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Abstract
We present a general-purpose solver for convex quadratic programs based on the alter-
nating direction method of multipliers, employing a novel operator splitting technique
that requires the solution of a quasi-definite linear system with the same coefficient
matrix at almost every iteration. Our algorithm is very robust, placing no requirements
on the problem data such as positive definiteness of the objective function or linear
independence of the constraint functions. It can be configured to be division-free once
an initial matrix factorization is carried out, making it suitable for real-time applica-
tions in embedded systems. In addition, our technique is the first operator splitting
method for quadratic programs able to reliably detect primal and dual infeasible prob-
lems from the algorithm iterates. The method also supports factorization caching and
warm starting, making it particularly efficient when solving parametrized problems
arising in finance, control, and machine learning. Our open-source C implementation
OSQP has a small footprint, is library-free, and has been extensively tested on many
problem instances from a wide variety of application areas. It is typically ten times
faster than competing interior-point methods, and sometimes much more when fac-
torization caching or warm start is used. OSQP has already shown a large impact with
tens of thousands of users both in academia and in large corporations.
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638 B. Stellato et al.

1 Introduction

1.1 The problem

Consider the following optimization problem

minimize (1/2)xT Px + qT x
subject to Ax ∈ C,

(1)

where x ∈ Rn is the decision variable. The objective function is defined by a positive
semidefinite matrix P ∈ Sn+ and a vector q ∈ Rn , and the constraints by a matrix
A ∈ Rm×n and a nonempty, closed and convex set C ⊆ Rm . We will refer to it as
general (convex) quadratic program.

If the set C takes the form

C = [l, u] = {
z ∈ Rm | li ≤ zi ≤ ui , i = 1, . . . ,m

}
,

with li ∈ {−∞} ∪ R and ui ∈ R ∪ {+∞}, we can write problem (1) as

minimize (1/2)xT Px + qT x
subject to l ≤ Ax ≤ u,

(2)

which we will refer to as a quadratic program (QP). Linear equality constraints can
be encoded in this way by setting li = ui for some or all of the elements in (l, u).
Note that any linear program (LP) can be written in this form by setting P = 0. We
will characterize the size of (2) with the tuple (n,m, N ) where N is the sum of the
number of nonzero entries in P and A, i.e., N = nnz(P) + nnz(A).

Applications Optimization problems of the form (1) arise in a huge variety of applica-
tions in engineering, finance, operations research and many other fields. Applications
in machine learning include support vector machines (SVM) [21], Lasso [19,90]
and Huber fitting [55,56]. Financial applications of (1) include portfolio optimiza-
tion [13,15,20,67], [17, §4.4.1]. In the field of control engineering, model predictive
control (MPC) [42,82] and moving horizon estimation (MHE) [2] techniques require
the solution of a QP at each time instant. Several signal processing problems also
fall into the same class [17, §6.3.3], [69]. In addition, the numerical solution of QP
subproblems is an essential component in nonconvex optimization methods such as
sequential quadratic programming (SQP) [76, Chap. 18] and mixed-integer optimiza-
tion using branch-and-bound algorithms [10,37].

1.2 Solutionmethods

Convex QPs have been studied since the 1950s [39], following from the seminal work
on LPs started by Kantorovich [59]. Several solution methods for both LPs and QPs
have been proposed and improved upon throughout the years.
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OSQP: an operator splitting solver for quadratic programs 639

Active-set methods Active-set methods were the first algorithms popularized as
solution methods for QPs [94], and were obtained from an extension of Dantzig’s
simplex method for solving LPs [22]. Active-set algorithms select an active-set (i.e.,
a set of binding constraints) and then iteratively adapt it by adding and dropping
constraints from the index of active ones [76, §16.5]. New active constraints are added
based on the cost function gradient and the current dual variables. Active-set methods
for QPs differ from the simplexmethod for LPs because the iterates are not necessarily
vertices of the feasible region. These methods can easily be warm started to reduce the
number of active-set recalculations required. However, the major drawback of active-
set methods is that the worst-case complexity grows exponentially with the number
of constraints, since it may be necessary to investigate all possible active-sets before
reaching the optimal one [62]. Modern implementations of active-set methods for the
solution of QPs can be found in many commercial solvers, such as MOSEK [73] and
GUROBI [53], and in the open-source solver qpOASES [36].

Interior-point methods Interior-point algorithms gained popularity in the 1980s as
a method for solving LPs in polynomial time [45,60]. In the 90s these techniques
were extended to general convex optimization problems, including QPs [74]. Interior-
point methods model the problem constraints as parametrized penalty functions, also
referred to as barrier functions. At each iteration an unconstrained optimization prob-
lem is solved for varying barrier function parameters until the optimum is achieved;
see [17, Chap. 11] and [76, §16.6] for details. Primal–dual interior-point methods, in
particular the Mehrotra predictor–corrector [71] method, became the algorithms of
choice for practical implementation [95] because of their good performance across a
wide range of problems. However, interior-point methods are not easily warm started
and do not scale well for very large problems. Interior-point methods are currently
the default algorithms in the commercial solvers MOSEK [73], GUROBI [53] and
CVXGEN [70] and in the open-source solver OOQP [43].

First-order methods First-order optimization methods for solving quadratic pro-
grams date to the 1950s [39]. These methods iteratively compute an optimal solution
usingonlyfirst-order information about the cost function.Operator splitting techniques
such as the Douglas–Rachford splitting [31,64] are a particular class of first-order
methods which model the optimization problem as the problem of finding a zero of
the sum of monotone operators.

In recent years, the operator splitting method known as the alternating direction
method ofmultipliers (ADMM) [41,48] has received particular attention because of its
very good practical convergence behavior; see [16] for a survey. ADMMcan be seen as
a variant of the classical alternating projections algorithm [8] for finding a point in the
intersection of two convex sets, and can also be shown to be equivalent to the Douglas–
Rachford splitting [40]. ADMM has been shown to reliably provide modest accuracy
solutions toQPs in a relatively small number of computationally inexpensive iterations.
It is therefore well suited to applications such as embedded optimization or large-scale
optimization, wherein high accuracy solutions are typically not required due to noise in
the data and arbitrariness of the cost function. ADMM steps are computationally very
cheap and simple to implement, and thus ideal for embedded processors with limited
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640 B. Stellato et al.

computing resources such as those found in embedded control systems [58,78,87].
ADMM is also compatible with distributed optimization architectures enabling the
solution of very large-scale problems [16].

A drawback of first-order methods is that they are typically unable to detect pri-
mal and/or dual infeasibility. In order to address this shortcoming, a homogeneous
self-dual embedding has been proposed in conjunction with ADMM for solving conic
optimization problems and implemented in the open-source solver SCS [77]. Although
every QP can be reformulated as a conic program, this reformulation is not efficient
from a computational point of view. A further drawback of ADMM is that number
of iterations required to converge is highly dependent on the problem data and on the
user’s choice of the algorithm’s step-size parameters. Despite some recent theoreti-
cal results [5,47], it remains unclear how to select those parameters to optimize the
algorithm convergence rate. For this reason, even though there are several benefits in
using ADMM techniques for solving optimization problems, there exists no reliable
general-purpose QP solver based on operator splitting methods.

1.3 Our approach

In this work we present a new general-purpose QP solver based on ADMM that
is able to provide high accuracy solutions. The proposed algorithm is based on a
novel splitting requiring the solution of a quasi-definite linear system that is always
solvable for any choice of problem data. We therefore impose no constraints such as
strict convexity of the cost function or linear independence of the constraints. Since
the linear system’s matrix coefficients remain the same at every iteration when ρ is
fixed, our algorithm requires only a single factorization to solve the QP (2). Once this
initial factorization is computed, we can fix the linear system matrix coefficients to
make the algorithm division-free. If we allow divisions, then we can make occasional
updates to the term ρ in this linear system to improve our algorithm’s convergence.
We find that our algorithm typically updates these coefficients very few times, e.g.,
1 or 2 in our experiments. In contrast to other first-order methods, our approach is
able to return primal and dual solutions when the problem is solvable or to provide
certificates of primal and dual infeasibility without resorting to the homogeneous
self-dual embedding.

