-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[test] add fuzz test for topk #7772
Merged
Merged
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -22,89 +22,100 @@ use arrow::{ | |
compute::SortOptions, | ||
record_batch::RecordBatch, | ||
}; | ||
use datafusion::execution::runtime_env::{RuntimeConfig, RuntimeEnv}; | ||
use datafusion::physical_plan::expressions::{col, PhysicalSortExpr}; | ||
use arrow_array::{Float64Array, StringArray}; | ||
use datafusion::physical_plan::expressions::PhysicalSortExpr; | ||
use datafusion::physical_plan::memory::MemoryExec; | ||
use datafusion::physical_plan::sorts::sort::SortExec; | ||
use datafusion::physical_plan::{collect, ExecutionPlan}; | ||
use datafusion::prelude::{SessionConfig, SessionContext}; | ||
use datafusion::{ | ||
datasource::MemTable, | ||
execution::runtime_env::{RuntimeConfig, RuntimeEnv}, | ||
}; | ||
use datafusion_common::{ | ||
cast::{as_float64_array, as_string_array}, | ||
TableReference, | ||
}; | ||
use datafusion_execution::memory_pool::GreedyMemoryPool; | ||
use rand::Rng; | ||
use datafusion_physical_expr::expressions::col; | ||
use rand::{rngs::StdRng, Rng, SeedableRng}; | ||
use std::sync::Arc; | ||
use test_utils::{batches_to_vec, partitions_to_sorted_vec}; | ||
use test_utils::{batches_to_vec, partitions_to_sorted_vec, stagger_batch}; | ||
|
||
const KB: usize = 1 << 10; | ||
#[tokio::test] | ||
#[cfg_attr(tarpaulin, ignore)] | ||
async fn test_sort_1k_mem() { | ||
SortTest::new() | ||
.with_int32_batches(5) | ||
.with_pool_size(10240) | ||
.with_should_spill(false) | ||
.run() | ||
.await; | ||
|
||
SortTest::new() | ||
.with_int32_batches(20000) | ||
.with_pool_size(10240) | ||
.with_should_spill(true) | ||
.run() | ||
.await; | ||
|
||
SortTest::new() | ||
.with_int32_batches(1000000) | ||
.with_pool_size(10240) | ||
.with_should_spill(true) | ||
.run() | ||
.await; | ||
for (batch_size, should_spill) in [(5, false), (20000, true), (1000000, true)] { | ||
SortTest::new() | ||
.with_int32_batches(batch_size) | ||
.with_pool_size(10 * KB) | ||
.with_should_spill(should_spill) | ||
.run() | ||
.await; | ||
} | ||
} | ||
|
||
#[tokio::test] | ||
#[cfg_attr(tarpaulin, ignore)] | ||
async fn test_sort_100k_mem() { | ||
SortTest::new() | ||
.with_int32_batches(5) | ||
.with_pool_size(102400) | ||
.with_should_spill(false) | ||
.run() | ||
.await; | ||
|
||
SortTest::new() | ||
.with_int32_batches(20000) | ||
.with_pool_size(102400) | ||
.with_should_spill(false) | ||
.run() | ||
.await; | ||
|
||
SortTest::new() | ||
.with_int32_batches(1000000) | ||
.with_pool_size(102400) | ||
.with_should_spill(true) | ||
.run() | ||
.await; | ||
for (batch_size, should_spill) in [(5, false), (20000, false), (1000000, true)] { | ||
SortTest::new() | ||
.with_int32_batches(batch_size) | ||
.with_pool_size(100 * KB) | ||
.with_should_spill(should_spill) | ||
.run() | ||
.await; | ||
} | ||
} | ||
|
||
#[tokio::test] | ||
async fn test_sort_unlimited_mem() { | ||
SortTest::new() | ||
.with_int32_batches(5) | ||
.with_pool_size(usize::MAX) | ||
.with_should_spill(false) | ||
.run() | ||
.await; | ||
|
||
SortTest::new() | ||
.with_int32_batches(20000) | ||
.with_pool_size(usize::MAX) | ||
.with_should_spill(false) | ||
.run() | ||
.await; | ||
|
||
SortTest::new() | ||
.with_int32_batches(1000000) | ||
.with_pool_size(usize::MAX) | ||
.with_should_spill(false) | ||
.run() | ||
