forked from sawlani/GLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
221 lines (178 loc) · 9.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#main.py
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.optim as optim
import pickle
import argparse
from types import SimpleNamespace
from matplotlib import rcParams
rcParams.update({'figure.autolayout': False})
from dataloader import create_loaders
from GIN import GIN
from trainers import MMDTrainer, MeanTrainer
def run_experiment(
data = "saved", data_seed=1213, inlier_cls=0, down_rate=0.05, use_node_attr=False, use_node_labels=True,
alpha=1.0, beta=0.0, epochs=150, model_seed=0, landmark_seed=100, num_layers=1, landmark_set_size=4,
device=0, aggregation="MMD", nystrom="LLSVM", bias=False, hidden_dim=64, lr=0.1, weight_decay=1e-5, batch = 64, kernel_batch=64
):
device = torch.device("cuda:" + str(device)) if torch.cuda.is_available() else torch.device("cpu")
# load data
train_loader, test_loader, landmark_loader, num_features = create_loaders(data_name=data,
batch_size=batch,
down_class=inlier_cls,
down_rate=down_rate,
use_node_attr=use_node_attr,
use_node_labels=use_node_labels,
dense=False,
data_seed=data_seed,
landmark_seed=landmark_seed,
landmark_set_size=landmark_set_size)
torch.manual_seed(model_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(model_seed)
model = GIN(nfeat = num_features, nhid=hidden_dim, nlayer=num_layers, bias=bias)
optimizer = optim.SGD(model.parameters(), lr=lr, weight_decay=weight_decay)
if aggregation=="MMD":
trainer = MMDTrainer(
model=model,
optimizer=optimizer,
landmark_loader=landmark_loader,
alpha=alpha,
beta=beta,
device=device,
nystrom=nystrom,
kernel_batch=kernel_batch
)
elif aggregation=="Mean":
trainer = MeanTrainer(
model=model,
optimizer=optimizer,
alpha=alpha,
beta=beta,
device=device
)
epochinfo = []
for epoch in range(epochs+1):
print("Epoch %3d" % (epoch), end="\t")
svdd_loss = trainer.train(train_loader=train_loader)
print("SVDD loss: %f" % (svdd_loss), end="\t")
ap, roc_auc, dists, labels = trainer.test(test_loader=test_loader)
#print("AP: %f" % ap, end="\t")
print("ROC-AUC: %f" % roc_auc)
TEMP = SimpleNamespace()
TEMP.epoch_no = epoch
TEMP.dists = dists
TEMP.labels = labels
TEMP.ap = ap
TEMP.roc_auc = roc_auc
TEMP.svdd_loss = svdd_loss
epochinfo.append(TEMP)
best_svdd_idx = np.argmin([e.svdd_loss for e in epochinfo[1:]])+1
print(" Min SVDD, at epoch %d, AP: %.2f, ROC-AUC: %.2f" % (best_svdd_idx, epochinfo[best_svdd_idx].ap, epochinfo[best_svdd_idx].roc_auc))
print(" At the end, at epoch %d, AP: %.2f, ROC-AUC: %.2f" % (args.epochs, epochinfo[-1].ap, epochinfo[-1].roc_auc))
important_epoch_info = {}
important_epoch_info['svdd'] = epochinfo[best_svdd_idx]
important_epoch_info['last'] = epochinfo[-1]
return important_epoch_info
parser = argparse.ArgumentParser(description='GLAM: PyTorch graph convolutional neural net for whole-graph anomaly detection')
parser.add_argument('--data', default='mixhop',
help='dataset name (default: mixhop)')
parser.add_argument('--batch', type=int, default=64,
help='batch size (default: 64)')
parser.add_argument('--data_seed', type=int, default=1213,
help='seed to split the inlier set into train and test (default: 1213)')
parser.add_argument('--inlier_cls', type=int, default=0,
help='inlier class (default: 0)')
parser.add_argument('--down_rate', type=float, default=0.05,
help='outlier/inlier fraction (default: 0.05)')
parser.add_argument('--use_node_attr', action="store_true",
help='Whether to use continuous node attributes (if available).')
