-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathgmtracker_app.py
285 lines (255 loc) · 10.4 KB
/
gmtracker_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# vim: expandtab:ts=4:sw=4
from __future__ import division, print_function, absolute_import
import argparse
import os
import os.path as osp
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils.detection import Detection
from utils.tracker import Tracker
from utils.config import cfg
from GMMOT.graph_encoder import ReidEncoder
def gather_sequence_info(sequence_dir, npy_file):
"""Gather sequence information, such as image filenames, detections,
groundtruth (if available).
Parameters
----------
sequence_dir : str
Path to the MOTChallenge sequence directory.
detection_file : str
Path to the detection file.
Returns
-------
Dict
A dictionary of the following sequence information:
* sequence_name: Name of the sequence
* image_filenames: A dictionary that maps frame indices to image
filenames.
* detections: A numpy array of detections in MOTChallenge format.
* groundtruth: A numpy array of ground truth in MOTChallenge format.
* image_size: Image size (height, width).
* min_frame_idx: Index of the first frame.
* max_frame_idx: Index of the last frame.
"""
image_dir = os.path.join(sequence_dir, "img1")
image_filenames = {
int(os.path.splitext(f)[0]): os.path.join(image_dir, f)
for f in os.listdir(image_dir)}
groundtruth_file = os.path.join(sequence_dir, "gt/gt.txt")
detections = npy_file
groundtruth = None
if os.path.exists(groundtruth_file):
groundtruth = np.loadtxt(groundtruth_file, delimiter=',')
if len(image_filenames) > 0:
image = cv2.imread(next(iter(image_filenames.values())),
cv2.IMREAD_GRAYSCALE)
image_size = image.shape
else:
image_size = None
if len(image_filenames) > 0:
min_frame_idx = min(image_filenames.keys())
max_frame_idx = max(image_filenames.keys())
else:
min_frame_idx = int(detections[:, 0].min())
max_frame_idx = int(detections[:, 0].max())
info_filename = os.path.join(sequence_dir, "seqinfo.ini")
if os.path.exists(info_filename):
with open(info_filename, "r") as f:
line_splits = [l.split('=') for l in f.read().splitlines()[1:]]
info_dict = dict(
s for s in line_splits if isinstance(s, list) and len(s) == 2)
update_ms = 1000 / int(info_dict["frameRate"])
else:
update_ms = None
feature_dim = detections.shape[1] - 10 if detections is not None else 0
seq_info = {
"sequence_name": os.path.basename(sequence_dir),
"image_filenames": image_filenames,
"detections": detections,
"groundtruth": groundtruth,
"image_size": image_size,
"min_frame_idx": min_frame_idx,
"max_frame_idx": max_frame_idx,
"feature_dim": feature_dim,
"update_ms": update_ms,
"img_dir": image_dir
}
return seq_info
def encode_newfeat(npy_file, checkpoint_dir):
# encode new appearance feature from original reid feature
npydata = np.load(npy_file)
reid = torch.Tensor(npydata[:,10:])
print(reid.shape)
class Net0(nn.Module):
def __init__(self):
super(Net0, self).__init__()
self.reid_enc = ReidEncoder()
self.cross_graph = nn.Linear(512, 512)
def forward(self, x):
x = self.reid_enc(x)
return x
with torch.no_grad():
model = Net0()
model.eval()
params_path = os.path.join(checkpoint_dir, f"params.pt")
print("Loading model parameters from {}".format(params_path))
model.load_state_dict(torch.load(params_path),strict=False)
feat_new = model(reid)
print(feat_new.shape)
npydata[:,10:] = feat_new
return npydata
def create_detections(detection_mat, frame_idx, w_img=0,h_img=0):
"""Create detections for given frame index from the raw detection matrix.
Parameters
----------
detection_mat : ndarray
Matrix of detections. The first 10 columns of the detection matrix are
in the standard MOTChallenge detection format. In the remaining columns
store the feature vector associated with each detection.
frame_idx : int
The frame index.
min_height : Optional[int]
A minimum detection bounding box height. Detections that are smaller
than this value are disregarded.
Returns
-------
List[tracker.Detection]
Returns detection responses at given frame index.
"""
frame_indices = detection_mat[:, 0].astype(np.int)
mask = frame_indices == frame_idx
detection_list = []
for row in detection_mat[mask]:
bbox, confidence, feature = row[2:6], row[6], row[10:]
'''
bbx2 = bbox[0]+bbox[2] if bbox[0]+bbox[2]<=w_img else w_img
bby2 = bbox[1]+bbox[3] if bbox[1]+bbox[3]<=h_img else h_img
bbx1 = bbox[0] if bbox[0]>=0 else 0.0
bby1 = bbox[1] if bbox[1]>=0 else 0.0
bbox[0] = bbx1
bbox[1] = bby1
bbox[2] = bbx2 - bbx1
bbox[3] = bby2 - bby1
'''
detection_list.append(Detection(bbox, confidence, feature))
return detection_list
def ECC(src0, dst0, warp_mode = cv2.MOTION_EUCLIDEAN, eps = 1e-5,
max_iter = 100):
src = cv2.cvtColor(src0, cv2.COLOR_BGR2GRAY)
dst = cv2.cvtColor(dst0, cv2.COLOR_BGR2GRAY)
warp_matrix = np.eye(2, 3, dtype=np.float32)
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, max_iter, eps)
(cc, warp_matrix) = cv2.findTransformECC (src, dst, warp_matrix, warp_mode, criteria, None, 1)
return warp_matrix
class WarpMatrix():
def __init__(self, seq_info):
self.mat = []
for i in range(1, seq_info["max_frame_idx"]):
print('Generating warp_mat '+seq_info["sequence_name"]+ " frame %05d" %i)
image_1 = cv2.imread(os.path.join(seq_info["img_dir"], "%06d"%(i) +".jpg"))
image_2 = cv2.imread(os.path.join(seq_info["img_dir"], "%06d"%(i+1) +".jpg"))
warp_mat = ECC(image_1,image_2)
self.mat.append(warp_mat)
def run(sequence_dir, detection_file, output_file, max_age, n_init, reid_thr, checkpoint_dir):
"""Run multi-target tracker on a particular sequence.
Parameters
----------
sequence_dir : str
Path to the MOTChallenge sequence directory.
detection_file : str
Path to the detections file.
output_file : str
Path to the tracking output file. This file will contain the tracking
results on completion.
min_confidence : float
Detection confidence threshold. Disregard all detections that have
a confidence lower than this value.
nms_max_overlap: float
Maximum detection overlap (non-maxima suppression threshold).
min_detection_height : int
Detection height threshold. Disregard all detections that have
a height lower than this value.
max_cosine_distance : float
Gating threshold for cosine distance metric (object appearance).
nn_budget : Optional[int]
Maximum size of the appearance descriptor gallery. If None, no budget
is enforced.
display : bool
If True, show visualization of intermediate tracking results.
"""
new_npy = encode_newfeat(detection_file, checkpoint_dir)
seq_info = gather_sequence_info(sequence_dir, new_npy)
tracker = Tracker(max_age=max_age, n_init=n_init,reid_thr=reid_thr)
results = []
if not osp.exists(os.path.join("warp_mat", "%s.npy" %seq_info["sequence_name"])):
if not osp.exists("./warp_mat"):
os.system('mkdir ./warp_mat')
warp_matrix = np.array(WarpMatrix(seq_info).mat)
output_filename = os.path.join("warp_mat", "%s.npy" %seq_info["sequence_name"])
np.save(
output_filename, warp_matrix, allow_pickle=False)
else:
warp_matrix = np.load(os.path.join("warp_mat", "%s.npy" %seq_info["sequence_name"]))
def frame_callback(frame_idx):
print("Processing %s"%seq_info["sequence_name"], "frame %05d" %frame_idx)
# Load image and generate detections.
detections = create_detections(
seq_info["detections"], frame_idx, w_img=seq_info["image_size"][1],h_img=seq_info["image_size"][0])
# Update tracker.
tracker.predict(warp_matrix[frame_idx-2])
tracker.update(detections, seq_info["sequence_name"], frame_idx, checkpoint_dir)
# Store results.
for track in tracker.tracks:
if track.time_since_update >= 1:
continue
bbox = track.to_tlwh2()
results.append([
frame_idx, track.track_id, bbox[0], bbox[1], bbox[2], bbox[3]])
# Run tracker.
frame_idx = seq_info["min_frame_idx"]
while frame_idx <= seq_info["max_frame_idx"]:
frame_callback(frame_idx)
frame_idx += 1
# Store results.
output_path = os.path.dirname(output_file)
if not os.path.exists(output_path):
os.makedirs(output_path)
f = open(output_file, 'w')
for row in results:
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1' % (
row[0], row[1], row[2], row[3], row[4], row[5]),file=f)
def parse_args():
""" Parse command line arguments.
"""
parser = argparse.ArgumentParser(description="Learnable Graph Matching for MOT")
parser.add_argument(
"--sequence_dir", help="Path to MOTChallenge sequence directory",
default=None, required=True)
parser.add_argument(
"--detection_file", help="Path to custom detections.", default=None,
required=True)
parser.add_argument(
"--checkpoint_dir", help="Path to checkpoint dir.", default=None,
required=True)
parser.add_argument(
"--output_file", help="Path to the tracking output file. This file will"
" contain the tracking results on completion.",
default="/tmp/hypotheses.txt")
parser.add_argument(
"--max_age", help="The maximum frames to delete a tracklet.",
default=100, type=int)
parser.add_argument(
"--n_init", help="n_init",
default=1, type=int)
parser.add_argument(
"--reid_thr", help="Cosine similarity threshold of ReID features.",
default=0.6, type=float)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
run(
args.sequence_dir, args.detection_file, args.output_file,
args.max_age, args.n_init, args.reid_thr, args.checkpoint_dir)