-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathfingerprint.rs
1654 lines (1544 loc) · 66.9 KB
/
fingerprint.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! # Fingerprints
//!
//! This module implements change-tracking so that Cargo can know whether or
//! not something needs to be recompiled. A Cargo `Unit` can be either "dirty"
//! (needs to be recompiled) or "fresh" (it does not need to be recompiled).
//! There are several mechanisms that influence a Unit's freshness:
//!
//! - The `Metadata` hash isolates each Unit on the filesystem by being
//! embedded in the filename. If something in the hash changes, then the
//! output files will be missing, and the Unit will be dirty (missing
//! outputs are considered "dirty").
//! - The `Fingerprint` is another hash, saved to the filesystem in the
//! `.fingerprint` directory, that tracks information about the inputs to a
//! Unit. If any of the inputs changes from the last compilation, then the
//! Unit is considered dirty. A missing fingerprint (such as during the
//! first build) is also considered dirty.
//! - Whether or not input files are actually present. For example a build
//! script which says it depends on a nonexistent file `foo` is always rerun.
//! - Propagation throughout the dependency graph of file modification time
//! information, used to detect changes on the filesystem. Each `Fingerprint`
//! keeps track of what files it'll be processing, and when necessary it will
//! check the `mtime` of each file (last modification time) and compare it to
//! dependencies and output to see if files have been changed or if a change
//! needs to force recompiles of downstream dependencies.
//!
//! Note: Fingerprinting is not a perfect solution. Filesystem mtime tracking
//! is notoriously imprecise and problematic. Only a small part of the
//! environment is captured. This is a balance of performance, simplicity, and
//! completeness. Sandboxing, hashing file contents, tracking every file
//! access, environment variable, and network operation would ensure more
//! reliable and reproducible builds at the cost of being complex, slow, and
//! platform-dependent.
//!
//! ## Fingerprints and Metadata
//!
//! Fingerprints and Metadata are similar, and track some of the same things.
//! The Metadata contains information that is required to keep Units separate.
//! The Fingerprint includes additional information that should cause a
//! recompile, but it is desired to reuse the same filenames. Generally the
//! items in the Metadata do not need to be in the Fingerprint. A comparison
//! of what is tracked:
//!
//! Value | Fingerprint | Metadata
//! -------------------------------------------|-------------|----------
//! rustc | ✓ | ✓
//! Profile | ✓ | ✓
//! `cargo rustc` extra args | ✓ | ✓
//! CompileMode | ✓ | ✓
//! Target Name | ✓ | ✓
//! Target CompileKind (bin/lib/etc.) | ✓ | ✓
//! Enabled Features | ✓ | ✓
//! Immediate dependency’s hashes | ✓[^1] | ✓
//! Target or Host mode | | ✓
//! __CARGO_DEFAULT_LIB_METADATA[^4] | | ✓
//! package_id | | ✓
//! authors, description, homepage, repo | ✓ |
//! Target src path | ✓ |
//! Target path relative to ws | ✓ |
//! Target flags (test/bench/for_host/edition) | ✓ |
//! -C incremental=… flag | ✓ |
//! mtime of sources | ✓[^3] |
//! RUSTFLAGS/RUSTDOCFLAGS | ✓ |
//! is_std | | ✓
//!
//! [^1]: Build script and bin dependencies are not included.
//!
//! [^3]: The mtime is only tracked for workspace members and path
//! dependencies. Git dependencies track the git revision.
//!
//! [^4]: `__CARGO_DEFAULT_LIB_METADATA` is set by rustbuild to embed the
//! release channel (bootstrap/stable/beta/nightly) in libstd.
//!
//! ## Fingerprint files
//!
//! Fingerprint information is stored in the
//! `target/{debug,release}/.fingerprint/` directory. Each Unit is stored in a
//! separate directory. Each Unit directory contains:
//!
//! - A file with a 16 hex-digit hash. This is the Fingerprint hash, used for
//! quick loading and comparison.
//! - A `.json` file that contains details about the Fingerprint. This is only
//! used to log details about *why* a fingerprint is considered dirty.
//! `CARGO_LOG=cargo::core::compiler::fingerprint=trace cargo build` can be
//! used to display this log information.
//! - A "dep-info" file which contains a list of source filenames for the
//! target. This is produced by reading the output of `rustc
//! --emit=dep-info` and packing it into a condensed format. Cargo uses this
//! to check the mtime of every file to see if any of them have changed.
//! - An `invoked.timestamp` file whose filesystem mtime is updated every time
//! the Unit is built. This is an experimental feature used for cleaning
//! unused artifacts.
//!
//! Note that some units are a little different. A Unit for *running* a build
//! script or for `rustdoc` does not have a dep-info file (it's not
//! applicable). Build script `invoked.timestamp` files are in the build
//! output directory.
//!
//! ## Fingerprint calculation
//!
//! After the list of Units has been calculated, the Units are added to the
//! `JobQueue`. As each one is added, the fingerprint is calculated, and the
//! dirty/fresh status is recorded. A closure is used to update the fingerprint
//! on-disk when the Unit successfully finishes. The closure will recompute the
//! Fingerprint based on the updated information. If the Unit fails to compile,
//! the fingerprint is not updated.
//!
//! Fingerprints are cached in the `Context`. This makes computing
//! Fingerprints faster, but also is necessary for properly updating
//! dependency information. Since a Fingerprint includes the Fingerprints of
//! all dependencies, when it is updated, by using `Arc` clones, it
//! automatically picks up the updates to its dependencies.
//!
//! ## Considerations for inclusion in a fingerprint
//!
//! Over time we've realized a few items which historically were included in
//! fingerprint hashings should not actually be included. Examples are:
//!
//! * Modification time values. We strive to never include a modification time
//! inside a `Fingerprint` to get hashed into an actual value. While
//! theoretically fine to do, in practice this causes issues with common
//! applications like Docker. Docker, after a layer is built, will zero out
//! the nanosecond part of all filesystem modification times. This means that
//! the actual modification time is different for all build artifacts, which
//! if we tracked the actual values of modification times would cause
//! unnecessary recompiles. To fix this we instead only track paths which are
//! relevant. These paths are checked dynamically to see if they're up to
//! date, and the modification time doesn't make its way into the fingerprint
//! hash.
//!
//! * Absolute path names. We strive to maintain a property where if you rename
//! a project directory Cargo will continue to preserve all build artifacts
//! and reuse the cache. This means that we can't ever hash an absolute path
//! name. Instead we always hash relative path names and the "root" is passed
//! in at runtime dynamically. Some of this is best effort, but the general
//! idea is that we assume all accesses within a crate stay within that
//! crate.
//!
//! These are pretty tricky to test for unfortunately, but we should have a good
//! test suite nowadays and lord knows Cargo gets enough testing in the wild!
//!
//! ## Build scripts
//!
//! The *running* of a build script (`CompileMode::RunCustomBuild`) is treated
//! significantly different than all other Unit kinds. It has its own function
//! for calculating the Fingerprint (`calculate_run_custom_build`) and has some
//! unique considerations. It does not track the same information as a normal
//! Unit. The information tracked depends on the `rerun-if-changed` and
//! `rerun-if-env-changed` statements produced by the build script. If the
//! script does not emit either of these statements, the Fingerprint runs in
//! "old style" mode where an mtime change of *any* file in the package will
//! cause the build script to be re-run. Otherwise, the fingerprint *only*
//! tracks the individual "rerun-if" items listed by the build script.
//!
//! The "rerun-if" statements from a *previous* build are stored in the build
//! output directory in a file called `output`. Cargo parses this file when
//! the Unit for that build script is prepared for the `JobQueue`. The
//! Fingerprint code can then use that information to compute the Fingerprint
//! and compare against the old fingerprint hash.
//!
//! Care must be taken with build script Fingerprints because the
//! `Fingerprint::local` value may be changed after the build script runs
//! (such as if the build script adds or removes "rerun-if" items).
//!
//! Another complication is if a build script is overridden. In that case, the
//! fingerprint is the hash of the output of the override.
//!
//! ## Special considerations
//!
//! Registry dependencies do not track the mtime of files. This is because
//! registry dependencies are not expected to change (if a new version is
//! used, the Package ID will change, causing a rebuild). Cargo currently
//! partially works with Docker caching. When a Docker image is built, it has
//! normal mtime information. However, when a step is cached, the nanosecond
//! portions of all files is zeroed out. Currently this works, but care must
//! be taken for situations like these.
//!
//! HFS on macOS only supports 1 second timestamps. This causes a significant
//! number of problems, particularly with Cargo's testsuite which does rapid
//! builds in succession. Other filesystems have various degrees of
//! resolution.
//!
//! Various weird filesystems (such as network filesystems) also can cause
//! complications. Network filesystems may track the time on the server
//! (except when the time is set manually such as with
//! `filetime::set_file_times`). Not all filesystems support modifying the
//! mtime.
//!
//! See the `A-rebuild-detection` flag on the issue tracker for more:
//! <https://github.com/rust-lang/cargo/issues?q=is%3Aissue+is%3Aopen+label%3AA-rebuild-detection>
use std::collections::hash_map::{Entry, HashMap};
use std::env;
use std::hash::{self, Hasher};
use std::path::{Path, PathBuf};
use std::sync::{Arc, Mutex};
use std::time::SystemTime;
use anyhow::{bail, format_err};
use filetime::FileTime;
use log::{debug, info};
use serde::de;
use serde::ser;
use serde::{Deserialize, Serialize};
use crate::core::compiler::unit_dependencies::UnitDep;
use crate::core::{InternedString, Package};
use crate::util;
use crate::util::errors::{CargoResult, CargoResultExt};
use crate::util::paths;
use crate::util::{internal, profile};
use super::custom_build::BuildDeps;
use super::job::{
Freshness::{Dirty, Fresh},
Job, Work,
};
use super::{BuildContext, Context, FileFlavor, Unit};
/// Determines if a `unit` is up-to-date, and if not prepares necessary work to
/// update the persisted fingerprint.
///
/// This function will inspect `unit`, calculate a fingerprint for it, and then
/// return an appropriate `Job` to run. The returned `Job` will be a noop if
/// `unit` is considered "fresh", or if it was previously built and cached.
/// Otherwise the `Job` returned will write out the true fingerprint to the
/// filesystem, to be executed after the unit's work has completed.
///
/// The `force` flag is a way to force the `Job` to be "dirty", or always
/// update the fingerprint. **Beware using this flag** because it does not
/// transitively propagate throughout the dependency graph, it only forces this
/// one unit which is very unlikely to be what you want unless you're
/// exclusively talking about top-level units.
pub fn prepare_target<'a, 'cfg>(
cx: &mut Context<'a, 'cfg>,
unit: &Unit<'a>,
force: bool,
) -> CargoResult<Job> {
let _p = profile::start(format!(
"fingerprint: {} / {}",
unit.pkg.package_id(),
unit.target.name()
));
let bcx = cx.bcx;
let new = cx.files().fingerprint_dir(unit);
let loc = new.join(&filename(cx, unit));
debug!("fingerprint at: {}", loc.display());
// Figure out if this unit is up to date. After calculating the fingerprint
// compare it to an old version, if any, and attempt to print diagnostic
// information about failed comparisons to aid in debugging.
let fingerprint = calculate(cx, unit)?;
let mtime_on_use = cx.bcx.config.cli_unstable().mtime_on_use;
let compare = compare_old_fingerprint(&loc, &*fingerprint, mtime_on_use);
log_compare(unit, &compare);
// If our comparison failed (e.g., we're going to trigger a rebuild of this
// crate), then we also ensure the source of the crate passes all
// verification checks before we build it.
//
// The `Source::verify` method is intended to allow sources to execute
// pre-build checks to ensure that the relevant source code is all
// up-to-date and as expected. This is currently used primarily for
// directory sources which will use this hook to perform an integrity check
// on all files in the source to ensure they haven't changed. If they have
// changed then an error is issued.
if compare.is_err() {
let source_id = unit.pkg.package_id().source_id();
let sources = bcx.packages.sources();
let source = sources
.get(source_id)
.ok_or_else(|| internal("missing package source"))?;
source.verify(unit.pkg.package_id())?;
}
if compare.is_ok() && !force {
return Ok(Job::new(Work::noop(), Fresh));
}
let write_fingerprint = if unit.mode.is_run_custom_build() {
// For build scripts the `local` field of the fingerprint may change
// while we're executing it. For example it could be in the legacy
// "consider everything a dependency mode" and then we switch to "deps
// are explicitly specified" mode.
