b7e476eb46b8e3009f5a786", - "IPY_MODEL_168f8465646742d6af40515e0c73e805" + "IPY_MODEL_7a774d05dca449298aed214a6a24ed2a", + "IPY_MODEL_cb0353c3b3d9478eb7698c58c9baf2d7" ], - "layout": "IPY_MODEL_e20aad781ac7474199000fb043606cc8" + "layout": "IPY_MODEL_0b51da5c21874f6580a40b2b7febf6aa" } }, - "6f9693f15075420fbdb961e86c00e7aa": { + "7067bdcd363a46de8a7715214354aad0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_5493f94105a7474980a9785fc1528de8", + "IPY_MODEL_a0ac4aaf7a5449e09f480e6201bc05cb" + ], + "layout": "IPY_MODEL_6b20424f43e34457a459b9fb49563ebd" } }, - "70dcd0662dfd49ae947665fad895605d": { + "7261a2e98e4044d4a94b6cfcc1b66bf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "72295d451fff4e88b260b53910998963": { - "model_module": "@jupyter-widgets/base", + "72fceef903164e3ea814bd95216dbc4f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "LabelStyleModel", + "state": { + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } }, - "7353f88c72d94e7ba8269c66efb8785d": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "747f2dd2e1ba4ddd86bfc4dd09db8fd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", "state": { - "layout": "IPY_MODEL_07f6ee033b804612b9120acf6c737cb3", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightattributes.doubtattributes.actions.layingattributes.actions.sittingattributes.colors.blueattributes.colors.whiteattributes.headwear.fullattributes.headwear.noneattributes.headwear.partialattributes.position.backattributes.position.frontattributes.position.sideattributes.position.topattributes.position.unknown
id
0200person21256.0202.059.047.0TrueFalseTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalse
1200head8001256.0202.059.047.0NoneFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalse
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n0 200 person 2 1256.0 202.0 59.0 \n1 200 head 800 1256.0 202.0 59.0 \n\n box_height attributes.doubt attributes.actions.laying \\\nid \n0 47.0 True False \n1 47.0 None False \n\n attributes.actions.sitting attributes.colors.blue \\\nid \n0 True True \n1 False False \n\n attributes.colors.white attributes.headwear.full \\\nid \n0 True False \n1 False False \n\n attributes.headwear.none attributes.headwear.partial \\\nid \n0 False False \n1 False True \n\n attributes.position.back attributes.position.front \\\nid \n0 False False \n1 False False \n\n attributes.position.side attributes.position.top \\\nid \n0 False False \n1 True False \n\n attributes.position.unknown \nid \n0 False \n1 False " - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "description_width": "" } }, - "7aa95d431ae3490fbaf4e450c90b2b15": { + "764544f8c3b744ba9273aa7f9aad35c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_7353f88c72d94e7ba8269c66efb8785d", - "IPY_MODEL_a150f85e07224b34b89f4b9074749272" + "IPY_MODEL_d91f4d2ae06c4d4aac4159000b6311a6", + "IPY_MODEL_8cd7d60565f842b2a3e4839edf9a44a1" ], - "layout": "IPY_MODEL_8a1586fb5ea2402dbfd31ba21273095a", + "layout": "IPY_MODEL_beaa9f3a774e4f73aa85f825e5f82648", "selected_index": 0, "titles": [ "", @@ -1665,36 +1657,50 @@ ] } }, - "7b05bbcf88fc453192fc6a16bf161174": { - "model_module": "@jupyter-widgets/controls", + "78b0abd0531a474bba9883a74b0279b6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } + "model_name": "LayoutModel", + "state": {} }, - "7b701ff5bc0545c59e64d38f7de2c003": { + "7a774d05dca449298aed214a6a24ed2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_c8b1651a8ff049d28482b934290c9a2a", - "style": "IPY_MODEL_9cd07fa3b7954dc781e076204a67863b", - "value": " 1/1 [00:00<00:00, 134.67it/s]" + "layout": "IPY_MODEL_ee240d46f88a48a1bcbc6fb7e7dd7314", + "style": "IPY_MODEL_582b250a8051424e8968e2b9769936c4", + "value": "

Dataset object containing 1 image and 2 objects\nName :\n\tNone\nImages root :\n\t../../test_lours/test_data/caipy_dataset/tags/Images

" + } + }, + "7b411ff204894507b1e05046a27c96d6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_ac4ff6daf42a4e38866e6307e6423c1c", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
2person
800head
\n
", + "text/plain": " category string\ncategory_id \n2 person\n800 head" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "7c1b3544327e4b86a6af0328908c9b8c": { + "7ba1e595d0cd4e33a38718af458506e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_7aa95d431ae3490fbaf4e450c90b2b15", - "IPY_MODEL_d46e365c48204d43acb32dd5c944cf02" + "IPY_MODEL_8be6b7114e624437a0780fc41bbcde4b", + "IPY_MODEL_3efb9b0c090f4637b0aed6db54106d50" ], - "layout": "IPY_MODEL_3a713713799146e8bf49bcfc53ab9ec7", + "layout": "IPY_MODEL_ff0060cae9d94b33b4a5e385735a2438", "selected_index": 0, "titles": [ "", @@ -1702,73 +1708,69 @@ ] } }, - "802121038d4641229b0d4a5863e2e7a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_a025a5a18a7349c4bda10bb6cceee401", - "max": 1, - "style": "IPY_MODEL_2d407c197db543ca9c8a68930ed96f5f", - "value": 1 - } - }, - "81662c2999f94c0c8d0114e4c6c7d44f": { + "8111db8f01f8487588cc169fed9dcbed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "82846336e02a485d959f5c0647166dae": { + "816bc188d37b45989b66a38657e2ced7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "82c5e56bb7f144d8a4f3e21860a76d18": { + "832c102947f9488b830e9120d8b2c67f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LabelStyleModel", "state": { "description_width": "", + "font_family": null, "font_size": null, - "text_color": null + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null } }, - "8302f7594c7246f0a5e034d84e8df039": { - "model_module": "@jupyter-widgets/base", + "83fa3e7b01c3437fa9ada7adbb43a4ab": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_add0fbf1df5b43c3905fb329c24f0c7c", + "IPY_MODEL_07c8022be9374b64aa3c20cf242c8cfe", + "IPY_MODEL_e14b398b9ec5451ca69dcce3c74f9d6a" + ], + "layout": "IPY_MODEL_6d440019159f4d84a3c24a4b13ff5b89" + } }, - "8314c5aaae6840449a58f769ed04a9eb": { + "84100c7e780c4dd6909bd6fe2f99ca2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "86158f6a277e4bd1b63f97037a48d44f": { + "88cba09fff7143e286cdcf19e8456a78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "86fb97217fde40c8b400bd5f844cc38a": { + "8be6b7114e624437a0780fc41bbcde4b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_c25aa2c74edb4331a42aa7ced04bae82", + "layout": "IPY_MODEL_f8058b4477c94a9facda7722e1640667", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "966d8701ade04adc9abc0e5806fafbba", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(options=('raw', 'nested'), value='raw')))…" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightchildren_idsconfidenceparent_idattributes.occludedattributes.colorsattributes.position
id
0200person21256.0202.059.047.0[]0.51True[blue, turquoise][]
1200head8001256.0202.059.047.0[0]NaN<NA>None[][side]
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n0 200 person 2 1256.0 202.0 59.0 \n1 200 head 800 1256.0 202.0 59.0 \n\n box_height children_ids confidence parent_id attributes.occluded \\\nid \n0 47.0 [] 0.5 1 True \n1 47.0 [0] NaN None \n\n attributes.colors attributes.position \nid \n0 [blue, turquoise] [] \n1 [] [side] " }, "metadata": {}, "output_type": "display_data" @@ -1776,43 +1778,23 @@ ] } }, - "891a822afb9543149f4ca877bb137eef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_cf176ce2fa164ae2b26d5607342851aa", - "style": "IPY_MODEL_cb13a00bfa334dbdb1fc46b7def9b37a", - "value": "  0%" - } - }, - "8a1586fb5ea2402dbfd31ba21273095a": { + "8cafb999451f4221a8124d400bc0a55d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "9220b083170e486f82c6195ebdac6d3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "926fab6e984e44ce9dda3a7a3d09c091": { + "8cd7d60565f842b2a3e4839edf9a44a1": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_95b31ace4c314f569fd86593a93b6baf", + "layout": "IPY_MODEL_a6996a82cace49d999cbed1a4fb0abdb", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 label_book_versionlightlocationspectrumtimeviewweather
id           
200640427785.jpg.jpgV5natural-lightexteriorA BAD VALUEdayfront-viewsunny
\n", - "text/plain": "" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightchildren_idsconfidenceparent_idattributes
 occludedcolorsposition
 beigeblackbluebrowncyangreengreyorangepinkpurpleredturquoiseyellowbackfrontsidetopunknown
id                             
0200person21256.000000202.00000059.00000047.000000[]0.5000001TrueFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalse
1200head8001256.000000202.00000059.00000047.000000[0]nanNoneFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalse
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -1820,147 +1802,207 @@ ] } }, - "92bfcb652bae45e3ab2b5ab41e067a42": { + "8d6199a3871349debdfc0cb8897ea864": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8de82515a9794723b9c81fb955f3e289": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "9341b168149a40c7b219903191d359b1": { + "8f894354dd5d49e98c0ee8bf67ee743b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "9008e4454f0241458be4b73eaa693dc3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { "description_width": "", - "font_family": null, "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null + "text_color": null + } + }, + "945580f822df48c486846b21da68dad3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "94f9c5f8a41d4892a49c34eeadf16df4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "width": "auto" } }, - "945fe0f42792452fb99df0fce5a49910": { + "9697d7c26c324dbfb89d987d7983571f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "94d032ce50d546fbae4ba97ce43a89de": { + "9d8a7b299a9f4d598e0e1c69bde24923": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_cb66a7ceaa5941078911876f1a396f5d", + "style": "IPY_MODEL_9008e4454f0241458be4b73eaa693dc3", + "value": "100%" + } + }, + "a0ac4aaf7a5449e09f480e6201bc05cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_86fb97217fde40c8b400bd5f844cc38a", - "IPY_MODEL_a662a534628146ee9065da6a6351b8c5", - "IPY_MODEL_e17fba1647694f4eaaa5e3cb89b819a5" + "IPY_MODEL_b419179e66264c568b48400f27e214bf", + "IPY_MODEL_5a93db12b02c4a8999caa5b9011074f6" ], - "layout": "IPY_MODEL_d438c987308740a2878d423b4d4790b4", + "layout": "IPY_MODEL_f7d6302323bf4bfb93145887943d8696", "selected_index": 0, "titles": [ - "Images", - "Annotations", - "Label Map" + "", + "" + ] + } + }, + "a4b5e8b0543546479436bf4508650eb2": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_9697d7c26c324dbfb89d987d7983571f", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
200640427785.jpg.jpgdaysunny
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "95b31ace4c314f569fd86593a93b6baf": { + "a6996a82cace49d999cbed1a4fb0abdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "966d8701ade04adc9abc0e5806fafbba": { + "a6a54532063d4f2192b6d2789bdf1084": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "FloatProgressModel", "state": { - "children": [ - "IPY_MODEL_45931f756db64979b5841710be916027", - "IPY_MODEL_6334f79ec8b64697ada644a5dd062e11" - ], - "layout": "IPY_MODEL_102150428d504944858d95e0718df1fc" + "bar_style": "success", + "layout": "IPY_MODEL_816bc188d37b45989b66a38657e2ced7", + "max": 2, + "style": "IPY_MODEL_aaeb1b50dce7497a834f277eb76482ed", + "value": 2 + } + }, + "a6d2854c1f394f7792db677090d9ae79": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "a9f9a646f9374a3ba733d2a07dc17c92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "bar_style": "success", + "layout": "IPY_MODEL_84100c7e780c4dd6909bd6fe2f99ca2d", + "max": 1, + "style": "IPY_MODEL_ffce6b7069e64cc5bbf0f7f20f48ccfd", + "value": 1 } }, - "9a0ac2337d0f4cf8b319a2cb3c1b0969": { + "aaeb1b50dce7497a834f277eb76482ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "ProgressStyleModel", "state": { - "layout": "IPY_MODEL_c311cf324b804856b6c06a8e84c8afc1", - "style": "IPY_MODEL_9341b168149a40c7b219903191d359b1", - "value": "Column format" + "description_width": "" } }, - "9cd07fa3b7954dc781e076204a67863b": { + "ab5f61a0128345cda42a8ef8cd5e4e0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_0472a0c52b384c20bac6bba7be697d7a", + "style": "IPY_MODEL_1613cfa2cd45417ba93de2b5ce06cff1", + "value": " 1/1 [00:00<00:00, 268.30it/s]" } }, - "a025a5a18a7349c4bda10bb6cceee401": { + "ac4ff6daf42a4e38866e6307e6423c1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "a150f85e07224b34b89f4b9074749272": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "add0fbf1df5b43c3905fb329c24f0c7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_3dfc9daf7c534c988906f759cd8b8777", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightattributes
 doubtactionscolorsheadwearposition
 layingsittingbluewhitefullnonepartialbackfrontsidetopunknown
id                    
0200person21256.000000202.00000059.00000047.000000TrueFalseTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalse
1200head8001256.000000202.00000059.00000047.000000NoneFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalse
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_0778ae2a76624d2bb213cfd3edc6b0c0", + "style": "IPY_MODEL_fd7fe384d24740a4a794e1033ccc4418", + "value": "100%" } }, - "a4d58d85324e4d7e864f762144ca8c58": { - "model_module": "@jupyter-widgets/base", + "afa310091e6746029cdf6a67d3c64810": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "width": "auto" + "description_width": "", + "font_size": null, + "text_color": null } }, - "a4e6be9675ce4f63b0eb11e32f72b681": { + "b149b4fbbecc4014ba875fc52e4bae83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LinkModel", "state": { - "layout": "IPY_MODEL_0806dbda179749f3b23409b7242c3fa3", - "style": "IPY_MODEL_b43bab7c537846c6a85eaee34193a714", - "value": "

Dataset object containing 1 image and 2 objects\nName :\n\tNone\nImages root :\n\t../../test_libia/test_data/caipy_dataset/tags/Images

" + "source": [ + "IPY_MODEL_ed741ca35a4d43d381ed7b2535bf8072", + "index" + ], + "target": [ + "IPY_MODEL_3386375631aa45338f7e9edce9b94b09", + "selected_index" + ] } }, - "a662a534628146ee9065da6a6351b8c5": { + "b419179e66264c568b48400f27e214bf": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_8314c5aaae6840449a58f769ed04a9eb", + "layout": "IPY_MODEL_daa90d3456594b8283afa01d77962bb8", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3ff80506461c407eb63971c6797b8c03", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
200640427785.jpg.jpgdaysunny
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n200 640 427 785.jpg .jpg day sunny" }, "metadata": {}, "output_type": "display_data" @@ -1968,52 +2010,40 @@ ] } }, - "ac25b270cb1841a8aab0b187ec706652": { + "b812c9c9a28e4f659fef5b2664c63d45": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "adea838b5eff4bf099e2992a8ae25971": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_a4e6be9675ce4f63b0eb11e32f72b681", - "IPY_MODEL_94d032ce50d546fbae4ba97ce43a89de" - ], - "layout": "IPY_MODEL_bbe551fd84d442c19e22d95a93b20357" - } - }, - "aecabec779bd49dbbe314b05432038bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_d73a747efb964a22b15d2f97a07b9e11", - "max": 2, - "style": "IPY_MODEL_009938e3aace4fb5be4b7f9d753a6ec5", - "value": 2 - } - }, - "b043e656654e4268b14579470972b386": { + "b980a535007f4e8e829e31917b4bf732": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ - "IPY_MODEL_ca8ef64a212942208b718cf64f69d33f", + "IPY_MODEL_549d413cb13845379ee6a3a78e409fd7", "index" ], "target": [ - "IPY_MODEL_d46e365c48204d43acb32dd5c944cf02", + "IPY_MODEL_7ba1e595d0cd4e33a38718af458506e8", "selected_index" ] } }, - "b43bab7c537846c6a85eaee34193a714": { + "beaa9f3a774e4f73aa85f825e5f82648": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c01cc6cb84634d7681bec200fbf7c97c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c4a7b899fde3414fb88c7a3fa4e993c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2023,85 +2053,104 @@ "text_color": null } }, - "bbe551fd84d442c19e22d95a93b20357": { - "model_module": "@jupyter-widgets/base", + "c6e6d89936094b358cf8e337738c153b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } }, - "beae6502c7e544f5a732e9f3bfb26421": { + "c88961be156e4788a619d140851f9332": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LinkModel", + "model_name": "ProgressStyleModel", "state": { - "source": [ - "IPY_MODEL_ca8ef64a212942208b718cf64f69d33f", - "index" - ], - "target": [ - "IPY_MODEL_7aa95d431ae3490fbaf4e450c90b2b15", - "selected_index" - ] + "description_width": "" } }, - "c25aa2c74edb4331a42aa7ced04bae82": { + "c99c8c543aef4dffb302a9e9063cb3dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c2b2b95113844923901af0cd69146e31": { + "caa0b80e1eca4d8bb201d7564db9c8cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LabelModel", + "state": { + "layout": "IPY_MODEL_34c1d2ad78204bc7aa3de0d414b0fe0b", + "style": "IPY_MODEL_08145d806a2e44a2b0c0b5b53c16e157", + "value": "Column format" + } + }, + "cb0353c3b3d9478eb7698c58c9baf2d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_48e812286b9047ef82467faf16123e94", - "IPY_MODEL_aecabec779bd49dbbe314b05432038bb", - "IPY_MODEL_3834552ef0e5488892fdd0a937db0710" + "IPY_MODEL_f56bbc59797e43dabe586dfc62e624ce", + "IPY_MODEL_e6ad46ef21fb44d394b1bb05d9317fc7", + "IPY_MODEL_7b411ff204894507b1e05046a27c96d6" ], - "layout": "IPY_MODEL_d24c29db9fb243a38c5edcec0e3d1767" + "layout": "IPY_MODEL_df339ee1ee724facb026e650075d1fa6", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "c311cf324b804856b6c06a8e84c8afc1": { + "cb66a7ceaa5941078911876f1a396f5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c371c772e6114cda9841bb0bb6e38374": { + "cf3ed0b8ec2f4217ba17c19b04a07dbd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c45f9b0316b14496995e20611923b039": { + "d000be4f92144f4b9c8bb566c3ffe3d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_8cafb999451f4221a8124d400bc0a55d", + "style": "IPY_MODEL_1905b37bd49745b2a2e7458d07b4ce10", + "value": "  0%" + } + }, + "d19def3b87944cc99f9185b90eb2188f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c7183614c5844863a7d2c19525418946": { - "model_module": "@jupyter-widgets/controls", + "d35853516d0d4a2fa78b663d9a02bec6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_c45f9b0316b14496995e20611923b039", - "style": "IPY_MODEL_9220b083170e486f82c6195ebdac6d3e", - "value": "100%" - } + "model_name": "LayoutModel", + "state": {} }, - "c77725a123134e21ad6fe91f853dfcfa": { + "d91f4d2ae06c4d4aac4159000b6311a6": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_ac25b270cb1841a8aab0b187ec706652", + "layout": "IPY_MODEL_d35853516d0d4a2fa78b663d9a02bec6", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightattributes.doubtattributes.actionsattributes.colorsattributes.headwearattributes.position
id
0200person21256.0202.059.047.0True[sitting][blue, white][][]
1200head8001256.0202.059.047.0None[][][partial][side]
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n0 200 person 2 1256.0 202.0 59.0 \n1 200 head 800 1256.0 202.0 59.0 \n\n box_height attributes.doubt attributes.actions attributes.colors \\\nid \n0 47.0 True [sitting] [blue, white] \n1 47.0 None [] [] \n\n attributes.headwear attributes.position \nid \n0 [] [] \n1 [partial] [side] " + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightchildren_idsconfidenceparent_id...attributes.colors.pinkattributes.colors.purpleattributes.colors.redattributes.colors.turquoiseattributes.colors.yellowattributes.position.backattributes.position.frontattributes.position.sideattributes.position.topattributes.position.unknown
id
0200person21256.0202.059.047.0[]0.51...FalseFalseFalseTrueFalseFalseFalseFalseFalseFalse
1200head8001256.0202.059.047.0[0]NaN<NA>...FalseFalseFalseFalseFalseFalseFalseTrueFalseFalse
\n

2 rows × 29 columns

\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n0 200 person 2 1256.0 202.0 59.0 \n1 200 head 800 1256.0 202.0 59.0 \n\n box_height children_ids confidence parent_id ... \\\nid ... \n0 47.0 [] 0.5 1 ... \n1 47.0 [0] NaN ... \n\n attributes.colors.pink attributes.colors.purple attributes.colors.red \\\nid \n0 False False False \n1 False False False \n\n attributes.colors.turquoise attributes.colors.yellow \\\nid \n0 True False \n1 False False \n\n attributes.position.back attributes.position.front \\\nid \n0 False False \n1 False False \n\n attributes.position.side attributes.position.top \\\nid \n0 False False \n1 True False \n\n attributes.position.unknown \nid \n0 False \n1 False \n\n[2 rows x 29 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2109,47 +2158,43 @@ ] } }, - "c8b1651a8ff049d28482b934290c9a2a": { + "daa90d3456594b8283afa01d77962bb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "ca8ef64a212942208b718cf64f69d33f": { - "model_module": "@jupyter-widgets/controls", + "df339ee1ee724facb026e650075d1fa6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 0, - "layout": "IPY_MODEL_945fe0f42792452fb99df0fce5a49910", - "style": "IPY_MODEL_dcac46f8961643c39c9e1815bcae4349" - } + "model_name": "LayoutModel", + "state": {} }, - "cb13a00bfa334dbdb1fc46b7def9b37a": { + "e14b398b9ec5451ca69dcce3c74f9d6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_4e6a9a7046c54d3dbc3a36ce7d9d01e0", + "style": "IPY_MODEL_132a6bc35e734f4f83266d240d1cd744", + "value": " 2/2 [00:00<00:00, 244.85it/s]" } }, - "cb60b12436ec46b492132064cde0f313": { + "e6ad46ef21fb44d394b1bb05d9317fc7": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_f584b9e43a834083930aaa998e674570", + "layout": "IPY_MODEL_494095efddbe4d71b61a012fbf915854", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.label_book_versiontags.lighttags.locationtags.spectrumtags.timetags.viewtags.weather
id
200640427785.jpg.jpgV5natural-lightexteriorA BAD VALUEdayfront-viewsunny
\n
", - "text/plain": " width height relative_path type tags.label_book_version tags.light \\\nid \n200 640 427 785.jpg .jpg V5 natural-light \n\n tags.location tags.spectrum tags.time tags.view tags.weather \nid \n200 exterior A BAD VALUE day front-view sunny " + "application/vnd.jupyter.widget-view+json": { + "model_id": "6c6919eb334f47be98faf5ba28ec0e33", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" }, "metadata": {}, "output_type": "display_data" @@ -2157,111 +2202,101 @@ ] } }, - "cf176ce2fa164ae2b26d5607342851aa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d24c29db9fb243a38c5edcec0e3d1767": { + "e6fbb2d2b90b4174ab7da2bc3c0fb06e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "d2ab51218bba428ca5e3ff1dead2b587": { + "e86cdb20f4494218bb77df42d5f395a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { - "layout": "IPY_MODEL_82846336e02a485d959f5c0647166dae", - "style": "IPY_MODEL_f04db5f6a15747d699d849789fb4cda4", - "value": "100%" + "children": [ + "IPY_MODEL_9d8a7b299a9f4d598e0e1c69bde24923", + "IPY_MODEL_a9f9a646f9374a3ba733d2a07dc17c92", + "IPY_MODEL_ab5f61a0128345cda42a8ef8cd5e4e0c" + ], + "layout": "IPY_MODEL_88cba09fff7143e286cdcf19e8456a78" } }, - "d37f1a475ad4456f84892f38dc266932": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d438c987308740a2878d423b4d4790b4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d46e365c48204d43acb32dd5c944cf02": { + "e8bbf1c121694b819c95b56fce893fb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_c77725a123134e21ad6fe91f853dfcfa", - "IPY_MODEL_4156fd78fe4d483dbf211578ce948264" + "IPY_MODEL_d000be4f92144f4b9c8bb566c3ffe3d3", + "IPY_MODEL_49005d311ed749579739e17178d63113", + "IPY_MODEL_4c99ce4d531d4c93962e9128578d845e" ], - "layout": "IPY_MODEL_1a3b6f260a85451e90474f1222c46c2b", - "selected_index": 0, - "titles": [ - "", - "" - ] + "layout": "IPY_MODEL_62af9d68b3f64503919bd7735e1967ea" } }, - "d73a747efb964a22b15d2f97a07b9e11": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "db1e9b2211ba4fb692913b406877539d": { + "ed741ca35a4d43d381ed7b2535bf8072": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", + "model_name": "ToggleButtonsModel", "state": { - "button_width": "auto", - "description_width": "" + "_options_labels": [ + "yes ", + "no " + ], + "button_style": "", + "icons": [ + "check", + "times" + ], + "index": 0, + "layout": "IPY_MODEL_94f9c5f8a41d4892a49c34eeadf16df4", + "style": "IPY_MODEL_339a0f00e9824c288198159a2f73f01e", + "tooltips": [] } }, - "dc18f32543644b98ac4bb57180b9b26f": { - "model_module": "@jupyter-widgets/controls", + "ee240d46f88a48a1bcbc6fb7e7dd7314": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } + "model_name": "LayoutModel", + "state": {} }, - "dcac46f8961643c39c9e1815bcae4349": { + "efdd0543154c41419318d2792c78ffb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "" + "children": [ + "IPY_MODEL_3c1d3ed53fcf45c8b92ac7eabb027f50", + "IPY_MODEL_caa0b80e1eca4d8bb201d7564db9c8cf" + ], + "layout": "IPY_MODEL_cf3ed0b8ec2f4217ba17c19b04a07dbd" } }, - "dfc240866b7e476eb46b8e3009f5a786": { + "f3133f171cfe43638d63c5cf30547758": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "LabelModel", "state": { - "children": [ - "IPY_MODEL_21430331a20a40f2b7bd4a9642576b67", - "IPY_MODEL_ef9b88563d6a46e0b8956adef14d02b6" - ], - "layout": "IPY_MODEL_70dcd0662dfd49ae947665fad895605d" + "layout": "IPY_MODEL_e6fbb2d2b90b4174ab7da2bc3c0fb06e", + "style": "IPY_MODEL_72fceef903164e3ea814bd95216dbc4f", + "value": "Column format" } }, - "e17fba1647694f4eaaa5e3cb89b819a5": { + "f56bbc59797e43dabe586dfc62e624ce": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4db3ba35209e423b8eebb4aa809ae08c", + "layout": "IPY_MODEL_0cab193239a241ffb35beb1b574f5c7b", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
2person
800head
\n
", - "text/plain": " category string\ncategory_id \n2 person\n800 head" + "application/vnd.jupyter.widget-view+json": { + "model_id": "7067bdcd363a46de8a7715214354aad0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(options=('raw', 'nested'), value='raw')))…" }, "metadata": {}, "output_type": "display_data" @@ -2269,54 +2304,29 @@ ] } }, - "e20aad781ac7474199000fb043606cc8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "e256a426d559462b91e8e174dbbccf0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_c7183614c5844863a7d2c19525418946", - "IPY_MODEL_f46ed9514ddf4a8797fa78ef33608621", - "IPY_MODEL_66e90ea266e54621886b53c328a12608" - ], - "layout": "IPY_MODEL_92bfcb652bae45e3ab2b5ab41e067a42" - } - }, - "e7f6ac9c81494ef497f6625ff0c726f3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ed9d86965d304f35b6cdbec3b117b6a3": { + "f7d6302323bf4bfb93145887943d8696": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "ef3607aa55ee4c98b688f4f9aae44b84": { + "f8058b4477c94a9facda7722e1640667": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "ef9b88563d6a46e0b8956adef14d02b6": { + "f961f09764c94c2fa7b64cda94f2edcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_ef3607aa55ee4c98b688f4f9aae44b84", - "style": "IPY_MODEL_2710850c7d1d44868e2db2a2d3f3854c", - "value": "Column format" + "layout": "IPY_MODEL_8d6199a3871349debdfc0cb8897ea864", + "style": "IPY_MODEL_afa310091e6746029cdf6a67d3c64810", + "value": " 2/2 [00:00<00:00, 373.42it/s]" } }, - "f04db5f6a15747d699d849789fb4cda4": { + "fd7fe384d24740a4a794e1033ccc4418": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2326,29 +2336,19 @@ "text_color": null } }, - "f46ed9514ddf4a8797fa78ef33608621": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_07c8354f71934e158f3849257da4916e", - "max": 2, - "style": "IPY_MODEL_dc18f32543644b98ac4bb57180b9b26f", - "value": 2 - } - }, - "f584b9e43a834083930aaa998e674570": { + "ff0060cae9d94b33b4a5e385735a2438": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "faf56f6943b747259db2e44dec206377": { - "model_module": "@jupyter-widgets/base", + "ffce6b7069e64cc5bbf0f7f20f48ccfd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } } }, "version_major": 2, diff --git a/docs/notebooks/7_demo_booleanize.ipynb b/docs/notebooks/7_demo_booleanize.ipynb index eceac8e..d59dbf5 100644 --- a/docs/notebooks/7_demo_booleanize.ipynb +++ b/docs/notebooks/7_demo_booleanize.ipynb @@ -58,7 +58,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "640fc4ab1b5647a1b7db3d4e4c3687fe", + "model_id": "c647ef0d15d94a39bb70c9b4260e59a7", "version_major": 2, "version_minor": 0 }, @@ -72,7 +72,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e95a5732cf754fc9813fc4a66723b908", + "model_id": "757e6a8fc71745a2948e612116b529a0", "version_major": 2, "version_minor": 0 }, @@ -107,7 +107,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "efab93cac02640288836dcc56de2569e", + "model_id": "9c3dc34f7c7e4997b3671b79e393ba63", "version_major": 2, "version_minor": 0 }, @@ -121,7 +121,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b62cd32fbc454a568d788e358d81719b", + "model_id": "10791595ff20425ab1a1b36c5d8ccf17", "version_major": 2, "version_minor": 0 }, @@ -161,7 +161,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8f768406784e42a5bd0416d0d4d49177", + "model_id": "635d9581ce684895b10ec2b44954279e", "version_major": 2, "version_minor": 0 }, @@ -189,7 +189,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88b8f9769d3f44268c43e109596151a0", + "model_id": "e6841b8a15034f088e07288a0a12685c", "version_major": 2, "version_minor": 0 }, @@ -213,7 +213,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0016410fbb0c4cc0ac07a5ed16c9fca0", + "model_id": "99fc89b99c5a4cf5a89ba96cabb34ac4", "version_major": 2, "version_minor": 0 }, @@ -251,7 +251,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c761bf016664dec9312c62bfece2045", + "model_id": "1edfc963714448ce986ef09990ffb1a1", "version_major": 2, "version_minor": 0 }, @@ -282,7 +282,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6c9c4a81448a4284851db4a66db3a890", + "model_id": "78a4dc79253e41e690dca6416708a326", "version_major": 2, "version_minor": 0 }, @@ -321,7 +321,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e80f694f3bec4dafbdf5d819b5fb5088", + "model_id": "7a87de16ea484fb69738d7d9797df219", "version_major": 2, "version_minor": 0 }, @@ -361,24 +361,17 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00105760164c49b08951734e94d401c8": { + "00e92e822c8944e79dbb48196e58ae6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "LabelModel", "state": { - "children": [ - "IPY_MODEL_ace75e5bfc284bd2bd9ecb8f5636bb48", - "IPY_MODEL_99226b544c3841ea8ba9e045cad83eac" - ], - "layout": "IPY_MODEL_9d4609281c014251a47809ebaf7409f3", - "selected_index": 1, - "titles": [ - "", - "" - ] + "layout": "IPY_MODEL_a629243dd05841558a9e736f92ff0455", + "style": "IPY_MODEL_9884c587a1b8464982564ad6364f08ae", + "value": "Column format" } }, - "00178f21f8804fc2baa6277c97ce20b1": { + "0129bf9898c641fe89b5da4c38a0e215": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", @@ -386,83 +379,86 @@ "description_width": "" } }, - "008ef973c8f642558c8de06d1f27c09d": { + "02885eb99f4b4bd7ab2c8caac0e21f21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "025e2d92d09d4dc1960241d7f82b00ff": { + "02a7280b9b1943ac9ec8f3e491c02048": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "03e7dbcfbb694ef4be8d08e041cbe1bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelModel", + "02af80bce8b647dabc7e9cef2fdfb1fd": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4f68a89efccb4589a58694b80c45ecd3", - "style": "IPY_MODEL_0bd14685602241ef88b0b870f6750600", - "value": "Column format" + "layout": "IPY_MODEL_849eabdb80e944e78352992631b22a8f", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "04264ed64ed946a48928781c30b5d755": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "04e46c56624b4f56bfeea1e9495e2717": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "054e5460702a4fbbbf2b92a4b1390c23": { + "0353a3d7a7fb471da1a7a80c49d7b259": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ - "IPY_MODEL_b559e3280e504adaa50fd0003dfeee3d", + "IPY_MODEL_c2c3cf802edd41a586577f22c2b92493", "index" ], "target": [ - "IPY_MODEL_827a8fe062e94b4f8116397a0b0a49fe", + "IPY_MODEL_9cd9e70c862645c79cf30f05c2fb99b4", "selected_index" ] } }, - "055f2fabf98b415ba51d397bfc7d28b6": { + "037e46e73d6c4439a96a059f6a7ffc4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_96e12c005b5d4a919b024bab56d1dba5", - "IPY_MODEL_b18f09bd82cd4dfba29320e4cf85e72e" + "IPY_MODEL_65a5faa19f9c4cd7bfee8a1464f19f14", + "IPY_MODEL_440d72fc712f49c897105769f32774e2" ], - "layout": "IPY_MODEL_0f7326c85d8c4429aae10c78d9fae596", - "selected_index": 1, - "titles": [ - "", - "" - ] + "layout": "IPY_MODEL_d4023fa0a2eb490f95cfbaeff0a44a03" + } + }, + "038ef1d5ecbd4793adb4baa8f33d1091": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_037e46e73d6c4439a96a059f6a7ffc4c", + "IPY_MODEL_15532729471142a5bccc33e61f594d0e" + ], + "layout": "IPY_MODEL_2c98f9c294a447b89e7a1d9f1a323c35" } }, - "06314e795d3341ae8c31f6cf1ff62c8e": { + "03a9d35fb74940abbd8857ff81848f46": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3831225f13834870bdc2986fceb98b0a", + "layout": "IPY_MODEL_7d995a6b40ff4548bbe038deeba7f77b", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsoccludedposition
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']TrueNone
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey']None['front']
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -470,61 +466,41 @@ ] } }, - "06604cd3c200445b98faa4a20fc53f46": { + "044a2ad90a4a47e39a1ad93183680ad1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "066a6791a702412fb1d15d3a81d4027c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_a43b4e0d825f416a925bcb62337151b0", - "IPY_MODEL_c50789bee7754ba2bab3591d4f9b4b8c" - ], - "layout": "IPY_MODEL_e5622346c6de44ae8179842d2158ebf4" - } - }, - "06d5df245e064116bafb80d1d0ed2eb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_71ca3af25f7841b198d6e39e710d72a7", - "style": "IPY_MODEL_1f35fa06f93f47e08881d75db50dca72", - "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_v5_dataset\nImages root :\n\t../../test_libia/test_data/caipy_dataset/tags/small_v5_dataset/Images

" - } - }, - "07e2bf8160054c949d80bc1f8646cf19": { + "0563fdaa1fae470db79fd71892819186": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "07f8d3c3c18c47c59a892247b5651124": { + "06106e5869d44a04985641fbf2694e83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "VBoxModel", "state": { - "layout": "IPY_MODEL_c38b00829145442599727fa4c420ab9b", - "style": "IPY_MODEL_0d1702d15ea64e05ac503ff6725277a3", - "value": "

Dataset object containing 2 images and 1 object\nName :\n\tsmall_v5_dataset\nImages root :\n\t../../test_libia/test_data/caipy_dataset/tags/small_v5_dataset/Images

" + "children": [ + "IPY_MODEL_7fd0eb032f7a47ca96559fadb0bb675f", + "IPY_MODEL_968a9655aad44b93a738414f651ccdee" + ], + "layout": "IPY_MODEL_a1403f405903444da9dfe1225eeec61f" } }, - "087b64e7cb034695b087b4e79caa07f1": { + "06ea4cd2f8554c6887ab7329d24f0507": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_2fea8c66d507491f85e08d348f845d34", + "layout": "IPY_MODEL_a976ba082bf6438b9f728efd77d864d1", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.job
id
2697916091stop sign13100.22117.54253.43274.946726.4303[red, white][police]
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n\n box_height area attributes.colors attributes.job \nid \n269791 274.9 46726.4303 [red, white] [police] " + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -532,63 +508,68 @@ ] } }, - "093a56d92eb240c5bf5a85efa12f8c36": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "06f1022b8af540b7961d20e87034f6d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelModel", "state": { - "layout": "IPY_MODEL_ca41e0229000482e88010897dd0b16df", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colors.beigeattributes.colors.black...attributes.colors.pinkattributes.colors.purpleattributes.colors.redattributes.colors.whiteattributes.colors.yellowattributes.job.ambulanceattributes.job.firefighterattributes.job.policeattributes.job.public workerattributes.job.unknown
id
2697916091stop sign13100.22117.54253.43274.9046726.4303FalseFalse...FalseFalseTrueTrueFalseFalseFalseTrueFalseFalse
116123410395teddy bear8849.1966.20378.97379.6884587.4391FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n

2 rows × 26 columns

\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors.beige \\\nid \n269791 274.90 46726.4303 False \n1161234 379.68 84587.4391 False \n\n attributes.colors.black ... attributes.colors.pink \\\nid ... \n269791 False ... False \n1161234 False ... False \n\n attributes.colors.purple attributes.colors.red \\\nid \n269791 False True \n1161234 False False \n\n attributes.colors.white attributes.colors.yellow \\\nid \n269791 True False \n1161234 False False \n\n attributes.job.ambulance attributes.job.firefighter \\\nid \n269791 False False \n1161234 False False \n\n attributes.job.police attributes.job.public worker \\\nid \n269791 True False \n1161234 False False \n\n attributes.job.unknown \nid \n269791 False \n1161234 False \n\n[2 rows x 26 columns]" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_a2296a4a425e47a697b596af912df209", + "style": "IPY_MODEL_44654d0ed134442c8cb2a2c55dea9d1a", + "value": "Column format" } }, - "09c08f2772594ca9ab39e1c2c7ec8aea": { + "0725df56238a46e2b88c90e0ec39021b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "0a5ad3a8c572402eb1b02cf86c507e1c": { + "076f72a208324224a2c059c30afe2087": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "TabModel", "state": { - "_options_labels": [ - "raw", - "nested" + "children": [ + "IPY_MODEL_27e58a435c8e4163a26412a1741e12e5", + "IPY_MODEL_2fd0b3d735f64c5db0f8d26ca47cddce", + "IPY_MODEL_86f80b9d1bbb465d94cd9d332908bce8" ], - "index": 1, - "layout": "IPY_MODEL_832592f6d6694ac89ee1a8177863fdd1", - "style": "IPY_MODEL_8451cee892544113bb3ea74b326cc035" + "layout": "IPY_MODEL_52196ce8655c420ab7f52efd6794b35c", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "0b73631e80df49f6b1399b32864f73c0": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "079694d0f5b04ec189a75713d98155a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_7956f796da2f46f4b5981bf56a042df3", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", - "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0861fa44d82b4122acec6969b476a723": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null } }, - "0bd14685602241ef88b0b870f6750600": { + "08f673c3556346ca822060a9d59e36d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "094209b6633741e2bd532ec562c7b09d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelStyleModel", @@ -603,17 +584,23 @@ "text_decoration": null } }, - "0c3022feb15d49968e3d6aee27805c44": { + "0956bd685355401e9999b41503a8d80d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "09ca7a759f8d487d9236acc2edaf32ae": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_07e2bf8160054c949d80bc1f8646cf19", + "layout": "IPY_MODEL_02885eb99f4b4bd7ab2c8caac0e21f21", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -621,96 +608,87 @@ ] } }, - "0cad1d65402d46368442f111431fadd0": { + "0a7a04ac4aad4bc4983e00a45e134e20": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "0a7f0728bb6145bcbad272e98ecd4097": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_f9655fdfe462442db231096f1c04604b", - "IPY_MODEL_78a7b1c849fc4437a221a0a375aa2de1" + "IPY_MODEL_9d90ca1893c14a7e98e29bc67d9c893b", + "IPY_MODEL_7f7be1bd470c4f12a72eb57d293f53c7" ], - "layout": "IPY_MODEL_b68ce890cf1a4b42acc281030f38db79" + "layout": "IPY_MODEL_61c444dae0084bbf950d2a0adb991c29" } }, - "0d1702d15ea64e05ac503ff6725277a3": { + "0ac01f3061214b6ab3aad2e6b94fedc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_5adc1bd1797645c59defe71c9df3d1a8", + "IPY_MODEL_923d138e7b874eb899f6377c01b482cf" + ], + "layout": "IPY_MODEL_5ad9a7f264b94c32b59cc6756b11fedc" } }, - "0e79bb2e760f4b718d5fe7c2a920c87a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0e9b3b6dce1f4ad8a40a541decdbde84": { + "0c5008e01da84903b006af8c83a247fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LinkModel", + "model_name": "VBoxModel", "state": { - "source": [ - "IPY_MODEL_ceb29c60259946778e7b1c5c11f394c4", - "index" + "children": [ + "IPY_MODEL_6d8dbc0984b34120b6585dfded6f31a6", + "IPY_MODEL_87952fa04acc4fd8806846b79e4dc2d4" ], - "target": [ - "IPY_MODEL_f9e2d860b6784e2bae70aacd9696aa26", - "selected_index" - ] + "layout": "IPY_MODEL_911ccd880acb4d04bd47db295971efab" } }, - "0f060f5e128640eda2088571b417d82d": { + "0d427295ce8648edb6feda0b853ca625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_af5c6e1f126d4d81a620bbb605c0f7ee", - "IPY_MODEL_49c8c09615b24f3183dcb8eace1c8b6f" + "IPY_MODEL_4e3ddb0c052f47e2bcf37aaa0327f337", + "IPY_MODEL_702d869bb364435e93b918e02477e2e6" ], - "layout": "IPY_MODEL_06604cd3c200445b98faa4a20fc53f46" + "layout": "IPY_MODEL_8bdb1a75f0d04172873d26771641eb84" } }, - "0f7326c85d8c4429aae10c78d9fae596": { + "0e50c330ab3540008935e217fa8c6d6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "0ff6ef25b14445d4896e6e470d76ce2e": { + "0e92ca4ee30f4fcd9710db58e97170ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HTMLModel", "state": { - "children": [ - "IPY_MODEL_f840a5e024af4c3cb4c2a55b3c9816d8", - "IPY_MODEL_465c52c33d2948c3be255f7d9672373b" - ], - "layout": "IPY_MODEL_51739dddb7eb4f0fa2722a51018b206a" + "layout": "IPY_MODEL_e9c406676f114897812eab475214e9ef", + "style": "IPY_MODEL_9fbafa2cf430439a82a1fe9f9ba06238", + "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_tagged_dataset\nImages root :\n\t../../test_lours/test_data/caipy_dataset/tags/small_tagged_dataset/Images

" } }, - "10ead96d57f44abf97eb89464993150a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "116b4624ae8e411bb06cfcdbb7ffa397": { + "0fad252a59174bc191d0d3becb8d21ca": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_c49337a1fb2e46cd85d83c5aca262060", + "layout": "IPY_MODEL_1e7fc06dd2dd4905ab259cfdc3894b5a", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.job
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white][police]
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey][]
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.job \nid \n269791 274.90 46726.4303 [red, white] [police] \n1161234 379.68 84587.4391 [grey] [] " + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -718,56 +696,81 @@ ] } }, - "116dd2fe884141609a3cabafb30e488a": { + "102523b7282d445cbf63ed9a47263f26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "11ae35d8b24c43829c520b2483e5fc3a": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "model_name": "DropdownModel", "state": { - "layout": "IPY_MODEL_45befa17b8d34198b6bc85c3c76ec316", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "_options_labels": [ + "raw", + "nested" + ], + "index": 1, + "layout": "IPY_MODEL_cc3eea07c5a9499a9b200d1bb1e0b629", + "style": "IPY_MODEL_7b5d82b95dbe493cb1104c90fe815051" } }, - "12f682b10a5d483ab1cb8c65dcbadee2": { + "10791595ff20425ab1a1b36c5d8ccf17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_8337de32257745aeb78cfa5f3e946c10", - "IPY_MODEL_4338ece490314e2cb34107ab22460d8d" + "IPY_MODEL_c05f2a5cd5054153be4c8763f70dd2e5", + "IPY_MODEL_e21c88a692f54f33830adebe16aa5ef0" ], - "layout": "IPY_MODEL_9ddebf729dd042899592a38c4b1ac425" + "layout": "IPY_MODEL_11c33c171f914d30ba66925bb635b183" + } + }, + "10c0c7121b5b4c54831ebee82e121a24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelStyleModel", + "state": { + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null } }, - "137273feae674dffb709841507c73a67": { + "118a6546b9334a3eb642a7fa1ff7277f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "11a76d67a9a843549682dc5d908560d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "11c33c171f914d30ba66925bb635b183": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "145e26a3fc634e89868d951ad0980198": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "15532729471142a5bccc33e61f594d0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_236d13e7a357419a82368ac30a95971b", - "IPY_MODEL_cb2e6fc81a814f04ba2bc97d91516e68" + "IPY_MODEL_9cd9e70c862645c79cf30f05c2fb99b4", + "IPY_MODEL_724c5af4f03d406083910e7e6eb68058" ], - "layout": "IPY_MODEL_d94b69cea45e49978b12cae3fe9c3323", + "layout": "IPY_MODEL_118a6546b9334a3eb642a7fa1ff7277f", "selected_index": 1, "titles": [ "", @@ -775,32 +778,17 @@ ] } }, - "13a9a2e276f44aff9a8b53bff9a48677": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LinkModel", - "state": { - "source": [ - "IPY_MODEL_887130e2a4a84c33849784401bfedba6", - "index" - ], - "target": [ - "IPY_MODEL_f8efbd7eeef84d0ea663c63d38c7753d", - "selected_index" - ] - } - }, - "14132848699c469eabd3abd14b660851": { + "15fd75c8e40643b2a02b60e6a771cfe5": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_f31a5d9c55ec4e4f87afc75e237aa428", + "layout": "IPY_MODEL_72d2668cd58440c0ad10f4c174028c08", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colors.beigeattributes.colors.black...attributes.colors.pinkattributes.colors.purpleattributes.colors.redattributes.colors.whiteattributes.colors.yellowattributes.job.ambulanceattributes.job.firefighterattributes.job.policeattributes.job.public workerattributes.job.unknown
id
2697916091stop sign13100.22117.54253.43274.9046726.4303FalseFalse...FalseFalseTrueTrueFalseFalseFalseTrueFalseFalse
116123410395teddy bear8849.1966.20378.97379.6884587.4391FalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n

2 rows × 26 columns

\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors.beige \\\nid \n269791 274.90 46726.4303 False \n1161234 379.68 84587.4391 False \n\n attributes.colors.black ... attributes.colors.pink \\\nid ... \n269791 False ... False \n1161234 False ... False \n\n attributes.colors.purple attributes.colors.red \\\nid \n269791 False True \n1161234 False False \n\n attributes.colors.white attributes.colors.yellow \\\nid \n269791 True False \n1161234 False False \n\n attributes.job.ambulance attributes.job.firefighter \\\nid \n269791 False False \n1161234 False False \n\n attributes.job.police attributes.job.public worker \\\nid \n269791 True False \n1161234 False False \n\n attributes.job.unknown \nid \n269791 False \n1161234 False \n\n[2 rows x 26 columns]" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -808,169 +796,66 @@ ] } }, - "14df742b05b34116b676c62121718770": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_fd4eed059e104c76b2c45b5ffa0fe211", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "15753d0f0b7c40339e3fc4d9d892ee1b": { - "model_module": "@jupyter-widgets/base", + "16eb61e6db014bdba0d48020e66326b9": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "15c996b6beb84a9eb54c28226f2bd579": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_dfd0233da24b49b89441836c5f9e9e89", - "IPY_MODEL_98ae043445f74245af887299a198de3a" - ], - "layout": "IPY_MODEL_a216e667ebf642459c813f16df72d61c" - } - }, - "1604518b7c994e74861f063957f0e7f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LinkModel", - "state": { - "source": [ - "IPY_MODEL_b4862abefd164a6197462e5a6e3b0572", - "index" - ], - "target": [ - "IPY_MODEL_37f890dec4b74ea29127f8542ac20839", - "selected_index" - ] - } - }, - "164d41eff09845da98d36f2bafb49942": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_3eea33de3c3e4184b12a9eebd2800eb0", - "IPY_MODEL_8b25e9549910415da84db6b3adddc1e1" - ], - "layout": "IPY_MODEL_4b1f96a5ffb14ae98d02cc1b113478cc" - } - }, - "1681e663fd65493cbdea9161be82ba07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LabelStyleModel", "state": { - "children": [ - "IPY_MODEL_7f4065f3b4c445c4a3541e584838f776", - "IPY_MODEL_0f060f5e128640eda2088571b417d82d" - ], - "layout": "IPY_MODEL_6307b906b1d84813a1d315b1841b0f44" + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null } }, - "173ab3fb03604746807dfadde1945553": { + "171562c893454c9eb8fb17ab31629477": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1763df3f9ef242158b93ed675df78684": { - "model_module": "@jupyter-widgets/controls", + "171755c726fc4961b8b3a44c1c97f894": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_32bcf802a0dd4b2e84d4ed28119e4c07", - "IPY_MODEL_ab28170db9de44c39e8c590191d2286a" - ], - "layout": "IPY_MODEL_36db4709690a4a58b09ab812a1b6bef6" - } + "model_name": "LayoutModel", + "state": {} }, - "17872b7fc2da400283f1064ef7aa0870": { + "17dd15166eb74906b4d3753bc0a9f01b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HTMLModel", "state": { - "children": [ - "IPY_MODEL_5f7d0fe9ecce4208922c568519e73024", - "IPY_MODEL_f73b8bed0af648f9b15a279652f50227" - ], - "layout": "IPY_MODEL_974f1c4b3d534a929cf930ffa7330433" + "layout": "IPY_MODEL_4b323e7106dd4d4ab82b4ffeda837e0b", + "style": "IPY_MODEL_7dc163fc405c452a9d18038dbf30270d", + "value": " 2/2 [00:00<00:00, 240.91it/s]" } }, - "18c76c4652d24ae498506da979b2eac1": { - "model_module": "@jupyter-widgets/controls", + "181cff8851134779b46b515d5ed76785": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_6f6995a077d34855bd4a4c96993b73a4", - "IPY_MODEL_827a8fe062e94b4f8116397a0b0a49fe" - ], - "layout": "IPY_MODEL_3ccc50a1a4554d36bfc87f7b8fc78fbd" - } - }, - "19b2826311584f93a824b4860f97de76": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_8470f9b41dac44f49f78c1a3b778474e", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } + "model_name": "LayoutModel", + "state": {} }, - "19e462a0d377449cabb8182a67bef4b4": { - "model_module": "@jupyter-widgets/controls", + "1981ea24319c4f44b37516c35d08697e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "StackModel", - "state": { - "children": [ - "IPY_MODEL_2c2c13bed10149a3974d0149d0219a9b", - "IPY_MODEL_5a51be3ccfd64837b1d04f54b6251a54" - ], - "layout": "IPY_MODEL_d9cd2de0277c470bb7ca0716e5010460", - "selected_index": 1, - "titles": [ - "", - "" - ] - } + "model_name": "LayoutModel", + "state": {} }, - "1a7f4da375764e33adea6392aa185a8c": { + "1985296dc9dd47639744d50332140aa0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_5be401bed3744c9ab88b873c0d9e7b31", + "layout": "IPY_MODEL_995c86e9f4a04866baada76518c8aa57", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.job
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white][police]
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey]None
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.job \nid \n269791 274.90 46726.4303 [red, white] [police] \n1161234 379.68 84587.4391 [grey] None " + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -978,23 +863,17 @@ ] } }, - "1ad86fe68e6e4682b7f14a6e920bc032": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1c06226e0ffb4cf0bce739ddc2e9c562": { + "19b997d773684d27934186f82f9f2bb4": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_008ef973c8f642558c8de06d1f27c09d", + "layout": "IPY_MODEL_5a903c092fee41ffa06bc163ebc2b7be", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.job
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white][police]
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey]None
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.job \nid \n269791 274.90 46726.4303 [red, white] [police] \n1161234 379.68 84587.4391 [grey] None " + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -1002,154 +881,143 @@ ] } }, - "1c45655045d042be94b2984b6afab3be": { + "1a059635e4b54c60ac43f816b0234a47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "FloatProgressModel", "state": { - "layout": "IPY_MODEL_1ad86fe68e6e4682b7f14a6e920bc032", - "style": "IPY_MODEL_5157b0d87bf841909fc20e6fe4d347a3", - "value": "Column format" + "bar_style": "success", + "layout": "IPY_MODEL_9d57f5b5d92e4e1786b4356af50b6cad", + "max": 2, + "style": "IPY_MODEL_db338223590648b3b03d412a8a4a9e58", + "value": 2 } }, - "1c4a75b300d946949af14de954a372f5": { + "1cc7eb4fbda84aa799d8a544f92cb3a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1c65f4021a3b401484770ef291c382d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_25e044b729e04f78aaa3fe04f59f0f0a", - "style": "IPY_MODEL_689259b83518429d87318e8e270efd7d", - "value": " 2/2 [00:00<00:00, 210.38it/s]" - } - }, - "1c85d1590abf4bf98d2f322f6ef4cf61": { + "1d0889c84e914606a8fce2da106d95db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1d7f7e7fb4f6494e959f91befa693e04": { + "1d7533c6d0c04d409d34e1c8da8db57b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1d8ca6079e344e32887539802f824163": { - "model_module": "@jupyter-widgets/controls", + "1ddb2f919dcd42fa88940ff33eda3108": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 0, - "layout": "IPY_MODEL_4b9315e0d8614c3d9fb0b20bdd49773d", - "style": "IPY_MODEL_a2a83e9e6bbc40528e03b2dd1af0dbad" - } + "model_name": "LayoutModel", + "state": {} }, - "1de0daa9b3de4ded941f28072774630e": { - "model_module": "@jupyter-widgets/controls", + "1e7fc06dd2dd4905ab259cfdc3894b5a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", - "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } + "model_name": "LayoutModel", + "state": {} }, - "1df511c63d7f41c19d46847830648ea0": { + "1ea88e7d098d46268aa1c330a1f885a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1e0baf4e93784bb9b6a3959ece03961c": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "1edfc963714448ce986ef09990ffb1a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", "state": { - "layout": "IPY_MODEL_334275da8a374bcbbbce07a31d958f50", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
 beigeblackbluebrowncyangreengreyorangepinkpurpleredwhiteyellowambulancefirefighterpolicepublic workerunknown
id                          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseTrueFalseFalse
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100FalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "children": [ + "IPY_MODEL_7a934878b74440759d163ee2c262eafc", + "IPY_MODEL_fff1b7f819ce4eb58c6b8bb910d73d41" + ], + "layout": "IPY_MODEL_3dd65077dba0499d9871617e597bfe1d" } }, - "1e6657237fd043b7b81592a26f51e6de": { + "1f0be6ee221e48b8a92c1e37cc76ca8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ - "IPY_MODEL_0a5ad3a8c572402eb1b02cf86c507e1c", + "IPY_MODEL_c83a6880bed94908b866518ba549c781", "index" ], "target": [ - "IPY_MODEL_78c759f31dc74dd4ae5cd78d7d8204eb", + "IPY_MODEL_eb8fe446efe847e0abfb878b5c30b043", "selected_index" ] } }, - "1ece89c4bc6b40418fbc6b13aee1a5d6": { + "1f3d97b642d040ce876c3713a32f79f3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "1f81c136141340f3b9dabdd428e56b03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "1f35fa06f93f47e08881d75db50dca72": { + "201a23b56cf64f47a347e9f08e9ce82c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "206b0dc0effa4b82b8edde6f926855d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_a08235c9fa7e456f9072fe755b163da2", + "IPY_MODEL_5c0fabf6029042b0b293d773e38622ea" + ], + "layout": "IPY_MODEL_8ba5185ae8f748eb831aff0055533934" } }, - "1ffdd18db8bf4763af225f9a5b222a8d": { + "2177bbd8079545dcafbf6bf9e9f6a5f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ - "IPY_MODEL_ceb29c60259946778e7b1c5c11f394c4", + "IPY_MODEL_a82bb9407c1d44b3be7f7c4085d1aaa0", "index" ], "target": [ - "IPY_MODEL_d8771d6d18fe4fcf8605a1c5e15e00ce", + "IPY_MODEL_cb4f78a088914791a6986522d7dff3d8", "selected_index" ] } }, - "200609463d994d1f9a047bd8b9ae8e8c": { + "225471f443064aa1b05d15e8200851c4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "226d737a565b4f93a78c43c77ceee68d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4cef32a489a646ab862a0068911245ae", + "layout": "IPY_MODEL_c9e5e33944354daea0213434be043ea8", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']['police']
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey']None
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", + "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" }, "metadata": {}, "output_type": "display_data" @@ -1157,61 +1025,41 @@ ] } }, - "201da11722164c878c27bcb9814c772c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "20ea0df56af04072ba7dc98d8f347b03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LinkModel", + "22eebccdb47e48dbb008f02647bb6694": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "source": [ - "IPY_MODEL_49c8c09615b24f3183dcb8eace1c8b6f", - "index" - ], - "target": [ - "IPY_MODEL_055f2fabf98b415ba51d397bfc7d28b6", - "selected_index" + "layout": "IPY_MODEL_2694016c933f4576bf20f27d2dd8c5ba", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "2172561c2a6846bca782dec44ed6eedc": { + "239e1312b0e5477db524269078b9f371": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "21a9dd5c63824583a0f18b54c0b4dda8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "width": "auto" - } - }, - "21b88b13e9e74f1ea17dc3f3b3438be2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", - "state": { - "button_width": "auto", - "description_width": "" - } - }, - "236d13e7a357419a82368ac30a95971b": { + "23d90b1116024b2a83bdbf994661bf96": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_5158dc70026a4294a71f01d2e154a9fc", + "layout": "IPY_MODEL_79d711af9e0649a393a25b2180874041", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -1219,108 +1067,105 @@ ] } }, - "244603f2ef7c4bf69dce525a6ef27b35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LinkModel", + "23f228485664473d8df1dd44a984fa11": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "source": [ - "IPY_MODEL_3eea33de3c3e4184b12a9eebd2800eb0", - "index" - ], - "target": [ - "IPY_MODEL_465c52c33d2948c3be255f7d9672373b", - "selected_index" + "layout": "IPY_MODEL_e88a1dfd998f4ca3aa583863f7f1aef2", + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fc70beccc8ee448fa418dcfc47e25ddb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(options=('raw', 'nested'), value='raw')))…" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "25a895ae0b624377aaa7b4b5bd8554e7": { + "23f555c6d17944849ad0d2bb303cb735": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "25e044b729e04f78aaa3fe04f59f0f0a": { + "25213655415b4639b0a3fcb687150a52": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_9ff26407b6d4450f8f601ed287e6e4bc", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsoccludedposition
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']TrueNone
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2543f405ad23473197be5e23f6f11a7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "27d01299cf544075a45a465fe6457ef7": { + "2694016c933f4576bf20f27d2dd8c5ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "28a867a6d756479dbf8da105e0fe6ee6": { + "269781257d4547eb9846caffbba7f308": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "layout": "IPY_MODEL_5482c989571e41a0a4d9b012fecaac55", - "style": "IPY_MODEL_bc1fb95a0b454824b37a8e68795624ed", - "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_v5_dataset\nImages root :\n\t../../test_libia/test_data/caipy_dataset/tags/small_v5_dataset/Images

" + "description_width": "" } }, - "28f24a34506f4f3a81c7a0aee4488730": { + "27399ebe56be4aa5b4af3cdf44a6c693": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2953790d879f4626a671bade59126c36": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_e7b9a727554741fcb369349e53f6c0f3", - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "98967b02edcc48dc864a7aef38769f2c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "2977a2e3ce1946ab84f2899b27b96b5d": { + "27b959666fe640798afefcfff3aa2b26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "29e603c11d8d4d73a8133fab2187783d": { + "27e3269d2c21476481604c21046075dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2a9f1ee260d843efaf601c1846d954ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "2c2c13bed10149a3974d0149d0219a9b": { + "27e58a435c8e4163a26412a1741e12e5": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_39b9e58e38834ac78607c8516e49de02", + "layout": "IPY_MODEL_754358b619bd42a884f1605607095f26", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.jobattributes.colors.greyattributes.colors.redattributes.colors.white
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[police]FalseTrueTrue
116123410395teddy bear8849.1966.20378.97379.6884587.4391NoneTrueFalseFalse
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.job attributes.colors.grey \\\nid \n269791 274.90 46726.4303 [police] False \n1161234 379.68 84587.4391 None True \n\n attributes.colors.red attributes.colors.white \nid \n269791 True True \n1161234 False False " + "application/vnd.jupyter.widget-view+json": { + "model_id": "8999c4e53eea4a1b93044f01ebcaf831", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" }, "metadata": {}, "output_type": "display_data" @@ -1328,365 +1173,455 @@ ] } }, - "2eb5a09f0dd9439f8e897a5aea0e216f": { + "28c56dd1b1264b78a6e2d28df4208709": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "DescriptionStyleModel", "state": { - "layout": "IPY_MODEL_39b59b088087480e94dc4283d123307a", - "style": "IPY_MODEL_368a2a6be6004437884d525bfd057076", - "value": "Column format" + "description_width": "" } }, - "2ec564d426a24931b4774a7b1cac9855": { + "28fda02590c845be8ee2d3c502bc8172": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", + "state": {} + }, + "29ca484ee22746279ffcfc006748af4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "StackModel", "state": { - "width": "auto" + "children": [ + "IPY_MODEL_4d56a1f5de8141cebb5778cbfe5dbb56", + "IPY_MODEL_deeecc5324c34e6187847840b98059b3" + ], + "layout": "IPY_MODEL_43b785aef6924f34ac1bd67fbe1f7e09", + "selected_index": 1, + "titles": [ + "", + "" + ] } }, - "2fba735419bb4cf3909d16d20de8fbb2": { + "2a4c1095d7d9419b86481842718b8b21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "2fea8c66d507491f85e08d348f845d34": { + "2b58e27357ea44cc9a8d0f358eff8595": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "30dc7e8e22214a4a813f2d3d86bee95a": { + "2b8b8ef54a4242d3a7b52180a359f42a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelStyleModel", + "state": { + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } + }, + "2c98f9c294a447b89e7a1d9f1a323c35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "30e9f1825b9440238335ed8d48410989": { + "2db262d862524e9081733f58f7389ef0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "LabelModel", "state": { - "children": [ - "IPY_MODEL_cb0e963631cb4d55a80900c365cdcbcf", - "IPY_MODEL_00105760164c49b08951734e94d401c8" - ], - "layout": "IPY_MODEL_af3bea0edf7e499e85d2c968dc20adba" + "layout": "IPY_MODEL_728691b5e3924e6ab7592ff01ba4ffb9", + "style": "IPY_MODEL_7a9ef69070f34884abc1c00d0a752989", + "value": "Column format" } }, - "31045c1a58de4f3db7fc7fb09b083776": { + "2dbb7b08de92406fa0661689c0f7167e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "322827bb404043108aaeff537e91df81": { + "2deb4121525045ac9f899956f4dfdc65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3230e659e66b4dee825e5917333d7b31": { + "2e6fe66e4365416b92bb1aee14fe420e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "width": "auto" + } + }, + "2ee35f68a8af4d709ae4223d5675421e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "HTMLModel", "state": { - "children": [ - "IPY_MODEL_711df07dfcab4e0592fdd9c39c99e4fc", - "IPY_MODEL_4158c6e0f0bd416b941ab1443cbbf837", - "IPY_MODEL_7ce64cca12244449979dd9585e3931e5" - ], - "layout": "IPY_MODEL_f004ecba0f3e4965b6458ab18211f8f8", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" + "layout": "IPY_MODEL_d879e9886d5a403db85ef3183404d41e", + "style": "IPY_MODEL_77aaa7b1357e4d348e418146d2f12cf8", + "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_tagged_dataset\nImages root :\n\t../../test_lours/test_data/caipy_dataset/tags/small_tagged_dataset/Images

" + } + }, + "2fd0b3d735f64c5db0f8d26ca47cddce": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_a41157b4e60b4dfb8b8dfac4eea12277", + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f03fc87d9a5a45278368e3a4faa783e5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "32bcf802a0dd4b2e84d4ed28119e4c07": { + "3017ebf9b60b4c6881e90428742650aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LinkModel", "state": { - "children": [ - "IPY_MODEL_b7275f7e83674361b401534cecb78e36", - "IPY_MODEL_1d8ca6079e344e32887539802f824163" + "source": [ + "IPY_MODEL_900d616b60a14f4faafed905563bf6b2", + "index" ], - "layout": "IPY_MODEL_f79eae4bdc0b49bba1790a8af63357f8" + "target": [ + "IPY_MODEL_29ca484ee22746279ffcfc006748af4f", + "selected_index" + ] } }, - "334275da8a374bcbbbce07a31d958f50": { + "3120fe66b6c641c8999f76c16fd05756": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "367cecc4875d4d51828437630874643e": { + "313559b38cae4135854a2b3de200c12c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_145e26a3fc634e89868d951ad0980198", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsoccludedposition
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']TrueNone
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey']None['front']
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "31c5d933f8954b53aff4042d7c4a730f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_e6f2b75902004d5098639bfd8ba3ac08", - "IPY_MODEL_7f20856ffda84558a6c94a48ed0fc6a9" + "IPY_MODEL_e06df622bad0467593bac76719fc642d", + "IPY_MODEL_af0286102c30462182a050b7a8c0bbbb" ], - "layout": "IPY_MODEL_bfa6e3c8d0154644a8f1bc866d765bf1" + "layout": "IPY_MODEL_798739cf16154875adef4b46dba55dd7" } }, - "368a2a6be6004437884d525bfd057076": { + "32290a1049df4359aa2e6d349aaf0d37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", + "model_name": "TabModel", "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null + "children": [ + "IPY_MODEL_cf56742867ef4d5cb2f28173c9fa4168", + "IPY_MODEL_f884dfec3bd045bc87a902bca4fa8d96", + "IPY_MODEL_c81abda19be44766b6d17001c7d30786" + ], + "layout": "IPY_MODEL_dc0bd2efcfea491c8d1a7b99e5e4dcfc", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "368c3b76181e4906961fa7dc7bb07a2c": { + "328680272bb24157b11c23de0736351e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "36db4709690a4a58b09ab812a1b6bef6": { + "3569328d5b5b45e5895ce8f96922bb2e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_044a2ad90a4a47e39a1ad93183680ad1", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 occludedpositioncolors
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300TrueNone['red', 'white']
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100None['front']['grey']
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "35f10ad086084cb78952ed7023694d82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "37f890dec4b74ea29127f8542ac20839": { - "model_module": "@jupyter-widgets/controls", + "3636a991e5014af48f5f3ca137b94b7e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "StackModel", - "state": { - "children": [ - "IPY_MODEL_ca3b29d92ed84fa4981a912c3d477e0f", - "IPY_MODEL_ba7b35e2c45b415c9a38f27d891652a4" - ], - "layout": "IPY_MODEL_b7f97c532dbb41a9a36bf60c5777faa1", - "selected_index": 1, - "titles": [ - "", - "" - ] - } + "model_name": "LayoutModel", + "state": {} + }, + "365cbee73bca4ff38996d5779bac0a37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "3831225f13834870bdc2986fceb98b0a": { + "366e3e6b775746aab4f6aa050be6f328": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "38c8a647f223402690ddd1c96b3458e4": { + "37513390d6be4aebb0bb7545a1ff9598": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "37a0193ba43747d881967b4d4f139f37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelModel", "state": { - "layout": "IPY_MODEL_4ac5ea54b9124f75a5c79e2a30e5be4a", - "style": "IPY_MODEL_7663ad6dc4f945f7b59b43d73279675b", - "value": "Booleanize" + "layout": "IPY_MODEL_8e633a49cdf8467b942a120252411aad", + "style": "IPY_MODEL_3ac8828cf7a04b3e8ff04d64ba1fe96b", + "value": "Column format" } }, - "39b59b088087480e94dc4283d123307a": { - "model_module": "@jupyter-widgets/base", + "3906f5764ac7478caf5a4b73b2021870": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "LabelStyleModel", + "state": { + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } }, - "39b9e58e38834ac78607c8516e49de02": { + "3956d24db51943deba0ce144b6077c97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "39f77f38b27446dbb1e54657337c0981": { + "39dcbdb8115840ce9e3f95965e569553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LabelStyleModel", "state": { - "layout": "IPY_MODEL_ff6eeb6ed8834034ad8492f0e299246f", - "style": "IPY_MODEL_6c5e444f692e4bd8a6a8a61b7005e104", - "value": "100%" + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null } }, - "3a7868db39ed4deb846a395330101d05": { + "3ac8828cf7a04b3e8ff04d64ba1fe96b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "LabelStyleModel", "state": { - "children": [ - "IPY_MODEL_a9eb32b5a389487e93301ac1f45eb4df", - "IPY_MODEL_48a9e466b72d47ffb47d01caf7b714fd" - ], - "layout": "IPY_MODEL_fe78a68a9ffa4fd7896390027e528756" + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null } }, - "3b8a36ee2a28484d80ae8b6aac54d711": { + "3b2faecc3312488888d661f7a1a67222": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_7dca6c6ac7254ca7a407be2f9977f934", - "IPY_MODEL_37f890dec4b74ea29127f8542ac20839" + "IPY_MODEL_ee138ef164834f71a83526d9cf8c0214", + "IPY_MODEL_cb4f78a088914791a6986522d7dff3d8" ], - "layout": "IPY_MODEL_dce316837afb4f9093ce18623f87b4d5" + "layout": "IPY_MODEL_b3c04b1c3d1b425c8eb7ce4c2322c1e0" } }, - "3bf5e0470a6e450cb86a49b49c48e5ea": { + "3b3d8ff719c241fc912a4badc6e3307f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_402254e1c87b48b9b2252d347ee02bd7", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3c731beabd89474dae9c9abae8993637": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3c4c4c7d73a84509a9bbf647ccc335d2": { + "3dd65077dba0499d9871617e597bfe1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3c7364babf564f4b90e46afa2db9f237": { + "3de5fb5e537e4464910b83b9f70cbeb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3ca05d96a44243f192f4cd96e037bd65": { + "3dfec66068294143a42c6e3cd6b72cdb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LinkModel", + "model_name": "VBoxModel", "state": { - "source": [ - "IPY_MODEL_d3e685051a8049a0bb805111c553034b", - "index" + "children": [ + "IPY_MODEL_4da150598add4f9e8651fcb8fd2c4472", + "IPY_MODEL_29ca484ee22746279ffcfc006748af4f" ], - "target": [ - "IPY_MODEL_f73b8bed0af648f9b15a279652f50227", - "selected_index" - ] + "layout": "IPY_MODEL_8822b69810d94d55a7acc4945e8883eb" } }, - "3ccc50a1a4554d36bfc87f7b8fc78fbd": { + "3eebded23c294df292b6040926030e6c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3d470d1ee1694e5581cbfa144a24d2af": { - "model_module": "@jupyter-widgets/controls", + "3f107f60d6f04c2ca132a3a706dd3f71": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } + "model_name": "LayoutModel", + "state": {} }, - "3da4dc6d1f4b467b9c44bfed80270eae": { + "3fb208d78fa040b19ed102b592e800a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3e583336929d4789b15cb056a9e97c8c": { - "model_module": "@jupyter-widgets/controls", + "3ff7356c378943f59b98953f615ad698": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_06d5df245e064116bafb80d1d0ed2eb6", - "IPY_MODEL_8fd2dc5254fc491bbeed776618fbf44d" - ], - "layout": "IPY_MODEL_e8e291ed9b0a4bbbaa98b8a80ced2a01" - } - }, - "3eea33de3c3e4184b12a9eebd2800eb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsModel", - "state": { - "_options_labels": [ - "yes ", - "no " - ], - "button_style": "", - "icons": [ - "check", - "times" - ], - "index": 1, - "layout": "IPY_MODEL_21a9dd5c63824583a0f18b54c0b4dda8", - "style": "IPY_MODEL_21b88b13e9e74f1ea17dc3f3b3438be2", - "tooltips": [] - } + "model_name": "LayoutModel", + "state": {} }, - "3f321faf0de3434585a47c7485781ddf": { + "402254e1c87b48b9b2252d347ee02bd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3f394af74daa4fd3bcb3fc1c2da9d662": { + "43b785aef6924f34ac1bd67fbe1f7e09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "3fa81b77b59c4632af9d460a8be5cbaa": { + "440d72fc712f49c897105769f32774e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "" + "children": [ + "IPY_MODEL_889d8446b7ed46429efab77aff6a15c3", + "IPY_MODEL_c2c3cf802edd41a586577f22c2b92493" + ], + "layout": "IPY_MODEL_11a76d67a9a843549682dc5d908560d4" } }, - "3fd73a1aa1394ef980d95c641f73654b": { - "model_module": "@jupyter-widgets/base", + "44654d0ed134442c8cb2a2c55dea9d1a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4075c27f828741dd9e89089f7d2b7ddd": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "model_name": "LabelStyleModel", "state": { - "layout": "IPY_MODEL_acac39f6b0d14adba2cfa0d1a956958d", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 jobcolors
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['police']['red', 'white']
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100None['grey']
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null } }, - "4158c6e0f0bd416b941ab1443cbbf837": { + "4762ac4e0b38453bac382664c5754342": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3f394af74daa4fd3bcb3fc1c2da9d662", + "layout": "IPY_MODEL_b7a67e0091634d37820e74f0e3e21a37", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0ff6ef25b14445d4896e6e470d76ce2e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.occludedattributes.positionattributes.colors.greyattributes.colors.redattributes.colors.white
id
2697916091stop sign13100.22117.54253.43274.946726.4303TrueNoneFalseTrueTrue
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n\n box_height area attributes.occluded attributes.position \\\nid \n269791 274.9 46726.4303 True None \n\n attributes.colors.grey attributes.colors.red attributes.colors.white \nid \n269791 False True True " }, "metadata": {}, "output_type": "display_data" @@ -1694,64 +1629,46 @@ ] } }, - "4257d4ce65ea479e961126ccd1f2fe18": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "47930ec638f54567a0ed33f04d324e45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DropdownModel", "state": { - "layout": "IPY_MODEL_95aa70d1930b4cd1af18c1c5468ab764", - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "fd9fa9b20f264e76a69685a0b80b5f50", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "_options_labels": [ + "raw", + "nested" + ], + "index": 1, + "layout": "IPY_MODEL_72dbacdbee9043529f66fa8367932666", + "style": "IPY_MODEL_8dda3ab2336c4c59ae313e45fb051397" } }, - "4338ece490314e2cb34107ab22460d8d": { + "488d114f47ff4db7ba3777dec50d5144": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "LinkModel", "state": { - "children": [ - "IPY_MODEL_e78a13034b6e436d9fdce600c236468a", - "IPY_MODEL_4257d4ce65ea479e961126ccd1f2fe18", - "IPY_MODEL_f4e007fc83044dc8a4c4b1223e2eebbf" + "source": [ + "IPY_MODEL_dd669ba9d0ba4e3c806d26bea3485d44", + "index" ], - "layout": "IPY_MODEL_cf54d782dd024806a69f564ace26aaf7", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" + "target": [ + "IPY_MODEL_55d4dc2c795c4d9e99362036099bdc51", + "selected_index" ] } }, - "43749d59f28e483c96d433258e9c7744": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "43a676678c3c43af8776b32d3d03b995": { + "48b429e7cc0d4a3ca927246fbd7acea3": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_5d4dc4f9ffce4abdad9f1e8117963f01", + "layout": "IPY_MODEL_ef60d87bb03c4bf8b0f2bde22ca3317a", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 occludedpositioncolors
 greyredwhite
id             
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300TrueNoneFalseTrueTrue
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -1759,115 +1676,76 @@ ] } }, - "43a966ee67834d61909f3f7ddf7fc827": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4434795ffe6e43caa017965c31da4162": { + "4914780c4fe5495fb27f1b38579ff8ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "VBoxModel", "state": { - "layout": "IPY_MODEL_b8645807457946fbb899002cf48564b8", - "style": "IPY_MODEL_b966c111a56b47998b255d81cd8bd75b", - "value": "Booleanize" + "children": [ + "IPY_MODEL_65758f2107654a61a3902f456172b7d4", + "IPY_MODEL_c1a01f3f06c5430990a0a952b463cdbc" + ], + "layout": "IPY_MODEL_796db41d62814867975e3dfec24c9caa" } }, - "45befa17b8d34198b6bc85c3c76ec316": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "45d1800f668e4ed9a3609d3e2dfe267b": { + "494e3daedd2c49c7a89a366838a412cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "462506374d444c44856848b74ed4dc46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "StackModel", - "state": { - "children": [ - "IPY_MODEL_093a56d92eb240c5bf5a85efa12f8c36", - "IPY_MODEL_1e0baf4e93784bb9b6a3959ece03961c" - ], - "layout": "IPY_MODEL_b176a70599544113b1fccd2411bb5643", - "selected_index": 1, - "titles": [ - "", - "" - ] - } - }, - "465c52c33d2948c3be255f7d9672373b": { + "4a0477f4a50e424eb4d56efebb80befd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_19e462a0d377449cabb8182a67bef4b4", - "IPY_MODEL_8150e92f60b44908ab386b6fb7d2a512" + "IPY_MODEL_56b287052e064cc2b32503accbc1fe78", + "IPY_MODEL_fd9426f4ee7a422fb3b1832e4d6e622c" ], - "layout": "IPY_MODEL_ac388d0a744d457badd2f20afd48009e", - "selected_index": 1, - "titles": [ - "", - "" - ] + "layout": "IPY_MODEL_87d79ce0899744878c8043ac0b66a37a" } }, - "4672297221bf40cbaf8208fa48b11720": { + "4a537b146130437b9e950e13376a588b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "471a424aa7ae457fa953e06b84d8c738": { + "4b323e7106dd4d4ab82b4ffeda837e0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "4746fe751c6b41ab8efbc2e46e07eca6": { + "4b809dfc0ece43fc960f4766317ecddc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "4851d84bd1a045ae8a98286271d3cd41": { + "4ce7c5bb4eda41e98a1538fcbaeebcc6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "4861ea532d734ddc945c64878bceb481": { - "model_module": "@jupyter-widgets/controls", + "4d2a9e7349834459bb5412a1049e828d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_96cc77db99324f5eba57b2faf5044719", - "IPY_MODEL_b95c3eef5065475e9059b05042a9b758", - "IPY_MODEL_1c65f4021a3b401484770ef291c382d3" - ], - "layout": "IPY_MODEL_9d1e1606e8cb45138ccf4f21983b060d" - } + "model_name": "LayoutModel", + "state": {} }, - "48a9e466b72d47ffb47d01caf7b714fd": { + "4d56a1f5de8141cebb5778cbfe5dbb56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_4b24d57d3e6449bbb694f853593e5b16", - "IPY_MODEL_d3a486cd1a444ce297c04754d3229f07" + "IPY_MODEL_4762ac4e0b38453bac382664c5754342", + "IPY_MODEL_48b429e7cc0d4a3ca927246fbd7acea3" ], - "layout": "IPY_MODEL_847a6bfc69884c2188820ecb780da6e3", + "layout": "IPY_MODEL_fdbd43dcdbfd43a3b3dc9d1c796e6ae1", "selected_index": 1, "titles": [ "", @@ -1875,85 +1753,47 @@ ] } }, - "49ba3f4dcf604acab1b120ecf5780aff": { + "4d8e462989174cc5a88c2196b63c919a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "49c8c09615b24f3183dcb8eace1c8b6f": { + "4da150598add4f9e8651fcb8fd2c4472": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "HBoxModel", "state": { - "_options_labels": [ - "raw", - "nested" + "children": [ + "IPY_MODEL_0c5008e01da84903b006af8c83a247fb", + "IPY_MODEL_b78fe149407541fa9bef3efc3ceeaefe" ], - "index": 1, - "layout": "IPY_MODEL_aac207e0866148cd9ea18309fb7b3dab", - "style": "IPY_MODEL_c2537b897c9e44d187bb00f3f90cca5d" + "layout": "IPY_MODEL_2deb4121525045ac9f899956f4dfdc65" } }, - "4ac5ea54b9124f75a5c79e2a30e5be4a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4b1f96a5ffb14ae98d02cc1b113478cc": { - "model_module": "@jupyter-widgets/base", + "4e0b88374085483fba27a49a3e23f4b4": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4b24d57d3e6449bbb694f853593e5b16": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "model_name": "LabelModel", "state": { - "layout": "IPY_MODEL_aa0fa18c5b024eb3b2e57136256aaecb", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_ab87dc80cdf74ddca7c3445cd3eddcdb", + "style": "IPY_MODEL_3906f5764ac7478caf5a4b73b2021870", + "value": "Column format" } }, - "4b9315e0d8614c3d9fb0b20bdd49773d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4c28d96cb5cf4332bed6dad63659b8bd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4c67d2645735491392cdd393588ddd76": { + "4e3ddb0c052f47e2bcf37aaa0327f337": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { - "layout": "IPY_MODEL_a33b60b688f444c88cbb989f8c7e19a8", - "style": "IPY_MODEL_e71ee6ccc60745ecbcd3865fd5522de4", - "value": " 2/2 [00:00<00:00, 223.37it/s]" + "children": [ + "IPY_MODEL_2db262d862524e9081733f58f7389ef0", + "IPY_MODEL_102523b7282d445cbf63ed9a47263f26" + ], + "layout": "IPY_MODEL_73271936f6694793ba2a2f2e1c7762f6" } }, - "4cef32a489a646ab862a0068911245ae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4d14944e30204271b8982300371d62bf": { + "4eca588b26b34484a755770e8e4f4b3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelStyleModel", @@ -1968,66 +1808,84 @@ "text_decoration": null } }, - "4f68a89efccb4589a58694b80c45ecd3": { + "52196ce8655c420ab7f52efd6794b35c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "503fde465433400088b5b1ba849a8363": { + "522a37f3df3e45a1b26e6e4d73c51b69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "510e43b152b64e628289d7e5ed425402": { + "52b11275f6e24f92ac3d516ca5affdee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "StackModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_72ebd322351749e4abdf23eb45146d15", + "IPY_MODEL_d07a1873d05347359a4223c937a2f5e0" + ], + "layout": "IPY_MODEL_65fc05dea6ee47fc85cc7f420003d5d0", + "selected_index": 0, + "titles": [ + "", + "" + ] } }, - "5157b0d87bf841909fc20e6fe4d347a3": { + "52caaaf04d4148948a85a259028fae48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", + "model_name": "ToggleButtonsStyleModel", "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null + "button_width": "auto", + "description_width": "" } }, - "5158dc70026a4294a71f01d2e154a9fc": { + "53294cfcbe594fe0ab0a6420ef2433ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "51739dddb7eb4f0fa2722a51018b206a": { + "54b48c65cdd644cb883ff63fb7c18891": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "51c0c1c889f04158839d9738571b8ede": { + "55d4dc2c795c4d9e99362036099bdc51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "StackModel", + "state": { + "children": [ + "IPY_MODEL_9dd3429f559347fca8b29aec8efce173", + "IPY_MODEL_5b5a977c3e7340408c56d3b5b6c05a47" + ], + "layout": "IPY_MODEL_795e3f3f605e40fe86b4b6f3772e57fc", + "selected_index": 1, + "titles": [ + "", + "" + ] + } + }, + "56067d92495a46f9a35344237244ee32": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_f2f462a605ea4c719be284c6f432ce59", + "layout": "IPY_MODEL_69e5bb23ff334f958ee278e899dfcc6a", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.occludedattributes.colors.beige...attributes.colors.pinkattributes.colors.purpleattributes.colors.redattributes.colors.whiteattributes.colors.yellowattributes.position.backattributes.position.frontattributes.position.sideattributes.position.topattributes.position.unknown
id
2697916091stop sign13100.22117.54253.43274.9046726.4303TrueFalse...FalseFalseTrueTrueFalseFalseFalseFalseFalseFalse
116123410395teddy bear8849.1966.20378.97379.6884587.4391NoneFalse...FalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
\n

