
262 Chapter 3. Registration

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a simple

translation of points

in the input space and

has no effect on vec-

tors or covariant vec-

tors.

Same as the

input space

dimension.

The i-th parame-

ter represents the

translation in the

i-th dimension.

Only defined when the input

and output space have the

same number of dimensions.

Table 3.3: Characteristics of the TranslationTransform class.

3.9.4 Translation Transform

The itk::TranslationTransform is probably the simplest yet one of the most useful transforma-

tions. It maps all Points by adding a Vector to them. Vector and covariant vectors remain unchanged

under this transformation since they are not associated with a particular position in space. Trans-

lation is the best transform to use when starting a registration method. Before attempting to solve

for rotations or scaling it is important to overlap the anatomical objects in both images as much as

possible. This is done by resolving the translational misalignment between the images. Translations

also have the advantage of being fast to compute and having parameters that are easy to interpret.

The main characteristics of the translation transform are presented in Table 3.3.

3.9.5 Scale Transform

The itk::ScaleTransform represents a simple scaling of the vector space. Different scaling

factors can be applied along each dimension. Points are transformed by multiplying each one of their

coordinates by the corresponding scale factor for the dimension. Vectors are transformed in the same

way as points. Covariant vectors, on the other hand, are transformed differently since anisotropic

scaling does not preserve angles. Covariant vectors are transformed by dividing their components

by the scale factor of the corresponding dimension. In this way, if a covariant vector was orthogonal

to a vector, this orthogonality will be preserved after the transformation. The following equations

summarize the effect of the transform on the basic geometric objects.

Point P′ = T (P) : P′
i = Pi ·Si

Vector V′ = T (V) : V′
i = Vi ·Si

CovariantVector C′ = T (C) : C′
i = Ci/Si

(3.9)

where Pi, Vi and Ci are the point, vector and covariant vector i-th components while Si is the scaling

7Note that the term Jacobian is also commonly used for the matrix representing the derivatives of output point coordinates

with respect to input point coordinates. Sometimes the term is loosely used to refer to the determinant of such a matrix. [17]

https://www.itk.org/Doxygen/html/classitk_1_1TranslationTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html


3.9. Transforms 263

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Points are trans-

formed by multi-

plying each one of

their coordinates by

the corresponding

scale factor for the

dimension. Vectors

are transformed as

points. Covariant

vectors are trans-

formed by dividing

their components by

the scale factor in

the corresponding

dimension.

Same as the

input space

dimension.

The i-th parame-

ter represents the

scaling in the i-th

dimension.

Only defined when the input

and output space have the

same number of dimensions.

Table 3.4: Characteristics of the ScaleTransform class.

factor along dimension i− th. The following equation illustrates the effect of the scaling transform

on a 3D point.





x′

y′

z′



=





S1 0 0

0 S2 0

0 0 S3



 ·





x

y

z



 (3.10)

Scaling appears to be a simple transformation but there are actually a number of issues to keep

in mind when using different scale factors along every dimension. There are subtle effects—for

example, when computing image derivatives. Since derivatives are represented by covariant vectors,

their values are not intuitively modified by scaling transforms.

One of the difficulties with managing scaling transforms in a registration process is that typical opti-

mizers manage the parameter space as a vector space where addition is the basic operation. Scaling

is better treated in the frame of a logarithmic space where additions result in regular multiplicative

increments of the scale. Gradient descent optimizers have trouble updating step length, since the

effect of an additive increment on a scale factor diminishes as the factor grows. In other words, a

scale factor variation of (1.0+ ε) is quite different from a scale variation of (5.0+ ε).

Registrations involving scale transforms require careful monitoring of the optimizer parameters in

order to keep it progressing at a stable pace. Note that some of the transforms discussed in following

sections, for example, the AffineTransform, have hidden scaling parameters and are therefore subject

to the same vulnerabilities of the ScaleTransform.



264 Chapter 3. Registration

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Points are trans-

formed by multi-

plying each one of

their coordinates by

the corresponding

scale factor for the

dimension. Vectors

are transformed as

points. Covariant

vectors are trans-

formed by dividing

their components by

the scale factor in

the corresponding

dimension.

Same as the

input space

dimension.

