-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathpypow_14_a3c_final.py
316 lines (266 loc) · 14.9 KB
/
pypow_14_a3c_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
__author__ = 'Amar'
# Copyright (C) 2018 - 2019 Amarsagar Reddy Ramapuram Matavalam
# Authors: Amarsagar Reddy Ramapuram Matavalam <[email protected]>
import threading
import numpy as np
import tensorflow as tf
import pylab
import time
import gym
from keras.layers import Dense, Input
from keras.models import Model
from keras.optimizers import Adam
from keras import backend as K
import pypownet.environment
import os
import pypownet.chronic
# global variables for threading
episode = 0
scores = []
# hyper parameters for training
game_level_global = "datasets_sub_7" # choose one of ["datasets_sub_7","datasets_sub_4","datasets"]
game_over_mode_global = "easy" # choose one of ["easy", "soft", "hard"]
chronic_loop_mode_global = "natural" # choose one of ["natural", "random", "fixed"]
time_step_end = 1000 # this is the maximum timesteps per episode
EPISODES_train = 500 # increase these episodes to 3k in the beginning as the episodes will be very short in the beginning
training_batch_size = 100 # memory size to be used for updating the NN model weights
num_threads = 1 # 48 or 16 or 32 - corresponds to parallel agents
hidden_layer_1_size = 200 # this is the shared layer between actor and critic
hidden_layer_2_size = 50 # this is the hidden layer size in actor and critic
input_dir = 'public_data/'
def set_environement(game_level = game_level_global, chronic_looping_mode = chronic_loop_mode_global, game_over_mode = game_over_mode_global, start_id=40):
"""
Load the first chronic (scenario) in the directory public_data/datasets
"""
return pypownet.environment.RunEnv(parameters_folder=os.path.abspath(input_dir),
game_level=game_level,
chronic_looping_mode=chronic_looping_mode, start_id=start_id,
game_over_mode=game_over_mode)
# This is A3C(Asynchronous Advantage Actor Critic) agent(global)
class A3CAgent:
def __init__(self, state_size, action_size, env_name):
# get size of state and action
self.state_size = state_size
self.action_size = action_size
# get gym environment name
self.env_name = env_name
# these are hyper parameters for the A3C
self.actor_lr = 0.0001
self.critic_lr = 0.0001
self.discount_factor = .95
self.hidden1, self.hidden2 = 200, 50
self.threads = num_threads # 48 or 16 or 32 - corresponds to parallel agents
# create model for actor and critic network
self.actor, self.critic = self.build_model()
# method for training actor and critic network
self.optimizer = [self.actor_optimizer(), self.critic_optimizer()]
self.sess = tf.InteractiveSession()
K.set_session(self.sess)
self.sess.run(tf.global_variables_initializer())
# approximate policy and value using Neural Network
# actor -> state is input and probability of each action is output of network
# critic -> state is input and value of state is output of network
# actor and critic network share first hidden layer
def build_model(self):
state = Input(batch_shape=(None, self.state_size))
shared = Dense(self.hidden1, input_dim=self.state_size, activation='relu', kernel_initializer='he_uniform')(state)
actor_hidden = Dense(self.hidden2, activation='relu', kernel_initializer='he_uniform')(shared)
action_prob = Dense(self.action_size, activation='softmax', kernel_initializer='he_uniform')(actor_hidden)
value_hidden = Dense(self.hidden2, activation='relu', kernel_initializer='he_uniform')(shared)
state_value = Dense(1, activation='linear', kernel_initializer='he_uniform')(value_hidden)
actor = Model(inputs=state, outputs=action_prob)
critic = Model(inputs=state, outputs=state_value)
actor._make_predict_function()
critic._make_predict_function()
actor.summary()
critic.summary()
return actor, critic
# make loss function for Policy Gradient
# [log(action probability) * advantages] will be input for the back prop
# we add entropy of action probability to loss
def actor_optimizer(self):
action = K.placeholder(shape=(None, self.action_size))
advantages = K.placeholder(shape=(None, ))
policy = self.actor.output
good_prob = K.sum(action * policy, axis=1)
eligibility = K.log(good_prob + 1e-10) * K.stop_gradient(advantages)
loss = -K.sum(eligibility)
