-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path235.lowest-common-ancestor-of-a-binary-search-tree.cpp
115 lines (112 loc) · 2.74 KB
/
235.lowest-common-ancestor-of-a-binary-search-tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*
* @lc app=leetcode id=235 lang=cpp
*
* [235] Lowest Common Ancestor of a Binary Search Tree
*
* https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/description/
*
* algorithms
* Easy (43.45%)
* Total Accepted: 258.5K
* Total Submissions: 594.6K
* Testcase Example: '[6,2,8,0,4,7,9,null,null,3,5]\n2\n8'
*
* Given a binary search tree (BST), find the lowest common ancestor (LCA) of
* two given nodes in the BST.
*
* According to the definition of LCA on Wikipedia: “The lowest common ancestor
* is defined between two nodes p and q as the lowest node in T that has both p
* and q as descendants (where we allow a node to be a descendant of itself).”
*
* Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]
*
*
*
* Example 1:
*
*
* Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
* Output: 6
* Explanation: The LCA of nodes 2 and 8 is 6.
*
*
* Example 2:
*
*
* Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
* Output: 2
* Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant
* of itself according to the LCA definition.
*
*
*
*
* Note:
*
*
* All of the nodes' values will be unique.
* p and q are different and both values will exist in the BST.
*
*
*/
#include <stack>
#include <set>
using namespace std;
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution
{
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *p, TreeNode *q)
{
stack<TreeNode *> st;
stack<TreeNode *> pst;
stack<TreeNode *> qst;
set<TreeNode *> v;
if (root)
st.push(root);
while (!st.empty())
{
TreeNode *c = st.top();
v.insert(c);
if (c->val == p->val)
pst = st;
if (c->val == q->val)
qst = st;
if (!qst.empty() && !pst.empty())
break;
if (c->left && v.find(c->left) == v.end())
st.push(c->left);
else if (c->right && v.find(c->right) == v.end())
st.push(c->right);
else
st.pop();
}
stack<TreeNode *> tmp;
while (!pst.empty())
{
tmp.push(pst.top());
pst.pop();
}
tmp.swap(pst);
while (!qst.empty())
{
tmp.push(qst.top());
qst.pop();
}
tmp.swap(qst);
TreeNode *ancestor;
while (!pst.empty() && !qst.empty() && pst.top() == qst.top())
{
ancestor = pst.top();
pst.pop();
qst.pop();
}
return ancestor;
}
};