//
// To handle this movement we need to regenerate the `local` field of a
// build script's fingerprint after it's executed. We do this by
// using the `build_script_local_fingerprints` function which returns a
// thunk we can invoke on a foreign thread to calculate this.
let build_script_outputs = Arc::clone(&cx.build_script_outputs);
let key = (unit.pkg.package_id(), unit.kind);
let (gen_local, _overridden) = build_script_local_fingerprints(cx, unit);
let output_path = cx.build_explicit_deps[unit].build_script_output.clone();
Work::new(move |_| {
let outputs = build_script_outputs.lock().unwrap();
let outputs = &outputs[&key];
let deps = BuildDeps::new(&output_path, Some(outputs));
// FIXME: it's basically buggy that we pass `None` to `call_box`
// here. See documentation on `build_script_local_fingerprints`
// below for more information. Despite this just try to proceed and
// hobble along if it happens to return `Some`.
if let Some(new_local) = (gen_local)(&deps, None)? {
*fingerprint.local.lock().unwrap() = new_local;
}
write_fingerprint(&loc, &fingerprint)
})
} else {
Work::new(move |_| write_fingerprint(&loc, &fingerprint))
};
Ok(Job::new(write_fingerprint, Dirty))
}
/// Dependency edge information for fingerprints. This is generated for each
/// dependency and is stored in a `Fingerprint` below.
#[derive(Clone)]
struct DepFingerprint {
/// The hash of the package id that this dependency points to
pkg_id: u64,
/// The crate name we're using for this dependency, which if we change we'll
/// need to recompile!
name: InternedString,
/// Whether or not this dependency is flagged as a public dependency or not.
public: bool,
/// Whether or not this dependency is an rmeta dependency or a "full"
/// dependency. In the case of an rmeta dependency our dependency edge only
/// actually requires the rmeta from what we depend on, so when checking
/// mtime information all files other than the rmeta can be ignored.
only_requires_rmeta: bool,
/// The dependency's fingerprint we recursively point to, containing all the
/// other hash information we'd otherwise need.
fingerprint: Arc<Fingerprint>,
}
/// A fingerprint can be considered to be a "short string" representing the
/// state of a world for a package.
///
/// If a fingerprint ever changes, then the package itself needs to be
/// recompiled. Inputs to the fingerprint include source code modifications,
/// compiler flags, compiler version, etc. This structure is not simply a
/// `String` due to the fact that some fingerprints cannot be calculated lazily.
///
/// Path sources, for example, use the mtime of the corresponding dep-info file
/// as a fingerprint (all source files must be modified *before* this mtime).
/// This dep-info file is not generated, however, until after the crate is
/// compiled. As a result, this structure can be thought of as a fingerprint
/// to-be. The actual value can be calculated via `hash()`, but the operation
/// may fail as some files may not have been generated.
///
/// Note that dependencies are taken into account for fingerprints because rustc
/// requires that whenever an upstream crate is recompiled that all downstream
/// dependants are also recompiled. This is typically tracked through
/// `DependencyQueue`, but it also needs to be retained here because Cargo can
/// be interrupted while executing, losing the state of the `DependencyQueue`
/// graph.
#[derive(Serialize, Deserialize)]
pub struct Fingerprint {
/// Hash of the version of `rustc` used.
rustc: u64,
/// Sorted list of cfg features enabled.
features: String,
/// Hash of the `Target` struct, including the target name,
/// package-relative source path, edition, etc.
target: u64,
/// Hash of the `Profile`, `CompileMode`, and any extra flags passed via
/// `cargo rustc` or `cargo rustdoc`.
profile: u64,
/// Hash of the path to the base source file. This is relative to the
/// workspace root for path members, or absolute for other sources.
path: u64,
/// Fingerprints of dependencies.
deps: Vec<DepFingerprint>,
/// Information about the inputs that affect this Unit (such as source
/// file mtimes or build script environment variables).
local: Mutex<Vec<LocalFingerprint>>,
/// Cached hash of the `Fingerprint` struct. Used to improve performance
/// for hashing.
#[serde(skip)]
memoized_hash: Mutex<Option<u64>>,
/// RUSTFLAGS/RUSTDOCFLAGS environment variable value (or config value).
rustflags: Vec<String>,
/// Hash of some metadata from the manifest, such as "authors", or
/// "description", which are exposed as environment variables during
/// compilation.
metadata: u64,
/// Description of whether the filesystem status for this unit is up to date
/// or should be considered stale.
#[serde(skip)]
fs_status: FsStatus,
/// Files, relative to `target_root`, that are produced by the step that
/// this `Fingerprint` represents. This is used to detect when the whole
/// fingerprint is out of date if this is missing, or if previous
/// fingerprints output files are regenerated and look newer than this one.
#[serde(skip)]
outputs: Vec<PathBuf>,
}
/// Indication of the status on the filesystem for a particular unit.
enum FsStatus {
/// This unit is to be considered stale, even if hash information all
/// matches. The filesystem inputs have changed (or are missing) and the
/// unit needs to subsequently be recompiled.
