-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams_male.txt
50 lines (50 loc) · 3.68 KB
/
params_male.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
k_PTHg_deg = 0.035; % min^-1, Granjon 2016 paper
rho_exo = 10; % Melissa adjusted
R = 1.1; % Granjon Table 1
k_PTHp_deg = 0.1320; %min^-1, PTHp degradation rate, Melissa chose
Gamma_res_min = 0.142e-3; % mmol/min, minimal resorption rate, Table 3 Granjon 2016
delta_res_max = 0.7e-3; %mmol/min, maximal resorption rate, Table 3 Granjon 2016
kappa_b = 0.4; % fraction, fraction of bound calcium, Table 3 Granjon 2016
nconv = 6; % PTH D3 sensitivity coefficient, Table 3.4 Granjon thesis
gamma_conv_Ca = 0.3; % (mmol/L)^-1, inhibition of D3 production by Ca2+, Melissa adjusted
k_deg_D3 = 0.0029; % min^-1, degradation rate of vitamin D3, chosen so half life is between 4 & 8 hours (pg 75 thesis)
k_pf_Ca = 0.0017; % min^-1, rate of calcium transfer from plasma to fast bone pool, Table 4.3, Granjon thesis NOTE diff in Granjon 2016
k_fp_Ca = 2.75e-4; % min^-1, rate of calcium transfer from fast bone pool to plasma, Table 4.3, Granjon thesis NOTE diff in Granjon 2016
nPT = 2; % Granjon thesis text under eq 4.11
Cap_ref = 1.7; % mmol/L
nTAL = 2; % Melissa adjusted, less sensitive PT effects (since is secondary anyways)
k_EGTA_on = 9e4; % (mmol/L)^-1*min^-1, parameter for EGTA reaction
k_EGTA_off = 18; % min^-1, parameter for EGTA reaction
Vp = 10e-3; % L, plasma volume, Table 6 Granjon 2016
GFR = 2.0e-3; % L/min, glomerular filtration rate, Table 3 Granjon 2016
gamma_conv_D3 = 1.8e-2; % (pmol/L)^-1, inhibition of vitamin D3 production by itself, Melissa adjusted
delta_conv_max = 6.02e-5; % min^-1, maximal increase in vitamin D3 production rate, Table 2 Granjon 2016
k_conv_min = 4.4e-6; % min^-1, minimum production rate constant of vitamin D3, Table 2 Granjon 2016
D3_inact_p = 25e3; % pmol/L, plasma concentration of inactive vitamin D3
gamma_prod_D3 = 3.0e-3; % (pmol/L)^-1, inhibition of PTHg syntehsis by vitamin D3, chose so at steady state, synthesis of PTH is reduced by 33percent (pg 75 in thesis), Melissa changed
ICa = 2.3e-3; % mmol/min, table 3.5 Granjon thesis
Gamma_abs0 = 0.25; % basal absorption without D3
delta_abs_D3 = 0.45; % maximal effect of gut impact of D3, Melissa (took from Granjon 2016 eq 7)
K_abs_D3 = 160; % pmol/L, stimulation of absorption by D3, Melissa picked as steady state
K_D3p_res = 160; % pmol/L, stimulation of resorption by D3
Lambda_PT0 = 0.66; % baseline PT fractional reabosorption, based on Friedman & Gesek 1995 and Tournus 2013
delta_PT_max = 0.03; % max increase in PT frac reabsorption, based on Friedman & Gesek 1995 and Tournus 2013
Lambda_TAL0 = 0.185; % baseline TAL fractional reabsorption, based on Friedman & Gesek 1995 and Tournus 2013
delta_TAL_max = 0.015; % max increase in TAL fractional reabsorption, based on Friedman & Gesek 1995 and Tournus 2013
delta_DCT_max = 0.015; % max increase in DCT fractional reabsorption, based on Friedman & Gesek 1995 and Tournus 2013
K_DCT_D3p = 160; % pmol/L, Melissa adjusted
Lambda_DCT0 = 0.095; % baseline DCT fractional reabsorption, based on Friedman & Gesek 1995 and Tournus 2013
FetusORMilk = 0; % used in pregnancy and lactation models
K_Ca_CASR = 1.17; % mmol/L, binding of Ca2+ to CaSR, Table 1 Granjon 2016
K_conv_PTH = 7.25; % pmol/L, activation of vitamin D3 production by PTH
k_prod_PTHg = 3.0; % pmol/min, Melissa chose
K_PTHp_res = 2.45; % pmol/L, stimulation of bone resorption by PTHp, Melissa adjusted
gamma_deg_PTHp = 0.2; % (pmol/L)^-1, inhibition of D3 synthesis by PTH, Melissa adjusted
PTHp_ref = 12; % reference PTH value for PT frac reabsorption
K_TAL_PTHp = 4; % pmol/L
K_DCT_PTHp = 7.25; % pmol/L
n1_exo = 100; % Granjon 2016
n2_exo = 30; % Melissa adjusted
beta_exo_PTHg = 0.059; %min^-1, Table 1 Granjon 2016
gamma_exo_PTHg = 0.057; % min^-1, Table 1 Granjon 2016
Gamma_ac = 0.958e-3; % min^-1 accretion rate, Granjon 2016 Table 3