The i-th parame-

ter represents the

scaling in the i-th

dimension.

Only defined when the in-

put and output space have

the same number of dimen-

sions. The difference be-

tween this transform and

the ScaleTransform is that

here the scaling factors are

passed as logarithms, in this

way their behavior is closer

to the one of a Vector space.

Table 3.5: Characteristics of the ScaleLogarithmicTransform class.

In cases involving misalignments with simultaneous translation, rotation and scaling components it

may be desirable to solve for these components independently. The main characteristics of the scale

transform are presented in Table 3.4.

3.9.6 Scale Logarithmic Transform

The itk::ScaleLogarithmicTransform is a simple variation of the itk::ScaleTransform . It

is intended to improve the behavior of the scaling parameters when they are modified by optimiz-

ers. The difference between this transform and the ScaleTransform is that the parameter factors

are passed here as logarithms. In this way, multiplicative variations in the scale become additive

variations in the logarithm of the scaling factors.

3.9.7 Euler2DTransform

itk::Euler2DTransform implements a rigid transformation in 2D. It is composed of a plane

rotation and a two-dimensional translation. The rotation is applied first, followed by the translation.

The following equation illustrates the effect of this transform on a 2D point,

[

x′

y′

]

=

[

cosθ −sinθ
sinθ cosθ

]

·
[

x

y

]

+

[

Tx

Ty

]

(3.11)

https://www.itk.org/Doxygen/html/classitk_1_1ScaleLogarithmicTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html


3.9. Transforms 265

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a 2D rota-

tion and a 2D trans-

lation. Note that

the translation com-

ponent has no effect

on the transformation

of vectors and covari-

ant vectors.

3 The first param-

eter is the angle

in radians and the

last two parame-

ters are the trans-

lation in each di-

mension.

Only defined for two-

dimensional input and

output spaces.

Table 3.6: Characteristics of the Euler2DTransform class.

where θ is the rotation angle and (Tx,Ty) are the components of the translation.

A challenging aspect of this transformation is the fact that translations and rotations do not form a

vector space and cannot be managed as linearly independent parameters. Typical optimizers make

the loose assumption that parameters exist in a vector space and rely on the step length to be small

enough for this assumption to hold approximately.

In addition to the non-linearity of the parameter space, the most common difficulty found when using

this transform is the difference in units used for rotations and translations. Rotations are measured

in radians; hence, their values are in the range [−π,π]. Translations are measured in millimeters and

their actual values vary depending on the image modality being considered. In practice, translations

have values on the order of 10 to 100. This scale difference between the rotation and translation

parameters is undesirable for gradient descent optimizers because they deviate from the trajectories

of descent and make optimization slower and more unstable. In order to compensate for these

differences, ITK optimizers accept an array of scale values that are used to normalize the parameter

space.

Registrations involving angles and translations should take advantage of the scale normalization

functionality in order to obtain the best performance out of the optimizers. The main characteristics

of the Euler2DTransform class are presented in Table 3.6.

3.9.8 CenteredRigid2DTransform

itk::CenteredRigid2DTransform implements a rigid transformation in 2D. The main difference

between this transform and the itk::Euler2DTransform is that here we can specify an arbitrary

center of rotation, while the Euler2DTransform always uses the origin of the coordinate system as

the center of rotation. This distinction is quite important in image registration since ITK images usu-

ally have their origin in the corner of the image rather than the middle. Rotational mis-registrations

usually exist, however, as rotations around the center of the image, or at least as rotations around a

https://www.itk.org/Doxygen/html/classitk_1_1CenteredRigid2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html


266 Chapter 3. Registration

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a 2D ro-

tation around a user-

provided center fol-

lowed by a 2D trans-

lation.

5 The first parame-

ter is the angle in

radians. Second

and third are the

center of rota-

tion coordinates

and the last two

parameters are

the translation in

each dimension.

Only defined for two-

dimensional input and

output spaces.

Table 3.7: Characteristics of the CenteredRigid2DTransform class.

point in the middle of the anatomical structure captured by the image. Using gradient descent opti-

mizers, it is almost impossible to solve non-origin rotations using a transform with origin rotations

since the deep basin of the real solution is usually located across a high ridge in the topography of

the cost function.

