-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclip.cpp
1414 lines (1130 loc) · 54.9 KB
/
clip.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <pthread.h>
#include <regex>
#include "clip.h"
#include "llama.cpp/ggml.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
// #define CLIP_DEBUG
// utility function for a workaround until https://github.com/ggerganov/ggml/issues/260 is resolved
// after that, remove this and use the mechanism implemented in GGML directly
size_t get_mem_req_by_size(const size_t n_tensors, const int n_image_positions) {
size_t mb = 1024 * 1024;
switch (n_tensors) {
case 397: // base
if (n_image_positions == 50) { // patch size = 32
return 12 * mb;
} else { // patch size = 16
return 24 * mb;
}
case 589: // large
if (n_image_positions == 257) { // input image size = 224
return 24 * mb;
} else { // input image size = 336
return 60 * mb;
}
case 909: // huge
return 232 * mb;
default:
fprintf(stderr, "%s: Unrecognized number of tensors: %zu. Check if you pass the correct model file\n", __func__,
n_tensors);
exit(1);
}
}
size_t get_scr_buf_req_by_size(const size_t n_tensors, const int n_positions) {
size_t mb = 1024 * 1024;
switch (n_tensors) {
case 397:
if (n_positions <= 50) {
return 32 * mb;
} else {
return 96 * mb;
}
case 589:
if (n_positions <= 257) {
return 96 * mb;
} else {
return 192 * mb;
}
case 909:
return 144 * mb;
default:
fprintf(stderr, "%s: Unrecognized number of tensors: %zu. Check if you pass the correct model file\n", __func__,
n_tensors);
exit(1);
}
}
std::vector<clip_vocab::id> clip_tokenize(const clip_ctx * ctx, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
// Generate the subpattern from the special_tokens vector if it's not empty
if (!ctx->vocab.special_tokens.empty()) {
std::string special_tokens_subpattern;
for (const auto & token : ctx->vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern += token;
}
// Modify the regex pattern with the generated special tokens subpattern
pat = special_tokens_subpattern + "|" + pat;
}
std::regex re(pat);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
std::vector<clip_vocab::id> tokens;
tokens.push_back(49406); // startoftext
for (const auto & word : words) {
// feel lucky? let's try if it's a full word
std::string full_word = "";
if (word.find(" ") == 0) // starts_with for C++11
{
full_word += word.substr(1);
} else {
full_word += word;
}
full_word += "</w>";
auto wit = ctx->vocab.token_to_id.find(full_word);
if (wit != ctx->vocab.token_to_id.end()) {
tokens.push_back(wit->second);
continue;
}
for (int i = 0; i < word.size();) {
for (int j = word.size() - 1; j >= i; j--) {
auto cand = word.substr(i, j - i + 1);
auto it = ctx->vocab.token_to_id.find(cand);
if (it != ctx->vocab.token_to_id.end()) { // word.substr(i, j-i+1) in vocab
tokens.push_back(it->second);
i = j + 1;
break;
} else if (j == i) { // word.substr(i, 1) has no matching
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
i++;
}
}
}
}
tokens.push_back(49407); // endoftext
return tokens;
}
bool clip_image_load_from_file(const std::string & fname, clip_image_u8 & img) {
int nx, ny, nc;
auto data = stbi_load(fname.c_str(), &nx, &ny, &nc, 3);
if (!data) {
fprintf(stderr, "%s: failed to load '%s'\n", __func__, fname.c_str());
return false;
}
img.nx = nx;
img.ny = ny;
img.data.resize(nx * ny * 3);
memcpy(img.data.data(), data, nx * ny * 3);
stbi_image_free(data);
return true;
}
// normalize: x = (x - mean) / std
// TODO: implement bicubic interpolation instead of linear.
bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res) {
const int nx = img->nx;
const int ny = img->ny;
const int nx2 = ctx->vision_model.hparams.image_size;
const int ny2 = ctx->vision_model.hparams.image_size;
res->nx = nx2;
res->ny = ny2;
res->data.resize(3 * nx2 * ny2);
const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
const int nx3 = int(nx / scale + 0.5f);
const int ny3 = int(ny / scale + 0.5f);
const float m3[3] = {0.48145466f, 0.4578275f, 0.40821073f};
const float s3[3] = {0.26862954f, 0.26130258f, 0.27577711f};
for (int y = 0; y < ny3; y++) {
for (int x = 0; x < nx3; x++) {
for (int c = 0; c < 3; c++) {
// linear interpolation
const float sx = (x + 0.5f) * scale - 0.5f;
const float sy = (y + 0.5f) * scale - 0.5f;
const int x0 = std::max(0, (int)std::floor(sx));
const int y0 = std::max(0, (int)std::floor(sy));
const int x1 = std::min(x0 + 1, nx - 1);
const int y1 = std::min(y0 + 1, ny - 1);
const float dx = sx - x0;
const float dy = sy - y0;
const int j00 = 3 * (y0 * nx + x0) + c;
const int j01 = 3 * (y0 * nx + x1) + c;
const int j10 = 3 * (y1 * nx + x0) + c;
const int j11 = 3 * (y1 * nx + x1) + c;
const float v00 = img->data[j00];
const float v01 = img->data[j01];
const float v10 = img->data[j10];
const float v11 = img->data[j11];
const float v0 = v00 * (1.0f - dx) + v01 * dx;
const float v1 = v10 * (1.0f - dx) + v11 * dx;
const float v = v0 * (1.0f - dy) + v1 * dy;
const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
const int i = 3 * (y * nx3 + x) + c;
res->data[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
}
}
}
return true;
}
// Structure to hold the image data as an input to function to be executed for thread
typedef struct {
const clip_image_u8 * input;
clip_image_f32 * resized;
const clip_ctx * ctx;
} ImageData;
// Function to preprocess a single image in a thread
void * preprocess_image(void * arg) {
ImageData * imageData = static_cast<ImageData *>(arg);
const clip_image_u8 * input = imageData->input;
clip_image_f32 * resized = imageData->resized;
const clip_ctx * ctx = imageData->ctx;
// Call the original preprocess function on the image
clip_image_preprocess(ctx, input, resized);
pthread_exit(NULL);
}
// Function to batch-preprocess multiple images i
void clip_image_batch_preprocess(const clip_ctx * ctx, const int n_threads, const std::vector<clip_image_u8> & img_inputs,
std::vector<clip_image_f32> & imgs_resized) {
GGML_ASSERT(img_inputs.size() == imgs_resized.size());
int num_threads = std::min(n_threads, static_cast<int>(img_inputs.size()));
int i, t;
// Divide the images among the threads
int images_per_thread = img_inputs.size() / num_threads;
if (num_threads == 1) {
// Single-threaded case
for (i = 0; i < img_inputs.size(); i++) {
clip_image_preprocess(ctx, &img_inputs[i], &imgs_resized[i]);
}
} else {
// Multi-threaded case
std::vector<pthread_t> threads(num_threads);
std::vector<ImageData> imageData(img_inputs.size());
for (t = 0; t < num_threads; t++) {
int start_index = t * images_per_thread;
int end_index = (t == num_threads - 1) ? img_inputs.size() : start_index + images_per_thread;
// Create ImageData for each thread
for (i = start_index; i < end_index; i++) {
imageData[i].input = &img_inputs[i];
imageData[i].resized = &imgs_resized[i];
imageData[i].ctx = ctx;
}
// Create a thread for each batch of images
pthread_create(&threads[t], NULL, preprocess_image, static_cast<void *>(&imageData[start_index]));
}
// Wait for all threads to finish
for (t = 0; t < num_threads; t++) {
pthread_join(threads[t], NULL);
}
}
}
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
if (verbosity >= 1) {
printf("%s: loading model from '%s' - please wait...", __func__, fname);
}
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname);
return nullptr;
}
// verify magic
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname);
return nullptr;
}
}
clip_ctx * new_clip = new clip_ctx;
clip_text_model & text_model = new_clip->text_model;
clip_vision_model & vision_model = new_clip->vision_model;
clip_vocab & vocab = new_clip->vocab;
// load hparams for text
{
auto & hparams = text_model.hparams;
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *)&hparams.num_positions, sizeof(hparams.num_positions));
fin.read((char *)&hparams.hidden_size, sizeof(hparams.hidden_size));
fin.read((char *)&hparams.n_intermediate, sizeof(hparams.n_intermediate));
fin.read((char *)&hparams.projection_dim, sizeof(hparams.projection_dim));
fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));
fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));
if (verbosity >= 2) {
printf("\n%s: text model hparams\n", __func__);
printf("n_vocab %d\n", hparams.n_vocab);
printf("num_positions %d\n", hparams.num_positions);
printf("t_hidden_size %d\n", hparams.hidden_size);
printf("t_n_intermediate %d\n", hparams.n_intermediate);
printf("t_projection_dim %d\n", hparams.projection_dim);
printf("t_n_head %d\n", hparams.n_head);
printf("t_n_layer %d\n", hparams.n_layer);
}
}
// load hparams for vision
{
auto & hparams = vision_model.hparams;
fin.read((char *)&hparams.image_size, sizeof(hparams.image_size));
fin.read((char *)&hparams.patch_size, sizeof(hparams.patch_size));
fin.read((char *)&hparams.hidden_size, sizeof(hparams.hidden_size));
fin.read((char *)&hparams.n_intermediate, sizeof(hparams.n_intermediate));
fin.read((char *)&hparams.projection_dim, sizeof(hparams.projection_dim));
fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));
fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *)&new_clip->use_gelu, sizeof(new_clip->use_gelu));
fin.read((char *)&new_clip->ftype, sizeof(new_clip->ftype));
if (verbosity >= 2) {
printf("\n%s: vision model hparams\n", __func__);
printf("image_size %d\n", hparams.image_size);
printf("patch_size %d\n", hparams.patch_size);
printf("v_hidden_size %d\n", hparams.hidden_size);
printf("v_n_intermediate %d\n", hparams.n_intermediate);
printf("v_projection_dim %d\n", hparams.projection_dim);
printf("v_n_head %d\n", hparams.n_head);
printf("v_n_layer %d\n", hparams.n_layer);
printf("\nuse_gelu %d\n", new_clip->use_gelu);
printf("ftype %d\n\n", new_clip->ftype);
}
}
// load vocab
{
int32_t n_vocab = 0;
fin.read((char *)&n_vocab, sizeof(n_vocab));
if (n_vocab != new_clip->text_model.hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname, n_vocab,
new_clip->text_model.hparams.n_vocab);
return nullptr;
}
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *)&len, sizeof(len));
buf.resize(len);
fin.read((char *)buf.data(), len);
word.assign(buf.data(), len);
new_clip->vocab.token_to_id[word] = i;
new_clip->vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = GGML_TYPE_COUNT;
switch (new_clip->ftype) {
case 0:
wtype = GGML_TYPE_F32;
break;
case 1:
wtype = GGML_TYPE_F16;
break;
case 2:
wtype = GGML_TYPE_Q4_0;
break;
case 3:
wtype = GGML_TYPE_Q4_1;
break;
default: {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname, new_clip->ftype);
clip_free(new_clip);
return nullptr;
}
}
auto & ctx = new_clip->ctx;
size_t model_mem_req = 0;
{
// calculate memory requirement for text_model
const auto & hparams = text_model.hparams;
const int n_vocab = hparams.n_vocab;
const int num_positions = hparams.num_positions;
const int hidden_size = hparams.hidden_size;
const int n_layer = hparams.n_layer;
const int n_intermediate = hparams.n_intermediate;
const int projection_dim = hparams.projection_dim;
// Calculate size requirements
model_mem_req += hidden_size * n_vocab * ggml_type_sizef(wtype); // token_embeddings
model_mem_req += hidden_size * num_positions * ggml_type_sizef(wtype); // position_embeddings
model_mem_req += 4 * n_layer * (hidden_size * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_* and ln_2_*
model_mem_req += 4 * n_layer * (hidden_size * hidden_size * ggml_type_sizef(wtype)); // kqvo weights
model_mem_req += 4 * n_layer * (hidden_size * ggml_type_sizef(GGML_TYPE_F32)); // kqvo bias
model_mem_req += 2 * n_layer * (hidden_size * n_intermediate * ggml_type_sizef(wtype)); // ff_*_w
model_mem_req += n_layer * (n_intermediate * ggml_type_sizef(GGML_TYPE_F32)); // ff_i_b
model_mem_req += n_layer * (hidden_size * ggml_type_sizef(GGML_TYPE_F32)); // ff_o_b
model_mem_req += 2 * hidden_size * ggml_type_sizef(GGML_TYPE_F32); // post_ln_*
model_mem_req += 2 * hidden_size * projection_dim * ggml_type_sizef(wtype); // projection
model_mem_req += (5 + 16 * n_layer) * 256; // object overhead
}
{
// calculate memory requirement for vision_model
const auto & hparams = vision_model.hparams;
const int image_size = hparams.image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size / patch_size) * (image_size / patch_size)) + 1;
const int hidden_size = hparams.hidden_size;
const int n_layer = hparams.n_layer;
const int n_intermediate = hparams.n_intermediate;
const int projection_dim = hparams.projection_dim;
// Calculate size requirements
model_mem_req += hidden_size * ggml_type_sizef(GGML_TYPE_F32); // class_embedding
model_mem_req += hidden_size * 3 * patch_size * patch_size * ggml_type_sizef(GGML_TYPE_F16); // patch_embeddings
model_mem_req += hidden_size * num_patches * ggml_type_sizef(wtype); // position_embeddings
model_mem_req += 2 * hidden_size * ggml_type_sizef(GGML_TYPE_F32); // pre_ln_*
model_mem_req += 4 * n_layer * (hidden_size * ggml_type_sizef(GGML_TYPE_F32)); // ln_*
model_mem_req += 4 * n_layer * (hidden_size * hidden_size * ggml_type_sizef(wtype)); // kqvo weights
model_mem_req += 4 * n_layer * (hidden_size * ggml_type_sizef(GGML_TYPE_F32)); // kqvo bias
model_mem_req += 2 * n_layer * (hidden_size * n_intermediate * ggml_type_sizef(wtype)); // ff_*_w
model_mem_req += n_layer * (n_intermediate * ggml_type_sizef(GGML_TYPE_F32)); // ff_i_b
model_mem_req += n_layer * (hidden_size * ggml_type_sizef(GGML_TYPE_F32)); // ff_o_b
model_mem_req += 2 * hidden_size * ggml_type_sizef(GGML_TYPE_F32); // post_ln_*
model_mem_req += 2 * hidden_size * projection_dim * ggml_type_sizef(wtype); // projection
model_mem_req += (5 + 16 * n_layer) * 256; // object overhead
}
if (verbosity >= 2) {
printf("%s: ggml ctx size = %6.2f MB\n", __func__, model_mem_req / (1024.0 * 1024.0));
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = model_mem_req,
.mem_buffer = NULL,
.no_alloc = false,
};
new_clip->ctx = ggml_init(params);
if (!new_clip->ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
clip_free(new_clip);
return nullptr;
}
}
// prepare memory for the text_model weights
{
const auto & hparams = text_model.hparams;
const int n_vocab = hparams.n_vocab;
const int num_positions = hparams.num_positions;
const int hidden_size = hparams.hidden_size;
const int n_layer = hparams.n_layer;
const int n_intermediate = hparams.n_intermediate;
const int projection_dim = hparams.projection_dim;
text_model.layers.resize(n_layer);
text_model.token_embeddings = ggml_new_tensor_2d(ctx, wtype, hidden_size, n_vocab);
text_model.position_embeddings = ggml_new_tensor_2d(ctx, wtype, hidden_size, num_positions);
// map by name
text_model.tensors["text_model.embeddings.token_embedding.weight"] = text_model.token_embeddings;
text_model.tensors["text_model.embeddings.position_embedding.weight"] = text_model.position_embeddings;
for (int i = 0; i < n_layer; ++i) {
auto & layer = text_model.layers[i];
layer.ln_1_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.ln_2_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.q_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size);
layer.q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.k_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size);
layer.k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.v_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size);
layer.v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.o_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size);
layer.o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.ff_i_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, n_intermediate);
layer.ff_i_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_intermediate);
layer.ff_o_w = ggml_new_tensor_2d(ctx, wtype, n_intermediate, hidden_size);
layer.ff_o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
// map by name
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".self_attn.k_proj.weight"] = layer.k_w;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".self_attn.k_proj.bias"] = layer.k_b;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".self_attn.v_proj.weight"] = layer.v_w;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".self_attn.v_proj.bias"] = layer.v_b;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".self_attn.q_proj.weight"] = layer.q_w;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".self_attn.q_proj.bias"] = layer.q_b;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".self_attn.out_proj.weight"] = layer.o_w;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".self_attn.out_proj.bias"] = layer.o_b;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".layer_norm1.weight"] = layer.ln_1_w;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".layer_norm1.bias"] = layer.ln_1_b;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".mlp.fc1.weight"] = layer.ff_i_w;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".mlp.fc1.bias"] = layer.ff_i_b;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".mlp.fc2.weight"] = layer.ff_o_w;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".mlp.fc2.bias"] = layer.ff_o_b;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".layer_norm2.weight"] = layer.ln_2_w;
text_model.tensors["text_model.encoder.layers." + std::to_string(i) + ".layer_norm2.bias"] = layer.ln_2_b;
}
text_model.post_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
text_model.post_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
text_model.projection = ggml_new_tensor_2d(ctx, wtype, hidden_size, projection_dim);
// map by name
text_model.tensors["text_model.final_layer_norm.weight"] = text_model.post_ln_w;
text_model.tensors["text_model.final_layer_norm.bias"] = text_model.post_ln_b;
text_model.tensors["text_projection.weight"] = text_model.projection;
}
// prepare memory for the vision_model weights
{
const auto & hparams = vision_model.hparams;
const int image_size = hparams.image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size / patch_size) * (image_size / patch_size)) + 1;
const int hidden_size = hparams.hidden_size;
const int n_layer = hparams.n_layer;
const int n_intermediate = hparams.n_intermediate;
const int projection_dim = hparams.projection_dim;
vision_model.layers.resize(n_layer);
vision_model.class_embedding = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
vision_model.patch_embeddings = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, patch_size, patch_size, 3, hidden_size);
vision_model.position_embeddings = ggml_new_tensor_2d(ctx, wtype, hidden_size, num_patches);
vision_model.pre_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
vision_model.pre_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
// map by name
vision_model.tensors["vision_model.embeddings.class_embedding"] = vision_model.class_embedding;
vision_model.tensors["vision_model.embeddings.patch_embedding.weight"] = vision_model.patch_embeddings;
vision_model.tensors["vision_model.embeddings.position_embedding.weight"] = vision_model.position_embeddings;
vision_model.tensors["vision_model.pre_layrnorm.weight"] = vision_model.pre_ln_w;
vision_model.tensors["vision_model.pre_layrnorm.bias"] = vision_model.pre_ln_b;
for (int i = 0; i < n_layer; ++i) {
auto & layer = vision_model.layers[i];
layer.ln_1_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.ln_2_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.q_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size);
layer.q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.k_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size);
layer.k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.v_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size);
layer.v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.o_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, hidden_size);
layer.o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
layer.ff_i_w = ggml_new_tensor_2d(ctx, wtype, hidden_size, n_intermediate);
layer.ff_i_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_intermediate);
layer.ff_o_w = ggml_new_tensor_2d(ctx, wtype, n_intermediate, hidden_size);
layer.ff_o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
// map by name
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".self_attn.k_proj.weight"] = layer.k_w;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".self_attn.k_proj.bias"] = layer.k_b;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".self_attn.v_proj.weight"] = layer.v_w;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".self_attn.v_proj.bias"] = layer.v_b;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".self_attn.q_proj.weight"] = layer.q_w;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".self_attn.q_proj.bias"] = layer.q_b;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".self_attn.out_proj.weight"] = layer.o_w;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".self_attn.out_proj.bias"] = layer.o_b;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".layer_norm1.weight"] = layer.ln_1_w;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".layer_norm1.bias"] = layer.ln_1_b;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".mlp.fc1.weight"] = layer.ff_i_w;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".mlp.fc1.bias"] = layer.ff_i_b;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".mlp.fc2.weight"] = layer.ff_o_w;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".mlp.fc2.bias"] = layer.ff_o_b;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".layer_norm2.weight"] = layer.ln_2_w;
vision_model.tensors["vision_model.encoder.layers." + std::to_string(i) + ".layer_norm2.bias"] = layer.ln_2_b;
}
vision_model.post_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
vision_model.post_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
vision_model.projection = ggml_new_tensor_2d(ctx, wtype, hidden_size, projection_dim);
// map by name
vision_model.tensors["vision_model.post_layernorm.weight"] = vision_model.post_ln_w;
vision_model.tensors["vision_model.post_layernorm.bias"] = vision_model.post_ln_b;
vision_model.tensors["visual_projection.weight"] = vision_model.projection;
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int64_t nelements = 1;
int64_t ne[4] = {1, 1, 1, 1};
for (int i = 0; i < n_dims; ++i) {
int32_t ne_cur;
fin.read(reinterpret_cast<char *>(&ne_cur), sizeof(ne_cur));
ne[i] = ne_cur;
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
struct ggml_tensor * tensor;
if (text_model.tensors.find(name.data()) != text_model.tensors.end()) {
tensor = text_model.tensors[name.data()];
} else if (vision_model.tensors.find(name.data()) != vision_model.tensors.end()) {
tensor = vision_model.tensors[name.data()];
} else {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
clip_free(new_clip);
return nullptr;
}
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
clip_free(new_clip);
return nullptr;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%lld, %lld], expected [%lld, %lld]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
clip_free(new_clip);
return nullptr;
}
if (0) {
static const char * ftype_str[] = {
"f32",
"f16",
"q4_0",
"q4_1",
};
printf("%24s - [%5lld, %5lld], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype],
ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
}
size_t bpe = 0;
switch (ftype) {
case 0:
bpe = ggml_type_size(GGML_TYPE_F32);
break;
case 1:
bpe = ggml_type_size(GGML_TYPE_F16);
break;
case 2:
bpe = ggml_type_size(GGML_TYPE_Q4_0);
assert(ne[0] % 64 == 0);
break;
case 3:
bpe = ggml_type_size(GGML_TYPE_Q4_1);
assert(ne[0] % 64 == 0);
break;
default: {
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
clip_free(new_clip);
return nullptr;
}
};
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(),
ggml_nbytes(tensor), nelements * bpe);
clip_free(new_clip);
return nullptr;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
#ifdef CLIP_DEBUG_TENSORS
printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16",
ggml_nbytes(tensor) / 1024.0 / 1024.0);
#endif
total_size += ggml_nbytes(tensor);
if (verbosity >= 1) {
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
}
if (verbosity >= 1) {
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
}
}
fin.close();
// Calculate space requirements for setting up context buffers later
{
// TODO: We currently get the size of memory requirement from the pre-computed information
// based on the model variant, indicated by the number of tensors.
// Rewrite this logic when GGML implements a mechanism to predict the required memory.
const size_t n_tensors = new_clip->text_model.tensors.size() + new_clip->vision_model.tensors.size();
const int n_image_positions = (vision_model.hparams.image_size / vision_model.hparams.patch_size) *
(vision_model.hparams.image_size / vision_model.hparams.patch_size) +
1;
size_t mem_req = get_mem_req_by_size(n_tensors, n_image_positions);
new_clip->buf_compute.resize(mem_req);
if (verbosity >= 2) {
printf("%s: %zu MB of compute buffer allocated\n", __func__, mem_req / 1024 / 1024);
}
}
if (verbosity >= 1) {
printf("%s: model loaded\n\n", __func__);
}
return new_clip;
}
void clip_free(clip_ctx * ctx) {
ggml_free(ctx->ctx);
delete ctx;
}
bool clip_text_encode(const clip_ctx * ctx, int n_threads, const std::vector<clip_vocab::id> & tokens, float * vec) {
const auto & model = ctx->text_model;
const auto & hparams = model.hparams;
const int N = tokens.size();
const int n_vocab = hparams.n_vocab;
const int num_positions = hparams.num_positions;
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const int n_layer = hparams.n_layer;
const int n_intermediate = hparams.n_intermediate;
const int projection_dim = hparams.projection_dim;
auto & buf_compute = ctx->buf_compute;
struct ggml_init_params params = {
.mem_size = buf_compute.size,
.mem_buffer = buf_compute.data,
.no_alloc = false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
static size_t scr0_size = get_scr_buf_req_by_size(ctx->text_model.tensors.size() + ctx->vision_model.tensors.size(), N);
static void * scr0 = malloc(scr0_size);
struct ggml_tensor * input_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(input_ids->data, tokens.data(), N * ggml_element_size(input_ids));
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
for (int i = 0; i < N; i++) {
ggml_set_i32_1d(positions, i, i);
}
struct ggml_tensor * embeddings = ggml_get_rows(ctx0, model.token_embeddings, input_ids);
embeddings = ggml_add(ctx0, ggml_get_rows(ctx0, model.position_embeddings, positions), embeddings);
// loop over layers
for (int il = 0; il < n_layer; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
ggml_set_scratch(ctx0, {0, scr0_size, scr0});
// layernorm1
{
cur = ggml_norm(ctx0, cur);
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_w, cur), cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
}
// self-attention
{
struct ggml_tensor * Q =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, cur), ggml_mul_mat(ctx0, model.layers[il].q_w, cur));
Q = ggml_scale_inplace(ctx0, Q, ggml_new_f32(ctx0, 1.0f / sqrt((float)d_head)));
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, N, 1);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
Q = ggml_reshape_3d(ctx0, Q, d_head, N, n_head);
struct ggml_tensor * K =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].k_b, cur), ggml_mul_mat(ctx0, model.layers[il].k_w, cur));
K = ggml_reshape_4d(ctx0, K, d_head, n_head, N, 1);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
K = ggml_reshape_3d(ctx0, K, d_head, N, n_head);
struct ggml_tensor * V =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].v_b, cur), ggml_mul_mat(ctx0, model.layers[il].v_w, cur));
V = ggml_reshape_4d(ctx0, V, d_head, n_head, N, 1);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
V = ggml_reshape_3d(ctx0, V, N, d_head, n_head);
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
KQ = ggml_diag_mask_inf_inplace(ctx0, KQ, 0); // causal masking
KQ = ggml_soft_max_inplace(ctx0, KQ);
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_4d(ctx0, KQV, d_head, N, n_head, 1);
KQV = ggml_cont(ctx0, ggml_permute(ctx0, KQV, 0, 2, 1, 3));
cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, hidden_size, N));
}
// attention output
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].o_b, cur), ggml_mul_mat(ctx0, model.layers[il].o_w, cur));
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, embeddings);
embeddings = cur; // embeddings = residual, cur = hidden_states
// layernorm2
{
cur = ggml_norm(ctx0, cur);
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_2_w, cur), cur),
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_i_b, cur), cur);
if (ctx->use_gelu) {
cur = ggml_gelu_inplace(ctx0, cur);
} else {
cur = ggml_gelu_quick_inplace(ctx0, cur);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_o_b, cur), cur);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
embeddings = cur;
}
// final -layer_norm
{
embeddings = ggml_norm(ctx0, embeddings);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.post_ln_w, embeddings), embeddings),
ggml_repeat(ctx0, model.post_ln_b, embeddings));
}
// get the output of eot token, e.g., last index
struct ggml_tensor * eot = ggml_new_i32(ctx0, N - 1);
embeddings = ggml_get_rows(ctx0, embeddings, eot);
ggml_set_scratch(ctx0, {0, 0, nullptr});
// text projection
embeddings = ggml_mul_mat(ctx0, model.projection, embeddings);
// normalize output embeddings
ggml_tensor * length = ggml_sqrt(ctx0, ggml_sum(ctx0, ggml_sqr(ctx0, embeddings)));
embeddings = ggml_scale_inplace(ctx0, embeddings, ggml_div(ctx0, ggml_new_f32(ctx0, 1.0f), length));
ggml_set_name(embeddings, "check");
// run the computation
ggml_build_forward_expand(&gf, embeddings);
ggml_cplan cplan = ggml_graph_plan(&gf, n_threads);
if (cplan.work_size != 0) {
cplan.work_data = (uint8_t *)malloc(cplan.work_size);
}
ggml_graph_compute(&gf, &cplan);
// print
#ifdef CLIP_DEBUG
{
auto print_t_f32 = [&](struct ggml_tensor * t) {
float * data = (float *)t->data;
printf("dtype: f32, dims: %jd %jd %jd %jd, nb: %jd %jd %jd %jd\n", t->ne[0], t->ne[1], t->ne[2], t->ne[3], t->nb[0],
t->nb[1], t->nb[2], t->nb[3]);
printf("data: ");
for (int i = 0; i < std::min((int)t->ne[0], 20); i++) {
printf("%f ", data[i]);
}
// printf("\n\n");
double sum = 0.0;
for (int i = 0; i < ggml_nelements(t); i++) {
sum += data[i];
}
printf("sum: %f\n", sum);
};
auto print_t_f16 = [&](struct ggml_tensor * t) {
ggml_fp16_t * data = (ggml_fp16_t *)t->data;
printf("dtype: f16, dims: %jd %jd %jd %jd\n", t->ne[0], t->ne[1], t->ne[2], t->ne[3]);
printf("data: ");
for (int i = 0; i < std::min((int)t->ne[0], 10); i++) {
printf("%f ", ggml_fp16_to_fp32(data[i]));
}
printf("\n\n");
double sum = 0.0;
for (int i = 0; i < ggml_nelements(t); i++) {
sum += ggml_fp16_to_fp32(data[i]);
}
printf("sum: %f\n", sum);
};