Skip to content
This repository has been archived by the owner on Nov 15, 2023. It is now read-only.

Remove compact from staking. #7340

Closed
wants to merge 11 commits into from
Closed

Remove compact from staking. #7340

wants to merge 11 commits into from

Conversation

kianenigma
Copy link
Contributor

@kianenigma kianenigma commented Oct 16, 2020

This PR introduces two changes that will be of help to polkadot with regards to nominators.

  1. The companion will deduce the average on initialize weight to 2.5%, 1/4th of the current value and based on a sampling from @shawntabrizi the real value is around 0.35%, so we are still safe. This will leave more room for the npos solutions.

  2. Remove the #[compact] attribute of the solution. This will increase the weight a wee bit, but should hopefully reduce the decoding time. We have to re-benchmark here and see what happens. Essentially, we disable: Custom Codec Implementation for NPoS Election #6720

The regression on the length is as follows:

/// Without compact
[2020-10-16T15:36:58Z INFO  staking_miner::offchain_miner] prepared a seq-phragmen solution with 10 balancing iterations and score ["27,552,369,270,134,705", "6,455,599,802,115,900,355", "209,722,308,278,769,244,421,375,166,777,465,483"] and weight = "1,444,783,774,000" and len = 38096

/// With compact
[2020-10-16T15:35:43Z INFO  staking_miner::offchain_miner] prepared a seq-phragmen solution with 10 balancing iterations and score ["27,552,369,270,134,705", "6,455,599,802,115,900,355", "209,722,308,278,769,244,421,375,166,777,465,483"] and weight = "1,444,783,774,000" and len = 25166

Both 25k and 38k solutions are way below limit, so we are cool.


polkadot companion: paritytech/polkadot#1827

  • One might that it sucks that the specifications of the solution type (such as it being #[compact] or not) is encoded in the heart of pallet_staking.
    I could not agree more and my next PR on staking (Decouple Staking and Election #7319) should address this among many other issues.
  • The type Call was not used so I also removed that while we're at it.

@kianenigma kianenigma added A0-please_review Pull request needs code review. B7-runtimenoteworthy C1-low PR touches the given topic and has a low impact on builders. labels Oct 16, 2020
@kianenigma kianenigma removed the request for review from andresilva October 16, 2020 14:59
@kianenigma
Copy link
Contributor Author

/benchmark runtime pallet pallet_staking

@parity-benchapp
Copy link

parity-benchapp bot commented Oct 16, 2020

Finished benchmark for branch: kiz-remove-compact

Benchmark: Runtime Benchmarks Pallet

cargo run --release --features runtime-benchmarks --manifest-path bin/node/cli/Cargo.toml -- benchmark --chain dev --steps 50 --repeat 20 --extrinsic "*" --execution=wasm --wasm-execution=compiled --output ./bin/node/runtime/src/weights --header ./HEADER --pallet pallet_staking

Results

Pallet: "pallet_staking", Extrinsic: "bond", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 101.2
µs

Reads = 5
Writes = 4
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 101.2
µs

Reads = 5
Writes = 4
Pallet: "pallet_staking", Extrinsic: "bond_extra", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 79.01
µs

Reads = 4
Writes = 2
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 79.01
µs

Reads = 4
Writes = 2
Pallet: "pallet_staking", Extrinsic: "unbond", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 71.84
µs

Reads = 5
Writes = 3
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 71.84
µs

Reads = 5
Writes = 3
Pallet: "pallet_staking", Extrinsic: "withdraw_unbonded_update", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 73
+ s 0.07
µs

Reads = 5 + (0 * s)
Writes = 3 + (0 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
0 71.72 0.088 0.1%
2 72.33 0.108 0.1%
4 72.11 0.143 0.1%
6 72.61 0.159 0.2%
8 73.15 0.179 0.2%
10 73.16 0.087 0.1%
12 73.6 0.092 0.1%
14 73.51 0.111 0.1%
16 73.99 0.154 0.2%
18 74.39 0.159 0.2%
20 74.45 0.15 0.2%
22 74.72 0.158 0.2%
24 75.12 0.156 0.2%
26 74.98 0.132 0.1%
28 75.18 0.111 0.1%
30 75.17 0.233 0.3%
32 75.52 0.162 0.2%
34 76.16 0.135 0.1%
36 75.84 0.129 0.1%
38 75.87 0.137 0.1%
40 75.78 0.358 0.4%
42 76.58 0.271 0.3%
44 76.57 0.093 0.1%
46 77.11 0.129 0.1%
48 76.26 0.376 0.4%
50 76.69 0.67 0.8%
52 76.7 0.143 0.1%
54 77.26 0.137 0.1%
56 77.22 0.256 0.3%
58 77.49 0.117 0.1%
60 77.25 0.136 0.1%
62 75.83 0.608 0.8%
64 77.78 0.229 0.2%
66 77.75 0.452 0.5%
68 78.3 0.168 0.2%
70 78.13 0.063 0.0%
72 76.72 1.039 1.3%
74 78.36 0.623 0.7%
76 77 1.054 1.3%
78 78.4 0.791 1.0%
80 76.57 0.448 0.5%
82 78.83 0.127 0.1%
84 79.25 0.071 0.0%
86 79.4 0.094 0.1%
88 79.17 0.127 0.1%
90 79.01 0.169 0.2%
92 79.1 0.228 0.2%
94 77.75 1.056 1.3%
96 78.83 1.187 1.5%
98 78.35 1.265 1.6%
100 77.96 1.442 1.8%

Quality and confidence:
param error
s 0.001

Model:
Time ~= 73.03
+ s 0.065
µs

Reads = 5 + (0 * s)
Writes = 3 + (0 * s)
Pallet: "pallet_staking", Extrinsic: "withdraw_unbonded_kill", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 118.9
+ s 3.971
µs

Reads = 7 + (0 * s)
Writes = 8 + (1 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
0 111.5 0.122 0.1%
2 125.2 0.126 0.1%
4 133.3 0.183 0.1%
6 141.5 0.181 0.1%
8 150.5 0.169 0.1%
10 157.9 0.186 0.1%
12 165.9 0.134 0.0%
14 175.2 0.217 0.1%
16 182.2 0.235 0.1%
18 191.1 0.242 0.1%
20 198.8 0.418 0.2%
22 206 0.216 0.1%
24 214.9 0.364 0.1%
26 222.5 0.229 0.1%
28 230.8 0.219 0.0%
30 239.4 0.405 0.1%
32 246.4 0.224 0.0%
34 254.6 0.233 0.0%
36 261.6 0.214 0.0%
38 269.9 0.211 0.0%
40 278.2 0.258 0.0%
42 286.3 0.351 0.1%
44 293.8 0.24 0.0%
46 301.9 0.188 0.0%
48 309 0.317 0.1%
50 318.5 0.307 0.0%
52 325.6 0.242 0.0%
54 332.8 0.417 0.1%
56 341.4 0.294 0.0%
58 349.5 0.306 0.0%
60 357.2 0.489 0.1%
62 365.6 0.325 0.0%
64 374.5 0.324 0.0%
66 383.1 0.973 0.2%
68 389.9 0.332 0.0%
70 398.4 0.483 0.1%
72 403.9 0.579 0.1%
74 411.3 1.196 0.2%
76 420.4 0.375 0.0%
78 428.5 0.6 0.1%
80 436.6 0.574 0.1%
82 443.7 0.99 0.2%
84 449.5 0.983 0.2%
86 457.9 0.232 0.0%
88 465.4 1.046 0.2%
90 474.9 0.546 0.1%
92 482.8 0.57 0.1%
94 490.3 0.4 0.0%
96 499.4 0.532 0.1%
98 509.8 1.022 0.2%
100 515.5 1.249 0.2%

Quality and confidence:
param error
s 0.002

Model:
Time ~= 118.6
+ s 3.972
µs

Reads = 7 + (0 * s)
Writes = 8 + (1 * s)
Pallet: "pallet_staking", Extrinsic: "validate", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 25.58
µs

Reads = 2
Writes = 2
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 25.58
µs

Reads = 2
Writes = 2
Pallet: "pallet_staking", Extrinsic: "nominate", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 34.82
+ n 0.243
µs

Reads = 3 + (0 * n)
Writes = 2 + (0 * n)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
n mean µs sigma µs %
1 33.02 0.059 0.1%
2 34.28 0.122 0.3%
3 35.18 0.1 0.2%
4 36.64 0.119 0.3%
5 39.09 0.055 0.1%
6 39.67 0.121 0.3%
7 39.96 0.098 0.2%
8 36.16 0.118 0.3%
9 37.13 0.12 0.3%
10 37.21 0.066 0.1%
11 37.73 0.047 0.1%
12 38.03 0.101 0.2%
13 37.97 0.157 0.4%
14 37.92 0.055 0.1%
15 38.24 0.14 0.3%
16 38.13 0.145 0.3%

Quality and confidence:
param error
n 0.026

Model:
Time ~= 35.45
+ n 0.215
µs

Reads = 3 + (0 * n)
Writes = 2 + (0 * n)
Pallet: "pallet_staking", Extrinsic: "chill", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 25.56
µs

Reads = 2
Writes = 2
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 25.56
µs

Reads = 2
Writes = 2
Pallet: "pallet_staking", Extrinsic: "set_payee", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 17.65
µs

Reads = 1
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 17.65
µs

Reads = 1
Writes = 1
Pallet: "pallet_staking", Extrinsic: "set_controller", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 37.44
µs

Reads = 3
Writes = 3
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 37.44
µs

Reads = 3
Writes = 3
Pallet: "pallet_staking", Extrinsic: "set_validator_count", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 3.458
µs

Reads = 0
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 3.458
µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "force_no_eras", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 4.007
µs

Reads = 0
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 4.007
µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "force_new_era", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 4.02
µs

Reads = 0
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 4.02
µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "force_new_era_always", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 3.94
µs

Reads = 0
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 3.94
µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "set_invulnerables", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 4.198
+ v 0.009
µs

Reads = 0 + (0 * v)
Writes = 1 + (0 * v)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
v mean µs sigma µs %
0 3.939 0.025 0.6%
20 4.386 0.016 0.3%
40 4.687 0.033 0.7%
60 4.882 0.023 0.4%
80 5.018 0.029 0.5%
100 5.225 0.023 0.4%
120 5.348 0.038 0.7%
140 5.496 0.036 0.6%
160 5.719 0.026 0.4%
180 5.858 0.008 0.1%
200 6.042 0.04 0.6%
220 6.213 0.021 0.3%
240 6.407 0.032 0.4%
260 6.567 0.015 0.2%
280 6.719 0.027 0.4%
300 6.902 0.026 0.3%
320 7.061 0.038 0.5%
340 7.318 0.028 0.3%
360 7.452 0.027 0.3%
380 7.675 0.02 0.2%
400 7.86 0.026 0.3%
420 8.003 0.037 0.4%
440 8.222 0.021 0.2%
460 8.323 0.037 0.4%
480 8.429 0.021 0.2%
500 8.645 0.028 0.3%
520 8.821 0.031 0.3%
540 8.994 0.022 0.2%
560 9.213 0.03 0.3%
580 9.415 0.039 0.4%
600 9.652 0.026 0.2%
620 9.821 0.047 0.4%
640 10.02 0.016 0.1%
660 10.18 0.039 0.3%
680 10.39 0.039 0.3%
700 10.61 0.019 0.1%
720 10.81 0.023 0.2%
740 11.03 0.039 0.3%
760 11.16 0.036 0.3%
780 11.36 0.047 0.4%
800 11.52 0.036 0.3%
820 11.73 0.029 0.2%
840 11.94 0.037 0.3%
860 12.06 0.04 0.3%
880 12.3 0.019 0.1%
900 12.46 0.045 0.3%
920 12.62 0.027 0.2%
940 12.91 0.022 0.1%
960 13.03 0.035 0.2%
980 13.17 0.044 0.3%
1000 13.38 0.024 0.1%

Quality and confidence:
param error
v 0

Model:
Time ~= 4.184
+ v 0.009
µs

Reads = 0 + (0 * v)
Writes = 1 + (0 * v)
Pallet: "pallet_staking", Extrinsic: "force_unstake", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 82.37
+ s 3.982
µs

Reads = 4 + (0 * s)
Writes = 8 + (1 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
0 74.73 0.103 0.1%
2 88.28 0.052 0.0%
4 97.28 0.107 0.1%
6 105.1 0.175 0.1%
8 113.3 0.208 0.1%
10 122 0.183 0.1%
12 129.9 0.232 0.1%
14 137.9 0.138 0.1%
16 146.9 0.396 0.2%
18 154.8 0.339 0.2%
20 161.5 0.178 0.1%
22 169.7 0.281 0.1%
24 178.2 0.24 0.1%
26 186.5 0.153 0.0%
28 194.6 0.196 0.1%
30 202.4 0.533 0.2%
32 211 0.369 0.1%
34 217.6 0.227 0.1%
36 225.8 0.28 0.1%
38 234.2 0.338 0.1%
40 242.3 0.315 0.1%
42 251 0.302 0.1%
44 258.2 0.562 0.2%
46 266.3 0.584 0.2%
48 273.8 0.32 0.1%
50 281.9 0.233 0.0%
52 289.7 0.449 0.1%
54 297.7 0.31 0.1%
56 304.7 0.293 0.0%
58 313.8 0.426 0.1%
60 321.3 0.432 0.1%
62 328.7 0.571 0.1%
64 337.9 0.656 0.1%
66 346.2 0.481 0.1%
68 354.4 0.409 0.1%
70 361.8 0.511 0.1%
72 367.8 0.392 0.1%
74 376.8 0.616 0.1%
76 383.8 0.615 0.1%
78 392 0.493 0.1%
80 400.8 0.633 0.1%
82 408.7 0.544 0.1%
84 414.4 0.747 0.1%
86 423.8 0.735 0.1%
88 432 0.643 0.1%
90 440.3 0.604 0.1%
92 446.4 0.575 0.1%
94 453.6 0.258 0.0%
96 461.8 0.587 0.1%
98 473.2 0.849 0.1%
100 482.3 0.583 0.1%

Quality and confidence:
param error
s 0.002

Model:
Time ~= 82.03
+ s 3.983
µs

Reads = 4 + (0 * s)
Writes = 8 + (1 * s)
Pallet: "pallet_staking", Extrinsic: "cancel_deferred_slash", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 6463
+ s 34.99
µs

Reads = 1 + (0 * s)
Writes = 1 + (0 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
1 365.2 0.585 0.1%
20 1663 3.276 0.1%
39 2928 2.504 0.0%
58 4177 2.828 0.0%
77 5396 7.942 0.1%
96 6593 9.764 0.1%
115 7755 4.85 0.0%
134 8917 15.21 0.1%
153 10040 15.06 0.1%
172 11130 6.871 0.0%
191 12210 11.89 0.0%
210 13240 14.17 0.1%
229 14270 14.68 0.1%
248 15260 8.503 0.0%
267 16230 12.8 0.0%
286 17180 18.77 0.1%
305 18100 8.148 0.0%
324 19000 10.93 0.0%
343 19880 13.25 0.0%
362 20710 7.994 0.0%
381 21550 23.26 0.1%
400 22340 12.22 0.0%
419 23120 14.01 0.0%
438 23840 2.582 0.0%
457 24580 15.8 0.0%
476 25270 12.35 0.0%
495 25980 22.96 0.0%
514 26610 21.2 0.0%
533 27230 11.82 0.0%
552 27830 11.2 0.0%
571 29000 17.65 0.0%
590 28960 18.42 0.0%
609 29470 8.532 0.0%
628 29970 15.26 0.0%
647 30440 15.59 0.0%
666 30910 17.62 0.0%
685 31310 9.61 0.0%
704 31710 13.15 0.0%
723 32080 19.84 0.0%
742 32420 2.695 0.0%
761 32750 15.91 0.0%
780 33040 14.11 0.0%
799 33320 13.98 0.0%
818 33960 190.9 0.5%
837 33830 19.29 0.0%
856 34030 13.7 0.0%
875 34200 9.861 0.0%
894 34350 14.78 0.0%
913 34480 23.41 0.0%
932 34560 14.98 0.0%
951 34640 9.684 0.0%
970 34710 24.82 0.0%
989 34730 14.45 0.0%

Quality and confidence:
param error
s 0.391

Model:
Time ~= 5832
+ s 34.81
µs

Reads = 1 + (0 * s)
Writes = 1 + (0 * s)
Pallet: "pallet_staking", Extrinsic: "payout_stakers_dead_controller", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 146.9
+ n 61.01
µs

Reads = 11 + (3 * n)
Writes = 2 + (1 * n)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
n mean µs sigma µs %
1 198.2 0.326 0.1%
6 506.9 0.788 0.1%
11 812.5 0.8 0.0%
16 1123 0.954 0.0%
21 1429 3.063 0.2%
26 1731 8.635 0.4%
31 2034 1.247 0.0%
36 2351 3.626 0.1%
41 2651 7.378 0.2%
46 2953 8.804 0.2%
51 3263 4.778 0.1%
56 3551 3.267 0.0%
61 3861 7.127 0.1%
66 4171 6.511 0.1%
71 4518 10.82 0.2%
76 4805 15.42 0.3%
81 5115 8.362 0.1%
86 5421 18.94 0.3%
91 5704 14.13 0.2%
96 6006 12.39 0.2%
101 6317 10.03 0.1%
106 6603 16.61 0.2%
111 6905 12.71 0.1%
116 7227 14.82 0.2%
121 7513 12.55 0.1%
126 7819 16.29 0.2%
131 8144 18.24 0.2%
136 8401 11.78 0.1%
141 8712 13.61 0.1%
146 9063 18.06 0.1%
151 9368 10.01 0.1%
156 9709 23.6 0.2%
161 9973 16.48 0.1%
166 10290 16.27 0.1%
171 10620 11.8 0.1%
176 10870 11.93 0.1%
181 11190 15.01 0.1%
186 11530 23.34 0.2%
191 11810 9.918 0.0%
196 12160 17.34 0.1%
201 12410 23.22 0.1%
206 12730 12.81 0.1%
211 13020 18.26 0.1%
216 13390 81.28 0.6%
221 13640 23.32 0.1%
226 13930 15.97 0.1%
231 14240 24.25 0.1%
236 14490 19.18 0.1%
241 14880 19.07 0.1%
246 15210 127.2 0.8%
251 15400 29.81 0.1%
256 15730 15.23 0.0%

Quality and confidence:
param error
n 0.02

Model:
Time ~= 146.7
+ n 61.05
µs

Reads = 11 + (3 * n)
Writes = 2 + (1 * n)
Pallet: "pallet_staking", Extrinsic: "payout_stakers_alive_staked", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 185.8
+ n 79.07
µs

Reads = 12 + (5 * n)
Writes = 3 + (3 * n)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
n mean µs sigma µs %
1 253.9 0.318 0.1%
6 652.6 0.68 0.1%
11 1052 2.376 0.2%
16 1453 2.493 0.1%
21 1856 2.775 0.1%
26 2244 4.915 0.2%
31 2645 10.93 0.4%
36 3020 5.958 0.1%
41 3434 8.417 0.2%
46 3836 8.206 0.2%
51 4223 6.696 0.1%
56 4602 10.09 0.2%
61 5002 12.1 0.2%
66 5412 12.59 0.2%
71 5789 7.645 0.1%
76 6181 8.462 0.1%
81 6555 7.898 0.1%
86 7006 14.08 0.2%
91 7451 20.05 0.2%
96 7805 14.77 0.1%
101 8157 23.62 0.2%
106 8608 9.896 0.1%
111 8991 13.45 0.1%
116 9341 24.55 0.2%
121 9741 14.2 0.1%
126 10160 46.41 0.4%
131 10530 25.58 0.2%
136 10930 17.34 0.1%
141 11320 17.57 0.1%
146 11680 19.57 0.1%
151 12030 17.54 0.1%
156 12450 21.5 0.1%
161 12910 28.49 0.2%
166 13220 24.62 0.1%
171 13640 35.04 0.2%
176 14150 21.27 0.1%
181 14600 30.82 0.2%
186 14910 15.09 0.1%
191 15300 19.85 0.1%
196 15690 24.04 0.1%
201 16110 14.15 0.0%
206 16570 77.89 0.4%
211 16900 21.61 0.1%
216 17230 28.52 0.1%
221 17650 30.08 0.1%
226 17980 28.57 0.1%
231 18450 58.24 0.3%
236 18870 49.23 0.2%
241 19280 34.46 0.1%
246 19670 19.57 0.0%
251 19970 26.91 0.1%
256 20410 47.11 0.2%

Quality and confidence:
param error
n 0.027

Model:
Time ~= 184
+ n 79.09
µs

Reads = 12 + (5 * n)
Writes = 3 + (3 * n)
Pallet: "pallet_staking", Extrinsic: "rebond", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 50.27
+ l 0.106
µs

Reads = 4 + (0 * l)
Writes = 3 + (0 * l)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
l mean µs sigma µs %
1 50.11 0.102 0.2%
2 49.81 0.138 0.2%
3 50.12 0.098 0.1%
4 50.24 0.125 0.2%
5 50.71 0.073 0.1%
6 50.65 0.117 0.2%
7 50.74 0.096 0.1%
8 50.96 0.086 0.1%
9 51.22 0.168 0.3%
10 51.48 0.067 0.1%
11 51.57 0.137 0.2%
12 51.99 0.095 0.1%
13 52.11 0.13 0.2%
14 51.95 0.042 0.0%
15 52.16 0.097 0.1%
16 52.09 0.128 0.2%
17 52.49 0.123 0.2%
18 52.86 0.09 0.1%
19 52.82 0.093 0.1%
20 52.94 0.127 0.2%
21 52.84 0.121 0.2%
22 52.8 0.08 0.1%
23 52.96 0.131 0.2%
24 52.86 0.068 0.1%
25 53.03 0.095 0.1%
26 52.94 0.08 0.1%
27 53.09 0.115 0.2%
28 52.72 0.048 0.0%
29 53.2 0.105 0.1%
30 52.95 0.222 0.4%
31 52.95 0.054 0.1%
32 53.01 0.092 0.1%

Quality and confidence:
param error
l 0.002

Model:
Time ~= 50.25
+ l 0.107
µs

Reads = 4 + (0 * l)
Writes = 3 + (0 * l)
Pallet: "pallet_staking", Extrinsic: "set_history_depth", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 0
+ e 39.2
µs

Reads = 2 + (0 * e)
Writes = 4 + (7 * e)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
e mean µs sigma µs %
1 49.95 0.047 0.0%
2 82.07 0.092 0.1%
3 111.5 0.203 0.1%
4 145.3 0.241 0.1%
5 174.6 0.276 0.1%
6 206.2 0.374 0.1%
7 235.8 0.577 0.2%
8 267.4 0.288 0.1%
9 298.7 0.489 0.1%
10 331.6 0.593 0.1%
11 364.8 0.623 0.1%
12 394.3 0.605 0.1%
13 428.8 0.844 0.1%
14 462.9 0.743 0.1%
15 496.7 1.201 0.2%
16 527.4 1.384 0.2%
17 562.9 0.715 0.1%
18 597.8 1.807 0.3%
19 628.2 1.139 0.1%
20 664.4 1.838 0.2%
21 696 1.305 0.1%
22 734.4 1.333 0.1%
23 768.8 0.768 0.0%
24 804.6 2.005 0.2%
25 836.1 1.056 0.1%
26 876.4 1.146 0.1%
27 913.9 1.954 0.2%
28 949.4 0.939 0.0%
29 980.7 1.586 0.1%
30 1022 1.344 0.1%
31 1059 1.592 0.1%
32 1095 2.411 0.2%
33 1124 2.915 0.2%
34 1163 2.813 0.2%
35 1205 2.034 0.1%
36 1243 2.101 0.1%
37 1273 1.994 0.1%
38 1305 2.648 0.2%
39 1331 2.186 0.1%
40 1383 1.789 0.1%
41 1405 1.907 0.1%
42 1461 2.464 0.1%
43 1492 2.069 0.1%
44 1535 2.298 0.1%
45 1563 2.74 0.1%
46 1616 3.909 0.2%
47 1653 6.142 0.3%
48 1687 3.744 0.2%
49 1737 4.086 0.2%
50 1773 4.155 0.2%
51 1820 5.267 0.2%
52 1860 5.34 0.2%
53 1890 3.849 0.2%
54 1928 5.076 0.2%
55 1975 4.652 0.2%
56 2012 3.533 0.1%
57 2043 3.49 0.1%
58 2091 3.216 0.1%
59 2134 3.797 0.1%
60 2176 2.11 0.0%
61 2204 6.225 0.2%
62 2252 4.769 0.2%
63 2281 6.978 0.3%
64 2346 5.618 0.2%
65 2365 4.146 0.1%
66 2413 3.137 0.1%
67 2464 3.399 0.1%
68 2477 5.532 0.2%
69 2529 6.051 0.2%
70 2583 3.165 0.1%
71 2606 4.427 0.1%
72 2653 5.033 0.1%
73 2709 5.106 0.1%
74 2750 6.889 0.2%
75 2813 5.05 0.1%
76 2858 4.157 0.1%
77 2894 9.22 0.3%
78 2940 5.941 0.2%
79 2956 8.288 0.2%
80 3025 6.236 0.2%
81 3041 9.416 0.3%
82 3096 4.758 0.1%
83 3162 3.834 0.1%
84 3224 6.555 0.2%
85 3271 9.556 0.2%
86 3282 6.038 0.1%
87 3358 8.732 0.2%
88 3388 6.402 0.1%
89 3438 5.966 0.1%
90 3486 5.346 0.1%
91 3531 9.149 0.2%
92 3573 5.593 0.1%
93 3634 5.489 0.1%
94 3672 2.978 0.0%
95 3720 7.093 0.1%
96 3743 5.311 0.1%
97 3765 5.641 0.1%
98 3864 12.27 0.3%
99 3912 7.798 0.1%
100 3972 16.7 0.4%

Quality and confidence:
param error
e 0.072

Model:
Time ~= 0
+ e 39.4
µs

Reads = 2 + (0 * e)
Writes = 4 + (7 * e)
Pallet: "pallet_staking", Extrinsic: "reap_stash", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 102.4
+ s 3.975
µs

Reads = 4 + (0 * s)
Writes = 8 + (1 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
1 103.4 0.125 0.1%
2 108.7 0.09 0.0%
3 112.8 0.145 0.1%
4 117 0.131 0.1%
5 121.3 0.22 0.1%
6 124.9 0.173 0.1%
7 128.9 0.184 0.1%
8 133.7 0.123 0.0%
9 137.8 0.117 0.0%
10 141.4 0.203 0.1%
11 145.4 0.148 0.1%
12 149.6 0.133 0.0%
13 154.5 0.251 0.1%
14 158.7 0.102 0.0%
15 162.2 0.226 0.1%
16 165.8 0.169 0.1%
17 170.1 0.186 0.1%
18 173.9 0.246 0.1%
19 177.5 0.068 0.0%
20 182.1 0.159 0.0%
21 185.7 0.312 0.1%
22 188.9 0.194 0.1%
23 193.6 0.227 0.1%
24 197.7 0.178 0.0%
25 202.9 0.503 0.2%
26 206.3 0.355 0.1%
27 210 0.264 0.1%
28 214.5 0.221 0.1%
29 218.8 0.158 0.0%
30 222.6 0.368 0.1%
31 226.6 0.289 0.1%
32 230.4 0.186 0.0%
33 233.7 0.27 0.1%
34 239 0.198 0.0%
35 241.6 0.128 0.0%
36 246.1 0.382 0.1%
37 249 0.328 0.1%
38 253.9 0.224 0.0%
39 257.2 0.281 0.1%
40 262 0.264 0.1%
41 266 0.34 0.1%
42 270.5 0.359 0.1%
43 273.4 0.198 0.0%
44 277.5 0.404 0.1%
45 281.6 0.277 0.0%
46 286.3 0.556 0.1%
47 289.7 0.121 0.0%
48 293 0.371 0.1%
49 297.7 0.452 0.1%
50 301.3 0.476 0.1%
51 305.7 0.36 0.1%
52 309.6 0.249 0.0%
53 313.3 0.212 0.0%
54 317.3 0.453 0.1%
55 321.3 0.431 0.1%
56 325.1 0.372 0.1%
57 329.3 0.36 0.1%
58 332.4 0.308 0.0%
59 364.2 19.28 5.2%
60 352.5 12.34 3.5%
61 350.2 4.027 1.1%
62 354.7 4.029 1.1%
63 359.3 4.358 1.2%
64 364 5.7 1.5%
65 367.8 3.948 1.0%
66 375.2 6.226 1.6%
67 373 5.244 1.4%
68 373.3 0.572 0.1%
69 377 0.6 0.1%
70 381.1 0.42 0.1%
71 384.9 0.572 0.1%
72 388.6 0.25 0.0%
73 391.6 0.514 0.1%
74 396.4 0.578 0.1%
75 400.2 0.568 0.1%
76 404 0.469 0.1%
77 407.3 0.497 0.1%
78 411.5 0.371 0.0%
79 416.1 0.712 0.1%
80 421.6 0.862 0.2%
81 423.7 0.504 0.1%
82 428.1 0.591 0.1%
83 431.8 1.001 0.2%
84 435.1 0.689 0.1%
85 439.9 0.424 0.0%
86 442.9 0.427 0.0%
87 445.5 1.154 0.2%
88 451.1 0.756 0.1%
89 455.5 0.723 0.1%
90 459.9 0.689 0.1%
91 463.1 0.466 0.1%
92 465.7 0.547 0.1%
93 469.7 0.545 0.1%
94 473.5 0.604 0.1%
95 478.1 0.495 0.1%
96 482.6 0.682 0.1%
97 489.5 2.395 0.4%
98 491.9 0.527 0.1%
99 495.6 1.009 0.2%
100 500.1 0.671 0.1%

Quality and confidence:
param error
s 0.004

Model:
Time ~= 102.7
+ s 3.982
µs

Reads = 4 + (0 * s)
Writes = 8 + (1 * s)
Pallet: "pallet_staking", Extrinsic: "new_era", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 0
+ v 898.1
+ n 118.5
µs

Reads = 10 + (4 * v) + (3 * n)
Writes = 8 + (3 * v) + (0 * n)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
v n mean µs sigma µs %
1 100 4582 5.385 0.1%
2 100 5377 5.414 0.1%
3 100 6116 6.621 0.1%
4 100 6850 7.083 0.1%
5 100 7750 10.81 0.1%
6 100 8574 8.252 0.0%
7 100 9474 13.58 0.1%
8 100 10450 21.47 0.2%
9 100 11580 12.26 0.1%
10 1 898.3 1.233 0.1%
10 2 1025 0.936 0.0%
10 3 1154 1.049 0.0%
10 4 1281 0.904 0.0%
10 5 1394 0.999 0.0%
10 6 1512 2.063 0.1%
10 7 1641 3.724 0.2%
10 8 1765 1.16 0.0%
10 9 1886 1.825 0.0%
10 10 2051 2.801 0.1%
10 11 2173 1.463 0.0%
10 12 2296 2.023 0.0%
10 13 2444 14.19 0.5%
10 14 2615 9.81 0.3%
10 15 2709 16.82 0.6%
10 16 2798 2.048 0.0%
10 17 2922 3.543 0.1%
10 18 3046 1.359 0.0%
10 19 3166 3.695 0.1%
10 20 3304 8.282 0.2%
10 21 3424 11.45 0.3%
10 22 3530 3.973 0.1%
10 23 3702 7.486 0.2%
10 24 3789 9.292 0.2%
10 25 3906 11.74 0.3%
10 26 4059 4.697 0.1%
10 27 4176 2.142 0.0%
10 28 4276 2.544 0.0%
10 29 4405 2.954 0.0%
10 30 4522 7.447 0.1%
10 31 4640 4.375 0.0%
10 32 4776 7.621 0.1%
10 33 4914 11.38 0.2%
10 34 5022 5.267 0.1%
10 35 5147 5.161 0.1%
10 36 5257 4.783 0.0%
10 37 5393 16.17 0.2%
10 38 5483 6.912 0.1%
10 39 5612 7.19 0.1%
10 40 5743 7.967 0.1%
10 41 5867 10.85 0.1%
10 42 5967 13.67 0.2%
10 43 6101 13.34 0.2%
10 44 6207 11.66 0.1%
10 45 6299 6.236 0.0%
10 46 6427 11.77 0.1%
10 47 6516 6.544 0.1%
10 48 6625 9.821 0.1%
10 49 6779 11.17 0.1%
10 50 6900 14.81 0.2%
10 51 7015 12.54 0.1%
10 52 7111 7.068 0.0%
10 53 7253 8.283 0.1%
10 54 7395 9.442 0.1%
10 55 7517 7.998 0.1%
10 56 7635 8.956 0.1%
10 57 7734 10.33 0.1%
10 58 7883 9.608 0.1%
10 59 7951 11.49 0.1%
10 60 8107 9.558 0.1%
10 61 8213 8.126 0.0%
10 62 8309 11.49 0.1%
10 63 8444 8.885 0.1%
10 64 8601 9.904 0.1%
10 65 8709 6.464 0.0%
10 66 8823 12.68 0.1%
10 67 8918 14.37 0.1%
10 68 9051 19.45 0.2%
10 69 9142 13.45 0.1%
10 70 9266 7.359 0.0%
10 71 9377 7.248 0.0%
10 72 9490 5.868 0.0%
10 73 9616 11.87 0.1%
10 74 9743 16.2 0.1%
10 75 9846 14.71 0.1%
10 76 10000 58.33 0.5%
10 77 10090 39.32 0.3%
10 78 10160 10.22 0.1%
10 79 10300 12.95 0.1%
10 80 10410 13.86 0.1%
10 81 10530 22.84 0.2%
10 82 10640 10.58 0.0%
10 83 10760 10.63 0.0%
10 84 10880 15.91 0.1%
10 85 10950 24.02 0.2%
10 86 11100 19.74 0.1%
10 87 11200 14.81 0.1%
10 88 11310 11.29 0.0%
10 89 11460 14.76 0.1%
10 90 11560 12.06 0.1%
10 91 11820 122.3 1.0%
10 92 11760 14.59 0.1%
10 93 11850 16.15 0.1%
10 94 11990 14.85 0.1%
10 95 12060 14.59 0.1%
10 96 12180 16.67 0.1%
10 97 12320 12.85 0.1%
10 98 12400 16.12 0.1%
10 99 12520 12.84 0.1%
10 100 12660 9.61 0.0%

Quality and confidence:
param error
v 2.329
n 0.117

Model:
Time ~= 0
+ v 952.4
+ n 117.9
µs

Reads = 10 + (4 * v) + (3 * n)
Writes = 8 + (3 * v) + (0 * n)
Pallet: "pallet_staking", Extrinsic: "submit_solution_better", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 0
+ v 1.164
+ n 0.456
+ a 99.28
+ w 9.453
µs