entropy = K.sum(policy * K.log(policy + 1e-10), axis=1)
actor_loss = loss + 0.01*entropy
optimizer = Adam(lr=self.actor_lr)
updates = optimizer.get_updates(self.actor.trainable_weights, [], actor_loss)
train = K.function([self.actor.input, action, advantages], [], updates=updates)
return train
# make loss function for Value approximation
def critic_optimizer(self):
discounted_reward = K.placeholder(shape=(None, ))
value = self.critic.output
loss = K.mean(K.square(discounted_reward - value))
optimizer = Adam(lr=self.critic_lr)
updates = optimizer.get_updates(self.critic.trainable_weights, [], loss)
train = K.function([self.critic.input, discounted_reward], [], updates=updates)
return train
# make agents(local) and start training
def train(self):
try:
self.load_model('pypow_14_a3c')
print("Loaded saved NN model parameters \n")
except:
print("No existing model is found or saved model sizes do not match - initializing random NN weights \n")
agents = [Agent(i, self.actor, self.critic, self.optimizer, self.env_name, self.discount_factor,
self.action_size, self.state_size) for i in range(self.threads)]
for agent in agents:
agent.start()
while (len(scores) < EPISODES_train ):
time.sleep(200) # main thread saves the model every 200 sec
if (len(scores)>10):
self.save_model('pypow_14_a3c')
print("saved NN model at episode", episode, "\n")
def save_model(self, name):
self.actor.save_weights(name + "_actor.h5")
self.critic.save_weights(name + "_critic.h5")
def load_model(self, name):
self.actor.load_weights(name + "_actor.h5")
self.critic.load_weights(name + "_critic.h5")
# This is Agent(local) class for threading
class Agent(threading.Thread):
def __init__(self, index, actor, critic, optimizer, env_name, discount_factor, action_size, state_size):
threading.Thread.__init__(self)
self.states = []
self.rewards = []
self.actions = []
self.index = index
self.actor = actor
self.critic = critic
self.optimizer = optimizer
self.env_name = env_name
self.discount_factor = discount_factor
self.action_size = action_size
self.state_size = state_size
# Thread interactive with environment
def run(self):
global episode
global episode_test
env = set_environement(start_id=self.index)
while episode < EPISODES_train:
state = env.reset()
state_obs = observation_space.array_to_observation(state)
state = self.useful_state(state)
time_hour = 0
score = 0
time_step = 0
non_zero_actions = 0
while True:
if min(state_obs.ampere_flows < 0.6*state_obs.thermal_limits):
action = 0
else:
action = self.get_action(env,state)
next_state, reward, done, flag = env.step(valid_actions_array_uniq[action,:])
if done:
score += -1000 # this is the penalty for grid failure.
self.memory(state, action, -1000)
else:
state_obs = observation_space.array_to_observation(next_state)
time_hour = state_obs.date_day*10000 + state_obs.date_hour * 100+ state_obs.date_minute
current_lim_factor = 0.85
over_current = 50 * sum(((state_obs.ampere_flows - current_lim_factor * state_obs.thermal_limits ) / (state_obs.thermal_limits))[
state_obs.ampere_flows > current_lim_factor * state_obs.thermal_limits]) # # penalizing lines close to the limit
score += (reward-over_current)
self.memory(state, action, (reward - over_current))
non_zero_actions += 0 if action==0 else 1
state = self.useful_state(next_state) if not done else np.zeros([1, state_size])
time_step += 1
if time_step % training_batch_size ==0:
print("Continue Thread:", self.index, "/ train episode: ", episode, "/ score : ", int(score),
"/ with recent time:", time_step, "/ with recent action", action,"/ number of non-zero actions", non_zero_actions, "/ day_hour_min:", time_hour)
self.train_episode(score < 2000000) # max score = 80000
if done or time_step > time_step_end:
if done:
print("----STOPPED Thread:", self.index, "/ train episode: ", episode, "/ score : ", int(score),
"/ with final time:", time_step, "/ with final action", action,
"/ number of non-zero actions", non_zero_actions, "/ day_hour_min:", time_hour)
if time_step > time_step_end:
print("End Thread:", self.index, "/ train episode: ", episode, "/ score : ", int(score),
"/ with final time:", time_step, "/ with final action", action,
"/ number of non-zero actions", non_zero_actions, "/ day_hour_min:", time_hour)
scores.append(score)
