You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
You may add addition that may be helpful for locating the problem
I completely follow the official recommended method to install mmdet_ Dev-3.1.0
Error traceback
I ran the following command on 'demo/large_image' and an error occurred:
’python demo/large_image_demo.py demo/large_image.jpg rtmdet-ins_tiny_8xb32-300e_coco.py rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727-ec670f7e.pth --device cpu‘
Loads checkpoint by local backend from path: rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727-ec670f7e.pth
/root/miniconda3/lib/python3.8/site-packages/mmengine/visualization/visualizer.py:196: UserWarning: Failed to add <class 'mmengine.visualization.vis_backend.LocalVisBackend'>, please provide the save_dir argument.
warnings.warn(f'Failed to add {vis_backend.class}, '
Performing inference on 1 images.... This may take a while.
[ ] 0/1, elapsed: 0s, ETA:/root/miniconda3/lib/python3.8/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
/root/autodl-tmp/mmdetection/mmdet/visualization/palette.py:90: UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
scales = 0.5 + (areas - min_area) // (max_area - min_area)
Traceback (most recent call last):
File "demo/large_image_demo.py", line 282, in
main()
File "demo/large_image_demo.py", line 264, in main
visualizer.add_datasample(
File "/root/miniconda3/lib/python3.8/site-packages/mmengine/dist/utils.py", line 401, in wrapper
return func(*args, **kwargs)
File "/root/autodl-tmp/mmdetection/mmdet/visualization/local_visualizer.py", line 468, in add_datasample
pred_img_data = self._draw_instances(image, pred_instances,
File "/root/autodl-tmp/mmdetection/mmdet/visualization/local_visualizer.py", line 194, in _draw_instances
self.draw_binary_masks(masks, colors=colors, alphas=self.alpha)
File "/root/miniconda3/lib/python3.8/site-packages/mmengine/dist/utils.py", line 401, in wrapper
return func(*args, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/mmengine/visualization/visualizer.py", line 881, in draw_binary_masks
assert img.shape[:2] == binary_masks.shape[
AssertionError: binary_marks must have the same shape with image
Whether ‘demo/large_image_demo.py’ can be used for instance splitting tasks?
how can i solve?
The text was updated successfully, but these errors were encountered:
I met this problem and solved it by: move the Resize before LoadAnnotations
test_pipeline = [
dict(type=LoadImageFromFile, backend_args=backend_args),
dict(type=Resize, scale=(1024,1024), keep_ratio=True),
dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
Thanks for your error report and we appreciate it a lot.
Checklist
Describe the bug
AssertionError:
binary_marks
must have the same shape with imageReproduction
python demo/large_image_demo.py demo/large_image.jpg rtmdet-ins_tiny_8xb32-300e_coco.py rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727-ec670f7e.pth --device cpu
No modifications have been made
COCO
Environment
python mmdet/utils/collect_env.py
to collect necessary environment information and paste it here.sys.platform: linux
Python: 3.8.10 (default, Jun 4 2021, 15:09:15) [GCC 7.5.0]
CUDA available: True
numpy_random_seed: 2147483648
GPU 0: NVIDIA RTX A5000
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.11.0+cu113
PyTorch compiling details: PyTorch built with:
TorchVision: 0.12.0+cu113
OpenCV: 4.8.0
MMEngine: 0.8.4
MMDetection: 3.1.0+769c810
I completely follow the official recommended method to install mmdet_ Dev-3.1.0
Error traceback
I ran the following command on 'demo/large_image' and an error occurred:
’python demo/large_image_demo.py demo/large_image.jpg rtmdet-ins_tiny_8xb32-300e_coco.py rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727-ec670f7e.pth --device cpu‘
Loads checkpoint by local backend from path: rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727-ec670f7e.pth
/root/miniconda3/lib/python3.8/site-packages/mmengine/visualization/visualizer.py:196: UserWarning: Failed to add <class 'mmengine.visualization.vis_backend.LocalVisBackend'>, please provide the
save_dir
argument.warnings.warn(f'Failed to add {vis_backend.class}, '
Performing inference on 1 images.... This may take a while.
[ ] 0/1, elapsed: 0s, ETA:/root/miniconda3/lib/python3.8/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
/root/autodl-tmp/mmdetection/mmdet/visualization/palette.py:90: UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
scales = 0.5 + (areas - min_area) // (max_area - min_area)
Traceback (most recent call last):
File "demo/large_image_demo.py", line 282, in
main()
File "demo/large_image_demo.py", line 264, in main
visualizer.add_datasample(
File "/root/miniconda3/lib/python3.8/site-packages/mmengine/dist/utils.py", line 401, in wrapper
return func(*args, **kwargs)
File "/root/autodl-tmp/mmdetection/mmdet/visualization/local_visualizer.py", line 468, in add_datasample
pred_img_data = self._draw_instances(image, pred_instances,
File "/root/autodl-tmp/mmdetection/mmdet/visualization/local_visualizer.py", line 194, in _draw_instances
self.draw_binary_masks(masks, colors=colors, alphas=self.alpha)
File "/root/miniconda3/lib/python3.8/site-packages/mmengine/dist/utils.py", line 401, in wrapper
return func(*args, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/mmengine/visualization/visualizer.py", line 881, in draw_binary_masks
assert img.shape[:2] == binary_masks.shape[
AssertionError:
binary_marks
must have the same shape with imageThe text was updated successfully, but these errors were encountered: