-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSGKFold.py
137 lines (124 loc) · 5.27 KB
/
SGKFold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedGroupKFold
from pathlib import Path
from collections import Counter
from typing import *
"""
train と test に 同じシリーズは含まれないそうなので、art_series_id での GroupKFold はやったほうが良さそう
評価指標は RMSE なものの target は {0, 1, 2, 3} なので、StratifiedGroupKFold でとりあえず良さそうですね
Stratified: 重層化する
GroupKFold: trainとtestに同じgroupが入らないように分ける
例)グループとして人のidがあって同じ人を別の角度から取ったデータセットがある場合、
trainとtestにそれぞれ同じgroupがあるとリークになりえる。
例2)今回の場合は特にtestにtrainと同じシリーズは含まれないため、この方法で分割をしないと
validationスコアはpublicLBよりも高くでるはず。
当然 set(train)&set(test) = ∅ になるが、
n_splits回Iterationを回す際に、前回のtrainと今回のtrainで重複がでることはある
これは当たり前で
| 1test | 2train | 3train | train = 2train + 3train
| 1train | 2test | 3train | train = 1train + 3train
| 1train | 2train | 3test | train = 1train + 2train
なのでn_splits=Nの場合
train=(N-1)/N, test = 1/N くらいの割合になる
割り切れない場合はデータ件数が変わる場合があるので
評価指標はデータ件数でスケールさせるように注意
"""
def test_SGKFold():
"""SGKFoldのdocstringの例"""
X = np.ones((17, 2))
y = np.array([0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
groups = np.array([1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8])
cv = StratifiedGroupKFold(n_splits=3)
for train_idxs, test_idxs in cv.split(X, y, groups):
print("TRAIN:", groups[train_idxs])
print(" ", y[train_idxs])
print(" TEST:", groups[test_idxs])
print(" ", y[test_idxs])
def calc_ratio(train_df: pd.DataFrame) -> np.ndarray:
cnt = Counter(train_df["target"])
ratio = np.array([cnt[i] for i in range(4)], dtype=float)
ratio /= len(train_df)
return ratio
def main(K=3, batchsize=64):
"""
train.csvと同じ形式で {K}fold{0}_train.csv ~ {K}fold{K-1}_test.csv を書き出す
3foldの時、trainの枚数をbatchsize=64の倍数に合わせる為の処理を追加。
"""
DATADIR = Path("/data/natsuki/dataset_atmaCup11")
assert DATADIR.is_dir()
train_df = pd.read_csv(DATADIR/'train.csv')
ratio = calc_ratio(train_df)
X = train_df["object_id"]
y = train_df["target"]
cv = StratifiedGroupKFold(n_splits=K)
groups = train_df["art_series_id"]
for k, (train_idxs, test_idxs) in enumerate(cv.split(X, y, groups)):
# 最後concatしたときハイパラ(学習時間等)をK/(K-1)しなくちゃいけないかも
assert len(train_idxs) + len(test_idxs) == len(train_df)
assert set(train_idxs) & set(test_idxs) == set()
assert set(groups[train_idxs]) & set(groups[test_idxs]) == set()
k_train_df = train_df.iloc[train_idxs]
k_test_df = train_df.iloc[test_idxs]
k_ratio = calc_ratio(k_train_df)
emigrant_target = (k_ratio/ratio).argmax()
prohibitions = set(k_test_df["art_series_id"])
# ぜんぶ2624 = 64*41にあわせたい
if not len(train_idxs)%batchsize == 0:
for emigrant in train_idxs:
if not train_df.iloc[emigrant]["target"] == emigrant_target:
continue
if train_df.iloc[emigrant]["art_series_id"] in prohibitions:
continue
break
else:
raise ValueError("batchsize is incompatible")
train_idxs = list(train_idxs)
test_idxs = list(test_idxs)
train_idxs.remove(emigrant)
test_idxs.append(emigrant)
assert len(train_idxs) + len(test_idxs) == len(train_df)
assert set(train_idxs) & set(test_idxs) == set()
assert set(groups[train_idxs]) & set(groups[test_idxs]) == set()
assert len(train_idxs)%batchsize == 0
k_train_df = train_df.iloc[train_idxs]
k_test_df = train_df.iloc[test_idxs]
print(k, len(train_idxs), len(test_idxs))
k_train_df.to_csv(DATADIR/f"{K}fold{k}_train.csv")
k_test_df.to_csv(DATADIR/f"{K}fold{k}_test.csv")
class PrimeFact:
def __init__(self, N):
"""
N以下の素因数分解
O(NlogNlogN)
Smallest Prime Factor
"""
self.spf = list(range(N+1))
i = 2
while i*i <= N:
if self.spf[i] == i:
for j in range(i*i, N+1, i):
if self.spf[j] == j:
self.spf[j] = i
i += 1
def __call__(self, n):
# O(logn)
factor = []
while n != 1:
factor.append(self.spf[n])
n //= self.spf[n]
return factor
def calc_batchsize():
P = PrimeFact(1000)
SM = 80
for n in range(1, 30):
H = 224
W = 224
C = 3
N = int((n*(1<<14)*SM)/(H*W*C))
print(N, 9856%N, P(N))
if __name__ == "__main__":
main(K=3)
# main(K=5)