forked from He-Jian/NTS-Net-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnts_model.py
325 lines (291 loc) · 15.9 KB
/
nts_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import keras.backend as K
import tensorflow as tf
# from keras.applications.resnet50 import ResNet50
from resnet50_reg import ResNet50
# from keras.applications.vgg16 import VGG16
from keras.layers import Input, Lambda, Concatenate, GlobalAveragePooling2D, Conv2D
from keras.layers.core import Dense, Reshape, Dropout
from keras.models import Model
from keras.engine.topology import Layer
from keras.optimizers import Adam, SGD
from keras.losses import categorical_crossentropy
from generate_anchor import generate_default_anchor_maps
from config import *
from keras import regularizers
class CollectScores(Layer):
def __init__(self, **kwargs):
self.result = None
super(CollectScores, self).__init__(**kwargs)
def build(self, input_shape):
super(CollectScores, self).build(input_shape)
def call(self, x, **kwargs):
"""
"""
rpn_score, selected_indices = x # rpn_scores (batch_size,num_anchors), selected_indices (batch_size,proposal_num)
num_anchors = tf.shape(rpn_score)[1]
elems = tf.concat([rpn_score, tf.cast(selected_indices, tf.float32)], axis=-1)
# topN_scores = K.stack([K.gather(rpn_score[i], selected_indices[i]) for i in range(self.batch_size)], axis=0)
topN_scores = tf.map_fn(lambda xx: K.gather(xx[:num_anchors], tf.cast(xx[num_anchors:], tf.int32)), elems,
dtype=tf.float32)
self.result = topN_scores
return self.result
def compute_output_shape(self, input_shape):
return (None,) + K.int_shape(self.result)[1:]
class CollectRegions(Layer):
def __init__(self, **kwargs):
self.result = None
self.anchors = generate_default_anchor_maps()
super(CollectRegions, self).__init__(**kwargs)
def build(self, input_shape):
super(CollectRegions, self).build(input_shape)
def call(self, x, **kwargs):
"""
"""
selected_indices = x
# topN_regions = K.stack([K.gather(self.anchors, selected_indices[i]) for i in range(self.batch_size)], axis=0)
topN_regions = tf.map_fn(lambda xx: K.gather(self.anchors, tf.cast(xx, tf.int32)), selected_indices,
dtype=tf.float32)
self.result = topN_regions
return self.result
def compute_output_shape(self, input_shape):
return (None,) + K.int_shape(self.result)[1:]
class NMS(Layer):
def __init__(self, PROPOSAL_NUM=6, **kwargs):
self.PROPOSAL_NUM = PROPOSAL_NUM
self.result = None
self.anchors = generate_default_anchor_maps()
super(NMS, self).__init__(**kwargs)
def build(self, input_shape):
super(NMS, self).build(input_shape)
def call(self, x, **kwargs):
"""
"""
rpn_score = x
'''selected_indices_list = [Lambda(lambda xx: tf.image.non_max_suppression(
self.anchors, # boxes,
xx, # scores,
max_output_size=self.PROPOSAL_NUM,
iou_threshold=0.25,
score_threshold=float('-inf'),
name='nms'
))(rpn_score[i]) for i in range(self.batch_size)]
selected_indices = tf.stack(selected_indices_list, axis=0)'''
selected_indices = tf.map_fn(lambda xx: tf.image.non_max_suppression(
self.anchors, # boxes,[[y1,x1,y2,x2],...]
xx, # scores,
max_output_size=self.PROPOSAL_NUM,
iou_threshold=0.25,
score_threshold=float('-inf'),
name='nms'
), rpn_score, dtype=tf.int32)
self.result = selected_indices
return self.result
def compute_output_shape(self, input_shape):
return (None,) + K.int_shape(self.result)[1:]
class CropImage(Layer):
def __init__(self, pad_size=224, nbox=4,
img_size=224, **kwargs):
self.nbox = nbox
self.cw = img_size
self.ch = img_size
self.result = None
self.pad_size = pad_size
super(CropImage, self).__init__(**kwargs)
def build(self, input_shape):
super(CropImage, self).build(input_shape)
def call(self, x, **kwargs):
"""
Generate the crop image.
