-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmy_flair.py
54 lines (44 loc) · 2.01 KB
/
my_flair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Tencent is pleased to support the open source community by making GNES available.
#
# Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Tuple
import numpy as np
from gnes.component import BaseTextEncoder
from gnes.helper import batching, as_numpy_array
class MyFlairEncoder(BaseTextEncoder):
is_trained = True
def __init__(self,
word_embedding: str = 'glove',
flair_embeddings: Tuple[str] = ('news-forward', 'news-backward'),
pooling_strategy: str = 'mean', *args, **kwargs):
super().__init__(*args, **kwargs)
self.word_embedding = word_embedding
self.flair_embeddings = flair_embeddings
self.pooling_strategy = pooling_strategy
def post_init(self):
from flair.embeddings import DocumentPoolEmbeddings, WordEmbeddings, FlairEmbeddings
self._flair = DocumentPoolEmbeddings(
[WordEmbeddings(self.word_embedding),
FlairEmbeddings(self.flair_embeddings[0]),
FlairEmbeddings(self.flair_embeddings[1])],
pooling=self.pooling_strategy)
@batching
@as_numpy_array
def encode(self, text: List[str], *args, **kwargs) -> np.ndarray:
from flair.data import Sentence
import torch
# tokenize text
batch_tokens = [Sentence(v) for v in text]
self._flair.embed(batch_tokens)
return torch.stack([v.embedding for v in batch_tokens]).detach()