forked from hellomuffin/exif-as-language
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
152 lines (124 loc) · 5.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import os
import torch
from torch.utils.data import DataLoader
from pytorch_warmup import LinearWarmup
from torch.optim.lr_scheduler import CosineAnnealingLR
from transformers import DistilBertTokenizer
import wandb
from tqdm import tqdm
from data import ExampleDataset
from utils.general import create_logits, convert_models_to_fp32
from model_wrapper import load_wrapper_model
DEVICE= "cuda" if torch.cuda.is_available() else "cpu"
class Trainer():
def __init__(self,
model,
dataset_config,
training_config,
wandb_config,
ckpt_config,
logWandb=True,
):
self.model = model
self.dataset_config = dataset_config
self.training_config = training_config
self.ckpt_config = ckpt_config
self.log = logWandb
if logWandb:
wandb.init(
# Set the project where this run will be logged
project = wandb_config["projectName"],
name = wandb_config["expName"],
config = {**dataset_config, **training_config}
)
self.loss_img_func = torch.nn.CrossEntropyLoss()
self.loss_txt_func = torch.nn.CrossEntropyLoss()
self.train_dataset = ExampleDataset(
resolution=dataset_config["resolution"]
)
self.train_dataloader = DataLoader(
self.train_dataset,
batch_size = self.training_config["batch_size"],
shuffle=True,
num_workers=os.cpu_count()
)
self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
self.optimizer = torch.optim.Adam(model.parameters(), lr = self.training_config["lr"], betas=(0.9,0.98), eps=1e-6, weight_decay=0.0001)
self.lr_scheduler = CosineAnnealingLR(self.optimizer, T_max=self.training_config["num_epochs"], eta_min=1e-7)
self.warmup_scheduler = LinearWarmup(self.optimizer, warmup_period=self.training_config["warm_up_epochs"]*len(self.train_dataloader))
def __call__(self, multi_gpu=False):
for epoch in range(self.training_config["num_epochs"]):
loss_list = []
for batch in tqdm(self.train_dataloader, desc="training...", total=len(self.train_dataloader)):
loss = self.train_step(batch)
loss_list.append(loss.item())
if self.log: wandb.log({"loss":loss})
if self.log: wandb.log({"learning_rate": self.optimizer.param_groups[0]["lr"]})
if epoch >= self.training_config["warm_up_epochs"]:
with self.warmup_scheduler.dampening():
self.lr_scheduler.step()
if multi_gpu: save_model = self.model.module
else: save_model = self.model
checkpoint = {
'epoch': epoch,
'model': save_model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'lr_sched': self.lr_scheduler.state_dict()
}
torch.save(checkpoint, self.ckpt_config["path"])
def train_step(self, batch):
images, texts = batch["image"], batch["exif"]
texts_tokenize = self.tokenizer(texts, truncation=True, padding="max_length", return_tensors="pt").to(DEVICE)
image_embedding, text_embedding = self.model(images,texts_tokenize["attention_mask"], texts_tokenize['input_ids'])
logits_per_image, logits_per_text = create_logits(image_embedding, text_embedding, self.training_config["logit_scale"])
ground_truth = torch.arange(image_embedding.shape[0],dtype=torch.long,device=DEVICE)
total_loss = (self.loss_img_func(logits_per_image,ground_truth) + self.loss_txt_func(logits_per_text,ground_truth))/2
total_loss.backward()
if DEVICE == "cpu": self.optimizer.step()
else :
# convert_models_to_fp32(self.model)
self.optimizer.step()
# clip.model.convert_weights(self.model)
self.optimizer.zero_grad()
with self.warmup_scheduler.dampening(): pass
return total_loss
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--projName", default="exif-as-language", help="name your project")
parser.add_argument("--expName", default="train", help="name your experiment")
parser.add_argument("--patch_size", type=int, default=224)
parser.add_argument("--save_model_path", default="checkpoints/wrapper.pth")
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--batch_size", type=int, default=1024)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--warm_up_epoch", type=int, default=5)
parser.add_argument('--pretrainPath', default=None)
parser.add_argument('--multi_gpu', default=False, action='store_true', help='Bool type')
parser.add_argument('--logWandb', default=False, action='store_true', help='Bool type')
args = parser.parse_args()
exifNet,logit_scale = load_wrapper_model(
device=DEVICE,
state_dict_path=args.pretrainPath,
split_gpus=args.multi_gpu,
input_resolution=args.patch_size,
)
dataset_config = {
"resolution": args.patch_size
}
training_config = {
"batch_size": args.batch_size,
"lr": args.lr,
"logit_scale": logit_scale,
"warm_up_epochs": args.warm_up_epoch,
"num_epochs": args.num_epochs,
}
ckpt_config = {
"path": args.save_model_path,
}
wandb_config = {
"projectName": args.projName,
"expName": args.expName,
}
trainer = Trainer(exifNet, dataset_config, training_config, wandb_config, ckpt_config, logWandb=args.logWandb)
trainer(multi_gpu=args.multi_gpu)