In practice, the user must supply the center of rotation in the input space, the angle of rotation

and a translation to be applied after the rotation. With these parameters, the transform initializes a

rotation matrix and a translation vector that together perform the equivalent of translating the center

of rotation to the origin of coordinates, rotating by the specified angle, translating back to the center

of rotation and finally translating by the user-specified vector.

As with the Euler2DTransform, this transform suffers from the difference in units used for rotations

and translations. Rotations are measured in radians; hence, their values are in the range [−π,π].
The center of rotation and the translations are measured in millimeters, and their actual values vary

depending on the image modality being considered. Registrations involving angles and translations

should take advantage of the scale normalization functionality of the optimizers in order to get the

best performance out of them.

The following equation illustrates the effect of the transform on an input point (x,y) that maps to the

output point (x′,y′),

[

x′

y′

]

=

[

cosθ −sinθ
sinθ cosθ

]

·
[

x−Cx

y−Cy

]

+

[

Tx +Cx

Ty +Cy

]

(3.12)

where θ is the rotation angle, (Cx,Cy) are the coordinates of the rotation center and (Tx,Ty) are the

components of the translation. Note that the center coordinates are subtracted before the rotation and

added back after the rotation. The main features of the CenteredRigid2DTransform are presented in

Table 3.7.



3.9. Transforms 267

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a 2D ro-

tation, homogeneous

scaling and a 2D

translation. Note that

the translation com-

ponent has no effect

on the transformation

of vectors and covari-

ant vectors.

4 The first pa-

rameter is the

scaling factor for

all dimensions,

the second is the

angle in radians,

and the last

two parameters

are the transla-

tions in (x,y)
respectively.

Only defined for two-

dimensional input and

output spaces.

Table 3.8: Characteristics of the Similarity2DTransform class.

3.9.9 Similarity2DTransform

The itk::Similarity2DTransform can be seen as a rigid transform combined with an isotropic

scaling factor. This transform preserves angles between lines. In its 2D implementation, the four

parameters of this transformation combine the characteristics of the itk::ScaleTransform and

itk::Euler2DTransform. In particular, those relating to the non-linearity of the parameter space

and the non-uniformity of the measurement units. Gradient descent optimizers should be used with

caution on such parameter spaces since the notions of gradient direction and step length are ill-

defined.

The following equation illustrates the effect of the transform on an input point (x,y) that maps to the

output point (x′,y′),

[

x′

y′

]

=

[

λ 0

0 λ

]

·
[

cosθ −sinθ
sinθ cosθ

]

·
[

x−Cx

y−Cy

]

+

[

Tx +Cx

Ty +Cy

]

(3.13)

where λ is the scale factor, θ is the rotation angle, (Cx,Cy) are the coordinates of the rotation center

and (Tx,Ty) are the components of the translation. Note that the center coordinates are subtracted

before the rotation and scaling, and they are added back afterwards. The main features of the Simi-

larity2DTransform are presented in Table 3.8.

A possible approach for controlling optimization in the parameter space of this transform is to dy-

namically modify the array of scales passed to the optimizer. The effect produced by the parameter

scaling can be used to steer the walk in the parameter space (by giving preference to some of the

parameters over others). For example, perform some iterations updating only the rotation angle, then

balance the array of scale factors in the optimizer and perform another set of iterations updating only

the translations.

https://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html


268 Chapter 3. Registration

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a 3D rotation and

a 3D translation. The rota-

tion is specified as a quater-

nion, defined by a set of four

numbers q. The relationship

between quaternion and ro-

tation about vector n by an-

gle θ is as follows:

q = (nsin(θ/2),cos(θ/2))

Note that if the quaternion

is not of unit length, scaling

will also result.

7 The first four pa-

rameters defines

the quaternion

and the last three

parameters the

translation in

each dimension.

Only defined for

three-dimensional

input and output

spaces.

Table 3.9: Characteristics of the QuaternionRigidTransform class.

3.9.10 QuaternionRigidTransform

The itk::QuaternionRigidTransform class implements a rigid transformation in 3D space. The

rotational part of the transform is represented using a quaternion while the translation is represented

with a vector. Quaternions components do not form a vector space and hence raise the same concerns

as the itk::Similarity2DTransform when used with gradient descent optimizers.