------------------------------------------------------------------------
Input: the image I[bsize,w,h,3], and the crop region A[bsize,proposal_num,4],that is [(y0,x0,y1,x1...]
Output: the image-crop image_c[bsize*#proposal_num,w,h,3]
"""
img_input, crop_region = x[0], x[1]
crop_region = (K.cast(crop_region, "float32") + self.pad_size)
crop_region = K.reshape(crop_region, (-1, 4))
crop_region_normalized = crop_region / K.cast(K.shape(img_input)[2] - 1, 'float32')
box_ind = tf.range(tf.shape(img_input)[0])
box_ind = K.repeat_elements(box_ind, self.nbox, axis=0)
result = tf.image.crop_and_resize(img_input, crop_region_normalized, box_ind, [self.ch, self.cw], name="crops")
# crop_region=crop_region*self.stride
'''rst = []
re = []
for i in range(self.batch_size): # crop region from image
for j in range(self.nbox):
region = img_input[i,crop_region[i][j][0]:crop_region[i][j][2]+1,crop_region[i][j][1]:crop_region[i][j][3]+1,:]
resized_region = tf.image.resize_bilinear(tf.expand_dims(region,axis=0),(self.ch,self.cw))
rst.append(resized_region)
nbox_region = tf.concat(rst, axis=0)
rst = []
re.append(nbox_region)
result = tf.stack(re, axis=0)'''
self.result = result
return self.result
def compute_output_shape(self, input_shape):
return (None,) + K.int_shape(self.result)[1:]
# return tuple([self.batch_size*self.nbox,self.ch,self.cw,3])
def part_cls_loss(num_classes):
def part_cls_loss_fn(y_true, y_pred):
# y_true:(batch_size,proposal_num*num_classes)
# y_pred:(batch_size*proposal_num,num_classes)
y_pred = K.reshape(y_pred, (-1, num_classes))
y_true = K.reshape(y_true, (-1, num_classes))
return K.mean(categorical_crossentropy(y_true, y_pred))
return part_cls_loss_fn
def ranking_loss(PROPOSAL_NUM): # this loss function is tricky
def ranking_loss_fn(y_true, y_pred):
# target_label is label for whole image,we assign this label to part_images,with shape (batch_size,num_classes)
target_label = y_true # (batch_size,PROPOSAL_NUM * (num_classes+1))
target_label = K.reshape(target_label, (-1, num_classes + 1))
target_label = K.cast(target_label[:, 0], 'int32') # (batch_size*PROPOSAL_NUM, )
loss = 0.0
# y_pred contains part_pred(classification scores for topN proposals) and topN_scores(saliency score for topN proposal)
y_pred = K.reshape(y_pred, (-1, num_classes + 1))
part_pred = tf.slice(y_pred, [0, 0], [-1, num_classes])
part_pred = K.reshape(part_pred, (-1, num_classes)) # (batch_size*PROPOSAL_NUM,num_classes)
indice = tf.stack([tf.range(tf.shape(target_label)[0]), target_label], axis=-1)
# part_pred = K.stack([part_pred[i][target_label[i]] for i in range(batch_size * PROPOSAL_NUM)],axis=0) # (batch_size*PROPOSAL_NUM,)
part_pred = tf.gather_nd(part_pred, indice)
part_pred = K.reshape(part_pred, (-1, PROPOSAL_NUM))
topN_scores = tf.slice(y_pred, [0, num_classes], [-1, -1]) # (batch_size*PROPOSAL_NUM,1)
topN_scores = K.reshape(topN_scores, (-1, PROPOSAL_NUM))
# actual y_pred is topN_scores, actual y_true is part_pred
# topN_scores with shape (batch_size,PROPOSAL_NUM)
# part_pred with shape (batch_size*PROPOSAL_NUM,num_classes),we only need the prob of gt class
y_true = part_pred
y_pred = topN_scores
for i in range(PROPOSAL_NUM):
