-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
259 lines (193 loc) · 9.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from __future__ import print_function
import os
import sys
import argparse
import time
import math
import numpy as np
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torchvision import transforms
from model.unisiam import UniSiam
from model.resnet import resnet10, resnet18, resnet34, resnet50
from dataset.miniImageNet import miniImageNet
from dataset.tieredImageNet import tieredImageNet
from dataset.sampler import EpisodeSampler
from evaluate import evaluate_fewshot
from transform.build_transform import build_transform
from util import AverageMeter, adjust_learning_rate, save_model
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--save_path', type=str, default=None, help='path for saving')
parser.add_argument('--data_path', type=str, default=None, help='path to dataset')
parser.add_argument('--eval_path', type=str, default=None, help='path to tested model')
parser.add_argument('--teacher_path', type=str, default=None, help='path to teacher model')
parser.add_argument('--dataset', type=str, default='miniImageNet', choices=['tieredImageNet', 'miniImageNet'], help='dataset')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--num_workers', type=int, default=16, help='num of workers to use')
# optimization setting
parser.add_argument('--lr', type=float, default=0.3, help='learning rate')
parser.add_argument('--wd', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
parser.add_argument('--epochs', type=int, default=400, help='number of training epochs')
parser.add_argument('--lrd_step', action='store_true', help='decay learning rate per step')
# self-supervision setting
parser.add_argument('--backbone', type=str, default='resnet18', choices=['resnet10', 'resnet18', 'resnet34', 'resnet50'])
parser.add_argument('--size', type=int, default=224, help='input size')
parser.add_argument('--temp', type=float, default=2.0, help='temperature for loss function')
parser.add_argument('--lamb', type=float, default=0.1, help='lambda for uniform loss')
parser.add_argument('--dim_hidden', type=int, default=None, help='hidden dim. of projection')
# few-shot evaluation setting
parser.add_argument('--n_way', type=int, default=5, help='n_way')
parser.add_argument('--n_query', type=int, default=15, help='n_query')
parser.add_argument('--n_test_task', type=int, default=3000, help='total test few-shot episodes')
parser.add_argument('--test_batch_size', type=int, default=20, help='episode_batch_size')
args = parser.parse_args()
args.dist = args.teacher_path is not None
args.lr = args.lr * args.batch_size / 256
if (args.save_path is not None) and (not os.path.isdir(args.save_path)):
os.makedirs(args.save_path)
args.split_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'split')
return args
def build_train_loader(args):
train_transform = build_transform(args)
if args.dataset == 'miniImageNet':
train_dataset = miniImageNet(
data_path=args.data_path,
split_path=args.split_path,
partition='train',
transform=train_transform)
elif args.dataset == 'tieredImageNet':
train_dataset = tieredImageNet(
data_path=args.data_path,
split_path=args.split_path,
partition='train',
transform=train_transform)
else:
raise ValueError(args.dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
return train_loader
def build_fewshot_loader(args, mode='test'):
assert mode in ['train', 'val', 'test']
resize_dict = {160: 182, 224: 256, 288: 330, 320:366, 384:438}
resize_size = resize_dict[args.size]
print('Image Size: {}({})'.format(args.size, resize_size))
test_transform = transforms.Compose([
transforms.Resize(resize_size),
transforms.CenterCrop(args.size),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
print('test_transform: ', test_transform)
if args.dataset == 'miniImageNet':
test_dataset = miniImageNet(
data_path=args.data_path,
split_path=args.split_path,
partition=mode,
transform=test_transform)
elif args.dataset == 'tieredImageNet':
test_dataset = tieredImageNet(
data_path=args.data_path,
split_path=args.split_path,
partition=mode,
transform=test_transform)
else:
raise ValueError(args.dataset)
test_sampler = EpisodeSampler(
test_dataset.labels, args.n_test_task//args.test_batch_size, args.n_way, 5+args.n_query, args.test_batch_size)
test_loader =torch.utils.data.DataLoader(
test_dataset, batch_sampler=test_sampler, shuffle=False, drop_last=False, pin_memory=True, num_workers=args.num_workers)
return test_loader
def build_model(args):
model_dict = {'resnet10': resnet10, 'resnet18': resnet18, 'resnet34': resnet34, 'resnet50': resnet50}
encoder = model_dict[args.backbone]()
model = UniSiam(encoder=encoder, lamb=args.lamb, temp=args.temp, dim_hidden=args.dim_hidden, dist=args.dist)
model.encoder = torch.nn.DataParallel(model.encoder)
model = model.cuda()
print(model)
return model
def load_teacher_model(args):
encoder = resnet50()
teacher_model = UniSiam(encoder=encoder)
teacher_model.encoder = torch.nn.DataParallel(teacher_model.encoder)
teacher_model.cuda()
msg = teacher_model.load_state_dict(torch.load(args.teacher_path)['model'])
print(f'load teacher model from: {args.teacher_path}, {msg}')
teacher_model.eval()
return teacher_model
def train_one_epoch(train_loader, model, optimizer, epoch, args, teacher_model=None):
"""one epoch training"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
loss_hist = AverageMeter()
loss_pos_hist = AverageMeter()
loss_neg_hist = AverageMeter()
std_hist = AverageMeter()
end = time.time()
n_iter = len(train_loader)
for idx, (images, _) in enumerate(train_loader):
data_time.update(time.time() - end)
if args.lrd_step:
adjust_learning_rate(args, optimizer, idx*1.0/n_iter+epoch, args.epochs)
bsz = images[0].shape[0]
images = torch.cat([images[0], images[1]], dim=0).cuda(non_blocking=True)
if teacher_model is not None:
with torch.no_grad():
dist_z = teacher_model.proj(teacher_model.encoder(images)).detach()
loss, loss_pos, loss_neg, std = model(images, dist_z)
else:
loss, loss_pos, loss_neg, std = model(images)
loss_hist.update(loss.item(), bsz)
loss_pos_hist.update(loss_pos.item(), bsz)
loss_neg_hist.update(loss_neg.item(), bsz)
std_hist.update(std.item(), bsz)
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if (idx + 1) % args.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'loss_pos {lossp.val:.3f} ({lossp.avg:.3f})\t'
'loss_neg {lossn.val:.3f} ({lossn.avg:.3f})\t'
'std {std.val:.3f} ({std.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=loss_hist, lossp=loss_pos_hist,
lossn=loss_neg_hist, std=std_hist))
sys.stdout.flush()
return loss_hist.avg
def main():
args = parse_option()
print("{}".format(args).replace(', ', ',\n'))
train_loader = build_train_loader(args)
test_loader = build_fewshot_loader(args, 'test')
model = build_model(args)
teacher_model = load_teacher_model(args) if args.dist else None
cudnn.benchmark = True
if args.eval_path is not None:
model.load_state_dict(torch.load(args.eval_path)['model'], strict=False)
evaluate_fewshot(model.encoder, test_loader, n_way=args.n_way, n_shots=[1,5], n_query=args.n_query, classifier='LR', power_norm=True)
return
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.wd, momentum=0.9)
for epoch in range(args.epochs):
if not args.lrd_step:
adjust_learning_rate(args, optimizer, epoch+1, args.epochs)
time1 = time.time()
loss = train_one_epoch(train_loader, model, optimizer, epoch, args, teacher_model=teacher_model)
time2 = time.time()
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
# evaluate_fewshot(model.encoder, test_loader, n_way=args.n_way, n_shots=[1,5], n_query=args.n_query, classifier='SVM')
# evaluate_fewshot(model.encoder, test_loader, n_way=args.n_way, n_shots=[1,5], n_query=args.n_query, classifier='LR', power_norm=False)
evaluate_fewshot(model.encoder, test_loader, n_way=args.n_way, n_shots=[1,5], n_query=args.n_query, classifier='LR', power_norm=True)
if args.save_path is not None:
save_file = os.path.join(args.save_path, 'last.pth')
save_model(model, args.epochs, save_file)
if __name__ == '__main__':
main()