2 rows × 27 columns

\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.occluded attributes.colors.beige \\\nid \n269791 274.90 46726.4303 True False \n1161234 379.68 84587.4391 None False \n\n ... attributes.colors.pink attributes.colors.purple \\\nid ... \n269791 ... False False \n1161234 ... False False \n\n attributes.colors.red attributes.colors.white \\\nid \n269791 True True \n1161234 False False \n\n attributes.colors.yellow attributes.position.back \\\nid \n269791 False False \n1161234 False False \n\n attributes.position.front attributes.position.side \\\nid \n269791 False False \n1161234 True False \n\n attributes.position.top attributes.position.unknown \nid \n269791 False False \n1161234 False False \n\n[2 rows x 27 columns]" }, "metadata": {}, "output_type": "display_data" @@ -2035,89 +1893,99 @@ ] } }, - "522abf073cc24e96be29b07456d678c0": { + "56b287052e064cc2b32503accbc1fe78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_4914780c4fe5495fb27f1b38579ff8ec", + "IPY_MODEL_0a7f0728bb6145bcbad272e98ecd4097" + ], + "layout": "IPY_MODEL_3de5fb5e537e4464910b83b9f70cbeb1" + } + }, + "56e0d55f302b4868be2407a163d8ad11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5251143b52974036ab355ee7cacdf55d": { + "572fd8564f3d45abb37abb6835dcd4d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "52f0c44c873943e989db8b4dffe84ca1": { + "58532dace9bd41d7b8ea0536cc948316": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "LinkModel", "state": { - "children": [ - "IPY_MODEL_ead8e2a950284944ba78c30f0a64d593", - "IPY_MODEL_ae242a0a739048a784ba17b197941a5d" + "source": [ + "IPY_MODEL_923d138e7b874eb899f6377c01b482cf", + "index" ], - "layout": "IPY_MODEL_ac616466b17a48f1be2dab241d09aaaa" + "target": [ + "IPY_MODEL_cdeb3d59836e478b8a559f9128b1445b", + "selected_index" + ] } }, - "53c24dd8211f40899e5fa4f1b3645c71": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5444e177e4b64b3d960c8eb8b997a11c": { + "58aa8aa6857b44ecbc8cef273fd83aa3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5482c989571e41a0a4d9b012fecaac55": { + "58ed066bb320479fbf51ee80df239290": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "54c6a81a6e0245ee9ffd87107c2061c1": { + "59904e29a9e649f2a2502048835b64b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "550a0431017642538ef5d674b395b710": { + "59ab8d81df9143d7b865c1be3d671969": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "DescriptionStyleModel", "state": { - "layout": "IPY_MODEL_7077e2077d874fe89f732530b7319909", - "style": "IPY_MODEL_4d14944e30204271b8982300371d62bf", - "value": "Column format" + "description_width": "" } }, - "550c13d08bcd4a42bb9187e8a9a2079b": { + "59ba8fbcde9440539a5e3411e18ae8eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5516f4db51814e0a9efc4acf48419c63": { + "5a04d53a970d42a6827ff5dcf8c15b0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "LinkModel", "state": { - "children": [ - "IPY_MODEL_07f8d3c3c18c47c59a892247b5651124", - "IPY_MODEL_a8c9d7a83c8f4554b40d37fe4f6a3d6d" + "source": [ + "IPY_MODEL_e347e872a797477f98db0b528c9e9b10", + "index" ], - "layout": "IPY_MODEL_8acae534a7c94fbba1b51c284bf46617" + "target": [ + "IPY_MODEL_deeecc5324c34e6187847840b98059b3", + "selected_index" + ] } }, - "563d06068bbd4354bff2da022003b747": { + "5a903c092fee41ffa06bc163ebc2b7be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "576e534969ee474abbd43a14366cbcac": { + "5aa34ed1735e4cb9ab5fbc95fcee99e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", @@ -2125,35 +1993,33 @@ "description_width": "" } }, - "5a0bb661dfe74bd78d608a11e6a3dfde": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "5ad9a7f264b94c32b59cc6756b11fedc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "5adc1bd1797645c59defe71c9df3d1a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelModel", "state": { - "layout": "IPY_MODEL_a57cc8f2031b4ff7ac5264dae4185143", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']['police']
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey'][]
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_fc33fd2a506e4e6d829c79ae58dfe23d", + "style": "IPY_MODEL_d970346f2e2d45f6ac109e3e1a3918fd", + "value": "Column format" } }, - "5a51be3ccfd64837b1d04f54b6251a54": { + "5b5a977c3e7340408c56d3b5b6c05a47": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_1c4a75b300d946949af14de954a372f5", + "layout": "IPY_MODEL_35f10ad086084cb78952ed7023694d82", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 jobcolors
 greyredwhite
id            
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['police']FalseTrueTrue
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100NoneTrueFalseFalse
\n", - "text/plain": "" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -2161,44 +2027,66 @@ ] } }, - "5b59d92be4014ee7899b345bec85026b": { + "5b6f2bbec5824a9698f472486d3a97a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_c98cbef3ee0b466bba3a73d0d8ef935d", + "style": "IPY_MODEL_079694d0f5b04ec189a75713d98155a9", + "value": " 2/2 [00:00<00:00, 382.99it/s]" } }, - "5bc8f8c2ad174b989c528c06010e714e": { + "5c0fabf6029042b0b293d773e38622ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelModel", + "state": { + "layout": "IPY_MODEL_cbd9eb66c67b4f25b25caab91df746f5", + "style": "IPY_MODEL_71fbb26f964d47ecb71ef630ea360e49", + "value": "Column format" + } + }, + "5c1b3162ea0d493999b2d8539d3d1821": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5be401bed3744c9ab88b873c0d9e7b31": { + "5cd6ae3de06c45fb81dd4900616a17a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5d0bcd38dce44cf9849cce41b0bade17": { + "5dbd083e256544a6945f8720ab41c957": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_feab1e2d2666460fa0df8c809844a423", + "IPY_MODEL_dd669ba9d0ba4e3c806d26bea3485d44" + ], + "layout": "IPY_MODEL_d690466646f94a33b3dc7fb8f508ec66" + } + }, + "5e131e8ce8334b1396bd1a7440f2459a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ - "IPY_MODEL_d8f01a0665d142f980214ff0509a664d", + "IPY_MODEL_fb957c147d4e429d9027e53951e92250", "index" ], "target": [ - "IPY_MODEL_00105760164c49b08951734e94d401c8", + "IPY_MODEL_d987b7e53bf840669b376bbab1963d74", "selected_index" ] } }, - "5d4523028b1d4d0bba9854d36c472ae4": { + "5f758d422b50487cb47a020068151174": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2208,44 +2096,23 @@ "text_color": null } }, - "5d4dc4f9ffce4abdad9f1e8117963f01": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5edf9acfdcdc400bbb04105993e0a371": { + "60bf19bf6fee4b15a2bcdbd7ec71cbed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5f1148a6ad664667aac5f95283297181": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LinkModel", - "state": { - "source": [ - "IPY_MODEL_78a7b1c849fc4437a221a0a375aa2de1", - "index" - ], - "target": [ - "IPY_MODEL_5fcce537f996481ebe673bc94085e411", - "selected_index" - ] - } - }, - "5f6707f488274bcb9686c19b3f6ac783": { + "6153bef92ca54839b59398271767d897": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_0e79bb2e760f4b718d5fe7c2a920c87a", + "layout": "IPY_MODEL_28fda02590c845be8ee2d3c502bc8172", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsoccludedposition
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']TrueNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -2253,108 +2120,71 @@ ] } }, - "5f7d0fe9ecce4208922c568519e73024": { + "61560e9c09294f52b449ef2dcdcbc297": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "children": [ - "IPY_MODEL_7dbcd32800914fb1ab72354376c707f0", - "IPY_MODEL_d3e685051a8049a0bb805111c553034b" - ], - "layout": "IPY_MODEL_5fc5106bae384a6e8a4bca68ef8289c2" + "description_width": "" } }, - "5fc5106bae384a6e8a4bca68ef8289c2": { + "61c444dae0084bbf950d2a0adb991c29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "5fcce537f996481ebe673bc94085e411": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "StackModel", - "state": { - "children": [ - "IPY_MODEL_1c06226e0ffb4cf0bce739ddc2e9c562", - "IPY_MODEL_8dec6aea8ce74efc96d38909d91abdc8" - ], - "layout": "IPY_MODEL_31045c1a58de4f3db7fc7fb09b083776", - "selected_index": 1, - "titles": [ - "", - "" - ] - } - }, - "60fb081928d34f25b1131fac221a5c83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_726de51818694d1ea31e043482c108b8", - "style": "IPY_MODEL_a0355fa8585b4f0190cac4831149d981", - "value": "

Dataset object containing 2 images and 1 object\nName :\n\tsmall_v5_dataset\nImages root :\n\t../../test_libia/test_data/caipy_dataset/tags/small_v5_dataset/Images

" - } - }, - "6307b906b1d84813a1d315b1841b0f44": { + "6215f6c6670e436487ed7db7f64059aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "63d3103578f143eda9ef744c4199b33a": { + "62fa72d6da0c4eaa84f200d0265e9871": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "63e357efab664a24ac49e586820a05d8": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "63434e54f72b4d478275f662b7a2f403": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsStyleModel", "state": { - "layout": "IPY_MODEL_53c24dd8211f40899e5fa4f1b3645c71", - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7ed9c2e4243247bc9ff4eaffa03852c1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "button_width": "auto", + "description_width": "" } }, - "6457415728be4cbe9f264af3403ab3bc": { - "model_module": "@jupyter-widgets/base", + "635d9581ce684895b10ec2b44954279e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_a6dce1904a264b9e8d28d36265089c1b", + "IPY_MODEL_7ed1066d913d402da5083e216288a2a6", + "IPY_MODEL_5b6f2bbec5824a9698f472486d3a97a6" + ], + "layout": "IPY_MODEL_f9825da51cb24214990da926e57c1d68" + } }, - "64f63783a7d14fdc8cdeefdef6eb6fb4": { + "65594b2a209644f8b884980ee3730f00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "665995a2d44b4e2698e6fb69c100f814": { + "65691a44438b4c39b6842afd8e53726d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_cb303aee35014106aacdd30b2be230e2", + "layout": "IPY_MODEL_2b58e27357ea44cc9a8d0f358eff8595", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", + "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" }, "metadata": {}, "output_type": "display_data" @@ -2362,93 +2192,109 @@ ] } }, - "665c4c436bb342529bf01e32c99b0e55": { + "65758f2107654a61a3902f456172b7d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 1, - "layout": "IPY_MODEL_90119ebe56344d329c2cc79577b01e56", - "style": "IPY_MODEL_7118b2f2036e455689712151df7a4607" - } - }, - "680b7700c0a14cf5a7389052d79a3a2c": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "model_name": "LabelModel", "state": { - "layout": "IPY_MODEL_2fba735419bb4cf3909d16d20de8fbb2", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.jobattributes.colors.greyattributes.colors.redattributes.colors.white
id
2697916091stop sign13100.22117.54253.43274.946726.4303[police]FalseTrueTrue
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n\n box_height area attributes.job attributes.colors.grey \\\nid \n269791 274.9 46726.4303 [police] False \n\n attributes.colors.red attributes.colors.white \nid \n269791 True True " - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "layout": "IPY_MODEL_827d49b4f3884509a3fbb116e67637cc", + "style": "IPY_MODEL_16eb61e6db014bdba0d48020e66326b9", + "value": "Booleanize" } }, - "689259b83518429d87318e8e270efd7d": { + "65a5faa19f9c4cd7bfee8a1464f19f14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_d0f929ee62db41ada3651887ceebac75", + "IPY_MODEL_37a0193ba43747d881967b4d4f139f37" + ], + "layout": "IPY_MODEL_d66ae40cf9f44c24897fe1a418dd0709" } }, - "69f94f9aa444432999a81465b9bd6797": { + "65fc05dea6ee47fc85cc7f420003d5d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6aff1ed1e96a4861a2e091eec3efa902": { + "66a6d3f36d784b429aa5476630e98ed3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6b1bee49d1234b63922fad37788da759": { + "66aac255cb3541c69325762b998ddc61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_6ce64b7c16884a30a9c198de6a278d67", + "IPY_MODEL_d987b7e53bf840669b376bbab1963d74" + ], + "layout": "IPY_MODEL_60bf19bf6fee4b15a2bcdbd7ec71cbed" + } + }, + "673b8366c7e3460ea1b672d1039114d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "674d852cc82d4c5ca8a02da41332c174": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", - "state": {} + "state": { + "width": "auto" + } }, - "6b2f5db15cdd45bc85682ece22517214": { + "6771dbe5b2774326814610ae2c25a0a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6c5e444f692e4bd8a6a8a61b7005e104": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "67b7dffa43d24e3fa873c1fb6b8bf33e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_fb510227fc524e5488c806a700275f83", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "6c637b5c6c94449c947140316ced66ae": { + "681b555d2441409dac189b582c8d7dfa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "68321eff63524a33a6c5b9dc5e228532": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_bc7a3894428247cfa807c1826acf9ea4", + "layout": "IPY_MODEL_99a46f1bcfc14a20a5ed3f96ac17e358", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.occludedattributes.positionattributes.colors
id
2697916091stop sign13100.22117.54253.43274.9046726.4303TrueNone[red, white]
116123410395teddy bear8849.1966.20378.97379.6884587.4391None[front][grey]
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.occluded attributes.position \\\nid \n269791 274.90 46726.4303 True None \n1161234 379.68 84587.4391 None [front] \n\n attributes.colors \nid \n269791 [red, white] \n1161234 [grey] " }, "metadata": {}, "output_type": "display_data" @@ -2456,59 +2302,79 @@ ] } }, - "6c8a181f12d442fa997a6c9d13026986": { + "6879017d1b644362a0ba47c838da11fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6d45873f50554e75b88d5efbee559578": { + "693badef374d48b9bfef1391fb66ea1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LinkModel", + "state": { + "source": [ + "IPY_MODEL_c3da77f01f404b4baefb7ec9680bd8aa", + "index" + ], + "target": [ + "IPY_MODEL_803eb4c70f044fceb74d50e9874e7fcf", + "selected_index" + ] + } + }, + "694b6c1a682f407ca429991612687a97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6d557186ad59433bb7515e22c2a8e4b0": { + "69e5bb23ff334f958ee278e899dfcc6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6d737b11bdab4f2284ef47fb6c3ea903": { + "6a810947168f446aa61d3c9da73d64e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "children": [ - "IPY_MODEL_28a867a6d756479dbf8da105e0fe6ee6", - "IPY_MODEL_3230e659e66b4dee825e5917333d7b31" - ], - "layout": "IPY_MODEL_3fd73a1aa1394ef980d95c641f73654b" + "description_width": "" } }, - "6d7e2210e3914d59b21b33fac96cdc25": { - "model_module": "@jupyter-widgets/base", + "6a94fe441fdd4ff190357dc4b0a452a2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "LinkModel", + "state": { + "source": [ + "IPY_MODEL_b2d1a9afb0aa4f02be240e3a609370e9", + "index" + ], + "target": [ + "IPY_MODEL_db851fd0b6704e5789bcfc7a11c62a4e", + "selected_index" + ] + } }, - "6e5c8485f56a4d25a004ceffab205073": { + "6aee0ca6f8e945fca134e5698247e9c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "6ed5fe2fdb2e4fceaff09625f94c4f7c": { + "6bf3c13b22234a53b23f18b622e77edc": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_2172561c2a6846bca782dec44ed6eedc", + "layout": "IPY_MODEL_239e1312b0e5477db524269078b9f371", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']['police']
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey']None
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.occludedattributes.position
id
2697916091stop sign13100.22117.54253.43274.946726.4303[red, white]TrueNone
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n\n box_height area attributes.colors attributes.occluded \\\nid \n269791 274.9 46726.4303 [red, white] True \n\n attributes.position \nid \n269791 None " }, "metadata": {}, "output_type": "display_data" @@ -2516,53 +2382,75 @@ ] } }, - "6f6995a077d34855bd4a4c96993b73a4": { + "6ce64b7c16884a30a9c198de6a278d67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_550a0431017642538ef5d674b395b710", - "IPY_MODEL_b559e3280e504adaa50fd0003dfeee3d" + "IPY_MODEL_808a83d11d2149058baea8c0a7852240", + "IPY_MODEL_fb957c147d4e429d9027e53951e92250" ], - "layout": "IPY_MODEL_6d45873f50554e75b88d5efbee559578" + "layout": "IPY_MODEL_65594b2a209644f8b884980ee3730f00" } }, - "6fbb38f2a05a459b8dd519be02faadc6": { - "model_module": "@jupyter-widgets/base", + "6d0700b2814c45f4a87998bc267a297f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_53294cfcbe594fe0ab0a6420ef2433ec", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.occludedattributes.position
id
2697916091stop sign13100.22117.54253.43274.946726.4303[red, white]TrueNone
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n\n box_height area attributes.colors attributes.occluded \\\nid \n269791 274.9 46726.4303 [red, white] True \n\n attributes.position \nid \n269791 None " + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6d8dbc0984b34120b6585dfded6f31a6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "LabelModel", + "state": { + "layout": "IPY_MODEL_365cbee73bca4ff38996d5779bac0a37", + "style": "IPY_MODEL_fa78d33a09154ea9a6bdcd1cbf61509f", + "value": "Booleanize" + } }, - "7077e2077d874fe89f732530b7319909": { + "6dbd3b12a86c4b75a8925424557c5507": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7118b2f2036e455689712151df7a4607": { + "6ea0b2f306fa4e78bfede1968aca8d1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "" + "children": [ + "IPY_MODEL_a82bb9407c1d44b3be7f7c4085d1aaa0", + "IPY_MODEL_b2d1a9afb0aa4f02be240e3a609370e9" + ], + "layout": "IPY_MODEL_1ddb2f919dcd42fa88940ff33eda3108" } }, - "711df07dfcab4e0592fdd9c39c99e4fc": { + "6f54174ed9bb434a92e6a72f3d2a895f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_db231ae4be514d21a74f85d3770f6926", + "layout": "IPY_MODEL_328680272bb24157b11c23de0736351e", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3a7868db39ed4deb846a395330101d05", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -2570,17 +2458,79 @@ ] } }, - "7164a3fb294d4ad1982dad976f11d8b2": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_dc64aef805da40d8a307d06d73dce679", + "702d869bb364435e93b918e02477e2e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "StackModel", + "state": { + "children": [ + "IPY_MODEL_1985296dc9dd47639744d50332140aa0", + "IPY_MODEL_0fad252a59174bc191d0d3becb8d21ca" + ], + "layout": "IPY_MODEL_1cc7eb4fbda84aa799d8a544f92cb3a8", + "selected_index": 1, + "titles": [ + "", + "" + ] + } + }, + "7065c84494d34862879528d6b7e07b55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "70e639ac362a45808491f61f3ceb2f13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_78c6c223b4bc46ef9f1538c4d2ad0f62", + "IPY_MODEL_803eb4c70f044fceb74d50e9874e7fcf" + ], + "layout": "IPY_MODEL_a41b0849c5f741a89189c7c2858139d4" + } + }, + "7106502757ba49a7b15fc2215134d50d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "71fbb26f964d47ecb71ef630ea360e49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelStyleModel", + "state": { + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } + }, + "72164298c7db4cb5b4379825c9ea4a04": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_8efdd7707ac148fdad92e2f82d28e78d", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "application/vnd.jupyter.widget-view+json": { + "model_id": "9c1f2df97e1149ff917c2e81bbcf58e4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" }, "metadata": {}, "output_type": "display_data" @@ -2588,62 +2538,99 @@ ] } }, - "71ca3af25f7841b198d6e39e710d72a7": { - "model_module": "@jupyter-widgets/base", + "724c5af4f03d406083910e7e6eb68058": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "StackModel", + "state": { + "children": [ + "IPY_MODEL_96192a27d28045979be75f229e330b0f", + "IPY_MODEL_d1fb5971edbd4f8a8cf64e5bd128d9ff" + ], + "layout": "IPY_MODEL_eb736cae76ff48348003d507fbe34373", + "selected_index": 1, + "titles": [ + "", + "" + ] + } }, - "71e265ccab664fe9b9ef55e3231b9f7e": { + "728691b5e3924e6ab7592ff01ba4ffb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7246812156874e25b5294e3771f9d2dc": { + "72d2668cd58440c0ad10f4c174028c08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "726de51818694d1ea31e043482c108b8": { + "72dbacdbee9043529f66fa8367932666": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "727aed3667e64759ae90299a047ae617": { + "72ebd322351749e4abdf23eb45146d15": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_a6f019cda169466085b2fd3f6b887dff", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.occludedattributes.colorsattributes.position
id
2697916091stop sign13100.22117.54253.43274.9046726.4303True[red, white][]
116123410395teddy bear8849.1966.20378.97379.6884587.4391None[grey][front]
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.occluded attributes.colors \\\nid \n269791 274.90 46726.4303 True [red, white] \n1161234 379.68 84587.4391 None [grey] \n\n attributes.position \nid \n269791 [] \n1161234 [front] " + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "73271936f6694793ba2a2f2e1c7762f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "72eef781e0654765ae3936703a0b3a97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelModel", - "state": { - "layout": "IPY_MODEL_da0d0cb76541403384776a4502467c08", - "style": "IPY_MODEL_cc78d96e04854349b11c5234e852f6da", - "value": "Booleanize" - } - }, - "7616070338b24855853cc7e4b73e8eff": { + "745ae94c06f842959d506ad0c3578822": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ - "IPY_MODEL_8b25e9549910415da84db6b3adddc1e1", + "IPY_MODEL_a5d70caa283f45748c08722784ef486f", "index" ], "target": [ - "IPY_MODEL_19e462a0d377449cabb8182a67bef4b4", + "IPY_MODEL_fa36a7b34d3240338a38f0137ba893ca", "selected_index" ] } }, - "7663ad6dc4f945f7b59b43d73279675b": { + "754358b619bd42a884f1605607095f26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "757e6a8fc71745a2948e612116b529a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_2ee35f68a8af4d709ae4223d5675421e", + "IPY_MODEL_c18597934a0a477592c816ac8d5b4541" + ], + "layout": "IPY_MODEL_08f673c3556346ca822060a9d59e36d4" + } + }, + "758094d7b8724e5d8b16a73e9235c50c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelStyleModel", @@ -2658,135 +2645,176 @@ "text_decoration": null } }, - "77472ab7c8c0493cab67207973b0f79b": { - "model_module": "@jupyter-widgets/controls", + "75f6495bf6ff40c9b156e28cee6705e8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_3f107f60d6f04c2ca132a3a706dd3f71", + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3b2faecc3312488888d661f7a1a67222", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "763a8357aa054c3386f7718204835d9e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "LayoutModel", + "state": {} + }, + "772df3f2bce7450cb761e2d8ba607c03": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_fc8042ff984444a982b2e8675b5a37b6", - "style": "IPY_MODEL_d0eb5159b5714eb5ac73be47f210dee9", - "value": "Booleanize" + "layout": "IPY_MODEL_0725df56238a46e2b88c90e0ec39021b", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsoccludedposition
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']TrueNone
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey']None['front']
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "7760213cceaf4823ac275ff8472c91ab": { + "77aaa7b1357e4d348e418146d2f12cf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "children": [ - "IPY_MODEL_39f77f38b27446dbb1e54657337c0981", - "IPY_MODEL_80642f77801c44558ed6e0e348cead3f", - "IPY_MODEL_81b2068437a24e3786b2effe27317fc8" - ], - "layout": "IPY_MODEL_f7e8bfbe60a942b2a00b94464a416211" + "description_width": "", + "font_size": null, + "text_color": null } }, - "78a7b1c849fc4437a221a0a375aa2de1": { - "model_module": "@jupyter-widgets/controls", + "77e5eed83afa4c36b4ec9062bd28a3e3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "LayoutModel", + "state": {} + }, + "77ffd6e2f1bc4c2ca26ed7b15e9136f6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 1, - "layout": "IPY_MODEL_dba7513f7a7942738daecbd3f1990edf", - "style": "IPY_MODEL_e87f911d52a24f639a6acc54c921faba" + "layout": "IPY_MODEL_56e0d55f302b4868be2407a163d8ad11", + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "70e639ac362a45808491f61f3ceb2f13", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "78c759f31dc74dd4ae5cd78d7d8204eb": { + "78a3da09b7c5421295cf78d33102e6b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "78a4dc79253e41e690dca6416708a326": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_a39ce88aa0d5426192ff29aad4eac249", - "IPY_MODEL_ca7c76f4872f49e3b487add5d0241be2" + "IPY_MODEL_8d0530607bb44b5eaf837a87ca8e631d", + "IPY_MODEL_d9b22d9f66474a3389db173d5266b947" ], - "layout": "IPY_MODEL_de584f02b4774207a1499a9c9d33b7e7", - "selected_index": 1, - "titles": [ - "", - "" - ] + "layout": "IPY_MODEL_e16b4895dd524818b955204726fec9e2" } }, - "78cc40c19b904654bc155eb36ec701bc": { + "78c6c223b4bc46ef9f1538c4d2ad0f62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "HBoxModel", "state": { - "layout": "IPY_MODEL_affeae28662b40fda2b69bf8291780cf", - "style": "IPY_MODEL_7e77f595972444f49f378daa4b50eea8", - "value": "Column format" + "children": [ + "IPY_MODEL_83c6a604beca4d74a4f473ae121555b6", + "IPY_MODEL_c3da77f01f404b4baefb7ec9680bd8aa" + ], + "layout": "IPY_MODEL_f13e2b5ef9fb4f549fafacab5a7b04c5" } }, - "790e943d3bd54799a356f5851dfc06df": { + "793cf62999df46f8afc8d2aaab8240a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7956f796da2f46f4b5981bf56a042df3": { + "795e3f3f605e40fe86b4b6f3772e57fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7a363a5f09c041c3b8e22f96d3fb4922": { - "model_module": "@jupyter-widgets/controls", + "796db41d62814867975e3dfec24c9caa": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } + "model_name": "LayoutModel", + "state": {} }, - "7aaabf0233ed4ed694845ba4c59f8a11": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "797bf067f73943d9a4a145f7fd7ea361": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LinkModel", "state": { - "layout": "IPY_MODEL_f269d0a8572448d9a9a31886878024d2", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']['police']
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } + "source": [ + "IPY_MODEL_eabe4dbbc4b04b6d91e436525c26ecb9", + "index" + ], + "target": [ + "IPY_MODEL_eb7695fed160458a824d2a9d9e12b1a1", + "selected_index" ] } }, - "7b94c9ea32eb4ed09375153eb9a238ad": { + "798739cf16154875adef4b46dba55dd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7bd56e76409940a2bae7367eb1a573d8": { + "79d711af9e0649a393a25b2180874041": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "7cc6abdef1a44562aaea05b42b67c44b": { + "7a3a09659d1e4711a642ab91146a8fa9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_6b2f5db15cdd45bc85682ece22517214", + "layout": "IPY_MODEL_e89f8bf1073d4b888056d2de7cbef915", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7ed3fdd4407b41bf8581fc075d6f1542", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -2794,53 +2822,52 @@ ] } }, - "7ce64cca12244449979dd9585e3931e5": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "7a3c49b7e4034a2bb279f22155fa893e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LinkModel", "state": { - "layout": "IPY_MODEL_7246812156874e25b5294e3771f9d2dc", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", - "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" - }, - "metadata": {}, - "output_type": "display_data" - } + "source": [ + "IPY_MODEL_889d8446b7ed46429efab77aff6a15c3", + "index" + ], + "target": [ + "IPY_MODEL_15532729471142a5bccc33e61f594d0e", + "selected_index" ] } }, - "7dbcd32800914fb1ab72354376c707f0": { + "7a3f5e78183949f69b596e28b90c00f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "ProgressStyleModel", "state": { - "layout": "IPY_MODEL_727aed3667e64759ae90299a047ae617", - "style": "IPY_MODEL_f78fd9f70020405e958b4539cd004526", - "value": "Column format" + "description_width": "" } }, - "7dca6c6ac7254ca7a407be2f9977f934": { + "7a87de16ea484fb69738d7d9797df219": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_78cc40c19b904654bc155eb36ec701bc", - "IPY_MODEL_b4862abefd164a6197462e5a6e3b0572" + "IPY_MODEL_b174c9d2d0a24775ac7d861f50a01985", + "IPY_MODEL_32290a1049df4359aa2e6d349aaf0d37" ], - "layout": "IPY_MODEL_5bc8f8c2ad174b989c528c06010e714e" + "layout": "IPY_MODEL_171562c893454c9eb8fb17ab31629477" } }, - "7df58bff598b4b52840ad92d85f45e5e": { - "model_module": "@jupyter-widgets/base", + "7a934878b74440759d163ee2c262eafc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_3fb208d78fa040b19ed102b592e800a5", + "style": "IPY_MODEL_37513390d6be4aebb0bb7545a1ff9598", + "value": "