# for example,PROPOSAL_NUM=4,y_true is [[0.3,0.5,0.1,0.2],]
# i=0,is_greater = 1-[1,1,0,0]=[0,0,1,1]
# y_pred=[3,8,9,1],pivot=y_pred[0]=3,y_pred - pivot + 1=[1,6,7,-2],
# loss=relu([1,6,7,-2]*[0,0,1,1])=relu([0,0,7,-2])=[0,0,7,0],0.3 is larger than 0.1,so,y_pred[0] should greater than y_pred[2](and margin=1),
# but it not satisfys,so there is a loss
is_greater = 1.0 - K.cast(y_true >= K.expand_dims(y_true[:, i], axis=-1), 'float32')
pivot = K.expand_dims(y_pred[:, i], axis=-1)
loss_p = (y_pred - pivot + 1) * is_greater
loss_p = K.relu(loss_p)
loss += loss_p
return K.mean(loss)
return ranking_loss_fn
def part_cls_acc(y_true, y_pred):
y_true = K.reshape(y_true, (-1, num_classes))
y_pred = K.reshape(y_pred, (-1, num_classes))
return K.cast(K.equal(K.argmax(y_true, axis=-1),
K.argmax(y_pred, axis=-1)),
K.floatx())
def get_nts_net(batch_size=2):
input_shape = (image_dimension, image_dimension, 3)
img_input = Input(shape=input_shape, name='img_input')
# input1 = Input((PROPOSAL_NUM,), name = 'ranking_loss_input')
base_model = ResNet50(weights='imagenet',
include_top=False,
weight_decay=0, # add weight decay
# input_tensor=img_input,
# input_shape=input_shape,
pooling="avg")
layer_dict = {}
for layer in base_model.layers:
layer_dict[layer.name] = layer
# g = base_model(img_input)
global_conv_outputs = layer_dict['activation_49'].output
# global_conv_outputs = layer_dict['block5_conv3'].output
base_model_1 = Model(inputs=base_model.input, outputs=global_conv_outputs, name='resnet50') # shared model
global_conv_outputs = base_model_1(img_input)
global_features = GlobalAveragePooling2D()(global_conv_outputs)
global_conv_outputs_gradient_stopped = Lambda(lambda x: K.stop_gradient(x), name='stop_gradient')(
global_conv_outputs)
global_features = Dropout(0.5)(global_features)
whole_image_pred = Dense(num_classes, activation="softmax",
kernel_regularizer=regularizers.l2(weight_decay),
bias_regularizer=regularizers.l2(weight_decay),
# activity_regularizer=regularizers.l2(weight_decay),
name="cls_pred_global")(global_features)
# proposal net
c1 = Conv2D(128, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(weight_decay),
bias_regularizer=regularizers.l2(weight_decay),
# activity_regularizer=regularizers.l2(weight_decay),
name='c1')(
global_conv_outputs_gradient_stopped)
c2 = Conv2D(128, (3, 3), strides=2, activation='relu', padding='same',
kernel_regularizer=regularizers.l2(weight_decay), bias_regularizer=regularizers.l2(weight_decay),
# activity_regularizer=regularizers.l2(weight_decay),
name='c2')(c1)
c3 = Conv2D(128, (3, 3), strides=2, activation='relu', padding='same',
kernel_regularizer=regularizers.l2(weight_decay), bias_regularizer=regularizers.l2(weight_decay),
# activity_regularizer=regularizers.l2(weight_decay),
name='c3')(c2)
p1 = Conv2D(6, (1, 1), padding='same',
kernel_regularizer=regularizers.l2(weight_decay),
bias_regularizer=regularizers.l2(weight_decay),
# activity_regularizer=regularizers.l2(weight_decay),
name='p1')(c1)
p2 = Conv2D(6, (1, 1), padding='same',
kernel_regularizer=regularizers.l2(weight_decay),
bias_regularizer=regularizers.l2(weight_decay),
# activity_regularizer=regularizers.l2(weight_decay),
name='p2')(c2)
p3 = Conv2D(9, (1, 1), padding='same',
kernel_regularizer=regularizers.l2(weight_decay),
bias_regularizer=regularizers.l2(weight_decay),