The itk::QuaternionRigidTransformGradientDescentOptimizer was introduced into the

toolkit to address these concerns. This specialized optimizer implements a variation of a gradi-

ent descent algorithm adapted for a quaternion space. This class ensures that after advancing in

any direction on the parameter space, the resulting set of transform parameters is mapped back into

the permissible set of parameters. In practice, this comes down to normalizing the newly-computed

quaternion to make sure that the transformation remains rigid and no scaling is applied. The main

characteristics of the QuaternionRigidTransform are presented in Table 3.9.

The Quaternion rigid transform also accepts a user-defined center of rotation. In this way, the trans-

form can easily be used for registering images where the rotation is mostly relative to the center of

the image instead of one of the corners. The coordinates of this rotation center are not subject to

optimization. They only participate in the computation of the mappings for Points and in the com-

putation of the Jacobian. The transformations for Vectors and CovariantVector are not affected by

the selection of the rotation center.

https://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransformGradientDescentOptimizer.html


3.9. Transforms 269

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a 3D ro-

tation. The rotation

is specified by a ver-

sor or unit quater-

nion. The rotation

is performed around

a user-specified cen-

ter of rotation.

3 The three param-

eters define the

versor.

Only defined for three-

dimensional input and

output spaces.

Table 3.10: Characteristics of the Versor Transform

3.9.11 VersorTransform

By definition, a Versor is the rotational part of a Quaternion. It can also be defined as a unit-

quaternion [24, 27]. Versors only have three independent components, since they are restricted to

reside in the space of unit-quaternions. The implementation of versors in the toolkit uses a set of

three numbers. These three numbers correspond to the first three components of a quaternion. The

fourth component of the quaternion is computed internally such that the quaternion is of unit length.

The main characteristics of the itk::VersorTransform are presented in Table 3.10.

This transform exclusively represents rotations in 3D. It is intended to rapidly solve the rotational

component of a more general misalignment. The efficiency of this transform comes from using a

parameter space of reduced dimensionality. Versors are the best possible representation for rotations

in 3D space. Sequences of versors allow the creation of smooth rotational trajectories; for this

reason, they behave stably under optimization methods.

The space formed by versor parameters is not a vector space. Standard gradient descent algorithms

are not appropriate for exploring this parameter space. An optimizer specialized for the versor space

is available in the toolkit under the name of itk::VersorTransformOptimizer. This optimizer

implements versor derivatives as originally defined by Hamilton [24].

The center of rotation can be specified by the user with the SetCenter() method. The center is not

part of the parameters to be optimized, therefore it remains the same during an optimization process.

Its value is used during the computations for transforming Points and when computing the Jacobian.

3.9.12 VersorRigid3DTransform

The itk::VersorRigid3DTransform implements a rigid transformation in 3D space. It is a vari-

ant of the itk::QuaternionRigidTransform and the itk::VersorTransform. It can be seen as

a itk::VersorTransform plus a translation defined by a vector. The advantage of this class with

https://www.itk.org/Doxygen/html/classitk_1_1VersorTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorTransformOptimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorTransform.html


270 Chapter 3. Registration

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a 3D rota-

tion and a 3D trans-

lation. The rotation

is specified by a ver-

sor or unit quater-

nion, while the trans-

lation is represented

by a vector. Users

can specify the coor-

dinates of the center

of rotation.

6 The first three

parameters define

the versor and

the last three

parameters the

translation in

each dimension.

Only defined for three-

dimensional input and

output spaces.

Table 3.11: Characteristics of the VersorRigid3DTransform class.

respect to the QuaternionRigidTransform is that it exposes only six parameters, three for the versor

components and three for the translational components. This reduces the search space for the op-

timizer to six dimensions instead of the seven dimensional used by the QuaternionRigidTransform.

This transform also allows the users to set a specific center of rotation. The center coordinates are

not modified during the optimization performed in a registration process. The main features of this

transform are summarized in Table 3.11. This transform is probably the best option to use when

dealing with rigid transformations in 3D.