Dataset object containing 2 images and 1 object\nName :\n\tsmall_tagged_dataset\nImages root :\n\t../../test_lours/test_data/caipy_dataset/tags/small_tagged_dataset/Images

" + } }, - "7e77f595972444f49f378daa4b50eea8": { + "7a9ef69070f34884abc1c00d0a752989": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelStyleModel", @@ -2855,110 +2882,106 @@ "text_decoration": null } }, - "7ed3fdd4407b41bf8581fc075d6f1542": { + "7ab0d7aa8b75470791d63b7908f9e295": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "LabelModel", "state": { - "children": [ - "IPY_MODEL_0cad1d65402d46368442f111431fadd0", - "IPY_MODEL_5fcce537f996481ebe673bc94085e411" - ], - "layout": "IPY_MODEL_fb7e7441e17c42c3a58e8bd4bf04ef34" + "layout": "IPY_MODEL_494e3daedd2c49c7a89a366838a412cc", + "style": "IPY_MODEL_758094d7b8724e5d8b16a73e9235c50c", + "value": "Column format" } }, - "7ed9c2e4243247bc9ff4eaffa03852c1": { + "7b5d82b95dbe493cb1104c90fe815051": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "children": [ - "IPY_MODEL_a9770d7b192a402fada577ea268aed62", - "IPY_MODEL_78c759f31dc74dd4ae5cd78d7d8204eb" - ], - "layout": "IPY_MODEL_94faa84eafe94898a48f21d30294155f" + "description_width": "" } }, - "7f20856ffda84558a6c94a48ed0fc6a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TabModel", + "7d5270991e1d4ac1a23bf76fb0b68c73": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "children": [ - "IPY_MODEL_91058b9922dc4a50a3567d1f64601e6e", - "IPY_MODEL_7cc6abdef1a44562aaea05b42b67c44b", - "IPY_MODEL_0b73631e80df49f6b1399b32864f73c0" - ], - "layout": "IPY_MODEL_87e7402bb65044759e6b86f85760fa42", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" + "layout": "IPY_MODEL_e623514fc2d4408b876f5b89de2ebbf2", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "7f4065f3b4c445c4a3541e584838f776": { + "7d995a6b40ff4548bbe038deeba7f77b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "7dc163fc405c452a9d18038dbf30270d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HTMLStyleModel", "state": { - "children": [ - "IPY_MODEL_72eef781e0654765ae3936703a0b3a97", - "IPY_MODEL_c68021dbecb143ec8ae71e00749a7578" - ], - "layout": "IPY_MODEL_1c85d1590abf4bf98d2f322f6ef4cf61" + "description_width": "", + "font_size": null, + "text_color": null } }, - "80642f77801c44558ed6e0e348cead3f": { + "7ed1066d913d402da5083e216288a2a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", - "layout": "IPY_MODEL_f42976d4974242b0a839a036e827d294", + "layout": "IPY_MODEL_1ea88e7d098d46268aa1c330a1f885a5", "max": 2, - "style": "IPY_MODEL_3d470d1ee1694e5581cbfa144a24d2af", + "style": "IPY_MODEL_7a3f5e78183949f69b596e28b90c00f6", "value": 2 } }, - "8150e92f60b44908ab386b6fb7d2a512": { + "7f7be1bd470c4f12a72eb57d293f53c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "DropdownModel", "state": { - "children": [ - "IPY_MODEL_af7d3642feb1415a950f9403536031fb", - "IPY_MODEL_4075c27f828741dd9e89089f7d2b7ddd" + "_options_labels": [ + "raw", + "nested" ], - "layout": "IPY_MODEL_c1bb38eb31d746ff9d9ed3db9965103a", - "selected_index": 1, - "titles": [ - "", - "" - ] + "index": 0, + "layout": "IPY_MODEL_87d6389c5c494605adc1bb65c0bc2e9c", + "style": "IPY_MODEL_28c56dd1b1264b78a6e2d28df4208709" } }, - "81b2068437a24e3786b2effe27317fc8": { + "7fd0eb032f7a47ca96559fadb0bb675f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { - "layout": "IPY_MODEL_98ef4e14d0ea460fb3715aede1697c79", - "style": "IPY_MODEL_5d4523028b1d4d0bba9854d36c472ae4", - "value": " 2/2 [00:00<00:00, 211.21it/s]" + "children": [ + "IPY_MODEL_7ab0d7aa8b75470791d63b7908f9e295", + "IPY_MODEL_47930ec638f54567a0ed33f04d324e45" + ], + "layout": "IPY_MODEL_3956d24db51943deba0ce144b6077c97" } }, - "827a8fe062e94b4f8116397a0b0a49fe": { + "803eb4c70f044fceb74d50e9874e7fcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_0c3022feb15d49968e3d6aee27805c44", - "IPY_MODEL_14df742b05b34116b676c62121718770" + "IPY_MODEL_e01c1b0d50d04d15a66782c2e1279fe4", + "IPY_MODEL_23d90b1116024b2a83bdbf994661bf96" ], - "layout": "IPY_MODEL_49ba3f4dcf604acab1b120ecf5780aff", + "layout": "IPY_MODEL_fe1b20f6d0204f3eb84d0192f3e7d257", "selected_index": 1, "titles": [ "", @@ -2966,69 +2989,110 @@ ] } }, - "82e957b0c4e14a9c8b54d941130028ba": { + "808a83d11d2149058baea8c0a7852240": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "LabelModel", "state": { - "description_width": "" + "layout": "IPY_MODEL_5c1b3162ea0d493999b2d8539d3d1821", + "style": "IPY_MODEL_f175e4afc7444d56abc921d8bfcd9c3c", + "value": "Column format" + } + }, + "8140f97ada6148549e1fb9ddb20a1e6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LinkModel", + "state": { + "source": [ + "IPY_MODEL_7f7be1bd470c4f12a72eb57d293f53c7", + "index" + ], + "target": [ + "IPY_MODEL_52b11275f6e24f92ac3d516ca5affdee", + "selected_index" + ] } }, - "832592f6d6694ac89ee1a8177863fdd1": { + "827d49b4f3884509a3fbb116e67637cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8337de32257745aeb78cfa5f3e946c10": { - "model_module": "@jupyter-widgets/controls", + "8393c6de9d1a4b6584ede2913898c711": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_f5fba25f9cab45bb8daf9377481da905", - "style": "IPY_MODEL_510e43b152b64e628289d7e5ed425402", - "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_v5_dataset\nImages root :\n\t../../test_libia/test_data/caipy_dataset/tags/small_v5_dataset/Images

" - } + "model_name": "LayoutModel", + "state": {} }, - "83e111e3a0f6439dbc26d3b0ecc5eb02": { + "83c6a604beca4d74a4f473ae121555b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "LabelModel", "state": { - "description_width": "" + "layout": "IPY_MODEL_a023b0adc5a843318a6d6ca709cec636", + "style": "IPY_MODEL_2b8b8ef54a4242d3a7b52180a359f42a", + "value": "Column format" } }, - "8451cee892544113bb3ea74b326cc035": { + "849eabdb80e944e78352992631b22a8f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8504d8b16d744c24b4466e0f6865a5f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "TabModel", "state": { - "description_width": "" + "children": [ + "IPY_MODEL_72164298c7db4cb5b4379825c9ea4a04", + "IPY_MODEL_75f6495bf6ff40c9b156e28cee6705e8", + "IPY_MODEL_fa97553ef182453d81ef5779123a45a5" + ], + "layout": "IPY_MODEL_8393c6de9d1a4b6584ede2913898c711", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "8470f9b41dac44f49f78c1a3b778474e": { + "860ee4ddf35947fda3cba12039539da8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "847a6bfc69884c2188820ecb780da6e3": { - "model_module": "@jupyter-widgets/base", + "86b4e9521a294da4a7877f86c34f3a3a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "LabelStyleModel", + "state": { + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } }, - "8648df6315114b2492ac1edd4678d530": { + "86f80b9d1bbb465d94cd9d332908bce8": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_5edf9acfdcdc400bbb04105993e0a371", + "layout": "IPY_MODEL_225471f443064aa1b05d15e8200851c4", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 jobcolors
 greyredwhite
id            
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['police']FalseTrueTrue
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", + "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" }, "metadata": {}, "output_type": "display_data" @@ -3036,25 +3100,53 @@ ] } }, - "86a2ad8a8d464913bc1c480faa11c050": { + "87952fa04acc4fd8806846b79e4dc2d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelModel", + "state": { + "layout": "IPY_MODEL_181cff8851134779b46b515d5ed76785", + "style": "IPY_MODEL_39dcbdb8115840ce9e3f95965e569553", + "value": "Column format" + } + }, + "87d6389c5c494605adc1bb65c0bc2e9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "87e7402bb65044759e6b86f85760fa42": { + "87d79ce0899744878c8043ac0b66a37a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8840d0a90ac3484ab73cdadf004d7a40": { + "88213eb98e804ccb8ad399dee401dc19": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_d451a2662b8b43e2bdfd6eae1cc2a059", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.occludedattributes.position
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white]TrueNone
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey]None[front]
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.occluded \\\nid \n269791 274.90 46726.4303 [red, white] True \n1161234 379.68 84587.4391 [grey] None \n\n attributes.position \nid \n269791 None \n1161234 [front] " + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8822b69810d94d55a7acc4945e8883eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "887130e2a4a84c33849784401bfedba6": { + "889d8446b7ed46429efab77aff6a15c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ToggleButtonsModel", @@ -3068,67 +3160,51 @@ "check", "times" ], - "index": 0, - "layout": "IPY_MODEL_2ec564d426a24931b4774a7b1cac9855", - "style": "IPY_MODEL_c35c18c049e94cc7bffa41bb78ea7b9f", + "index": 1, + "layout": "IPY_MODEL_a9b392bda980411d87db41d6d9bd94fe", + "style": "IPY_MODEL_63434e54f72b4d478275f662b7a2f403", "tooltips": [] } }, - "893bdad326b7409ab4074f4a3907e148": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "89411a5fe0b24f80985bfe7654079eab": { - "model_module": "@jupyter-widgets/base", + "892bf2f0f1ff46faabf85d30879eff81": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_ab6868dc56024e76a4c715b35394d200", + "style": "IPY_MODEL_a7f0ab80f1aa48cd85ea69261be4615e", + "value": "100%" + } }, - "8a4ab33373f14f73be285069cf47140f": { + "8999c4e53eea4a1b93044f01ebcaf831": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_77472ab7c8c0493cab67207973b0f79b", - "IPY_MODEL_b7c959e0d52c4ae18e9cfc2c92c5c3d8" + "IPY_MODEL_5dbd083e256544a6945f8720ab41c957", + "IPY_MODEL_55d4dc2c795c4d9e99362036099bdc51" ], - "layout": "IPY_MODEL_a965e68eaf084b5ca4eb5a94a09ebab3" + "layout": "IPY_MODEL_3636a991e5014af48f5f3ca137b94b7e" } }, - "8acae534a7c94fbba1b51c284bf46617": { + "8a152d2ea9d841229351a23f588f4e58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8b25e9549910415da84db6b3adddc1e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 1, - "layout": "IPY_MODEL_2977a2e3ce1946ab84f2899b27b96b5d", - "style": "IPY_MODEL_7a363a5f09c041c3b8e22f96d3fb4922" - } - }, - "8cd1d0095470420f8e6d2fbb8b28457d": { + "8af249d95e6b4c8bab28e9d89670a9cf": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_b0b28fe5a2e24eafbf6c8d76144557bf", + "layout": "IPY_MODEL_1f3d97b642d040ce876c3713a32f79f3", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.job
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white][police]
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey][]
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.job \nid \n269791 274.90 46726.4303 [red, white] [police] \n1161234 379.68 84587.4391 [grey] [] " + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 occludedcolorsposition
 beigeblackbluebrowncyangreengreyorangepinkpurpleredwhiteyellowbackfrontsidetopunknown
id                           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300TrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseFalseFalse
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100NoneFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -3136,7 +3212,41 @@ ] } }, - "8cfa3a48c69041dda97dcce09c508d27": { + "8b3c3e7014d84bf0987caca4b74d9fd4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8ba5185ae8f748eb831aff0055533934": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8bdb1a75f0d04172873d26771641eb84": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8d009078a1a544c38ce73a1a0582f081": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8d0530607bb44b5eaf837a87ca8e631d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_77e5eed83afa4c36b4ec9062bd28a3e3", + "style": "IPY_MODEL_0861fa44d82b4122acec6969b476a723", + "value": "

Dataset object containing 2 images and 1 object\nName :\n\tsmall_tagged_dataset\nImages root :\n\t../../test_lours/test_data/caipy_dataset/tags/small_tagged_dataset/Images

" + } + }, + "8d6636f0ba274e6783146804ba67f43d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ToggleButtonsStyleModel", @@ -3145,129 +3255,148 @@ "description_width": "" } }, - "8d23a83cc5384540bd03c93853b9fcd6": { + "8dda3ab2336c4c59ae313e45fb051397": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "8e633a49cdf8467b942a120252411aad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8d76fa29b2d3468392279e1b2d0e7a83": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_173ab3fb03604746807dfadde1945553", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "8dea788e888340eea086edbf7827bc79": { + "8efdd7707ac148fdad92e2f82d28e78d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8dec6aea8ce74efc96d38909d91abdc8": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "900d616b60a14f4faafed905563bf6b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ToggleButtonsModel", "state": { - "layout": "IPY_MODEL_9492682e4e3946919cf749f608e1bb3b", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']['police']
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey']None
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] + "_options_labels": [ + "yes ", + "no " + ], + "button_style": "", + "icons": [ + "check", + "times" + ], + "index": 1, + "layout": "IPY_MODEL_2e6fe66e4365416b92bb1aee14fe420e", + "style": "IPY_MODEL_52caaaf04d4148948a85a259028fae48", + "tooltips": [] } }, - "8e34b7f291bd4d76a9f6e21da9eca863": { + "911ccd880acb4d04bd47db295971efab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "9147d7d083b742c2854b1711064a3dfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "8fd2dc5254fc491bbeed776618fbf44d": { + "923d138e7b874eb899f6377c01b482cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "DropdownModel", + "state": { + "_options_labels": [ + "raw", + "nested" + ], + "index": 1, + "layout": "IPY_MODEL_6879017d1b644362a0ba47c838da11fa", + "style": "IPY_MODEL_269781257d4547eb9846caffbba7f308" + } + }, + "9244bbe01b49415e919d47c4bc51edaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_e74b5f475bcd4fe988238916f7e8a922", - "IPY_MODEL_e17b38d62ef14dc9901c19937d973d26", - "IPY_MODEL_b064360aca3f4085b01ac98b0d72e30d" + "IPY_MODEL_4e0b88374085483fba27a49a3e23f4b4", + "IPY_MODEL_eabe4dbbc4b04b6d91e436525c26ecb9" ], - "layout": "IPY_MODEL_86a2ad8a8d464913bc1c480faa11c050", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] + "layout": "IPY_MODEL_d9160f103df247dbb9575c0e254c0179" + } + }, + "941fe4dcae944d9482b56d6ab8e96126": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelStyleModel", + "state": { + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null } }, - "90119ebe56344d329c2cc79577b01e56": { + "949607ac39214db79b4b1577298d80d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "907e4b3f7f8b42fc9859d4722f9ef85c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "StackModel", + "949f8f72d1264d27a4802c0b90a24c7e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "children": [ - "IPY_MODEL_c57572e0d3174255bbd88cd5051db3db", - "IPY_MODEL_055f2fabf98b415ba51d397bfc7d28b6" - ], - "layout": "IPY_MODEL_27d01299cf544075a45a465fe6457ef7", - "selected_index": 1, - "titles": [ - "", - "" + "layout": "IPY_MODEL_c5b0561f741a4353b7fcd8ce340e6a2b", + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4a0477f4a50e424eb4d56efebb80befd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "90c8111282444105aeb4e9cdbddaa495": { + "95717e222ce64822ba73164ff52adf26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "HTMLModel", "state": { - "children": [ - "IPY_MODEL_4434795ffe6e43caa017965c31da4162", - "IPY_MODEL_b4896aa315594a899e4bf2978e6330d2" - ], - "layout": "IPY_MODEL_7b94c9ea32eb4ed09375153eb9a238ad" + "layout": "IPY_MODEL_98d5556410d14b02b515786144b4df35", + "style": "IPY_MODEL_e2769417c5bb4314adb24f96d854184f", + "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_tagged_dataset\nImages root :\n\t../../test_lours/test_data/caipy_dataset/tags/small_tagged_dataset/Images

