-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathapop_arms.c
534 lines (466 loc) · 18.8 KB
/
apop_arms.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/** \file
adaptive rejection metropolis sampling */
/** (C) Wally Gilks; see documentation below for details.
Adaptations for Apophenia (c) 2009 by Ben Klemens. Licensed under the GPLv2; see COPYING. */
#include "apop_internal.h"
#define XEPS 0.00001 /* critical relative x-value difference */
#define YEPS 0.1 /* critical y-value difference */
#define EYEPS 0.001 /* critical relative exp(y) difference */
#define YCEIL 50. /* maximum y avoiding overflow in exp(y) */
/* declarations for functions defined in this file (minus those in arms.h). */
void invert(double prob, arms_state *env, POINT *p);
int test(arms_state *state, POINT *p, apop_arms_settings *params, gsl_rng *r);
int update(arms_state *state, POINT *p, apop_arms_settings *params);
static void cumulate(arms_state *env);
int meet (POINT *q, arms_state *state, apop_arms_settings *params);
double area(POINT *q);
double expshift(double y, double y0);
double logshift(double y, double y0);
double perfunc(apop_arms_settings*, double x);
void display(FILE *f, arms_state *env, apop_arms_settings *);
int initial (apop_arms_settings* params, arms_state *state);
Apop_settings_copy(apop_arms,
out->state = malloc(sizeof(arms_state));
*out->state = *in->state;
)
Apop_settings_free(apop_arms,
if (in->state){
free(in->state->p);
free(in->state);
}
)
Apop_settings_init(apop_arms,
if ((in.xl || in.xr) && !in.xinit)
out->xinit = (double []) {in.xl+GSL_DBL_EPSILON, (in.xl+in.xr)/2., in.xr-GSL_DBL_EPSILON};
else{
//Apop_varad_set(xinit, ((double []) {0, 0.5, 1}));
Apop_varad_set(xinit, ((double []) {-1, 0, 1}));
}
Apop_varad_set(ninit, 3);
Apop_varad_set(xl, GSL_MIN(out->xinit[0]/10., out->xinit[0]*10)-.1);
Apop_varad_set(xr, GSL_MAX(out->xinit[out->ninit-1]/10., out->xinit[out->ninit-1]*10)+.1);
Apop_varad_set(convex, 0);
Apop_varad_set(npoint, 100);
Apop_varad_set(do_metro, 'y');
Apop_varad_set(xprev, (out->xinit[0]+out->xinit[out->ninit-1])/2.);
Apop_varad_set(neval, 1000);
Apop_assert(out->model, "the model input (e.g.: .model = parent_model) is mandatory.");
// allocate the state
out->state = malloc(sizeof(arms_state));
Apop_assert(out->state, "Malloc failed. Out of memory?");
*out->state = (arms_state) { };
int err = initial(out, out->state);
Apop_assert_c(!err, NULL, 0, "init failed, error %i. Returning NULL", err);
/* finish setting up metropolis struct (can only do this after setting up env) */
if(out->do_metro=='y'){
/* I don't understand why this is needed.
if((params->xprev < params->xl) || (params->xprev > params->xr))
apop_assert(0, 1007, 0, 's', "previous Markov chain iterate out of range")*/
out->state->metro_xprev = out->xprev;
out->state->metro_yprev = perfunc(out,out->xprev);
assert(isfinite(out->state->metro_xprev));
assert(isfinite(out->state->metro_yprev));
}
)
void distract_doxygen_arms(){/*Doxygen gets thrown by the settings macros. This decoy function is a workaround. */}
/** Adaptive rejection Metropolis sampling, to make random draws from a univariate distribution.
The author, Wally Gilks, explains on
http://www.amsta.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html , that
``ARS works by constructing an envelope function of the log of the target density, which is then used in rejection sampling (see, for example, Ripley, 1987). Whenever a point is rejected by ARS, the envelope is updated to correspond more closely to the true log density, thereby reducing the chance of rejecting subsequent points. Fewer ARS rejection steps implies fewer point-evaluations of the log density.''
\li It accepts only functions with univariate inputs. I.e., it will put a single value into a 1x1 \ref apop_data set, and then evaluate the log likelihood at that point. For multivariate situations, see \ref apop_model_metropolis.
