-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathroute.py
959 lines (811 loc) · 38.6 KB
/
route.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
# -*- coding: utf-8 -*-
import argparse
import copy
import csv
import json
import re
import sqlite3
import traceback
import os
from vllm import LLM, SamplingParams
from func_timeout import func_set_timeout
import func_timeout
import tqdm
prompt_temp = """Given the following database schema and question, your task is to write a valid SQL query whose execution results can accurately answer the question.
/* Database schema */
{ds}
/* Sample rows of each table */
{sr}
/* Question */
{qs}{hint}
Answer the question by a SQL query only with no explanation:
"""
prompt_sl_temp_sft = """Given the following database schema and question, your task is to extract the tables and columns relevant to solving the question.
/* Database schema */
{ds}
/* Sample rows of each table */
{sr}
/* Question */
{qs}{hint}
Output the tables and columns only with no explanation:
"""
prompt_sl_temp = """Given the following database schema and question, your task is to extract the tables and columns relevant to solving the question.
/* Examples */
Example 1:
Database schema: CREATE TABLE department (Department_ID NUMBER, Name TEXT, Creation TEXT, Ranking NUMBER, Budget_in_Billions NUMBER, Num_Employees NUMBER, PRIMARY KEY(Department_ID, Name, Creation, Ranking, Budget_in_Billions, Num_Employees)); CREATE TABLE head (head_ID NUMBER, name TEXT, born_state TEXT, age NUMBER, PRIMARY KEY(head_ID, name, born_state, age)); CREATE TABLE management (department_ID NUMBER, head_ID NUMBER, temporary_acting TEXT, PRIMARY KEY(department_ID, head_ID, temporary_acting), FOREIGN KEY (head_ID) REFERENCES head(head_ID), FOREIGN KEY (department_ID) REFERENCES department(Department_ID));
Question: What are the names of the heads who are born outside the California state?
Output: {{"head": ["name", "born_state"]}}
Example 2:
Databse schema: CREATE TABLE department (Department_ID NUMBER, Name TEXT, Creation TEXT, Ranking NUMBER, Budget_in_Billions NUMBER, Num_Employees NUMBER, PRIMARY KEY(Department_ID, Name, Creation, Ranking, Budget_in_Billions, Num_Employees)); CREATE TABLE head (head_ID NUMBER, name TEXT, born_state TEXT, age NUMBER, PRIMARY KEY(head_ID, name, born_state, age)); CREATE TABLE management (department_ID NUMBER, head_ID NUMBER, temporary_acting TEXT, PRIMARY KEY(department_ID, head_ID, temporary_acting), FOREIGN KEY (head_ID) REFERENCES head(head_ID), FOREIGN KEY (department_ID) REFERENCES department(Department_ID));
Question: How many departments are led by heads who are not mentioned?
Output: {{"department": ["Department_ID"], "management": ["department_ID"]}}
Example 3:
Database schema: CREATE TABLE department (Department_ID NUMBER, Name TEXT, Creation TEXT, Ranking NUMBER, Budget_in_Billions NUMBER, Num_Employees NUMBER, PRIMARY KEY(Department_ID, Name, Creation, Ranking, Budget_in_Billions, Num_Employees)); CREATE TABLE head (head_ID NUMBER, name TEXT, born_state TEXT, age NUMBER, PRIMARY KEY(head_ID, name, born_state, age)); CREATE TABLE management (department_ID NUMBER, head_ID NUMBER, temporary_acting TEXT, PRIMARY KEY(department_ID, head_ID, temporary_acting), FOREIGN KEY (head_ID) REFERENCES head(head_ID), FOREIGN KEY (department_ID) REFERENCES department(Department_ID));
Question: How many heads of the departments are older than 56?
Output: {{'head': ['age']}}
Now, let’s get started!
/* Database schema */
{ds}
/* Sample rows of each table */
{sr}
/* Question */
{qs}{hint}
Output the tables and columns only with no explanation:
"""
prompt_nc_temp_sft = """Your task is to determine whether the execution results of a SQL query can answer the given question according to the following database schema. If the execution results cannot correctly answer the question, please give me the correct SQL query.
/* Database schema */
{ds}
/* Sample rows of each table */
{sr}
/* Question */
{qs}{hint}
/* SQL query */
{sql}{ex_hint}
Output:
"""
prompt_nc_temp = """Your task is to determine whether the execution results of a SQL query can answer the given question according to the following database schema. If the execution results cannot correctly answer the question, please give me the correct SQL query.
/* Examples */
Example 1:
Question: Average of the last receipt cost of the products whose average lead time is 60 days.
SQL query: SELECT SUM(LastReceiptCost) / COUNT(ProductID) FROM ProductVendor;
Output: The execution results of the SQL query cannot correctly answer the question. The correct SQL query should be:
```sql
SELECT SUM(LastReceiptCost) / COUNT(ProductID) FROM ProductVendor WHERE AverageLeadTime = 60;
```
Example 2:
Question: Calculate the average price of products shipped to the UK.
SQL query: SELECT AVG(UnitPrice) AS avg FROM Invoices WHERE Country = 'UK';
Output: The execution results of the SQL query can correctly answer the question.
Example 3:
Question: What is the total cost for all the orders placed on 5/29/2013?
SQL query: SELECT SUM(TotalDue) FROM PurchaseOrderHeader WHERE OrderDate LIKE '2013-05-29%';
Output: The SQL query can correctly answer the question.
Now, let’s get started!
/* Database schema */
{ds}
/* Sample rows of each table */
{sr}
/* Question */
{qs}{hint}
/* SQL query */
{sql}{ex_hint}
Output:
"""
prompt_cw_temp_sft = """Given the following database schema and question, your task is to write an incomplete SQL query into a complete SQL query whose execution results can correctly answer the question.
/* Database schema */
{ds}
/* Sample rows of each table */
{sr}
/* Question */
{qs}{hint}
/* The incomplete SQL query */
```sql
{sql}
```
Output:
"""
prompt_cw_temp = """Given the following database schema and question, your task is to write an incomplete SQL query into a complete SQL query whose execution results can correctly answer the question.
/* Examples */
Example 1:
Question: How many heads of the departments are older than 56 ?
The incomplete SQL query: ```sql\nELECT count(*);\n```
Output: ```sql\nELECT count(*) FROM head WHERE age > 56;\n```
Example 2:
Question: What are the distinct creation years of the departments managed by a secretary born in state 'Alabama'?
The incomplete SQL query: ```sql\nSELECT DISTINCT T1.creation FROM department AS T1;\n```
Output: ```sql\nSELECT DISTINCT T1.creation FROM department AS T1 JOIN management AS T2 ON T1.department_id = T2.department_id JOIN head AS T3 ON T2.head_id = T3.head_id WHERE T3.born_state = 'Alabama';\n```
Example 3:
Question: Show the name and number of employees for the departments managed by heads whose temporary acting value is 'Yes'?
The incomplete SQL query: ```sql\nSELECT T1.name, T1.num_employees FROM department AS T1 JOIN management AS T2;\n```
Output: ```sql\nSELECT T1.name, T1.num_employees FROM department AS T1 JOIN management AS T2 ON T1.department_id = T2.department_id WHERE T2.temporary_acting = 'Yes';\n```
Now, let’s get started!
/* Database schema */
{ds}
/* Sample rows of each table */
{sr}
/* Question */
{qs}{hint}
/* The incomplete SQL query */
```sql
{sql}
```
Output:
"""
def read_json_file(file_path):
try:
with open(file_path, 'r', encoding='utf-8-sig') as file:
data = json.load(file)
return data
except Exception as e:
print("="*10,e)
return None
class LLM_Model(object):
def __init__(self, model= ''):
self.model = model
model = model.lower().replace('_','').replace('-','')
if 'qwen2' in model:
self.tag ='qwen2'
elif 'llama3' in model:
self.tag ='llama3'
elif 'llama2' in model:
self.tag ='llam2'
elif 'deepseek' in model:
self.tag ='deepseek'
elif 'mistral' in model:
self.tag ='mistral'
elif 'codellama' in model:
self.tag = 'codellama'
else:
raise TypeError(f"Unexpect model: {model}.")
self.llm = LLM(model=self.model,
seed=123,
gpu_memory_utilization=0.9,
tensor_parallel_size=args.gpus,
trust_remote_code=True,
)
self.tokenizer = self.llm.get_tokenizer()
def generate_response(self, prompts, max_tokens=1024, temperature=0.01, top_p=0.5):
sampling_params = SamplingParams(temperature=temperature, top_p=top_p, max_tokens=max_tokens, skip_special_tokens=True, stop=self.tokenizer.eos_token)
if self.tag in ['mistral']:
messages_list = [[{"role": "user", "content": p}] for p in prompts]
else:
messages_list = [[{"role": "system", "content": "You are a helpful SQLite assistant."},{"role": "user", "content": p}] for p in prompts]
messages_list = self.tokenizer.apply_chat_template(messages_list, add_generation_prompt=True,tokenize=False)
outputs = self.llm.generate(messages_list, sampling_params)
return [output.outputs[0].text for output in outputs]
class LLM_Online(object):
def __init__(self, model= "qwen72b", device = [0]):
None
def generate_response(self, prompts):
rs = []
for prompt in tqdm.tqdm(prompts):
res = None # your online LLM
rs.append(res)
return rs
def parse_dataset(data_path, mode = 'dev', dataset = 'bird'):
# redirect path
data_tuples_path = ''
if dataset == 'bird':
data_tuples_path = os.path.join(data_path, dataset, mode, f'{mode}.json')
elif 'spider_DK' == dataset:
data_tuples_path = os.path.join(data_path, 'spider', 'Spider_DK.json')
elif 'spider_real' == dataset:
data_tuples_path = os.path.join(data_path, 'spider', 'spider-realistic.json')
elif 'spider' in dataset:
if mode == 'test':
data_tuples_path = os.path.join(data_path, 'spider','test_data/dev.json')
else:
data_tuples_path = os.path.join(data_path, 'spider', f'{mode}.json')
else:
raise TypeError(f"Unexpect dataset: {dataset}.")
data_tuples = read_json_file(data_tuples_path)
return data_tuples
def convert_fk_index(data):
fk_holder = []
table_names_original = [i.lower() for i in data['table_names_original']] # some bug
column_names_original = [(i[0], i[1].lower()) for i in data['column_names_original']]
for fk in data["foreign_keys"]:
tn, col, ref_tn, ref_col = fk[0][0], fk[0][1], fk[1][0], fk[1][1]
if type(tn) is str:
tn = tn.lower()
if type(col) is str:
col = col.lower()
if type(ref_tn) is str:
ref_tn = ref_tn.lower()
if type(ref_col) is str:
ref_col = ref_col.lower()
ref_cid, cid = None, None
try:
tid =table_names_original.index(tn)
ref_tid = table_names_original.index(ref_tn)
for i, (tab_id, col_org) in enumerate(column_names_original):
if tab_id == ref_tid and ref_col == col_org:
ref_cid = i
elif tid == tab_id and col == col_org:
cid = i
if ref_cid and cid:
fk_holder.append([cid, ref_cid])
except:
traceback.print_exc()
print("table_names_original: ", table_names_original)
print("finding tab name: ", tn, ref_tn)
print(data)
# sys.exit()
return fk_holder
def dump_db_json_schema(db, f):
'''read table and column info'''
try:
conn = sqlite3.connect(db)
except:
print(db)
exit()
conn.execute('pragma foreign_keys=ON')
cursor = conn.execute("SELECT name FROM sqlite_master WHERE type='table';")
data = {'db_id': f,
'table_names_original': [],
'table_names': [],
'column_names_original': [(-1, '*')],
'column_names': [(-1, '*')],
'column_types': ['text'],
'primary_keys': [],
'foreign_keys': []}
fk_holder = []
for i, item in enumerate(cursor.fetchall()):
table_name = item[0]
data['table_names_original'].append(table_name)
data['table_names'].append(table_name.lower().replace("_", ' '))
fks = conn.execute("PRAGMA foreign_key_list('{}') ".format(table_name)).fetchall()
#print("db:{} table:{} fks:{}".format(f,table_name,fks))
fk_holder.extend([[(table_name, fk[3]), (fk[2], fk[4])] for fk in fks])
cur = conn.execute("PRAGMA table_info('{}') ".format(table_name))
for j, col in enumerate(cur.fetchall()):
data['column_names_original'].append((i, col[1]))
data['column_names'].append((i, col[1].lower().replace("_", " ")))
#varchar, '' -> text, int, numeric -> integer,
col_type = col[2].lower()
if 'char' in col_type or col_type == '' or 'text' in col_type or 'var' in col_type:
data['column_types'].append('text')
elif 'int' in col_type or 'numeric' in col_type or 'decimal' in col_type or 'number' in col_type\
or 'id' in col_type or 'real' in col_type or 'double' in col_type or 'float' in col_type:
data['column_types'].append('number')
elif 'date' in col_type or 'time' in col_type or 'year' in col_type:
data['column_types'].append('time')
elif 'boolean' in col_type:
data['column_types'].append('boolean')
else:
data['column_types'].append('others')
if col[5] == 1:
data['primary_keys'].append(len(data['column_names'])-1)
data["foreign_keys"] = fk_holder
data['foreign_keys'] = convert_fk_index(data)
return data
def get_schema_dict(db, kk=3):
"""
Get database's schema, which is a dict with table name as key
and list of column names as value
:param db: database path
:return: schema dict
"""
data = dump_db_json_schema(db,db.split('/')[-1])
tables = data['table_names_original']
column_types = data['column_types']
primary_keys = data['primary_keys']
foreign_keys = data['foreign_keys']
column_names = data['column_names_original']
schema_dict = {
'tables': {},
'foreign_keys':[]
}
for i, table in enumerate(tables):
t = {}
for j, c in enumerate(column_names):
if c[0] == i:
if j in primary_keys:
t[c[1]] = [column_types[j].upper(), True]
else:
t[c[1]] = [column_types[j].upper(), True]
schema_dict['tables'][table] = t
for foreign_key in foreign_keys:
t1 = tables[column_names[foreign_key[0]][0]]
c1 = column_names[foreign_key[0]][1]
t2 = tables[column_names[foreign_key[1]][0]]
c2 = column_names[foreign_key[1]][1]
schema_dict['foreign_keys'].append([t1,c1,t2,c2])
conn = sqlite3.connect(db)
cursor = conn.cursor()
# get exapmles
for table in schema_dict['tables'].keys():
try:
select_query = f'SELECT * FROM `{table}` LIMIT {kk}'
cursor.execute(select_query)
rows = cursor.fetchall()
cursor.execute(f"PRAGMA table_info(`{table}`);")
columns = [column[1] for column in cursor.fetchall() ]
for i, c in enumerate(columns):
cls_valuse = [f"{row[i][0:100]}..." if type(row[i]) is str and len(row[i]) > 100 else row[i] for row in rows]
schema_dict['tables'][table][c].append(cls_valuse)
except Exception as e:
print(e)
return schema_dict
def get_example_str(schema_dict, k=1):
tables = list(schema_dict['tables'].keys())
examples = {}
for table in tables:
table_dict = schema_dict['tables'][table]
example = []
for cls in table_dict.keys():
example.append(table_dict[cls][2])
example_str = []
for i, v in enumerate(example[0]):
example_str.append(tuple([e[i] for e in example]))
if (i+1) == k:
break
examples[table] = example_str
e_s = ''
for key in examples.keys():
e_s += f"{key}: " + str(examples[key])+'\n'
return e_s[:-1]
def get_schmea_str_and_examples(schema_dict):
schmea_str = ""
tables = list(schema_dict['tables'].keys())
examples = {}
for table in tables:
if ' ' in table:
table_str = f'CREATE TABLE "{table}" ('
else:
table_str = f"CREATE TABLE {table} ("
table_dict = schema_dict['tables'][table]
pk_str = ''
example = []
for cls in table_dict.keys():
try:
cls_ = f'"{cls}"' if ' ' in cls else cls
table_str += f"{cls_} {table_dict[cls][0]}, "
if table_dict[cls][1]:
pk_str += cls_+', '
example.append(table_dict[cls][2])
except Exception as e:
print(e)
example_str = []
try:
for i, v in enumerate(example[0]):
example_str.append(tuple([e[i] for e in example]))
except Exception as e:
print(e)
examples[table] = example_str
if pk_str != '':
table_str += f"PRIMARY KEY({pk_str[:-2]}), "
fk_str = ''
for fk in schema_dict['foreign_keys']:
if fk[0] == table and fk[2] in tables:
if fk[3] in schema_dict['tables'][fk[2]].keys():
fk = [f'"{f}"' if ' ' in f else f for f in fk ]
fk_str += f'FOREIGN KEY ({fk[1]}) REFERENCES {fk[2]}({fk[3]}), '
if fk_str != '':
table_str += fk_str
schmea_str += table_str[:-2] +'); '
schmea_str = schmea_str[:-1]
e_s = ''
for key in examples.keys():
e_s += f"{key}: " + str(examples[key])+'\n'
return schmea_str, e_s[:-1]
# parse SQL
def parse_sql_from_string(input_string):
input_string = input_string.replace('\n', ' ').replace('\t','')
rs = ''
if '```sql' in input_string:
try:
sql_pattern = r'```sql(.*?)```'
all_sqls = []
for match in re.finditer(sql_pattern, input_string, re.DOTALL):
all_sqls.append(match.group(1).strip())
if all_sqls:
rs = all_sqls[-1]
if 'SELECT' not in rs and len(all_sqls)>1:
rs = all_sqls[-2]
except:
None
if 'select' in input_string.lower() and rs=='':
rs = input_string[input_string.find('SELECT'):]
if ';' in rs: # end
rs = rs[:input_string.find(';')+1]
if rs == '':
rs = 'SELECT xx FROM xx'
return replace_multiple_spaces(rs).replace('```','')
def replace_multiple_spaces(text):
return re.sub(r'\s{2,}', ' ', text)
def filter_dict_by_sql(schema_dict, sql):
schema_dict_ = copy.deepcopy(schema_dict)
keys = list(schema_dict_['tables'].keys())
keys.sort(key=lambda x: - len(x))
# tables
for table in keys:
if f'from {table.lower()}' not in sql.lower() and f'join {table.lower()}' not in sql.lower():
schema_dict_['tables'].pop(table, None)
# columns
keys = list(schema_dict_['tables'].keys())
keys.sort(key=lambda x: - len(x))
for table in keys:
cls_keys = list(schema_dict_['tables'][table].keys())
cls_keys.sort(key=lambda x: - len(x))
tabel_dict = copy.deepcopy(schema_dict_['tables'][table])
for cls in cls_keys:
if cls.lower() not in sql.lower():
schema_dict_['tables'][table].pop(cls, None)
if len(schema_dict_['tables'][table].keys()) == 0:
# schema_dict_['tables'][table] = tabel_dict # for COUNT(*)
for cls in tabel_dict.keys():
if tabel_dict[cls][1] == True:
schema_dict_['tables'][table][cls] = tabel_dict[cls]
if len(schema_dict_['tables'][table].keys()) == 0:
schema_dict_['tables'][table][tabel_dict.keys()[0]] = tabel_dict[tabel_dict.keys()[0]]
schema_dict_['tables'][table][tabel_dict.keys()[1]] = tabel_dict[tabel_dict.keys()[1]]
# for COUNT(*)
return schema_dict_
def filter_dict_by_sl(schema_dict, sql):
schema_dict_ = copy.deepcopy(schema_dict)
keys = list(schema_dict_['tables'].keys())
keys.sort(key=lambda x: - len(x))
# tables
for table in keys:
if f'{table.lower()}' not in sql.lower():
schema_dict_['tables'].pop(table, None)
# columns
keys = list(schema_dict_['tables'].keys())
keys.sort(key=lambda x: - len(x))
for table in keys:
cls_keys = list(schema_dict_['tables'][table].keys())
cls_keys.sort(key=lambda x: - len(x))
tabel_dict = copy.deepcopy(schema_dict_['tables'][table])
for cls in cls_keys:
if cls.lower() not in sql.lower():
schema_dict_['tables'][table].pop(cls, None)
if len(schema_dict_['tables'][table].keys()) == 0:
# schema_dict_['tables'][table] = tabel_dict # for COUNT(*)
for cls in tabel_dict.keys():
if tabel_dict[cls][1] == True:
schema_dict_['tables'][table][cls] = tabel_dict[cls]
if len(schema_dict_['tables'][table].keys()) == 0:
schema_dict_['tables'][table][tabel_dict.keys()[0]] = tabel_dict[tabel_dict.keys()[0]]
schema_dict_['tables'][table][tabel_dict.keys()[1]] = tabel_dict[tabel_dict.keys()[1]]
# for COUNT(*)
return schema_dict_
@func_set_timeout(5)
def execute_query_limit(db_path, query):
error = ''
result = None
conn = sqlite3.connect(db_path, timeout=5.0, check_same_thread=False)
cursor = conn.cursor()
cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchone()
cursor.close()
conn.close()
return result, error
def execute_query(db_path, query):
try:
result, error = execute_query_limit(db_path, query)
except func_timeout.exceptions.FunctionTimedOut:
error = "SQL execution timeout"
print("*"*30, error, query)
result = None
except Exception as e:
error = str(e)
print("*"*30, error, query)
result = None
return result, error
def replace_syn(data1, data2):
for i in range(len(data1)):
if data1[i]['question'] == data2[i]['SpiderQuestion']:
data1[i]['question'] = data2[i]['SpiderSynQuestion']
return data1
def eval_all(args):
dataset= args.dataset
mode=args.mode
data_tuples = parse_dataset(args.data_path, mode, dataset)
batch_size = args.batch_size
if dataset == 'spider_syn':
data2 = read_json_file(os.path.join(args.data_path, 'spider', f'{mode}_syn.json'))
data_tuples = replace_syn(data_tuples,data2)
dataset = 'spider'
args.tag += '_syn'
if dataset == 'spider_DK':
args.tag += '_DK'
dataset = 'spider'
if dataset == 'spider_real':
args.tag += '_real'
dataset = 'spider'
if dataset == 'bird':
kk = 5
else:
kk = 10
kkkkk = 1 if dataset=='bird' else 3
if 'online' in args.tag:
generator = LLM_Online()
else:
generator = LLM_Model(args.LLM_model)
tag = args.tag
flg1 = False
flg2 = False
flg3 = False
flg4 = False
old_flgs = args.flags
args.flags = args.flags.split('_')
if args.flags[0] == '1':
flg1 = True
if args.flags[1] == '1':
flg2 = True
if args.flags[2] == '1':
flg3 = True
if args.flags[3] == '1':
flg4 = True
# generate SQL
if True:
sql_results = []
data_header = [["NLQ", "Predict", "GOLD", 'database']]
prompts = []
for index, row in enumerate(data_tuples):
if 'spider' in dataset:
row['SQL'] = row['query']
if 'drspider' in dataset:
row['SQL'] = row['query']
question, db_id = row['question'], row['db_id']
if dataset == 'spider':
if mode == 'test':
db_path = os.path.join(args.data_path, dataset, 'test_database', db_id, f"{db_id}.sqlite")
else:
db_path = os.path.join(args.data_path, dataset, 'database', db_id, f"{db_id}.sqlite")
elif dataset == 'drspider':
db_path = os.path.join(args.data_path, db_id, f"{db_id}.sqlite")
elif dataset == 'bird':
db_path = os.path.join(args.data_path, dataset, f'{mode}/{mode}_databases', db_id, f"{db_id}.sqlite")
else:
raise TypeError(f"Unexpect dataset: {dataset}.")
schema_dict = get_schema_dict(db_path, kk = kk)
database_schema, examples = get_schmea_str_and_examples(schema_dict)
schema_dict_ = schema_dict
if dataset == 'bird':
prompt = [question, schema_dict, f"\n\n/* Question hint */\n{row['evidence']}" if row['evidence'] != '' else '', schema_dict_]
else:
prompt = [question, schema_dict, '', schema_dict_]
prompts.append([database_schema, str(examples), question, row['SQL'], db_id, prompt, db_path])
n_samples = len(data_tuples)
n_batches = (n_samples - 1)//batch_size + 1
for i in range(n_batches):
start = i*batch_size
end = n_samples if i== n_batches -1 else (i+1)*batch_size
batch_prompts = prompts[start: end]
schema_dicts = [] # only keep the tables
# schema linking
if flg1 or flg2:
response_strs = None
c_response_strs = None
if flg1:
if args.eval_sft == 1:
c_response_strs = generator.generate_response(prompts=[prompt_sl_temp_sft.format(ds=j[0],sr=get_example_str(j[5][1],kkkkk),qs=j[2],hint=j[5][2]) for j in
batch_prompts])
else:
c_response_strs = generator.generate_response(prompts=[prompt_sl_temp.format(ds=j[0],sr=get_example_str(j[5][1],kkkkk),qs=j[2],hint=j[5][2]) for j in
batch_prompts])
if flg2:
response_strs = generator.generate_response(prompts=[prompt_temp.format(ds=j[0],sr=get_example_str(j[5][1],kkkkk),qs=j[2],hint=j[5][2]) for j in batch_prompts])
if c_response_strs is None:
c_response_strs = response_strs
if response_strs is None:
response_strs = c_response_strs
for j, response_str in enumerate(c_response_strs):
schema_dict = batch_prompts[j][5][1]
gt_sql = batch_prompts[j][3]
# schema_dict_gt = filter_dict_by_sql(batch_prompts[j][5][1], gt_sql)
# sl
c_sql_str1 = response_str.replace('"',"'").replace('\'',"")
schema_dict_1 = filter_dict_by_sl(batch_prompts[j][5][1], c_sql_str1)
# pre-sql
c_sql_str2 = parse_sql_from_string(response_strs[j]).replace('"',"'").replace('\'',"")
schema_dict_2 = filter_dict_by_sql(batch_prompts[j][5][1], c_sql_str2)
schema_dict_old = copy.deepcopy(schema_dict)
keys1 = schema_dict_1['tables'].keys()
keys2 = schema_dict_2['tables'].keys()
all_keys = list(schema_dict_old['tables'].keys())
for key in all_keys:
if key not in keys1 and key not in keys2:
schema_dict_old['tables'].pop(key, None)
else:
clss = []
if key in keys1:
clss += schema_dict_1['tables'][key].keys()
if key in keys2:
clss += schema_dict_2['tables'][key].keys()
clss = list(set(clss))
for k in list(schema_dict_old['tables'][key].keys()):
if k not in clss:
schema_dict_old['tables'][key].pop(k,None)
if len(schema_dict_old['tables'][key].keys()) == 0:
schema_dict_old['tables'].pop(key, None)
schema_dict_ = schema_dict_old
# schema_dict_ = schema_dict_gt # gt
schema_dict_table = copy.deepcopy(schema_dict)
for key in schema_dict['tables'].keys():
if key not in schema_dict_['tables'].keys():
schema_dict_table['tables'].pop(key,None)
schema_dicts.append(schema_dict_table)
if j == 0:
print("######", response_str, list(schema_dict_old['tables'].keys()) )
ds, sr = get_schmea_str_and_examples(schema_dict_)
batch_prompts[j][0] = ds
batch_prompts[j][1] = sr
else:
for j, v in enumerate(batch_prompts):
batch_prompts[j][1] = get_example_str(batch_prompts[j][5][1],kkkkk)
# text-to-sql
final_prompts=[prompt_temp.format(ds=j[0],sr=j[1],qs=j[2],hint=j[5][2]) for j in batch_prompts]
response_strs = generator.generate_response(prompts=final_prompts)
def contains_subquery(sql_query, tables):
sql = sql_query.lower()
select_num = 0
join_num = 0
tmp = sql
while 'select' in tmp:
tmp = tmp[tmp.find('select')+6:]
select_num += 1
tmp = sql
while 'join' in tmp:
tmp = tmp[tmp.find('select')+6:]
join_num += 1
table_num = len([key for key in tables if f"from {key.lower()}" in sql or f"join {key.lower()}" in sql])
if table_num == 1:
hard = 1
elif table_num==2:
hard = 2
else:
hard = 3
return hard
nc_idx = []
continue_sqls = []
# noisy correction
if flg3:
predSQLs = [parse_sql_from_string(response_str) for response_str in response_strs]
nc_prompts = []
for j in range(len(response_strs)):
v = batch_prompts[j]
predSQL = predSQLs[j]
ds = get_schmea_str_and_examples(v[5][1])[0]
sr = get_example_str(v[5][1],kkkkk)
ex_hint = execute_query(batch_prompts[j][6], predSQL)[1]
if ex_hint != '':
ex_hint = f"\n\n/* Execution exception */\n{ex_hint}"
# ex_hint = ''
if args.eval_sft == 1:
nc_prompts.append(prompt_nc_temp_sft.format(ds=ds ,sr=sr, qs=v[2], ex_hint = ex_hint, hint=v[5][2],sql = predSQL))
else:
nc_prompts.append(prompt_nc_temp.format(ds=ds ,sr=sr, qs=v[2], ex_hint = ex_hint, hint=v[5][2],sql = predSQL))
response_strs_ = generator.generate_response(prompts=nc_prompts)
for idx, v in enumerate(response_strs_):
if idx == 0:
print("******", nc_prompts[0], '\n', v, batch_prompts[idx][3])
v_lower = v.lower()
v_lower = v_lower[:v_lower.find('select')+6] if 'select' in v_lower else v_lower
flag = 'select' in v_lower and ('can correctly answer' not in v_lower
and 'can answer correctly' not in v_lower
and 'is correct' not in v_lower
and 'will answer correctly' not in v_lower
and 'will correctly answer' not in v_lower
and 'can answer ' not in v_lower
and 'can accurately answer' not in v_lower
and 'can answer accurately' not in v_lower
and 'is correct' not in v_lower
and 'will answer accurately' not in v_lower
and 'will accurately answer' not in v_lower
and 'can answer ' not in v_lower )
pre_sql = parse_sql_from_string(response_strs[idx])
if flag:
ex_flg2 = True if execute_query(batch_prompts[idx][6], parse_sql_from_string(v))[1] == '' else False
# if ex_flg2:
if ex_flg2:
response_strs[idx] = v
pre_sql = parse_sql_from_string(response_strs[idx])
ex_flg3 = True if execute_query(batch_prompts[idx][6], pre_sql)[1] == '' else False
hard = contains_subquery(pre_sql, batch_prompts[idx][5][1]['tables'].keys())
if ex_flg3 == False or hard > 2:
common_sql = 'SELECT '
continue_sqls.append(common_sql)
nc_idx.append(idx)
else:
for idx, v in enumerate(response_strs):
pre_sql = parse_sql_from_string(response_strs[idx])
ex_flg3 = True if execute_query(batch_prompts[idx][6], pre_sql)[1] == '' else False
hard = contains_subquery(pre_sql, batch_prompts[idx][5][1]['tables'].keys())
if ex_flg3 == False or hard > 2:
common_sql = 'SELECT '
continue_sqls.append(common_sql)
nc_idx.append(idx)
# continuation writing
if flg4:
cl_prompts = []
for j, idx in enumerate(nc_idx):
v = batch_prompts[idx]
ds = get_schmea_str_and_examples(v[5][1])[0]
sr = get_example_str(v[5][1],kkkkk)
common_sql = continue_sqls[j]
if args.eval_sft == 1:
cl_prompts.append(prompt_cw_temp_sft.format(ds=ds, sr=sr, qs=v[2],hint=v[5][2], sql = common_sql))
else:
cl_prompts.append(prompt_cw_temp.format(ds=ds, sr=sr, qs=v[2],hint=v[5][2], sql = common_sql))
if len(nc_idx) > 0:
response_strs_ = generator.generate_response(prompts=cl_prompts)
print("%%%%%%%%%%%%%%%%%%",response_strs_[0])
for idx, v in enumerate(nc_idx):
if execute_query(batch_prompts[v][6], parse_sql_from_string(response_strs_[idx]))[0] is not None:
response_strs[v] = response_strs_[idx]
for j, response_str in enumerate(response_strs):
database_schema = batch_prompts[j][0]
question = batch_prompts[j][2]
gt_sql = replace_multiple_spaces(batch_prompts[j][3])
db_id = batch_prompts[j][4]
prompt = final_prompts[j]
print(f"=={start+j+1}/{len(data_tuples)}=={db_id}=={tag}==================")
try:
if dataset == 'spider':
if mode == 'test':
db_path = os.path.join(args.data_path, dataset, 'test_database', db_id, f"{db_id}.sqlite")
else:
db_path = os.path.join(args.data_path, dataset, 'database', db_id, f"{db_id}.sqlite")
elif dataset == 'bird':
db_path = os.path.join(args.data_path, dataset, f'{mode}/{mode}_databases', db_id, f"{db_id}.sqlite")
else:
raise TypeError(f"Unexpect dataset: {dataset}.")
SQL_str = parse_sql_from_string(response_str)
except Exception as e:
res = f'error: {str(e)}'
print(res, response_str)
sql_results.append([question, SQL_str, gt_sql, db_id])
print(prompt)
print(f"Question: {question}")
print(f"Raw Resp: {response_str}")
print(f"Answer: {SQL_str}")
print(f"Ground: {gt_sql}")
if SQL_str== 'None':
exit()
if not os.path.isdir(os.path.join(args.output_path, f"{tag}_{dataset}")):
os.makedirs(os.path.join(args.output_path, f"{tag}_{dataset}"))
with open(os.path.join(args.output_path, f"{tag}_{dataset}", f"rs_{old_flgs}.csv"), mode='w', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerows(data_header + sql_results)
import os
import pynvml
pynvml.nvmlInit()
def usegpu(need_gpu_count=1):
nouse=[]
for index in range(pynvml.nvmlDeviceGetCount()):
# 这里的0是GPU id
handle = pynvml.nvmlDeviceGetHandleByIndex(index)
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
used= meminfo.used/meminfo.total
if used<0.3:
nouse.append(index)
if len(nouse)>=need_gpu_count:
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, nouse[:need_gpu_count]))
# return nouse[:need_gpu_count]
print(nouse[:need_gpu_count])
return need_gpu_count
elif len(nouse)>0:
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, nouse))
return len(nouse)
else:
return 0
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='SQL')
parser.add_argument("--dataset", default='spider', type=str)
parser.add_argument("--data_path", default='./dataset', type=str)
parser.add_argument("--output_path", default='./dataset', type=str)
parser.add_argument("--mode", default='dev', type=str)
parser.add_argument("--tag", default='0701', type=str)
parser.add_argument("--gpus", default=0, type=int)
parser.add_argument("--eval_sft", default=1, type=int)
parser.add_argument("--flags", default='1_0_0', type=str)
parser.add_argument("--LLM_model", default='/disk2/qinyang/qwen2-1.5b-instruct', type=str)
parser.add_argument("--batch_size", default=32, type=int)
args = parser.parse_args()
usegpu(need_gpu_count=args.gpus)
print(args)
eval_all(args)