Stale,
/// This unit is up-to-date. All outputs and their corresponding mtime are
/// listed in the payload here for other dependencies to compare against.
UpToDate { mtimes: HashMap<PathBuf, FileTime> },
}
impl FsStatus {
fn up_to_date(&self) -> bool {
match self {
FsStatus::UpToDate { .. } => true,
FsStatus::Stale => false,
}
}
}
impl Default for FsStatus {
fn default() -> FsStatus {
FsStatus::Stale
}
}
impl Serialize for DepFingerprint {
fn serialize<S>(&self, ser: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
(
&self.pkg_id,
&self.name,
&self.public,
&self.fingerprint.hash(),
)
.serialize(ser)
}
}
impl<'de> Deserialize<'de> for DepFingerprint {
fn deserialize<D>(d: D) -> Result<DepFingerprint, D::Error>
where
D: de::Deserializer<'de>,
{
let (pkg_id, name, public, hash) = <(u64, String, bool, u64)>::deserialize(d)?;
Ok(DepFingerprint {
pkg_id,
name: InternedString::new(&name),
public,
fingerprint: Arc::new(Fingerprint {
memoized_hash: Mutex::new(Some(hash)),
..Fingerprint::new()
}),
// This field is never read since it's only used in
// `check_filesystem` which isn't used by fingerprints loaded from
// disk.
only_requires_rmeta: false,
})
}
}
/// A `LocalFingerprint` represents something that we use to detect direct
/// changes to a `Fingerprint`.
///
/// This is where we track file information, env vars, etc. This
/// `LocalFingerprint` struct is hashed and if the hash changes will force a
/// recompile of any fingerprint it's included into. Note that the "local"
/// terminology comes from the fact that it only has to do with one crate, and
/// `Fingerprint` tracks the transitive propagation of fingerprint changes.
///
/// Note that because this is hashed its contents are carefully managed. Like
/// mentioned in the above module docs, we don't want to hash absolute paths or
/// mtime information.
///
/// Also note that a `LocalFingerprint` is used in `check_filesystem` to detect
/// when the filesystem contains stale information (based on mtime currently).
/// The paths here don't change much between compilations but they're used as
/// inputs when we probe the filesystem looking at information.
#[derive(Debug, Serialize, Deserialize, Hash)]
enum LocalFingerprint {
/// This is a precalculated fingerprint which has an opaque string we just
/// hash as usual. This variant is primarily used for git/crates.io
/// dependencies where the source never changes so we can quickly conclude
/// that there's some string we can hash and it won't really change much.
///
/// This is also used for build scripts with no `rerun-if-*` statements, but
/// that's overall a mistake and causes bugs in Cargo. We shouldn't use this
/// for build scripts.
Precalculated(String),
/// This is used for crate compilations. The `dep_info` file is a relative
/// path anchored at `target_root(...)` to the dep-info file that Cargo
/// generates (which is a custom serialization after parsing rustc's own
/// `dep-info` output).
///
/// The `dep_info` file, when present, also lists a number of other files
/// for us to look at. If any of those files are newer than this file then
/// we need to recompile.
CheckDepInfo { dep_info: PathBuf },
/// This represents a nonempty set of `rerun-if-changed` annotations printed
/// out by a build script. The `output` file is a arelative file anchored at
/// `target_root(...)` which is the actual output of the build script. That
/// output has already been parsed and the paths printed out via
/// `rerun-if-changed` are listed in `paths`. The `paths` field is relative
/// to `pkg.root()`
///
/// This is considered up-to-date if all of the `paths` are older than
/// `output`, otherwise we need to recompile.
RerunIfChanged {
output: PathBuf,
paths: Vec<PathBuf>,
},
/// This represents a single `rerun-if-env-changed` annotation printed by a
/// build script. The exact env var and value are hashed here. There's no
/// filesystem dependence here, and if the values are changed the hash will
/// change forcing a recompile.
RerunIfEnvChanged { var: String, val: Option<String> },
}
enum StaleFile {
Missing(PathBuf),
Changed {
reference: PathBuf,
reference_mtime: FileTime,
stale: PathBuf,
stale_mtime: FileTime,
},
}
impl LocalFingerprint {
/// Checks dynamically at runtime if this `LocalFingerprint` has a stale
/// file.
///
/// This will use the absolute root paths passed in if necessary to guide
/// file accesses.
fn find_stale_file(
&self,
mtime_cache: &mut HashMap<PathBuf, FileTime>,
pkg_root: &Path,
target_root: &Path,
) -> CargoResult<Option<StaleFile>> {
match self {
// We need to parse `dep_info`, learn about all the files the crate
// depends on, and then see if any of them are newer than the
// dep_info file itself. If the `dep_info` file is missing then this
// unit has never been compiled!
LocalFingerprint::CheckDepInfo { dep_info } => {
let dep_info = target_root.join(dep_info);
if let Some(paths) = parse_dep_info(pkg_root, target_root, &dep_info)? {
Ok(find_stale_file(mtime_cache, &dep_info, paths.iter()))
} else {
Ok(Some(StaleFile::Missing(dep_info)))
}
}
// We need to verify that no paths listed in `paths` are newer than
// the `output` path itself, or the last time the build script ran.
LocalFingerprint::RerunIfChanged { output, paths } => Ok(find_stale_file(
mtime_cache,
&target_root.join(output),
paths.iter().map(|p| pkg_root.join(p)),
)),
// These have no dependencies on the filesystem, and their values
// are included natively in the `Fingerprint` hash so nothing
// tocheck for here.
LocalFingerprint::RerunIfEnvChanged { .. } => Ok(None),
LocalFingerprint::Precalculated(..) => Ok(None),
}
}
fn kind(&self) -> &'static str {
match self {
LocalFingerprint::Precalculated(..) => "precalculated",
LocalFingerprint::CheckDepInfo { .. } => "dep-info",
LocalFingerprint::RerunIfChanged { .. } => "rerun-if-changed",
LocalFingerprint::RerunIfEnvChanged { .. } => "rerun-if-env-changed",
}
}
}
#[derive(Debug)]
struct MtimeSlot(Mutex<Option<FileTime>>);
impl Fingerprint {
fn new() -> Fingerprint {
Fingerprint {
rustc: 0,
target: 0,
profile: 0,
path: 0,
features: String::new(),
deps: Vec::new(),
local: Mutex::new(Vec::new()),
memoized_hash: Mutex::new(None),
rustflags: Vec::new(),
metadata: 0,
fs_status: FsStatus::Stale,
outputs: Vec::new(),
}
}
/// For performance reasons fingerprints will memoize their own hash, but
/// there's also internal mutability with its `local` field which can
/// change, for example with build scripts, during a build.
///
/// This method can be used to bust all memoized hashes just before a build
/// to ensure that after a build completes everything is up-to-date.
pub fn clear_memoized(&self) {
*self.memoized_hash.lock().unwrap() = None;
}
fn hash(&self) -> u64 {
if let Some(s) = *self.memoized_hash.lock().unwrap() {
return s;
}
let ret = util::hash_u64(self);
*self.memoized_hash.lock().unwrap() = Some(ret);
ret
}
/// Compares this fingerprint with an old version which was previously
/// serialized to filesystem.
///
/// The purpose of this is exclusively to produce a diagnostic message
/// indicating why we're recompiling something. This function always returns
/// an error, it will never return success.
fn compare(&self, old: &Fingerprint) -> CargoResult<()> {
if self.rustc != old.rustc {
bail!("rust compiler has changed")
}
if self.features != old.features {
bail!(
"features have changed: {} != {}",
self.features,
old.features
)
}
if self.target != old.target {
bail!("target configuration has changed")
}
if self.path != old.path {
bail!("path to the source has changed")
}
if self.profile != old.profile {
bail!("profile configuration has changed")
}
if self.rustflags != old.rustflags {
bail!("RUSTFLAGS has changed")
}
if self.metadata != old.metadata {
bail!("metadata changed")
}
let my_local = self.local.lock().unwrap();
let old_local = old.local.lock().unwrap();
if my_local.len() != old_local.len() {
bail!("local lens changed");
}
for (new, old) in my_local.iter().zip(old_local.iter()) {
match (new, old) {
(LocalFingerprint::Precalculated(a), LocalFingerprint::Precalculated(b)) => {
if a != b {
bail!("precalculated components have changed: {} != {}", a, b)
}
}
(
LocalFingerprint::CheckDepInfo { dep_info: adep },
LocalFingerprint::CheckDepInfo { dep_info: bdep },
) => {
if adep != bdep {
bail!("dep info output changed: {:?} != {:?}", adep, bdep)
}
}
(
LocalFingerprint::RerunIfChanged {
output: aout,
paths: apaths,
},
LocalFingerprint::RerunIfChanged {
output: bout,
paths: bpaths,
},
) => {
if aout != bout {
bail!("rerun-if-changed output changed: {:?} != {:?}", aout, bout)
}
if apaths != bpaths {
bail!(
"rerun-if-changed output changed: {:?} != {:?}",
apaths,
bpaths,
)
}
}
(
LocalFingerprint::RerunIfEnvChanged {
var: akey,
val: avalue,
},
LocalFingerprint::RerunIfEnvChanged {
var: bkey,
val: bvalue,
},
) => {
if *akey != *bkey {
bail!("env vars changed: {} != {}", akey, bkey);
}
if *avalue != *bvalue {
bail!(
"env var `{}` changed: previously {:?} now {:?}",
akey,
bvalue,
avalue
)
}
}
(a, b) => bail!(
"local fingerprint type has changed ({} => {})",
b.kind(),
a.kind()
),
}
}
if self.deps.len() != old.deps.len() {
bail!("number of dependencies has changed")
}
for (a, b) in self.deps.iter().zip(old.deps.iter()) {
if a.name != b.name {
let e = format_err!("`{}` != `{}`", a.name, b.name)
.context("unit dependency name changed");
return Err(e.into());
}
if a.fingerprint.hash() != b.fingerprint.hash() {
let e = format_err!(
"new ({}/{:x}) != old ({}/{:x})",
a.name,
a.fingerprint.hash(),
b.name,
b.fingerprint.hash()
)
.context("unit dependency information changed");
return Err(e.into());
}
}
if !self.fs_status.up_to_date() {
bail!("current filesystem status shows we're outdated");
}
// This typically means some filesystem modifications happened or
// something transitive was odd. In general we should strive to provide
// a better error message than this, so if you see this message a lot it
// likely means this method needs to be updated!
bail!("two fingerprint comparison turned up nothing obvious");
}
/// Dynamically inspect the local filesystem to update the `fs_status` field
/// of this `Fingerprint`.
///
/// This function is used just after a `Fingerprint` is constructed to check
/// the local state of the filesystem and propagate any dirtiness from
/// dependencies up to this unit as well. This function assumes that the
/// unit starts out as `FsStatus::Stale` and then it will optionally switch
/// it to `UpToDate` if it can.
fn check_filesystem(
&mut self,
mtime_cache: &mut HashMap<PathBuf, FileTime>,
pkg_root: &Path,
target_root: &Path,
) -> CargoResult<()> {
assert!(!self.fs_status.up_to_date());
let mut mtimes = HashMap::new();
// Get the `mtime` of all outputs. Optionally update their mtime
// afterwards based on the `mtime_on_use` flag. Afterwards we want the
// minimum mtime as it's the one we'll be comparing to inputs and
// dependencies.
for output in self.outputs.iter() {
let mtime = match paths::mtime(output) {
Ok(mtime) => mtime,
// This path failed to report its `mtime`. It probably doesn't
// exists, so leave ourselves as stale and bail out.
Err(e) => {
log::debug!("failed to get mtime of {:?}: {}", output, e);
return Ok(());
}
};
assert!(mtimes.insert(output.clone(), mtime).is_none());
}
let max_mtime = match mtimes.values().max() {
Some(mtime) => mtime,
// We had no output files. This means we're an overridden build
// script and we're just always up to date because we aren't
// watching the filesystem.
None => {
self.fs_status = FsStatus::UpToDate { mtimes };
return Ok(());
}
};
for dep in self.deps.iter() {
let dep_mtimes = match &dep.fingerprint.fs_status {
FsStatus::UpToDate { mtimes } => mtimes,
// If our dependency is stale, so are we, so bail out.
FsStatus::Stale => return Ok(()),
};
// If our dependency edge only requires the rmeta file to be present
// then we only need to look at that one output file, otherwise we
// need to consider all output files to see if we're out of date.
let dep_mtime = if dep.only_requires_rmeta {
dep_mtimes
.iter()
.filter_map(|(path, mtime)| {
if path.extension().and_then(|s| s.to_str()) == Some("rmeta") {
Some(mtime)
} else {
None
}
})
.next()
.expect("failed to find rmeta")
} else {
match dep_mtimes.values().max() {
Some(mtime) => mtime,
// If our dependencies is up to date and has no filesystem
// interactions, then we can move on to the next dependency.
None => continue,
}
};
// If the dependency is newer than our own output then it was
// recompiled previously. We transitively become stale ourselves in
// that case, so bail out.
//
// Note that this comparison should probably be `>=`, not `>`, but
// for a discussion of why it's `>` see the discussion about #5918
// below in `find_stale`.
if dep_mtime > max_mtime {
log::info!("dependency on `{}` is newer than we are", dep.name);
return Ok(());
}
}
// If we reached this far then all dependencies are up to date. Check
// all our `LocalFingerprint` information to see if we have any stale
// files for this package itself. If we do find something log a helpful
// message and bail out so we stay stale.
for local in self.local.get_mut().unwrap().iter() {
if let Some(file) = local.find_stale_file(mtime_cache, pkg_root, target_root)? {
file.log();
return Ok(());
}
}
// Everything was up to date! Record such.
self.fs_status = FsStatus::UpToDate { mtimes };
Ok(())
}
}
impl hash::Hash for Fingerprint {
fn hash<H: Hasher>(&self, h: &mut H) {
let Fingerprint {
rustc,
ref features,
target,
path,
profile,
ref deps,
ref local,
metadata,
ref rustflags,
..
} = *self;
let local = local.lock().unwrap();
(
rustc, features, target, path, profile, &*local, metadata, rustflags,
)
.hash(h);
h.write_usize(deps.len());
for DepFingerprint {
pkg_id,
name,
public,
fingerprint,
only_requires_rmeta: _, // static property, no need to hash
} in deps
{
pkg_id.hash(h);
name.hash(h);
public.hash(h);
// use memoized dep hashes to avoid exponential blowup
h.write_u64(Fingerprint::hash(fingerprint));
}
}
}
impl hash::Hash for MtimeSlot {
fn hash<H: Hasher>(&self, h: &mut H) {
self.0.lock().unwrap().hash(h)
}
}
impl ser::Serialize for MtimeSlot {
fn serialize<S>(&self, s: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
self.0
.lock()
.unwrap()
.map(|ft| (ft.unix_seconds(), ft.nanoseconds()))
.serialize(s)
}
}
impl<'de> de::Deserialize<'de> for MtimeSlot {
fn deserialize<D>(d: D) -> Result<MtimeSlot, D::Error>
where
D: de::Deserializer<'de>,
{
let kind: Option<(i64, u32)> = de::Deserialize::deserialize(d)?;
Ok(MtimeSlot(Mutex::new(
kind.map(|(s, n)| FileTime::from_unix_time(s, n)),
)))
}
}
impl DepFingerprint {
fn new<'a, 'cfg>(
cx: &mut Context<'a, 'cfg>,
parent: &Unit<'a>,
dep: &UnitDep<'a>,
) -> CargoResult<DepFingerprint> {
let fingerprint = calculate(cx, &dep.unit)?;
// We need to be careful about what we hash here. We have a goal of
// supporting renaming a project directory and not rebuilding
// everything. To do that, however, we need to make sure that the cwd
// doesn't make its way into any hashes, and one source of that is the
// `SourceId` for `path` packages.
//
// We already have a requirement that `path` packages all have unique
// names (sort of for this same reason), so if the package source is a
// `path` then we just hash the name, but otherwise we hash the full
// id as it won't change when the directory is renamed.
let pkg_id = if dep.unit.pkg.package_id().source_id().is_path() {
util::hash_u64(dep.unit.pkg.package_id().name())
} else {
util::hash_u64(dep.unit.pkg.package_id())
};
Ok(DepFingerprint {
pkg_id,
name: dep.extern_crate_name,
public: dep.public,
fingerprint,
only_requires_rmeta: cx.only_requires_rmeta(parent, &dep.unit),
})
}
}
impl StaleFile {
/// Use the `log` crate to log a hopefully helpful message in diagnosing
/// what file is considered stale and why. This is intended to be used in
/// conjunction with `CARGO_LOG` to determine why Cargo is recompiling
/// something. Currently there's no user-facing usage of this other than
/// that.
fn log(&self) {
match self {
StaleFile::Missing(path) => {
log::info!("stale: missing {:?}", path);
}
StaleFile::Changed {
reference,
reference_mtime,
stale,
stale_mtime,
} => {
log::info!("stale: changed {:?}", stale);
log::info!(" (vs) {:?}", reference);
log::info!(" {:?} != {:?}", reference_mtime, stale_mtime);
}
}
}
}
/// Calculates the fingerprint for a `unit`.