Reads = 6 + (0 * v) + (0 * n) + (4 * a) + (1 * w)
Writes = 2 + (0 * v) + (0 * n) + (0 * a) + (0 * w)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
v n a w mean µs sigma µs %
200 1000 400 100 40780 69.68 0.1%
204 1000 400 100 40800 51.13 0.1%
208 1000 400 100 41030 49.85 0.1%
212 1000 400 100 40760 31.61 0.0%
216 1000 400 100 40780 49.74 0.1%
220 1000 400 100 40890 33.02 0.0%
224 1000 400 100 40780 42.25 0.1%
228 1000 400 100 40960 45.32 0.1%
232 1000 400 100 40840 78.04 0.1%
236 1000 400 100 40790 40.14 0.0%
240 1000 400 100 41000 16.77 0.0%
244 1000 400 100 41050 29.76 0.0%
248 1000 400 100 40880 33.76 0.0%
252 1000 400 100 40840 54.31 0.1%
256 1000 400 100 40850 48.07 0.1%
260 1000 400 100 40910 74.98 0.1%
264 1000 400 100 40850 54.78 0.1%
268 1000 400 100 40790 36.68 0.0%
272 1000 400 100 40930 54.23 0.1%
276 1000 400 100 40920 58.03 0.1%
280 1000 400 100 40880 49.1 0.1%
284 1000 400 100 40780 56.02 0.1%
288 1000 400 100 40990 63.93 0.1%
292 1000 400 100 40850 51.98 0.1%
296 1000 400 100 40960 57.65 0.1%
300 1000 400 100 40850 47.8 0.1%
304 1000 400 100 40910 33.37 0.0%
308 1000 400 100 40920 54.54 0.1%
312 1000 400 100 40930 53.08 0.1%
316 1000 400 100 40960 37.41 0.0%
320 1000 400 100 41080 33.67 0.0%
324 1000 400 100 40980 33.03 0.0%
328 1000 400 100 40990 21.61 0.0%
332 1000 400 100 40870 79.66 0.1%
336 1000 400 100 40960 43.63 0.1%
340 1000 400 100 40880 46.1 0.1%
344 1000 400 100 40990 48.51 0.1%
348 1000 400 100 41130 39.69 0.0%
352 1000 400 100 40940 55.62 0.1%
356 1000 400 100 41160 40.56 0.0%
360 1000 400 100 40890 60.16 0.1%
364 1000 400 100 40930 56.02 0.1%
368 1000 400 100 41080 14.47 0.0%
372 1000 400 100 41150 57.27 0.1%
376 1000 400 100 41090 33.11 0.0%
380 1000 400 100 40970 56.54 0.1%
384 1000 400 100 41050 25.68 0.0%
388 1000 400 100 41140 43.42 0.1%
392 1000 400 100 41070 53.39 0.1%
396 1000 400 100 41110 23.59 0.0%
400 500 400 100 40830 55.11 0.1%
400 510 400 100 40890 36.85 0.0%
400 520 400 100 40820 47.6 0.1%
400 530 400 100 40790 86.81 0.2%
400 540 400 100 40650 44.86 0.1%
400 550 400 100 40760 77.44 0.1%
400 560 400 100 40760 46.88 0.1%
400 570 400 100 40870 38.77 0.0%
400 580 400 100 40730 67.05 0.1%
400 590 400 100 40850 54.99 0.1%
400 600 400 100 40890 59.61 0.1%
400 610 400 100 40780 35.36 0.0%
400 620 400 100 40980 27.42 0.0%
400 630 400 100 40990 44.21 0.1%
400 640 400 100 40840 44.26 0.1%
400 650 400 100 40810 36.11 0.0%
400 660 400 100 40950 44.94 0.1%
400 670 400 100 40930 44.12 0.1%
400 680 400 100 40770 36.65 0.0%
400 690 400 100 40800 47.47 0.1%
400 700 400 100 41050 38.5 0.0%
400 710 400 100 40890 35.44 0.0%
400 720 400 100 40870 26.31 0.0%
400 730 400 100 41020 37.24 0.0%
400 740 400 100 41050 42.03 0.1%
400 750 400 100 40850 48.39 0.1%
400 760 400 100 40920 75.94 0.1%
400 770 400 100 40910 52.81 0.1%
400 780 400 100 40850 42.33 0.1%
400 790 400 100 40950 49.17 0.1%
400 800 400 100 40920 35.08 0.0%
400 810 400 100 41100 43.37 0.1%
400 820 400 100 40950 49.19 0.1%
400 830 400 100 41130 38.81 0.0%
400 840 400 100 40880 40.76 0.0%
400 850 400 100 41110 63.35 0.1%
400 860 400 100 40880 37.71 0.0%
400 870 400 100 40940 49.11 0.1%
400 880 400 100 40900 42.61 0.1%
400 890 400 100 40950 61.83 0.1%
400 900 400 100 41040 69.46 0.1%
400 910 400 100 40980 48.23 0.1%
400 920 400 100 41130 58 0.1%
400 930 400 100 41060 37.82 0.0%
400 940 400 100 40960 60.23 0.1%
400 950 400 100 41130 38.76 0.0%
400 960 400 100 40930 50.55 0.1%
400 970 400 100 40910 34.6 0.0%
400 980 400 100 41100 41.95 0.1%
400 990 400 100 40870 29.23 0.0%
400 1000 200 100 20990 36.62 0.1%
400 1000 204 100 21380 26.97 0.1%
400 1000 208 100 21790 27.1 0.1%
400 1000 212 100 22320 33.08 0.1%
400 1000 216 100 22680 21.75 0.0%
400 1000 220 100 23090 34.71 0.1%
400 1000 224 100 23510 27.44 0.1%
400 1000 228 100 23900 31.5 0.1%
400 1000 232 100 24320 22.89 0.0%
400 1000 236 100 24720 39.86 0.1%
400 1000 240 100 25130 24.24 0.0%
400 1000 244 100 25530 41.45 0.1%
400 1000 248 100 25910 44.85 0.1%
400 1000 252 100 26320 28.92 0.1%
400 1000 256 100 26720 22.11 0.0%
400 1000 260 100 27120 36.88 0.1%
400 1000 264 100 27520 34.39 0.1%
400 1000 268 100 27950 52.9 0.1%
400 1000 272 100 28260 60.45 0.2%
400 1000 276 100 28690 101.4 0.3%
400 1000 280 100 29110 59.21 0.2%
400 1000 284 100 29490 34.47 0.1%
400 1000 288 100 29870 48.27 0.1%
400 1000 292 100 30220 32.44 0.1%
400 1000 296 100 30620 36.42 0.1%
400 1000 300 100 30990 55.09 0.1%
400 1000 304 100 31400 26.74 0.0%
400 1000 308 100 31780 41.5 0.1%
400 1000 312 100 32180 26.53 0.0%
400 1000 316 100 32650 60.07 0.1%
400 1000 320 100 32960 26.37 0.0%
400 1000 324 100 33450 65.94 0.1%
400 1000 328 100 33800 39.85 0.1%
400 1000 332 100 34200 58.36 0.1%
400 1000 336 100 34570 42.27 0.1%
400 1000 340 100 34970 53.88 0.1%
400 1000 344 100 35350 40.05 0.1%
400 1000 348 100 35780 13.69 0.0%
400 1000 352 100 36150 54.44 0.1%
400 1000 356 100 36570 41.34 0.1%
400 1000 360 100 36980 39.23 0.1%
400 1000 364 100 37350 28.05 0.0%
400 1000 368 100 37760 24.05 0.0%
400 1000 372 100 38160 38.62 0.1%
400 1000 376 100 38610 94.42 0.2%
400 1000 380 100 38990 70.49 0.1%
400 1000 384 100 39360 59.16 0.1%
400 1000 388 100 39710 56.96 0.1%
400 1000 392 100 40200 27.22 0.0%
400 1000 396 100 40600 25.7 0.0%
400 1000 400 16 40260 30.83 0.0%
400 1000 400 17 40150 65.99 0.1%
400 1000 400 18 40360 18.37 0.0%
400 1000 400 19 40390 57.86 0.1%
400 1000 400 20 40260 26.7 0.0%
400 1000 400 21 40490 59.57 0.1%
400 1000 400 22 40390 59.66 0.1%
400 1000 400 23 40510 48.76 0.1%
400 1000 400 24 40560 25.74 0.0%
400 1000 400 25 40520 35.04 0.0%
400 1000 400 26 40320 54.7 0.1%
400 1000 400 27 40350 47.09 0.1%
400 1000 400 28 40310 41.59 0.1%
400 1000 400 29 40570 30.88 0.0%
400 1000 400 30 40590 31.56 0.0%
400 1000 400 31 40430 37.45 0.0%
400 1000 400 32 40530 60.78 0.1%
400 1000 400 33 40510 29.79 0.0%
400 1000 400 34 40480 53.31 0.1%
400 1000 400 35 40530 62.93 0.1%
400 1000 400 36 40340 22.49 0.0%
400 1000 400 37 40470 40.01 0.0%
400 1000 400 38 40670 61.7 0.1%
400 1000 400 39 40640 24.77 0.0%
400 1000 400 40 40710 45.73 0.1%
400 1000 400 41 40530 29.7 0.0%
400 1000 400 42 40810 83.53 0.2%
400 1000 400 43 40550 45.96 0.1%
400 1000 400 44 40910 36.73 0.0%
400 1000 400 45 40890 43.14 0.1%
400 1000 400 46 40840 73.52 0.1%
400 1000 400 47 40730 73.51 0.1%
400 1000 400 48 40850 38.7 0.0%
400 1000 400 49 40920 37.48 0.0%
400 1000 400 50 40850 52.86 0.1%
400 1000 400 51 40600 28.35 0.0%
400 1000 400 52 40670 73.48 0.1%
400 1000 400 53 40570 47.25 0.1%
400 1000 400 54 40640 49.87 0.1%
400 1000 400 55 40670 45.14 0.1%
400 1000 400 56 40490 46.41 0.1%
400 1000 400 57 40770 42.81 0.1%
400 1000 400 58 40820 64.37 0.1%
400 1000 400 59 40670 37.26 0.0%
400 1000 400 60 40650 72.74 0.1%
400 1000 400 61 40720 35.85 0.0%
400 1000 400 62 40730 52.74 0.1%
400 1000 400 63 40930 45.13 0.1%
400 1000 400 64 40760 52.49 0.1%
400 1000 400 65 40760 44.01 0.1%
400 1000 400 66 40800 86.87 0.2%
400 1000 400 67 40710 40.76 0.1%
400 1000 400 68 40840 40.45 0.0%
400 1000 400 69 40970 40.01 0.0%
400 1000 400 70 40850 61.02 0.1%
400 1000 400 71 40980 43.5 0.1%
400 1000 400 72 40970 37.4 0.0%
400 1000 400 73 40860 47.58 0.1%
400 1000 400 74 40760 52.43 0.1%
400 1000 400 75 41090 79.21 0.1%
400 1000 400 76 40830 35.99 0.0%
400 1000 400 77 41020 32.7 0.0%
400 1000 400 78 40960 41.89 0.1%
400 1000 400 79 41100 52.21 0.1%
400 1000 400 80 40970 31.67 0.0%
400 1000 400 81 41160 64.45 0.1%
400 1000 400 82 40920 35.33 0.0%
400 1000 400 83 41140 50.4 0.1%
400 1000 400 84 41070 45.04 0.1%
400 1000 400 85 40950 59.75 0.1%
400 1000 400 86 41020 73.51 0.1%
400 1000 400 87 41230 44.71 0.1%
400 1000 400 88 41010 49.23 0.1%
400 1000 400 89 41050 63.42 0.1%
400 1000 400 90 41030 35.21 0.0%
400 1000 400 91 41230 34.33 0.0%
400 1000 400 92 41070 56.55 0.1%
400 1000 400 93 40970 46.17 0.1%
400 1000 400 94 41100 52.38 0.1%
400 1000 400 95 41060 48.71 0.1%
400 1000 400 96 41100 58.75 0.1%
400 1000 400 97 41170 56.13 0.1%
400 1000 400 98 41210 36.4 0.0%
400 1000 400 99 41220 56.15 0.1%
400 1000 400 100 41000 56.3 0.1%

Quality and confidence:
param error
v 0.054
n 0.021
a 0.054
w 0.112

Model:
Time ~= 0
+ v 1.327
+ n 0.584
+ a 100.1
+ w 7.994
µs

Reads = 6 + (0 * v) + (0 * n) + (4 * a) + (1 * w)
Writes = 2 + (0 * v) + (0 * n) + (0 * a) + (0 * w)

Parity Benchmarking Bot and others added 3 commits October 16, 2020 15:38
…/node/cli/Cargo.toml -- benchmark --chain dev --steps 50 --repeat 20 --extrinsic * --execution=wasm --wasm-execution=compiled --output ./bin/node/runtime/src/weights --header ./HEADER --pallet pallet_staking
@kianenigma
Copy link
Contributor Author

The benchmarking happening above ^^ was actually done with #[compact].. and it still drastically reduced its weight. Lets see what we get next without it.

@kianenigma
Copy link
Contributor Author

/benchmark runtime pallet pallet_staking

@parity-benchapp
Copy link

parity-benchapp bot commented Oct 16, 2020

Finished benchmark for branch: kiz-remove-compact

Benchmark: Runtime Benchmarks Pallet

cargo run --release --features runtime-benchmarks --manifest-path bin/node/cli/Cargo.toml -- benchmark --chain dev --steps 50 --repeat 20 --extrinsic "*" --execution=wasm --wasm-execution=compiled --output ./bin/node/runtime/src/weights --header ./HEADER --pallet pallet_staking

Results

Pallet: "pallet_staking", Extrinsic: "bond", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 100.6
µs

Reads = 5
Writes = 4
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 100.6
µs

Reads = 5
Writes = 4
Pallet: "pallet_staking", Extrinsic: "bond_extra", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 79.13
µs

Reads = 4
Writes = 2
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 79.13
µs

Reads = 4
Writes = 2
Pallet: "pallet_staking", Extrinsic: "unbond", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 71.69
µs

Reads = 5
Writes = 3
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 71.69
µs

Reads = 5
Writes = 3
Pallet: "pallet_staking", Extrinsic: "withdraw_unbonded_update", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 72.62
+ s 0.074
µs

Reads = 5 + (0 * s)
Writes = 3 + (0 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
0 70.96 0.1 0.1%
2 71.9 0.198 0.2%
4 72.04 0.109 0.1%
6 72.35 0.11 0.1%
8 72.78 0.109 0.1%
10 72.98 0.13 0.1%
12 73.25 0.146 0.1%
14 73.23 0.121 0.1%
16 74.09 0.128 0.1%
18 73.66 0.09 0.1%
20 74.23 0.133 0.1%
22 74.42 0.134 0.1%
24 74.82 0.151 0.2%
26 75.33 0.198 0.2%
28 74.62 0.159 0.2%
30 75.11 0.151 0.2%
32 75.27 0.074 0.0%
34 75.48 0.133 0.1%
36 75.77 0.08 0.1%
38 75.72 0.153 0.2%
40 75.98 0.174 0.2%
42 75.98 0.113 0.1%
44 76.31 0.185 0.2%
46 76.65 0.136 0.1%
48 75.87 0.691 0.9%
50 74.78 1.069 1.4%
52 76.53 0.779 1.0%
54 76.37 0.66 0.8%
56 76.73 0.148 0.1%
58 77.16 0.211 0.2%
60 76.27 0.84 1.1%
62 77.53 0.123 0.1%
64 75.91 0.857 1.1%
66 78.05 0.214 0.2%
68 78.05 0.201 0.2%
70 77.93 0.158 0.2%
72 75.52 0.196 0.2%
74 78.04 0.216 0.2%
76 78.43 0.145 0.1%
78 78.43 0.172 0.2%
80 79.1 0.14 0.1%
82 78.96 0.112 0.1%
84 79.28 0.198 0.2%
86 79.4 0.156 0.1%
88 79.05 0.167 0.2%
90 78.93 0.106 0.1%
92 78.9 0.188 0.2%
94 78.88 1.059 1.3%
96 76.54 0.265 0.3%
98 76.51 0.18 0.2%
100 76.79 0.209 0.2%

Quality and confidence:
param error
s 0.001

Model:
Time ~= 72.72
+ s 0.066
µs

Reads = 5 + (0 * s)
Writes = 3 + (0 * s)
Pallet: "pallet_staking", Extrinsic: "withdraw_unbonded_kill", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 119
+ s 3.967
µs

Reads = 7 + (0 * s)
Writes = 8 + (1 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
0 111.2 0.142 0.1%
2 125.3 0.104 0.0%
4 133.6 0.136 0.1%
6 141.2 0.238 0.1%
8 150 0.186 0.1%
10 157.6 0.155 0.0%
12 165.8 0.154 0.0%
14 175 0.228 0.1%
16 182.5 0.14 0.0%
18 190.4 0.329 0.1%
20 198 0.157 0.0%
22 206.4 0.155 0.0%
24 214.7 0.303 0.1%
26 222.7 0.233 0.1%
28 231 0.218 0.0%
30 238.7 0.187 0.0%
32 246.7 0.401 0.1%
34 254.8 0.317 0.1%
36 262.6 0.161 0.0%
38 270.8 0.399 0.1%
40 279.3 0.202 0.0%
42 286.4 0.295 0.1%
44 293.7 0.243 0.0%
46 302.2 0.446 0.1%
48 309.3 0.376 0.1%
50 317.7 0.323 0.1%
52 326.1 0.168 0.0%
54 333 0.497 0.1%
56 341 0.254 0.0%
58 348.6 0.247 0.0%
60 357.3 0.388 0.1%
62 365.4 0.397 0.1%
64 374 0.428 0.1%
66 382.1 0.329 0.0%
68 390.5 0.382 0.0%
70 397.5 0.498 0.1%
72 402.7 1.016 0.2%
74 411.6 0.681 0.1%
76 419.2 1.092 0.2%
78 426.3 1.043 0.2%
80 436.4 0.445 0.1%
82 444.4 0.346 0.0%
84 451.9 0.479 0.1%
86 459.9 0.79 0.1%
88 468 0.535 0.1%
90 477 1.708 0.3%
92 482.9 0.31 0.0%
94 490.5 0.312 0.0%
96 496.7 1.049 0.2%
98 505 0.472 0.0%
100 513.1 0.391 0.0%

Quality and confidence:
param error
s 0.002

Model:
Time ~= 118.7
+ s 3.967
µs

Reads = 7 + (0 * s)
Writes = 8 + (1 * s)
Pallet: "pallet_staking", Extrinsic: "validate", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 25.42
µs

Reads = 2
Writes = 2
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 25.42
µs

Reads = 2
Writes = 2
Pallet: "pallet_staking", Extrinsic: "nominate", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 34.71
+ n 0.231
µs

Reads = 3 + (0 * n)
Writes = 2 + (0 * n)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
n mean µs sigma µs %
1 32.44 0.059 0.1%
2 33.88 0.062 0.1%
3 35.16 0.119 0.3%
4 36.25 0.153 0.4%
5 38.83 0.115 0.2%
6 39.38 0.099 0.2%
7 39.74 0.094 0.2%
8 35.9 0.103 0.2%
9 36.98 0.114 0.3%
10 36.86 0.075 0.2%
11 37.48 0.085 0.2%
12 37.63 0.096 0.2%
13 37.7 0.051 0.1%
14 37.88 0.123 0.3%
15 37.92 0.125 0.3%
16 37.67 0.099 0.2%

Quality and confidence:
param error
n 0.027

Model:
Time ~= 35.13
+ n 0.218
µs

Reads = 3 + (0 * n)
Writes = 2 + (0 * n)
Pallet: "pallet_staking", Extrinsic: "chill", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 24.98
µs

Reads = 2
Writes = 2
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 24.98
µs

Reads = 2
Writes = 2
Pallet: "pallet_staking", Extrinsic: "set_payee", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 17.45
µs

Reads = 1
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 17.45
µs

Reads = 1
Writes = 1
Pallet: "pallet_staking", Extrinsic: "set_controller", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 37.17
µs

Reads = 3
Writes = 3
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 37.17
µs

Reads = 3
Writes = 3
Pallet: "pallet_staking", Extrinsic: "set_validator_count", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 3.526
µs

Reads = 0
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 3.526
µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "force_no_eras", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 3.91
µs

Reads = 0
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 3.91
µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "force_new_era", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 3.933
µs

Reads = 0
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 3.933
µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "force_new_era_always", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 3.926
µs

Reads = 0
Writes = 1
Min Squares Analysis

-- Extrinsic Time --

Model:
Time ~= 3.926
µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "set_invulnerables", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 4.082
+ v 0.008
µs

Reads = 0 + (0 * v)
Writes = 1 + (0 * v)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
v mean µs sigma µs %
0 3.955 0.031 0.7%
20 4.321 0.018 0.4%
40 4.553 0.016 0.3%
60 4.712 0.019 0.4%
80 4.894 0.025 0.5%
100 5.051 0.019 0.3%
120 5.206 0.021 0.4%
140 5.386 0.024 0.4%
160 5.537 0.046 0.8%
180 5.661 0.018 0.3%
200 5.798 0.037 0.6%
220 5.978 0.016 0.2%
240 6.19 0.043 0.6%
260 6.324 0.018 0.2%
280 6.531 0.029 0.4%
300 6.683 0.015 0.2%
320 6.851 0.039 0.5%
340 7.029 0.018 0.2%
360 7.222 0.036 0.4%
380 7.386 0.026 0.3%
400 7.536 0.027 0.3%
420 7.695 0.009 0.1%
440 7.874 0.016 0.2%
460 8.096 0.035 0.4%
480 8.253 0.029 0.3%
500 8.398 0.027 0.3%
520 8.557 0.031 0.3%
540 8.702 0.031 0.3%
560 8.87 0.033 0.3%
580 9.092 0.021 0.2%
600 9.259 0.033 0.3%
620 9.431 0.029 0.3%
640 9.625 0.02 0.2%
660 9.833 0.022 0.2%
680 10 0.022 0.2%
700 10.22 0.03 0.2%
720 10.36 0.036 0.3%
740 10.57 0.034 0.3%
760 10.81 0.055 0.5%
780 10.95 0.039 0.3%
800 11.14 0.02 0.1%
820 11.29 0.02 0.1%
840 11.47 0.05 0.4%
860 11.65 0.033 0.2%
880 11.78 0.037 0.3%
900 11.99 0.037 0.3%
920 12.19 0.026 0.2%
940 12.38 0.038 0.3%
960 12.55 0.048 0.3%
980 12.75 0.037 0.2%
1000 12.88 0.022 0.1%

Quality and confidence:
param error
v 0

Model:
Time ~= 4.08
+ v 0.009
µs

Reads = 0 + (0 * v)
Writes = 1 + (0 * v)
Pallet: "pallet_staking", Extrinsic: "force_unstake", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 82.19
+ s 3.977
µs

Reads = 4 + (0 * s)
Writes = 8 + (1 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
0 74.84 0.119 0.1%
2 88.09 0.109 0.1%
4 96.96 0.069 0.0%
6 105.2 0.11 0.1%
8 113 0.118 0.1%
10 121.5 0.144 0.1%
12 129.5 0.196 0.1%
14 137.7 0.159 0.1%
16 146.3 0.138 0.0%
18 154.3 0.216 0.1%
20 161.5 0.268 0.1%
22 169.9 0.206 0.1%
24 177.8 0.163 0.0%
26 186.2 0.231 0.1%
28 194.1 0.205 0.1%
30 201.9 0.249 0.1%
32 210.2 0.192 0.0%
34 217.4 0.172 0.0%
36 225.8 0.291 0.1%
38 234.1 0.286 0.1%
40 241.3 0.164 0.0%
42 250.3 0.218 0.0%
44 257.4 0.232 0.0%
46 265.8 0.2 0.0%
48 272.7 0.193 0.0%
50 281.7 0.288 0.1%
52 289.5 0.181 0.0%
54 297.3 0.706 0.2%
56 304.7 0.49 0.1%
58 312.5 0.357 0.1%
60 320.8 0.183 0.0%
62 329 0.18 0.0%
64 337.2 0.237 0.0%
66 345.5 0.306 0.0%
68 353.1 0.166 0.0%
70 361.1 0.117 0.0%
72 366.3 0.436 0.1%
74 375.9 0.223 0.0%
76 383.1 0.67 0.1%
78 391.7 0.399 0.1%
80 399.9 0.357 0.0%
82 407 0.497 0.1%
84 414.9 0.442 0.1%
86 422.8 0.423 0.1%
88 431.7 0.39 0.0%
90 439 0.323 0.0%
92 444.8 0.636 0.1%
94 452.5 0.372 0.0%
96 463.6 8.683 1.8%
98 486.8 5.222 1.0%
100 489.1 5.586 1.1%