To obtain high accuracy solutions, we perform solution polishing on the iterates
obtained from ADMM. By identifying the active constraints from the final dual vari-
able iterates, we construct an ancillary equality-constrained QP whose solution is
equivalent to that of the original QP (1). This ancillary problem is then solved by
computing the solution of a single linear system of typically much lower dimensions
than the one solved during the ADMM iterations. If we identify the active constraints
correctly, then the resulting solution of our method has accuracy equal to or even better
than interior-point methods.

Our algorithm can be efficiently warm started to reduce the number of iterations.
Moreover, if the problem matrices do not change then the quasi-definite system fac-
torization can be reused across multiple solves greatly improving the computation
time. This feature is particularly useful when solving multiple instances of parametric
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OSQP: an operator splitting solver for quadratic programs 641

QPs where only a few elements of the problem data change. Examples illustrating the
effectiveness of the proposed algorithm in parametric programs arising in embedded
applications appear in [7].

We implemented our method in the open-source “Operator Splitting Quadratic
Program” (OSQP) solver. OSQP is written in C and can be compiled to be library
free. OSQP is robust against noisy and unreliable problem data, has a very small code
footprint, and is suitable for both embedded and large-scale applications. We have
extensively tested our code and carefully tuned its parameters by solving millions of
QPs. We benchmarked our solver against state-of-the-art interior-point and active-set
solvers over a benchmark library of 1400 problems from 7 different classes and over
the hard QPsMaros–Mészáros test set [68]. Numerical results show that our algorithm
is able to provide up to an order of magnitude computational time improvements over
existing commercial and open-source solvers in a wide variety of applications. We
also showed further time reductions from warm starting and factorization caching.

2 Optimality conditions

Wewill find it convenient to rewrite problem (1) by introducing an additional decision
variable z ∈ Rm , to obtain the equivalent problem

minimize (1/2)xT Px + qT x
subject to Ax = z

z ∈ C.

(3)

We can write the optimality conditions of problem (3) as [6, Lem. A.1], [84, Thm.
6.12]

Ax = z, (4)

Px + q + AT y = 0, (5)

z ∈ C, y ∈ NC(z), (6)

where y ∈ Rm is the Lagrange multiplier associated with the constraint Ax = z and
NC(z) denotes the normal cone of C at z. If there exist x ∈ Rn , z ∈ Rm and y ∈ Rm

that satisfy the conditions above, then we say that (x, z) is a primal and y is a dual
solution to problem (3). We define the primal and dual residuals of problem (1) as

rprim = Ax − z, (7)

rdual = Px + q + AT y. (8)

Quadratic programs In case of QPs of the form (2), condition (6) reduces to

l ≤ z ≤ u, yT+(z − u) = 0, yT−(z − l) = 0, (9)

where y+ = max(y, 0) and y− = min(y, 0).
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2.1 Certificates of primal and dual infeasibility

From the theorem of strong alternatives [17, §5.8], [6, Prop. 3.1], exactly one of the
following sets is nonempty

P = {
x ∈ Rn | Ax ∈ C}

, (10)

D =
{
y ∈ Rm | AT y = 0, SC(y) < 0

}
, (11)

where SC is the support function of C, provided that some type of constraint qual-
ification holds [17]. In other words, any variable y ∈ D serves as a certificate that
problem (1) is primal infeasible.

Quadratic programs In case C = [l, u], certifying primal infeasibility of (2) amounts
to finding a vector y ∈ Rm such that

AT y = 0, uT y+ + lT y− < 0. (12)

Similarly, it can be shown that a vector x ∈ Rn satisfying

Px = 0, qT x < 0, (Ax)i

⎧
⎨

⎩

= 0 li , ui ∈ R
≥ 0 ui = +∞, li ∈ R
≤ 0 li = −∞, ui ∈ R

(13)

is a certificate of dual infeasibility for problem (2); see [6, Prop. 3.1] for more details.

3 Solution with ADMM

Our method solves problem (3) using ADMM [16]. By introducing auxiliary variables
x̃ ∈ Rn and z̃ ∈ Rm , we can rewrite problem (3) as

minimize (1/2)x̃ T P x̃ + qT x̃ + IAx=z(x̃, z̃) + IC(z)
subject to (x̃, z̃) = (x, z),

(14)

where IAx=z and IC are the indicator functions given by

IAx=z(x, z) =
{
0 Ax = z

+∞ otherwise
, IC(z) =

{
0 z ∈ C
+∞ otherwise

.

An iteration of ADMM for solving problem (14) consists of the following steps:

(x̃ k+1, z̃k+1) ← argmin
(x̃,z̃):Ax̃=z̃

(1/2)x̃ T P x̃ + qT x̃

+ (σ/2)‖x̃ − xk + σ−1wk‖22 + (ρ/2)‖z̃ − zk + ρ−1yk‖22 (15)

xk+1 ← α x̃ k+1 + (1 − α)xk + σ−1wk (16)
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OSQP: an operator splitting solver for quadratic programs 643

zk+1 ← Π
(
αz̃k+1 + (1 − α)zk + ρ−1yk

)
(17)

wk+1 ← wk + σ
(
α x̃ k+1 + (1 − α)xk − xk+1

)
(18)

yk+1 ← yk + ρ
(
αz̃k+1 + (1 − α)zk − zk+1

)
(19)

where σ > 0 and ρ > 0 are the step-size parameters, α ∈ (0, 2) is the relaxation
parameter, and Π denotes the Euclidean projection onto C. The introduction of the
splitting variable x̃ ensures that the subproblem in (15) is always solvable for any
P ∈ Sn+ which can also be 0 for LPs. Note that all the derivations hold also for σ and
ρ being positive definite diagonal matrices. The iterateswk and yk are associated with
the dual variables of the equality constraints x̃ = x and z̃ = z, respectively. Observe
from steps (16) and (18) that wk+1 = 0 for all k ≥ 0, and consequently the w-iterate
and the step (18) can be disregarded.

3.1 Solving the linear system

Evaluating the ADMM step (15) involves solving the equality constrained QP

minimize (1/2)x̃ T P x̃ +qT x̃ + (σ/2)‖x̃ − xk‖22 +(ρ/2)‖z̃ − zk +ρ−1yk‖22
subject to Ax̃ = z̃.

(20)
The optimality conditions for this equality constrained QP are

Px̃k+1 + q + σ(x̃ k+1 − xk) + AT νk+1 = 0, (21)

ρ(z̃k+1 − zk) + yk − νk+1 = 0, (22)

Ax̃k+1 − z̃k+1 = 0, (23)

where νk+1 ∈ Rm is the Lagrange multiplier associated with the constraint Ax = z.
By eliminating the variable z̃k+1 from (22), the above linear system reduces to

[
P + σ I AT

A −ρ−1 I

] [
x̃ k+1

νk+1

]
=

[
σ xk − q

zk − ρ−1yk

]
, (24)

with z̃k+1 recoverable as

z̃k+1 = zk + ρ−1(νk+1 − yk).

We will refer to the coefficient matrix in (24) as the KKT matrix. This matrix always
has full rank thanks to the positive parameters σ and ρ introduced in our splitting,
so (24) always has a unique solution for any matrices P ∈ Sn+ and A ∈ Rm×n . In
other words, we do not impose any additional assumptions on the problem data such
as strong convexity of the objective function or linear independence of the constraints
as was done in [44,80,81].
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644 B. Stellato et al.

Direct method A direct method for solving the linear system (24) computes its
solution by first factoring the KKTmatrix and then performing forward and backward
substitution. Since the KKT matrix remains the same for every iteration of ADMM,
we only need to perform the factorization once prior to the first iteration and cache
the factors so that we can reuse them in subsequent iterations. This approach is very
efficient when the factorization cost is considerably higher than the cost of forward
and backward substitutions, so that each iteration is computed quickly. Note that if ρ

or σ change, the KKT matrix needs to be factored again.
Our particular choice of splitting results in a KKT matrix that is quasi-definite,

i.e., it can be written as a 2-by-2 block-symmetric matrix where the (1, 1)-
block is positive definite, and the (2, 2)-block is negative definite. It therefore
always has a well defined LDLT factorization, with L being a lower triangu-
lar matrix with unit diagonal elements and D a diagonal matrix with nonzero
diagonal elements [91]. Note that once the factorization is carried out, comput-
ing the solution of (24) can be made division-free by storing D−1 instead of
D.