" } }, - "91058b9922dc4a50a3567d1f64601e6e": { + "96192a27d28045979be75f229e330b0f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3c7364babf564f4b90e46afa2db9f237", + "layout": "IPY_MODEL_3ff7356c378943f59b98953f615ad698", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "18c76c4652d24ae498506da979b2eac1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.occludedattributes.colorsattributes.position
id
2697916091stop sign13100.22117.54253.43274.9046726.4303True[red, white][]
116123410395teddy bear8849.1966.20378.97379.6884587.4391None[grey][front]
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.occluded attributes.colors \\\nid \n269791 274.90 46726.4303 True [red, white] \n1161234 379.68 84587.4391 None [grey] \n\n attributes.position \nid \n269791 [] \n1161234 [front] " }, "metadata": {}, "output_type": "display_data" @@ -3275,112 +3404,91 @@ ] } }, - "928a449ee55844c28d428097ec7b7e37": { + "968a9655aad44b93a738414f651ccdee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LinkModel", + "model_name": "StackModel", "state": { - "source": [ - "IPY_MODEL_98ae043445f74245af887299a198de3a", - "index" + "children": [ + "IPY_MODEL_6d0700b2814c45f4a87998bc267a297f", + "IPY_MODEL_25213655415b4639b0a3fcb687150a52" ], - "target": [ - "IPY_MODEL_137273feae674dffb709841507c73a67", - "selected_index" + "layout": "IPY_MODEL_2a4c1095d7d9419b86481842718b8b21", + "selected_index": 1, + "titles": [ + "", + "" ] } }, - "946f871f20074c9db7562f3ee71f8945": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "948226bbdc9244fd83fcda5944de9108": { + "9884c587a1b8464982564ad6364f08ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LabelStyleModel", "state": { "description_width": "", + "font_family": null, "font_size": null, - "text_color": null + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null } }, - "9492682e4e3946919cf749f608e1bb3b": { + "98d5556410d14b02b515786144b4df35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "94faa84eafe94898a48f21d30294155f": { + "995c86e9f4a04866baada76518c8aa57": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "956f2e2ecbdd4017aae4495e854af939": { + "997c54e099794f74894a922f32a14f20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "95a6edfb19db4f0b80535dffd281699d": { + "99a46f1bcfc14a20a5ed3f96ac17e358": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "95a7f1ded1ca48999b2ad4848c58f8b2": { + "99fc89b99c5a4cf5a89ba96cabb34ac4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_f879cebe86e84f2daf3d5d64a4dd0b86", - "IPY_MODEL_665c4c436bb342529bf01e32c99b0e55" + "IPY_MODEL_0e92ca4ee30f4fcd9710db58e97170ad", + "IPY_MODEL_8504d8b16d744c24b4466e0f6865a5f7" ], - "layout": "IPY_MODEL_8840d0a90ac3484ab73cdadf004d7a40" + "layout": "IPY_MODEL_763a8357aa054c3386f7718204835d9e" } }, - "95aa70d1930b4cd1af18c1c5468ab764": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "95ba326360aa4572aa343d812f065f11": { + "9a1857f491014174a6fdfa06b9e359ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "962871a977284adbb2534fe8e27b397c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "96cc77db99324f5eba57b2faf5044719": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_563d06068bbd4354bff2da022003b747", - "style": "IPY_MODEL_5b59d92be4014ee7899b345bec85026b", - "value": "100%" - } - }, - "96e12c005b5d4a919b024bab56d1dba5": { + "9a48495171e04a638fd3bc035aa5e398": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4672297221bf40cbaf8208fa48b11720", + "layout": "IPY_MODEL_4ce7c5bb4eda41e98a1538fcbaeebcc6", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.jobattributes.colors
id
2697916091stop sign13100.22117.54253.43274.946726.4303[police][red, white]
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n\n box_height area attributes.job attributes.colors \nid \n269791 274.9 46726.4303 [police] [red, white] " + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.occludedattributes.position
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white]TrueNone
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey]None[front]
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.occluded \\\nid \n269791 274.90 46726.4303 [red, white] True \n1161234 379.68 84587.4391 [grey] None \n\n attributes.position \nid \n269791 None \n1161234 [front] " }, "metadata": {}, "output_type": "display_data" @@ -3388,63 +3496,17 @@ ] } }, - "974236a0120c4565a2b1234b964af840": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "974f1c4b3d534a929cf930ffa7330433": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "98967b02edcc48dc864a7aef38769f2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_a9f4ea8d2a034c3391cfed183aadbe34", - "IPY_MODEL_e692c9939e9b4f2a9aa7f609a7342a02" - ], - "layout": "IPY_MODEL_c312a452a39d41109cb97feb1e702615" - } - }, - "98ae043445f74245af887299a198de3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 1, - "layout": "IPY_MODEL_b76d0f98a99942ddbd04da646a97dad8", - "style": "IPY_MODEL_576e534969ee474abbd43a14366cbcac" - } - }, - "98ef4e14d0ea460fb3715aede1697c79": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "99226b544c3841ea8ba9e045cad83eac": { + "9ab7fab4efca446f9a284c3f3c53d36c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_30dc7e8e22214a4a813f2d3d86bee95a", + "layout": "IPY_MODEL_201a23b56cf64f47a347e9f08e9ce82c", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.occludedattributes.position
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white]TrueNone
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey]None[front]
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.occluded \\\nid \n269791 274.90 46726.4303 [red, white] True \n1161234 379.68 84587.4391 [grey] None \n\n attributes.position \nid \n269791 None \n1161234 [front] " }, "metadata": {}, "output_type": "display_data" @@ -3452,72 +3514,17 @@ ] } }, - "9ccf11c04ffa43e5a8c5689bdb672f41": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9d1e1606e8cb45138ccf4f21983b060d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9d4609281c014251a47809ebaf7409f3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9ddebf729dd042899592a38c4b1ac425": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9e9e7f4d0daf4e4a8b070bfa8b65c82e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9f59b236c6ab4a30876508096303a1d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LinkModel", - "state": { - "source": [ - "IPY_MODEL_8b25e9549910415da84db6b3adddc1e1", - "index" - ], - "target": [ - "IPY_MODEL_8150e92f60b44908ab386b6fb7d2a512", - "selected_index" - ] - } - }, - "a0355fa8585b4f0190cac4831149d981": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1f1b8783fdf4a379068cf4a570ca4cd": { + "9bcb3a40fd72428fbefb100173e1c85a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_d3c40da0b4014fe99f266a6ced07e74e", + "layout": "IPY_MODEL_1d7533c6d0c04d409d34e1c8da8db57b", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.occludedattributes.colors.beige...attributes.colors.pinkattributes.colors.purpleattributes.colors.redattributes.colors.whiteattributes.colors.yellowattributes.position.backattributes.position.frontattributes.position.sideattributes.position.topattributes.position.unknown
id
2697916091stop sign13100.22117.54253.43274.9046726.4303TrueFalse...FalseFalseTrueTrueFalseFalseFalseFalseFalseFalse
116123410395teddy bear8849.1966.20378.97379.6884587.4391NoneFalse...FalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
\n

2 rows × 27 columns

\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.occluded attributes.colors.beige \\\nid \n269791 274.90 46726.4303 True False \n1161234 379.68 84587.4391 None False \n\n ... attributes.colors.pink attributes.colors.purple \\\nid ... \n269791 ... False False \n1161234 ... False False \n\n attributes.colors.red attributes.colors.white \\\nid \n269791 True True \n1161234 False False \n\n attributes.colors.yellow attributes.position.back \\\nid \n269791 False False \n1161234 False False \n\n attributes.position.front attributes.position.side \\\nid \n269791 False False \n1161234 True False \n\n attributes.position.top attributes.position.unknown \nid \n269791 False False \n1161234 False False \n\n[2 rows x 27 columns]" }, "metadata": {}, "output_type": "display_data" @@ -3525,58 +3532,42 @@ ] } }, - "a216e667ebf642459c813f16df72d61c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a257dc35d3e24b49a3e3ac1059bf11f9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a2a83e9e6bbc40528e03b2dd1af0dbad": { + "9c1f2df97e1149ff917c2e81bbcf58e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "" + "children": [ + "IPY_MODEL_0ac01f3061214b6ab3aad2e6b94fedc8", + "IPY_MODEL_cdeb3d59836e478b8a559f9128b1445b" + ], + "layout": "IPY_MODEL_f2c9ff87d18345f6abbae73066dfb1f8" } }, - "a33b60b688f444c88cbb989f8c7e19a8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a38ab35a1a134be99991ed2be5704ed8": { + "9c3dc34f7c7e4997b3671b79e393ba63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LinkModel", + "model_name": "HBoxModel", "state": { - "source": [ - "IPY_MODEL_a45127fe65504e4c9e753bca3c2d483b", - "index" + "children": [ + "IPY_MODEL_de758b1cc4cc4018a3701dccf34e85bc", + "IPY_MODEL_1a059635e4b54c60ac43f816b0234a47", + "IPY_MODEL_b044c48745eb465fb589aac455d462ff" ], - "target": [ - "IPY_MODEL_c50789bee7754ba2bab3591d4f9b4b8c", - "selected_index" - ] + "layout": "IPY_MODEL_a442756840be4cef8d9fa0754021c17c" } }, - "a39ce88aa0d5426192ff29aad4eac249": { + "9c7b90886ee948a294154a5d3ea39e92": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_c79ba4614aa6499b84b17119d9213833", + "layout": "IPY_MODEL_f01491943e2c4cb2a9f6f957a64d2190", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.job
id
2697916091stop sign13100.22117.54253.43274.946726.4303[red, white][police]
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n\n box_height area attributes.colors attributes.job \nid \n269791 274.9 46726.4303 [red, white] [police] " + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.occludedattributes.positionattributes.colors.greyattributes.colors.redattributes.colors.white
id
2697916091stop sign13100.22117.54253.43274.9046726.4303TrueNoneFalseTrueTrue
116123410395teddy bear8849.1966.20378.97379.6884587.4391None[front]TrueFalseFalse
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.occluded attributes.position \\\nid \n269791 274.90 46726.4303 True None \n1161234 379.68 84587.4391 None [front] \n\n attributes.colors.grey attributes.colors.red \\\nid \n269791 False True \n1161234 True False \n\n attributes.colors.white \nid \n269791 True \n1161234 False " }, "metadata": {}, "output_type": "display_data" @@ -3584,58 +3575,60 @@ ] } }, - "a43b4e0d825f416a925bcb62337151b0": { + "9cd9e70c862645c79cf30f05c2fb99b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_e96122e705064c6aa1919cab33baf4a9", - "IPY_MODEL_a45127fe65504e4c9e753bca3c2d483b" + "IPY_MODEL_56067d92495a46f9a35344237244ee32", + "IPY_MODEL_8af249d95e6b4c8bab28e9d89670a9cf" ], - "layout": "IPY_MODEL_946f871f20074c9db7562f3ee71f8945" + "layout": "IPY_MODEL_9a1857f491014174a6fdfa06b9e359ff", + "selected_index": 1, + "titles": [ + "", + "" + ] } }, - "a43f259afc82449787a805f7b1dc03c0": { - "model_module": "@jupyter-widgets/controls", + "9d57f5b5d92e4e1786b4356af50b6cad": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "LinkModel", - "state": { - "source": [ - "IPY_MODEL_1d8ca6079e344e32887539802f824163", - "index" - ], - "target": [ - "IPY_MODEL_ab28170db9de44c39e8c590191d2286a", - "selected_index" - ] - } + "model_name": "LayoutModel", + "state": {} }, - "a45127fe65504e4c9e753bca3c2d483b": { + "9d90ca1893c14a7e98e29bc67d9c893b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "ToggleButtonsModel", "state": { "_options_labels": [ - "raw", - "nested" + "yes ", + "no " ], - "index": 1, - "layout": "IPY_MODEL_9e9e7f4d0daf4e4a8b070bfa8b65c82e", - "style": "IPY_MODEL_82e957b0c4e14a9c8b54d941130028ba" + "button_style": "", + "icons": [ + "check", + "times" + ], + "index": 0, + "layout": "IPY_MODEL_674d852cc82d4c5ca8a02da41332c174", + "style": "IPY_MODEL_8d6636f0ba274e6783146804ba67f43d", + "tooltips": [] } }, - "a4e14b540f9947a79adacade090cb97c": { + "9dd3429f559347fca8b29aec8efce173": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3da4dc6d1f4b467b9c44bfed80270eae", + "layout": "IPY_MODEL_c0490369e97447d49d033703d8bb0256", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']['police']
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey']None
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -3643,23 +3636,21 @@ ] } }, - "a57cc8f2031b4ff7ac5264dae4185143": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a692ca9af21e43fd9d90cacc8f078982": { + "9e018458d9ea417eb5b9d72812fe7772": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_6d7e2210e3914d59b21b33fac96cdc25", + "layout": "IPY_MODEL_ca7f240e14ff4e5cba1525e63ba58f98", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "application/vnd.jupyter.widget-view+json": { + "model_id": "66aac255cb3541c69325762b998ddc61", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" }, "metadata": {}, "output_type": "display_data" @@ -3667,167 +3658,83 @@ ] } }, - "a8c9d7a83c8f4554b40d37fe4f6a3d6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "TabModel", - "state": { - "children": [ - "IPY_MODEL_faabe27cd21d4c0a866ec9822a7a8fdd", - "IPY_MODEL_63e357efab664a24ac49e586820a05d8", - "IPY_MODEL_dc3c25da603f47709e51368b2bc85cb2" - ], - "layout": "IPY_MODEL_1ece89c4bc6b40418fbc6b13aee1a5d6", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] - } - }, - "a965e68eaf084b5ca4eb5a94a09ebab3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a9770d7b192a402fada577ea268aed62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_cc0668f5b663474d813ad1e6694edf83", - "IPY_MODEL_0a5ad3a8c572402eb1b02cf86c507e1c" - ], - "layout": "IPY_MODEL_8d23a83cc5384540bd03c93853b9fcd6" - } - }, - "a98372d7ed044f46a9037b2a027cbae9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a988c5d09e0e4d4d835b786c832f3b5b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a99f9d0f9cb941c5858a90fe42fed680": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_1681e663fd65493cbdea9161be82ba07", - "IPY_MODEL_907e4b3f7f8b42fc9859d4722f9ef85c" - ], - "layout": "IPY_MODEL_da09794fd07048169d25772ee7845a11" - } - }, - "a9a823c3fe514f1fbbf13474a6cbd3a2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "a9eb32b5a389487e93301ac1f45eb4df": { + "9fbafa2cf430439a82a1fe9f9ba06238": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "children": [ - "IPY_MODEL_03e7dbcfbb694ef4be8d08e041cbe1bf", - "IPY_MODEL_b483e713571d495492efb42b40a3e600" - ], - "layout": "IPY_MODEL_a988c5d09e0e4d4d835b786c832f3b5b" + "description_width": "", + "font_size": null, + "text_color": null } }, - "a9f4ea8d2a034c3391cfed183aadbe34": { + "9fd30f7d6b2e40198dbbe1a848c947d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "children": [ - "IPY_MODEL_8a4ab33373f14f73be285069cf47140f", - "IPY_MODEL_95a7f1ded1ca48999b2ad4848c58f8b2" - ], - "layout": "IPY_MODEL_dfc5f536a6e549ab98d850690c994495" + "description_width": "", + "font_size": null, + "text_color": null } }, - "aa0fa18c5b024eb3b2e57136256aaecb": { + "9ff26407b6d4450f8f601ed287e6e4bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "aac207e0866148cd9ea18309fb7b3dab": { + "a023b0adc5a843318a6d6ca709cec636": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "ab28170db9de44c39e8c590191d2286a": { + "a08235c9fa7e456f9072fe755b163da2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "LabelModel", "state": { - "children": [ - "IPY_MODEL_5f6707f488274bcb9686c19b3f6ac783", - "IPY_MODEL_bc1895914a9f42688c7add779bae6b53" - ], - "layout": "IPY_MODEL_3bf5e0470a6e450cb86a49b49c48e5ea", - "selected_index": 0, - "titles": [ - "", - "" - ] + "layout": "IPY_MODEL_e4a6fe4d8ea846e2b8637c28ae106b46", + "style": "IPY_MODEL_4eca588b26b34484a755770e8e4f4b3f", + "value": "Booleanize" } }, - "ac388d0a744d457badd2f20afd48009e": { + "a1403f405903444da9dfe1225eeec61f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "ac616466b17a48f1be2dab241d09aaaa": { + "a2296a4a425e47a697b596af912df209": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "acac39f6b0d14adba2cfa0d1a956958d": { + "a41157b4e60b4dfb8b8dfac4eea12277": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "acb8c210988c47c1aba9373391b76358": { - "model_module": "@jupyter-widgets/controls", + "a41b0849c5f741a89189c7c2858139d4": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_887130e2a4a84c33849784401bfedba6", - "IPY_MODEL_ceb29c60259946778e7b1c5c11f394c4" - ], - "layout": "IPY_MODEL_89411a5fe0b24f80985bfe7654079eab" - } + "model_name": "LayoutModel", + "state": {} }, - "ace75e5bfc284bd2bd9ecb8f5636bb48": { + "a41cac33c01b4eedb4cea32b4d4c110c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_45d1800f668e4ed9a3609d3e2dfe267b", + "layout": "IPY_MODEL_27399ebe56be4aa5b4af3cdf44a6c693", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -3835,47 +3742,85 @@ ] } }, - "adbad114681d42228beeed82ea4b92dc": { + "a442756840be4cef8d9fa0754021c17c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "a571ca325c534c68851fcb9fdfe808da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", + "model_name": "HBoxModel", "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null + "children": [ + "IPY_MODEL_06f1022b8af540b7961d20e87034f6d5", + "IPY_MODEL_a5d70caa283f45748c08722784ef486f" + ], + "layout": "IPY_MODEL_b1823ccab5004282b8958926d67d3c49" } }, - "ae242a0a739048a784ba17b197941a5d": { + "a5d70caa283f45748c08722784ef486f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "DropdownModel", "state": { - "children": [ - "IPY_MODEL_da657e4bc0bc496785a61846aa0763a2", - "IPY_MODEL_2953790d879f4626a671bade59126c36", - "IPY_MODEL_b45555a167334329aa739645e0dcf2bb" + "_options_labels": [ + "raw", + "nested" ], - "layout": "IPY_MODEL_956f2e2ecbdd4017aae4495e854af939", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] + "index": 1, + "layout": "IPY_MODEL_2dbb7b08de92406fa0661689c0f7167e", + "style": "IPY_MODEL_673b8366c7e3460ea1b672d1039114d0" + } + }, + "a629243dd05841558a9e736f92ff0455": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "a6dce1904a264b9e8d28d36265089c1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_4a537b146130437b9e950e13376a588b", + "style": "IPY_MODEL_b8784f8957294cb1975bd444d0ffaa9f", + "value": "100%" } }, - "af3bea0edf7e499e85d2c968dc20adba": { + "a6f019cda169466085b2fd3f6b887dff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "af5c6e1f126d4d81a620bbb605c0f7ee": { + "a7395fb1f98d4cb6b4630d6a42bd5226": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DropdownModel", + "state": { + "_options_labels": [ + "raw", + "nested" + ], + "index": 1, + "layout": "IPY_MODEL_997c54e099794f74894a922f32a14f20", + "style": "IPY_MODEL_7065c84494d34862879528d6b7e07b55" + } + }, + "a7f0ab80f1aa48cd85ea69261be4615e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a82bb9407c1d44b3be7f7c4085d1aaa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ToggleButtonsModel", @@ -3890,22 +3835,36 @@ "times" ], "index": 1, - "layout": "IPY_MODEL_fa520fd1853643879ef77189a2b5ed2e", - "style": "IPY_MODEL_cc4b7f0300ab4764a9f4e9656e82f208", + "layout": "IPY_MODEL_c5c38cc4165b483ca126ea70c88d775b", + "style": "IPY_MODEL_c10505389d17487bbdfd6c124c7a4a47", "tooltips": [] } }, - "af7d3642feb1415a950f9403536031fb": { + "a976ba082bf6438b9f728efd77d864d1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "a9b392bda980411d87db41d6d9bd94fe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "width": "auto" + } + }, + "aa2f0bbf345b4392b5af043e9ac31dfd": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_6b1bee49d1234b63922fad37788da759", + "layout": "IPY_MODEL_e673e4911c8849069b120b9ae465f075", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.jobattributes.colors
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[police][red, white]
116123410395teddy bear8849.1966.20378.97379.6884587.4391None[grey]
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.job attributes.colors \nid \n269791 274.90 46726.4303 [police] [red, white] \n1161234 379.68 84587.4391 None [grey] " + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -3913,79 +3872,74 @@ ] } }, - "affeae28662b40fda2b69bf8291780cf": { + "aaa0b5df76384dd9a20228cfe89ba778": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b064360aca3f4085b01ac98b0d72e30d": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_322827bb404043108aaeff537e91df81", - "outputs": [ - { - "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", - "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } + "ab66202be821422d89830131dbf2b313": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "b0b28fe5a2e24eafbf6c8d76144557bf": { + "ab6868dc56024e76a4c715b35394d200": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b176a70599544113b1fccd2411bb5643": { + "ab87dc80cdf74ddca7c3445cd3eddcdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b18f09bd82cd4dfba29320e4cf85e72e": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "ab88f8c05af946ad8552e471fed93831": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LinkModel", "state": { - "layout": "IPY_MODEL_95ba326360aa4572aa343d812f065f11", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 jobcolors
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['police']['red', 'white']
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } + "source": [ + "IPY_MODEL_9d90ca1893c14a7e98e29bc67d9c893b", + "index" + ], + "target": [ + "IPY_MODEL_fd9426f4ee7a422fb3b1832e4d6e622c", + "selected_index" ] } }, - "b21f00cedbca408fa98e80b6b9177c77": { + "ac4edb47bbdc4eeeb21b102495910297": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { - "description_width": "" + "bar_style": "success", + "layout": "IPY_MODEL_bacc3776885447d2bedd03c756f61f57", + "max": 2, + "style": "IPY_MODEL_dd94a8781a82404191be45d553756029", + "value": 2 } }, - "b45555a167334329aa739645e0dcf2bb": { + "ad5fb8dde59e41c7b71340811c06d7a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "ae4a82541da04e04912a1e6773f74303": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_8dea788e888340eea086edbf7827bc79", + "layout": "IPY_MODEL_949607ac39214db79b4b1577298d80d6", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", - "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsoccludedposition
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']TrueNone
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey']None['front']
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -3993,17 +3947,48 @@ ] } }, - "b4822309721b4036966daff3d619ce7c": { + "af0286102c30462182a050b7a8c0bbbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "StackModel", + "state": { + "children": [ + "IPY_MODEL_9ab7fab4efca446f9a284c3f3c53d36c", + "IPY_MODEL_ae4a82541da04e04912a1e6773f74303" + ], + "layout": "IPY_MODEL_02a7280b9b1943ac9ec8f3e491c02048", + "selected_index": 1, + "titles": [ + "", + "" + ] + } + }, + "b044c48745eb465fb589aac455d462ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_1f81c136141340f3b9dabdd428e56b03", + "style": "IPY_MODEL_e24d6e6435684922a62eb33e98777b77", + "value": " 2/2 [00:00<00:00, 431.51it/s]" + } + }, + "b0a49dbdf1e347438fa06fdfcf198f82": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_ba2807217d86402da720409e62f40399", + "layout": "IPY_MODEL_0956bd685355401e9999b41503a8d80d", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "application/vnd.jupyter.widget-view+json": { + "model_id": "3dfec66068294143a42c6e3cd6b72cdb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" }, "metadata": {}, "output_type": "display_data" @@ -4011,7 +3996,23 @@ ] } }, - "b483e713571d495492efb42b40a3e600": { + "b174c9d2d0a24775ac7d861f50a01985": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_c1a0ed10dff040ce8c11aaeed6258587", + "style": "IPY_MODEL_9fd30f7d6b2e40198dbbe1a848c947d2", + "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_tagged_dataset\nImages root :\n\t../../test_lours/test_data/caipy_dataset/tags/small_tagged_dataset/Images

" + } + }, + "b1823ccab5004282b8958926d67d3c49": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "b2d1a9afb0aa4f02be240e3a609370e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", @@ -4021,59 +4022,117 @@ "nested" ], "index": 1, - "layout": "IPY_MODEL_a98372d7ed044f46a9037b2a027cbae9", - "style": "IPY_MODEL_3fa81b77b59c4632af9d460a8be5cbaa" + "layout": "IPY_MODEL_1981ea24319c4f44b37516c35d08697e", + "style": "IPY_MODEL_bbaca8446e7749359f545e02ec6ee93c" } }, - "b4862abefd164a6197462e5a6e3b0572": { + "b32ff3c2925c434da42e07f7973f2050": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "b3c04b1c3d1b425c8eb7ce4c2322c1e0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "b3c16db874e34514a856e38ff334848a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "b78fe149407541fa9bef3efc3ceeaefe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "VBoxModel", "state": { - "_options_labels": [ - "raw", - "nested" + "children": [ + "IPY_MODEL_900d616b60a14f4faafed905563bf6b2", + "IPY_MODEL_e347e872a797477f98db0b528c9e9b10" ], - "index": 1, - "layout": "IPY_MODEL_503fde465433400088b5b1ba849a8363", - "style": "IPY_MODEL_974236a0120c4565a2b1234b964af840" + "layout": "IPY_MODEL_522a37f3df3e45a1b26e6e4d73c51b69" } }, - "b4896aa315594a899e4bf2978e6330d2": { + "b7a67e0091634d37820e74f0e3e21a37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "b8784f8957294cb1975bd444d0ffaa9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "HTMLStyleModel", "state": { - "layout": "IPY_MODEL_5251143b52974036ab355ee7cacdf55d", - "style": "IPY_MODEL_f81fd73302c248e2b3810fcc0ecf55b7", - "value": "Column format" + "description_width": "", + "font_size": null, + "text_color": null } }, - "b559e3280e504adaa50fd0003dfeee3d": { + "b8ae15d9e90849c18706641f76a3051c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "LinkModel", + "state": { + "source": [ + "IPY_MODEL_7f7be1bd470c4f12a72eb57d293f53c7", + "index" + ], + "target": [ + "IPY_MODEL_c8c2e438e86f48078dcb5b4ce1ceb9d3", + "selected_index" + ] + } + }, + "bacc3776885447d2bedd03c756f61f57": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "bb306cfad5c54d828244211efcb55b5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LinkModel", + "state": { + "source": [ + "IPY_MODEL_e347e872a797477f98db0b528c9e9b10", + "index" + ], + "target": [ + "IPY_MODEL_4d56a1f5de8141cebb5778cbfe5dbb56", + "selected_index" + ] + } + }, + "bbaca8446e7749359f545e02ec6ee93c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 1, - "layout": "IPY_MODEL_a257dc35d3e24b49a3e3ac1059bf11f9", - "style": "IPY_MODEL_eb1e79ecc87e4ee7812a7d308c1e6c0b" + "description_width": "" } }, - "b56e430ea857498a84e3432c1985fb7c": { + "bcc84033733946b5989cde1fda6debbb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "bce13bec8a6e4d55a52083092ef3121d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_ba11cf20f7374dc8a0149ba86f780329", + "layout": "IPY_MODEL_c13a7396312149b98face3f41d947526", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']['police']
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100['grey'][]
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -4081,48 +4140,17 @@ ] } }, - "b5871347f49a481fa21d9ab365cc1fa5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", - "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } - }, - "b68ce890cf1a4b42acc281030f38db79": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b7275f7e83674361b401534cecb78e36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelModel", - "state": { - "layout": "IPY_MODEL_201da11722164c878c27bcb9814c772c", - "style": "IPY_MODEL_cd9ef769de65469b8d1cdf61f9ecf266", - "value": "Column format" - } - }, - "b7332191f28a4e84baf2a8d99f564bdf": { + "bd56e1484d9f4cacbf8ce2789195315c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_6fbb38f2a05a459b8dd519be02faadc6", + "layout": "IPY_MODEL_59ba8fbcde9440539a5e3411e18ae8eb", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -4130,133 +4158,91 @@ ] } }, - "b74ca75045054bcb9488bc6c9444d3a0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b76d0f98a99942ddbd04da646a97dad8": { + "c0490369e97447d49d033703d8bb0256": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b7c959e0d52c4ae18e9cfc2c92c5c3d8": { + "c05f2a5cd5054153be4c8763f70dd2e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "HTMLModel", "state": { - "layout": "IPY_MODEL_471a424aa7ae457fa953e06b84d8c738", - "style": "IPY_MODEL_adbad114681d42228beeed82ea4b92dc", - "value": "Column format" + "layout": "IPY_MODEL_5cd6ae3de06c45fb81dd4900616a17a9", + "style": "IPY_MODEL_ff51c7250dfd489bb4ff9d2b8f78017c", + "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_tagged_dataset\nImages root :\n\t../../test_lours/test_data/caipy_dataset/tags/small_tagged_dataset/Images

" } }, - "b7d1d35b8976485d9a5d249be29e08bb": { + "c07965acc0b14832a6fa4e9bcc4e0deb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "children": [ - "IPY_MODEL_15c996b6beb84a9eb54c28226f2bd579", - "IPY_MODEL_137273feae674dffb709841507c73a67" - ], - "layout": "IPY_MODEL_e2bc2f6ea30744ac8d9bd8c1e63bc19f" + "description_width": "" } }, - "b7f97c532dbb41a9a36bf60c5777faa1": { - "model_module": "@jupyter-widgets/base", + "c10505389d17487bbdfd6c124c7a4a47": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "ToggleButtonsStyleModel", + "state": { + "button_width": "auto", + "description_width": "" + } }, - "b8645807457946fbb899002cf48564b8": { + "c13a7396312149b98face3f41d947526": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "b864a5c9cc2d411c92a871a78c3ab21e": { + "c18597934a0a477592c816ac8d5b4541": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_d0f7740d4b29478a8b1b05f8583a2836", - "IPY_MODEL_bed9c5fa40bc485789dba9e3612ceafd", - "IPY_MODEL_4c67d2645735491392cdd393588ddd76" + "IPY_MODEL_23f228485664473d8df1dd44a984fa11", + "IPY_MODEL_949f8f72d1264d27a4802c0b90a24c7e", + "IPY_MODEL_65691a44438b4c39b6842afd8e53726d" ], - "layout": "IPY_MODEL_43a966ee67834d61909f3f7ddf7fc827" - } - }, - "b95c3eef5065475e9059b05042a9b758": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_522abf073cc24e96be29b07456d678c0", - "max": 2, - "style": "IPY_MODEL_2a9f1ee260d843efaf601c1846d954ba", - "value": 2 + "layout": "IPY_MODEL_9147d7d083b742c2854b1711064a3dfc", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "b966c111a56b47998b255d81cd8bd75b": { + "c1a01f3f06c5430990a0a952b463cdbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", + "model_name": "LabelModel", "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null + "layout": "IPY_MODEL_fc1bff0843fe4b0e9e4e8fe14e3bb84b", + "style": "IPY_MODEL_10c0c7121b5b4c54831ebee82e121a24", + "value": "Column format" } }, - "ba11cf20f7374dc8a0149ba86f780329": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ba2807217d86402da720409e62f40399": { + "c1a0ed10dff040ce8c11aaeed6258587": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "ba7b35e2c45b415c9a38f27d891652a4": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_10ead96d57f44abf97eb89464993150a", - "outputs": [ - { - "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "bad7132e08fa4705804d160f71569e3a": { + "c25686aa27f74234a80f72e731c3389a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_69f94f9aa444432999a81465b9bd6797", + "layout": "IPY_MODEL_6215f6c6670e436487ed7db7f64059aa", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 occludedpositioncolors
 greyredwhite
id             
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300TrueNoneFalseTrueTrue
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100None['front']TrueFalseFalse
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -4264,17 +4250,17 @@ ] } }, - "bc1895914a9f42688c7add779bae6b53": { + "c29a07c9b8b94890914bf8c08564f2b2": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_3c4c4c7d73a84509a9bbf647ccc335d2", + "layout": "IPY_MODEL_7106502757ba49a7b15fc2215134d50d", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -4282,33 +4268,51 @@ ] } }, - "bc1fb95a0b454824b37a8e68795624ed": { + "c2c3cf802edd41a586577f22c2b92493": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "DropdownModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "_options_labels": [ + "raw", + "nested" + ], + "index": 1, + "layout": "IPY_MODEL_0e50c330ab3540008935e217fa8c6d6a", + "style": "IPY_MODEL_59ab8d81df9143d7b865c1be3d671969" } }, - "bc7a3894428247cfa807c1826acf9ea4": { + "c3864103377843999a24250381fa600e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "bdff13ea6d5f48eeb2829006cfb36d84": { + "c3da77f01f404b4baefb7ec9680bd8aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DropdownModel", + "state": { + "_options_labels": [ + "raw", + "nested" + ], + "index": 1, + "layout": "IPY_MODEL_694b6c1a682f407ca429991612687a97", + "style": "IPY_MODEL_61560e9c09294f52b449ef2dcdcbc297" + } + }, + "c3f53aa7a4c04264b3195c905aa97e6b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_09c08f2772594ca9ab39e1c2c7ec8aea", + "layout": "IPY_MODEL_3c731beabd89474dae9c9abae8993637", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
 beigeblackbluebrowncyangreengreyorangepinkpurpleredwhiteyellowambulancefirefighterpolicepublic workerunknown
id                          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseTrueFalseFalse
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100FalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", + "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" }, "metadata": {}, "output_type": "display_data" @@ -4316,178 +4320,50 @@ ] } }, - "bed9c5fa40bc485789dba9e3612ceafd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_cadffdf76f5a4d44aded5a695521220c", - "max": 2, - "style": "IPY_MODEL_eed00c8689c94ba086bb09f4323c3f08", - "value": 2 - } - }, - "bfa6e3c8d0154644a8f1bc866d765bf1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "bfd2fa6b793a471a860d53ca3bef5962": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c1bb38eb31d746ff9d9ed3db9965103a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c243b96315184bbcb0ec3c0546ae1960": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c2537b897c9e44d187bb00f3f90cca5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "c26a61ef70f74b7b8b1e313d68fa42fd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c312a452a39d41109cb97feb1e702615": { + "c507e3ec2ddf4fda8461c89342d50698": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c35c18c049e94cc7bffa41bb78ea7b9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", - "state": { - "button_width": "auto", - "description_width": "" - } - }, - "c38b00829145442599727fa4c420ab9b": { + "c5b0561f741a4353b7fcd8ce340e6a2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "c420a1ba67204f2cb048a67e0655688b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", - "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } - }, - "c49337a1fb2e46cd85d83c5aca262060": { + "c5c38cc4165b483ca126ea70c88d775b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", - "state": {} - }, - "c50789bee7754ba2bab3591d4f9b4b8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "StackModel", - "state": { - "children": [ - "IPY_MODEL_d5447602cc9a44d9857640353e9ae63c", - "IPY_MODEL_200609463d994d1f9a047bd8b9ae8e8c" - ], - "layout": "IPY_MODEL_f01ce08dade445cf9dcec47719defcb1", - "selected_index": 1, - "titles": [ - "", - "" - ] - } - }, - "c57572e0d3174255bbd88cd5051db3db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "StackModel", "state": { - "children": [ - "IPY_MODEL_680b7700c0a14cf5a7389052d79a3a2c", - "IPY_MODEL_8648df6315114b2492ac1edd4678d530" - ], - "layout": "IPY_MODEL_6e5c8485f56a4d25a004ceffab205073", - "selected_index": 1, - "titles": [ - "", - "" - ] + "width": "auto" } }, - "c5bf9bebc8af4c119f0bd5c509dede0c": { + "c647ef0d15d94a39bb70c9b4260e59a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "TabModel", + "model_name": "HBoxModel", "state": { "children": [ - "IPY_MODEL_ea0a6048ceb44971885be4794cdb868a", - "IPY_MODEL_df4fa4235583412e99ca755ce2dc0973", - "IPY_MODEL_dafaadda2d2244afae46bf52c636999e" + "IPY_MODEL_892bf2f0f1ff46faabf85d30879eff81", + "IPY_MODEL_ac4edb47bbdc4eeeb21b102495910297", + "IPY_MODEL_17dd15166eb74906b4d3753bc0a9f01b" ], - "layout": "IPY_MODEL_71e265ccab664fe9b9ef55e3231b9f7e", - "selected_index": 0, - "titles": [ - "Images", - "Annotations", - "Label Map" - ] - } - }, - "c68021dbecb143ec8ae71e00749a7578": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LabelModel", - "state": { - "layout": "IPY_MODEL_cdda066680d945ddaea2b002569aa900", - "style": "IPY_MODEL_c420a1ba67204f2cb048a67e0655688b", - "value": "Column format" + "layout": "IPY_MODEL_fcc2778eb02948f7bfa49c0b0c6c4c50" } }, - "c79ba4614aa6499b84b17119d9213833": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ca3b29d92ed84fa4981a912c3d477e0f": { + "c7a266e04f0241da89bc8fc95a62f002": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_04e46c56624b4f56bfeea1e9495e2717", + "layout": "IPY_MODEL_6dbd3b12a86c4b75a8925424557c5507", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.locationtags.spectrumtags.time
id
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n
", - "text/plain": " width height relative_path type tags.location tags.spectrum tags.time\nid \n6091 480 640 image1.jpg .jpg exterior RGB night\n10395 500 476 image2.jpg .jpg exterior RGB night" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -4495,23 +4371,27 @@ ] } }, - "ca41e0229000482e88010897dd0b16df": { - "model_module": "@jupyter-widgets/base", + "c81505a3f4d243f78d00ccd5557fac63": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "LabelModel", + "state": { + "layout": "IPY_MODEL_4d8e462989174cc5a88c2196b63c919a", + "style": "IPY_MODEL_941fe4dcae944d9482b56d6ab8e96126", + "value": "Column format" + } }, - "ca7c76f4872f49e3b487add5d0241be2": { + "c81abda19be44766b6d17001c7d30786": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_9ccf11c04ffa43e5a8c5689bdb672f41", + "layout": "IPY_MODEL_54b48c65cdd644cb883ff63fb7c18891", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 colorsjob
id          
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300['red', 'white']['police']
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", + "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" }, "metadata": {}, "output_type": "display_data" @@ -4519,35 +4399,31 @@ ] } }, - "cadffdf76f5a4d44aded5a695521220c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "cb0e963631cb4d55a80900c365cdcbcf": { + "c83a6880bed94908b866518ba549c781": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "DropdownModel", "state": { - "children": [ - "IPY_MODEL_2eb5a09f0dd9439f8e897a5aea0e216f", - "IPY_MODEL_d8f01a0665d142f980214ff0509a664d" + "_options_labels": [ + "raw", + "nested" ], - "layout": "IPY_MODEL_43749d59f28e483c96d433258e9c7744" + "index": 1, + "layout": "IPY_MODEL_6aee0ca6f8e945fca134e5698247e9c3", + "style": "IPY_MODEL_5aa34ed1735e4cb9ab5fbc95fcee99e8" } }, - "cb2e6fc81a814f04ba2bc97d91516e68": { + "c83b944f0e4542399b2a1dd50a9f6ed9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_64f63783a7d14fdc8cdeefdef6eb6fb4", + "layout": "IPY_MODEL_d8bae80acc95465ba5e85ca14d893a2b", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -4555,135 +4431,161 @@ ] } }, - "cb303aee35014106aacdd30b2be230e2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "cc0668f5b663474d813ad1e6694edf83": { + "c8c2e438e86f48078dcb5b4ce1ceb9d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "StackModel", "state": { - "layout": "IPY_MODEL_3f321faf0de3434585a47c7485781ddf", - "style": "IPY_MODEL_1de0daa9b3de4ded941f28072774630e", - "value": "Column format" + "children": [ + "IPY_MODEL_9bcb3a40fd72428fbefb100173e1c85a", + "IPY_MODEL_e53847a4f6e04c7aae85f73a42bdeea4" + ], + "layout": "IPY_MODEL_e51d9fd0953646c8a0d8fa4a747239d8", + "selected_index": 0, + "titles": [ + "", + "" + ] } }, - "cc4b7f0300ab4764a9f4e9656e82f208": { + "c952dc57237a4745a4458d387b9dbc6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ToggleButtonsStyleModel", + "model_name": "VBoxModel", "state": { - "button_width": "auto", - "description_width": "" + "children": [ + "IPY_MODEL_cbf8d481283041c99704d2a6c82a31d3", + "IPY_MODEL_eb8fe446efe847e0abfb878b5c30b043" + ], + "layout": "IPY_MODEL_793cf62999df46f8afc8d2aaab8240a1" } }, - "cc78d96e04854349b11c5234e852f6da": { - "model_module": "@jupyter-widgets/controls", + "c97e91b06dc040cca96e7a2353471e37": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", - "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } + "model_name": "LayoutModel", + "state": {} + }, + "c98cbef3ee0b466bba3a73d0d8ef935d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c9dabe1b55b7478f944aaa20a2784578": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c9e5e33944354daea0213434be043ea8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "ca7f240e14ff4e5cba1525e63ba58f98": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} }, - "cc9489d8e5e24588b9fe79423bda8b8a": { + "cb4f78a088914791a6986522d7dff3d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_60fb081928d34f25b1131fac221a5c83", - "IPY_MODEL_c5bf9bebc8af4c119f0bd5c509dede0c" + "IPY_MODEL_db851fd0b6704e5789bcfc7a11c62a4e", + "IPY_MODEL_f2f9a404eb7348cb8c76f0a7e6c788ed" ], - "layout": "IPY_MODEL_28f24a34506f4f3a81c7a0aee4488730" + "layout": "IPY_MODEL_366e3e6b775746aab4f6aa050be6f328", + "selected_index": 1, + "titles": [ + "", + "" + ] } }, - "cd9ef769de65469b8d1cdf61f9ecf266": { + "cb763f0b2e6c4e7ea1abf2050a4262a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", + "model_name": "LinkModel", "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null + "source": [ + "IPY_MODEL_a7395fb1f98d4cb6b4630d6a42bd5226", + "index" + ], + "target": [ + "IPY_MODEL_af0286102c30462182a050b7a8c0bbbb", + "selected_index" + ] } }, - "cdda066680d945ddaea2b002569aa900": { + "cb9133ac6e7f44ca9882990704a90e76": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "cbd9eb66c67b4f25b25caab91df746f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "ceb29c60259946778e7b1c5c11f394c4": { + "cbf8d481283041c99704d2a6c82a31d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "HBoxModel", "state": { - "_options_labels": [ - "raw", - "nested" + "children": [ + "IPY_MODEL_00e92e822c8944e79dbb48196e58ae6c", + "IPY_MODEL_c83a6880bed94908b866518ba549c781" ], - "index": 0, - "layout": "IPY_MODEL_29e603c11d8d4d73a8133fab2187783d", - "style": "IPY_MODEL_b21f00cedbca408fa98e80b6b9177c77" + "layout": "IPY_MODEL_8b3c3e7014d84bf0987caca4b74d9fd4" } }, - "cf54d782dd024806a69f564ace26aaf7": { + "cc3eea07c5a9499a9b200d1bb1e0b629": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "d0eb5159b5714eb5ac73be47f210dee9": { - "model_module": "@jupyter-widgets/controls", + "ccebac1be8794834a6db839b472d38e2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", - "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } + "model_name": "LayoutModel", + "state": {} }, - "d0f7740d4b29478a8b1b05f8583a2836": { + "cdeb3d59836e478b8a559f9128b1445b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "StackModel", "state": { - "layout": "IPY_MODEL_4851d84bd1a045ae8a98286271d3cd41", - "style": "IPY_MODEL_ee5854ff501649758ccad33bb0edf5de", - "value": "100%" + "children": [ + "IPY_MODEL_7d5270991e1d4ac1a23bf76fb0b68c73", + "IPY_MODEL_19b997d773684d27934186f82f9f2bb4" + ], + "layout": "IPY_MODEL_66a6d3f36d784b429aa5476630e98ed3", + "selected_index": 1, + "titles": [ + "", + "" + ] } }, - "d25defcce6c54f7f80a7c683e6db8f60": { + "ceaffed9d3e44fd78f344c3cd32ad486": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_790e943d3bd54799a356f5851dfc06df", + "layout": "IPY_MODEL_c9dabe1b55b7478f944aaa20a2784578", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.job
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white][police]
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey]None
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.job \nid \n269791 274.90 46726.4303 [red, white] [police] \n1161234 379.68 84587.4391 [grey] None " + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", + "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" }, "metadata": {}, "output_type": "display_data" @@ -4691,17 +4593,21 @@ ] } }, - "d3a486cd1a444ce297c04754d3229f07": { + "cf56742867ef4d5cb2f28173c9fa4168": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_bfd2fa6b793a471a860d53ca3bef5962", + "layout": "IPY_MODEL_78a3da09b7c5421295cf78d33102e6b1", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "application/vnd.jupyter.widget-view+json": { + "model_id": "c952dc57237a4745a4458d387b9dbc6f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" }, "metadata": {}, "output_type": "display_data" @@ -4709,17 +4615,17 @@ ] } }, - "d3a6685dd7964e378992623047f4ada6": { + "d07a1873d05347359a4223c937a2f5e0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_7bd56e76409940a2bae7367eb1a573d8", + "layout": "IPY_MODEL_ad5fb8dde59e41c7b71340811c06d7a3", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 occludedcolorsposition
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300True['red', 'white'][]
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100None['grey']['front']
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -4727,37 +4633,27 @@ ] } }, - "d3c40da0b4014fe99f266a6ced07e74e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "d3e685051a8049a0bb805111c553034b": { + "d0f929ee62db41ada3651887ceebac75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DropdownModel", + "model_name": "LabelModel", "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 1, - "layout": "IPY_MODEL_63d3103578f143eda9ef744c4199b33a", - "style": "IPY_MODEL_00178f21f8804fc2baa6277c97ce20b1" + "layout": "IPY_MODEL_0563fdaa1fae470db79fd71892819186", + "style": "IPY_MODEL_094209b6633741e2bd532ec562c7b09d", + "value": "Booleanize" } }, - "d5447602cc9a44d9857640353e9ae63c": { + "d1fb5971edbd4f8a8cf64e5bd128d9ff": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_550c13d08bcd4a42bb9187e8a9a2079b", + "layout": "IPY_MODEL_58ed066bb320479fbf51ee80df239290", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.job
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white][police]
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey]None
\n
", - "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.job \nid \n269791 274.90 46726.4303 [red, white] [police] \n1161234 379.68 84587.4391 [grey] None " + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 occludedcolorsposition
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300True['red', 'white'][]
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100None['grey']['front']
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -4765,134 +4661,149 @@ ] } }, - "d6e21ce9a5f3412886c186679898f12f": { - "model_module": "@jupyter-widgets/controls", + "d4023fa0a2eb490f95cfbaeff0a44a03": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", - "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } + "model_name": "LayoutModel", + "state": {} }, - "d794635bdf3742728bced6b026683db0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "StackModel", + "d42d7d7ee63845b7af7bac1691311ca8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "children": [ - "IPY_MODEL_116b4624ae8e411bb06cfcdbb7ffa397", - "IPY_MODEL_5a0bb661dfe74bd78d608a11e6a3dfde" - ], - "layout": "IPY_MODEL_6c8a181f12d442fa997a6c9d13026986", - "selected_index": 1, - "titles": [ - "", - "" + "layout": "IPY_MODEL_3eebded23c294df292b6040926030e6c", + "outputs": [ + { + "data": { + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "d8771d6d18fe4fcf8605a1c5e15e00ce": { + "d451a2662b8b43e2bdfd6eae1cc2a059": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "d4e48aade5cf430f86da6775168db458": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "LinkModel", "state": { - "children": [ - "IPY_MODEL_14132848699c469eabd3abd14b660851", - "IPY_MODEL_bdff13ea6d5f48eeb2829006cfb36d84" + "source": [ + "IPY_MODEL_b2d1a9afb0aa4f02be240e3a609370e9", + "index" ], - "layout": "IPY_MODEL_6aff1ed1e96a4861a2e091eec3efa902", - "selected_index": 0, - "titles": [ - "", - "" + "target": [ + "IPY_MODEL_f2f9a404eb7348cb8c76f0a7e6c788ed", + "selected_index" ] } }, - "d8f01a0665d142f980214ff0509a664d": { - "model_module": "@jupyter-widgets/controls", + "d66ae40cf9f44c24897fe1a418dd0709": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "raw", - "nested" - ], - "index": 1, - "layout": "IPY_MODEL_025e2d92d09d4dc1960241d7f82b00ff", - "style": "IPY_MODEL_83e111e3a0f6439dbc26d3b0ecc5eb02" - } + "model_name": "LayoutModel", + "state": {} }, - "d90e23fdc5de4e8693d06d1487f664fc": { + "d690466646f94a33b3dc7fb8f508ec66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", - "state": { - "width": "auto" - } + "state": {} }, - "d94b69cea45e49978b12cae3fe9c3323": { + "d7e4a7497e4f4952b5d4e8c7b26466d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "d9cd2de0277c470bb7ca0716e5010460": { + "d879e9886d5a403db85ef3183404d41e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "da09794fd07048169d25772ee7845a11": { + "d8bae80acc95465ba5e85ca14d893a2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "da0d0cb76541403384776a4502467c08": { + "d9160f103df247dbb9575c0e254c0179": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "da657e4bc0bc496785a61846aa0763a2": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", + "d970346f2e2d45f6ac109e3e1a3918fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelStyleModel", "state": { - "layout": "IPY_MODEL_c26a61ef70f74b7b8b1e313d68fa42fd", - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "30e9f1825b9440238335ed8d48410989", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" - }, - "metadata": {}, - "output_type": "display_data" - } + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } + }, + "d987b7e53bf840669b376bbab1963d74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "StackModel", + "state": { + "children": [ + "IPY_MODEL_c7a266e04f0241da89bc8fc95a62f002", + "IPY_MODEL_bd56e1484d9f4cacbf8ce2789195315c" + ], + "layout": "IPY_MODEL_ccebac1be8794834a6db839b472d38e2", + "selected_index": 1, + "titles": [ + "", + "" + ] + } + }, + "d9b22d9f66474a3389db173d5266b947": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", + "state": { + "children": [ + "IPY_MODEL_9e018458d9ea417eb5b9d72812fe7772", + "IPY_MODEL_b0a49dbdf1e347438fa06fdfcf198f82", + "IPY_MODEL_c3f53aa7a4c04264b3195c905aa97e6b" + ], + "layout": "IPY_MODEL_4b809dfc0ece43fc960f4766317ecddc", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" ] } }, - "dafaadda2d2244afae46bf52c636999e": { + "dae4d21aa5bd4fe19b853ad112df4cd4": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_893bdad326b7409ab4074f4a3907e148", + "layout": "IPY_MODEL_c507e3ec2ddf4fda8461c89342d50698", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", - "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 occludedpositioncolors
id           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300TrueNone['red', 'white']
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -4900,29 +4811,52 @@ ] } }, - "db231ae4be514d21a74f85d3770f6926": { - "model_module": "@jupyter-widgets/base", + "db338223590648b3b03d412a8a4a9e58": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } + }, + "db851fd0b6704e5789bcfc7a11c62a4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "StackModel", + "state": { + "children": [ + "IPY_MODEL_9c7b90886ee948a294154a5d3ea39e92", + "IPY_MODEL_c25686aa27f74234a80f72e731c3389a" + ], + "layout": "IPY_MODEL_bcc84033733946b5989cde1fda6debbb", + "selected_index": 1, + "titles": [ + "", + "" + ] + } }, - "dba7513f7a7942738daecbd3f1990edf": { + "dc0bd2efcfea491c8d1a7b99e5e4dcfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "dc3c25da603f47709e51368b2bc85cb2": { + "dc53cfd782b141d4a75f92e948bc51c3": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_54c6a81a6e0245ee9ffd87107c2061c1", + "layout": "IPY_MODEL_b3c16db874e34514a856e38ff334848a", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", - "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" + "application/vnd.jupyter.widget-view+json": { + "model_id": "06106e5869d44a04985641fbf2694e83", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" }, "metadata": {}, "output_type": "display_data" @@ -4930,54 +4864,78 @@ ] } }, - "dc64aef805da40d8a307d06d73dce679": { - "model_module": "@jupyter-widgets/base", + "dd669ba9d0ba4e3c806d26bea3485d44": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "DropdownModel", + "state": { + "_options_labels": [ + "raw", + "nested" + ], + "index": 1, + "layout": "IPY_MODEL_ab66202be821422d89830131dbf2b313", + "style": "IPY_MODEL_6a810947168f446aa61d3c9da73d64e2" + } }, - "dce316837afb4f9093ce18623f87b4d5": { - "model_module": "@jupyter-widgets/base", + "dd94a8781a82404191be45d553756029": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } }, - "de584f02b4774207a1499a9c9d33b7e7": { - "model_module": "@jupyter-widgets/base", + "de758b1cc4cc4018a3701dccf34e85bc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_f4e85c457a624d1585f12dc4699f5b96", + "style": "IPY_MODEL_5f758d422b50487cb47a020068151174", + "value": "100%" + } }, - "de81c8b166254e5391d0cc4b9169f205": { + "deeecc5324c34e6187847840b98059b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LinkModel", + "model_name": "StackModel", "state": { - "source": [ - "IPY_MODEL_665c4c436bb342529bf01e32c99b0e55", - "index" + "children": [ + "IPY_MODEL_e9f1bb86fde54d7680a43b52cd807224", + "IPY_MODEL_dae4d21aa5bd4fe19b853ad112df4cd4" ], - "target": [ - "IPY_MODEL_d794635bdf3742728bced6b026683db0", - "selected_index" + "layout": "IPY_MODEL_aaa0b5df76384dd9a20228cfe89ba778", + "selected_index": 1, + "titles": [ + "", + "" ] } }, - "df4fa4235583412e99ca755ce2dc0973": { + "def5ab4f8a2a43a98397c9c622c526db": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "df33287069c7407ba77be27b4deb131d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "e01c1b0d50d04d15a66782c2e1279fe4": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_04264ed64ed946a48928781c30b5d755", + "layout": "IPY_MODEL_df33287069c7407ba77be27b4deb131d", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a99f9d0f9cb941c5858a90fe42fed680", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -4985,37 +4943,29 @@ ] } }, - "dfc5f536a6e549ab98d850690c994495": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dfd0233da24b49b89441836c5f9e9e89": { + "e06df622bad0467593bac76719fc642d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelModel", + "model_name": "HBoxModel", "state": { - "layout": "IPY_MODEL_4746fe751c6b41ab8efbc2e46e07eca6", - "style": "IPY_MODEL_ee43ad439dae408b931b35643223444f", - "value": "Column format" + "children": [ + "IPY_MODEL_c81505a3f4d243f78d00ccd5557fac63", + "IPY_MODEL_a7395fb1f98d4cb6b4630d6a42bd5226" + ], + "layout": "IPY_MODEL_3120fe66b6c641c8999f76c16fd05756" } }, - "e17b38d62ef14dc9901c19937d973d26": { + "e15e0614e8d1497b8c5690ec5d8973e7": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_25a895ae0b624377aaa7b4b5bd8554e7", + "layout": "IPY_MODEL_2543f405ad23473197be5e23f6f11a7b", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "066a6791a702412fb1d15d3a81d4027c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" }, "metadata": {}, "output_type": "display_data" @@ -5023,109 +4973,82 @@ ] } }, - "e2bc2f6ea30744ac8d9bd8c1e63bc19f": { + "e16b4895dd524818b955204726fec9e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e3393e2df40f4b6cb2c34c615fb87695": { + "e21c88a692f54f33830adebe16aa5ef0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_38c8a647f223402690ddd1c96b3458e4", - "IPY_MODEL_1c45655045d042be94b2984b6afab3be" + "IPY_MODEL_77ffd6e2f1bc4c2ca26ed7b15e9136f6", + "IPY_MODEL_ff03419f453e4ca7a76e9cc16e9ddd61", + "IPY_MODEL_ceaffed9d3e44fd78f344c3cd32ad486" ], - "layout": "IPY_MODEL_f4d909f54c1b4c0a96d2fb76eb506776" + "layout": "IPY_MODEL_58aa8aa6857b44ecbc8cef273fd83aa3", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } }, - "e3bd2f799a714c8bafd825cd3da0932d": { + "e24d6e6435684922a62eb33e98777b77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "children": [ - "IPY_MODEL_e3393e2df40f4b6cb2c34c615fb87695", - "IPY_MODEL_acb8c210988c47c1aba9373391b76358" - ], - "layout": "IPY_MODEL_6d557186ad59433bb7515e22c2a8e4b0" + "description_width": "", + "font_size": null, + "text_color": null } }, - "e4e38f80fcec49fb88c444aeee836ac8": { + "e2769417c5bb4314adb24f96d854184f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LinkModel", + "model_name": "HTMLStyleModel", "state": { - "source": [ - "IPY_MODEL_49c8c09615b24f3183dcb8eace1c8b6f", - "index" - ], - "target": [ - "IPY_MODEL_c57572e0d3174255bbd88cd5051db3db", - "selected_index" - ] + "description_width": "", + "font_size": null, + "text_color": null } }, - "e5622346c6de44ae8179842d2158ebf4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "e692c9939e9b4f2a9aa7f609a7342a02": { + "e347e872a797477f98db0b528c9e9b10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "StackModel", + "model_name": "DropdownModel", "state": { - "children": [ - "IPY_MODEL_462506374d444c44856848b74ed4dc46", - "IPY_MODEL_d794635bdf3742728bced6b026683db0" + "_options_labels": [ + "raw", + "nested" ], - "layout": "IPY_MODEL_a9a823c3fe514f1fbbf13474a6cbd3a2", - "selected_index": 1, - "titles": [ - "", - "" - ] - } - }, - "e6f2b75902004d5098639bfd8ba3ac08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_c243b96315184bbcb0ec3c0546ae1960", - "style": "IPY_MODEL_948226bbdc9244fd83fcda5944de9108", - "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_v5_dataset\nImages root :\n\t../../test_libia/test_data/caipy_dataset/tags/small_v5_dataset/Images

" + "index": 1, + "layout": "IPY_MODEL_b32ff3c2925c434da42e07f7973f2050", + "style": "IPY_MODEL_fb449840c00c41b0b32e4d996a49cb3b" } }, - "e71ee6ccc60745ecbcd3865fd5522de4": { - "model_module": "@jupyter-widgets/controls", + "e4a6fe4d8ea846e2b8637c28ae106b46": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } + "model_name": "LayoutModel", + "state": {} }, - "e74b5f475bcd4fe988238916f7e8a922": { + "e4d0a4ea24d742788d02abca5e82afb2": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_b74ca75045054bcb9488bc6c9444d3a0", + "layout": "IPY_MODEL_8d009078a1a544c38ce73a1a0582f081", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3b8a36ee2a28484d80ae8b6aac54d711", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.colorsattributes.occludedattributes.position
id
2697916091stop sign13100.22117.54253.43274.9046726.4303[red, white]TrueNone
116123410395teddy bear8849.1966.20378.97379.6884587.4391[grey]None[front]
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n1161234 10395 teddy bear 88 49.19 66.20 378.97 \n\n box_height area attributes.colors attributes.occluded \\\nid \n269791 274.90 46726.4303 [red, white] True \n1161234 379.68 84587.4391 [grey] None \n\n attributes.position \nid \n269791 None \n1161234 [front] " }, "metadata": {}, "output_type": "display_data" @@ -5133,21 +5056,23 @@ ] } }, - "e78a13034b6e436d9fdce600c236468a": { + "e51d9fd0953646c8a0d8fa4a747239d8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "e53847a4f6e04c7aae85f73a42bdeea4": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_1d7f7e7fb4f6494e959f91befa693e04", + "layout": "IPY_MODEL_59904e29a9e649f2a2502048835b64b8", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1763df3f9ef242158b93ed675df78684", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(options=('raw', 'nested'), value='raw')))…" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes
 occludedcolorsposition
 beigeblackbluebrowncyangreengreyorangepinkpurpleredwhiteyellowbackfrontsidetopunknown
id                           
2697916091stop sign13100.220000117.540000253.430000274.90000046726.430300TrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseFalseFalse
116123410395teddy bear8849.19000066.200000378.970000379.68000084587.439100NoneFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -5155,66 +5080,59 @@ ] } }, - "e7b9a727554741fcb369349e53f6c0f3": { + "e623514fc2d4408b876f5b89de2ebbf2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "e673e4911c8849069b120b9ae465f075": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e87f911d52a24f639a6acc54c921faba": { + "e6841b8a15034f088e07288a0a12685c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "VBoxModel", "state": { - "description_width": "" + "children": [ + "IPY_MODEL_95717e222ce64822ba73164ff52adf26", + "IPY_MODEL_076f72a208324224a2c059c30afe2087" + ], + "layout": "IPY_MODEL_27e3269d2c21476481604c21046075dc" } }, - "e8e291ed9b0a4bbbaa98b8a80ced2a01": { + "e88a1dfd998f4ca3aa583863f7f1aef2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "e96122e705064c6aa1919cab33baf4a9": { - "model_module": "@jupyter-widgets/controls", + "e89f8bf1073d4b888056d2de7cbef915": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "LabelModel", - "state": { - "layout": "IPY_MODEL_8e34b7f291bd4d76a9f6e21da9eca863", - "style": "IPY_MODEL_d6e21ce9a5f3412886c186679898f12f", - "value": "Column format" - } + "model_name": "LayoutModel", + "state": {} }, - "e9ecc47c360e40528b5b7b8ac49dd203": { - "model_module": "@jupyter-widgets/controls", + "e9c406676f114897812eab475214e9ef": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "LinkModel", - "state": { - "source": [ - "IPY_MODEL_af5c6e1f126d4d81a620bbb605c0f7ee", - "index" - ], - "target": [ - "IPY_MODEL_907e4b3f7f8b42fc9859d4722f9ef85c", - "selected_index" - ] - } + "model_name": "LayoutModel", + "state": {} }, - "ea0a6048ceb44971885be4794cdb868a": { + "e9f1bb86fde54d7680a43b52cd807224": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_368c3b76181e4906961fa7dc7bb07a2c", + "layout": "IPY_MODEL_681b555d2441409dac189b582c8d7dfa", "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b7d1d35b8976485d9a5d249be29e08bb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
image_idcategory_strcategory_idbox_x_minbox_y_minbox_widthbox_heightareaattributes.occludedattributes.positionattributes.colors
id
2697916091stop sign13100.22117.54253.43274.946726.4303TrueNone[red, white]
\n
", + "text/plain": " image_id category_str category_id box_x_min box_y_min box_width \\\nid \n269791 6091 stop sign 13 100.22 117.54 253.43 \n\n box_height area attributes.occluded attributes.position \\\nid \n269791 274.9 46726.4303 True None \n\n attributes.colors \nid \n269791 [red, white] " }, "metadata": {}, "output_type": "display_data" @@ -5222,80 +5140,116 @@ ] } }, - "ead8e2a950284944ba78c30f0a64d593": { + "eabca0b6e3c14eb8bde18bdcda0e505e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "eabe4dbbc4b04b6d91e436525c26ecb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "DropdownModel", "state": { - "layout": "IPY_MODEL_962871a977284adbb2534fe8e27b397c", - "style": "IPY_MODEL_116dd2fe884141609a3cabafb30e488a", - "value": "

Dataset object containing 2 images and 2 objects\nName :\n\tsmall_v5_dataset\nImages root :\n\t../../test_libia/test_data/caipy_dataset/tags/small_v5_dataset/Images

" + "_options_labels": [ + "raw", + "nested" + ], + "index": 0, + "layout": "IPY_MODEL_860ee4ddf35947fda3cba12039539da8", + "style": "IPY_MODEL_0129bf9898c641fe89b5da4c38a0e215" } }, - "eb1e79ecc87e4ee7812a7d308c1e6c0b": { + "eb736cae76ff48348003d507fbe34373": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "eb7695fed160458a824d2a9d9e12b1a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", + "model_name": "StackModel", "state": { - "description_width": "" + "children": [ + "IPY_MODEL_15fd75c8e40643b2a02b60e6a771cfe5", + "IPY_MODEL_02af80bce8b647dabc7e9cef2fdfb1fd" + ], + "layout": "IPY_MODEL_27b959666fe640798afefcfff3aa2b26", + "selected_index": 0, + "titles": [ + "", + "" + ] } }, - "ee43ad439dae408b931b35643223444f": { + "eb7933fb53e148babebe9872a2ec070e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", + "model_name": "LinkModel", "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null + "source": [ + "IPY_MODEL_47930ec638f54567a0ed33f04d324e45", + "index" + ], + "target": [ + "IPY_MODEL_968a9655aad44b93a738414f651ccdee", + "selected_index" + ] } }, - "ee5854ff501649758ccad33bb0edf5de": { + "eb8ac3f329e740bcb6c99656419d0153": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "eb8fe446efe847e0abfb878b5c30b043": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "StackModel", "state": { - "description_width": "", - "font_size": null, - "text_color": null + "children": [ + "IPY_MODEL_fc79bc66d5724777be83e3aef267de40", + "IPY_MODEL_ef6fc80887974d588e18ccc8f5155d45" + ], + "layout": "IPY_MODEL_4d2a9e7349834459bb5412a1049e828d", + "selected_index": 1, + "titles": [ + "", + "" + ] } }, - "eed00c8689c94ba086bb09f4323c3f08": { + "ee138ef164834f71a83526d9cf8c0214": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { - "description_width": "" + "children": [ + "IPY_MODEL_206b0dc0effa4b82b8edde6f926855d8", + "IPY_MODEL_6ea0b2f306fa4e78bfede1968aca8d1a" + ], + "layout": "IPY_MODEL_62fa72d6da0c4eaa84f200d0265e9871" } }, - "f004ecba0f3e4965b6458ab18211f8f8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f01ce08dade445cf9dcec47719defcb1": { + "ef60d87bb03c4bf8b0f2bde22ca3317a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f0dbeb047943401c91e1ceb723939965": { + "ef6fc80887974d588e18ccc8f5155d45": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_95a6edfb19db4f0b80535dffd281699d", + "layout": "IPY_MODEL_572fd8564f3d45abb37abb6835dcd4d6", "outputs": [ { "data": { - "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 locationspectrumtime
id       
6091480640image1.jpg.jpgexteriorRGBnight
10395500476image2.jpg.jpgexteriorRGBnight
\n", - "text/plain": "" + "text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 widthheightrelative_pathtypetags
 timeweather
id      
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n", + "text/plain": "" }, "metadata": {}, "output_type": "display_data" @@ -5303,77 +5257,141 @@ ] } }, - "f12d34ebb9ca4b7f89cee3a6d5956b6b": { + "f01491943e2c4cb2a9f6f957a64d2190": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "f029474e3c07436dac415e511f4ce22c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ - "IPY_MODEL_b483e713571d495492efb42b40a3e600", + "IPY_MODEL_102523b7282d445cbf63ed9a47263f26", "index" ], "target": [ - "IPY_MODEL_48a9e466b72d47ffb47d01caf7b714fd", + "IPY_MODEL_702d869bb364435e93b918e02477e2e6", "selected_index" ] } }, - "f269d0a8572448d9a9a31886878024d2": { - "model_module": "@jupyter-widgets/base", + "f03fc87d9a5a45278368e3a4faa783e5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "VBoxModel", + "state": { + "children": [ + "IPY_MODEL_a571ca325c534c68851fcb9fdfe808da", + "IPY_MODEL_fa36a7b34d3240338a38f0137ba893ca" + ], + "layout": "IPY_MODEL_23f555c6d17944849ad0d2bb303cb735" + } }, - "f2f462a605ea4c719be284c6f432ce59": { + "f13e2b5ef9fb4f549fafacab5a7b04c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f31a5d9c55ec4e4f87afc75e237aa428": { + "f175e4afc7444d56abc921d8bfcd9c3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelStyleModel", + "state": { + "description_width": "", + "font_family": null, + "font_size": null, + "font_style": null, + "font_variant": null, + "font_weight": null, + "text_color": null, + "text_decoration": null + } + }, + "f1b0ba1141294bba9e15896221a79a4f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_def5ab4f8a2a43a98397c9c622c526db", + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0d427295ce8648edb6feda0b853ca625", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f2c9ff87d18345f6abbae73066dfb1f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f398e7abde9f44818497d03af1b69fa6": { + "f2eb1e636e4d4d048edf91d22b239d78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": { "source": [ - "IPY_MODEL_665c4c436bb342529bf01e32c99b0e55", + "IPY_MODEL_c2c3cf802edd41a586577f22c2b92493", "index" ], "target": [ - "IPY_MODEL_462506374d444c44856848b74ed4dc46", + "IPY_MODEL_724c5af4f03d406083910e7e6eb68058", "selected_index" ] } }, - "f42976d4974242b0a839a036e827d294": { - "model_module": "@jupyter-widgets/base", + "f2f9a404eb7348cb8c76f0a7e6c788ed": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "StackModel", + "state": { + "children": [ + "IPY_MODEL_68321eff63524a33a6c5b9dc5e228532", + "IPY_MODEL_3569328d5b5b45e5895ce8f96922bb2e" + ], + "layout": "IPY_MODEL_d7e4a7497e4f4952b5d4e8c7b26466d5", + "selected_index": 1, + "titles": [ + "", + "" + ] + } }, - "f4d909f54c1b4c0a96d2fb76eb506776": { + "f4e85c457a624d1585f12dc4699f5b96": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f4e007fc83044dc8a4c4b1223e2eebbf": { + "f884dfec3bd045bc87a902bca4fa8d96": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_f607e70a873643ffb0a615f02e4603be", + "layout": "IPY_MODEL_6771dbe5b2774326814610ae2c25a0a1", "outputs": [ { "data": { - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", - "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" + "application/vnd.jupyter.widget-view+json": { + "model_id": "31c5d933f8954b53aff4042d7c4a730f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" }, "metadata": {}, "output_type": "display_data" @@ -5381,43 +5399,22 @@ ] } }, - "f54540d61b62419eac021e3bd010804c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "LinkModel", - "state": { - "source": [ - "IPY_MODEL_f879cebe86e84f2daf3d5d64a4dd0b86", - "index" - ], - "target": [ - "IPY_MODEL_e692c9939e9b4f2a9aa7f609a7342a02", - "selected_index" - ] - } - }, - "f5fba25f9cab45bb8daf9377481da905": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f607e70a873643ffb0a615f02e4603be": { + "f9825da51cb24214990da926e57c1d68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f73b8bed0af648f9b15a279652f50227": { + "fa36a7b34d3240338a38f0137ba893ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_665995a2d44b4e2698e6fb69c100f814", - "IPY_MODEL_8d76fa29b2d3468392279e1b2d0e7a83" + "IPY_MODEL_9a48495171e04a638fd3bc035aa5e398", + "IPY_MODEL_03a9d35fb74940abbd8857ff81848f46" ], - "layout": "IPY_MODEL_1df511c63d7f41c19d46847830648ea0", + "layout": "IPY_MODEL_171755c726fc4961b8b3a44c1c97f894", "selected_index": 1, "titles": [ "", @@ -5425,7 +5422,7 @@ ] } }, - "f78fd9f70020405e958b4539cd004526": { + "fa78d33a09154ea9a6bdcd1cbf61509f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelStyleModel", @@ -5440,108 +5437,110 @@ "text_decoration": null } }, - "f79dfd43903c4452b0f2fa1df000d025": { + "fa97553ef182453d81ef5779123a45a5": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_c3864103377843999a24250381fa600e", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
category string
category_id
13stop sign
88teddy bear
\n
", + "text/plain": " category string\ncategory_id \n13 stop sign\n88 teddy bear" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "fb449840c00c41b0b32e4d996a49cb3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DescriptionStyleModel", + "state": { + "description_width": "" + } + }, + "fb510227fc524e5488c806a700275f83": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f79eae4bdc0b49bba1790a8af63357f8": { + "fb957c147d4e429d9027e53951e92250": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "DropdownModel", + "state": { + "_options_labels": [ + "raw", + "nested" + ], + "index": 1, + "layout": "IPY_MODEL_0a7a04ac4aad4bc4983e00a45e134e20", + "style": "IPY_MODEL_c07965acc0b14832a6fa4e9bcc4e0deb" + } + }, + "fc1bff0843fe4b0e9e4e8fe14e3bb84b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f7e8bfbe60a942b2a00b94464a416211": { + "fc33fd2a506e4e6d829c79ae58dfe23d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, - "f81fd73302c248e2b3810fcc0ecf55b7": { + "fc70beccc8ee448fa418dcfc47e25ddb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LabelStyleModel", - "state": { - "description_width": "", - "font_family": null, - "font_size": null, - "font_style": null, - "font_variant": null, - "font_weight": null, - "text_color": null, - "text_decoration": null - } - }, - "f840a5e024af4c3cb4c2a55b3c9816d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "VBoxModel", "state": { "children": [ - "IPY_MODEL_90c8111282444105aeb4e9cdbddaa495", - "IPY_MODEL_164d41eff09845da98d36f2bafb49942" + "IPY_MODEL_9244bbe01b49415e919d47c4bc51edaa", + "IPY_MODEL_eb7695fed160458a824d2a9d9e12b1a1" ], - "layout": "IPY_MODEL_f79dfd43903c4452b0f2fa1df000d025" + "layout": "IPY_MODEL_1d0889c84e914606a8fce2da106d95db" } }, - "f879cebe86e84f2daf3d5d64a4dd0b86": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ToggleButtonsModel", - "state": { - "_options_labels": [ - "yes ", - "no " - ], - "button_style": "", - "icons": [ - "check", - "times" - ], - "index": 1, - "layout": "IPY_MODEL_d90e23fdc5de4e8693d06d1487f664fc", - "style": "IPY_MODEL_8cfa3a48c69041dda97dcce09c508d27", - "tooltips": [] - } - }, - "f8efbd7eeef84d0ea663c63d38c7753d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "StackModel", + "fc79bc66d5724777be83e3aef267de40": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "children": [ - "IPY_MODEL_d8771d6d18fe4fcf8605a1c5e15e00ce", - "IPY_MODEL_f9e2d860b6784e2bae70aacd9696aa26" - ], - "layout": "IPY_MODEL_15753d0f0b7c40339e3fc4d9d892ee1b", - "selected_index": 0, - "titles": [ - "", - "" + "layout": "IPY_MODEL_cb9133ac6e7f44ca9882990704a90e76", + "outputs": [ + { + "data": { + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
widthheightrelative_pathtypetags.timetags.weather
id
6091480640image1.jpg.jpgnightrainy
10395500476image2.jpg.jpgnightNone
\n
", + "text/plain": " width height relative_path type tags.time tags.weather\nid \n6091 480 640 image1.jpg .jpg night rainy\n10395 500 476 image2.jpg .jpg night None" + }, + "metadata": {}, + "output_type": "display_data" + } ] } }, - "f9655fdfe462442db231096f1c04604b": { - "model_module": "@jupyter-widgets/controls", + "fcc2778eb02948f7bfa49c0b0c6c4c50": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "LabelModel", - "state": { - "layout": "IPY_MODEL_6457415728be4cbe9f264af3403ab3bc", - "style": "IPY_MODEL_b5871347f49a481fa21d9ab365cc1fa5", - "value": "Column format" - } + "model_name": "LayoutModel", + "state": {} }, - "f9e2d860b6784e2bae70aacd9696aa26": { + "fd9426f4ee7a422fb3b1832e4d6e622c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "StackModel", "state": { "children": [ - "IPY_MODEL_8cd1d0095470420f8e6d2fbb8b28457d", - "IPY_MODEL_b56e430ea857498a84e3432c1985fb7c" + "IPY_MODEL_c8c2e438e86f48078dcb5b4ce1ceb9d3", + "IPY_MODEL_52b11275f6e24f92ac3d516ca5affdee" ], - "layout": "IPY_MODEL_7df58bff598b4b52840ad92d85f45e5e", + "layout": "IPY_MODEL_eb8ac3f329e740bcb6c99656419d0153", "selected_index": 0, "titles": [ "", @@ -5549,29 +5548,43 @@ ] } }, - "fa520fd1853643879ef77189a2b5ed2e": { + "fdbd43dcdbfd43a3b3dc9d1c796e6ae1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "fe1b20f6d0204f3eb84d0192f3e7d257": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", + "state": {} + }, + "feab1e2d2666460fa0df8c809844a423": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "LabelModel", "state": { - "width": "auto" + "layout": "IPY_MODEL_8a152d2ea9d841229351a23f588f4e58", + "style": "IPY_MODEL_86b4e9521a294da4a7877f86c34f3a3a", + "value": "Column format" } }, - "faabe27cd21d4c0a866ec9822a7a8fdd": { + "ff03419f453e4ca7a76e9cc16e9ddd61": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { - "layout": "IPY_MODEL_4c28d96cb5cf4332bed6dad63659b8bd", + "layout": "IPY_MODEL_c97e91b06dc040cca96e7a2353471e37", "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "17872b7fc2da400283f1064ef7aa0870", + "model_id": "038ef1d5ecbd4793adb4baa8f33d1091", "version_major": 2, "version_minor": 0 }, - "text/plain": "VBox(children=(HBox(children=(Label(value='Column format'), Dropdown(index=1, options=('raw', 'nested'), value…" + "text/plain": "VBox(children=(HBox(children=(VBox(children=(Label(value='Booleanize'), Label(value='Column format'))), VBox(c…" }, "metadata": {}, "output_type": "display_data" @@ -5579,47 +5592,34 @@ ] } }, - "fb7e7441e17c42c3a58e8bd4bf04ef34": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fc8042ff984444a982b2e8675b5a37b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fd4eed059e104c76b2c45b5ffa0fe211": { - "model_module": "@jupyter-widgets/base", + "ff51c7250dfd489bb4ff9d2b8f78017c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } }, - "fd9fa9b20f264e76a69685a0b80b5f50": { + "fff1b7f819ce4eb58c6b8bb910d73d41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "VBoxModel", + "model_name": "TabModel", "state": { "children": [ - "IPY_MODEL_e3bd2f799a714c8bafd825cd3da0932d", - "IPY_MODEL_f8efbd7eeef84d0ea663c63d38c7753d" + "IPY_MODEL_f1b0ba1141294bba9e15896221a79a4f", + "IPY_MODEL_dc53cfd782b141d4a75f92e948bc51c3", + "IPY_MODEL_226d737a565b4f93a78c43c77ceee68d" ], - "layout": "IPY_MODEL_5444e177e4b64b3d960c8eb8b997a11c" + "layout": "IPY_MODEL_eabca0b6e3c14eb8bde18bdcda0e505e", + "selected_index": 0, + "titles": [ + "Images", + "Annotations", + "Label Map" + ] } - }, - "fe78a68a9ffa4fd7896390027e528756": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ff6eeb6ed8834034ad8492f0e299246f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} } }, "version_major": 2,