Quality and confidence:
param error
s 0.004

Model:
Time ~= 81.03
+ s 4.002
µs

Reads = 4 + (0 * s)
Writes = 8 + (1 * s)
Pallet: "pallet_staking", Extrinsic: "cancel_deferred_slash", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 6618
+ s 34.69
µs

Reads = 1 + (0 * s)
Writes = 1 + (0 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
1 375.1 3.613 0.9%
20 1699 12.45 0.7%
39 2992 6.082 0.2%
58 4259 8.436 0.1%
77 5501 4.704 0.0%
96 6731 8.264 0.1%
115 7773 10.6 0.1%
134 8891 14.75 0.1%
153 10010 14.72 0.1%
172 11100 11.5 0.1%
191 12170 16.39 0.1%
210 13220 13.71 0.1%
229 14240 7.312 0.0%
248 15230 13.08 0.0%
267 16200 5.702 0.0%
286 17150 10.16 0.0%
305 18070 16.86 0.0%
324 18960 13.88 0.0%
343 19830 13 0.0%
362 20680 13.87 0.0%
381 21490 13.21 0.0%
400 22300 12.86 0.0%
419 23070 22.44 0.0%
438 23820 10.39 0.0%
457 24530 14.69 0.0%
476 25220 15.81 0.0%
495 25910 18.53 0.0%
514 26950 63.4 0.2%
533 27150 12.91 0.0%
552 27770 21.19 0.0%
571 28340 12.48 0.0%
590 28880 14.33 0.0%
609 29410 18.32 0.0%
628 29900 12.66 0.0%
647 30370 11.64 0.0%
666 30830 22.82 0.0%
685 31250 14.92 0.0%
704 31650 18.02 0.0%
723 32020 11.8 0.0%
742 32380 20.06 0.0%
761 32690 17.28 0.0%
780 33000 16.57 0.0%
799 33260 11.29 0.0%
818 33510 10.55 0.0%
837 33750 22 0.0%
856 33940 10.61 0.0%
875 34110 14.23 0.0%
894 34270 19.2 0.0%
913 34400 18.54 0.0%
932 34500 18.68 0.0%
951 34560 11.68 0.0%
970 34620 36.03 0.1%
989 34650 10.68 0.0%

Quality and confidence:
param error
s 0.388

Model:
Time ~= 5861
+ s 34.65
µs

Reads = 1 + (0 * s)
Writes = 1 + (0 * s)
Pallet: "pallet_staking", Extrinsic: "payout_stakers_dead_controller", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 147.9
+ n 60.2
µs

Reads = 11 + (3 * n)
Writes = 2 + (1 * n)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
n mean µs sigma µs %
1 197.8 0.311 0.1%
6 501.7 0.584 0.1%
11 804.5 1.087 0.1%
16 1115 1.608 0.1%
21 1408 1.283 0.0%
26 1733 16.29 0.9%
31 2012 3.405 0.1%
36 2309 3.969 0.1%
41 2612 2.252 0.0%
46 2922 6.867 0.2%
51 3229 3.197 0.0%
56 3506 5.421 0.1%
61 3819 5.87 0.1%
66 4112 7.102 0.1%
71 4452 5.929 0.1%
76 4749 31.27 0.6%
81 5040 8.821 0.1%
86 5350 9.097 0.1%
91 5651 9.29 0.1%
96 5922 9.918 0.1%
101 6197 11.3 0.1%
106 6503 8.57 0.1%
111 6830 15.09 0.2%
116 7126 11.53 0.1%
121 7396 12.15 0.1%
126 7739 11.91 0.1%
131 8014 9.268 0.1%
136 8318 11.55 0.1%
141 8629 15.17 0.1%
146 8951 11.55 0.1%
151 9258 10.97 0.1%
156 9534 15.23 0.1%
161 9896 14.53 0.1%
166 10120 21.08 0.2%
171 10430 12.96 0.1%
176 10760 19.18 0.1%
181 11080 15.52 0.1%
186 11350 16.05 0.1%
191 11670 15.69 0.1%
196 11920 15.23 0.1%
201 12230 17.17 0.1%
206 12550 12.81 0.1%
211 12860 17.1 0.1%
216 13140 19.43 0.1%
221 13430 11.32 0.0%
226 13790 16.19 0.1%
231 14070 11.31 0.0%
236 14400 17.98 0.1%
241 14700 19.97 0.1%
246 14980 24.8 0.1%
251 15180 16.78 0.1%
256 15470 15.54 0.1%

Quality and confidence:
param error
n 0.017

Model:
Time ~= 149.2
+ n 60.2
µs

Reads = 11 + (3 * n)
Writes = 2 + (1 * n)
Pallet: "pallet_staking", Extrinsic: "payout_stakers_alive_staked", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 188.8
+ n 79.16
µs

Reads = 12 + (5 * n)
Writes = 3 + (3 * n)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
n mean µs sigma µs %
1 252.3 0.425 0.1%
6 654.8 1.143 0.1%
11 1057 1.401 0.1%
16 1453 2.867 0.1%
21 1859 4.477 0.2%
26 2247 4.936 0.2%
31 2640 2.958 0.1%
36 3034 5.037 0.1%
41 3442 23.36 0.6%
46 3849 12.54 0.3%
51 4229 8.583 0.2%
56 4607 8.504 0.1%
61 5020 5.474 0.1%
66 5429 10.85 0.1%
71 5814 9.215 0.1%
76 6189 12.31 0.1%
81 6562 12.91 0.1%
86 7069 57.69 0.8%
91 7447 16.68 0.2%
96 7847 14.69 0.1%
101 8220 10.1 0.1%
106 8554 8.491 0.0%
111 9004 14.17 0.1%
116 9386 14.33 0.1%
121 9768 25.19 0.2%
126 10150 26.45 0.2%
131 10580 9.968 0.0%
136 10890 7.389 0.0%
141 11290 7.49 0.0%
146 11720 30.32 0.2%
151 12130 18.22 0.1%
156 12480 16.07 0.1%
161 12930 7.525 0.0%
166 13290 22.61 0.1%
171 13720 79.62 0.5%
176 14190 28.06 0.1%
181 14500 27.37 0.1%
186 14890 17.09 0.1%
191 15340 25.43 0.1%
196 15710 19.74 0.1%
201 16120 93.51 0.5%
206 16510 33.04 0.2%
211 16900 13.37 0.0%
216 17330 16.88 0.0%
221 17700 25.33 0.1%
226 18020 16.89 0.0%
231 18480 27.25 0.1%
236 18920 18.89 0.0%
241 19230 34.84 0.1%
246 19680 18.65 0.0%
251 20050 33.07 0.1%
256 20400 20.54 0.1%

Quality and confidence:
param error
n 0.023

Model:
Time ~= 191.4
+ n 79.16
µs

Reads = 12 + (5 * n)
Writes = 3 + (3 * n)
Pallet: "pallet_staking", Extrinsic: "rebond", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 50.15
+ l 0.105
µs

Reads = 4 + (0 * l)
Writes = 3 + (0 * l)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
l mean µs sigma µs %
1 50.15 0.196 0.3%
2 49.85 0.1 0.2%
3 49.87 0.092 0.1%
4 49.95 0.055 0.1%
5 50.65 0.102 0.2%
6 50.67 0.108 0.2%
7 50.77 0.071 0.1%
8 50.74 0.112 0.2%
9 51.42 0.089 0.1%
10 51.46 0.087 0.1%
11 51.26 0.036 0.0%
12 51.68 0.087 0.1%
13 51.9 0.098 0.1%
14 51.79 0.083 0.1%
15 51.79 0.144 0.2%
16 51.84 0.102 0.1%
17 52.57 0.067 0.1%
18 52.53 0.119 0.2%
19 52.84 0.1 0.1%
20 52.68 0.116 0.2%
21 52.52 0.073 0.1%
22 52.87 0.112 0.2%
23 52.87 0.062 0.1%
24 52.93 0.131 0.2%
25 52.83 0.069 0.1%
26 52.84 0.089 0.1%
27 52.74 0.092 0.1%
28 52.97 0.142 0.2%
29 52.85 0.092 0.1%
30 52.82 0.069 0.1%
31 52.75 0.065 0.1%
32 53.03 0.096 0.1%

Quality and confidence:
param error
l 0.002

Model:
Time ~= 50.14
+ l 0.106
µs

Reads = 4 + (0 * l)
Writes = 3 + (0 * l)
Pallet: "pallet_staking", Extrinsic: "set_history_depth", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 0
+ e 39.07
µs

Reads = 2 + (0 * e)
Writes = 4 + (7 * e)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
e mean µs sigma µs %
1 49.51 0.142 0.2%
2 81.56 0.119 0.1%
3 111.3 0.202 0.1%
4 144.3 0.373 0.2%
5 174.4 0.333 0.1%
6 204.2 0.173 0.0%
7 237 0.44 0.1%
8 266.9 0.414 0.1%
9 298.2 0.865 0.2%
10 331.5 0.651 0.1%
11 362.6 0.598 0.1%
12 394.8 0.596 0.1%
13 424.1 0.67 0.1%
14 459.5 0.549 0.1%
15 491.7 0.475 0.0%
16 526.4 0.866 0.1%
17 559.3 0.791 0.1%
18 589.8 0.829 0.1%
19 627.9 0.885 0.1%
20 661.1 1.067 0.1%
21 692.9 1.205 0.1%
22 727.5 1.036 0.1%
23 762 1.312 0.1%
24 796.9 1.702 0.2%
25 834.9 1.068 0.1%
26 873.7 1.409 0.1%
27 909 1.406 0.1%
28 944.3 1.785 0.1%
29 980.1 2.672 0.2%
30 1019 2.592 0.2%
31 1053 2.33 0.2%
32 1085 1.139 0.1%
33 1124 2.134 0.1%
34 1157 1.095 0.0%
35 1197 1.999 0.1%
36 1228 2.925 0.2%
37 1255 1.971 0.1%
38 1294 2.324 0.1%
39 1340 1.751 0.1%
40 1368 1.712 0.1%
41 1407 3.463 0.2%
42 1446 2.121 0.1%
43 1478 3.209 0.2%
44 1531 2.242 0.1%
45 1623 13.27 0.8%
46 1639 4.057 0.2%
47 1671 3.514 0.2%
48 1709 12.47 0.7%
49 1715 2.598 0.1%
50 1754 2.199 0.1%
51 1792 4.285 0.2%
52 1850 4.495 0.2%
53 1886 6.305 0.3%
54 1924 3.372 0.1%
55 1972 5.473 0.2%
56 1998 4.528 0.2%
57 2029 1.758 0.0%
58 2077 5.736 0.2%
59 2120 2.187 0.1%
60 2159 2.734 0.1%
61 2202 4.796 0.2%
62 2240 3.355 0.1%
63 2284 7.211 0.3%
64 2330 4.559 0.1%
65 2372 9.251 0.3%
66 2399 5.715 0.2%
67 2448 3.773 0.1%
68 2498 5.779 0.2%
69 2521 3.489 0.1%
70 2577 4.949 0.1%
71 2608 3.911 0.1%
72 2675 4.968 0.1%
73 2704 5.53 0.2%
74 2737 3.926 0.1%
75 2794 6.326 0.2%
76 2835 7.174 0.2%
77 2864 4.296 0.1%
78 2923 5.39 0.1%
79 2939 5.109 0.1%
80 3004 7.114 0.2%
81 3045 4.369 0.1%
82 3097 4.41 0.1%
83 3135 5.597 0.1%
84 3183 5.811 0.1%
85 3239 4.393 0.1%
86 3291 6.204 0.1%
87 3324 8.485 0.2%
88 3369 5.51 0.1%
89 3420 10.28 0.3%
90 3477 4.342 0.1%
91 3496 4.14 0.1%
92 3543 10.9 0.3%
93 3593 9.834 0.2%
94 3629 6.873 0.1%
95 3688 7.91 0.2%
96 3732 8.759 0.2%
97 3759 5.288 0.1%
98 3938 19.13 0.4%
99 3925 29.41 0.7%
100 3918 3.64 0.0%

Quality and confidence:
param error
e 0.072

Model:
Time ~= 0
+ e 39.23
µs

Reads = 2 + (0 * e)
Writes = 4 + (7 * e)
Pallet: "pallet_staking", Extrinsic: "reap_stash", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 101.7
+ s 3.961
µs

Reads = 4 + (0 * s)
Writes = 8 + (1 * s)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
s mean µs sigma µs %
1 103.4 0.132 0.1%
2 108.5 0.151 0.1%
3 112.8 0.119 0.1%
4 116.5 0.168 0.1%
5 120.9 0.185 0.1%
6 124.4 0.085 0.0%
7 128.4 0.123 0.0%
8 133.3 0.184 0.1%
9 137.1 0.205 0.1%
10 140.8 0.175 0.1%
11 144.6 0.212 0.1%
12 148.7 0.089 0.0%
13 153.7 0.237 0.1%
14 157.6 0.164 0.1%
15 161.4 0.15 0.0%
16 165.1 0.16 0.0%
17 169.8 0.146 0.0%
18 173 0.119 0.0%
19 177.2 0.317 0.1%
20 180.8 0.22 0.1%
21 184.6 0.145 0.0%
22 188.2 0.282 0.1%
23 192.1 0.259 0.1%
24 196.3 0.155 0.0%
25 200.8 0.178 0.0%
26 204.6 0.314 0.1%
27 209 0.197 0.0%
28 212.3 0.214 0.1%
29 217.3 0.224 0.1%
30 221.3 0.239 0.1%
31 225.1 0.179 0.0%
32 228.8 0.169 0.0%
33 232.5 0.184 0.0%
34 237.1 0.244 0.1%
35 241.2 0.34 0.1%
36 244.7 0.299 0.1%
37 248.3 0.233 0.0%
38 252.4 0.235 0.0%
39 256.9 0.237 0.0%
40 261.4 0.242 0.0%
41 265.1 0.185 0.0%
42 268.7 0.326 0.1%
43 272 0.282 0.1%
44 275.7 0.157 0.0%
45 280.2 0.256 0.0%
46 285 0.17 0.0%
47 288.5 0.293 0.1%
48 292 0.097 0.0%
49 296.7 0.198 0.0%
50 300.6 0.123 0.0%
51 304.8 0.263 0.0%
52 308.2 0.239 0.0%
53 312.3 0.257 0.0%
54 315.7 0.252 0.0%
55 319.9 0.253 0.0%
56 323.1 0.352 0.1%
57 328 0.382 0.1%
58 330.9 0.309 0.0%
59 334.6 0.406 0.1%
60 339.3 0.477 0.1%
61 343.6 0.282 0.0%
62 347.3 0.375 0.1%
63 351.7 0.442 0.1%
64 355.3 0.421 0.1%
65 359.5 0.47 0.1%
66 364.1 0.312 0.0%
67 367.7 0.278 0.0%
68 371.6 0.478 0.1%
69 375.5 0.407 0.1%
70 379.7 0.387 0.1%
71 383.2 0.377 0.0%
72 386.4 0.309 0.0%
73 390.1 0.36 0.0%
74 395 0.385 0.0%
75 398.8 0.262 0.0%
76 402.7 0.229 0.0%
77 405.4 0.294 0.0%
78 409.8 0.482 0.1%
79 414.3 0.368 0.0%
80 418.4 0.292 0.0%
81 421.7 0.477 0.1%
82 426 0.241 0.0%
83 430 0.475 0.1%
84 433.7 0.44 0.1%
85 437.5 0.254 0.0%
86 440.7 0.402 0.0%
87 444 0.309 0.0%
88 449.8 0.289 0.0%
89 453.7 0.381 0.0%
90 457.7 0.45 0.0%
91 461.3 0.319 0.0%
92 464.2 0.276 0.0%
93 469.7 1.073 0.2%
94 473.8 1.538 0.3%
95 477.8 1.281 0.2%
96 480.6 0.279 0.0%
97 486.5 0.547 0.1%
98 490.5 0.253 0.0%
99 493.9 0.577 0.1%
100 498.3 0.241 0.0%

Quality and confidence:
param error
s 0

Model:
Time ~= 101.7
+ s 3.959
µs

Reads = 4 + (0 * s)
Writes = 8 + (1 * s)
Pallet: "pallet_staking", Extrinsic: "new_era", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 0
+ v 902.6
+ n 118.6
µs

Reads = 10 + (4 * v) + (3 * n)
Writes = 8 + (3 * v) + (0 * n)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
v n mean µs sigma µs %
1 100 4560 8.344 0.1%
2 100 5404 9.166 0.1%
3 100 6083 11.7 0.1%
4 100 6801 6.14 0.0%
5 100 7754 10.37 0.1%
6 100 8600 12.25 0.1%
7 100 9485 10.53 0.1%
8 100 10450 15.25 0.1%
9 100 11620 9.28 0.0%
10 1 896.6 1.027 0.1%
10 2 1028 1.067 0.1%
10 3 1154 0.862 0.0%
10 4 1281 1.152 0.0%
10 5 1391 2.027 0.1%
10 6 1508 1.171 0.0%
10 7 1636 1.115 0.0%
10 8 1765 2.209 0.1%
10 9 1879 1.711 0.0%
10 10 2051 2.107 0.1%
10 11 2170 2.263 0.1%
10 12 2294 2.69 0.1%
10 13 2423 1.588 0.0%
10 14 2553 3.289 0.1%
10 15 2674 1.938 0.0%
10 16 2794 4.082 0.1%
10 17 2922 1.752 0.0%
10 18 3047 7.165 0.2%
10 19 3170 4.847 0.1%
10 20 3293 6.53 0.1%
10 21 3420 9.842 0.2%
10 22 3528 3.541 0.1%
10 23 3651 2.137 0.0%
10 24 3770 5.544 0.1%
10 25 3898 2.284 0.0%
10 26 4049 7.039 0.1%
10 27 4161 7.2 0.1%
10 28 4272 3.645 0.0%
10 29 4403 1.681 0.0%
10 30 4519 8.116 0.1%
10 31 4633 6.592 0.1%
10 32 4762 8.205 0.1%
10 33 4894 7.371 0.1%
10 34 5021 14.78 0.2%
10 35 5147 11.84 0.2%
10 36 5263 8.981 0.1%
10 37 5368 9.025 0.1%
10 38 5478 4.77 0.0%
10 39 5616 9.518 0.1%
10 40 5713 5.045 0.0%
10 41 5838 12.22 0.2%
10 42 5962 11.26 0.1%
10 43 6110 11.85 0.1%
10 44 6221 6.936 0.1%
10 45 6300 12.67 0.2%
10 46 6414 6.76 0.1%
10 47 6507 9.806 0.1%
10 48 6639 10.96 0.1%
10 49 6765 11.91 0.1%
10 50 6887 7.767 0.1%
10 51 7021 14.2 0.2%
10 52 7118 6.311 0.0%
10 53 7307 11.16 0.1%
10 54 7479 40.41 0.5%
10 55 7540 31.16 0.4%
10 56 7659 8.719 0.1%
10 57 7734 7.736 0.1%
10 58 7883 12.03 0.1%
10 59 7991 13.6 0.1%
10 60 8119 12.11 0.1%
10 61 8220 14.27 0.1%
10 62 8328 11.91 0.1%
10 63 8434 14.35 0.1%
10 64 8574 9.995 0.1%
10 65 8697 13.86 0.1%
10 66 8794 14.61 0.1%
10 67 8942 10.88 0.1%
10 68 9024 9.641 0.1%
10 69 9130 14.05 0.1%
10 70 9234 12.45 0.1%
10 71 9377 12.28 0.1%
10 72 9531 13.48 0.1%
10 73 9825 21.87 0.2%
10 74 9750 13.03 0.1%
10 75 9850 8.656 0.0%
10 76 9931 11.39 0.1%
10 77 10030 15.32 0.1%
10 78 10180 10.07 0.0%
10 79 10280 7.831 0.0%
10 80 10440 13.54 0.1%
10 81 10530 17.04 0.1%
10 82 10650 5.737 0.0%
10 83 10790 14.97 0.1%
10 84 10880 12.09 0.1%
10 85 10940 12.21 0.1%
10 86 11030 13.44 0.1%
10 87 11180 10.5 0.0%
10 88 11310 9.174 0.0%
10 89 11410 14.23 0.1%
10 90 11530 18.68 0.1%
10 91 11620 7.212 0.0%
10 92 11730 11.82 0.1%
10 93 11850 17.82 0.1%
10 94 11950 14.7 0.1%
10 95 12060 6.978 0.0%
10 96 12150 22.41 0.1%
10 97 12270 19.21 0.1%
10 98 12390 16.08 0.1%
10 99 12530 8.278 0.0%
10 100 12650 18.97 0.1%

Quality and confidence:
param error
v 2.375
n 0.119

Model:
Time ~= 0
+ v 952.1
+ n 117.9
µs

Reads = 10 + (4 * v) + (3 * n)
Writes = 8 + (3 * v) + (0 * n)
Pallet: "pallet_staking", Extrinsic: "submit_solution_better", Lowest values: [], Highest values: [], Steps: [50], Repeat: 20
Median Slopes Analysis

-- Extrinsic Time --

Model:
Time ~= 0
+ v 0.415
+ n 0.37
+ a 99.49
+ w 8.323
µs

Reads = 6 + (0 * v) + (0 * n) + (4 * a) + (1 * w)
Writes = 2 + (0 * v) + (0 * n) + (0 * a) + (0 * w)
Min Squares Analysis

