-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
337 lines (280 loc) · 13.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import gradio as gr
import base64
import os
from anthropic import Anthropic
import json
from doc2json import process_docx
from settings_mgr import generate_download_settings_js, generate_upload_settings_js
dump_controls = False
log_to_console = False
# constants
image_embed_prefix = "🖼️🆙 "
def encode_image(image_data):
"""Generates a prefix for image base64 data in the required format for the
four known image formats: png, jpeg, gif, and webp.
Args:
image_data: The image data, encoded in base64.
Returns:
An object encoding the image
"""
# Get the first few bytes of the image data.
magic_number = image_data[:4]
# Check the magic number to determine the image type.
if magic_number.startswith(b'\x89PNG'):
image_type = 'png'
elif magic_number.startswith(b'\xFF\xD8'):
image_type = 'jpeg'
elif magic_number.startswith(b'GIF89a'):
image_type = 'gif'
elif magic_number.startswith(b'RIFF'):
if image_data[8:12] == b'WEBP':
image_type = 'webp'
else:
# Unknown image type.
raise Exception("Unknown image type")
else:
# Unknown image type.
raise Exception("Unknown image type")
return {"type": "base64",
"media_type": "image/" + image_type,
"data": base64.b64encode(image_data).decode('utf-8')}
def add_text(history, text):
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def add_file(history, files):
for file in files:
if file.name.endswith(".docx"):
content = process_docx(file.name)
else:
with open(file.name, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
content = content.decode('utf-8', 'replace')
else:
content = str(content)
fn = os.path.basename(file.name)
history = history + [(f'```{fn}\n{content}\n```', None)]
return history
def add_img(history, files):
for file in files:
if log_to_console:
print(f"add_img {file.name}")
history = history + [(image_embed_prefix + file.name, None)]
gr.Info(f"Image added as {file.name}")
return history
def submit_text(txt_value):
return add_text([chatbot, txt_value], [chatbot, txt_value])
def undo(history):
history.pop()
return history
def dump(history):
return str(history)
def load_settings():
# Dummy Python function, actual loading is done in JS
pass
def save_settings(acc, sec, prompt, temp, tokens, model):
# Dummy Python function, actual saving is done in JS
pass
def process_values_js():
return """
() => {
return ["api_key", "system_prompt"];
}
"""
def bot(message, history, api_key, system_prompt, temperature, max_tokens, model):
try:
client = Anthropic(
api_key=api_key
)
if log_to_console:
print(f"bot history: {str(history)}")
history_openai_format = []
user_msg_parts = []
for human, assi in history:
if human is not None:
if human.startswith(image_embed_prefix):
with open(human.lstrip(image_embed_prefix), mode="rb") as f:
content = f.read()
user_msg_parts.append({"type": "image",
"source": encode_image(content)})
else:
user_msg_parts.append({"type": "text", "text": human})
if assi is not None:
if user_msg_parts:
history_openai_format.append({"role": "user", "content": user_msg_parts})
user_msg_parts = []
history_openai_format.append({"role": "assistant", "content": assi})
if message:
user_msg_parts.append({"type": "text", "text": human})
if user_msg_parts:
history_openai_format.append({"role": "user", "content": user_msg_parts})
if log_to_console:
print(f"br_prompt: {str(history_openai_format)}")
response = client.messages.create(
model=model,
messages= history_openai_format,
temperature=temperature,
max_tokens=max_tokens,
system=system_prompt
)
if log_to_console:
print(f"br_response: {str(response)}")
resp = ""
for content in response.content:
resp += content.text
history[-1][1] = resp
if log_to_console:
print(f"br_result: {str(history)}")
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
return "", history
def import_history(history, file):
with open(file.name, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
content = content.decode('utf-8', 'replace')
else:
content = str(content)
# Deserialize the JSON content
import_data = json.loads(content)
# Check if 'history' key exists for backward compatibility
if 'history' in import_data:
history = import_data['history']
system_prompt.value = import_data.get('system_prompt', '') # Set default if not present
else:
# Assume it's an old format with only history data
history = import_data
return history, system_prompt.value # Return system prompt value to be set in the UI
with gr.Blocks() as demo:
gr.Markdown("# Anthropic™️ Claude™️ Chat (Nils' Version™️)")
with gr.Accordion("Startup"):
gr.Markdown("""Use of this interface permitted under the terms and conditions of the
[MIT license](https://github.com/ndurner/oai_chat/blob/main/LICENSE).
Third party terms and conditions apply, particularly
those of the LLM vendor (Anthropic) and hosting provider (Hugging Face).""")
api_key = gr.Textbox(label="Anthropic API Key", elem_id="api_key")
model = gr.Dropdown(label="Model", value="claude-3-opus-20240229", allow_custom_value=True, elem_id="model",
choices=["claude-3-opus-20240229", "claude-3-sonnet-20240229", "claude-3-haiku-20240307", "claude-2.1", "claude-2.0", "claude-instant-1.2"])
system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt")
temp = gr.Slider(0, 1, label="Temperature", elem_id="temp", value=1)
max_tokens = gr.Slider(1, 4000, label="Max. Tokens", elem_id="max_tokens", value=800)
save_button = gr.Button("Save Settings")
load_button = gr.Button("Load Settings")
dl_settings_button = gr.Button("Download Settings")
ul_settings_button = gr.Button("Upload Settings")
load_button.click(load_settings, js="""
() => {
let elems = ['#api_key textarea', '#system_prompt textarea', '#temp input', '#max_tokens input', '#model'];
elems.forEach(elem => {
let item = document.querySelector(elem);
let event = new InputEvent('input', { bubbles: true });
item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || '';
item.dispatchEvent(event);
});
}
""")
save_button.click(save_settings, [api_key, system_prompt, temp, max_tokens, model], js="""
(oai, sys, temp, ntok, model) => {
localStorage.setItem('api_key', oai);
localStorage.setItem('system_prompt', sys);
localStorage.setItem('temp', document.querySelector('#temp input').value);
localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value);
localStorage.setItem('model', model);
}
""")
control_ids = [('api_key', '#api_key textarea'),
('system_prompt', '#system_prompt textarea'),
('temp', '#temp input'),
('max_tokens', '#max_tokens input'),
('model', '#model')]
controls = [api_key, system_prompt, temp, max_tokens, model]
dl_settings_button.click(None, controls, js=generate_download_settings_js("claude_chat_settings.bin", control_ids))
ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids))
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
show_copy_button=True,
height=350
)
with gr.Row():
btn = gr.UploadButton("📁 Upload", size="sm", file_count="multiple")
img_btn = gr.UploadButton("🖼️ Upload", size="sm", file_count="multiple", file_types=["image"])
undo_btn = gr.Button("↩️ Undo")
undo_btn.click(undo, inputs=[chatbot], outputs=[chatbot])
clear = gr.ClearButton(chatbot, value="🗑️ Clear")
with gr.Row():
txt = gr.TextArea(
scale=4,
show_label=False,
placeholder="Enter text and press enter, or upload a file",
container=False,
lines=3,
)
submit_btn = gr.Button("🚀 Send", scale=0)
submit_click = submit_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [txt, chatbot, api_key, system_prompt, temp, max_tokens, model], [txt, chatbot],
)
submit_click.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
if dump_controls:
with gr.Row():
dmp_btn = gr.Button("Dump")
txt_dmp = gr.Textbox("Dump")
dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp])
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [txt, chatbot, api_key, system_prompt, temp, max_tokens, model], [txt, chatbot],
)
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False, postprocess=False)
img_msg = img_btn.upload(add_img, [chatbot, img_btn], [chatbot], queue=False, postprocess=False)
with gr.Accordion("Import/Export", open = False):
import_button = gr.UploadButton("History Import")
export_button = gr.Button("History Export")
export_button.click(lambda: None, [chatbot, system_prompt], js="""
(chat_history, system_prompt) => {
const export_data = {
history: chat_history,
system_prompt: system_prompt
};
const history_json = JSON.stringify(export_data);
const blob = new Blob([history_json], {type: 'application/json'});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = 'chat_history.json';
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
}
""")
dl_button = gr.Button("File download")
dl_button.click(lambda: None, [chatbot], js="""
(chat_history) => {
// Attempt to extract content enclosed in backticks with an optional filename
const contentRegex = /```(\\S*\\.(\\S+))?\\n?([\\s\\S]*?)```/;
const match = contentRegex.exec(chat_history[chat_history.length - 1][1]);
if (match && match[3]) {
// Extract the content and the file extension
const content = match[3];
const fileExtension = match[2] || 'txt'; // Default to .txt if extension is not found
const filename = match[1] || `download.${fileExtension}`;
// Create a Blob from the content
const blob = new Blob([content], {type: `text/${fileExtension}`});
// Create a download link for the Blob
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
// If the filename from the chat history doesn't have an extension, append the default
a.download = filename.includes('.') ? filename : `${filename}.${fileExtension}`;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
} else {
// Inform the user if the content is malformed or missing
alert('Sorry, the file content could not be found or is in an unrecognized format.');
}
}
""")
import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot, system_prompt])
demo.queue().launch()