-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathget_parse_agnostic.py
78 lines (59 loc) · 2.79 KB
/
get_parse_agnostic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import json
from os import path as osp
import os
import numpy as np
from PIL import Image, ImageDraw
import argparse
from tqdm import tqdm
def get_im_parse_agnostic(im_parse, pose_data, w=768, h=1024):
parse_array = np.array(im_parse)
parse_upper = ((parse_array == 5).astype(np.float32) +
(parse_array == 6).astype(np.float32) +
(parse_array == 7).astype(np.float32))
parse_neck = (parse_array == 10).astype(np.float32)
r = 10
agnostic = im_parse.copy()
# mask arms
for parse_id, pose_ids in [(14, [2, 5, 6, 7]), (15, [5, 2, 3, 4])]:
mask_arm = Image.new('L', (w, h), 'black')
mask_arm_draw = ImageDraw.Draw(mask_arm)
i_prev = pose_ids[0]
for i in pose_ids[1:]:
if (pose_data[i_prev, 0] == 0.0 and pose_data[i_prev, 1] == 0.0) or (pose_data[i, 0] == 0.0 and pose_data[i, 1] == 0.0):
continue
mask_arm_draw.line([tuple(pose_data[j]) for j in [i_prev, i]], 'white', width=r*10)
pointx, pointy = pose_data[i]
radius = r*4 if i == pose_ids[-1] else r*15
mask_arm_draw.ellipse((pointx-radius, pointy-radius, pointx+radius, pointy+radius), 'white', 'white')
i_prev = i
parse_arm = (np.array(mask_arm) / 255) * (parse_array == parse_id).astype(np.float32)
agnostic.paste(0, None, Image.fromarray(np.uint8(parse_arm * 255), 'L'))
# mask torso & neck
agnostic.paste(0, None, Image.fromarray(np.uint8(parse_upper * 255), 'L'))
agnostic.paste(0, None, Image.fromarray(np.uint8(parse_neck * 255), 'L'))
return agnostic
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, help="dataset dir")
parser.add_argument('--output_path', type=str, help="output dir")
args = parser.parse_args()
data_path = args.data_path
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
for im_name in tqdm(os.listdir(osp.join(data_path, 'image'))):
# load pose image
pose_name = im_name.replace('.jpg', '_keypoints.json')
try:
with open(osp.join(data_path, 'openpose_json', pose_name), 'r') as f:
pose_label = json.load(f)
pose_data = pose_label['people'][0]['pose_keypoints_2d']
pose_data = np.array(pose_data)
pose_data = pose_data.reshape((-1, 3))[:, :2]
except IndexError:
print(pose_name)
continue
# load parsing image
parse_name = im_name.replace('.jpg', '.png')
im_parse = Image.open(osp.join(data_path, 'image-parse-v3', parse_name))
agnostic = get_im_parse_agnostic(im_parse, pose_data)
agnostic.save(osp.join(output_path, parse_name))