
Embedded Code Generation Using the OSQP Solver

Goran Banjac�, Bartolomeo Stellato�, Nicholas Moehle, Paul Goulart, Alberto Bemporad, and Stephen Boyd

Abstract— We introduce a code generation software package
that accepts a parametric description of a quadratic program
(QP) as input and generates tailored C code that compiles
into a fast and reliable optimization solver for the QP that
can run on embedded platforms. The generated code is based
on OSQP, a novel open-source operator splitting solver for
quadratic programming. Our software supports matrix factor-
ization caching and warm starting, and allows updates of the
problem parameters during runtime. The generated C code is
library-free and has a very small compiled footprint. Examples
arising in real-world applications show that the generated code
outperforms state-of-the-art embedded and desktop QP solvers.

I. INTRODUCTION

Convex optimization has become a standard tool across

many engineering fields. In recent years, these methods have

increasingly been applied on embedded systems where data

are processed in real time and on low-cost computational

platforms [1, Ch. 1], [2]. Current applications include, e.g.,
model predictive control (MPC) [3], real-time signal pro-

cessing [4], [5] and onboard trajectory planning in space

missions [6], [7].

Real-time applications of embedded optimization impose

special requirements on the solvers used [8]. First, embedded

solvers must be reliable even in the presence of poor quality

data, and should avoid exceptions caused by division by zero

or memory faults caused by dynamic memory allocation.

Second, the solver should be implementable on low-cost

embedded platforms with very limited memory resources. In

particular, solvers should have very small compiled footprint,

should consist only of basic algebraic operations, and should

not be linked to any external libraries, which also makes

the solver easily verifiable. Finally, real-time applications

typically require that the solver is fast and able to correctly

identify infeasible problems.

On the other hand, optimization problems arising in

embedded applications have certain features that can be

exploited when designing an embedded solver [8]. First,

embedded optimization is typically applied to the repeated

solution of parametrized problems in which the problem data,

�G. Banjac and B. Stellato contributed equally to this work.
This work was supported by the European Commission research project

FP7-PEOPLE-2013-ITN under grant agreement no. 607957 (TEMPO).
G. Banjac, B. Stellato, and P. Goulart are with the Depart-

ment of Engineering Science, University of Oxford, Oxford
OX1 3PJ, UK. {goran.banjac, bartolomeo.stellato,
paul.goulart}@eng.ox.ac.uk

N. Moehle and S. Boyd are with the Department of Electrical En-
gineering, Stanford University, Stanford CA 94305, USA. {moehle,
boyd}@stanford.edu

A. Bemporad is with the IMT School for Advanced Studies Lucca, 55100
Lucca, Italy. alberto.bemporad@imtlucca.it

but not its dimensions or sparsity pattern, change between

problem instances. For such problems, the solver initializa-

tion and some part of its computations can be performed

offline during the solver design phase. Second, requirements

on the solution accuracy in embedded applications are often

moderate because of noise in the data and arbitrariness of

the objective function. Finally, in embedded applications one

can typically assume that problems are reasonably scaled.

As an example, the authors in [9] show that acceptable

control performance of an MPC controller is achievable

even when using a very low accuracy solver. This argument

supports the use of first-order optimization methods, which

are known to return solution of medium accuracy with

low computational cost. Although the performance of first-

order methods is known to depend strongly on problem

scaling, this dependency can be reduced significantly by

preconditioning the problem data [10].

A. Related work

In some cases the solution of a parametrized convex op-

timization problem can be precomputed offline using multi-

parametric programming techniques [11], [12]. However, the

memory required for storing such solutions grows exponen-

tially with the problem dimensions, making this approach

applicable only to small problems.

Over the last decade tools for generating custom online

solvers for parametric problems have attracted increasing

attention. CVXGEN [8] is a code generation software tool

for small-scale parametric quadratic programs (QPs). The

generated solver is fast and reliable, but its main disadvan-

tage is that the code size grows rapidly with the problem

dimensions. This issue is overcome in FORCES [13], [14]

where the code size of the compiled code is broadly constant

with respect to the problem dimensions. In HPMPC [15] tai-

lored solvers for MPC are combined with high-performance

optimized libraries for linear algebra. ECOS [16], [17] and

Bsocp [18] are embedded solvers for a wider class of second-

order cone programs (SOCPs). All of the aforementioned

solvers are based on primal-dual interior point methods that

are tailored for their specific problem classes. A known

limitation of these methods is that they cannot use the warm
starting technique, which is one of the dominant acceleration

factors in applications such as MPC [19].

In contrast, qpOASES [20] is based on a parametric active-

set method which can effectively use a priori information

to speed-up computation of a QP solution. On the other

hand, since qpOASES is based on dense linear algebra

it cannot exploit sparsity in the problem data. Moreover,

2017 IEEE 56th Annual Conference on Decision and Control (CDC)
December 12-15, 2017, Melbourne, Australia

978-1-5090-2873-3/17/$31.00 ©2017 IEEE 1906

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

the computational complexity of active-set methods grows

exponentially with the number of constraints.

FiOrdOs [21] uses first-order gradient methods as the

basis for the embedded solvers it generates. In the case of

a general QP, the methods require a Lipschitz constant of

the gradient of the objective function in order to compute

the stepsize. Alternatively, FiOrdOs implements an adaptive

rule for the stepsize selection, but it requires a new matrix

factorization each time the stepsize is updated. QPgen [22]

uses optimal preconditioning of the problem data that can

improve performance of first-order methods considerably.

The main disadvantage of FiOrdOs and QPgen is their

inability to detect infeasible problems.

In this paper we introduce a software package that gener-

ates tailored C code that compiles into a solver for a user-

specified parametric QP. The generated code is based on

the open-source solver OSQP [23] which exploits sparsity

in the problem data, supports matrix factorization caching

and warm starting, and is able to detect infeasible problems.

B. Structure of the paper

In Section II we introduce an operator splitting method

which is the basis for the solvers generated. Two different

classes of parametric QPs are described in Section III. The

code generation software package is presented in Section IV.

In Section V we present numerical results on problems

arising in real-world applications. Section VI concludes the

paper.

II. OSQP SOLVER

We consider the following QP

minimize 1
2x

TPx+ qTx

subject to l ≤ Ax ≤ u,
(P)

where x ∈ R
n is the optimization variable. The objec-

tive function is defined by a positive semidefinite matrix

P ∈ S
n
+ and a vector q ∈ R

n, and the constraints by a

matrix A ∈ R
m×n and vectors l ∈ {R ∪ −∞}m and

u ∈ {R ∪+∞}m such that l ≤ u. Linear equality constraints

can be enforced by setting li = ui ∈ R.

A. Algorithm

The algorithm used in OSQP [23] is based on the alternat-

ing direction method of multipliers (ADMM) [24] and is de-

scribed in Algorithm 1. Scalars ρ > 0 and σ > 0 are penalty
parameters, α ∈ (0, 2) is a relaxation parameter, and Π is

the Euclidean projection onto the set {z ∈ R
m | l ≤ z ≤ u}

which has a simple closed-form solution

Π(z) = max (min(z, u), l) ,

where the max and min operators are taken element-wise.

Note that steps 4 to 7 involve only scalar-vector multi-

plications, vector additions and the projection operator Π.

We describe in the next subsection how to solve the linear

system in step 3 efficiently.

Algorithm 1 OSQP solver

1: given initial values x0, z0, y0 and parameters ρ, σ, α
2: repeat

3: solve

[
P + σI AT

A − 1
ρI

] [
x̃k+1

νk+1

]
=

[
σxk−q
zk− 1

ρy
k

]

4: z̃k+1 ← zk + 1
ρ (ν

k+1 − yk)

5: xk+1 ← αx̃k+1 + (1− α)xk

6: zk+1 ← Π
(
αz̃k+1 + (1− α)zk + 1

ρy
k
)

7: yk+1 ← yk + ρ
(
αz̃k+1 + (1− α)zk − zk+1

)
8: until termination conditions are satisfied

B. Solving the linear system

Since the coefficient matrix in Algorithm 1 line 3 does

not change between iterations of the algorithm, it must

be factorized only once. This factorization is then cached

and used in forward and backward solves in all subsequent

iterations.

The coefficient matrix is quasi-definite, i.e., it can be

written as a 2-by-2 block-symmetric matrix where the (1, 1)-
block is positive definite, and the (2, 2)-block is negative

definite. It therefore always has a well defined LDLT

factorization, with L being a lower triangular matrix with

unit diagonal elements and D a diagonal matrix with nonzero

diagonal elements [25]. For any sparse quasidefinite matrix

K, efficient algorithms can be used to compute a permutation

matrix P for which the factorization PKPT = LDLT

results in a sparse matrix factor L [26]. We use the open-

source approximate minimum degree (AMD) code [27] to

compute such a permutation matrix.

In order to perform the LDLT factorization of a sparse

matrix K (or permuted matrix PKPT) efficiently, the spar-

sity pattern for the factor L should be found before per-

forming any numerical operations. Determining this sparsity

pattern is known as symbolic factorization and requires only

the nonzero structure of the matrix K, and not its numerical

values. After the symbolic factorization finds the pattern

of nonzero elements of L, the numerical values of these

elements can be computed. This procedure is known as

numerical factorization. Note that if the non-zero entries of

the matrix K change, but the sparsity pattern and quasidefi-

niteness are preserved, then only the numerical factorization

step needs to be performed again and the memory required

to store the new factorization does not change.

We use the open-source SuiteSparse package [28] to per-

form symbolic and numerical factorizations. The computa-

tional complexity of factorization and forward and backward

solves with SuiteSparse, as well as the memory required for

storing the factor L, depend only on the number of nonzero

elements in K and not on its dimensions. The code is thus

efficient in terms of both the memory and computational

effort required to solve the linear system in Algorithm 1

with sparse matrices P and A.

Observe that the matrix P is not required to be positive

semidefinite for the linear system to be solvable. In particular,

as long as P + σI is positive definite, the LDLT factoriza-

1907

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

tion of the matrix in Algorithm 1 will return a factor D
with nonzero diagonal elements, and exceptions caused by

division by zero cannot occur when solving the linear system.

This is critical in embedded applications in the presence of

poor quality data.

C. Termination criterion

The algorithm used in OSQP generates at each iteration k
a tuple

(
xk, zk, yk

)
for which we define the primal and dual

residuals as

rkprim = Axk − zk,

rkdual = Pxk + q +AT yk.

If the problem P is solvable then the residuals converge to

zero vectors as k → ∞ [24]. If the residuals are small,

we say that
(
xk, yk

)
is an approximate primal-dual solution

of problem P . A reasonable termination criterion is that

the norms of the residuals rkprim and rkdual are smaller than

some tolerance levels εprim > 0 and εdual > 0, respectively.

Note that the tolerance levels are often chosen relative to

the scaling of the algorithm iterates; see [24, Sec. 3.3] for

details.

Detection of infeasible problems has been historically

a weak point of first-order methods. An exception is the

algorithm in [10] that can detect infeasibility in conic prob-

lems, and the works in [29], [30] that detect infeasible QPs

under additional assumptions on the problem data. OSQP

can detect primal and dual infeasibility when the problem is

unsolvable. In particular, if the problem is primal infeasible,

the algorithm generates a certificate of infeasibility, i.e., a

vector v ∈ R
m that satisfies

AT v = 0, uT v+ + lT v− < 0,

where v+ = max(v, 0) and v− = min(v, 0). Likewise, if the

problem is dual infeasible the algorithm generates a vector

s ∈ R
n that satisfies

Ps = 0, qT s < 0, (As)i

⎧⎪⎨
⎪⎩
= 0 li ∈ R, ui ∈ R

≥ 0 li ∈ R, ui = +∞
≤ 0 ui ∈ R, li = −∞

which is a certificate of dual infeasibility. We refer the reader

to [31] for details.

III. PARAMETRIC PROGRAMS

In many applications problem P is solved for varying data,

and is thus referred to as a parametric program. We make

a distinction between two cases depending on which of the

problem data are to be treated as parameters. We assume

throughout that the problem dimensions m and n, and the

sparsity patterns of P and A are fixed.

A. Vectors as parameters

If the vectors q, l and u in problem P are the only

parameters, then the coefficient matrix in Algorithm 1 does

not change across different instances of the parametric pro-

gram. The matrix can then be pre-factored offline and only

import osqp

Create an OSQP object
m = osqp.OSQP()

Solver initialization
m.setup(P, q, A, l, u, settings)

Generate code
m.codegen(’code’, project_type=’Makefile’,

parameters=’vectors’)

Listing 1. A simple Python script for generating the code for a given
parametric QP.

backward and forward solves are performed during code

execution. This enables a significant reduction of the code

footprint. If the diagonal matrix D−1 is stored instead of D,

then the resulting algorithm is division-free.

This important class of parametric programs arises, for in-

stance, in linear MPC [32], linear regression with (weighted)

�1 regularization [33], [34] and portfolio optimization [1].

B. Matrices and vectors as parameters

If values in matrices P and A are updated, then the

coefficient matrix in Algorithm 1 must be refactored. We

assume, however, that the sparsity patterns of P and A are

fixed. In this case the symbolic factorization of the matrix

does not change and only numerical factorization needs to

be redone. This implies that no dynamic memory allocation

is performed during the code execution.

This class of problems arises, e.g., in nonlinear MPC, non-

linear moving horizon estimation (MHE) [32] and sequential

quadratic programming (SQP).

C. Warm starting

When a series of similar optimization problems is solved

the solutions across problem instances are often similar.

Since the algorithm’s running time depends largely on the

distance between the algorithm’s initial iterate and the prob-

lem’s set of optimizers, one can set a solution of the previous

problem instance as the initial iterate in the next instance.

This strategy is known as warm starting and often improves

running times of iterative optimization algorithms [19].

IV. CODE GENERATION WITH OSQP

OSQP is an open-source operator splitting QP solver

written in the C language, with interfaces to high-level

languages including Matlab, Python and Julia.

Listing 1 shows a simple Python script that generates code

for a given problem family. To generate a solver, the end-user

must provide the problem data and (optionally) configure

the solver settings. The end-user has some flexibility to

customize the solver prior to code generation. For instance,

if the setting early_terminate is set to 1, then the

solver will terminate when one of the termination criteria

is satisfied, or when the maximum number of iterations is

reached, whichever happens first. Checking the termination

1908

Kirk Rudolph

Kirk Rudolph

#include "osqp.h"
#include "workspace.h"

int main(int argc, char **argv) {

// Solve problem
osqp_solve(&workspace);

return 0;
};

Listing 2. A simple C program that loads the problem data from header
file workspace.h and solves the problem.

<dir_name>

include

[*.h]

src

osqp

[*.c]

example.c

CMakeLists.txt

Fig. 1. The tree structure of the generated code. The main program is
stored in example.c.

criteria in each iteration is computationally expensive since it

involves several matrix-vector multiplications, and may slow

down the code execution considerably. If the user instead

sets early_terminate to 0, then the algorithm will run

for the maximum number of iterations without checking

the termination criteria. Alternatively, one can check the

termination criteria every N iterations; this is specified

with the setting early_terminate_interval. For the

complete list of solver settings we refer the reader to [23].

To generate the code, the codegen method is called with

the name of a target directory where the generated code is to

be exported. Using the keyword argument project_type
the user can define the build environment, e.g., Makefiles or

several supported IDEs such as Eclipse, Apple Xcode or Mi-

crosoft Visual Studio. The keyword argument parameters
allows the user to specify which of the data are to be

parameters. The option vectors indicates that only vectors

q, l and u in problem P are parameters, while the option

matrices allows matrices P and A to be parameters as

well.

A. Generated files

Figure 1 shows the tree structure of the gener-

ated code. Directories <dir_name>/src/osqp and

<dir_name>/include contain the solver source code

and headers. The generated code is self-contained, has

small footprint, does not perform dynamic memory al-

location, and is thus suitable for embedded applications.

CMakeLists.txt is a CMake configuration file that man-

ages the compilation process in a compiler- and platform-

independent manner [35].

The main program is stored in example.c whose content

is shown in Listing 2. The program loads the problem data

// Update linear cost
osqp_update_lin_cost(&workspace, &q_new);

// Update lower bound
osqp_update_lower_bound(&workspace, &l_new);

// Update upper bound
osqp_update_upper_bound(&workspace, &u_new);

Listing 3. Function calls for updating vectors of a parametric QP.

from the header file workspace.h, and solves the problem.

The problem data must be updated in order to solve a

different instance of a parametric problem. Listing 3 provides

illustrative function calls for updating vectors in problem P;

for the complete documentation we refer the reader to [23].

V. NUMERICAL RESULTS

We benchmarked the generated solvers against the open-

source code generation tools CVXGEN [8], FiOrdOs [21],

the open-source solver qpOASES [20], and the commercial

solver GUROBI [36]. All the solvers were selected with

their default options. We performed benchmarks on an Apple

MacBook Pro 2.8GHz Intel Core i7 with 16GB RAM run-

ning Python 3.5. Code for all examples is available at [37].

A. Portfolio optimization

We consider a portfolio optimization problem [1, p. 185–

186], [17] where we want to maximize risk-adjusted return.

The problem is

maximize μTx− γ(xTΣx)

subject to 1Tx = 1, x ≥ 0,
(1)

where x ∈ R
n represents the portfolio, μ ∈ R

n is the

vector of expected returns, scalar γ > 0 is the risk-aversion

parameter, and Σ ∈ S
n
+ is the asset return covariance. A

common assumption is the k-factor risk model [38], where

the return covariance matrix is the sum of a diagonal matrix

and a matrix of rank k, i.e.,

Σ = D + FFT ,

where F ∈ R
n×k and D ∈ R

n×n is diagonal with

nonnegative diagonal elements. Problem (1) can be written

in the standard form P with the linear cost q depending on

the parameter γ; see Appendix I for details.

In order to obtain Pareto optimal portfolios, one needs

to solve problem (1) for varying risk-aversion parameter γ.

Since the parameter appears only in the linear cost, one

does not need to perform any matrix factorization once the

code is generated. Moreover, seeing that the optimal solution

does not differ significantly with small changes in γ, we can

make use of warm starting and get a range of Pareto optimal

portfolios with minimal computational effort.

The data are generated as follows: k = 	n/10
, F has half

of its elements set to zero, with the other half drawn from

N (0, 1), diagonal elements of D are drawn from U(0,√k),
and the elements of μ are drawn from N (0, 1). We generate

1909

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

100 200 300 400 500
10−4

10−3

10−2

10−1

Number of assets n

T
im

e
[s
]

OSQP

CVXGEN

FiOrdOs

GUROBI

qpOASES

Fig. 2. Portfolio optimization example: the average computation times
required to solve 11 instances of problem (1).

TABLE I

Portfolio optimization example: Sizes of executable files generated by the

OSQP solver.

Assets n
Nonzeros in
P and A

Size of file
[kB]

50 235 46
80 496 58
100 720 70
120 984 82
150 1455 102
200 2440 142
250 3675 190
300 5160 246
400 8880 382
500 13600 554

11 values of γ equally spaced on a logarithmic scale between

10−2 and 102. For each solver and each dimension n we

solve the generated problem for the 11 values of γ and

average the execution time.

The results are shown in Figure 2. OSQP consistently

outperforms all the other methods. CVXGEN is not able

to generate the problem when n > 120 since the resulting

coefficient matrix has more than 4000 nonzero elements.

Note that CVXGEN, FiOrdOs and qpOASES exploit the

simple bounds on variable x, while OSQP and GUROBI use

the formulation P . Table I shows the sizes of executable files

generated by the OSQP solver, inclusive of problem data, as

a function of the number of assets. The size of the compiled

code for all the tested examples does not exceed 0.55 MB.

B. Sparse regressor selection

We seek a sparse solution of the regressor selection prob-

lem, which is in general a hard combinatorial problem [1,

Ch. 6.3]. Lasso [33] is a popular heuristic for enforcing

sparsity of the solution by adding an �1 regularization term

in the objective. The problem is

minimize 1
2‖Cx− d‖22 + γ‖x‖1, (2)

0 100 200 300 400
10−4

10−3

10−2

10−1

100

101

Number of parameters n

T
im

e
[s
]

OSQP

GUROBI

qpOASES

Fig. 3. Lasso example: the average computation times required to solve
21 instances of problem (2).

where x ∈ R
n is the vector of parameters, C ∈ R

m×n

is the data matrix whose columns are potential regressors,

d ∈ R
m is the vector of measurements that is to be fit by a

subset of regressors, and γ > 0 is the weighting parameter.

Problem (2) can be written in the standard form P with the

linear cost q depending on the parameter γ; see Appendix II

for details.

In order to find a sparse solution with a given degree

of sparsity, i.e., not more than k nonzero elements in x,

the above problem should be solved for varying weighting

parameter γ. As in Section V-A, we can exploit the fact that γ
enters only in the linear part of the cost function by caching

the matrix factorization and warm starting the solver.

The data are generated as follows: n varies from 10 to 400,

m = 10n, matrix C has 40% nonzero elements drawn from

N (0, 1), x̂ ∈ R
n has half of the elements set to zero, and

the other half are drawn from N (0, 1/n). We then set d =
Cx̂+ ε, where ε represents a vector of noise with elements

drawn from N (0, 1/4). We generate 21 values of γ equally

spaced on the logarithmic scale from 10−2 to 102. For each

solver and each dimension n we solve the generated problem

for the 21 values of γ and average the execution time.

The results are shown in Figure 3. FiOrdOs does not

converge within 50, 000 iterations for this problem type and

CVXGEN is not able to generate code for n > 10. OSQP

clearly outperforms both GUROBI and qpOASES for all

dimensions considered. Note that qpOASES is not able to

find a solution in less than 10 seconds for n > 100.

VI. CONCLUSION

This paper introduces a new code generation software

tool based on the OSQP solver. The generated code is very

efficient and robust. Moreover, it is general purpose and

does not require additional assumptions on problem data

beyond convexity. Numerical results show that the generated

code not only outperforms state-of-the-art embedded code-

generation tools but also desktop solvers.

1910

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

Kirk Rudolph

APPENDIX I

DATA FOR THE PORTFOLIO OPTIMIZATION EXAMPLE

Problem (1) can be written in form P with the following

problem data

P =

[
D

I

]
, q =

[− 1
2γμ

0

]
,

A =

⎡
⎣1T

FT −I
I

⎤
⎦ , l =

⎡
⎣10
0

⎤
⎦ , u =

⎡
⎣10
1

⎤
⎦ .

APPENDIX II

DATA FOR THE LASSO EXAMPLE

Problem (2) can be written in form P with the following

problem data

P =

⎡
⎣0 I

0

⎤
⎦ , q =

⎡
⎣ 0
0
γ1

⎤
⎦ ,

A =

⎡
⎣ C −I

I I
−I I

⎤
⎦ , l =

⎡
⎣d0
0

⎤
⎦ , u =

⎡
⎣ d
+∞
+∞

⎤
⎦ .

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[2] S. Richter, C. N. Jones, and M. Morari, “Certification aspects of
the fast gradient method for solving the dual of parametric convex
programs,” Mathematical Methods of Operations Research, vol. 77,
no. 3, pp. 305–321, 2013.

[3] L. Biens and M. Kothare, “Real-time implementation of model pre-
dictive control,” in American Control Conference (ACC), vol. 6, 2005,
pp. 4166–4171.

[4] J. Mattingley and S. Boyd, “Real-time convex optimization in signal
processing,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp.
50–61, 2010.

[5] B. Defraene, T. Van Waterschoot, H. J. Ferreau, M. Diehl, and
M. Moonen, “Real-time perception-based clipping of audio signals
using convex optimization,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 20, no. 10, pp. 2657–2671, 2012.

[6] L. Blackmore, B. Açikmeşe, and D. Scharf, “Minimum-landing-error
powered-descent guidance for Mars landing using convex optimiza-
tion,” Journal of Guidance, Control, and Dynamics, vol. 33, no. 4,
pp. 1161–1171, 2010.

[7] D. P. Scharf, B. Açikmeşe, D. Dueri, J. Benito, and J. Casoliva,
“Implementation and experimental demonstration of onboard powered-
descent guidance,” Journal of Guidance, Control, and Dynamics,
vol. 40, no. 2, pp. 213–229, 2017.

[8] J. Mattingley and S. Boyd, “CVXGEN: A code generator for em-
bedded convex optimization,” Optimization and Engineering, vol. 13,
no. 1, pp. 1–27, 2012.

[9] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 2, pp. 267–278, 2010.

[10] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization
via operator splitting and homogeneous self-dual embedding,” Journal
of Optimization Theory and Applications, vol. 169, no. 3, pp. 1042–
1068, 2016.

[11] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[12] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for
multi-parametric quadratic programming and explicit MPC solutions,”
Automatica, vol. 39, no. 3, pp. 489–497, 2003.

[13] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N.
Jones, “Efficient interior point methods for multistage problems arising
in receding horizon control,” in IEEE Conference on Decision and
Control (CDC), 2012, pp. 668–674.

[14] A. Domahidi. (2012) FORCES: Fast optimization for real-time control
on embedded systems. [Online]. Available: http://forces.ethz.ch

[15] G. Frison, H. H. B. Sorensen, B. Dammann, and J. B. Jorgensen,
“High-performance small-scale solvers for linear model predictive
control,” in European Control Conference (ECC), 2014, pp. 128–133.

[16] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for
embedded systems,” in European Control Conference (ECC), 2013,
pp. 3071–3076.

[17] E. Chu, N. Parikh, A. Domahidi, and S. Boyd, “Code generation
for embedded second-order cone programming,” in European Control
Conference (ECC), 2013, pp. 1547–1552.

[18] D. Dueri, J. Zhang, and B. Açikmeşe, “Automated custom code
generation for embedded, real-time second order cone programming,”
in IFAC World Congress, vol. 47, no. 3, 2014, pp. 1605–1612.

[19] M. Herceg, C. N. Jones, and M. Morari, “Dominant speed factors of
active set methods for fast MPC,” Optimal Control Applications and
Methods, vol. 36, no. 5, pp. 608–627, 2015.

[20] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: a parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.

[21] F. Ullmann and S. Richter. (2014) FiOrdOs: Code generation for first-
order methods, version 2.0. [Online]. Available: http://fiordos.ethz.ch

[22] P. Giselsson and S. Boyd, “Linear convergence and metric selection
for Douglas-Rachford splitting and ADMM,” IEEE Transactions on
Automatic Control, vol. 62, no. 2, pp. 532–544, 2017.

[23] B. Stellato and G. Banjac. (2017) OSQP: An operator splitting solver
for quadratic programs. [Online]. Available: http://osqp.readthedocs.io

[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[25] R. Vanderbei, “Symmetric quasi-definite matrices,” SIAM Journal on
Optimization, vol. 5, no. 1, pp. 100–113, 1995.

[26] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals
of Algorithms 2). Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2006.

[27] P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: AMD, an
approximate minimum degree ordering algorithm,” ACM Transactions
on Mathematical Software, vol. 30, no. 3, pp. 381–388, 2004.

[28] T. A. Davis, “Algorithm 849: A concise sparse Cholesky factorization
package,” ACM Transactions on Mathematical Software, vol. 31, no. 4,
pp. 587–591, 2005.

[29] A. U. Raghunathan and S. Di Cairano, “Infeasibility detection in alter-
nating direction method of multipliers for convex quadratic programs,”
in IEEE Conference on Decision and Control (CDC), 2014, pp. 5819–
5824.

[30] V. V. Naik and A. Bemporad, “Embedded mixed-integer quadratic
optimization using accelerated dual gradient projection,” in IFAC
World Congress, 2017.

[31] G. Banjac, P. Goulart, B. Stellato, and S. Boyd, “Infeasibil-
ity detection in the alternating direction method of multipli-
ers for convex optimization,” available: http://www.optimization-
online.org/DB HTML/2017/06/6058.html, Jun 2017.

[32] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory
and Design. Nob Hill Publishing, 2009.

[33] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society: Series B, vol. 58, no. 1, pp.
267–288, 1996.

[34] E. J. Candés, M. B. Wakin, and S. Boyd, “Enhancing sparsity
by reweighted �1 minimization,” Journal of Fourier Analysis and
Applications, vol. 14, no. 5, pp. 877–905, 2008.

[35] Kitware, Inc. (2012) CMake. [Online]. Available: https://cmake.org
[36] Gurobi Optimization Inc. (2016) Gurobi optimizer reference manual.

[Online]. Available: http://www.gurobi.com
[37] B. Stellato and G. Banjac. (2017) OSQP

code generation benchmarks. [Online]. Available:
https://github.com/oxfordcontrol/osqp codegen benchmarks

[38] G. Connor and R. A. Korajczyk, “The arbitrage pricing theory and
multifactor models of asset returns,” in Finance, ser. Handbooks in
Operations Research and Management Science, 1995, vol. 9, pp. 87–
144.

1911

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