.await; | ||
for (batch_size, should_spill) in [(5, false), (20000, false), (1000000, false)] { | ||
SortTest::new() | ||
.with_int32_batches(batch_size) | ||
.with_pool_size(usize::MAX) | ||
.with_should_spill(should_spill) | ||
.run() | ||
.await; | ||
} | ||
} | ||
|
||
#[tokio::test] | ||
async fn test_sort_topk() { | ||
for size in [10, 100, 1000, 10000, 1000000] { | ||
let mut topk_scenario = TopKScenario::new() | ||
.with_limit(10) | ||
.with_table_name("t") | ||
.with_col_name("x"); | ||
|
||
// test topk with i32 | ||
let collected_i32 = SortTest::new() | ||
.with_input(topk_scenario.batches(size, ColType::I32)) | ||
.run_with_limit(&topk_scenario) | ||
.await; | ||
let actual = batches_to_vec(&collected_i32); | ||
let excepted_i32 = topk_scenario.excepted_i32(); | ||
assert_eq!(actual, excepted_i32); | ||
|
||
// test topk with f64 | ||
let collected_f64 = SortTest::new() | ||
.with_input(topk_scenario.batches(size, ColType::F64)) | ||
.run_with_limit(&topk_scenario) | ||
.await; | ||
let actual: Vec<Option<f64>> = batches_to_f64_vec(&collected_f64); | ||
let excepted_f64 = topk_scenario.excepted_f64(); | ||
assert_eq!(actual, excepted_f64); | ||
|
||
// test topk with str | ||
let collected_str = SortTest::new() | ||
.with_input(topk_scenario.batches(size, ColType::Str)) | ||
.run_with_limit(&topk_scenario) | ||
.await; | ||
let actual: Vec<Option<&str>> = batches_to_str_vec(&collected_str); | ||
let excepted_str = topk_scenario.excepted_str(); | ||
assert_eq!(actual, excepted_str); | ||
} | ||
} | ||
|
||
#[derive(Debug, Default)] | ||
|
@@ -121,6 +132,11 @@ impl SortTest { | |
Default::default() | ||
} | ||
|
||
fn with_input(mut self, batches: Vec<Vec<RecordBatch>>) -> Self { | ||
self.input = batches.clone(); | ||
self | ||
} | ||
|
||
/// Create batches of int32 values of rows | ||
fn with_int32_batches(mut self, rows: usize) -> Self { | ||
self.input = vec![make_staggered_i32_batches(rows)]; | ||
|
@@ -138,6 +154,44 @@ impl SortTest { | |
self | ||
} | ||
|
||
async fn run_with_limit<'a>( | ||
&self, | ||
topk_scenario: &TopKScenario<'a>, | ||
) -> Vec<RecordBatch> { | ||
let input = self.input.clone(); | ||
let schema = input | ||
.iter() | ||
.flat_map(|p| p.iter()) | ||
.next() | ||
.expect("at least one batch") | ||
.schema(); | ||
|
||
let table = MemTable::try_new(schema, input.clone()).unwrap(); | ||
|
||
let ctx = SessionContext::new(); | ||
|
||
ctx.register_table( | ||
TableReference::Bare { | ||
table: topk_scenario.table_name.into(), | ||
}, | ||
Arc::new(table), | ||
) | ||
.unwrap(); | ||
|
||
let df = ctx | ||
.table(topk_scenario.table_name) | ||
.await | ||
.unwrap() | ||
.sort(vec![ | ||
datafusion_expr::col(topk_scenario.col_name).sort(true, true) | ||
]) | ||
.unwrap() | ||
.limit(0, Some(topk_scenario.limit)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I verified the plan here has the expected
|
||
.unwrap(); | ||
|
||
df.collect().await.unwrap() | ||
} | ||
|
||
/// Sort the input using SortExec and ensure the results are | ||
/// correct according to `Vec::sort` both with and without spilling | ||
async fn run(&self) { | ||
|
@@ -208,6 +262,109 @@ impl SortTest { | |
} | ||
} | ||
|
||
enum ColType { | ||
I32, | ||
F64, | ||
Str, | ||
} | ||
|
||
struct TopKScenario<'a> { | ||
limit: usize, | ||
batches: Vec<Vec<RecordBatch>>, | ||
table_name: &'a str, | ||
col_name: &'a str, | ||
} | ||
|
||
