-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathlz4_fragmented_compressor.cc
352 lines (302 loc) · 14 KB
/
lz4_fragmented_compressor.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*
* This file is open source software, licensed to you under the terms
* of the Apache License, Version 2.0 (the "License"). See the NOTICE file
* distributed with this work for additional information regarding copyright
* ownership. You may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (C) 2019 Scylladb, Ltd.
*/
#include <seastar/rpc/lz4_fragmented_compressor.hh>
#include <seastar/core/byteorder.hh>
#include <lz4.h>
// LZ4_DECODER_RING_BUFFER_SIZE macro is introduced since v1.8.2
// To work with previous lz4 release, copied the definition in lz4 here
#ifndef LZ4_DECODER_RING_BUFFER_SIZE
#define LZ4_DECODER_RING_BUFFER_SIZE(maxBlockSize) (65536 + 14 + (maxBlockSize))
#endif
namespace seastar {
namespace rpc {
sstring lz4_fragmented_compressor::name() const {
return factory{}.supported();
}
const sstring& lz4_fragmented_compressor::factory::supported() const {
const static sstring name = "LZ4_FRAGMENTED";
return name;
}
std::unique_ptr<rpc::compressor> lz4_fragmented_compressor::factory::negotiate(sstring feature, bool is_server) const {
return feature == supported() ? std::make_unique<lz4_fragmented_compressor>() : nullptr;
}
// Compressed message format:
// The message consists of one or more data chunks each preceeded by a 4 byte header.
// The value of the header detrmines the size of the chunk:
// - most significant bit is cleared: intermediate chunk, 31 least significant bits
// contain the compressed size of the chunk (i.e. how it appears on wire), the
// decompressed size is 32 kB.
// - most significant bit is set: last chunk, 31 least significant bits contain the
// decompressed size of the chunk, the compressed size is the remaining part of
// the message.
// Compression and decompression is done using LZ4 streaming interface. Each chunk
// depends on the one that precedes it.
// All metadata is little-endian.
static constexpr uint32_t last_chunk_flag = uint32_t(1) << 31;
static constexpr size_t chunk_header_size = sizeof(uint32_t);
static constexpr size_t chunk_size = 32 * 1024;
namespace {
struct compression_stream_deleter {
void operator()(LZ4_stream_t* stream) const noexcept {
LZ4_freeStream(stream);
}
};
struct decompression_stream_deleter {
void operator()(LZ4_streamDecode_t* stream) const noexcept {
LZ4_freeStreamDecode(stream);
}
};
}
snd_buf lz4_fragmented_compressor::compress(size_t head_space, snd_buf data) {
static thread_local auto stream = std::unique_ptr<LZ4_stream_t, compression_stream_deleter>(LZ4_createStream());
static_assert(chunk_size <= snd_buf::chunk_size, "chunk_size <= snd_buf::chunk_size");
LZ4_resetStream(stream.get());
auto size_left = data.size;
auto src = std::get_if<temporary_buffer<char>>(&data.bufs);
if (!src) {
src = std::get<std::vector<temporary_buffer<char>>>(data.bufs).data();
}
auto single_chunk_size = LZ4_COMPRESSBOUND(size_left) + head_space + chunk_header_size;
if (single_chunk_size <= chunk_size && size_left <= chunk_size && src->size() == size_left) {
// faster path for small messages
auto dst = temporary_buffer<char>(single_chunk_size);
auto header = dst.get_write() + head_space;
auto compressed_data = header + chunk_header_size;
auto compressed_size = LZ4_compress_fast_continue(stream.get(), src->get(), compressed_data, size_left, LZ4_COMPRESSBOUND(size_left), 0);
write_le(header, last_chunk_flag | size_left);
dst.trim(head_space + chunk_header_size + compressed_size);
return snd_buf(std::move(dst));
}
static constexpr size_t chunk_compress_bound = LZ4_COMPRESSBOUND(chunk_size);
static constexpr size_t chunk_maximum_compressed_size = chunk_compress_bound + chunk_header_size;
static_assert(chunk_maximum_compressed_size < snd_buf::chunk_size, "chunk_maximum_compressed_size is too large");
std::vector<temporary_buffer<char>> dst_buffers;
size_t dst_offset = head_space;
dst_buffers.emplace_back(std::max<size_t>(head_space, snd_buf::chunk_size));
// Intermediate chunks
size_t total_compressed_size = 0;
auto src_left = data.size;
size_t src_current_offset = 0;
// Advance offset in the current source fragment, move to the next fragment if needed.
auto advance_src = [&] (size_t n) {
src_current_offset += n;
if (src_current_offset >= src->size()) {
++src;
src_current_offset = 0;
}
src_left -= n;
};
// Input chunks do not have to be multiplies of chunk_size.