episode += 1
self.train_episode(score < 2000000) # max score = 80000
break
# In Policy Gradient, Q function is not available.
# Instead agent uses sample returns for evaluating policy
def discount_rewards(self, rewards, done=True):
discounted_rewards = np.zeros_like(rewards)
running_add = 0
if not done:
running_add = self.critic.predict(np.reshape(self.states[-1], (1, self.state_size)))[0]
for t in reversed(range(0, len(rewards))):
running_add = running_add * self.discount_factor + rewards[t]
discounted_rewards[t] = running_add
return discounted_rewards
# save <s, a ,r> of each step
# this is used for calculating discounted rewards
def memory(self, state, action, reward):
self.states.append(state)
act = np.zeros(self.action_size)
act[action] = 1
self.actions.append(act)
self.rewards.append(reward)
# update policy network and value network every episode
def train_episode(self, done):
discounted_rewards = self.discount_rewards(self.rewards, done)
values = self.critic.predict(np.array(self.states))
values = np.reshape(values, len(values))
advantages = discounted_rewards - values
self.optimizer[0]([self.states, self.actions, advantages])
self.optimizer[1]([self.states, discounted_rewards])
self.states, self.actions, self.rewards = [], [], []
def useful_state(self,full_obs_state): # extracts the useful states from the full observation
obs_structure = observation_space.array_to_observation(full_obs_state)
selected_obs = np.hstack((obs_structure.lines_or_nodes.astype(int),obs_structure.lines_ex_nodes.astype(int)))
selected_obs = np.hstack((selected_obs,obs_structure.loads_nodes.astype(int)))
selected_obs = np.hstack((selected_obs,obs_structure.productions_nodes.astype(int)))
selected_obs = np.hstack((selected_obs,obs_structure.lines_status.astype(int)))
selected_obs = np.hstack((selected_obs,obs_structure.active_productions/100))
selected_obs = np.hstack((selected_obs,obs_structure.active_loads/100))
selected_obs = np.hstack((selected_obs,obs_structure.reactive_loads/100))
selected_obs = np.hstack((selected_obs,obs_structure.voltage_productions))
selected_obs = np.hstack((selected_obs,obs_structure.thermal_limits/100))
selected_obs = np.hstack((selected_obs,obs_structure.ampere_flows/100))
selected_obs = np.hstack((selected_obs,obs_structure.date_hour.astype(int))) # /24
selected_obs = np.hstack((selected_obs,obs_structure.date_minute.astype(int))) # /60
selected_obs = np.hstack((selected_obs,obs_structure.timesteps_before_nodes_reactionable.astype(int)))
return selected_obs
def get_action(self, env, state):
policy_nn = self.actor.predict(np.reshape(state, [1, self.state_size]))[0]
policy_nn_subid_mask = policy_nn * (1 - valid_actions_masking_subid_perm.dot((state[-14:]>0).astype(int))) # this masking prevents any illegal operation
policy_chosen_list = np.random.choice(self.action_size, 4, replace=True,
p=policy_nn_subid_mask / sum(policy_nn_subid_mask))
policy_chosen_list = np.hstack((0, policy_chosen_list)) # adding no action option # comment this line as agent learns...
obs_0, rw_0, done_0, _ = env.simulate(valid_actions_array_uniq[policy_chosen_list[0],:])
obs_1, rw_1, done_1, _ = env.simulate(valid_actions_array_uniq[policy_chosen_list[1],:])
obs_2, rw_2, done_2, _ = env.simulate(valid_actions_array_uniq[policy_chosen_list[2],:])
obs_3, rw_3, done_3, _ = env.simulate(valid_actions_array_uniq[policy_chosen_list[3],:])
rw_0 = self.est_reward_update(obs_0, rw_0, done_0)
rw_1 = self.est_reward_update(obs_1, rw_1, done_1)
rw_2 = self.est_reward_update(obs_2, rw_2, done_2)
rw_3 = self.est_reward_update(obs_3, rw_3, done_3)
return policy_chosen_list[np.argmax([rw_0,rw_1,rw_2,rw_3])]
def est_reward_update(self,obs,rw,done): # penalizing overloaded lines
obs = observation_space.array_to_observation(obs) if not done else 0
rw_0 = rw - 5000 * sum(((0.95 * obs.thermal_limits - obs.ampere_flows) / (obs.thermal_limits))[
obs.ampere_flows > 0.95 * obs.thermal_limits]) if not done else -100
return rw_0
if __name__ == "__main__":
loaded = np.load('valid_actions_array_uniq.npz')
valid_actions_array_uniq = loaded['valid_actions_array_uniq'] # this has 157 actions
loaded_sub_d_mask = np.load('valid_actions_masking_subid_perm.npz')
valid_actions_masking_subid_perm = loaded_sub_d_mask['valid_actions_masking_subid_perm'] # this maps the substation IDs with the actions
env = set_environement()
state_size = 164
action_size = 157
observation_space = env.observation_space
del env
env_name = 'pypow_14'
global_agent = A3CAgent(state_size, action_size,env_name)
global_agent.train()