\li It is currently the default for the \ref apop_draw function given a univariate model, so you can just call that if you prefer.
\li There are a great number of parameters, in the \c apop_arms_settings structure. The structure also holds a history of the points tested to date. That means that the system will be more accurate as more draws are made. It also means that if the parameters change, or you use \ref apop_model_copy, you should call <tt>Apop_settings_rm_group(your_model, apop_arms)</tt> to clear the model of points that are not valid for a different situation.
*/
int apop_arms_draw (double *out, gsl_rng *r, apop_model *m){
apop_arms_settings *params = Apop_settings_get_group(m, apop_arms);
if (!params) params = Apop_model_add_group(m, apop_arms, .model=m);
POINT pwork; /* a working point, not yet incorporated in envelope */
int msamp=0; /* the number of x-values currently sampled */
arms_state *state = params->state;
/* now do adaptive rejection */
do {
// Sample a new point from piecewise exponential envelope
double prob = gsl_rng_uniform(r);
/* get x-value correponding to a cumulative probability prob */
assert(isfinite(state->p->x));
assert(isfinite(state->p->y));
invert(prob,state,&pwork);
/* perform rejection (and perhaps metropolis) tests */
int i = test(state,&pwork, params, r);
if (i == 1){ // point accepted
Apop_notify(3, " point accepted.");
*out = pwork.x;
assert(isfinite(pwork.x));
return 0;
} else
Apop_stopif(i!=0, return 1,-5, "envelope error - violation without metropolis");
msamp ++;
Apop_notify(3, " point rejected.");
} while (msamp < 1e3);
Apop_notify(1, "I just rejected 1,000 samples. Something is wrong.");
return 0;
}
int initial (apop_arms_settings* params, arms_state *env){
// to set up initial envelope
POINT *q;
int mpoint = 2*params->ninit + 1;
Apop_assert_c(params->ninit>=3, 1001, 0, "too few initial points");
Apop_assert_c(params->npoint >= mpoint, 1002, 0, "too many initial points");
Apop_assert_c((params->xinit[0] >= params->xl) && (params->xinit[params->ninit-1] <= params->xr),
1003, 0, "initial points do not satisfy bounds");
for(int i=1; i<params->ninit; i++)
Apop_assert_c(params->xinit[i] > params->xinit[i-1], 1004, 0, "data not ordered");
Apop_assert_c(params->convex >= 0.0, 1008, 0, "negative convexity parameter");
env->convex = ¶ms->convex; // copy convexity address to env
params->neval = 0; // initialise current number of function evaluations
/* set up space for envelope POINTs */
env->npoint = params->npoint;
env->p = malloc(params->npoint*sizeof(POINT));
Apop_assert(env->p, "malloc of env->p failed. Out of space?");
/* set up envelope POINTs */
q = env->p;
q->x = params->xl; // left bound
q->f = 0;
q->pl = NULL;
q->pr = q+1;
for(int j=1, k=0; j<mpoint-1; j++){
q++;
if(j%2){
/* point on log density */
q->x = params->xinit[k++];
q->y = perfunc(params,q->x);
Apop_assert(isfinite(q->x), "the initial param is %g", q->x);
Apop_assert(isfinite(q->y), "f(an initial parameter)= %g", q->y);
q->f = 1;
} else // intersection point
q->f = 0;
q->pl = q-1;
q->pr = q+1;
}
/* right bound */
q++;
q->x = params->xr;
q->f = 0;
q->pl = q-1;
q->pr = NULL;
assert(isfinite(q->x));
/* calculate intersection points */
q = env->p;
for (int j=0; j<mpoint; j=j+2, q=q+2)
Apop_assert_c(!meet(q,env, params), 2000, 0, "envelope violation without metropolis");
cumulate(env); // exponentiate and integrate envelope
env->cpoint = mpoint; // note number of POINTs currently in envelope
return 0;
}
void invert(double prob, arms_state *env, POINT *p){
/* to obtain a point corresponding to a given cumulative probability
prob : cumulative probability under envelope
*env : envelope attributes
*p : a working POINT to hold the sampled value */
double u,xl=0,xr=0,yl,yr,eyl,eyr,prop;
/* find rightmost point in envelope */
POINT *q = env->p;
while(q->pr != NULL)q = q->pr;
/* find exponential piece containing point implied by prob */
u = prob * q->cum;
while(q->pl->cum > u)q = q->pl;
/* piece found: set left and right POINTs of p, etc. */
p->pl = q->pl;
p->pr = q;
p->f = 0;
p->cum = u;
/* calculate proportion of way through integral within this piece */
prop = (u - q->pl->cum) / (q->cum - q->pl->cum);
/* get the required x-value */
if (q->pl->x == q->x){
/* interval is of zero length */
p->x = q->x;
p->y = q->y;
p->ey = q->ey;
} else {
xl = q->pl->x;
xr = q->x;
yl = q->pl->y;
yr = q->y;
eyl = q->pl->ey;
eyr = q->ey;
if(fabs(yr - yl) < YEPS){
/* linear approximation was used in integration in function cumulate */
if(fabs(eyr - eyl) > EYEPS*fabs(eyr + eyl))
p->x = xl + ((xr - xl)/(eyr - eyl)) * (-eyl + sqrt((1. - prop)*eyl*eyl + prop*eyr*eyr));
else
p->x = xl + (xr - xl)*prop;
p->ey = ((p->x - xl)/(xr - xl)) * (eyr - eyl) + eyl;
p->y = logshift(p->ey, env->ymax);
} else {
/* piece was integrated exactly in function cumulate */
p->x = xl + ((xr - xl)/(yr - yl))
* (-yl + logshift(((1.-prop)*eyl + prop*eyr), env->ymax));
p->y = ((p->x - xl)/(xr - xl)) * (yr - yl) + yl;
p->ey = expshift(p->y, env->ymax);
}
}
assert(isfinite(p->x));
assert(isfinite(p->y));
assert(isfinite(q->x));
assert(isfinite(q->y));
/* guard against imprecision yielding point outside interval */
Apop_stopif( ((p->x < xl) || (p->x > xr)), return,-5, "imprecision yields point outside interval");
}
int test(arms_state *env, POINT *p, apop_arms_settings *params, gsl_rng *r){
/* to perform rejection, squeezing, and metropolis tests
*env : state data
*p : point to be tested */
assert(p->pl && p->pr);
double u,y,ysqueez,ynew,yold,znew,zold,w;
POINT *ql,*qr;
/* for rejection test */
u = gsl_rng_uniform(r) * p->ey;
y = logshift(u,env->ymax);
if(params->do_metro !='y' && (p->pl->pl != NULL) && (p->pr->pr != NULL)){
/* perform squeezing test */
ql = p->pl->f ? p->pl : p->pl->pl;
qr = p->pr->f ? p->pr : p->pr->pr;
ysqueez = (qr->y * (p->x - ql->x) + ql->y * (qr->x - p->x))
/(qr->x - ql->x);
if(y <= ysqueez) // accept point at squeezing step
return 1;
}
/* evaluate log density at point to be tested */
ynew = perfunc(params,p->x);
assert(isfinite(p->x));
assert(p->pl && p->pr);
Apop_notify(3, "tested (%g, %g); ", p->x, ynew);
/* perform rejection test */
if(params->do_metro != 'y' || (params->do_metro == 'y' && (y >= ynew))){
/* update envelope */
p->y = ynew;
p->ey = expshift(p->y,env->ymax);
p->f = 1;
if(update(env,p, params))
Apop_assert_c(0, -1, 0, "envelope violation without metropolis");
/* perform rejection test: accept iff y < ynew */
return (y < ynew);
}
/* continue with metropolis step */
yold = env->metro_yprev;
/* find envelope piece containing metrop->xprev */
ql = env->p;
while(ql->pl != NULL) ql = ql->pl;
while(ql->pr->x < env->metro_xprev) ql = ql->pr;
qr = ql->pr;
/* calculate height of envelope at metrop->xprev */
w = (env->metro_xprev - ql->x)/(qr->x - ql->x);
zold = ql->y + w*(qr->y - ql->y);
znew = p->y;
if(yold < zold)zold = yold;
if(ynew < znew)znew = ynew;
w = ynew-znew-yold+zold;
w = GSL_MIN(w, 0.0);
w = (w > -YCEIL) ? exp(w) : 0.0;
u = gsl_rng_uniform(r);
if(u > w){
/* metropolis says don't move, so replace current point with previous */
/* markov chain iterate */
p->x = env->metro_xprev;
p->y = env->metro_yprev;
Apop_notify(3, "metro step (%g) rejected with w=%g, "
"ynew=%g, yold=%g, znew = %g, zold=%g; ", p->x, w, ynew, yold, znew, zold);
p->ey = expshift(p->y,env->ymax);
assert(isfinite(p->x));
assert(isfinite(p->y));
assert(isfinite(p->ey));
p->f = 1;
p->pl = ql;
p->pr = qr;
} else {
/* trial point accepted by metropolis, so update previous markov */
/* chain iterate */
env->metro_xprev = p->x;
env->metro_yprev = ynew;
}
return 1;
}
int update(arms_state *env, POINT *p, apop_arms_settings *params){
/* to update envelope to incorporate new point on log density
*env : state information
*p : point to be incorporated
*/
POINT *m,*ql,*qr,*q;
if(!(p->f) || (env->cpoint > env->npoint - 2))
/* y-value has not been evaluated or no room for further points */
return 0; // ignore this point
/* copy working POINT p to a new POINT q */
q = env->p + env->cpoint++;
q->x = p->x;
q->y = p->y;
q->f = 1;
/* allocate an unused POINT for a new intersection */
m = env->p + env->cpoint++;
m->f = 0;
if((p->pl->f) && !(p->pr->f)){
/* left end of piece is on log density; right end is not */
/* set up new intersection in interval between p->pl and p */
m->pl = p->pl;
m->pr = q;
q->pl = m;
q->pr = p->pr;
m->pl->pr = m;
q->pr->pl = q;
} else if (!(p->pl->f) && (p->pr->f)){
/* left end of interval is not on log density; right end is */
/* set up new intersection in interval between p and p->pr */
m->pr = p->pr;
m->pl = q;
q->pr = m;
q->pl = p->pl;
m->pr->pl = m;
q->pl->pr = q;
} else
Apop_stopif(1, return 1,-5, "unexpected event"); // this should be impossible
/* now adjust position of q within interval if too close to an endpoint */
ql = q->pl->pl ? q->pl->pl : q->pl;
qr = q->pr->pr ? q->pr->pr : q->pr;
if (q->x < (1. - XEPS) * ql->x + XEPS * qr->x){
/* q too close to left end of interval */
q->x = (1. - XEPS) * ql->x + XEPS * qr->x;
q->y = perfunc(params,q->x);
} else if (q->x > XEPS * ql->x + (1. - XEPS) * qr->x){
/* q too close to right end of interval */
q->x = XEPS * ql->x + (1. - XEPS) * qr->x;
q->y = perfunc(params,q->x);
}
/* revise intersection points */
if(meet(q->pl,env, params) /* envelope violations without metropolis */
|| meet(q->pr,env, params)
|| (q->pl->pl != NULL && meet(q->pl->pl->pl,env, params))
|| (q->pr->pr != NULL && meet(q->pr->pr->pr,env, params)))
return 1;
/* exponentiate and integrate new envelope */
cumulate(env);
return 0;
}
static void cumulate(arms_state *env){
/* to exponentiate and integrate envelope */
/* *env : envelope attributes */
POINT *q,*qlmost;
qlmost = env->p;
/* find left end of envelope */
while(qlmost->pl) qlmost = qlmost->pl;
/* find maximum y-value: search envelope */
env->ymax = qlmost->y;
for(q = qlmost->pr; q != NULL; q = q->pr)
if(q->y > env->ymax)
env->ymax = q->y;
/* exponentiate envelope */
for(q = qlmost; q != NULL; q = q->pr)
q->ey = expshift(q->y,env->ymax);
/* integrate exponentiated envelope */
qlmost->cum = 0.;
for(q = qlmost->pr; q != NULL; q = q->pr)
q->cum = q->pl->cum + area(q);
}
int meet (POINT *q, arms_state *env, apop_arms_settings *params){
/* To find where two chords intersect
q : to store point of intersection
*env : state attributes
*/
double gl=0,gr=0,grl=0,dl=0,dr=0;
int il=0,ir=0,irl=0;
Apop_assert(!(q->f), "error 30: this is not an intersection point.");
/* calculate coordinates of point of intersection */
if ((q->pl != NULL) && (q->pl->pl->pl != NULL)){
/* chord gradient can be calculated at left end of interval */
gl = (q->pl->y - q->pl->pl->pl->y)/(q->pl->x - q->pl->pl->pl->x);
il = 1;
} else // no chord gradient on left
il = 0;
if ((q->pr != NULL) && (q->pr->pr->pr != NULL)){
/* chord gradient can be calculated at right end of interval */
gr = (q->pr->y - q->pr->pr->pr->y)/(q->pr->x - q->pr->pr->pr->x);
ir = 1;
} else // no chord gradient on right
ir = 0;
if ((q->pl != NULL) && (q->pr != NULL)){
/* chord gradient can be calculated across interval */
grl = (q->pr->y - q->pl->y)/(q->pr->x - q->pl->x);
irl = 1;
} else
irl = 0;
if(irl && il && (gl<grl)){
/* convexity on left exceeds current threshold */
if(params->do_metro !='y') // envelope violation without metropolis
return 1;
gl = gl + (1.0 + *(env->convex)) * (grl - gl); // adjust left gradient
}
if(irl && ir && (gr>grl)){
/* convexity on right exceeds current threshold */
if(params->do_metro !='y') // envelope violation without metropolis
return 1;
gr = gr + (1.0 + *(env->convex)) * (grl - gr); // adjust right gradient
}
if(il && irl){
dr = (gl - grl) * (q->pr->x - q->pl->x);
if(dr < YEPS) // adjust dr to avoid numerical problems
dr = YEPS;
}
if(ir && irl){
dl = (grl - gr) * (q->pr->x - q->pl->x);
if(dl < YEPS) // adjust dl to avoid numerical problems
dl = YEPS;
}
if(il && ir && irl){
/* gradients on both sides */
q->x = (dl * q->pr->x + dr * q->pl->x)/(dl + dr);
q->y = (dl * q->pr->y + dr * q->pl->y + dl * dr)/(dl + dr);
} else if (il && irl){
/* gradient only on left side, but not right hand bound */
q->x = q->pr->x;
q->y = q->pr->y + dr;
} else if (ir && irl){
/* gradient only on right side, but not left hand bound */
q->x = q->pl->x;
q->y = q->pl->y + dl;
} else if (il)
q->y = q->pl->y + gl * (q->x - q->pl->x); // right hand bound
else if (ir)
q->y = q->pr->y - gr * (q->pr->x - q->x); // left hand bound
else
Apop_assert(0, "error 31: gradient on neither side - should be impossible.");
if(((q->pl != NULL) && (q->x < q->pl->x)) ||
((q->pr != NULL) && (q->x > q->pr->x))){
Apop_assert(0, "error 32: intersection point outside interval (through imprecision)");
}
return 0; // successful exit : intersection has been calculated
}
double area(POINT *q){
/* To integrate piece of exponentiated envelope to left of POINT q */
if(q->pl == NULL) // this is leftmost point in envelope
Apop_stopif(1, return GSL_NAN,-5, "leftmost point in envelope");
if(q->pl->x == q->x) // interval is zero length
return 0.;
if (fabs(q->y - q->pl->y) < YEPS) // integrate straight line piece
return 0.5*(q->ey + q->pl->ey)*(q->x - q->pl->x);
// integrate exponential piece
return ((q->ey - q->pl->ey)/(q->y - q->pl->y))*(q->x - q->pl->x);
}
double expshift(double y, double y0) {
/* to exponentiate shifted y without underflow */
if (y - y0 > -2.0 * YCEIL)
return exp(y - y0 + YCEIL);
else
return 0.0;
}
double logshift(double y, double y0){
/* inverse of function expshift */
return (log(y) + y0 - YCEIL);
}
double perfunc(apop_arms_settings *params, double x){
// to evaluate log density and increment count of evaluations
Staticdef( apop_data *, d , apop_data_alloc(1,1));
d->matrix->data[0] = x;
double y = apop_log_likelihood(d, params->model);
Apop_assert(isfinite(y), "Evaluating the log likelihood at %g returned %g.", x, y);
(params->neval)++; // increment count of function evaluations
return y;
}