parser.add_argument('--ignore_node_labels', action="store_true",
help='Whether to ignore node labels (if available).')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--epochs', type=int, default=150,
help='number of epochs to train (default: 150)')
parser.add_argument('--hidden_dim', type=int, default=64,
help='number of hidden units (default: 64)')
parser.add_argument('--layers', type=int, default=2,
help='number of hidden layers (default: 2)')
parser.add_argument('--bias', action="store_true",
help='Whether to use bias terms in the GNN.')
parser.add_argument('--aggregation', type=str, default="MMD", choices=["MMD", "Mean"],
help='Type of graph level aggregation (default: MMD)')
parser.add_argument('--use_config', action="store_true",
help='Whether to use configuration from a file')
parser.add_argument('--config_file', type=str, default="configs/config.txt",
help='Name of configuration file (default: configs/config.txt)')
parser.add_argument('--lr', type=float, default=0.1,
help='learning rate (default: 0.1)')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight_decay constant lambda (default: 1e-4)')
parser.add_argument('--landmark_seed', type=int, default=666,
help='Landmark seed (default: 666)')
parser.add_argument('--model_seed', type=int, default=0,
help='Model seed (default: 0)')
parser.add_argument('--landmark_set_size', type=int, default=4,
help='Landmark set size (default: 4)')
args = parser.parse_args()
lrs = [args.lr]
weight_decays = [args.weight_decay]
layercounts = [args.layers]
landmark_seeds = [args.landmark_seed]
model_seeds = [args.model_seed]
landmark_set_sizes = [args.landmark_set_size]
if args.use_config:
with open(args.config_file) as f:
lines = [line.rstrip() for line in f]
for line in lines:
words = line.split()
if words[0] == "LR":
lrs = [float(w) for w in words[1:]]
elif words[0] == "WD":
weight_decays = [float(w) for w in words[1:]]
elif words[0] == "layers":
layercounts = [int(w) for w in words[1:]]
elif words[0] == "landmark_seeds":
landmark_seeds = [int(w) for w in words[1:]]
elif words[0] == "model_seeds":
model_seeds = [int(w) for w in words[1:]]
elif words[0] == "landmark_set_sizes":
landmark_set_sizes = [int(w) for w in words[1:]]
else:
print("Cannot parse line: ", line)
D = {}
for lr in lrs:
for weight_decay in weight_decays:
for landmark_seed in landmark_seeds:
for model_seed in model_seeds:
for layercount in layercounts:
for landmark_set_size in landmark_set_sizes:
print("Running experiment for LR=%f, weight decay = %.1E, landmark seed = %d, model seed = %d, number of layers = %d, landmark set size = %d log N" % (lr, weight_decay, landmark_seed, model_seed, layercount, landmark_set_size))
D[(lr,weight_decay,landmark_seed,model_seed, layercount, landmark_set_size)] = run_experiment(
data=args.data,
data_seed=args.data_seed,
inlier_cls=args.inlier_cls,
down_rate=args.down_rate,
use_node_attr=args.use_node_attr,
use_node_labels=(not args.ignore_node_labels),
epochs=args.epochs,
model_seed=model_seed, # SEED
landmark_seed=landmark_seed, # SEED
num_layers=layercount, # HYPERPARAMETER
landmark_set_size=landmark_set_size, # HYPERPARAMETER
device=args.device,
aggregation=args.aggregation,
bias=args.bias,
hidden_dim=args.hidden_dim,
lr=lr, # HYPERPARAMETER
weight_decay=weight_decay, # HYPERPARAMETER
batch=args.batch
)
if args.use_config:
if not os.path.isdir('outputs'):
os.mkdir('outputs')
with open('outputs/GIN_'+ args.aggregation + '_models_' + args.data + '_' + str(args.data_seed) + '.pkl', 'wb') as f:
pickle.dump(D, f)