When the KKT matrix is sparse and quasi-definite, efficient algorithms can be
used for computing a suitable permutation matrix P for which the factorization of
PK PT results in a sparse factor L [3,24] without regard for the actual nonzero values
appearing in the KKT matrix. The LDLT factorization consists of two steps. In the
first step we compute the sparsity pattern of the factor L . This step is referred to as
the symbolic factorization and requires only the sparsity pattern of the KKT matrix.
In the second step, referred to as the numerical factorization, we determine the values
of nonzero elements in L and D. Note that we do not need to update the symbolic
factorization if the nonzero entries of the KKT matrix change but the sparsity pattern
remains the same.

Indirect method With large-scale QPs, factoring linear system (24) might be pro-
hibitive. In these cases it might be more convenient to use an indirect method by
solving instead the linear system

(P + σ I + ρAT A)x̃ k+1 = σ xk − q + AT (ρzk − yk)

obtained by eliminating νk+1 from (24).We then compute z̃k+1 as z̃k+1 = Ax̃k+1.Note
that the coefficient matrix in the above linear system is always positive definite. The
linear system can therefore be solved with an iterative scheme such as the conjugate
gradient method [49,76]. When the linear system is solved up to some predefined
accuracy, we terminate the method. We can also warm start the method using the
linear system solution at the previous iteration of ADMM to speed up its convergence.
In contrast to direct methods, the complexity of indirect methods does not change
if we update ρ and σ since there is no factorization required. This allows for more
updates to take place without any overhead.
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OSQP: an operator splitting solver for quadratic programs 645

3.2 Final algorithm

By simplifying the ADMM iterations according to the previous discussion, we obtain
Algorithm 1. Steps 4, 5, 6 and 7 of Algorithm 1 are very easy to evaluate since
they involve only vector addition and subtraction, scalar-vector multiplication and
projection onto a box. Moreover, they are component-wise separable and can be easily
parallelized. The most computationally expensive part is solving the linear system in
Step 3, which can be performed as discussed in Sect. 3.1.

Algorithm 1
1: given initial values x0, z0, y0 and parameters ρ > 0, σ > 0, α ∈ (0, 2)
2: repeat

3: (x̃k+1, νk+1) ← solve linear system

[
P + σ I AT

A −ρ−1 I

] [
x̃k+1

νk+1

]
=

[
σ xk − q

zk − ρ−1yk

]

4: z̃k+1 ← zk + ρ−1(νk+1 − yk )
5: xk+1 ← α x̃k+1 + (1 − α)xk

6: zk+1 ← Π
(
αz̃k+1 + (1 − α)zk + ρ−1yk

)

7: yk+1 ← yk + ρ
(
αz̃k+1 + (1 − α)zk − zk+1

)

8: until termination criterion is satisfied

3.3 Convergence and infeasibility detection

We show in this section that the proposed algorithm generates a sequence of iterates
(xk, zk, yk) that in the limit satisfy the optimality conditions (4)–(6) when problem (1)
is solvable, or provides a certificate of primal or dual infeasibility otherwise.

If we denote the argument of the projection operator in step 6 of Algorithm 1 by
vk+1, then we can express zk and yk as

zk = Π(vk) and yk = ρ
(
vk − Π(vk)

)
. (25)

Observe from (25) that iterates zk and yk satisfy optimality condition (6) for all k > 0
by construction [9, Prop. 6.46]. Therefore, it only remains to show that optimality
conditions (4)–(5) are satisfied in the limit.

As shown in [6, Prop. 5.3], if problem (2) is solvable, then Algorithm 1 produces
a convergent sequence of iterates (xk, zk, yk) so that

lim
k→∞ rkprim = 0,

lim
k→∞ rkdual = 0,

where rkprim and rkdual correspond to the residuals defined in (7) and (8) respectively.
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On the other hand, if problem (2) is primal and/or dual infeasible, then the sequence
of iterates (xk, zk, yk) generated by Algorithm 1 does not converge. However, the
sequence

(δxk, δzk, δyk) = (xk − xk−1, zk − zk−1, yk − yk−1)

always converges and can be used to certify infeasibility of the problem. According
to [6, Thm. 5.1], if the problem is primal infeasible, then δy = limk→∞ δyk satisfies
conditions (12), whereas δx = limk→∞ δxk satisfies conditions (13) if it is dual
infeasible.

3.4 Termination criteria

We can define termination criteria for Algorithm 1 so that the iterations stop when
either a primal–dual solution or a certificate of primal or dual infeasibility is found up
to some predefined accuracy.

A reasonable termination criterion for detecting optimality is that the norms of
the residuals rkprim and rkdual are smaller than some tolerance levels εprim > 0 and
εdual > 0 [16], i.e.,

‖rkprim‖∞ ≤ εprim, ‖rkdual‖∞ ≤ εdual. (26)

We set the tolerance levels as

εprim = εabs + εrel max{‖Axk‖∞, ‖zk‖∞}
εdual = εabs + εrel max{‖Pxk‖∞, ‖AT yk‖∞, ‖q‖∞},

where εabs > 0 and εrel > 0 are absolute and relative tolerances, respectively.

Quadratic programs infeasibility If C = [l, u], we check the following conditions
for primal infeasibility

‖AT δyk‖∞ ≤ εpinf‖δyk‖∞, uT (δyk)+ + lT (δyk)− ≤ εpinf‖δyk‖∞,

where εpinf > 0 is some tolerance level. Similarly, we define the following criterion
for detecting dual infeasibility

‖Pδxk‖∞ ≤ εdinf‖δxk‖∞, qT δxk ≤ εdinf‖δxk‖∞,

(Aδxk)i

⎧
⎪⎨

⎪⎩

∈ [−εdinf , εdinf ] ‖δxk‖∞ ui , li ∈ R
≥ −εdinf‖δxk‖∞ ui = +∞
≤ εdinf‖δxk‖∞ li = −∞,

for i = 1, . . . ,m where εdinf > 0 is some tolerance level. Note that ‖δxk‖∞ and
‖δyk‖∞ appear in the right-hand sides to avoid division when considering normalized
vectors δxk and δyk in the termination criteria.
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OSQP: an operator splitting solver for quadratic programs 647

4 Solution polishing

Operator splitting methods are typically used for obtaining solution of an optimization
problem with a low or medium accuracy. However, even if a solution is not very
accurate we can often guess which constraints are active from an approximate primal–
dual solution. When dealing with QPs of the form (2), we can obtain high accuracy
solutions from the final ADMM iterates by solving one additional system of equations.

Given a dual solution y of the problem, we define the sets of lower- and upper-active
constraints

L = {i ∈ {1, . . . ,m} | yi < 0} ,

U = {i ∈ {1, . . . ,m} | yi > 0} .

According to (9) we have that zL = lL and zU = uU , where lL denotes the vector
composed of elements of l corresponding to the indices inL. Similarly, we will denote
by AL the matrix composed of rows of A corresponding to the indices in L.

If the sets of active constraints are known a priori, then a primal–dual solution
(x, y, z) can be found by solving the following linear system

⎡

⎣
P AT

L AT
U

AL
AU

⎤

⎦

⎡

⎣
x
yL
yU

⎤

⎦ =
⎡

⎣
−q
lL
uU

⎤

⎦ , (27)

yi = 0, i /∈ (L ∪ U), (28)

z = Ax . (29)

We can then apply the aforementioned procedure to obtain a candidate solution
(x, y, z). If (x, y, z) satisfies the optimality conditions (4)–(6), then our guess is correct
and (x, y, z) is a primal–dual solution of problem (3). This approach is referred to as
solution polishing. Note that the dimension of the linear system (27) is usually much
smaller than the KKT system in Sect. 3.1 because the number of active constraints at
optimality is less than or equal to n for non-degenerate QPs.

However, the linear system (27) is not necessarily solvable even if the sets of
active constraints L and U have been correctly identified. This can happen, e.g., if the
solution is degenerate, i.e., if it has one or more redundant active constraints. Wemake
the solution polishing procedure more robust by solving instead the following linear
system ⎡

⎣
P + δ I AT

L AT
U

AL −δ I
AU −δ I

⎤

⎦

⎡

⎣
x̂
ŷL
ŷU

⎤

⎦ =
⎡

⎣
−q
lL
uU

⎤

⎦ , (30)

where δ > 0 is a regularization parameter with value δ ≈ 10−6. Since the regularized
matrix in (30) is quasi-definite, the linear system (30) is always solvable.

By using regularization, we actually solve a perturbed linear system and thus intro-
duce a small error to the polished solution. If we denote by K and (K + ΔK ) the
coefficient matrices in (27) and (30), respectively, then we can represent the two linear
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systems as Kt = g and (K + ΔK )t̂ = g. To compensate for this error, we apply an
iterative refinement procedure [92], i.e., we iteratively solve

(K + ΔK )Δt̂ k = g − K t̂k (31)

and update t̂ k+1 = t̂ k + Δt̂ k . The sequence {t̂ k} converges to the true solution t ,
provided that it exists. Observe that, compared to solving the linear system (30), iter-
ative refinement requires only a backward- and a forward-solve, and does not require
another matrix factorization. Since the iterative refinement iterations converge very
quickly in practice, we just run them for a fixed number of passeswithout imposing any
termination condition to satisfy. Note that this is the same strategy used in commercial
linear system solvers using iterative refinement [57].

5 Preconditioning and parameter selection

A known weakness of first-order methods is their inability to deal effectively with
ill-conditioned problems, and their convergence rate can vary significantly when data
are badly scaled. In this section we describe how to precondition the data and choose
the optimal parameters to speed up the convergence of our algorithm.

5.1 Preconditioning

Preconditioning is a common heuristic aiming to reduce the number of iterations in
first-order methods [76, Chap. 5], [11,44,46,47,79]. The optimal choice of precon-
ditioners has been studied for at least two decades and remains an active area of
research [61, Chap. 2], [52, Chap. 10]. For example, the optimal diagonal precondi-
tioner required to minimize the condition number of a matrix can be found exactly
by solving a semidefinite program [14]. However, this computation is typically more
complicated than solving the original QP, and is therefore unlikely to be worth the
effort since preconditioning is only a heuristic to minimize the number of iterations.

In order to keep the preconditioning procedure simple, we instead make use of a
simple heuristic called matrix equilibration [18,27,38,89]. Our goal is to rescale the
problem data to reduce the condition number of the symmetric matrix M ∈ Sn+m

representing the problem data, defined as

M =
[
P AT

A 0

]
. (32)

In particular, we use symmetric matrix equilibration by computing the diagonal matrix
S ∈ Sn+m++ to decrease the condition number of SMS. We can write matrix S as

S =
[
D

E

]
, (33)
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Algorithm 2Modified Ruiz equilibration
initialize c = 1, S = I , δ = 0, P̄ = P, q̄ = q, Ā = A, C̄ = C
while ‖1 − δ‖∞ > εequil do

for i = 1, . . . , n + m do
δi ← 1/

√‖Mi‖∞ 
 M equilibration

P̄, q̄, Ā, C̄ ← Scale P̄, q̄, Ā, C̄ using diag(δ)
γ ← 1/max{mean(‖P̄i‖∞), ‖q̄‖∞} 
 Cost scaling
P̄ ← γ P̄, q̄ ← γ q̄
S ← diag(δ)S, c ← γ c

return S, c

where D ∈ Sn++ and E ∈ Sm++ are both diagonal. In addition, we would like to
normalize the cost function to prevent the dual variables from being too large. We can
achieve this by multiplying the cost function by the scalar c > 0.

Preconditioning effectively modifies problem (1) into the following

minimize (1/2)x̄ T P̄ x̄ + q̄T x̄
subject to Āx̄ ∈ C̄,

(34)

where x̄ = D−1x , P̄ = cDPD, q̄ = cDq, Ā = E AD and C̄ = {Ez ∈ Rm | z ∈ C}.
The dual variables of the new problem are ȳ = cE−1y. Note that when C = [l, u]
the Euclidean projection onto C̄ = [El, Eu] is as easy to evaluate as the projection
onto C.

Themain idea of the equilibration procedure is to scale the rows of matrix M so that
they all have equal �p norm. It is possible to show that finding such a scaling matrix
S can be cast as a convex optimization problem [4]. However, it is computationally
more convenient to solve this problem with heuristic iterative methods, rather than
continuous optimization algorithms such as interior-pointmethods.We refer the reader
to [18] for more details on matrix equilibration.

Ruiz equilibration In this work we apply a variation of the Ruiz equilibration [85].
This technique was originally proposed to equilibrate square matrices showing fast
linear convergence superior to other methods such as the Sinkhorn–Knopp equilibra-
tion [86]. Ruiz equilibration converges in few tens of iterations even in cases when
Sinkhorn–Knopp equilibration takes thousands of iterations [63]. The steps are out-
lined in Algorithm 2 and differ from the original Ruiz algorithm by adding a cost
scaling step that takes into account very large values of the cost. The first part is the
usual Ruiz equilibration step. Since M is symmetric, we focus only on the columns Mi

and apply the scaling to both sides of M . At each iteration, we compute the∞-norm of
each column and normalize that column by the inverse of its square root. The second
part is a cost scaling step. The scalar γ is the current cost normalization coefficient
taking into account the maximum between the average norm of the columns of P̄ and
the norm of q̄ . We normalize problem data P̄ , q̄ , Ā, l̄, ū in place at each iteration using
the current values of δ and γ .
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Unscaled termination criteria Although we rescale our problem in the form (34),
we would still like to apply the stopping criteria defined in Sect. 3.4 to an unscaled
version of our problem. The primal and dual residuals in (26) can be rewritten in terms
of the scaled problem as

rkprim = E−1r̄ kprim = E−1( Āx̄k − z̄k),

rkdual = c−1D−1r̄ kdual = c−1D−1(P̄ x̄k + q̄ + ĀT ȳk),

and the tolerances levels as

εprim = εabs + εrel max{‖E−1 Āx̄k‖∞, ‖E−1 z̄k‖∞}
εdual = εabs + εrelc

−1 max{‖D−1 P̄ x̄k‖∞, ‖D−1 ĀT ȳk‖∞, ‖D−1q̄‖∞}.

Quadratic programs infeasibility When C = [l, u], the primal infeasibility condi-
tions become

‖D−1 ĀT δ ȳk‖∞ ≤ εpinf‖Eδ ȳk‖∞, ūT (δ ȳk)+ + l̄ T (δ ȳk)− ≤ εpinf‖Eδ ȳk‖∞,

where the primal infeasibility certificate is c−1Eδ ȳk . The dual infeasibility criteria
are

‖D−1 P̄δ x̄ k‖∞ ≤ cεdinf‖Dδ x̄ k‖∞, q̄T δ x̄ k ≤ cεdinf‖Dδ x̄ k‖∞,

(E−1 Āδ x̄ k)i

⎧
⎪⎨

⎪⎩

∈ [−εdinf , εdinf ] ‖Dδ x̄ k‖∞ ui , li ∈ R
≥ −εdinf‖Dδ x̄ k‖∞ ui = +∞
≤ εdinf‖Dδ x̄ k‖∞ li = −∞,

where the dual infeasibility certificate is Dδ x̄ k .

5.2 Parameter selection

The choice of parameters (ρ, σ, α) in Algorithm 1 is a key factor in determining the
number of iterations required to find an optimal solution. Unfortunately, it is still an
open research question how to select the optimal ADMM parameters, see [44,47,75].
After extensive numerical testing on millions of problem instances and a wide range
of dimensions, we chose the algorithm parameters as follows for QPs.

Choosing σ and α The parameter σ is a regularization termwhich is used to ensure that
a unique solution of (15) will always exist, evenwhen P has one ormore zero eigenval-
ues. After scaling P in order to minimize its condition number, we choose σ as small
as possible to preserve numerical stability without slowing down the algorithm.We set
the default value as σ = 10−6. The relaxation parameter α in the range [1.5, 1.8] has
empirically shown to improve the convergence rate [34,35]. In the proposed method,
we set the default value of α = 1.6.
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Choosing ρ The most crucial parameter is the step-size ρ. Numerical testing showed
that having different values of ρ for different constraints, can greatly improve the
performance. For this reason, without altering the algorithm steps, we chose ρ ∈ Sm++
being a positive definite diagonal matrix with different elements ρi .

For a specific QP, if we know the active and inactive constraints, then we can
rewrite it simply as an equality constrained QP. In this case the optimal ρ is defined
as ρi = ∞ for the active constraints and ρi = 0 for the inactive constraints, therefore
reducing the linear system (24) to the optimality conditions of the equivalent equality
constrained QP (after setting σ = 0). Unfortunately, it is impossible to know a priori
whether any given constraint is active or inactive at optimality, so we must instead
adopt some heuristics. We define ρ as follows

ρ = diag(ρ1, . . . , ρm), ρi =
{

ρ̄ li �= ui
103ρ̄ li = ui ,

where ρ̄ > 0. In this way we assign a high value to the step-size related to the equality
constraints since they will be active at the optimum. Having a fixed value of ρ̄ cannot
provide fast convergence for different kind of problems since the optimal solution
and the active constraints vary greatly. To compensate for this issue, we adopt an
adaptive scheme which updates ρ̄ during the iterations based on the ratio between
primal and dual residuals. The idea of introducing “feedback” in the algorithm steps
makes ADMMmore robust to bad scaling in the data; see [16,54,93]. Contrary to the
adaptation approaches in the literature where the update increases or decreases the
value of the step-size by a fixed amount, we adopt the following rule

ρ̄k+1 ← ρ̄k

√√√√ ‖r̄ kprim‖∞/max{‖ Āx̄k‖∞, ‖z̄k‖∞}
‖r̄ kdual‖∞/max{‖P̄ x̄k‖∞, ‖ ĀT ȳk‖∞, ‖q̄‖∞} .

In other words we update ρ̄k using the square root of the ratio between the scaled
residuals normalized by the magnitudes of the relative part of the tolerances. We set
the initial value as ρ̄0 = 0.1. In our benchmarks, if ρ̄0 does not already give a low
number of ADMM iterations, it gets usually tuned with a maximum of 1 or 2 updates.
The adaptation causes theKKTmatrix in (24) to change and, if the linear system solver
solution method is direct, it requires a new numerical factorization. We do not require
a new symbolic factorization because the sparsity pattern of the KKT matrix does not
change. Since the numerical factorization can be costly, we perform the adaptation
only when it is really necessary. In particular, we allow an update if the accumulated
iterations time is greater than a certain percentage of the factorization time (nominally
40%) and if the new parameter is sufficiently different than the current one, i.e., 5 times
larger or smaller. Note that in the case of an indirect method this rule allows for more
frequent changes of ρ since there is no need to factor the KKT matrix and the update
is numerically much cheaper. Note that the convergence of the ADMM algorithm is
hard to prove in general if the ρ updates happen at each iteration. However, if we
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assume that the updates stop after a fixed number of iterations the convergence results
hold [16, Section 3.4.1].

6 Parametric programs

In application domains such as control, statistics, finance, and SQP, problem (1) is
solved repeatedly for varying data. For these problems, usually referred to as paramet-
ric programs, we can speed up the repeated OSQP calls by re-using the computations
across multiple solves.

We make the distinction between cases in which only the vectors or all data in (1)
change between subsequent problem instances. We assume that the problem dimen-
sions n and m and the sparsity patterns of P and A are fixed.

Vectors as parameters If the vectors q, l, and u are the only parameters that vary, then
the KKT coefficient matrix in Algorithm 1 does not change across different instances
of the parametric program. Thus, if a direct method is used, we perform and store
its factorization only once before the first solution and reuse it across all subsequent
iterations. Since the matrix factorization is the computationally most expensive step
of the algorithm, this approach reduces significantly the amount of time OSQP takes
to solve subsequent problems. This class of problems arises very frequently in many
applications including linear MPC and MHE [2,82], Lasso [19,90], and portfolio
optimization [15,67].

Matrices and vectors as parameters We separately consider the case in which the
values (but not the locations) of the nonzero entries ofmatrices P and A are updated. In
this case, in a direct method, we need to refactor the matrix in Algorithm 1. However,
since the sparsity pattern does not change we need only to recompute the numerical
factorization while reusing the symbolic factorization from the previous solution.
This results in a modest reduction in the computation time. This class of problems
encompasses several applications such as nonlinearMPCandMHE[28] and sequential
quadratic programming [76].

Warm starting In contrast to interior-point methods, OSQP is easily initialized
by providing an initial guess of both the primal and dual solutions to the QP. This
approach is known as warm starting and is particularly effective when the subsequent
QP solutions do not vary significantly, which is the case for most parametric programs
applications. We can warm start the ADMM iterates from the previous OSQP solu-
tion (x�, y�) by setting (x0, z0, y0) ← (x�, Ax�, y�). Note that we can warm-start
the ρ estimation described in Sect. 7 to exploit the ratio between the primal and dual
residuals to speed up convergence in subsequent solves.
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7 OSQP

We have implemented our proposed approach in the “Operator Splitting Quadratic
Program” (OSQP) solver, an open-source software package in the C language. OSQP
can solve any QP of the form (2) and makes no assumptions about the problem data
other than convexity. OSQP is available online at

https://osqp.org.

Users can call OSQP from C, C++, Fortran, Python, Matlab, R, Julia, Ruby and Rust,
and via parsers such as CVXPY [1,26], JuMP [33], and YALMIP [65].

To exploit the data sparsity pattern, OSQP accepts matrices in Compressed-Sparse-
Column (CSC) format [24]. We implemented the linear system solution described in
Sect. 3.1 as an object-oriented interface to easily switch between efficient algorithms.
At present, OSQP ships with the open-source QDLDL direct solver which is our
independent implementation based on [23], and also supports dynamic loading of
more advanced algorithms such as the MKL Pardiso direct solver [57]. We plan to add
iterative indirect solvers and other direct solvers in future versions.

The default values for the OSQP termination tolerances described in Sect. 3.4 are

εabs = εrel = 10−3, εpinf = εdinf = 10−4.

The default step-size parameter σ and the relaxation parameter α are set to

σ = 10−6, α = 1.6,

while ρ is automatically chosen by default as described in Sect. 5.2, with optional user
override. We set the default fixed number of iterative refinement steps to 3.

OSQP reports the total computation time divided by the time required to perform
preprocessing operations such as scaling or matrix factorization and the time to carry
out the ADMM iterations. If the solver is calledmultiple times reusing the samematrix
factorization, it will report only the ADMM solve time as total computation time. For
more details we refer the reader to the solver documentation on the OSQP project
website.

8 Numerical examples

We benchmarked OSQP against the open-source interior-point solver ECOS [30],
the open-source active-set solver qpOASES [36], and the commercial interior-point
solvers GUROBI [53] and MOSEK [73]. We executed every benchmark comparing
different solvers with both low accuracy, i.e., εabs = εrel = 10−3, and high accuracy,
i.e., εabs = εrel = 10−5. We set GUROBI, ECOS, MOSEK and OSQP primal and
dual feasibility tolerances to our low and high accuracy tolerances. Since qpOASES
is an active-set method and does not allow the user to tune primal nor dual feasibility
tolerances, we set it to its default termination settings. In addition, the maximum time
we allow each solver to run is 1000 sec and no limit on the maximum number of
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iterations. Note that the use of maximum time limits with no bounds on the number
of iterations is the default setting in commercial solvers such as MOSEK. For every
solver we leave all the other settings to the internal defaults.

In general it is hard to compare the solution accuracies because all the solvers,
especially commercial ones, use an internal problem scaling and verify that the termi-
nation conditions are satisfied against their scaled version of the problem. In contrast,
OSQP allows the option to check the termination conditions against the internally
scaled or the original problem. Therefore, to make the benchmark fair, we say that
the primal–dual solution (x�, y�) returned by each solver is optimal if the following
optimality conditions are satisfied with tolerances defined above with low and high
accuracy modes,

‖(Ax� − u)+ + (Ax� − l)−‖∞ ≤ εprim, ‖Px� + q + AT y�‖∞ ≤ εdual,

where εprim and εdual are defined in Sect. 3.4. If the primal–dual solution returned
by a solver does not satisfy the optimality conditions defined above, we consider it a
failure. Note that we decided not to include checks on the complementary slackness
satisfaction because interior-point solvers satisfied them with different metrics and
scalings, therefore failingveryoften. In contrastOSQPalways satisfies complementary
slackness conditions with machine precision by construction.

In addition, we used the direct single-threaded linear system solver QDLDL [50]
based on [3,23] and very simple linear algebra where other solvers such as GUROBI
and MOSEK use advanced multi-threaded linear system solvers and custom linear
algebra.

All the experiments were carried out on the MIT SuperCloud facility in collabo-
ration with the Lincoln Laboratory [83] with 16 Intel Xeon E5-2650 cores. The code
for all the numerical examples is available online at [88].

Shifted geometric mean As in most common benchmarks [72], we make use of
the normalized shifted geometric mean to compare the timings of the various solvers.
Given the time required by solver s to solve problem p tp,s , we define the shifted
geometric mean as

gs = n

√∏

p

(tp,s + k) − k,

where n is the number of problem instances considered and k = 1 is the shift [72].
The normalized shifted geometric mean is therefore

rs = gs/min
s

gs .

This value shows the factor at which a specific solver is slower than the fastest one
with scaled value of 1.00. If solver s fails at solving problem p, we set the time as the
maximum allowed, i.e., tp,s = 1000 sec. Note that to avoid memory overflows in the
product, we compute in practice the shifted geometric mean as eln gs .
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Performance profiles We also make use of the performance profiles [29] to compare
the solver timings. We define the performance ratio

u p,s = tp,s/min
s

tp,s .

The performance profile plots the function fs : R �→ [0, 1] defined as

fs(τ ) = 1

n

∑

p

I≤τ (u p,s),

where I≤τ (u p,s) = 1 if u p,s ≤ τ or 0 otherwise. The value fs(τ ) corresponds to
the fraction of problems solved within τ times from the best solver. Note that while
we cannot necessarily assess the performance of one solver relative to another with
performance profiles, they still represent a viable choice to benchmark the performance
of a solver with respect to the best one [51].

8.1 Benchmark problems

We considered QPs in the form (2) from 7 problem classes ranging from standard
random programs to applications in the areas of control, portfolio optimization and
machine learning. For each problem class, we generated 10 different instances for 20
dimensions giving a total of 1400 problem instances. All instances were obtained from
either real data or from non-trivial random data. Note that the randomQPs and random
equality constrained QPs problem classes might not closely correspond to a real-world
application. However, they have a typical number of nonzero elements appearing in
practice. We described generation for each class in “Appendix A”. Throughout all
the problem classes, n ranges between 101 and 104, m between 102 and 105, and the
number of nonzeros N between 102 and 108.

Results We show in Figs. 1 and 2 the OSQP and GUROBI computation times across
all the problem classes for low and high accuracy solutions respectively. OSQP is
competitive or even faster thanGUROBI for several problemclasses.Results are shown
in Table 1 and Fig. 3. OSQP shows the best performance across these benchmarks with
MOSEK performing better at lower accuracy and GUROBI at higher accuracy. ECOS
is generally slower than the other interior-point solvers but faster than qpOASES
that shows issues with many constraints. Table 2 contains the OSQP statistics for
this benchmark class. Because of the good convergence behavior of OSQP on these
problems, the setup time is significant compared to the solve time, especially at low
accuracy. Solution polishing increases the solution time by amedian of 10 to 20 percent
due to the additional factorization used. The worst-case time increase is very high and
happens for the problems that converge in very few iterations. Note that with high
accuracy, polishing succeeds in 83% of test cases while on low accuracy it succeeds in
only 42% of cases. The number of ρ updates is in general very low, usually requiring
just more matrix factorization to adjust, with up to 5 refactorisations used in the worst
case when solving with high accuracy.
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Fig. 1 Computation time vs problem dimension for OSQP and GUROBI for low accuracy mode

8.2 SuiteSparse matrix collection least squares problems

We considered 30 least squares problem in the form Ax ≈ b from the SuiteSparse
Matrix Collection library [25]. Using the Lasso and Huber problem setups from
“Appendix A” we formulate 60 QPs that we solve with OSQP, GUROBI andMOSEK.
We excluded ECOS because its interior-point algorithm showed numerical issues for
several problems of the test set. We also excluded qpOASES because it is not designed
for large linear systems.
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Fig. 2 Computation time vs problem dimension for OSQP and GUROBI for high accuracy mode

Table 1 Benchmark problems comparison with timings as shifted geometric mean and failure rates

OSQP GUROBI MOSEK ECOS qpOASES

Shifted geometric means Low accuracy 1.000 4.285 2.522 28.847 149.932

High accuracy 1.000 1.886 6.234 52.718 66.254

Failure rates [%] Low accuracy 0.000 1.429 0.071 20.714 31.857

High accuracy 0.000 1.429 11.000 45.571 31.714
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Fig. 3 Benchmark problems comparison with performance profiles

Table 2 Benchmark problems OSQP statistics

Median Max

Setup/solve time [%] Low accuracy 60.23 1550.19

High accuracy 29.65 1373.18

Polish time increase [%] Low accuracy 19.20 876.80

High accuracy 10.63 1408.83

Number of ρ updates Low accuracy 1 3

High accuracy 1 5

Mean

Polish success [%] Low accuracy 42.79

High accuracy 83.21

Results Results are shown in Table 3 and Fig. 4. OSQP shows the best performance
with GUROBI slightly slower and MOSEK third. The failure rates for GUROBI and
MOSEK are higher because the reported solution does not satisfy the optimality con-
ditions of the original problem. We display the OSQP statistics in Table 4. The setup
phase takes a significant amount of time compared to the solve phase, especially when
OSQP converges in a few iterations. This happens because the large problem dimen-
sions result in a large initial factorization time. Polish time is in general 22 to 32%
of the total solution time. However, the success is usually reliable, succeeding 78%
of the times with very high quality solutions. The number of matrix refactorizations
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Table 3 SuiteSparse matrix problems comparison with timings as shifted geometric mean and failure
rates

OSQP GUROBI MOSEK

Shifted geometric means Low accuracy 1.000 1.630 1.745

High accuracy 1.000 1.489 4.498

Failure rates [%] Low accuracy 0.000 14.286 12.500

High accuracy 1.786 16.071 33.929
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Fig. 4 SuiteSparse matrix problems comparison with performance profiles

required due to ρ updates is very low in these examples, with a maximum of 2 or 3
even for high accuracy.

8.3 Maros–Mészáros problems

We considered theMaros–Mészáros test set [68] of hard QPs.We compared the OSQP
solver against GUROBI and MOSEK against all the problems in the set. We decided
to exclude ECOS because its interior-point algorithm showed numerical issues for
several problems of the test set. We also excluded qpOASES because it could not
solve most of the problems since it is not suited for large QPs – it is based on an
active-set method with dense linear algebra.

Results Results are shown in Table 5 and Fig. 5. GUROBI shows the best perfor-
mance and OSQP, while slower, is still competitive on both low and high accuracy
tests. MOSEK remains the slowest in every case. Table 6 shows the statistics relative
to OSQP. Since these hard problems require a larger number of iterations to converge,
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Table 4 SuiteSparse problems OSQP statistics

Median Max

Setup/solve time [%] Low accuracy 71.37 2910.37

High accuracy 48.03 1451.56

Polish time increase [%] Low accuracy 32.27 178.23

High accuracy 22.68 115.77

Number of ρ updates Low accuracy 0 2

High accuracy 1 3

Mean

Polish success [%] Low accuracy 67.86

High accuracy 78:18

Table 5 Maros–Mészáros problems comparison with timings as shifted geometric mean and failure rates

OSQP GUROBI MOSEK

Shifted geometric means Low accuracy 1.464 1.000 6.121

High accuracy 5.247 1.000 14.897

Failure rates [%] Low accuracy 1.449 2.174 14.493

High accuracy 10.145 2.899 30.435

the setup time overhead compared to the solution time is in general lower than the other
benchmark sets. Moreover, since the problems are badly scaled and degenerate, the
polishing strategy rarely succeeds. However, the median time increase from the polish
step is less than 10% of the total computation time for both low and high accuracy
modes. Note that the number of ρ updates is usually very low with a median of 1 or
2. However, there are some worst-case problems when it is very high because the bad
scaling causes issues in our ρ estimation. However, from our data we have seen that
in more than 95% of the cases the number of ρ updates is less than 5.

8.4 Warm start and factorization caching

To show the benefits of warm starting and factorization caching, we solved a sequence
of QPs using OSQP with the data varying according to some parameters. Since we
are not comparing OSQP with other high accuracy solvers in these benchmarks, we
use its default settings with accuracy 10−3.

Lasso regularization path We solved a Lasso problem described in “Appendix A.5”
with varying λ in order to choose a regressor with good validation set performance.
We solved one problem instance with n = 50, 100, 150, 200 features, m = 100n data
points, and λ logarithmically spaced taking 100 values between λmax = ‖AT b‖∞ and
0.01λmax.
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Fig. 5 Maros–Mészáros problems comparison with performance profiles

Table 6 Maros–Mészáros problems OSQP statistics

Median Max

Setup/solve time [%] Low accuracy 31.59 643.29

High accuracy 2.89 326.11

Polish time increase [%] Low accuracy 9.49 127.55

High accuracy 1.55 76.36

Number of ρ updates Low accuracy 1 70

High accuracy 2 2498

Mean

Polish success [%] Low accuracy 30.15

High accuracy 37.90

Since the parameters only enter linearly in the cost, we can reuse the matrix fac-
torization and enable warm starting to reduce the computation time as discussed in
Sect. 6.

Model predictive control In MPC, we solve the optimal control problem described
in “Appendix A.3” at each time step to compute an optimal input sequence over the
horizon. Then, we apply only the first input to the system and propagate the state
to the next time step. The whole procedure is repeated with an updated initial state
xinit . We solved the control problem with nx = 20, 40, 60, 80 states, nu = nx/2
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inputs, horizon T = 10 and 100 simulation steps. The initial state of the simulation
is uniformly distributed and constrained to be within the feasible region, i.e., xinit ∼
U(−0.5x, 0.5x).

Since the parameters only enter linearly in the constraints bounds, we can reuse
the matrix factorization and enable warm starting to reduce the computation time as
discussed in Sect. 6.

Portfolio back test Consider the portfolio optimization problem in “Appendix A.4”
with n = 10k assets and k = 100, 200, 300, 400 factors.

We run a 4years back test to compute the optimal assets investment depending on
varying expected returns and factor models [13]. We solved 240QPs per year giving
a total of 960QPs. Each month we solved 20QPs corresponding to the trading days.
Every day, we updated the expected returns μ by randomly generating another vector
with μi ∼ 0.9μ̂i + N (0, 0.1), where μ̂i comes from the previous expected returns.
The risk model was updated every month by updating the nonzero elements of D and
F according to Dii ∼ 0.9D̂ii + U[0, 0.1√k] and Fi j ∼ 0.9F̂i j + N (0, 0.1) where
D̂ii and F̂i j come from the previous risk model.

As discussed in Sect. 6, we exploited the following computations during the QP
updates to reduce the computation times. Since μ only enters in the linear part of the
objective, we can reuse the matrix factorization and enable warm starting. Since the
sparsity patterns of D and F do not change during the monthly updates, we can reuse
the symbolic factorization and exploit warm starting to speed up the computations.

Results We show the results in Table 7. For the Lasso problem we see more than
ten-fold improvement in time and between 8 and 11 times reduction in number of
iterations depending on the dimension. For the MPC problem the number of iterations
does not significantly decrease because the number of iterations is already low in
cold-start. However we get from 2.6 to four-fold time improvement from factorization
caching. OSQP shows from 5.8 to 7 times reduction in time for the portfolio problem
and from 2.9 to 3.6 times reduction in number of iterations.

9 Conclusions

We presented a novel general-purpose QP solver based on ADMM. Our method uses
a new splitting requiring the solution of a quasi-definite linear system that is always
solvable independently from the problem data. We impose no assumptions on the
problem data other than convexity, resulting in a general-purpose and very robust
algorithm.

For the first time, we propose a first-order QP solution method able to provide
primal and dual infeasibility certificates if the problem is unsolvable without resorting
to homogeneous self-dual embedding or additional complexity in the iterations.
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Table 7 OSQP parametric problem results with warm start (ws) and without warm start (no ws) in terms
of time in seconds and number of iterations for different leading problem dimensions of Lasso, MPC and
Portfolio classes

Problem dim. Time no ws Time ws Time improv. Iter no ws Iter ws Iter improv.

Lasso 50 0.225 0.012 19.353 210.250 25.750 8.165

100 0.423 0.040 10.556 224.000 25.750 8.699

150 1.022 0.086 11.886 235.500 25.750 9.146

200 2.089 0.149 13.986 281.750 26.000 10.837

MPC 20 0.007 0.002 4.021 89.500 32.750 2.733

40 0.014 0.005 2.691 29.000 27.250 1.064

60 0.035 0.013 2.673 33.750 33.000 1.023

80 0.067 0.022 3.079 32.000 31.750 1.008

Portfolio 100 0.177 0.030 5.817 93.333 25.417 3.672

200 0.416 0.061 6.871 86.875 25.391 3.422

300 0.646 0.097 6.635 80.521 25.521 3.155

400 0.976 0.139 7.003 76.458 26.094 2.930

In contrast to other first-ordermethods, our solver canprovide high-quality solutions
by performing solution polishing. After guessing which constraints are active, we
compute the solutions of an additional small equality constrained QP by solving a
linear system. If the constraints are identified correctly, the returned solution has
accuracy equal or higher than interior-point methods.

The proposed method is easily warm started to reduce the number of iterations.
If the problem matrices do not change, the linear system matrix factorization can be
cached and reused across multiple solves greatly improving the computation time.
This technique can be extremely effective, especially when solving parametric QPs
where only part of the problem data change.

We have implemented our algorithm in the open-source OSQP solver written in C
and interfaced with multiple other languages and parsers. OSQP is based on sparse
linear algebra and is able to exploit the structure of QPs arising in different application
areas. OSQP is robust against noisy and unreliable data and, after the first factorization
is computed, can be compiled to be library-free and division-free, making it suitable
for embedded applications. Thanks to its simple and parallelizable iterations, OSQP
can handle large-scale problems with millions of nonzeros.

We extensively benchmarked the OSQP solver with problems arising in several
application domains including finance, control and machine learning. In addition, we
benchmarked it against the hard problems from the Maros–Mészáros test set [68] and
Lasso and Huber fitting problems generated with sparse matrices from the SuiteSparse
Matrix Collection [25]. Timing and failure rate results showed great improvements
over state-of-the-art academic and commercial QP solvers.

OSQP has already a large userbase with tens of thousands of users both from top
academic institutions and large corporations.
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A Problem classes

In this section we describe the random problem classes used in the benchmarks and
derive formulations with explicit linear equalities and inequalities that can be directly
written in the form Ax ∈ C with C = [l, u].

A.1 RandomQP

Consider the following QP

minimize (1/2)xT Px + qT x
subject to l ≤ Ax ≤ u.

Problem instances The number of variables and constraints in our problem instances
are n andm = 10n. We generated random matrix P = MMT +α I where M ∈ Rn×n

and 15% nonzero elements Mi j ∼ N (0, 1). We add the regularization α I with α =
10−2 to ensure that the problem is not unbounded. We set the elements of A ∈ Rm×n

as Ai j ∼ N (0, 1)with only 15% being nonzero. The linear part of the cost is normally
distributed, i.e., qi ∼ N (0, 1). We generated the constraint bounds as ui ∼ U(0, 1),
li ∼ −U(0, 1).

A.2 Equality constrained QP

Consider the following equality constrained QP

minimize (1/2)xT Px + qT x
subject to Ax = b.

This problem can be rewritten as (1) by setting l = u = b.

Problem instances The number of variables and constraints in our problem instances
are n and m = �n/2�.

We generated randommatrix P = MMT +α I where M ∈ Rn×n and 15% nonzero
elements Mi j ∼ N (0, 1). We add the regularization α I with α = 10−2 to ensure that
the problem is not unbounded. We set the elements of A ∈ Rm×n as Ai j ∼ N (0, 1)
with only 15% being nonzero. The vectors are all normally distributed, i.e., qi , bi ∼
N (0, 1).

Iterative refinement interpretation Solution of the above problem can be found
directly by solving the following linear system

[
P AT

A 0

] [
x
ν

]
=

[−q
b

]
. (35)
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If we apply the ADMM iterations (15)–(19) for solving the above problem, and by
setting α = 1 and y0 = b, the algorithm boils down to the following iteration

[
xk+1

νk+1

]
=

[
xk

νk

]
+

[
P + σ I AT

A −ρ−1 I

]−1 ([−q
b

]
−

[
P AT

A 0

] [
xk

νk

])
,

which is equivalent to (31) with g = (−q, b) and t̂ k = (xk, νk). This means that
Algorithm 1 applied to solve an equality constrained QP is equivalent to applying
iterative refinement [32,92] to solve the KKT system (35). Note that the perturbation
matrix in this case is

ΔK =
[
σ I

−ρ−1 I

]
,

which justifies using a low value of σ and a high value of ρ for equality constraints.

A.3 Optimal control

We consider the problem of controlling a constrained linear time-invariant dynamical
system. To achieve this, we formulate the following optimization problem [12]

minimize xTT QT xT +
T−1∑

t=0
xTt Qxt + uTt Rut

subject to xt+1 = Axt + But
xt ∈ X , ut ∈ U
x0 = xinit.

(36)

The states xt ∈ Rnx and the inputs uk ∈ Rnu are subject to polyhedral constraints
defined by the setsX and U . The horizon length is T and the initial state is xinit ∈ Rnx .
Matrices Q ∈ Snx+ and R ∈ Snu++ define the state and input costs at each stage of the
horizon, and QT ∈ Snx+ defines the final stage cost.

By defining the new variable z = (x0, . . . , xT , u0, . . . , uT−1), problem (36) can
be written as a sparse QP of the form (2) with a total of nx (T + 1) + nuT variables.

Problem instances Wedefined the linear systemswith n = nx states and nu = 0.5nx
inputs.We set the horizon length to T = 10.We generated the dynamics as A = I +Δ

with Δi j ∼ N (0, 0.01). We chose only stable dynamics by enforcing the norm of the
eigenvalues of A to be less than1.The input action ismodeled as Bwith Bi j ∼ N (0, 1).

The state cost is defined as Q = diag(q) where qi ∼ U(0, 10) and 70% nonzero
elements in q. We chose the input cost as R = 0.1I . The terminal cost QT is chosen
as the optimal cost for the linear quadratic regulator (LQR) applied to A, B, Q, R by
solving a discrete algebraic Riccati equation (DARE) [12]. We generated input and
state constraints as

X = {xt ∈ Rnx | −x ≤ xt ≤ x}, U = {ut ∈ Rnu | −u ≤ ut ≤ u},
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where xi ∼ U(1, 2) and ui ∼ U(0, 0.1). The initial state is uniformly distributed with
xinit ∼ U(−0.5x, 0.5x).

A.4 Portfolio optimization

Portfolio optimization is a problem arising in finance that seeks to allocate assets in a
way that maximizes the risk adjusted return [13,15,67], [17, §4.4.1],

maximize μT x − γ (xTΣx)
subject to 1T x = 1

x ≥ 0,

where the variable x ∈ Rn represents the portfolio, μ ∈ Rn the vector of expected
returns, γ > 0 the risk aversion parameter, and Σ ∈ Sn+ the risk model covariance
matrix. The risk model is usually assumed to be the sum of a diagonal and a rank
k < n matrix

Σ = FFT + D,

where F ∈ Rn×k is the factor loading matrix and D ∈ Rn×n is a diagonal matrix
describing the asset-specific risk.

We introduce a newvariable y = FT x and solve the resulting problem in variables x
and y

minimize xT Dx + yT y − γ −1μT x
subject to y = FT x

1T x = 1
x ≥ 0,

(37)

Note that the Hessian of the objective in (37) is a diagonal matrix. Also, observe that
FFT does not appear in problem (37).

Problem instances Wegenerated portfolio problems for increasing number of factors
k and number of assets n = 100k. The elements of matrix F were chosen as Fi j ∼
N (0, 1) with 50% nonzero elements. The diagonal matrix D is chosen as Dii ∼
U[0,√k]. The mean return was generated as μi ∼ N (0, 1). We set γ = 1.

A.5 Lasso

The least absolute shrinkage and selection operator (Lasso) is a well known linear
regression technique obtained by adding an �1 regularization term in the objective
[19,90]. It can be formulated as

minimize ‖Ax − b‖22 + λ‖x‖1,

where x ∈ Rn is the vector of parameters and A ∈ Rm×n is the data matrix and λ is
the weighting parameter.
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We convert this problem to the following QP

minimize yT y + λ1T t
subject to y = Ax − b

−t ≤ x ≤ t,

where y ∈ Rm and t ∈ Rn are two newly introduced variables.

Problem instances The elements of matrix A are generated as Ai j ∼ N (0, 1) with
15% nonzero elements. To construct the vector b, we generated the true sparse vector
v ∈ Rn to be learned

vi ∼
{
0 with probability p = 0.5

N (0, 1/n) otherwise.

Then we let b = Av+ε where ε is the noise generated as εi ∼ N (0, 1). We generated
the instances with varying n features and m = 100n data points. The parameter λ is
chosen as (1/5)‖AT b‖∞ since ‖AT b‖∞ is the critical value above which the solution
of the problem is x = 0.

A.6 Huber fitting

Huber fitting or the robust least-squares problem performs linear regression under the
assumption that there are outliers in the data [55,56]. The fitting problem is written as

minimize
∑m

i=1 φhub(aTi x − bi ), (38)

with the Huber penalty function φhub : R → R defined as

φhub(u) =
{
u2 |u| ≤ M

M(2|u| − M) |u| > M .

Problem (38) is equivalent to the following QP [66, Eq. (24)]

minimize uT u + 2M1T (r + s)
subject to Ax − b − u = r − s

r ≥ 0
s ≥ 0.

Problem instances We generate the elements of A as Ai j ∼ N (0, 1) with 15%
nonzero elements. To construct b ∈ Rm we first generate a vector v ∈ Rn as vi ∼
N (0, 1/n) and a noise vector ε ∈ Rm with elements

εi ∼
{
N (0, 1/4) with probability p = 0.95

U[0, 10] otherwise.
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We then set b = Av + ε. For each instance we choose m = 100n and M = 1.

A.7 Support vector machine

Support vector machine problem seeks an affine function that approximately classifies
the two sets of points [21]. The problem can be stated as

minimize xT x + λ
∑m

i=1 max(0, biaTi x + 1),

where bi ∈ {−1,+1} is a set label, and ai is a vector of features for the i th point. The
problem can be equivalently represented as the following QP

minimize xT x + λ1T t
subject to t ≥ diag(b)Ax + 1

t ≥ 0,

where diag(b) denotes the diagonal matrix with elements of b on its diagonal.

Problem instances We choose the vector b so that

bi =
{

+1 i ≤ m/2

−1 otherwise,

and the elements of A as

Ai j ∼
{
N (+1/n, 1/n) i ≤ m/2

N (−1/n, 1/n) otherwise,

with 15% nonzeros per case.
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