impl<'a> TopKScenario<'a> { | ||
fn new() -> Self { | ||
TopKScenario { | ||
limit: 0, | ||
batches: vec![], | ||
table_name: "", | ||
col_name: "", | ||
} | ||
} | ||
|
||
fn with_limit(mut self, limit: usize) -> Self { | ||
self.limit = limit; | ||
self | ||
} | ||
|
||
fn with_table_name(mut self, table_name: &'a str) -> Self { | ||
self.table_name = table_name; | ||
self | ||
} | ||
|
||
fn with_col_name(mut self, col_name: &'a str) -> Self { | ||
self.col_name = col_name; | ||
self | ||
} | ||
|
||
fn batches(&mut self, len: usize, t: ColType) -> Vec<Vec<RecordBatch>> { | ||
let batches = match t { | ||
ColType::I32 => make_staggered_i32_batches(len), | ||
ColType::F64 => make_staggered_f64_batches(len), | ||
ColType::Str => make_staggered_str_batches(len), | ||
}; | ||
self.batches = vec![batches]; | ||
self.batches.clone() | ||
} | ||
|
||
fn excepted_i32(&self) -> Vec<Option<i32>> { | ||
let excepted = partitions_to_sorted_vec(&self.batches); | ||
excepted[0..self.limit].into() | ||
} | ||
|
||
fn excepted_f64(&self) -> Vec<Option<f64>> { | ||
let mut excepted: Vec<Option<f64>> = self | ||
.batches | ||
.iter() | ||
.flat_map(|batches| batches_to_f64_vec(batches).into_iter()) | ||
.collect(); | ||
excepted.sort_by(|a, b| a.partial_cmp(b).unwrap()); | ||
excepted[0..self.limit].into() | ||
} | ||
|
||
fn excepted_str(&self) -> Vec<Option<&str>> { | ||
let mut excepted: Vec<Option<&str>> = self | ||
.batches | ||
.iter() | ||
.flat_map(|batches| batches_to_str_vec(batches).into_iter()) | ||
.collect(); | ||
excepted.sort_unstable(); | ||
excepted[0..self.limit].into() | ||
} | ||
} | ||
|
||
impl Default for TopKScenario<'_> { | ||
fn default() -> Self { | ||
Self::new() | ||
} | ||
} | ||
|
||
fn make_staggered_f64_batches(len: usize) -> Vec<RecordBatch> { | ||
let mut rng = StdRng::seed_from_u64(100); | ||
let remainder = RecordBatch::try_from_iter(vec![( | ||
"x", | ||
Arc::new(Float64Array::from_iter_values( | ||
(0..len).map(|_| rng.gen_range(0.0..1000.7)), | ||
)) as ArrayRef, | ||
)]) | ||
.unwrap(); | ||
stagger_batch(remainder) | ||
} | ||
|
||
fn make_staggered_str_batches(len: usize) -> Vec<RecordBatch> { | ||
let remainder = RecordBatch::try_from_iter(vec![( | ||
"x", | ||
Arc::new(StringArray::from_iter_values( | ||
(0..len).map(|_| get_random_string(6)), | ||
)) as ArrayRef, | ||
)]) | ||
.unwrap(); | ||
stagger_batch(remainder) | ||
} | ||
|
||
/// Return randomly sized record batches in a field named 'x' of type `Int32` | ||
/// with randomized i32 content | ||
fn make_staggered_i32_batches(len: usize) -> Vec<RecordBatch> { | ||
|
@@ -232,3 +389,26 @@ fn make_staggered_i32_batches(len: usize) -> Vec<RecordBatch> { | |
} | ||
batches | ||
} | ||
|
||
/// Return random ASCII String with len | ||
fn get_random_string(len: usize) -> String { | ||
rand::thread_rng() | ||
.sample_iter(rand::distributions::Alphanumeric) | ||
.take(len) | ||
.map(char::from) | ||
.collect() | ||
} | ||
|
||
fn batches_to_f64_vec(batches: &[RecordBatch]) -> Vec<Option<f64>> { | ||
batches | ||
.iter() | ||
.flat_map(|batch| as_float64_array(batch.column(0)).unwrap().iter()) | ||
.collect() | ||
} | ||
|
||
fn batches_to_str_vec(batches: &[RecordBatch]) -> Vec<Option<&str>> { | ||
batches | ||
.iter() | ||
.flat_map(|batch| as_string_array(batch.column(0)).unwrap().iter()) | ||
.collect() | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.