-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathbicycle-gan.py
131 lines (109 loc) · 4.9 KB
/
bicycle-gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import sys
import signal
import os
from datetime import datetime
import tensorflow as tf
from data_loader import get_data
from model import BicycleGAN
from utils import logger, makedirs
# parsing cmd arguments
parser = argparse.ArgumentParser(description="Run commands")
def str2bool(v):
return v.lower() == 'true'
parser.add_argument('--train', default=True, type=str2bool,
help="Training mode")
parser.add_argument('--task', type=str, default='edges2shoes',
help='Task name')
parser.add_argument('--coeff_gan', type=float, default=1.0,
help='Loss coefficient for GAN loss')
parser.add_argument('--coeff_vae', type=float, default=1.0,
help='Loss coefficient for VAE loss')
parser.add_argument('--coeff_kl', type=float, default=0.01,
help='Loss coefficient for KL divergence')
parser.add_argument('--coeff_reconstruct', type=float, default=10,
help='Loss coefficient for reconstruction error')
parser.add_argument('--coeff_latent', type=float, default=0.5,
help='Loss coefficient for latent cycle loss')
parser.add_argument('--instance_normalization', default=False, type=bool,
help="Use instance norm instead of batch norm")
parser.add_argument('--log_step', default=100, type=int,
help="Tensorboard log frequency")
parser.add_argument('--batch_size', default=1, type=int,
help="Batch size")
parser.add_argument('--image_size', default=256, type=int,
help="Image size")
parser.add_argument('--latent_dim', default=8, type=int,
help="Dimensionality of latent vector")
parser.add_argument('--use_resnet', default=True, type=bool,
help="Use the ResNet model for the encoder")
parser.add_argument('--load_model', default='',
help='Model path to load (e.g., train_2017-07-07_01-23-45)')
parser.add_argument('--gpu', default="1", type=str,
help="gpu index for CUDA_VISIBLE_DEVICES")
class FastSaver(tf.train.Saver):
def save(self, sess, save_path, global_step=None, latest_filename=None,
meta_graph_suffix="meta", write_meta_graph=True):
super(FastSaver, self).save(sess, save_path, global_step, latest_filename,
meta_graph_suffix, False)
def run(args):
# setting the GPU #
os.environ['CUDA_DEVICE_ORDER'] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
logger.info('Read data:')
train_A, train_B, test_A, test_B = get_data(args.task, args.image_size)
logger.info('Build graph:')
model = BicycleGAN(args)
variables_to_save = tf.global_variables()
init_op = tf.variables_initializer(variables_to_save)
init_all_op = tf.global_variables_initializer()
saver = FastSaver(variables_to_save)
logger.info('Trainable vars:')
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
tf.get_variable_scope().name)
for v in var_list:
logger.info(' %s %s', v.name, v.get_shape())
if args.load_model != '':
model_name = args.load_model
else:
model_name = '{}_{}'.format(args.task, datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
logdir = './logs'
makedirs(logdir)
logdir = os.path.join(logdir, model_name)
logger.info('Events directory: %s', logdir)
summary_writer = tf.summary.FileWriter(logdir)
makedirs('./results')
def init_fn(sess):
logger.info('Initializing all parameters.')
sess.run(init_all_op)
sv = tf.train.Supervisor(is_chief=True,
logdir=logdir,
saver=saver,
summary_op=None,
init_op=init_op,
init_fn=init_fn,
summary_writer=summary_writer,
ready_op=tf.report_uninitialized_variables(variables_to_save),
global_step=model.global_step,
save_model_secs=300,
save_summaries_secs=30)
if args.train:
logger.info("Starting training session.")
with sv.managed_session() as sess:
model.train(sess, summary_writer, train_A, train_B)
logger.info("Starting testing session.")
with sv.managed_session() as sess:
base_dir = os.path.join('results', model_name)
makedirs(base_dir)
model.test(sess, test_A, test_B, base_dir)
def main():
args, unparsed = parser.parse_known_args()
def shutdown(signal, frame):
tf.logging.warn('Received signal %s: exiting', signal)
sys.exit(128+signal)
signal.signal(signal.SIGHUP, shutdown)
signal.signal(signal.SIGINT, shutdown)
signal.signal(signal.SIGTERM, shutdown)
run(args)
if __name__ == "__main__":
main()