# activity_regularizer=regularizers.l2(weight_decay),
name='p3')(c3)
p1_reshape = Reshape((-1,), name='p1_reshape')(p1)
p2_reshape = Reshape((-1,), name='p2_reshape')(p2)
p3_reshape = Reshape((-1,), name='p3_reshape')(p3)
rpn_score = Concatenate(axis=-1, name='rpn_concat')([p1_reshape, p2_reshape, p3_reshape])
# anchors = Lambda(lambda x: K.variable(generate_default_anchor_maps()))(K.variable(1))
selected_indices = NMS(PROPOSAL_NUM=PROPOSAL_NUM)(rpn_score)
topN_scores = CollectScores(name='proposal_scores')(
[rpn_score, selected_indices])
crop_region = CollectRegions()(selected_indices)
# part image cls
img_input_padded = Lambda(lambda x: K.spatial_2d_padding(x, padding=((pad_size, pad_size), (pad_size, pad_size))),
name='pad_image')(img_input)
part_imgs = CropImage(img_size=PART_RESIZE, pad_size=pad_size, nbox=PROPOSAL_NUM
)([img_input_padded, crop_region])
part_imgs_stop_gradient = Lambda(lambda x: K.stop_gradient(x), name='stop_gradient_part_img')(part_imgs)
part_conv_outputs = base_model_1(part_imgs_stop_gradient)
part_features = GlobalAveragePooling2D()(part_conv_outputs) # (batch_size*PROPOSAL_NUM,channel)
part_features = Dropout(0.5)(part_features)
part_pred = Dense(num_classes, activation="softmax",
kernel_regularizer=regularizers.l2(weight_decay),
bias_regularizer=regularizers.l2(weight_decay),
# activity_regularizer=regularizers.l2(weight_decay),
name="cls_pred_part")(part_features)
# concat pred
part_feature_cat = Lambda(lambda x: K.reshape(x, (-1, PROPOSAL_NUM, last_conv_channel)),
name='part_feature_reshape_1')(
part_features)
part_feature_cat = Lambda(lambda x: x[:, :CAT_NUM, :], name='part_feature_slice')(part_feature_cat)
part_feature_cat = Reshape((-1,), name='part_feature_reshape_2')(part_feature_cat)
concat_feature = Concatenate(axis=-1, name='feature_concat')([global_features, part_feature_cat])
concat_feature = Dropout(0.5)(concat_feature)
concat_pred = Dense(num_classes, activation="softmax",
kernel_regularizer=regularizers.l2(weight_decay),
bias_regularizer=regularizers.l2(weight_decay),
# activity_regularizer=regularizers.l2(weight_decay),
name="cls_pred_concat")(concat_feature)
# in order to implement rank loss, we concat topN_scores and part_pred as one output
part_pred_reshape = Lambda(lambda x: K.reshape(x, (-1, PROPOSAL_NUM, num_classes)), name='cls_pred_part_reshape')(
part_pred)
topN_scores_reshape = Lambda(lambda x: K.reshape(x, (-1, PROPOSAL_NUM, 1)), name='topN_scores_reshape')(topN_scores)
rank_concat = Concatenate(axis=-1, name='rank_concat_0')([part_pred_reshape, topN_scores_reshape])
rank_concat = Lambda(lambda x: K.reshape(x, (-1, PROPOSAL_NUM * (num_classes + 1))), name='rank_concat')(
rank_concat)
model = Model(inputs=img_input,
outputs=[
whole_image_pred, # (batch_size,num_classes)
part_pred, # (batch_size,PROPOSAL_NUM*num_classes)
concat_pred, # (batch_size,num_classes)
rank_concat # topN_scores#(batch_size,PROPOSAL_NUM*(num_classes+1))
],
name='nts-net')
# for layer in model.layers: # this method does not work
# layer.kernel_regularizer = regularizers.l2(weight_decay)
# layer.bias_regularizer = regularizers.l2(weight_decay)
from keras.utils import plot_model
plot_model(model, to_file='model.png')
return model
if __name__ == '__main__':
model = get_nts_net()