Given that the space of Versors is not a Vector space, typical gradient descent opti-

mizers are not well suited for exploring the parametric space of this transform. The

itk::VersorRigid3DTranformOptimizer has been introduced in the ITK toolkit with the pur-

pose of providing an optimizer that is aware of the Versor space properties on the rotational part of

this transform, as well as the Vector space properties on the translational part of the transform.

3.9.13 Euler3DTransform

The itk::Euler3DTransform implements a rigid transformation in 3D space. It can be seen as

a rotation followed by a translation. This class exposes six parameters, three for the Euler angles

that represent the rotation and three for the translational components. This transform also allows the

users to set a specific center of rotation. The center coordinates are not modified during the opti-

mization performed in a registration process. The main features of this transform are summarized in

Table 3.12.

Three rotational parameters are non-linear and do not behave like Vector spaces. This must be taken

into account when selecting an optimizer to work with this transform and when fine tuning the

parameters of the optimizer. It is strongly recommended to use this transform by introducing very

https://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTranformOptimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler3DTransform.html


3.9. Transforms 271

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a rigid ro-

tation in 3D space.

That is, a rotation fol-

lowed by a 3D trans-

lation. The rotation is

specified by three an-

gles representing ro-

tations to be applied

around the X, Y and

Z axes one after an-

other. The translation

part is represented by

a Vector. Users can

also specify the coor-

dinates of the center

of rotation.

6 The first three

parameters are

the rotation an-

gles around X, Y

and Z axes, and

the last three pa-

rameters are the

translations along

each dimension.

Only defined for three-

dimensional input and

output spaces.

Table 3.12: Characteristics of the Euler3DTransform class.

small variations on the rotational components. A small rotation will be in the range of 1 degree,

which in radians is approximately 0.01745.

You should not expect this transform to be able to compensate for large rotations just by being driven

with the optimizer. In practice you must provide a reasonable initialization of the transform angles

and only need to correct for residual rotations in the order of 10 or 20 degrees.

3.9.14 Similarity3DTransform

The itk::Similarity3DTransform implements a similarity transformation in 3D space. It can

be seen as an homogeneous scaling followed by a itk::VersorRigid3DTransform. This class

exposes seven parameters: one for the scaling factor, three for the versor components and three for

the translational components. This transform also allows the user to set a specific center of rotation.

The center coordinates are not modified during the optimization performed in a registration process.

Both the rotation and scaling operations are performed with respect to the center of rotation. The

main features of this transform are summarized in Table 3.13.

The scaling and rotational spaces are non-linear and do not behave like Vector spaces. This must be

taken into account when selecting an optimizer to work with this transform and when fine tuning the

parameters of the optimizer.

https://www.itk.org/Doxygen/html/classitk_1_1Similarity3DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html


272 Chapter 3. Registration

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a 3D ro-

tation, a 3D trans-

lation and homoge-

neous scaling. The

scaling factor is spec-

ified by a scalar, the

rotation is specified

by a versor, and the

translation is repre-

sented by a vector.

Users can also spec-

ify the coordinates of

the center of rotation,

which is the same

center used for scal-

ing.

7 The first three

parameters de-

fine the Versor,

the next three

parameters the

translation in

each dimension,

and the last pa-

rameter is the

isotropic scaling

factor.

Only defined for three-

dimensional input and

output spaces.

Table 3.13: Characteristics of the Similarity3DTransform class.

3.9.15 Rigid3DPerspectiveTransform

The itk::Rigid3DPerspectiveTransform implements a rigid transformation in 3D space fol-

lowed by a perspective projection. This transform is intended to be used in 3D/2D registration

problems where a 3D object is projected onto a 2D plane. This is the case in Fluoroscopic images

used for image-guided intervention, and it is also the case for classical radiography. Users must

provide a value for the focal distance to be used during the computation of the perspective trans-

form. This transform also allows users to set a specific center of rotation. The center coordinates

are not modified during the optimization performed in a registration process. The main features of

this transform are summarized in Table 3.14. This transform is also used when creating Digitally

Reconstructed Radiographs (DRRs).

The strategies for optimizing the parameters of this transform are the same ones used for optimiz-

ing the VersorRigid3DTransform. In particular, you can use the same VersorRigid3DTranform-

Optimizer in order to optimize the parameters of this class.

3.9.16 AffineTransform

The itk::AffineTransform is one of the most popular transformations used for image registra-

tion. Its main advantage comes from its representation as a linear transformation. The main features

https://www.itk.org/Doxygen/html/classitk_1_1Rigid3DPerspectiveTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html


3.9. Transforms 273

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a rigid

3D transformation

followed by a per-

spective projection.

The rotation is spec-

ified by a Versor,

while the translation

is represented by a

Vector. Users can

specify the coordi-

nates of the center

of rotation. They

must specify a focal

distance to be used

for the perspective

projection. The

rotation center and

the focal distance

parameters are not

modified during the

optimization process.

6 The first three

parameters define

the Versor and

the last three

parameters the

Translation in

each dimension.

Only defined for three-

dimensional input and

two-dimensional output

spaces. This is one of the

few transforms where the

input space has a different

dimension from the output

space.

Table 3.14: Characteristics of the Rigid3DPerspectiveTransform class.

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents an affine

transform composed

of rotation, scaling,

shearing and transla-

tion. The transform

is specified by a N ×
N matrix and a N × 1

vector where N is the

space dimension.

(N + 1)×N The first N × N

parameters define

the matrix in

column-major

order (where

the column in-

dex varies the

fastest). The last

N parameters

define the trans-

lations for each

dimension.

Only defined when the input

and output space have the

same dimension.

Table 3.15: Characteristics of the AffineTransform class.



274 Chapter 3. Registration

of this transform are presented in Table 3.15.

The set of AffineTransform coefficients can actually be represented in a vector space of dimension

(N + 1)×N. This makes it possible for optimizers to be used appropriately on this search space.

However, the high dimensionality of the search space also implies a high computational complexity

of cost-function derivatives. The best compromise in the reduction of this computational time is to

use the transform’s Jacobian in combination with the image gradient for computing the cost-function

derivatives.

The coefficients of the N×N matrix can represent rotations, anisotropic scaling and shearing. These

coefficients are usually of a very different dynamic range compared to the translation coefficients.

Coefficients in the matrix tend to be in the range [−1 : 1], but are not restricted to this interval.

Translation coefficients, on the other hand, can be on the order of 10 to 100, and are basically

related to the image size and pixel spacing.

This difference in scale makes it necessary to take advantage of the functionality offered by the

optimizers for rescaling the parameter space. This is particularly relevant for optimizers based on

gradient descent approaches. This transform lets the user set an arbitrary center of rotation. The

coordinates of the rotation center do not make part of the parameters array passed to the optimizer.

Equation 3.14 illustrates the effect of applying the AffineTransform to a point in 3D space.





x′

y′

z′



=





M00 M01 M02

M10 M11 M12

M20 M21 M22



 ·





x−Cx

y−Cy

z−Cz



+





Tx +Cx

Ty +Cy

Tz +Cz



 (3.14)

A registration based on the affine transform may be more effective when applied after simpler trans-

formations have been used to remove the major components of misalignment. Otherwise it will

incur an overwhelming computational cost. For example, using an affine transform, the first set of

optimization iterations would typically focus on removing large translations. This task could instead

be accomplished by a translation transform in a parameter space of size N instead of the (N+1)×N

associated with the affine transform.

Tracking the evolution of a registration process that uses AffineTransforms can be challenging, since

it is difficult to represent the coefficients in a meaningful way. A simple printout of the transform

coefficients generally does not offer a clear picture of the current behavior and trend of the optimiza-

tion. A better implementation uses the affine transform to deform a wire-frame cube which is shown

in a 3D visualization display.

3.9.17 BSplineDeformableTransform

The itk::BSplineDeformableTransform is designed to be used for solving deformable registra-

tion problems. This transform is equivalent to generating a deformation field where a deformation

vector is assigned to every point in space. The deformation vectors are computed using BSpline in-

terpolation from the deformation values of points located in a coarse grid, which is usually referred

to as the BSpline grid.

https://www.itk.org/Doxygen/html/classitk_1_1BSplineDeformableTransform.html


3.9. Transforms 275

Behavior Number of

Parameters

Parameter

Ordering

Restrictions

Represents a free-

form deformation

by providing a de-

formation field from

the interpolation of

deformations in a

coarse grid.

M×N Where M is the

number of nodes

in the BSpline

grid and N is the

dimension of the

space.

Only defined when the in-

put and output space have

the same dimension. This

transform has the advantage

of being able to compute de-

formable registration. It also

has the disadvantage of a

very high-dimensional para-

metric space, and therefore

requiring long computation

times.

Table 3.16: Characteristics of the BSplineDeformableTransform class.

The BSplineDeformableTransform is not flexible enough to account for large rotations or shearing,

or scaling differences. In order to compensate for this limitation, it provides the functionality of

being composed with an arbitrary transform. This transform is known as the Bulk transform and it

applied to points before they are mapped with the displacement field.

This transform does not provide functionality for mapping Vectors nor CovariantVectors—only

Points can be mapped. This is because the variations of a vector under a deformable transform

actually depend on the location of the vector in space. In other words, Vectors only make sense as

the relative position between two points.

The BSplineDeformableTransform has a very large number of parameters and therefore is well

suited for the itk::LBFGSOptimizer and itk::LBFGSBOptimizer. The use of this transform

was proposed in the following papers [52, 39, 40].

3.9.18 KernelTransforms

Kernel Transforms are a set of Transforms that are also suitable for performing deformable registra-

tion. These transforms compute on-the-fly the displacements corresponding to a deformation field.

The displacement values corresponding to every point in space are computed by interpolation from

the vectors defined by a set of Source Landmarks and a set of Target Landmarks.

Several variations of these transforms are available in the toolkit. They differ in the type of interpo-

lation kernel that is used when computing the deformation in a particular point of space. Note that

these transforms are computationally expensive and that their numerical complexity is proportional

to the number of landmarks and the space dimension.

The following is the list of Transforms based on the KernelTransform.

https://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1LBFGSBOptimizer.html


276 Chapter 3. Registration

• itk::ElasticBodySplineKernelTransform

• itk::ElasticBodyReciprocalSplineKernelTransform

• itk::ThinPlateSplineKernelTransform

• itk::ThinPlateR2LogRSplineKernelTransform

• itk::VolumeSplineKernelTransform

Details about the mathematical background of these transform can be found in the paper by Davis

et. al [14] and the papers by Rohr et. al [50, 51].

https://www.itk.org/Doxygen/html/classitk_1_1ElasticBodySplineKernelTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ElasticBodyReciprocalSplineKernelTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ThinPlateSplineKernelTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ThinPlateR2LogRSplineKernelTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VolumeSplineKernelTransform.html


3.10. Interpolators 277

X X

Y

Transform T(x)
Y

Moving Image

Walk
Iterator

Moving Image Fixed ImageFixed Image

Transform T(x)

Figure 3.40: The moving image is mapped into the fixed image space under some spatial transformation. An

iterator walks through the fixed image and its coordinates are mapped onto the moving image.

3.10 Interpolators

In the registration process, the metric typi-

Figure 3.41: Grid positions of the fixed image

map to non-grid positions of the moving image.

cally compares intensity values in the fixed

image against the corresponding values in the

transformed moving image. When a point is

mapped from one space to another by a trans-

form, it will in general be mapped to a non-grid

position. Therefore, interpolation is required to

evaluate the image intensity at the mapped po-

sition.

Figure 3.40 (left) illustrates the mapping of

the fixed image space onto the moving image

space. The transform maps points from the

fixed image coordinate system onto the mov-

ing image coordinate system. The figure high-

lights the region of overlap between the two

images after the mapping. The right side illus-

trates how an iterator is used to walk through a

region of the fixed image. Each one of the iter-

ator positions is mapped by the transform onto

the moving image space in order to find the homologous pixel.

Figure 3.41 presents a detailed view of the mapping from the fixed image to the moving image.

In general, the grid positions of the fixed image will not be mapped onto grid positions of the

moving image. Interpolation is needed for estimating the intensity of the moving image at these

non-grid positions. The service is provided in ITK by interpolator classes that can be plugged into

the registration method.

The following interpolators are available:


