-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults_to_pickled_data.py
53 lines (43 loc) · 1.53 KB
/
results_to_pickled_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import pickle
import os
from numpy import genfromtxt
import math
import constants
def load_data(file_prefix=''):
all_data = None
for filename in os.listdir('results'):
if not filename.startswith(file_prefix):
continue
file_data = genfromtxt('results/' + filename, delimiter=',')
if all_data is None:
all_data = np.vstack(file_data)
else:
all_data = np.vstack([all_data, file_data])
np.random.shuffle(all_data)
validation_index = math.floor(all_data.shape[0] * 0.8)
test_index = math.floor(all_data.shape[0] * 0.9)
train_data = all_data[0:validation_index,:]
validation_data = all_data[validation_index:test_index,:]
test_data = all_data[test_index:, :]
train_features = train_data[:,1:]
train_labels = train_data[:,0]
train_labels = np.reshape(train_labels, (-1, 1))
validation_features = validation_data[:,1:]
validation_labels = validation_data[:,0]
validation_labels = np.reshape(validation_labels, (-1, 1))
test_features = test_data[:,1:]
test_labels = test_data[:,0]
test_labels = np.reshape(test_labels, (-1, 1))
return {
'train_features':train_features,
'train_labels':train_labels,
'validation_features':validation_features,
'validation_labels':validation_labels,
'test_features': test_features,
'test_labels': test_labels
}
if __name__ == '__main__':
with open(constants.MOST_RECENT_PICKLE_FILE, 'wb') as file_handle:
obj = load_data(file_prefix='known_results')
pickle.dump(obj, file_handle, protocol=pickle.HIGHEST_PROTOCOL)