-- Extrinsic Time --

Data points distribution:
v n a w mean µs sigma µs %
200 1000 400 100 41090 52.14 0.1%
204 1000 400 100 41060 33.04 0.0%
208 1000 400 100 41020 63.42 0.1%
212 1000 400 100 40980 64.63 0.1%
216 1000 400 100 41100 36.5 0.0%
220 1000 400 100 40910 65.99 0.1%
224 1000 400 100 40880 56.83 0.1%
228 1000 400 100 40960 51.29 0.1%
232 1000 400 100 40920 46.29 0.1%
236 1000 400 100 40970 41.8 0.1%
240 1000 400 100 40980 35.63 0.0%
244 1000 400 100 40990 50.49 0.1%
248 1000 400 100 40980 41.64 0.1%
252 1000 400 100 40960 92.19 0.2%
256 1000 400 100 40940 64.28 0.1%
260 1000 400 100 41120 62.65 0.1%
264 1000 400 100 40960 41.51 0.1%
268 1000 400 100 40890 30.97 0.0%
272 1000 400 100 41190 20.21 0.0%
276 1000 400 100 41190 68.01 0.1%
280 1000 400 100 41090 56.79 0.1%
284 1000 400 100 41010 32.68 0.0%
288 1000 400 100 41060 46.64 0.1%
292 1000 400 100 41020 54.4 0.1%
296 1000 400 100 41010 57.16 0.1%
300 1000 400 100 40920 49.94 0.1%
304 1000 400 100 41050 60.55 0.1%
308 1000 400 100 41100 44.02 0.1%
312 1000 400 100 41010 57.37 0.1%
316 1000 400 100 41150 25.85 0.0%
320 1000 400 100 41130 37.1 0.0%
324 1000 400 100 41040 55.04 0.1%
328 1000 400 100 41070 46.54 0.1%
332 1000 400 100 40980 27.67 0.0%
336 1000 400 100 41260 45.35 0.1%
340 1000 400 100 41070 44.13 0.1%
344 1000 400 100 41040 41.13 0.1%
348 1000 400 100 41240 28.14 0.0%
352 1000 400 100 40970 69.45 0.1%
356 1000 400 100 41080 55.82 0.1%
360 1000 400 100 41090 47.91 0.1%
364 1000 400 100 41010 18.57 0.0%
368 1000 400 100 41010 33.13 0.0%
372 1000 400 100 41080 41.4 0.1%
376 1000 400 100 40960 24.08 0.0%
380 1000 400 100 41190 43.3 0.1%
384 1000 400 100 40900 67.02 0.1%
388 1000 400 100 41220 43.78 0.1%
392 1000 400 100 41160 26.47 0.0%
396 1000 400 100 41180 52.32 0.1%
400 500 400 100 40820 48.32 0.1%
400 510 400 100 40720 30.76 0.0%
400 520 400 100 40870 39.74 0.0%
400 530 400 100 41010 48.77 0.1%
400 540 400 100 40980 29.05 0.0%
400 550 400 100 40810 46.96 0.1%
400 560 400 100 40910 56.66 0.1%
400 570 400 100 40960 59.36 0.1%
400 580 400 100 40980 59.94 0.1%
400 590 400 100 40960 37.07 0.0%
400 600 400 100 40880 61.86 0.1%
400 610 400 100 41000 35.17 0.0%
400 620 400 100 40890 40.9 0.1%
400 630 400 100 41050 37.56 0.0%
400 640 400 100 40960 37.38 0.0%
400 650 400 100 41060 45.5 0.1%
400 660 400 100 40940 46.95 0.1%
400 670 400 100 41050 47.43 0.1%
400 680 400 100 41060 41.53 0.1%
400 690 400 100 40930 49.77 0.1%
400 700 400 100 41020 25.13 0.0%
400 710 400 100 40980 27.59 0.0%
400 720 400 100 41010 36.44 0.0%
400 730 400 100 40940 59.05 0.1%
400 740 400 100 40960 42.37 0.1%
400 750 400 100 41210 23.05 0.0%
400 760 400 100 41070 39.86 0.0%
400 770 400 100 41060 43 0.1%
400 780 400 100 41130 61.47 0.1%
400 790 400 100 41190 38.32 0.0%
400 800 400 100 41180 32.35 0.0%
400 810 400 100 41000 34 0.0%
400 820 400 100 41170 69.52 0.1%
400 830 400 100 41090 70.7 0.1%
400 840 400 100 41070 38.33 0.0%
400 850 400 100 41110 57.75 0.1%
400 860 400 100 41230 70.32 0.1%
400 870 400 100 41130 45.23 0.1%
400 880 400 100 41110 32.39 0.0%
400 890 400 100 41170 21.85 0.0%
400 900 400 100 41030 50.46 0.1%
400 910 400 100 41000 37.57 0.0%
400 920 400 100 41100 66.81 0.1%
400 930 400 100 40880 49.73 0.1%
400 940 400 100 41020 53.5 0.1%
400 950 400 100 41110 50.26 0.1%
400 960 400 100 41080 44.88 0.1%
400 970 400 100 41030 62.05 0.1%
400 980 400 100 41250 35.92 0.0%
400 990 400 100 41070 37.6 0.0%
400 1000 200 100 20980 31.14 0.1%
400 1000 204 100 21400 29.61 0.1%
400 1000 208 100 21790 11.14 0.0%
400 1000 212 100 22310 23.65 0.1%
400 1000 216 100 22690 26.86 0.1%
400 1000 220 100 23120 12.73 0.0%
400 1000 224 100 23480 18.91 0.0%
400 1000 228 100 23900 22.67 0.0%
400 1000 232 100 24300 30.45 0.1%
400 1000 236 100 24700 13.03 0.0%
400 1000 240 100 25140 30.2 0.1%
400 1000 244 100 25510 21.08 0.0%
400 1000 248 100 25870 19.52 0.0%
400 1000 252 100 26280 26.69 0.1%
400 1000 256 100 26680 22.7 0.0%
400 1000 260 100 27060 27.33 0.1%
400 1000 264 100 27510 25.98 0.0%
400 1000 268 100 27870 26.39 0.0%
400 1000 272 100 28270 29.71 0.1%
400 1000 276 100 28730 48.74 0.1%
400 1000 280 100 29100 42.79 0.1%
400 1000 284 100 29490 16.95 0.0%
400 1000 288 100 29900 22.76 0.0%
400 1000 292 100 30300 38.34 0.1%
400 1000 296 100 30650 32.71 0.1%
400 1000 300 100 31020 21.67 0.0%
400 1000 304 100 31390 25.48 0.0%
400 1000 308 100 31830 36.55 0.1%
400 1000 312 100 32270 47.8 0.1%
400 1000 316 100 32680 26.23 0.0%
400 1000 320 100 33020 31.25 0.0%
400 1000 324 100 33420 36.76 0.1%
400 1000 328 100 33880 61.96 0.1%
400 1000 332 100 34270 27.14 0.0%
400 1000 336 100 34620 46 0.1%
400 1000 340 100 34970 37.18 0.1%
400 1000 344 100 35360 38.57 0.1%
400 1000 348 100 35780 27.69 0.0%
400 1000 352 100 36130 39.95 0.1%
400 1000 356 100 36610 54.12 0.1%
400 1000 360 100 37030 43.92 0.1%
400 1000 364 100 37410 49.12 0.1%
400 1000 368 100 37820 44.03 0.1%
400 1000 372 100 38200 36.23 0.0%
400 1000 376 100 38580 56.7 0.1%
400 1000 380 100 38960 32.32 0.0%
400 1000 384 100 39420 52.87 0.1%
400 1000 388 100 39780 43.8 0.1%
400 1000 392 100 40230 28.67 0.0%
400 1000 396 100 40630 31.99 0.0%
400 1000 400 16 40600 71.1 0.1%
400 1000 400 17 40390 36.48 0.0%
400 1000 400 18 40510 92.04 0.2%
400 1000 400 19 40370 29.68 0.0%
400 1000 400 20 40600 50.2 0.1%
400 1000 400 21 40570 34.78 0.0%
400 1000 400 22 40580 58.81 0.1%
400 1000 400 23 40590 56.15 0.1%
400 1000 400 24 40620 42.92 0.1%
400 1000 400 25 40500 27.42 0.0%
400 1000 400 26 40490 64.74 0.1%
400 1000 400 27 40390 26.6 0.0%
400 1000 400 28 40670 51.07 0.1%
400 1000 400 29 40490 60.24 0.1%
400 1000 400 30 40490 43.47 0.1%
400 1000 400 31 40410 38.81 0.0%
400 1000 400 32 40490 37.57 0.0%
400 1000 400 33 40570 52.2 0.1%
400 1000 400 34 40630 22.26 0.0%
400 1000 400 35 40640 30.27 0.0%
400 1000 400 36 40580 70.29 0.1%
400 1000 400 37 40650 55.43 0.1%
400 1000 400 38 40610 47.89 0.1%
400 1000 400 39 40800 50.21 0.1%
400 1000 400 40 40860 28.54 0.0%
400 1000 400 41 40710 44.62 0.1%
400 1000 400 42 40770 40.28 0.0%
400 1000 400 43 40600 58.92 0.1%
400 1000 400 44 40960 44.16 0.1%
400 1000 400 45 40760 32.99 0.0%
400 1000 400 46 40960 45.9 0.1%
400 1000 400 47 40860 62.81 0.1%
400 1000 400 48 40910 50.85 0.1%
400 1000 400 49 40830 53.96 0.1%
400 1000 400 50 40860 32.46 0.0%
400 1000 400 51 40820 45.59 0.1%
400 1000 400 52 40660 44.36 0.1%
400 1000 400 53 40650 23.04 0.0%
400 1000 400 54 40690 62.86 0.1%
400 1000 400 55 40720 32.38 0.0%
400 1000 400 56 40690 32.58 0.0%
400 1000 400 57 40740 54.14 0.1%
400 1000 400 58 40780 41.17 0.1%
400 1000 400 59 40890 34.15 0.0%
400 1000 400 60 40810 27.43 0.0%
400 1000 400 61 40790 62.97 0.1%
400 1000 400 62 40860 57.39 0.1%
400 1000 400 63 40790 25.87 0.0%
400 1000 400 64 40830 34.35 0.0%
400 1000 400 65 40900 82.66 0.2%
400 1000 400 66 40970 44.64 0.1%
400 1000 400 67 40900 37.59 0.0%
400 1000 400 68 41030 35.76 0.0%
400 1000 400 69 40940 42.35 0.1%
400 1000 400 70 40870 45.19 0.1%
400 1000 400 71 40840 57.6 0.1%
400 1000 400 72 41080 35.5 0.0%
400 1000 400 73 41000 67.95 0.1%
400 1000 400 74 40990 35.83 0.0%
400 1000 400 75 40820 56.98 0.1%
400 1000 400 76 40870 49.71 0.1%
400 1000 400 77 41080 21.59 0.0%
400 1000 400 78 41060 52.22 0.1%
400 1000 400 79 41160 42.81 0.1%
400 1000 400 80 40990 29.62 0.0%
400 1000 400 81 41000 28.66 0.0%
400 1000 400 82 41040 78.42 0.1%
400 1000 400 83 41060 45.97 0.1%
400 1000 400 84 41000 39.39 0.0%
400 1000 400 85 41120 29.98 0.0%
400 1000 400 86 41110 88.96 0.2%
400 1000 400 87 41270 35.23 0.0%
400 1000 400 88 41160 52.69 0.1%
400 1000 400 89 41290 44.64 0.1%
400 1000 400 90 41130 50.86 0.1%
400 1000 400 91 41210 39.22 0.0%
400 1000 400 92 41130 49.11 0.1%
400 1000 400 93 41150 50.75 0.1%
400 1000 400 94 41050 34.79 0.0%
400 1000 400 95 41070 35.99 0.0%
400 1000 400 96 41090 19.86 0.0%
400 1000 400 97 41180 52.95 0.1%
400 1000 400 98 41270 61.42 0.1%
400 1000 400 99 41150 60.3 0.1%
400 1000 400 100 40990 47.93 0.1%

Quality and confidence:
param error
v 0.05
n 0.02
a 0.05
w 0.103

Model:
Time ~= 0
+ v 0.733
+ n 0.405
+ a 100.4
+ w 7.279
µs

Reads = 6 + (0 * v) + (0 * n) + (4 * a) + (1 * w)
Writes = 2 + (0 * v) + (0 * n) + (0 * a) + (0 * w)

@kianenigma kianenigma mentioned this pull request Oct 16, 2020
Parity Benchmarking Bot and others added 5 commits October 16, 2020 16:16
…/node/cli/Cargo.toml -- benchmark --chain dev --steps 50 --repeat 20 --extrinsic * --execution=wasm --wasm-execution=compiled --output ./bin/node/runtime/src/weights --header ./HEADER --pallet pallet_staking
Copy link
Contributor

@tomusdrw tomusdrw left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

lgtm, I'm not super knowledgable about staking though.

@tomusdrw tomusdrw added A6-seemsok and removed A0-please_review Pull request needs code review. labels Oct 19, 2020
@kianenigma
Copy link
Contributor Author

I actually realised that this is not useful because currently we don't decoding time into account.

@kianenigma kianenigma closed this Oct 19, 2020
@kianenigma kianenigma reopened this Oct 19, 2020
@kianenigma
Copy link
Contributor Author

Okay, leaving open to investigate integrating decode time in the benchmark tool @shawntabrizi @thiolliere

@kianenigma
Copy link
Contributor Author

For now, I will made a new PR to make the important change to polkadot, namely reducing the on_initialize a bit. I will leave this PR open for a playground of investigating encode/decode affect on weights.

paritytech/polkadot#1838

@kianenigma kianenigma added A3-in_progress Pull request is in progress. No review needed at this stage. and removed A7-needspolkadotpr labels Oct 22, 2020
@gnunicorn gnunicorn added A3-needsresolving A5-stale Pull request did not receive any updates in a long time. No review needed at this stage. Close it. labels Nov 25, 2020
@kianenigma
Copy link
Contributor Author

Not needed for now. Sometime soon and somehow we should consider measuring encode decode time in benchmarks. The approach of this PR is a good starting point. Nonetheless, closing to de-clutter my ever growing todo list.

@kianenigma kianenigma closed this Nov 27, 2020
@bkchr bkchr deleted the kiz-remove-compact branch November 27, 2020 09:16
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
A3-in_progress Pull request is in progress. No review needed at this stage. A5-stale Pull request did not receive any updates in a long time. No review needed at this stage. Close it. C1-low PR touches the given topic and has a low impact on builders.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants