-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathtest_graph_based.py
567 lines (441 loc) · 17.6 KB
/
test_graph_based.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
""" a few tests for graph-based indices (HNSW, nndescent and NSG)"""
import numpy as np
import unittest
import faiss
import tempfile
import os
from common_faiss_tests import get_dataset_2
class TestHNSW(unittest.TestCase):
def __init__(self, *args, **kwargs):
unittest.TestCase.__init__(self, *args, **kwargs)
d = 32
nt = 0
nb = 1500
nq = 500
(_, self.xb, self.xq) = get_dataset_2(d, nt, nb, nq)
index = faiss.IndexFlatL2(d)
index.add(self.xb)
Dref, Iref = index.search(self.xq, 1)
self.Iref = Iref
def test_hnsw(self):
d = self.xq.shape[1]
index = faiss.IndexHNSWFlat(d, 16)
index.add(self.xb)
Dhnsw, Ihnsw = index.search(self.xq, 1)
self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 460)
self.io_and_retest(index, Dhnsw, Ihnsw)
def test_range_search(self):
index_flat = faiss.IndexFlat(self.xb.shape[1])
index_flat.add(self.xb)
D, _ = index_flat.search(self.xq, 10)
radius = np.median(D[:, -1])
lims_ref, Dref, Iref = index_flat.range_search(self.xq, radius)
index = faiss.IndexHNSWFlat(self.xb.shape[1], 16)
index.add(self.xb)
lims, D, I = index.range_search(self.xq, radius)
nmiss = 0
# check if returned resutls are a subset of the reference results
for i in range(len(self.xq)):
ref = Iref[lims_ref[i]: lims_ref[i + 1]]
new = I[lims[i]: lims[i + 1]]
self.assertLessEqual(set(new), set(ref))
nmiss += len(ref) - len(new)
# currenly we miss 405 / 6019 neighbors
self.assertLessEqual(nmiss, lims_ref[-1] * 0.1)
def test_hnsw_unbounded_queue(self):
d = self.xq.shape[1]
index = faiss.IndexHNSWFlat(d, 16)
index.add(self.xb)
index.search_bounded_queue = False
Dhnsw, Ihnsw = index.search(self.xq, 1)
self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 460)
self.io_and_retest(index, Dhnsw, Ihnsw)
def io_and_retest(self, index, Dhnsw, Ihnsw):
index2 = faiss.deserialize_index(faiss.serialize_index(index))
Dhnsw2, Ihnsw2 = index2.search(self.xq, 1)
self.assertTrue(np.all(Dhnsw2 == Dhnsw))
self.assertTrue(np.all(Ihnsw2 == Ihnsw))
# also test clone
index3 = faiss.clone_index(index)
Dhnsw3, Ihnsw3 = index3.search(self.xq, 1)
self.assertTrue(np.all(Dhnsw3 == Dhnsw))
self.assertTrue(np.all(Ihnsw3 == Ihnsw))
def test_hnsw_2level(self):
d = self.xq.shape[1]
quant = faiss.IndexFlatL2(d)
index = faiss.IndexHNSW2Level(quant, 256, 8, 8)
index.train(self.xb)
index.add(self.xb)
Dhnsw, Ihnsw = index.search(self.xq, 1)
self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 307)
self.io_and_retest(index, Dhnsw, Ihnsw)
def test_add_0_vecs(self):
index = faiss.IndexHNSWFlat(10, 16)
zero_vecs = np.zeros((0, 10), dtype='float32')
# infinite loop
index.add(zero_vecs)
def test_hnsw_IP(self):
d = self.xq.shape[1]
index_IP = faiss.IndexFlatIP(d)
index_IP.add(self.xb)
Dref, Iref = index_IP.search(self.xq, 1)
index = faiss.IndexHNSWFlat(d, 16, faiss.METRIC_INNER_PRODUCT)
index.add(self.xb)
Dhnsw, Ihnsw = index.search(self.xq, 1)
self.assertGreaterEqual((Iref == Ihnsw).sum(), 470)
mask = Iref[:, 0] == Ihnsw[:, 0]
assert np.allclose(Dref[mask, 0], Dhnsw[mask, 0])
def test_ndis_stats(self):
d = self.xq.shape[1]
index = faiss.IndexHNSWFlat(d, 16)
index.add(self.xb)
stats = faiss.cvar.hnsw_stats
stats.reset()
Dhnsw, Ihnsw = index.search(self.xq, 1)
self.assertGreater(stats.ndis, len(self.xq) * index.hnsw.efSearch)
def test_io_no_storage(self):
d = self.xq.shape[1]
index = faiss.IndexHNSWFlat(d, 16)
index.add(self.xb)
Dref, Iref = index.search(self.xq, 5)
# test writing without storage
index2 = faiss.deserialize_index(
faiss.serialize_index(index, faiss.IO_FLAG_SKIP_STORAGE)
)
self.assertEqual(index2.storage, None)
self.assertRaises(
RuntimeError,
index2.search, self.xb, 1)
# make sure we can store an index with empty storage
index4 = faiss.deserialize_index(
faiss.serialize_index(index2))
# add storage afterwards
index.storage = faiss.clone_index(index.storage)
index.own_fields = True
Dnew, Inew = index.search(self.xq, 5)
np.testing.assert_array_equal(Dnew, Dref)
np.testing.assert_array_equal(Inew, Iref)
if False:
# test reading without storage
# not implemented because it is hard to skip over an index
index3 = faiss.deserialize_index(
faiss.serialize_index(index), faiss.IO_FLAG_SKIP_STORAGE
)
self.assertEqual(index3.storage, None)
def test_abs_inner_product(self):
"""Test HNSW with abs inner product (not a real distance, so dubious that triangular inequality works)"""
d = self.xq.shape[1]
xb = self.xb - self.xb.mean(axis=0) # need to be centered to give interesting directions
xq = self.xq - self.xq.mean(axis=0)
Dref, Iref = faiss.knn(xq, xb, 10, faiss.METRIC_ABS_INNER_PRODUCT)
index = faiss.IndexHNSWFlat(d, 32, faiss.METRIC_ABS_INNER_PRODUCT)
index.add(xb)
Dnew, Inew = index.search(xq, 10)
inter = faiss.eval_intersection(Iref, Inew)
# 4769 vs. 500*10
self.assertGreater(inter, Iref.size * 0.9)
class Issue3684(unittest.TestCase):
def test_issue3684(self):
np.random.seed(1234) # For reproducibility
d = 256 # Example dimension
nb = 10 # Number of database vectors
nq = 2 # Number of query vectors
xb = np.random.random((nb, d)).astype('float32')
xq = np.random.random((nq, d)).astype('float32')
faiss.normalize_L2(xb) # Normalize both query and database vectors
faiss.normalize_L2(xq)
hnsw_index_ip = faiss.IndexHNSWFlat(256, 16, faiss.METRIC_INNER_PRODUCT)
hnsw_index_ip.hnsw.efConstruction = 512
hnsw_index_ip.hnsw.efSearch = 512
hnsw_index_ip.add(xb)
# test knn
D, I = hnsw_index_ip.search(xq, 10)
self.assertTrue(np.all(D[:, :-1] >= D[:, 1:]))
# test range search
radius = 0.74 # Cosine similarity threshold
lims, D, I = hnsw_index_ip.range_search(xq, radius)
self.assertTrue(np.all(D >= radius))
class TestNSG(unittest.TestCase):
def __init__(self, *args, **kwargs):
unittest.TestCase.__init__(self, *args, **kwargs)
d = 32
nt = 0
nb = 1500
nq = 500
self.GK = 32
_, self.xb, self.xq = get_dataset_2(d, nt, nb, nq)
def make_knn_graph(self, metric):
n = self.xb.shape[0]
d = self.xb.shape[1]
index = faiss.IndexFlat(d, metric)
index.add(self.xb)
_, I = index.search(self.xb, self.GK + 1)
knn_graph = np.zeros((n, self.GK), dtype=np.int64)
# For the inner product distance, the distance between a vector and
# itself may not be the smallest, so it is not guaranteed that I[:, 0]
# is the query itself.
for i in range(n):
cnt = 0
for j in range(self.GK + 1):
if I[i, j] != i:
knn_graph[i, cnt] = I[i, j]
cnt += 1
if cnt == self.GK:
break
return knn_graph
def subtest_io_and_clone(self, index, Dnsg, Insg):
fd, tmpfile = tempfile.mkstemp()
os.close(fd)
try:
faiss.write_index(index, tmpfile)
index2 = faiss.read_index(tmpfile)
finally:
if os.path.exists(tmpfile):
os.unlink(tmpfile)
Dnsg2, Insg2 = index2.search(self.xq, 1)
np.testing.assert_array_equal(Dnsg2, Dnsg)
np.testing.assert_array_equal(Insg2, Insg)
# also test clone
index3 = faiss.clone_index(index)
Dnsg3, Insg3 = index3.search(self.xq, 1)
np.testing.assert_array_equal(Dnsg3, Dnsg)
np.testing.assert_array_equal(Insg3, Insg)
def subtest_connectivity(self, index, nb):
vt = faiss.VisitedTable(nb)
count = index.nsg.dfs(vt, index.nsg.enterpoint, 0)
self.assertEqual(count, nb)
def subtest_add(self, build_type, thresh, metric=faiss.METRIC_L2):
d = self.xq.shape[1]
metrics = {faiss.METRIC_L2: 'L2',
faiss.METRIC_INNER_PRODUCT: 'IP'}
flat_index = faiss.IndexFlat(d, metric)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, 1)
index = faiss.IndexNSGFlat(d, 16, metric)
index.verbose = True
index.build_type = build_type
index.GK = self.GK
index.add(self.xb)
Dnsg, Insg = index.search(self.xq, 1)
recalls = (Iref == Insg).sum()
self.assertGreaterEqual(recalls, thresh)
self.subtest_connectivity(index, self.xb.shape[0])
self.subtest_io_and_clone(index, Dnsg, Insg)
def subtest_build(self, knn_graph, thresh, metric=faiss.METRIC_L2):
d = self.xq.shape[1]
metrics = {faiss.METRIC_L2: 'L2',
faiss.METRIC_INNER_PRODUCT: 'IP'}
flat_index = faiss.IndexFlat(d, metric)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, 1)
index = faiss.IndexNSGFlat(d, 16, metric)
index.verbose = True
index.build(self.xb, knn_graph)
Dnsg, Insg = index.search(self.xq, 1)
recalls = (Iref == Insg).sum()
self.assertGreaterEqual(recalls, thresh)
self.subtest_connectivity(index, self.xb.shape[0])
def test_add_bruteforce_L2(self):
self.subtest_add(0, 475, faiss.METRIC_L2)
def test_add_nndescent_L2(self):
self.subtest_add(1, 475, faiss.METRIC_L2)
def test_add_bruteforce_IP(self):
self.subtest_add(0, 480, faiss.METRIC_INNER_PRODUCT)
def test_add_nndescent_IP(self):
self.subtest_add(1, 480, faiss.METRIC_INNER_PRODUCT)
def test_build_L2(self):
knn_graph = self.make_knn_graph(faiss.METRIC_L2)
self.subtest_build(knn_graph, 475, faiss.METRIC_L2)
def test_build_IP(self):
knn_graph = self.make_knn_graph(faiss.METRIC_INNER_PRODUCT)
self.subtest_build(knn_graph, 480, faiss.METRIC_INNER_PRODUCT)
def test_build_invalid_knng(self):
"""Make some invalid entries in the input knn graph.
It would cause a warning but IndexNSG should be able
to handel this.
"""
knn_graph = self.make_knn_graph(faiss.METRIC_L2)
knn_graph[:100, 5] = -111
self.subtest_build(knn_graph, 475, faiss.METRIC_L2)
knn_graph = self.make_knn_graph(faiss.METRIC_INNER_PRODUCT)
knn_graph[:100, 5] = -111
self.subtest_build(knn_graph, 480, faiss.METRIC_INNER_PRODUCT)
def test_reset(self):
"""test IndexNSG.reset()"""
d = self.xq.shape[1]
metrics = {faiss.METRIC_L2: 'L2',
faiss.METRIC_INNER_PRODUCT: 'IP'}
metric = faiss.METRIC_L2
flat_index = faiss.IndexFlat(d, metric)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, 1)
index = faiss.IndexNSGFlat(d, 16)
index.verbose = True
index.GK = 32
index.add(self.xb)
Dnsg, Insg = index.search(self.xq, 1)
recalls = (Iref == Insg).sum()
self.assertGreaterEqual(recalls, 475)
self.subtest_connectivity(index, self.xb.shape[0])
index.reset()
index.add(self.xb)
Dnsg, Insg = index.search(self.xq, 1)
recalls = (Iref == Insg).sum()
self.assertGreaterEqual(recalls, 475)
self.subtest_connectivity(index, self.xb.shape[0])
def test_order(self):
"""make sure that output results are sorted"""
d = self.xq.shape[1]
index = faiss.IndexNSGFlat(d, 32)
index.train(self.xb)
index.add(self.xb)
k = 10
nq = self.xq.shape[0]
D, _ = index.search(self.xq, k)
indices = np.argsort(D, axis=1)
gt = np.arange(0, k)[np.newaxis, :] # [1, k]
gt = np.repeat(gt, nq, axis=0) # [nq, k]
np.testing.assert_array_equal(indices, gt)
def test_nsg_pq(self):
"""Test IndexNSGPQ"""
d = self.xq.shape[1]
R, pq_M = 32, 4
index = faiss.index_factory(d, f"NSG{R}_PQ{pq_M}np")
assert isinstance(index, faiss.IndexNSGPQ)
idxpq = faiss.downcast_index(index.storage)
assert index.nsg.R == R and idxpq.pq.M == pq_M
flat_index = faiss.IndexFlat(d)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, k=1)
index.GK = 32
index.train(self.xb)
index.add(self.xb)
D, I = index.search(self.xq, k=1)
# test accuracy
recalls = (Iref == I).sum()
self.assertGreaterEqual(recalls, 190) # 193
# test I/O
self.subtest_io_and_clone(index, D, I)
def test_nsg_sq(self):
"""Test IndexNSGSQ"""
d = self.xq.shape[1]
R = 32
index = faiss.index_factory(d, f"NSG{R}_SQ8")
assert isinstance(index, faiss.IndexNSGSQ)
idxsq = faiss.downcast_index(index.storage)
assert index.nsg.R == R
assert idxsq.sq.qtype == faiss.ScalarQuantizer.QT_8bit
flat_index = faiss.IndexFlat(d)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, k=1)
index.train(self.xb)
index.add(self.xb)
D, I = index.search(self.xq, k=1)
# test accuracy
recalls = (Iref == I).sum()
self.assertGreaterEqual(recalls, 405) # 411
# test I/O
self.subtest_io_and_clone(index, D, I)
class TestNNDescent(unittest.TestCase):
def __init__(self, *args, **kwargs):
unittest.TestCase.__init__(self, *args, **kwargs)
d = 32
nt = 0
nb = 1500
nq = 500
self.GK = 32
_, self.xb, self.xq = get_dataset_2(d, nt, nb, nq)
def test_nndescentflat(self):
d = self.xq.shape[1]
index = faiss.IndexNNDescentFlat(d, 32)
index.nndescent.search_L = 8
flat_index = faiss.IndexFlat(d)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, k=1)
index.train(self.xb)
index.add(self.xb)
D, I = index.search(self.xq, k=1)
# test accuracy
recalls = (Iref == I).sum()
self.assertGreaterEqual(recalls, 450) # 462
# do some IO tests
fd, tmpfile = tempfile.mkstemp()
os.close(fd)
try:
faiss.write_index(index, tmpfile)
index2 = faiss.read_index(tmpfile)
finally:
if os.path.exists(tmpfile):
os.unlink(tmpfile)
D2, I2 = index2.search(self.xq, 1)
np.testing.assert_array_equal(D2, D)
np.testing.assert_array_equal(I2, I)
# also test clone
index3 = faiss.clone_index(index)
D3, I3 = index3.search(self.xq, 1)
np.testing.assert_array_equal(D3, D)
np.testing.assert_array_equal(I3, I)
def test_order(self):
"""make sure that output results are sorted"""
d = self.xq.shape[1]
index = faiss.IndexNNDescentFlat(d, 32)
index.train(self.xb)
index.add(self.xb)
k = 10
nq = self.xq.shape[0]
D, _ = index.search(self.xq, k)
indices = np.argsort(D, axis=1)
gt = np.arange(0, k)[np.newaxis, :] # [1, k]
gt = np.repeat(gt, nq, axis=0) # [nq, k]
np.testing.assert_array_equal(indices, gt)
class TestNNDescentKNNG(unittest.TestCase):
def test_knng_L2(self):
self.subtest(32, 10, faiss.METRIC_L2)
def test_knng_IP(self):
self.subtest(32, 10, faiss.METRIC_INNER_PRODUCT)
def subtest(self, d, K, metric):
metric_names = {faiss.METRIC_L1: 'L1',
faiss.METRIC_L2: 'L2',
faiss.METRIC_INNER_PRODUCT: 'IP'}
nb = 1000
_, xb, _ = get_dataset_2(d, 0, nb, 0)
_, knn = faiss.knn(xb, xb, K + 1, metric)
knn = knn[:, 1:]
index = faiss.IndexNNDescentFlat(d, K, metric)
index.nndescent.S = 10
index.nndescent.R = 32
index.nndescent.L = K + 20
index.nndescent.iter = 5
index.verbose = True
index.add(xb)
graph = index.nndescent.final_graph
graph = faiss.vector_to_array(graph)
graph = graph.reshape(nb, K)
recalls = 0
for i in range(nb):
for j in range(K):
for k in range(K):
if graph[i, j] == knn[i, k]:
recalls += 1
break
recall = 1.0 * recalls / (nb * K)
assert recall > 0.99
def test_small_nndescent(self):
""" building a too small graph used to crash, make sure it raises
an exception instead.
TODO: build the exact knn graph for small cases
"""
d = 32
K = 10
index = faiss.IndexNNDescentFlat(d, K, faiss.METRIC_L2)
index.nndescent.S = 10
index.nndescent.R = 32
index.nndescent.L = K + 20
index.nndescent.iter = 5
index.verbose = True
xb = np.zeros((78, d), dtype='float32')
self.assertRaises(RuntimeError, index.add, xb)