// We handle such cases by reassembling a chunk in this temporary buffer.
// Note that this is similar to the ring buffer compression case in docs,
// we need to ensure that a suitable amount of (maybe) previous data is
// stable in this or input buffer, thus make the temp buffer
// LZ4_DECODER_RING_BUFFER_SIZE(chunk_size) large, and treat it as a ring.
static constexpr auto lin_buf_size = LZ4_DECODER_RING_BUFFER_SIZE(chunk_size);
static thread_local char temporary_chunk_data[lin_buf_size];
size_t lin_off = 0;
auto maybe_linearize = [&](size_t size) {
auto src_ptr = src->get() + src_current_offset;
if (src->size() - src_current_offset < size) {
auto left = size;
assert(lin_buf_size > size);
if (lin_buf_size - lin_off < size) {
lin_off = 0;
}
auto tmp = temporary_chunk_data + std::exchange(lin_off, lin_off + size);
src_ptr = tmp;
while (left) {
auto this_size = std::min(src->size() - src_current_offset, left);
tmp = std::copy_n(src->get() + src_current_offset, this_size, tmp);
left -= this_size;
advance_src(this_size);
}
} else {
advance_src(chunk_size);
lin_off = 0;
}
return src_ptr;
};
while (src_left > chunk_size) {
// Check if we can fit another chunk in the current destination fragment.
// If not allocate a new one.
if (dst_offset + chunk_maximum_compressed_size > dst_buffers.back().size()) {
dst_buffers.back().trim(dst_offset);
dst_buffers.emplace_back(snd_buf::chunk_size);
dst_offset = 0;
}
// Check if there is at least a contiguous chunk_size of data in the current
// source fragment. If not, linearise that into temporary_chunk_data.
auto src_ptr = maybe_linearize(chunk_size);
auto header = dst_buffers.back().get_write() + dst_offset;
auto dst = header + chunk_header_size;
auto compressed_size = LZ4_compress_fast_continue(stream.get(), src_ptr, dst, chunk_size, chunk_compress_bound, 0);
total_compressed_size += compressed_size + chunk_header_size;
dst_offset += compressed_size + chunk_header_size;
write_le<uint32_t>(header, compressed_size);
}
// Last chunk
auto last_chunk_compress_bound = LZ4_COMPRESSBOUND(src_left);
auto last_chunk_maximum_compressed_size = last_chunk_compress_bound + chunk_header_size;
// Check if we can fit the last chunk in the current destination fragment. Allocate a new one if not.
if (dst_offset + last_chunk_maximum_compressed_size > dst_buffers.back().size()) {
dst_buffers.back().trim(dst_offset);
dst_buffers.emplace_back(snd_buf::chunk_size);
dst_offset = 0;
}
auto header = dst_buffers.back().get_write() + dst_offset;
auto dst = header + chunk_header_size;
// Check if all remaining source data is contiguous. If not linearise it into temporary_chunk_data.
auto rem = src_left;
auto src_ptr = maybe_linearize(src_left);
auto compressed_size = LZ4_compress_fast_continue(stream.get(), src_ptr, dst, rem, last_chunk_compress_bound, 0);
dst_offset += compressed_size + chunk_header_size;
write_le<uint32_t>(header, last_chunk_flag | rem);
total_compressed_size += compressed_size + chunk_header_size + head_space;
auto& last = dst_buffers.back();
last.trim(dst_offset);
if (dst_buffers.size() == 1) {
return snd_buf(std::move(dst_buffers.front()));
}
return snd_buf(std::move(dst_buffers), total_compressed_size);
}
rcv_buf lz4_fragmented_compressor::decompress(rcv_buf data) {
if (data.size < 4) {
return rcv_buf();
}
static thread_local auto stream = std::unique_ptr<LZ4_streamDecode_t, decompression_stream_deleter>(LZ4_createStreamDecode());
if (!LZ4_setStreamDecode(stream.get(), nullptr, 0)) {
throw std::runtime_error("RPC frame LZ4_FRAGMENTED decompression failed to reset state");
}
auto src = std::get_if<temporary_buffer<char>>(&data.bufs);
size_t src_left = data.size;
size_t src_offset = 0;
// Prepare source data. Returns pointer to n contiguous bytes of source data.
// Avoids copy if possible, otherwise uses dst as a temporary storage.
auto copy_src = [&] (char* dst, size_t n) -> const char* {
// Fast path, no need to copy anything.
if (src->size() - src_offset >= n) {
auto ptr = src->get() + src_offset;
src_left -= n;
src_offset += n;
return ptr;
}
// Need to linearise source chunk into dst.
auto ptr = dst;
src_left -= n;
while (n) {
if (src_offset == src->size()) {
++src;
src_offset = 0;
}
auto this_size = std::min(n, src->size() - src_offset);
std::copy_n(src->get() + src_offset, this_size, dst);
n -= this_size;
dst += this_size;
src_offset += this_size;
}
return ptr;
};
// Read, possibly fragmented, header.
auto read_header = [&] {
uint32_t header_value;
auto ptr = copy_src(reinterpret_cast<char*>(&header_value), chunk_header_size);
if (ptr != reinterpret_cast<char*>(&header_value)) {
std::copy_n(ptr, sizeof(uint32_t), reinterpret_cast<char*>(&header_value));
}
return le_to_cpu(header_value);
};
if (src) {
auto header = read_le<uint32_t>(src->get());
if (header & last_chunk_flag) {
// faster path for small messages: single chunk in a single buffer
header &= ~last_chunk_flag;
src_offset += chunk_header_size;
src_left -= chunk_header_size;
auto dst = temporary_buffer<char>(header);
if (LZ4_decompress_safe_continue(stream.get(), src->get() + src_offset, dst.get_write(), src_left, header) < 0) {
throw std::runtime_error("RPC frame LZ4_FRAGMENTED decompression failure (short)");
}
return rcv_buf(std::move(dst));
}
// not eligible for fast path: multiple chunks in a single buffer
} else {
// not eligible for fast path: multiple buffers
src = std::get<std::vector<temporary_buffer<char>>>(data.bufs).data();
}
// Let's be a bit paranoid and not assume that the remote has the same
// LZ4_COMPRESSBOUND as we do and allow any compressed chunk size.
static thread_local auto chunk_buffer = temporary_buffer<char>(LZ4_COMPRESSBOUND(chunk_size));
std::vector<temporary_buffer<char>> dst_buffers;
size_t total_size = 0;
// Decompressing requires either dest to be fully split or
// "preserved" in 64KB or larger, depending on how it was
// compressed. If not, decompression will fail, typically
// on text-like constructs. Making our dest buffers 64K
// ensures we retain a suitable dictionary region for all
// passes.
constexpr auto buf_size = 64 * 1024;
size_t dst_offset = 0;
auto get_dest = [&](size_t size) {
if (dst_buffers.empty()) {
dst_buffers.emplace_back(buf_size);
}
if (dst_buffers.back().size() - dst_offset < size) {
dst_buffers.back().trim(dst_offset);
dst_buffers.emplace_back(buf_size);
dst_offset = 0;
}
return dst_buffers.back().get_write() + std::exchange(dst_offset, dst_offset + size);
};
// Intermediate chunks
uint32_t header_value = read_header();
while (!(header_value & last_chunk_flag)) {
total_size += chunk_size;
if (chunk_buffer.size() < header_value) {
chunk_buffer = temporary_buffer<char>(header_value);
}
auto src_ptr = copy_src(chunk_buffer.get_write(), header_value);
auto dst = get_dest(chunk_size);
if (LZ4_decompress_safe_continue(stream.get(), src_ptr, /*dst_buffers.back().get_write()*/dst, header_value, chunk_size) < 0) {
throw std::runtime_error(format("RPC frame LZ4_FRAGMENTED decompression failure (long, at {} bytes)", total_size - chunk_size));
}
header_value = read_header();
}
// Last chunk
header_value &= ~last_chunk_flag;
total_size += header_value;
auto dst = get_dest(header_value);
if (chunk_buffer.size() < src_left) {
chunk_buffer = temporary_buffer<char>(src_left);
}
auto last_chunk_compressed_size = src_left;
auto src_ptr = copy_src(chunk_buffer.get_write(), src_left);
if (LZ4_decompress_safe_continue(stream.get(), src_ptr, /*dst_buffers.back().get_write()*/dst, last_chunk_compressed_size, header_value) < 0) {
throw std::runtime_error(format("RPC frame LZ4_FRAGMENTED decompression failure (long, last frame, at {} bytes)", total_size - header_value));
}
dst_buffers.back().trim(dst_offset);
if (dst_buffers.size() == 1) {
return rcv_buf(std::move(dst_buffers.front()));
}
return rcv_buf(std::move(dst_buffers), total_size);
}
}
}